WorldWideScience

Sample records for metagenomic gene prediction

  1. Gene Prediction in Metagenomic Fragments with Deep Learning

    Directory of Open Access Journals (Sweden)

    Shao-Wu Zhang

    2017-01-01

    Full Text Available Next generation sequencing technologies used in metagenomics yield numerous sequencing fragments which come from thousands of different species. Accurately identifying genes from metagenomics fragments is one of the most fundamental issues in metagenomics. In this article, by fusing multifeatures (i.e., monocodon usage, monoamino acid usage, ORF length coverage, and Z-curve features and using deep stacking networks learning model, we present a novel method (called Meta-MFDL to predict the metagenomic genes. The results with 10 CV and independent tests show that Meta-MFDL is a powerful tool for identifying genes from metagenomic fragments.

  2. Combining gene prediction methods to improve metagenomic gene annotation

    Directory of Open Access Journals (Sweden)

    Rosen Gail L

    2011-01-01

    Full Text Available Abstract Background Traditional gene annotation methods rely on characteristics that may not be available in short reads generated from next generation technology, resulting in suboptimal performance for metagenomic (environmental samples. Therefore, in recent years, new programs have been developed that optimize performance on short reads. In this work, we benchmark three metagenomic gene prediction programs and combine their predictions to improve metagenomic read gene annotation. Results We not only analyze the programs' performance at different read-lengths like similar studies, but also separate different types of reads, including intra- and intergenic regions, for analysis. The main deficiencies are in the algorithms' ability to predict non-coding regions and gene edges, resulting in more false-positives and false-negatives than desired. In fact, the specificities of the algorithms are notably worse than the sensitivities. By combining the programs' predictions, we show significant improvement in specificity at minimal cost to sensitivity, resulting in 4% improvement in accuracy for 100 bp reads with ~1% improvement in accuracy for 200 bp reads and above. To correctly annotate the start and stop of the genes, we find that a consensus of all the predictors performs best for shorter read lengths while a unanimous agreement is better for longer read lengths, boosting annotation accuracy by 1-8%. We also demonstrate use of the classifier combinations on a real dataset. Conclusions To optimize the performance for both prediction and annotation accuracies, we conclude that the consensus of all methods (or a majority vote is the best for reads 400 bp and shorter, while using the intersection of GeneMark and Orphelia predictions is the best for reads 500 bp and longer. We demonstrate that most methods predict over 80% coding (including partially coding reads on a real human gut sample sequenced by Illumina technology.

  3. Gene prediction in metagenomic fragments: A large scale machine learning approach

    Directory of Open Access Journals (Sweden)

    Morgenstern Burkhard

    2008-04-01

    Full Text Available Abstract Background Metagenomics is an approach to the characterization of microbial genomes via the direct isolation of genomic sequences from the environment without prior cultivation. The amount of metagenomic sequence data is growing fast while computational methods for metagenome analysis are still in their infancy. In contrast to genomic sequences of single species, which can usually be assembled and analyzed by many available methods, a large proportion of metagenome data remains as unassembled anonymous sequencing reads. One of the aims of all metagenomic sequencing projects is the identification of novel genes. Short length, for example, Sanger sequencing yields on average 700 bp fragments, and unknown phylogenetic origin of most fragments require approaches to gene prediction that are different from the currently available methods for genomes of single species. In particular, the large size of metagenomic samples requires fast and accurate methods with small numbers of false positive predictions. Results We introduce a novel gene prediction algorithm for metagenomic fragments based on a two-stage machine learning approach. In the first stage, we use linear discriminants for monocodon usage, dicodon usage and translation initiation sites to extract features from DNA sequences. In the second stage, an artificial neural network combines these features with open reading frame length and fragment GC-content to compute the probability that this open reading frame encodes a protein. This probability is used for the classification and scoring of gene candidates. With large scale training, our method provides fast single fragment predictions with good sensitivity and specificity on artificially fragmented genomic DNA. Additionally, this method is able to predict translation initiation sites accurately and distinguishes complete from incomplete genes with high reliability. Conclusion Large scale machine learning methods are well-suited for gene

  4. MOCAT: a metagenomics assembly and gene prediction toolkit.

    Science.gov (United States)

    Kultima, Jens Roat; Sunagawa, Shinichi; Li, Junhua; Chen, Weineng; Chen, Hua; Mende, Daniel R; Arumugam, Manimozhiyan; Pan, Qi; Liu, Binghang; Qin, Junjie; Wang, Jun; Bork, Peer

    2012-01-01

    MOCAT is a highly configurable, modular pipeline for fast, standardized processing of single or paired-end sequencing data generated by the Illumina platform. The pipeline uses state-of-the-art programs to quality control, map, and assemble reads from metagenomic samples sequenced at a depth of several billion base pairs, and predict protein-coding genes on assembled metagenomes. Mapping against reference databases allows for read extraction or removal, as well as abundance calculations. Relevant statistics for each processing step can be summarized into multi-sheet Excel documents and queryable SQL databases. MOCAT runs on UNIX machines and integrates seamlessly with the SGE and PBS queuing systems, commonly used to process large datasets. The open source code and modular architecture allow users to modify or exchange the programs that are utilized in the various processing steps. Individual processing steps and parameters were benchmarked and tested on artificial, real, and simulated metagenomes resulting in an improvement of selected quality metrics. MOCAT can be freely downloaded at http://www.bork.embl.de/mocat/.

  5. MOCAT: a metagenomics assembly and gene prediction toolkit.

    Directory of Open Access Journals (Sweden)

    Jens Roat Kultima

    Full Text Available MOCAT is a highly configurable, modular pipeline for fast, standardized processing of single or paired-end sequencing data generated by the Illumina platform. The pipeline uses state-of-the-art programs to quality control, map, and assemble reads from metagenomic samples sequenced at a depth of several billion base pairs, and predict protein-coding genes on assembled metagenomes. Mapping against reference databases allows for read extraction or removal, as well as abundance calculations. Relevant statistics for each processing step can be summarized into multi-sheet Excel documents and queryable SQL databases. MOCAT runs on UNIX machines and integrates seamlessly with the SGE and PBS queuing systems, commonly used to process large datasets. The open source code and modular architecture allow users to modify or exchange the programs that are utilized in the various processing steps. Individual processing steps and parameters were benchmarked and tested on artificial, real, and simulated metagenomes resulting in an improvement of selected quality metrics. MOCAT can be freely downloaded at http://www.bork.embl.de/mocat/.

  6. Meta4: a web application for sharing and annotating metagenomic gene predictions using web services.

    Science.gov (United States)

    Richardson, Emily J; Escalettes, Franck; Fotheringham, Ian; Wallace, Robert J; Watson, Mick

    2013-01-01

    Whole-genome shotgun metagenomics experiments produce DNA sequence data from entire ecosystems, and provide a huge amount of novel information. Gene discovery projects require up-to-date information about sequence homology and domain structure for millions of predicted proteins to be presented in a simple, easy-to-use system. There is a lack of simple, open, flexible tools that allow the rapid sharing of metagenomics datasets with collaborators in a format they can easily interrogate. We present Meta4, a flexible and extensible web application that can be used to share and annotate metagenomic gene predictions. Proteins and predicted domains are stored in a simple relational database, with a dynamic front-end which displays the results in an internet browser. Web services are used to provide up-to-date information about the proteins from homology searches against public databases. Information about Meta4 can be found on the project website, code is available on Github, a cloud image is available, and an example implementation can be seen at.

  7. Benchmarking of gene prediction programs for metagenomic data.

    Science.gov (United States)

    Yok, Non; Rosen, Gail

    2010-01-01

    This manuscript presents the most rigorous benchmarking of gene annotation algorithms for metagenomic datasets to date. We compare three different programs: GeneMark, MetaGeneAnnotator (MGA) and Orphelia. The comparisons are based on their performances over simulated fragments from one hundred species of diverse lineages. We defined four different types of fragments; two types come from the inter- and intra-coding regions and the other types are from the gene edges. Hoff et al. used only 12 species in their comparison; therefore, their sample is too small to represent an environmental sample. Also, no predecessors has separately examined fragments that contain gene edges as opposed to intra-coding regions. General observations in our results are that performances of all these programs improve as we increase the length of the fragment. On the other hand, intra-coding fragments of our data show low annotation error in all of the programs if compared to the gene edge fragments. Overall, we found an upper-bound performance by combining all the methods.

  8. Machine Learning Leveraging Genomes from Metagenomes Identifies Influential Antibiotic Resistance Genes in the Infant Gut Microbiome

    Science.gov (United States)

    Olm, Matthew R.; Morowitz, Michael J.

    2018-01-01

    ABSTRACT Antibiotic resistance in pathogens is extensively studied, and yet little is known about how antibiotic resistance genes of typical gut bacteria influence microbiome dynamics. Here, we leveraged genomes from metagenomes to investigate how genes of the premature infant gut resistome correspond to the ability of bacteria to survive under certain environmental and clinical conditions. We found that formula feeding impacts the resistome. Random forest models corroborated by statistical tests revealed that the gut resistome of formula-fed infants is enriched in class D beta-lactamase genes. Interestingly, Clostridium difficile strains harboring this gene are at higher abundance in formula-fed infants than C. difficile strains lacking this gene. Organisms with genes for major facilitator superfamily drug efflux pumps have higher replication rates under all conditions, even in the absence of antibiotic therapy. Using a machine learning approach, we identified genes that are predictive of an organism’s direction of change in relative abundance after administration of vancomycin and cephalosporin antibiotics. The most accurate results were obtained by reducing annotated genomic data to five principal components classified by boosted decision trees. Among the genes involved in predicting whether an organism increased in relative abundance after treatment are those that encode subclass B2 beta-lactamases and transcriptional regulators of vancomycin resistance. This demonstrates that machine learning applied to genome-resolved metagenomics data can identify key genes for survival after antibiotics treatment and predict how organisms in the gut microbiome will respond to antibiotic administration. IMPORTANCE The process of reconstructing genomes from environmental sequence data (genome-resolved metagenomics) allows unique insight into microbial systems. We apply this technique to investigate how the antibiotic resistance genes of bacteria affect their ability to

  9. Reconstruction of ribosomal RNA genes from metagenomic data.

    Directory of Open Access Journals (Sweden)

    Lu Fan

    Full Text Available Direct sequencing of environmental DNA (metagenomics has a great potential for describing the 16S rRNA gene diversity of microbial communities. However current approaches using this 16S rRNA gene information to describe community diversity suffer from low taxonomic resolution or chimera problems. Here we describe a new strategy that involves stringent assembly and data filtering to reconstruct full-length 16S rRNA genes from metagenomicpyrosequencing data. Simulations showed that reconstructed 16S rRNA genes provided a true picture of the community diversity, had minimal rates of chimera formation and gave taxonomic resolution down to genus level. The strategy was furthermore compared to PCR-based methods to determine the microbial diversity in two marine sponges. This showed that about 30% of the abundant phylotypes reconstructed from metagenomic data failed to be amplified by PCR. Our approach is readily applicable to existing metagenomic datasets and is expected to lead to the discovery of new microbial phylotypes.

  10. Identification of nitrogen-fixing genes and gene clusters from metagenomic library of acid mine drainage.

    Directory of Open Access Journals (Sweden)

    Zhimin Dai

    Full Text Available Biological nitrogen fixation is an essential function of acid mine drainage (AMD microbial communities. However, most acidophiles in AMD environments are uncultured microorganisms and little is known about the diversity of nitrogen-fixing genes and structure of nif gene cluster in AMD microbial communities. In this study, we used metagenomic sequencing to isolate nif genes in the AMD microbial community from Dexing Copper Mine, China. Meanwhile, a metagenome microarray containing 7,776 large-insertion fosmids was constructed to screen novel nif gene clusters. Metagenomic analyses revealed that 742 sequences were identified as nif genes including structural subunit genes nifH, nifD, nifK and various additional genes. The AMD community is massively dominated by the genus Acidithiobacillus. However, the phylogenetic diversity of nitrogen-fixing microorganisms is much higher than previously thought in the AMD community. Furthermore, a 32.5-kb genomic sequence harboring nif, fix and associated genes was screened by metagenome microarray. Comparative genome analysis indicated that most nif genes in this cluster are most similar to those of Herbaspirillum seropedicae, but the organization of the nif gene cluster had significant differences from H. seropedicae. Sequence analysis and reverse transcription PCR also suggested that distinct transcription units of nif genes exist in this gene cluster. nifQ gene falls into the same transcription unit with fixABCX genes, which have not been reported in other diazotrophs before. All of these results indicated that more novel diazotrophs survive in the AMD community.

  11. Identification of nitrogen-fixing genes and gene clusters from metagenomic library of acid mine drainage.

    Science.gov (United States)

    Dai, Zhimin; Guo, Xue; Yin, Huaqun; Liang, Yili; Cong, Jing; Liu, Xueduan

    2014-01-01

    Biological nitrogen fixation is an essential function of acid mine drainage (AMD) microbial communities. However, most acidophiles in AMD environments are uncultured microorganisms and little is known about the diversity of nitrogen-fixing genes and structure of nif gene cluster in AMD microbial communities. In this study, we used metagenomic sequencing to isolate nif genes in the AMD microbial community from Dexing Copper Mine, China. Meanwhile, a metagenome microarray containing 7,776 large-insertion fosmids was constructed to screen novel nif gene clusters. Metagenomic analyses revealed that 742 sequences were identified as nif genes including structural subunit genes nifH, nifD, nifK and various additional genes. The AMD community is massively dominated by the genus Acidithiobacillus. However, the phylogenetic diversity of nitrogen-fixing microorganisms is much higher than previously thought in the AMD community. Furthermore, a 32.5-kb genomic sequence harboring nif, fix and associated genes was screened by metagenome microarray. Comparative genome analysis indicated that most nif genes in this cluster are most similar to those of Herbaspirillum seropedicae, but the organization of the nif gene cluster had significant differences from H. seropedicae. Sequence analysis and reverse transcription PCR also suggested that distinct transcription units of nif genes exist in this gene cluster. nifQ gene falls into the same transcription unit with fixABCX genes, which have not been reported in other diazotrophs before. All of these results indicated that more novel diazotrophs survive in the AMD community.

  12. Identification of Nitrogen-Fixing Genes and Gene Clusters from Metagenomic Library of Acid Mine Drainage

    Science.gov (United States)

    Yin, Huaqun; Liang, Yili; Cong, Jing; Liu, Xueduan

    2014-01-01

    Biological nitrogen fixation is an essential function of acid mine drainage (AMD) microbial communities. However, most acidophiles in AMD environments are uncultured microorganisms and little is known about the diversity of nitrogen-fixing genes and structure of nif gene cluster in AMD microbial communities. In this study, we used metagenomic sequencing to isolate nif genes in the AMD microbial community from Dexing Copper Mine, China. Meanwhile, a metagenome microarray containing 7,776 large-insertion fosmids was constructed to screen novel nif gene clusters. Metagenomic analyses revealed that 742 sequences were identified as nif genes including structural subunit genes nifH, nifD, nifK and various additional genes. The AMD community is massively dominated by the genus Acidithiobacillus. However, the phylogenetic diversity of nitrogen-fixing microorganisms is much higher than previously thought in the AMD community. Furthermore, a 32.5-kb genomic sequence harboring nif, fix and associated genes was screened by metagenome microarray. Comparative genome analysis indicated that most nif genes in this cluster are most similar to those of Herbaspirillum seropedicae, but the organization of the nif gene cluster had significant differences from H. seropedicae. Sequence analysis and reverse transcription PCR also suggested that distinct transcription units of nif genes exist in this gene cluster. nifQ gene falls into the same transcription unit with fixABCX genes, which have not been reported in other diazotrophs before. All of these results indicated that more novel diazotrophs survive in the AMD community. PMID:24498417

  13. Tentacle: distributed quantification of genes in metagenomes.

    Science.gov (United States)

    Boulund, Fredrik; Sjögren, Anders; Kristiansson, Erik

    2015-01-01

    In metagenomics, microbial communities are sequenced at increasingly high resolution, generating datasets with billions of DNA fragments. Novel methods that can efficiently process the growing volumes of sequence data are necessary for the accurate analysis and interpretation of existing and upcoming metagenomes. Here we present Tentacle, which is a novel framework that uses distributed computational resources for gene quantification in metagenomes. Tentacle is implemented using a dynamic master-worker approach in which DNA fragments are streamed via a network and processed in parallel on worker nodes. Tentacle is modular, extensible, and comes with support for six commonly used sequence aligners. It is easy to adapt Tentacle to different applications in metagenomics and easy to integrate into existing workflows. Evaluations show that Tentacle scales very well with increasing computing resources. We illustrate the versatility of Tentacle on three different use cases. Tentacle is written for Linux in Python 2.7 and is published as open source under the GNU General Public License (v3). Documentation, tutorials, installation instructions, and the source code are freely available online at: http://bioinformatics.math.chalmers.se/tentacle.

  14. Exploration of noncoding sequences in metagenomes.

    Directory of Open Access Journals (Sweden)

    Fabián Tobar-Tosse

    Full Text Available Environment-dependent genomic features have been defined for different metagenomes, whose genes and their associated processes are related to specific environments. Identification of ORFs and their functional categories are the most common methods for association between functional and environmental features. However, this analysis based on finding ORFs misses noncoding sequences and, therefore, some metagenome regulatory or structural information could be discarded. In this work we analyzed 23 whole metagenomes, including coding and noncoding sequences using the following sequence patterns: (G+C content, Codon Usage (Cd, Trinucleotide Usage (Tn, and functional assignments for ORF prediction. Herein, we present evidence of a high proportion of noncoding sequences discarded in common similarity-based methods in metagenomics, and the kind of relevant information present in those. We found a high density of trinucleotide repeat sequences (TRS in noncoding sequences, with a regulatory and adaptive function for metagenome communities. We present associations between trinucleotide values and gene function, where metagenome clustering correlate with microorganism adaptations and kinds of metagenomes. We propose here that noncoding sequences have relevant information to describe metagenomes that could be considered in a whole metagenome analysis in order to improve their organization, classification protocols, and their relation with the environment.

  15. Genetic variability of psychrotolerant Acidithiobacillus ferrivorans revealed by (meta)genomic analysis.

    Science.gov (United States)

    González, Carolina; Yanquepe, María; Cardenas, Juan Pablo; Valdes, Jorge; Quatrini, Raquel; Holmes, David S; Dopson, Mark

    2014-11-01

    Acidophilic microorganisms inhabit low pH environments such as acid mine drainage that is generated when sulfide minerals are exposed to air. The genome sequence of the psychrotolerant Acidithiobacillus ferrivorans SS3 was compared to a metagenome from a low temperature acidic stream dominated by an A. ferrivorans-like strain. Stretches of genomic DNA characterized by few matches to the metagenome, termed 'metagenomic islands', encoded genes associated with metal efflux and pH homeostasis. The metagenomic islands were enriched in mobile elements such as phage proteins, transposases, integrases and in one case, predicted to be flanked by truncated tRNAs. Cus gene clusters predicted to be involved in copper efflux and further Cus-like RND systems were predicted to be located in metagenomic islands and therefore, constitute part of the flexible gene complement of the species. Phylogenetic analysis of Cus clusters showed both lineage specificity within the Acidithiobacillus genus as well as niche specificity associated with an acidic environment. The metagenomic islands also contained a predicted copper efflux P-type ATPase system and a polyphosphate kinase potentially involved in polyphosphate mediated copper resistance. This study identifies genetic variability of low temperature acidophiles that likely reflects metal resistance selective pressures in the copper rich environment. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  16. Metagenomic species profiling using universal phylogenetic marker genes

    DEFF Research Database (Denmark)

    Sunagawa, Shinichi; Mende, Daniel R; Zeller, Georg

    2013-01-01

    To quantify known and unknown microorganisms at species-level resolution using shotgun sequencing data, we developed a method that establishes metagenomic operational taxonomic units (mOTUs) based on single-copy phylogenetic marker genes. Applied to 252 human fecal samples, the method revealed th...... that on average 43% of the species abundance and 58% of the richness cannot be captured by current reference genome-based methods. An implementation of the method is available at http://www.bork.embl.de/software/mOTU/.......To quantify known and unknown microorganisms at species-level resolution using shotgun sequencing data, we developed a method that establishes metagenomic operational taxonomic units (mOTUs) based on single-copy phylogenetic marker genes. Applied to 252 human fecal samples, the method revealed...

  17. Gene identification and protein classification in microbial metagenomic sequence data via incremental clustering

    Directory of Open Access Journals (Sweden)

    Li Weizhong

    2008-04-01

    Full Text Available Abstract Background The identification and study of proteins from metagenomic datasets can shed light on the roles and interactions of the source organisms in their communities. However, metagenomic datasets are characterized by the presence of organisms with varying GC composition, codon usage biases etc., and consequently gene identification is challenging. The vast amount of sequence data also requires faster protein family classification tools. Results We present a computational improvement to a sequence clustering approach that we developed previously to identify and classify protein coding genes in large microbial metagenomic datasets. The clustering approach can be used to identify protein coding genes in prokaryotes, viruses, and intron-less eukaryotes. The computational improvement is based on an incremental clustering method that does not require the expensive all-against-all compute that was required by the original approach, while still preserving the remote homology detection capabilities. We present evaluations of the clustering approach in protein-coding gene identification and classification, and also present the results of updating the protein clusters from our previous work with recent genomic and metagenomic sequences. The clustering results are available via CAMERA, (http://camera.calit2.net. Conclusion The clustering paradigm is shown to be a very useful tool in the analysis of microbial metagenomic data. The incremental clustering method is shown to be much faster than the original approach in identifying genes, grouping sequences into existing protein families, and also identifying novel families that have multiple members in a metagenomic dataset. These clusters provide a basis for further studies of protein families.

  18. DeepARG: a deep learning approach for predicting antibiotic resistance genes from metagenomic data.

    Science.gov (United States)

    Arango-Argoty, Gustavo; Garner, Emily; Pruden, Amy; Heath, Lenwood S; Vikesland, Peter; Zhang, Liqing

    2018-02-01

    Growing concerns about increasing rates of antibiotic resistance call for expanded and comprehensive global monitoring. Advancing methods for monitoring of environmental media (e.g., wastewater, agricultural waste, food, and water) is especially needed for identifying potential resources of novel antibiotic resistance genes (ARGs), hot spots for gene exchange, and as pathways for the spread of ARGs and human exposure. Next-generation sequencing now enables direct access and profiling of the total metagenomic DNA pool, where ARGs are typically identified or predicted based on the "best hits" of sequence searches against existing databases. Unfortunately, this approach produces a high rate of false negatives. To address such limitations, we propose here a deep learning approach, taking into account a dissimilarity matrix created using all known categories of ARGs. Two deep learning models, DeepARG-SS and DeepARG-LS, were constructed for short read sequences and full gene length sequences, respectively. Evaluation of the deep learning models over 30 antibiotic resistance categories demonstrates that the DeepARG models can predict ARGs with both high precision (> 0.97) and recall (> 0.90). The models displayed an advantage over the typical best hit approach, yielding consistently lower false negative rates and thus higher overall recall (> 0.9). As more data become available for under-represented ARG categories, the DeepARG models' performance can be expected to be further enhanced due to the nature of the underlying neural networks. Our newly developed ARG database, DeepARG-DB, encompasses ARGs predicted with a high degree of confidence and extensive manual inspection, greatly expanding current ARG repositories. The deep learning models developed here offer more accurate antimicrobial resistance annotation relative to current bioinformatics practice. DeepARG does not require strict cutoffs, which enables identification of a much broader diversity of ARGs. The

  19. Metagenomic Analyses Reveal That Energy Transfer Gene Abundances Can Predict the Syntrophic Potential of Environmental Microbial Communities

    Directory of Open Access Journals (Sweden)

    Lisa Oberding

    2016-01-01

    Full Text Available Hydrocarbon compounds can be biodegraded by anaerobic microorganisms to form methane through an energetically interdependent metabolic process known as syntrophy. The microorganisms that perform this process as well as the energy transfer mechanisms involved are difficult to study and thus are still poorly understood, especially on an environmental scale. Here, metagenomic data was analyzed for specific clusters of orthologous groups (COGs related to key energy transfer genes thus far identified in syntrophic bacteria, and principal component analysis was used in order to determine whether potentially syntrophic environments could be distinguished using these syntroph related COGs as opposed to universally present COGs. We found that COGs related to hydrogenase and formate dehydrogenase genes were able to distinguish known syntrophic consortia and environments with the potential for syntrophy from non-syntrophic environments, indicating that these COGs could be used as a tool to identify syntrophic hydrocarbon biodegrading environments using metagenomic data.

  20. A Bioinformatician's Guide to Metagenomics

    Energy Technology Data Exchange (ETDEWEB)

    Kunin, Victor; Copeland, Alex; Lapidus, Alla; Mavromatis, Konstantinos; Hugenholtz, Philip

    2008-08-01

    As random shotgun metagenomic projects proliferate and become the dominant source of publicly available sequence data, procedures for best practices in their execution and analysis become increasingly important. Based on our experience at the Joint Genome Institute, we describe step-by-step the chain of decisions accompanying a metagenomic project from the viewpoint of a bioinformatician. We guide the reader through a standard workflow for a metagenomic project beginning with pre-sequencing considerations such as community composition and sequence data type that will greatly influence downstream analyses. We proceed with recommendations for sampling and data generation including sample and metadata collection, community profiling, construction of shotgun libraries and sequencing strategies. We then discuss the application of generic sequence processing steps (read preprocessing, assembly, and gene prediction and annotation) to metagenomic datasets by contrast to genome projects. Different types of data analyses particular to metagenomes are then presented including binning, dominant population analysis and gene-centric analysis. Finally data management systems and issues are presented and discussed. We hope that this review will assist bioinformaticians and biologists in making better-informed decisions on their journey during a metagenomic project.

  1. Abundance profiling of specific gene groups using precomputed gut metagenomes yields novel biological hypotheses.

    Directory of Open Access Journals (Sweden)

    Konstantin Yarygin

    Full Text Available The gut microbiota is essentially a multifunctional bioreactor within a human being. The exploration of its enormous metabolic potential provides insights into the mechanisms underlying microbial ecology and interactions with the host. The data obtained using "shotgun" metagenomics capture information about the whole spectrum of microbial functions. However, each new study presenting new sequencing data tends to extract only a little of the information concerning the metabolic potential and often omits specific functions. A meta-analysis of the available data with an emphasis on biomedically relevant gene groups can unveil new global trends in the gut microbiota. As a step toward the reuse of metagenomic data, we developed a method for the quantitative profiling of user-defined groups of genes in human gut metagenomes. This method is based on the quick analysis of a gene coverage matrix obtained by pre-mapping the metagenomic reads to a global gut microbial catalogue. The method was applied to profile the abundance of several gene groups related to antibiotic resistance, phages, biosynthesis clusters and carbohydrate degradation in 784 metagenomes from healthy populations worldwide and patients with inflammatory bowel diseases and obesity. We discovered country-wise functional specifics in gut resistome and virome compositions. The most distinct features of the disease microbiota were found for Crohn's disease, followed by ulcerative colitis and obesity. Profiling of the genes belonging to crAssphage showed that its abundance varied across the world populations and was not associated with clinical status. We demonstrated temporal resilience of crAssphage and the influence of the sample preparation protocol on its detected abundance. Our approach offers a convenient method to add value to accumulated "shotgun" metagenomic data by helping researchers state and assess novel biological hypotheses.

  2. Insights into resistome and stress responses genes in Bubalus bubalis rumen through metagenomic analysis.

    Science.gov (United States)

    Reddy, Bhaskar; Singh, Krishna M; Patel, Amrutlal K; Antony, Ancy; Panchasara, Harshad J; Joshi, Chaitanya G

    2014-10-01

    Buffalo rumen microbiota experience variety of diets and represents a huge reservoir of mobilome, resistome and stress responses. However, knowledge of metagenomic responses to such conditions is still rudimentary. We analyzed the metagenomes of buffalo rumen in the liquid and solid phase of the rumen biomaterial from river buffalo adapted to varying proportion of concentrate to green or dry roughages, using high-throughput sequencing to know the occurrence of antibiotics resistance genes, genetic exchange between bacterial population and environmental reservoirs. A total of 3914.94 MB data were generated from all three treatments group. The data were analysed with Metagenome rapid annotation system tools. At phyla level, Bacteroidetes were dominant in all the treatments followed by Firmicutes. Genes coding for functional responses to stress (oxidative stress and heat shock proteins) and resistome genes (resistance to antibiotics and toxic compounds, phages, transposable elements and pathogenicity islands) were prevalent in similar proportion in liquid and solid fraction of rumen metagenomes. The fluoroquinolone resistance, MDR efflux pumps and Methicillin resistance genes were broadly distributed across 11, 9, and 14 bacterial classes, respectively. Bacteria responsible for phages replication and prophages and phage packaging and rlt-like streptococcal phage genes were mostly assigned to phyla Bacteroides, Firmicutes and proteaobacteria. Also, more reads matching the sigma B genes were identified in the buffalo rumen. This study underscores the presence of diverse mechanisms of adaptation to different diet, antibiotics and other stresses in buffalo rumen, reflecting the proportional representation of major bacterial groups.

  3. High frequency of phylogenetically diverse reductive dehalogenase-homologous genes in deep subseafloor sedimentary metagenomes

    Directory of Open Access Journals (Sweden)

    Mikihiko eKawai

    2014-03-01

    Full Text Available Marine subsurface sediments on the Pacific margin harbor diverse microbial communities even at depths of several hundreds meters below the seafloor (mbsf or more. Previous PCR-based molecular analysis showed the presence of diverse reductive dehalogenase gene (rdhA homologs in marine subsurface sediment, suggesting that anaerobic respiration of organohalides is one of the possible energy-yielding pathways in the organic-rich sedimentary habitat. However, primer-independent molecular characterization of rdhA has remained to be demonstrated. Here, we studied the diversity and frequency of rdhA homologs by metagenomic analysis of five different depth horizons (0.8, 5.1, 18.6, 48.5 and 107.0 mbsf at Site C9001 off the Shimokita Peninsula of Japan. From all metagenomic pools, remarkably diverse rdhA-homologous sequences, some of which are affiliated with novel clusters, were observed with high frequency. As a comparison, we also examined frequency of dissimilatory sulfite reductase genes (dsrAB, key functional genes for microbial sulfate reduction. The dsrAB were also widely observed in the metagenomic pools whereas the frequency of dsrAB genes was generally smaller than that of rdhA-homologous genes. The phylogenetic composition of rdhA-homologous genes was similar among the five depth horizons. Our metagenomic data revealed that subseafloor rdhA homologs are more diverse than previously identified from PCR-based molecular studies. Spatial distribution of similar rdhA homologs across wide depositional ages indicates that the heterotrophic metabolic processes mediated by the genes can be ecologically important, functioning in the organic-rich subseafloor sedimentary biosphere.

  4. Comparison of normalization methods for the analysis of metagenomic gene abundance data.

    Science.gov (United States)

    Pereira, Mariana Buongermino; Wallroth, Mikael; Jonsson, Viktor; Kristiansson, Erik

    2018-04-20

    In shotgun metagenomics, microbial communities are studied through direct sequencing of DNA without any prior cultivation. By comparing gene abundances estimated from the generated sequencing reads, functional differences between the communities can be identified. However, gene abundance data is affected by high levels of systematic variability, which can greatly reduce the statistical power and introduce false positives. Normalization, which is the process where systematic variability is identified and removed, is therefore a vital part of the data analysis. A wide range of normalization methods for high-dimensional count data has been proposed but their performance on the analysis of shotgun metagenomic data has not been evaluated. Here, we present a systematic evaluation of nine normalization methods for gene abundance data. The methods were evaluated through resampling of three comprehensive datasets, creating a realistic setting that preserved the unique characteristics of metagenomic data. Performance was measured in terms of the methods ability to identify differentially abundant genes (DAGs), correctly calculate unbiased p-values and control the false discovery rate (FDR). Our results showed that the choice of normalization method has a large impact on the end results. When the DAGs were asymmetrically present between the experimental conditions, many normalization methods had a reduced true positive rate (TPR) and a high false positive rate (FPR). The methods trimmed mean of M-values (TMM) and relative log expression (RLE) had the overall highest performance and are therefore recommended for the analysis of gene abundance data. For larger sample sizes, CSS also showed satisfactory performance. This study emphasizes the importance of selecting a suitable normalization methods in the analysis of data from shotgun metagenomics. Our results also demonstrate that improper methods may result in unacceptably high levels of false positives, which in turn may lead

  5. Metagenomic Functional Potential Predicts Degradation Rates of a Model Organophosphorus Xenobiotic in Pesticide Contaminated Soils

    Directory of Open Access Journals (Sweden)

    Thomas C. Jeffries

    2018-02-01

    Full Text Available Chemical contamination of natural and agricultural habitats is an increasing global problem and a major threat to sustainability and human health. Organophosphorus (OP compounds are one major class of contaminant and can undergo microbial degradation, however, no studies have applied system-wide ecogenomic tools to investigate OP degradation or use metagenomics to understand the underlying mechanisms of biodegradation in situ and predict degradation potential. Thus, there is a lack of knowledge regarding the functional genes and genomic potential underpinning degradation and community responses to contamination. Here we address this knowledge gap by performing shotgun sequencing of community DNA from agricultural soils with a history of pesticide usage and profiling shifts in functional genes and microbial taxa abundance. Our results showed two distinct groups of soils defined by differing functional and taxonomic profiles. Degradation assays suggested that these groups corresponded to the organophosphorus degradation potential of soils, with the fastest degrading community being defined by increases in transport and nutrient cycling pathways and enzymes potentially involved in phosphorus metabolism. This was against a backdrop of taxonomic community shifts potentially related to contamination adaptation and reflecting the legacy of exposure. Overall our results highlight the value of using holistic system-wide metagenomic approaches as a tool to predict microbial degradation in the context of the ecology of contaminated habitats.

  6. Evaluation of the Cow Rumen Metagenome: Assembly by Single Copy Gene Analysis and Single Cell Genome Assemblies (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    Energy Technology Data Exchange (ETDEWEB)

    Sczyrba, Alex

    2011-10-13

    DOE JGI's Alex Sczyrba on "Evaluation of the Cow Rumen Metagenome" and "Assembly by Single Copy Gene Analysis and Single Cell Genome Assemblies" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  7. Use of simulated data sets to evaluate the fidelity of metagenomic processing methods

    Energy Technology Data Exchange (ETDEWEB)

    Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Barry, Kerrie [U.S. Department of Energy, Joint Genome Institute; Shapiro, Harris [U.S. Department of Energy, Joint Genome Institute; Goltsman, Eugene [U.S. Department of Energy, Joint Genome Institute; McHardy, Alice C. [IBM T. J. Watson Research Center; Rigoutsos, Isidore [IBM T. J. Watson Research Center; Salamov, Asaf [U.S. Department of Energy, Joint Genome Institute; Korzeniewski, Frank [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Grigoriev, Igor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute

    2007-01-01

    Metagenomics is a rapidly emerging field of research for studying microbial communities. To evaluate methods presently used to process metagenomic sequences, we constructed three simulated data sets of varying complexity by combining sequencing reads randomly selected from 113 isolate genomes. These data sets were designed to model real metagenomes in terms of complexity and phylogenetic composition. We assembled sampled reads using three commonly used genome assemblers (Phrap, Arachne and JAZZ), and predicted genes using two popular gene-finding pipelines (fgenesb and CRITICA/GLIMMER). The phylogenetic origins of the assembled contigs were predicted using one sequence similarity-based ( blast hit distribution) and two sequence composition-based (PhyloPythia, oligonucleotide frequencies) binning methods. We explored the effects of the simulated community structure and method combinations on the fidelity of each processing step by comparison to the corresponding isolate genomes. The simulated data sets are available online to facilitate standardized benchmarking of tools for metagenomic analysis.

  8. Pre- and post-weaning diet alters the faecal metagenome in the cat with differences vitamin and carbohydrate metabolism gene abundances

    Science.gov (United States)

    Young, Wayne; Moon, Christina D.; Thomas, David G.; Cave, Nick J.; Bermingham, Emma N.

    2016-01-01

    Dietary format, and its role in pet nutrition, is of interest to pet food manufacturers and pet owners alike. The aim of the present study was to investigate the effects of pre- and post-weaning diets (kibbled or canned) on the composition and function of faecal microbiota in the domestic cat by shotgun metagenomic sequencing and gene taxonomic and functional assignment using MG-RAST. Post-weaning diet had a dramatic effect on community composition; 147 of the 195 bacterial species identified had significantly different mean relative abundances between kittens fed kibbled and canned diets. The kittens fed kibbled diets had relatively higher abundances of Lactobacillus (>100-fold), Bifidobacterium (>100-fold), and Collinsella (>9-fold) than kittens fed canned diets. There were relatively few differences in the predicted microbiome functions associated with the pre-weaning diet. Post-weaning diet affected the abundance of functional gene groups. Genes involved in vitamin biosynthesis, metabolism, and transport, were significantly enriched in the metagenomes of kittens fed the canned diet. The impact of post-weaning diet on the metagenome in terms of vitamin biosynthesis functions suggests that modulation of the microbiome function through diet may be an important avenue for improving the nutrition of companion animals. PMID:27876765

  9. Metagenomic analysis revealed highly diverse microbial arsenic metabolism genes in paddy soils with low-arsenic contents

    International Nuclear Information System (INIS)

    Xiao, Ke-Qing; Li, Li-Guan; Ma, Li-Ping; Zhang, Si-Yu; Bao, Peng; Zhang, Tong; Zhu, Yong-Guan

    2016-01-01

    Microbe-mediated arsenic (As) metabolism plays a critical role in global As cycle, and As metabolism involves different types of genes encoding proteins facilitating its biotransformation and transportation processes. Here, we used metagenomic analysis based on high-throughput sequencing and constructed As metabolism protein databases to analyze As metabolism genes in five paddy soils with low-As contents. The results showed that highly diverse As metabolism genes were present in these paddy soils, with varied abundances and distribution for different types and subtypes of these genes. Arsenate reduction genes (ars) dominated in all soil samples, and significant correlation existed between the abundance of arr (arsenate respiration), aio (arsenite oxidation), and arsM (arsenite methylation) genes, indicating the co-existence and close-relation of different As resistance systems of microbes in wetland environments similar to these paddy soils after long-term evolution. Among all soil parameters, pH was an important factor controlling the distribution of As metabolism gene in five paddy soils (p = 0.018). To the best of our knowledge, this is the first study using high-throughput sequencing and metagenomics approach in characterizing As metabolism genes in the five paddy soil, showing their great potential in As biotransformation, and therefore in mitigating arsenic risk to humans. - Highlights: • Use metagenomics to analyze As metabolism genes in paddy soils with low-As content. • These genes were ubiquitous, abundant, and associated with diverse microbes. • pH as an important factor controlling their distribution in paddy soil. • Imply combinational effect of evolution and selection on As metabolism genes. - Metagenomics was used to analyze As metabolism genes in paddy soils with low-As contents. These genes were ubiquitous, abundant, and associated with diverse microbes.

  10. A human gut microbial gene catalogue established by metagenomic sequencing

    DEFF Research Database (Denmark)

    dos Santos, Marcelo Bertalan Quintanilha; Sicheritz-Pontén, Thomas; Nielsen, Henrik Bjørn

    2010-01-01

    To understand the impact of gut microbes on human health and well-being it is crucial to assess their genetic potential. Here we describe the Illumina-based metagenomic sequencing, assembly and characterization of 3.3 million non-redundant microbial genes, derived from 576.7 gigabases of sequence...

  11. A primer on metagenomics.

    Directory of Open Access Journals (Sweden)

    John C Wooley

    2010-02-01

    Full Text Available Metagenomics is a discipline that enables the genomic study of uncultured microorganisms. Faster, cheaper sequencing technologies and the ability to sequence uncultured microbes sampled directly from their habitats are expanding and transforming our view of the microbial world. Distilling meaningful information from the millions of new genomic sequences presents a serious challenge to bioinformaticians. In cultured microbes, the genomic data come from a single clone, making sequence assembly and annotation tractable. In metagenomics, the data come from heterogeneous microbial communities, sometimes containing more than 10,000 species, with the sequence data being noisy and partial. From sampling, to assembly, to gene calling and function prediction, bioinformatics faces new demands in interpreting voluminous, noisy, and often partial sequence data. Although metagenomics is a relative newcomer to science, the past few years have seen an explosion in computational methods applied to metagenomic-based research. It is therefore not within the scope of this article to provide an exhaustive review. Rather, we provide here a concise yet comprehensive introduction to the current computational requirements presented by metagenomics, and review the recent progress made. We also note whether there is software that implements any of the methods presented here, and briefly review its utility. Nevertheless, it would be useful if readers of this article would avail themselves of the comment section provided by this journal, and relate their own experiences. Finally, the last section of this article provides a few representative studies illustrating different facets of recent scientific discoveries made using metagenomics.

  12. Metagenomic analysis of lysogeny in Tampa Bay: implications for prophage gene expression.

    Directory of Open Access Journals (Sweden)

    Lauren McDaniel

    Full Text Available Phage integrase genes often play a role in the establishment of lysogeny in temperate phage by catalyzing the integration of the phage into one of the host's replicons. To investigate temperate phage gene expression, an induced viral metagenome from Tampa Bay was sequenced by 454/Pyrosequencing. The sequencing yielded 294,068 reads with 6.6% identifiable. One hundred-three sequences had significant similarity to integrases by BLASTX analysis (e < or =0.001. Four sequences with strongest amino-acid level similarity to integrases were selected and real-time PCR primers and probes were designed. Initial testing with microbial fraction DNA from Tampa Bay revealed 1.9 x 10(7, and 1300 gene copies of Vibrio-like integrase and Oceanicola-like integrase L(-1 respectively. The other two integrases were not detected. The integrase assay was then tested on microbial fraction RNA extracted from 200 ml of Tampa Bay water sampled biweekly over a 12 month time series. Vibrio-like integrase gene expression was detected in three samples, with estimated copy numbers of 2.4-1280 L(-1. Clostridium-like integrase gene expression was detected in 6 samples, with estimated copy numbers of 37 to 265 L(-1. In all cases, detection of integrase gene expression corresponded to the occurrence of lysogeny as detected by prophage induction. Investigation of the environmental distribution of the two expressed integrases in the Global Ocean Survey Database found the Vibrio-like integrase was present in genome equivalents of 3.14% of microbial libraries and all four viral metagenomes. There were two similar genes in the library from British Columbia and one similar gene was detected in both the Gulf of Mexico and Sargasso Sea libraries. In contrast, in the Arctic library eleven similar genes were observed. The Clostridium-like integrase was less prevalent, being found in 0.58% of the microbial and none of the viral libraries. These results underscore the value of metagenomic data

  13. Antibiotic Resistome: Improving Detection and Quantification Accuracy for Comparative Metagenomics.

    Science.gov (United States)

    Elbehery, Ali H A; Aziz, Ramy K; Siam, Rania

    2016-04-01

    The unprecedented rise of life-threatening antibiotic resistance (AR), combined with the unparalleled advances in DNA sequencing of genomes and metagenomes, has pushed the need for in silico detection of the resistance potential of clinical and environmental metagenomic samples through the quantification of AR genes (i.e., genes conferring antibiotic resistance). Therefore, determining an optimal methodology to quantitatively and accurately assess AR genes in a given environment is pivotal. Here, we optimized and improved existing AR detection methodologies from metagenomic datasets to properly consider AR-generating mutations in antibiotic target genes. Through comparative metagenomic analysis of previously published AR gene abundance in three publicly available metagenomes, we illustrate how mutation-generated resistance genes are either falsely assigned or neglected, which alters the detection and quantitation of the antibiotic resistome. In addition, we inspected factors influencing the outcome of AR gene quantification using metagenome simulation experiments, and identified that genome size, AR gene length, total number of metagenomics reads and selected sequencing platforms had pronounced effects on the level of detected AR. In conclusion, our proposed improvements in the current methodologies for accurate AR detection and resistome assessment show reliable results when tested on real and simulated metagenomic datasets.

  14. MP3: a software tool for the prediction of pathogenic proteins in genomic and metagenomic data.

    Science.gov (United States)

    Gupta, Ankit; Kapil, Rohan; Dhakan, Darshan B; Sharma, Vineet K

    2014-01-01

    The identification of virulent proteins in any de-novo sequenced genome is useful in estimating its pathogenic ability and understanding the mechanism of pathogenesis. Similarly, the identification of such proteins could be valuable in comparing the metagenome of healthy and diseased individuals and estimating the proportion of pathogenic species. However, the common challenge in both the above tasks is the identification of virulent proteins since a significant proportion of genomic and metagenomic proteins are novel and yet unannotated. The currently available tools which carry out the identification of virulent proteins provide limited accuracy and cannot be used on large datasets. Therefore, we have developed an MP3 standalone tool and web server for the prediction of pathogenic proteins in both genomic and metagenomic datasets. MP3 is developed using an integrated Support Vector Machine (SVM) and Hidden Markov Model (HMM) approach to carry out highly fast, sensitive and accurate prediction of pathogenic proteins. It displayed Sensitivity, Specificity, MCC and accuracy values of 92%, 100%, 0.92 and 96%, respectively, on blind dataset constructed using complete proteins. On the two metagenomic blind datasets (Blind A: 51-100 amino acids and Blind B: 30-50 amino acids), it displayed Sensitivity, Specificity, MCC and accuracy values of 82.39%, 97.86%, 0.80 and 89.32% for Blind A and 71.60%, 94.48%, 0.67 and 81.86% for Blind B, respectively. In addition, the performance of MP3 was validated on selected bacterial genomic and real metagenomic datasets. To our knowledge, MP3 is the only program that specializes in fast and accurate identification of partial pathogenic proteins predicted from short (100-150 bp) metagenomic reads and also performs exceptionally well on complete protein sequences. MP3 is publicly available at http://metagenomics.iiserb.ac.in/mp3/index.php.

  15. Molecular cloning of a novel bioH gene from an environmental metagenome encoding a carboxylesterase with exceptional tolerance to organic solvents

    DEFF Research Database (Denmark)

    Shi, Yuping; Pan, Yingjie; Li, Bailin

    2013-01-01

    with a strong potential in industrial applications. CONCLUSIONS: This study constituted the first investigation of a novel bioHx gene in a biotin biosynthetic gene cluster cloned from an environmental metagenome. The bioHx gene was successfully cloned, expressed and characterized. The results demonstrated...... that BioHx is a novel carboxylesterase, displaying distinct biochemical properties with strong application potential in industry. Our results also provided the evidence for the effectiveness of functional metagenomic approach for identifying novel bioH genes from complex ecosystem.......ABSTRACT: BACKGROUND: BioH is one of the key enzymes to produce the precursor pimeloyl-ACP to initiate biotin biosynthesis de novo in bacteria. To date, very few bioH genes have been characterized. In this study, we cloned and identified a novel bioH gene, bioHx, from an environmental metagenome...

  16. Metagenomic studies of the Red Sea.

    Science.gov (United States)

    Behzad, Hayedeh; Ibarra, Martin Augusto; Mineta, Katsuhiko; Gojobori, Takashi

    2016-02-01

    Metagenomics has significantly advanced the field of marine microbial ecology, revealing the vast diversity of previously unknown microbial life forms in different marine niches. The tremendous amount of data generated has enabled identification of a large number of microbial genes (metagenomes), their community interactions, adaptation mechanisms, and their potential applications in pharmaceutical and biotechnology-based industries. Comparative metagenomics reveals that microbial diversity is a function of the local environment, meaning that unique or unusual environments typically harbor novel microbial species with unique genes and metabolic pathways. The Red Sea has an abundance of unique characteristics; however, its microbiota is one of the least studied among marine environments. The Red Sea harbors approximately 25 hot anoxic brine pools, plus a vibrant coral reef ecosystem. Physiochemical studies describe the Red Sea as an oligotrophic environment that contains one of the warmest and saltiest waters in the world with year-round high UV radiations. These characteristics are believed to have shaped the evolution of microbial communities in the Red Sea. Over-representation of genes involved in DNA repair, high-intensity light responses, and osmoregulation were found in the Red Sea metagenomic databases suggesting acquisition of specific environmental adaptation by the Red Sea microbiota. The Red Sea brine pools harbor a diverse range of halophilic and thermophilic bacterial and archaeal communities, which are potential sources of enzymes for pharmaceutical and biotechnology-based application. Understanding the mechanisms of these adaptations and their function within the larger ecosystem could also prove useful in light of predicted global warming scenarios where global ocean temperatures are expected to rise by 1-3°C in the next few decades. In this review, we provide an overview of the published metagenomic studies that were conducted in the Red Sea, and

  17. Chitinase genes revealed and compared in bacterial isolates, DNA extracts and a metagenomic library from a phytopathogen suppressive soil

    Energy Technology Data Exchange (ETDEWEB)

    Hjort, K.; Bergstrom, M.; Adesina, M.F.; Jansson, J.K.; Smalla, K.; Sjoling, S.

    2009-09-01

    Soil that is suppressive to disease caused by fungal pathogens is an interesting source to target for novel chitinases that might be contributing towards disease suppression. In this study we screened for chitinase genes, in a phytopathogen-suppressive soil in three ways: (1) from a metagenomic library constructed from microbial cells extracted from soil, (2) from directly extracted DNA and (3) from bacterial isolates with antifungal and chitinase activities. Terminal-restriction fragment length polymorphism (T-RFLP) of chitinase genes revealed differences in amplified chitinase genes from the metagenomic library and the directly extracted DNA, but approximately 40% of the identified chitinase terminal-restriction fragments (TRFs) were found in both sources. All of the chitinase TRFs from the isolates were matched to TRFs in the directly extracted DNA and the metagenomic library. The most abundant chitinase TRF in the soil DNA and the metagenomic library corresponded to the TRF{sup 103} of the isolate, Streptomyces mutomycini and/or Streptomyces clavifer. There were good matches between T-RFLP profiles of chitinase gene fragments obtained from different sources of DNA. However, there were also differences in both the chitinase and the 16S rRNA gene T-RFLP patterns depending on the source of DNA, emphasizing the lack of complete coverage of the gene diversity by any of the approaches used.

  18. Current and future resources for functional metagenomics

    Directory of Open Access Journals (Sweden)

    Kathy Nguyen Lam

    2015-10-01

    Full Text Available Functional metagenomics is a powerful experimental approach for studying gene function, starting from the extracted DNA of mixed microbial populations. A functional approach relies on the construction and screening of metagenomic libraries – physical libraries that contain DNA cloned from environmental metagenomes. The information obtained from functional metagenomics can help in future annotations of gene function and serve as a complement to sequence-based metagenomics. In this Perspective, we begin by summarizing the technical challenges of constructing metagenomic libraries and emphasize their value as resources. We then discuss libraries constructed using the popular cloning vector, pCC1FOS, and highlight the strengths and shortcomings of this system, alongside possible strategies to maximize existing pCC1FOS-based libraries by screening in diverse hosts. Finally, we discuss the known bias of libraries constructed from human gut and marine water samples, present results that suggest bias may also occur for soil libraries, and consider factors that bias metagenomic libraries in general. We anticipate that discussion of current resources and limitations will advance tools and technologies for functional metagenomics research.

  19. A sampling and metagenomic sequencing-based methodology for monitoring antimicrobial resistance in swine herds

    DEFF Research Database (Denmark)

    Munk, Patrick; Dalhoff Andersen, Vibe; de Knegt, Leonardo

    2016-01-01

    Objectives Reliable methods for monitoring antimicrobial resistance (AMR) in livestock and other reservoirs are essential to understand the trends, transmission and importance of agricultural resistance. Quantification of AMR is mostly done using culture-based techniques, but metagenomic read...... mapping shows promise for quantitative resistance monitoring. Methods We evaluated the ability of: (i) MIC determination for Escherichia coli; (ii) cfu counting of E. coli; (iii) cfu counting of aerobic bacteria; and (iv) metagenomic shotgun sequencing to predict expected tetracycline resistance based...... cultivation-based techniques in terms of predicting expected tetracycline resistance based on antimicrobial consumption. Our metagenomic approach had sufficient resolution to detect antimicrobial-induced changes to individual resistance gene abundances. Pen floor manure samples were found to represent rectal...

  20. [Mini review] metagenomic studies of the Red Sea

    KAUST Repository

    Behzad, Hayedeh

    2015-10-23

    Metagenomics has significantly advanced the field of marine microbial ecology, revealing the vast diversity of previously unknown microbial life forms in different marine niches. The tremendous amount of data generated has enabled identification of a large number of microbial genes (metagenomes), their community interactions, adaptation mechanisms, and their potential applications in pharmaceutical and biotechnology-based industries. Comparative metagenomics reveals that microbial diversity is a function of the local environment, meaning that unique or unusual environments typically harbor novel microbial species with unique genes and metabolic pathways. The Red Sea has an abundance of unique characteristics; however, its microbiota is one of the least studied amongst marine environments. The Red Sea harbors approximately 25 hot anoxic brine pools, plus a vibrant coral reef ecosystem. Physiochemical studies describe the Red Sea as an oligotrophic environment that contains one of the warmest and saltiest waters in the world with year-round high UV radiations. These characteristics are believed to have shaped the evolution of microbial communities in the Red Sea. Over-representation of genes involved in DNA repair, high-intensity light responses, and osmolyte C1 oxidation were found in the Red Sea metagenomic databases suggesting acquisition of specific environmental adaptation by the Red Sea microbiota. The Red Sea brine pools harbor a diverse range of halophilic and thermophilic bacterial and archaeal communities, which are potential sources of enzymes for pharmaceutical and biotechnology-based application. Understanding the mechanisms of these adaptations and their function within the larger ecosystem could also prove useful in light of predicted global warming scenarios where global ocean temperatures are expected to rise by 1–3 °C in the next few decades. In this review, we provide an overview of the published metagenomic studies that were conducted in the

  1. [Mini review] metagenomic studies of the Red Sea

    KAUST Repository

    Behzad, Hayedeh; Ibarra, Martin Augusto; Mineta, Katsuhiko; Gojobori, Takashi

    2015-01-01

    Metagenomics has significantly advanced the field of marine microbial ecology, revealing the vast diversity of previously unknown microbial life forms in different marine niches. The tremendous amount of data generated has enabled identification of a large number of microbial genes (metagenomes), their community interactions, adaptation mechanisms, and their potential applications in pharmaceutical and biotechnology-based industries. Comparative metagenomics reveals that microbial diversity is a function of the local environment, meaning that unique or unusual environments typically harbor novel microbial species with unique genes and metabolic pathways. The Red Sea has an abundance of unique characteristics; however, its microbiota is one of the least studied amongst marine environments. The Red Sea harbors approximately 25 hot anoxic brine pools, plus a vibrant coral reef ecosystem. Physiochemical studies describe the Red Sea as an oligotrophic environment that contains one of the warmest and saltiest waters in the world with year-round high UV radiations. These characteristics are believed to have shaped the evolution of microbial communities in the Red Sea. Over-representation of genes involved in DNA repair, high-intensity light responses, and osmolyte C1 oxidation were found in the Red Sea metagenomic databases suggesting acquisition of specific environmental adaptation by the Red Sea microbiota. The Red Sea brine pools harbor a diverse range of halophilic and thermophilic bacterial and archaeal communities, which are potential sources of enzymes for pharmaceutical and biotechnology-based application. Understanding the mechanisms of these adaptations and their function within the larger ecosystem could also prove useful in light of predicted global warming scenarios where global ocean temperatures are expected to rise by 1–3 °C in the next few decades. In this review, we provide an overview of the published metagenomic studies that were conducted in the

  2. Comparative metagenomics of the Red Sea

    KAUST Repository

    Mineta, Katsuhiko

    2016-01-26

    Metagenome produces a tremendous amount of data that comes from the organisms living in the environments. This big data enables us to examine not only microbial genes but also the community structure, interaction and adaptation mechanisms at the specific location and condition. The Red Sea has several unique characteristics such as high salinity, high temperature and low nutrition. These features must contribute to form the unique microbial community during the evolutionary process. Since 2014, we started monthly samplings of the metagenomes in the Red Sea under KAUST-CCF project. In collaboration with Kitasato University, we also collected the metagenome data from the ocean in Japan, which shows contrasting features to the Red Sea. Therefore, the comparative metagenomics of those data provides a comprehensive view of the Red Sea microbes, leading to identify key microbes, genes and networks related to those environmental differences.

  3. Coupled high-throughput functional screening and next generation sequencing for identification of plant polymer decomposing enzymes in metagenomic libraries

    Directory of Open Access Journals (Sweden)

    Mari eNyyssönen

    2013-09-01

    Full Text Available Recent advances in sequencing technologies generate new predictions and hypotheses about the functional roles of environmental microorganisms. Yet, until we can test these predictions at a scale that matches our ability to generate them, most of them will remain as hypotheses. Function-based mining of metagenomic libraries can provide direct linkages between genes, metabolic traits and microbial taxa and thus bridge this gap between sequence data generation and functional predictions. Here we developed high-throughput screening assays for function-based characterization of activities involved in plant polymer decomposition from environmental metagenomic libraries. The multiplexed assays use fluorogenic and chromogenic substrates, combine automated liquid handling and use a genetically modified expression host to enable simultaneous screening of 12,160 clones for 14 activities in a total of 170,240 reactions. Using this platform we identified 374 (0.26 % cellulose, hemicellulose, chitin, starch, phosphate and protein hydrolyzing clones from fosmid libraries prepared from decomposing leaf litter. Sequencing on the Illumina MiSeq platform, followed by assembly and gene prediction of a subset of 95 fosmid clones, identified a broad range of bacterial phyla, including Actinobacteria, Bacteroidetes, multiple Proteobacteria sub-phyla in addition to some Fungi. Carbohydrate-active enzyme genes from 20 different glycoside hydrolase families were detected. Using tetranucleotide frequency binning of fosmid sequences, multiple enzyme activities from distinct fosmids were linked, demonstrating how biochemically-confirmed functional traits in environmental metagenomes may be attributed to groups of specific organisms. Overall, our results demonstrate how functional screening of metagenomic libraries can be used to connect microbial functionality to community composition and, as a result, complement large-scale metagenomic sequencing efforts.

  4. Metagenomics as a Tool for Enzyme Discovery: Hydrolytic Enzymes from Marine-Related Metagenomes.

    Science.gov (United States)

    Popovic, Ana; Tchigvintsev, Anatoly; Tran, Hai; Chernikova, Tatyana N; Golyshina, Olga V; Yakimov, Michail M; Golyshin, Peter N; Yakunin, Alexander F

    2015-01-01

    This chapter discusses metagenomics and its application for enzyme discovery, with a focus on hydrolytic enzymes from marine metagenomic libraries. With less than one percent of culturable microorganisms in the environment, metagenomics, or the collective study of community genetics, has opened up a rich pool of uncharacterized metabolic pathways, enzymes, and adaptations. This great untapped pool of genes provides the particularly exciting potential to mine for new biochemical activities or novel enzymes with activities tailored to peculiar sets of environmental conditions. Metagenomes also represent a huge reservoir of novel enzymes for applications in biocatalysis, biofuels, and bioremediation. Here we present the results of enzyme discovery for four enzyme activities, of particular industrial or environmental interest, including esterase/lipase, glycosyl hydrolase, protease and dehalogenase.

  5. Novel resistance functions uncovered using functional metagenomic investigations of resistance reservoirs

    Directory of Open Access Journals (Sweden)

    Erica C. Pehrsson

    2013-06-01

    Full Text Available Rates of infection with antibiotic-resistant bacteria have increased precipitously over the past several decades, with far-reaching healthcare and societal costs. Recent evidence has established a link between antibiotic resistance genes in human pathogens and those found in non-pathogenic, commensal, and environmental organisms, prompting deeper investigation of natural and human-associated reservoirs of antibiotic resistance. Functional metagenomic selections, in which shotgun-cloned DNA fragments are selected for their ability to confer survival to an indicator host, have been increasingly applied to the characterization of many antibiotic resistance reservoirs. These experiments have demonstrated that antibiotic resistance genes are highly diverse and widely distributed, many times bearing little to no similarity to known sequences. Through unbiased selections for survival to antibiotic exposure, functional metagenomics can improve annotations by reducing the discovery of false-positive resistance and by allowing for the identification of previously unrecognizable resistance genes. In this review, we summarize the novel resistance functions uncovered using functional metagenomic investigations of natural and human-impacted resistance reservoirs. Examples of novel antibiotic resistance genes include those highly divergent from known sequences, those for which sequence is entirely unable to predict resistance function, bifunctional resistance genes, and those with unconventional, atypical resistance mechanisms. Overcoming antibiotic resistance in the clinic will require a better understanding of existing resistance reservoirs and the dissemination networks that govern horizontal gene exchange, informing best practices to limit the spread of resistance-conferring genes to human pathogens.

  6. In-depth resistome analysis by targeted metagenomics.

    Science.gov (United States)

    Lanza, Val F; Baquero, Fernando; Martínez, José Luís; Ramos-Ruíz, Ricardo; González-Zorn, Bruno; Andremont, Antoine; Sánchez-Valenzuela, Antonio; Ehrlich, Stanislav Dusko; Kennedy, Sean; Ruppé, Etienne; van Schaik, Willem; Willems, Rob J; de la Cruz, Fernando; Coque, Teresa M

    2018-01-15

    Antimicrobial resistance is a major global health challenge. Metagenomics allows analyzing the presence and dynamics of "resistomes" (the ensemble of genes encoding antimicrobial resistance in a given microbiome) in disparate microbial ecosystems. However, the low sensitivity and specificity of available metagenomic methods preclude the detection of minority populations (often present below their detection threshold) and/or the identification of allelic variants that differ in the resulting phenotype. Here, we describe a novel strategy that combines targeted metagenomics using last generation in-solution capture platforms, with novel bioinformatics tools to establish a standardized framework that allows both quantitative and qualitative analyses of resistomes. We developed ResCap, a targeted sequence capture platform based on SeqCapEZ (NimbleGene) technology, which includes probes for 8667 canonical resistance genes (7963 antibiotic resistance genes and 704 genes conferring resistance to metals or biocides), and 2517 relaxase genes (plasmid markers) and 78,600 genes homologous to the previous identified targets (47,806 for antibiotics and 30,794 for biocides or metals). Its performance was compared with metagenomic shotgun sequencing (MSS) for 17 fecal samples (9 humans, 8 swine). ResCap significantly improves MSS to detect "gene abundance" (from 2.0 to 83.2%) and "gene diversity" (26 versus 14.9 genes unequivocally detected per sample per million of reads; the number of reads unequivocally mapped increasing up to 300-fold by using ResCap), which were calculated using novel bioinformatic tools. ResCap also facilitated the analysis of novel genes potentially involved in the resistance to antibiotics, metals, biocides, or any combination thereof. ResCap, the first targeted sequence capture, specifically developed to analyze resistomes, greatly enhances the sensitivity and specificity of available metagenomic methods and offers the possibility to analyze genes

  7. A catalog of the mouse gut metagenome

    DEFF Research Database (Denmark)

    Xiao, Liang; Feng, Qiang; Liang, Suisha

    2015-01-01

    laboratories and fed either a low-fat or high-fat diet. Similar to the human gut microbiome, >99% of the cataloged genes are bacterial. We identified 541 metagenomic species and defined a core set of 26 metagenomic species found in 95% of the mice. The mouse gut microbiome is functionally similar to its human......We established a catalog of the mouse gut metagenome comprising ∼2.6 million nonredundant genes by sequencing DNA from fecal samples of 184 mice. To secure high microbiome diversity, we used mouse strains of diverse genetic backgrounds, from different providers, kept in different housing...... counterpart, with 95.2% of its Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologous groups in common. However, only 4.0% of the mouse gut microbial genes were shared (95% identity, 90% coverage) with those of the human gut microbiome. This catalog provides a useful reference for future studies....

  8. Culture-Independent Identification of Manganese-Oxidizing Genes from Deep-Sea Hydrothermal Vent Chemoautotrophic Ferromanganese Microbial Communities Using a Metagenomic Approach

    Science.gov (United States)

    Davis, R.; Tebo, B. M.

    2013-12-01

    Microbial activity has long been recognized as being important to the fate of manganese (Mn) in hydrothermal systems, yet we know very little about the organisms that catalyze Mn oxidation, the mechanisms by which Mn is oxidized or the physiological function that Mn oxidation serves in these hydrothermal systems. Hydrothermal vents with thick ferromanganese microbial mats and Mn oxide-coated rocks observed throughout the Pacific Ring of Fire are ideal models to study the mechanisms of microbial Mn oxidation, as well as primary productivity in these metal-cycling ecosystems. We sampled ferromanganese microbial mats from Vai Lili Vent Field (Tmax=43°C) located on the Eastern Lau Spreading Center and Mn oxide-encrusted rhyolytic pumice (4°C) from Niua South Seamount on the Tonga Volcanic Arc. Metagenomic libraries were constructed and assembled from these samples and key genes known to be involved in Mn oxidation and carbon fixation pathways were identified in the reconstructed genomes. The Vai Lili metagenome assembled to form 121,157 contiguous sequences (contigs) greater than 1000bp in length, with an N50 of 8,261bp and a total metagenome size of 593 Mbp. Contigs were binned using an emergent self-organizing map of tetranucleotide frequencies. Putative homologs of the multicopper Mn-oxidase MnxG were found in the metagenome that were related to both the Pseudomonas-like and Bacillus-like forms of the enzyme. The bins containing the Pseudomonas-like mnxG genes are most closely related to uncultured Deltaproteobacteria and Chloroflexi. The Deltaproteobacteria bin appears to be an obligate anaerobe with possible chemoautotrophic metabolisms, while the Chloroflexi appears to be a heterotrophic organism. The metagenome from the Mn-stained pumice was assembled into 122,092 contigs greater than 1000bp in length with an N50 of 7635 and a metagenome size of 385 Mbp. Both forms of mnxG genes are present in this metagenome as well as the genes encoding the putative Mn

  9. Metagenomic analysis of permafrost microbial community response to thaw

    Energy Technology Data Exchange (ETDEWEB)

    Mackelprang, R.; Waldrop, M.P.; DeAngelis, K.M.; David, M.M.; Chavarria, K.L.; Blazewicz, S.J.; Rubin, E.M.; Jansson, J.K.

    2011-07-01

    We employed deep metagenomic sequencing to determine the impact of thaw on microbial phylogenetic and functional genes and related this data to measurements of methane emissions. Metagenomics, the direct sequencing of DNA from the environment, allows for the examination of whole biochemical pathways and associated processes, as opposed to individual pieces of the metabolic puzzle. Our metagenome analyses revealed that during transition from a frozen to a thawed state there were rapid shifts in many microbial, phylogenetic and functional gene abundances and pathways. After one week of incubation at 5°C, permafrost metagenomes converged to be more similar to each other than while they were frozen. We found that multiple genes involved in cycling of C and nitrogen shifted rapidly during thaw. We also constructed the first draft genome from a complex soil metagenome, which corresponded to a novel methanogen. Methane previously accumulated in permafrost was released during thaw and subsequently consumed by methanotrophic bacteria. Together these data point towards the importance of rapid cycling of methane and nitrogen in thawing permafrost.

  10. Phylogeny and phylogeography of functional genes shared among seven terrestrial subsurface metagenomes reveal N-cycling and microbial evolutionary relationships

    Directory of Open Access Journals (Sweden)

    Maggie CY Lau

    2014-10-01

    Full Text Available Comparative studies on community phylogenetics and phylogeography of microorganisms living in extreme environments are rare. Terrestrial subsurface habitats are valuable for studying microbial biogeographical patterns due to their isolation and the restricted dispersal mechanisms. Since the taxonomic identity of a microorganism does not always correspond well with its functional role in a particular community, the use of taxonomic assignments or patterns may give limited inference on how microbial functions are affected by historical, geographical and environmental factors. With seven metagenomic libraries generated from fracture water samples collected from five South African mines, this study was carried out to (1 screen for ubiquitous functions or pathways of biogeochemical cycling of CH4, S and N; (2 to characterize the biodiversity represented by the common functional genes; (3 to investigate the subsurface biogeography as revealed by this subset of genes; and (4 to explore the possibility of using metagenomic data for evolutionary study. The ubiquitous functional genes are NarV, NPD, PAP reductase, NifH, NifD, NifK, NifE and NifN genes. Although these 8 common functional genes were taxonomically and phylogenetically diverse and distinct from each other, the dissimilarity between samples did not correlate strongly with either geographical, environmental or residence time of the water. Por genes homologous to those of Thermodesulfovibrio yellowstonii detected in all metagenomes were deep lineages of Nitrospirae, suggesting that subsurface habitats have preserved ancestral genetic signatures that inform the study of the origin and evolution of prokaryotes.

  11. Metagenomic analysis of microbial communities and beyond

    DEFF Research Database (Denmark)

    Schreiber, Lars

    2014-01-01

    From small clone libraries to large next-generation sequencing datasets – the field of community genomics or metagenomics has developed tremendously within the last years. This chapter will summarize some of these developments and will also highlight pitfalls of current metagenomic analyses...... heterologous expression of metagenomic DNA fragments to discover novel metabolic functions. Lastly, the chapter will shortly discuss the meta-analysis of gene expression of microbial communities, more precisely metatranscriptomics and metaproteomics....

  12. Marine metagenomics as a source for bioprospecting

    KAUST Repository

    Kodzius, Rimantas

    2015-08-12

    This review summarizes usage of genome-editing technologies for metagenomic studies; these studies are used to retrieve and modify valuable microorganisms for production, particularly in marine metagenomics. Organisms may be cultivable or uncultivable. Metagenomics is providing especially valuable information for uncultivable samples. The novel genes, pathways and genomes can be deducted. Therefore, metagenomics, particularly genome engineering and system biology, allows for the enhancement of biological and chemical producers and the creation of novel bioresources. With natural resources rapidly depleting, genomics may be an effective way to efficiently produce quantities of known and novel foods, livestock feed, fuels, pharmaceuticals and fine or bulk chemicals.

  13. Comparative fecal metagenomics unveils unique functional capacity of the swine gut

    Directory of Open Access Journals (Sweden)

    Martinson John

    2011-05-01

    Full Text Available Abstract Background Uncovering the taxonomic composition and functional capacity within the swine gut microbial consortia is of great importance to animal physiology and health as well as to food and water safety due to the presence of human pathogens in pig feces. Nonetheless, limited information on the functional diversity of the swine gut microbiome is available. Results Analysis of 637, 722 pyrosequencing reads (130 megabases generated from Yorkshire pig fecal DNA extracts was performed to help better understand the microbial diversity and largely unknown functional capacity of the swine gut microbiome. Swine fecal metagenomic sequences were annotated using both MG-RAST and JGI IMG/M-ER pipelines. Taxonomic analysis of metagenomic reads indicated that swine fecal microbiomes were dominated by Firmicutes and Bacteroidetes phyla. At a finer phylogenetic resolution, Prevotella spp. dominated the swine fecal metagenome, while some genes associated with Treponema and Anareovibrio species were found to be exclusively within the pig fecal metagenomic sequences analyzed. Functional analysis revealed that carbohydrate metabolism was the most abundant SEED subsystem, representing 13% of the swine metagenome. Genes associated with stress, virulence, cell wall and cell capsule were also abundant. Virulence factors associated with antibiotic resistance genes with highest sequence homology to genes in Bacteroidetes, Clostridia, and Methanosarcina were numerous within the gene families unique to the swine fecal metagenomes. Other abundant proteins unique to the distal swine gut shared high sequence homology to putative carbohydrate membrane transporters. Conclusions The results from this metagenomic survey demonstrated the presence of genes associated with resistance to antibiotics and carbohydrate metabolism suggesting that the swine gut microbiome may be shaped by husbandry practices.

  14. Functional Metagenomic Investigations of the Human Intestinal Microbiota

    Directory of Open Access Journals (Sweden)

    Aimee Marguerite Moore

    2011-10-01

    Full Text Available The human intestinal microbiota encode multiple critical functions impacting human health, including, metabolism of dietary substrate, prevention of pathogen invasion, immune system modulation, and provision of a reservoir of antibiotic resistance genes accessible to pathogens. The complexity of this microbial community, its recalcitrance to standard cultivation and the immense diversity of its encoded genes has necessitated the development of novel molecular, microbiological, and genomic tools. Functional metagenomics is one such culture-independent technique used for decades to study environmental microorganisms but relatively recently applied to the study of the human commensal microbiota. Metagenomic functional screens characterize the functional capacity of a microbial community independent of identity to known genes by subjecting the metagenome to functional assays in a genetically tractable host. Here we highlight recent work applying this technique to study the functional diversity of the intestinal microbiota, and discuss how an approach combining high-throughput sequencing, cultivation, and metagenomic functional screens can improve our understanding of interactions between this complex community and its human host.

  15. Bioinformatics tools for quantitative and functional metagenome and metatranscriptome data analysis in microbes.

    Science.gov (United States)

    Niu, Sheng-Yong; Yang, Jinyu; McDermaid, Adam; Zhao, Jing; Kang, Yu; Ma, Qin

    2017-05-08

    Metagenomic and metatranscriptomic sequencing approaches are more frequently being used to link microbiota to important diseases and ecological changes. Many analyses have been used to compare the taxonomic and functional profiles of microbiota across habitats or individuals. While a large portion of metagenomic analyses focus on species-level profiling, some studies use strain-level metagenomic analyses to investigate the relationship between specific strains and certain circumstances. Metatranscriptomic analysis provides another important insight into activities of genes by examining gene expression levels of microbiota. Hence, combining metagenomic and metatranscriptomic analyses will help understand the activity or enrichment of a given gene set, such as drug-resistant genes among microbiome samples. Here, we summarize existing bioinformatics tools of metagenomic and metatranscriptomic data analysis, the purpose of which is to assist researchers in deciding the appropriate tools for their microbiome studies. Additionally, we propose an Integrated Meta-Function mapping pipeline to incorporate various reference databases and accelerate functional gene mapping procedures for both metagenomic and metatranscriptomic analyses. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Identification of aminoglycoside and β-lactam resistance genes from within an infant gut functional metagenomic library.

    Directory of Open Access Journals (Sweden)

    Fiona Fouhy

    Full Text Available The infant gut microbiota develops rapidly during the first 2 years of life, acquiring microorganisms from diverse sources. During this time, significant opportunities exist for the infant to acquire antibiotic resistant bacteria, which can become established and constitute the infant gut resistome. With increased antibiotic resistance limiting our ability to treat bacterial infections, investigations into resistance reservoirs are highly pertinent. This study aimed to explore the nascent resistome in antibiotically-naïve infant gut microbiomes, using a combination of metagenomic approaches. Faecal samples from 22 six-month-old infants without previous antibiotic exposure were used to construct a pooled metagenomic library, which was functionally screened for ampicillin and gentamicin resistance. Our library of ∼220Mb contained 0.45 ampicillin resistant hits/Mb and 0.059 gentamicin resistant hits/Mb. PCR-based analysis of fosmid clones and uncloned metagenomic DNA, revealed a diverse and abundant aminoglycoside and β-lactam resistance reservoir within the infant gut, with resistance determinants exhibiting homology to those found in common gut inhabitants, including Escherichia coli, Enterococcus sp., and Clostridium difficile, as well as to genes from cryptic environmental bacteria. Notably, the genes identified differed from those revealed when a sequence-driven PCR-based screen of metagenomic DNA was employed. Carriage of these antibiotic resistance determinants conferred substantial, but varied (2-512x, increases in antibiotic resistance to their bacterial host. These data provide insights into the infant gut resistome, revealing the presence of a varied aminoglycoside and β-lactam resistance reservoir even in the absence of selective pressure, confirming the infant resistome establishes early in life, perhaps even at birth.

  17. Mining for Nonribosomal Peptide Synthetase and Polyketide Synthase Genes Revealed a High Level of Diversity in the Sphagnum Bog Metagenome.

    Science.gov (United States)

    Müller, Christina A; Oberauner-Wappis, Lisa; Peyman, Armin; Amos, Gregory C A; Wellington, Elizabeth M H; Berg, Gabriele

    2015-08-01

    Sphagnum bog ecosystems are among the oldest vegetation forms harboring a specific microbial community and are known to produce an exceptionally wide variety of bioactive substances. Although the Sphagnum metagenome shows a rich secondary metabolism, the genes have not yet been explored. To analyze nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs), the diversity of NRPS and PKS genes in Sphagnum-associated metagenomes was investigated by in silico data mining and sequence-based screening (PCR amplification of 9,500 fosmid clones). The in silico Illumina-based metagenomic approach resulted in the identification of 279 NRPSs and 346 PKSs, as well as 40 PKS-NRPS hybrid gene sequences. The occurrence of NRPS sequences was strongly dominated by the members of the Protebacteria phylum, especially by species of the Burkholderia genus, while PKS sequences were mainly affiliated with Actinobacteria. Thirteen novel NRPS-related sequences were identified by PCR amplification screening, displaying amino acid identities of 48% to 91% to annotated sequences of members of the phyla Proteobacteria, Actinobacteria, and Cyanobacteria. Some of the identified metagenomic clones showed the closest similarity to peptide synthases from Burkholderia or Lysobacter, which are emerging bacterial sources of as-yet-undescribed bioactive metabolites. This report highlights the role of the extreme natural ecosystems as a promising source for detection of secondary compounds and enzymes, serving as a source for biotechnological applications. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. Salt resistance genes revealed by functional metagenomics from brines and moderate-salinity rhizosphere within a hypersaline environment

    Directory of Open Access Journals (Sweden)

    Salvador eMirete

    2015-10-01

    Full Text Available Hypersaline environments are considered one of the most extreme habitats on earth and microorganisms have developed diverse molecular mechanisms of adaptation to withstand these conditions. The present study was aimed at identifying novel genes involved in salt resistance from the microbial communities of brines and the rhizosphere from the Es Trenc saltern (Mallorca, Spain. The microbial diversity assessed by pyrosequencing of 16S rRNA gene libraries revealed the presence of communities that are typical in such environments. Metagenomic libraries from brine and rhizosphere samples, were transferred to the osmosensitive strain Escherichia coli MKH13, and screened for salt resistance. As a result, eleven genes that conferred salt resistance were identified, some encoding for well known proteins previously related to osmoadaptation as a glycerol and a proton pump, whereas others encoded for proteins not previously related to this function in microorganisms as DNA/RNA helicases, an endonuclease III (Nth and hypothetical proteins of unknown function. Furthermore, four of the retrieved genes were cloned and expressed in Bacillus subtilis and they also exhibited salt resistance in this bacterium, broadening the spectrum of bacterial species where these genes can operate. This is the first report of salt resistance genes recovered from metagenomes of a hypersaline environment.

  19. Identification and characterization of a novel fumarase gene by metagenome expression cloning from marine microorganisms

    Directory of Open Access Journals (Sweden)

    Tang Xian-Lai

    2010-11-01

    Full Text Available Abstract Background Fumarase catalyzes the reversible hydration of fumarate to L-malate and is a key enzyme in the tricarboxylic acid (TCA cycle and in amino acid metabolism. Fumarase is also used for the industrial production of L-malate from the substrate fumarate. Thermostable and high-activity fumarases from organisms that inhabit extreme environments may have great potential in industry, biotechnology, and basic research. The marine environment is highly complex and considered one of the main reservoirs of microbial diversity on the planet. However, most of the microorganisms are inaccessible in nature and are not easily cultivated in the laboratory. Metagenomic approaches provide a powerful tool to isolate and identify enzymes with novel biocatalytic activities for various biotechnological applications. Results A plasmid metagenomic library was constructed from uncultivated marine microorganisms within marine water samples. Through sequence-based screening of the DNA library, a gene encoding a novel fumarase (named FumF was isolated. Amino acid sequence analysis revealed that the FumF protein shared the greatest homology with Class II fumarate hydratases from Bacteroides sp. 2_1_33B and Parabacteroides distasonis ATCC 8503 (26% identical and 43% similar. The putative fumarase gene was subcloned into pETBlue-2 vector and expressed in E. coli BL21(DE3pLysS. The recombinant protein was purified to homogeneity. Functional characterization by high performance liquid chromatography confirmed that the recombinant FumF protein catalyzed the hydration of fumarate to form L-malate. The maximum activity for FumF protein occurred at pH 8.5 and 55°C in 5 mM Mg2+. The enzyme showed higher affinity and catalytic efficiency under optimal reaction conditions: Km= 0.48 mM, Vmax = 827 μM/min/mg, and kcat/Km = 1900 mM/s. Conclusions We isolated a novel fumarase gene, fumF, from a sequence-based screen of a plasmid metagenomic library from uncultivated

  20. Functional Metagenomic Investigations of the Human Intestinal Microbiota

    DEFF Research Database (Denmark)

    Moore, Aimee M.; Munck, Christian; Sommer, Morten Otto Alexander

    2011-01-01

    The human intestinal microbiota encode multiple critical functions impacting human health, including metabolism of dietary substrate, prevention of pathogen invasion, immune system modulation, and provision of a reservoir of antibiotic resistance genes accessible to pathogens. The complexity...... microorganisms, but relatively recently applied to the study of the human commensal microbiota. Metagenomic functional screens characterize the functional capacity of a microbial community, independent of identity to known genes, by subjecting the metagenome to functional assays in a genetically tractable host....... Here we highlight recent work applying this technique to study the functional diversity of the intestinal microbiota, and discuss how an approach combining high-throughput sequencing, cultivation, and metagenomic functional screens can improve our understanding of interactions between this complex...

  1. An Experimental Metagenome Data Management and AnalysisSystem

    Energy Technology Data Exchange (ETDEWEB)

    Markowitz, Victor M.; Korzeniewski, Frank; Palaniappan, Krishna; Szeto, Ernest; Ivanova, Natalia N.; Kyrpides, Nikos C.; Hugenholtz, Philip

    2006-03-01

    The application of shotgun sequencing to environmental samples has revealed a new universe of microbial community genomes (metagenomes) involving previously uncultured organisms. Metagenome analysis, which is expected to provide a comprehensive picture of the gene functions and metabolic capacity of microbial community, needs to be conducted in the context of a comprehensive data management and analysis system. We present in this paper IMG/M, an experimental metagenome data management and analysis system that is based on the Integrated Microbial Genomes (IMG) system. IMG/M provides tools and viewers for analyzing both metagenomes and isolate genomes individually or in a comparative context.

  2. New Hydrocarbon Degradation Pathways in the Microbial Metagenome from Brazilian Petroleum Reservoirs

    Science.gov (United States)

    Sierra-García, Isabel Natalia; Correa Alvarez, Javier; Pantaroto de Vasconcellos, Suzan; Pereira de Souza, Anete; dos Santos Neto, Eugenio Vaz; de Oliveira, Valéria Maia

    2014-01-01

    Current knowledge of the microbial diversity and metabolic pathways involved in hydrocarbon degradation in petroleum reservoirs is still limited, mostly due to the difficulty in recovering the complex community from such an extreme environment. Metagenomics is a valuable tool to investigate the genetic and functional diversity of previously uncultured microorganisms in natural environments. Using a function-driven metagenomic approach, we investigated the metabolic abilities of microbial communities in oil reservoirs. Here, we describe novel functional metabolic pathways involved in the biodegradation of aromatic compounds in a metagenomic library obtained from an oil reservoir. Although many of the deduced proteins shared homology with known enzymes of different well-described aerobic and anaerobic catabolic pathways, the metagenomic fragments did not contain the complete clusters known to be involved in hydrocarbon degradation. Instead, the metagenomic fragments comprised genes belonging to different pathways, showing novel gene arrangements. These results reinforce the potential of the metagenomic approach for the identification and elucidation of new genes and pathways in poorly studied environments and contribute to a broader perspective on the hydrocarbon degradation processes in petroleum reservoirs. PMID:24587220

  3. Genome signature analysis of thermal virus metagenomes reveals Archaea and thermophilic signatures.

    Science.gov (United States)

    Pride, David T; Schoenfeld, Thomas

    2008-09-17

    Metagenomic analysis provides a rich source of biological information for otherwise intractable viral communities. However, study of viral metagenomes has been hampered by its nearly complete reliance on BLAST algorithms for identification of DNA sequences. We sought to develop algorithms for examination of viral metagenomes to identify the origin of sequences independent of BLAST algorithms. We chose viral metagenomes obtained from two hot springs, Bear Paw and Octopus, in Yellowstone National Park, as they represent simple microbial populations where comparatively large contigs were obtained. Thermal spring metagenomes have high proportions of sequences without significant Genbank homology, which has hampered identification of viruses and their linkage with hosts. To analyze each metagenome, we developed a method to classify DNA fragments using genome signature-based phylogenetic classification (GSPC), where metagenomic fragments are compared to a database of oligonucleotide signatures for all previously sequenced Bacteria, Archaea, and viruses. From both Bear Paw and Octopus hot springs, each assembled contig had more similarity to other metagenome contigs than to any sequenced microbial genome based on GSPC analysis, suggesting a genome signature common to each of these extreme environments. While viral metagenomes from Bear Paw and Octopus share some similarity, the genome signatures from each locale are largely unique. GSPC using a microbial database predicts most of the Octopus metagenome has archaeal signatures, while bacterial signatures predominate in Bear Paw; a finding consistent with those of Genbank BLAST. When using a viral database, the majority of the Octopus metagenome is predicted to belong to archaeal virus Families Globuloviridae and Fuselloviridae, while none of the Bear Paw metagenome is predicted to belong to archaeal viruses. As expected, when microbial and viral databases are combined, each of the Octopus and Bear Paw metagenomic contigs

  4. Assembling large, complex environmental metagenomes

    Energy Technology Data Exchange (ETDEWEB)

    Howe, A. C. [Michigan State Univ., East Lansing, MI (United States). Microbiology and Molecular Genetics, Plant Soil and Microbial Sciences; Jansson, J. [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division; Malfatti, S. A. [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Tringe, S. G. [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Tiedje, J. M. [Michigan State Univ., East Lansing, MI (United States). Microbiology and Molecular Genetics, Plant Soil and Microbial Sciences; Brown, C. T. [Michigan State Univ., East Lansing, MI (United States). Microbiology and Molecular Genetics, Computer Science and Engineering

    2012-12-28

    The large volumes of sequencing data required to sample complex environments deeply pose new challenges to sequence analysis approaches. De novo metagenomic assembly effectively reduces the total amount of data to be analyzed but requires significant computational resources. We apply two pre-assembly filtering approaches, digital normalization and partitioning, to make large metagenome assemblies more computationaly tractable. Using a human gut mock community dataset, we demonstrate that these methods result in assemblies nearly identical to assemblies from unprocessed data. We then assemble two large soil metagenomes from matched Iowa corn and native prairie soils. The predicted functional content and phylogenetic origin of the assembled contigs indicate significant taxonomic differences despite similar function. The assembly strategies presented are generic and can be extended to any metagenome; full source code is freely available under a BSD license.

  5. High throughtput comparisons and profiling of metagenomes for industrially relevant enzymes

    KAUST Repository

    Alam, Intikhab

    2016-01-26

    More and more genomes and metagenomes are being sequenced since the advent of Next Generation Sequencing Technologies (NGS). Many metagenomic samples are collected from a variety of environments, each exhibiting a different environmental profile, e.g. temperature, environmental chemistry, etc… These metagenomes can be profiled to unearth enzymes relevant to several industries based on specific enzyme properties such as ability to work on extreme conditions, such as extreme temperatures, salinity, anaerobically, etc.. In this work, we present the DMAP platform comprising of a high-throughput metagenomic annotation pipeline and a data-warehouse for comparisons and profiling across large number of metagenomes. We developed two reference databases for profiling of important genes, one containing enzymes related to different industries and the other containing genes with potential bioactivity roles. In this presentation we describe an example analysis of a large number of publicly available metagenomic sample from TARA oceans study (Science 2015) that covers significant part of world oceans.

  6. Comparative Metagenomics of Freshwater Microbial Communities

    International Nuclear Information System (INIS)

    Hemme, Chris; Deng, Ye; Tu, Qichao; Fields, Matthew; Gentry, Terry; Wu, Liyou; Tringe, Susannah; Watson, David; He, Zhili; Hazen, Terry; Tiedje, James; Rubin, Eddy; Zhou, Jizhong

    2010-01-01

    Previous analyses of a microbial metagenome from uranium and nitric-acid contaminated groundwater (FW106) showed significant environmental effects resulting from the rapid introduction of multiple contaminants. Effects include a massive loss of species and strain biodiversity, accumulation of toxin resistant genes in the metagenome and lateral transfer of toxin resistance genes between community members. To better understand these results in an ecological context, a second metagenome from a pristine groundwater system located along the same geological strike was sequenced and analyzed (FW301). It is hypothesized that FW301 approximates the ancestral FW106 community based on phylogenetic profiles and common geological parameters; however, even if is not the case, the datasets still permit comparisons between healthy and stressed groundwater ecosystems. Complex carbohydrate metabolism has been almost entirely lost in the stressed ecosystem. In contrast, the pristine system encodes a wide diversity of complex carbohydrate metabolism systems, suggesting that carbon turnover is very rapid and less leaky in the healthy groundwater system. FW301 encodes many (∼160+) carbon monoxide dehydrogenase genes while FW106 encodes none. This result suggests that the community is frequently exposed to oxygen from aerated rainwater percolating into the subsurface, with a resulting high rate of carbon metabolism and CO production. When oxygen levels fall, the CO then serves as a major carbon source for the community. FW301 appears to be capable of CO2 fixation via the reductive carboxylase (reverse TCA) cycle and possibly acetogenesis, activities; these activities are lacking in the heterotrophic FW106 system which relies exclusively on respiration of nitrate and/or oxygen for energy production. FW301 encodes a complete set of B12 biosynthesis pathway at high abundance suggesting the use of sodium gradients for energy production in the healthy groundwater community. Overall

  7. Comparative analysis of metagenomes of Italian top soil improvers

    International Nuclear Information System (INIS)

    Gigliucci, Federica; Brambilla, Gianfranco; Tozzoli, Rosangela; Michelacci, Valeria; Morabito, Stefano

    2017-01-01

    Biosolids originating from Municipal Waste Water Treatment Plants are proposed as top soil improvers (TSI) for their beneficial input of organic carbon on agriculture lands. Their use to amend soil is controversial, as it may lead to the presence of emerging hazards of anthropogenic or animal origin in the environment devoted to food production. In this study, we used a shotgun metagenomics sequencing as a tool to perform a characterization of the hazards related with the TSIs. The samples showed the presence of many virulence genes associated to different diarrheagenic E. coli pathotypes as well as of different antimicrobial resistance-associated genes. The genes conferring resistance to Fluoroquinolones was the most relevant class of antimicrobial resistance genes observed in all the samples tested. To a lesser extent traits associated with the resistance to Methicillin in Staphylococci and genes conferring resistance to Streptothricin, Fosfomycin and Vancomycin were also identified. The most represented metal resistance genes were cobalt-zinc-cadmium related, accounting for 15–50% of the sequence reads in the different metagenomes out of the total number of those mapping on the class of resistance to compounds determinants. Moreover the taxonomic analysis performed by comparing compost-based samples and biosolids derived from municipal sewage-sludges treatments divided the samples into separate populations, based on the microbiota composition. The results confirm that the metagenomics is efficient to detect genomic traits associated with pathogens and antimicrobial resistance in complex matrices and this approach can be efficiently used for the traceability of TSI samples using the microorganisms’ profiles as indicators of their origin. - Highlights: • Sludge- and green- based biosolids analysed by metagenomics. • Biosolids may introduce microbial hazards in the food chain. • Metagenomics enables tracking biosolids’ sources.

  8. Comparative analysis of metagenomes of Italian top soil improvers

    Energy Technology Data Exchange (ETDEWEB)

    Gigliucci, Federica, E-mail: Federica.gigliucci@libero.it [Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Viale Regina Elena, 299 00161 Rome (Italy); Department of Sciences, University Roma,Tre, Viale Marconi, 446, 00146 Rome (Italy); Brambilla, Gianfranco; Tozzoli, Rosangela; Michelacci, Valeria; Morabito, Stefano [Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Viale Regina Elena, 299 00161 Rome (Italy)

    2017-05-15

    Biosolids originating from Municipal Waste Water Treatment Plants are proposed as top soil improvers (TSI) for their beneficial input of organic carbon on agriculture lands. Their use to amend soil is controversial, as it may lead to the presence of emerging hazards of anthropogenic or animal origin in the environment devoted to food production. In this study, we used a shotgun metagenomics sequencing as a tool to perform a characterization of the hazards related with the TSIs. The samples showed the presence of many virulence genes associated to different diarrheagenic E. coli pathotypes as well as of different antimicrobial resistance-associated genes. The genes conferring resistance to Fluoroquinolones was the most relevant class of antimicrobial resistance genes observed in all the samples tested. To a lesser extent traits associated with the resistance to Methicillin in Staphylococci and genes conferring resistance to Streptothricin, Fosfomycin and Vancomycin were also identified. The most represented metal resistance genes were cobalt-zinc-cadmium related, accounting for 15–50% of the sequence reads in the different metagenomes out of the total number of those mapping on the class of resistance to compounds determinants. Moreover the taxonomic analysis performed by comparing compost-based samples and biosolids derived from municipal sewage-sludges treatments divided the samples into separate populations, based on the microbiota composition. The results confirm that the metagenomics is efficient to detect genomic traits associated with pathogens and antimicrobial resistance in complex matrices and this approach can be efficiently used for the traceability of TSI samples using the microorganisms’ profiles as indicators of their origin. - Highlights: • Sludge- and green- based biosolids analysed by metagenomics. • Biosolids may introduce microbial hazards in the food chain. • Metagenomics enables tracking biosolids’ sources.

  9. Genome signature analysis of thermal virus metagenomes reveals Archaea and thermophilic signatures

    Directory of Open Access Journals (Sweden)

    Pride David T

    2008-09-01

    Full Text Available Abstract Background Metagenomic analysis provides a rich source of biological information for otherwise intractable viral communities. However, study of viral metagenomes has been hampered by its nearly complete reliance on BLAST algorithms for identification of DNA sequences. We sought to develop algorithms for examination of viral metagenomes to identify the origin of sequences independent of BLAST algorithms. We chose viral metagenomes obtained from two hot springs, Bear Paw and Octopus, in Yellowstone National Park, as they represent simple microbial populations where comparatively large contigs were obtained. Thermal spring metagenomes have high proportions of sequences without significant Genbank homology, which has hampered identification of viruses and their linkage with hosts. To analyze each metagenome, we developed a method to classify DNA fragments using genome signature-based phylogenetic classification (GSPC, where metagenomic fragments are compared to a database of oligonucleotide signatures for all previously sequenced Bacteria, Archaea, and viruses. Results From both Bear Paw and Octopus hot springs, each assembled contig had more similarity to other metagenome contigs than to any sequenced microbial genome based on GSPC analysis, suggesting a genome signature common to each of these extreme environments. While viral metagenomes from Bear Paw and Octopus share some similarity, the genome signatures from each locale are largely unique. GSPC using a microbial database predicts most of the Octopus metagenome has archaeal signatures, while bacterial signatures predominate in Bear Paw; a finding consistent with those of Genbank BLAST. When using a viral database, the majority of the Octopus metagenome is predicted to belong to archaeal virus Families Globuloviridae and Fuselloviridae, while none of the Bear Paw metagenome is predicted to belong to archaeal viruses. As expected, when microbial and viral databases are combined, each of

  10. Metagenomic Analysis of Antibiotic Resistance Genes in Dairy Cow Feces following Therapeutic Administration of Third Generation Cephalosporin.

    Directory of Open Access Journals (Sweden)

    Lindsey Chambers

    Full Text Available Although dairy manure is widely applied to land, it is relatively understudied compared to other livestock as a potential source of antibiotic resistance genes (ARGs to the environment and ultimately to human pathogens. Ceftiofur, the most widely used antibiotic used in U.S. dairy cows, is a 3rd generation cephalosporin, a critically important class of antibiotics to human health. The objective of this study was to evaluate the effect of typical ceftiofur antibiotic treatment on the prevalence of ARGs in the fecal microbiome of dairy cows using a metagenomics approach. β-lactam ARGs were found to be elevated in feces from Holstein cows administered ceftiofur (n = 3 relative to control cows (n = 3. However, total numbers of ARGs across all classes were not measurably affected by ceftiofur treatment, likely because of dominance of unaffected tetracycline ARGs in the metagenomics libraries. Functional analysis via MG-RAST further revealed that ceftiofur treatment resulted in increases in gene sequences associated with "phages, prophages, transposable elements, and plasmids", suggesting that this treatment also enriched the ability to horizontally transfer ARGs. Additional functional shifts were noted with ceftiofur treatment (e.g., increase in genes associated with stress, chemotaxis, and resistance to toxic compounds; decrease in genes associated with metabolism of aromatic compounds and cell division and cell cycle, along with measureable taxonomic shifts (increase in Bacterioidia and decrease in Actinobacteria. This study demonstrates that ceftiofur has a broad, measureable and immediate effect on the cow fecal metagenome. Given the importance of 3rd generation cephalospirins to human medicine, their continued use in dairy cattle should be carefully considered and waste treatment strategies to slow ARG dissemination from dairy cattle manure should be explored.

  11. Challenges and Opportunities of Airborne Metagenomics

    KAUST Repository

    Behzad, H.; Gojobori, Takashi; Mineta, K.

    2015-01-01

    microorganisms. Airborne metagenomic studies could also lead to discoveries of novel genes and metabolic pathways relevant to meteorological and industrial applications, environmental bioremediation, and biogeochemical cycles.

  12. Virulence-associated and antibiotic resistance genes of microbial populations in cattle feces analyzed using a metagenomic approach.

    Science.gov (United States)

    Durso, Lisa M; Harhay, Gregory P; Bono, James L; Smith, Timothy P L

    2011-02-01

    The bovine fecal microbiota impacts human food safety as well as animal health. Although the bacteria of cattle feces have been well characterized using culture-based and culture-independent methods, techniques have been lacking to correlate total community composition with community function. We used high throughput sequencing of total DNA extracted from fecal material to characterize general community composition and examine the repertoire of microbial genes present in beef cattle feces, including genes associated with antibiotic resistance and bacterial virulence. Results suggest that traditional 16S sequencing using "universal" primers to generate full-length sequence may under represent Acitinobacteria and Proteobacteria. Over eight percent (8.4%) of the sequences from our beef cattle fecal pool sample could be categorized as virulence genes, including a suite of genes associated with resistance to antibiotic and toxic compounds (RATC). This is a higher proportion of virulence genes found in Sargasso sea, chicken cecum, and cow rumen samples, but comparable to the proportion found in Antarctic marine derived lake, human fecal, and farm soil samples. The quantitative nature of metagenomic data, combined with the large number of RATC classes represented in samples from widely different habitats indicates that metagenomic data can be used to track relative amounts of antibiotic resistance genes in individual animals over time. Consequently, these data can be used to generate sample-specific and temporal antibiotic resistance gene profiles to facilitate an understanding of the ecology of the microbial communities in each habitat as well as the epidemiology of antibiotic resistant gene transport between and among habitats. Published by Elsevier B.V.

  13. A retrospective metagenomics approach to studying Blastocystis.

    Science.gov (United States)

    Andersen, Lee O'Brien; Bonde, Ida; Nielsen, Henrik Bjørn; Stensvold, Christen Rune

    2015-07-01

    Blastocystis is a common single-celled intestinal parasitic genus, comprising several subtypes. Here, we screened data obtained by metagenomic analysis of faecal DNA for Blastocystis by searching for subtype-specific genes in coabundance gene groups, which are groups of genes that covary across a selection of 316 human faecal samples, hence representing genes originating from a single subtype. The 316 faecal samples were from 236 healthy individuals, 13 patients with Crohn's disease (CD) and 67 patients with ulcerative colitis (UC). The prevalence of Blastocystis was 20.3% in the healthy individuals and 14.9% in patients with UC. Meanwhile, Blastocystis was absent in patients with CD. Individuals with intestinal microbiota dominated by Bacteroides were much less prone to having Blastocystis-positive stool (Matthew's correlation coefficient = -0.25, P < 0.0001) than individuals with Ruminococcus- and Prevotella-driven enterotypes. This is the first study to investigate the relationship between Blastocystis and communities of gut bacteria using a metagenomics approach. The study serves as an example of how it is possible to retrospectively investigate microbial eukaryotic communities in the gut using metagenomic datasets targeting the bacterial component of the intestinal microbiome and the interplay between these microbial communities. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. MATAM: reconstruction of phylogenetic marker genes from short sequencing reads in metagenomes.

    Science.gov (United States)

    Pericard, Pierre; Dufresne, Yoann; Couderc, Loïc; Blanquart, Samuel; Touzet, Hélène

    2018-02-15

    Advances in the sequencing of uncultured environmental samples, dubbed metagenomics, raise a growing need for accurate taxonomic assignment. Accurate identification of organisms present within a community is essential to understanding even the most elementary ecosystems. However, current high-throughput sequencing technologies generate short reads which partially cover full-length marker genes and this poses difficult bioinformatic challenges for taxonomy identification at high resolution. We designed MATAM, a software dedicated to the fast and accurate targeted assembly of short reads sequenced from a genomic marker of interest. The method implements a stepwise process based on construction and analysis of a read overlap graph. It is applied to the assembly of 16S rRNA markers and is validated on simulated, synthetic and genuine metagenomes. We show that MATAM outperforms other available methods in terms of low error rates and recovered fractions and is suitable to provide improved assemblies for precise taxonomic assignments. https://github.com/bonsai-team/matam. pierre.pericard@gmail.com or helene.touzet@univ-lille1.fr. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  15. A metagenomic approach to decipher the indigenous microbial communities of arsenic contaminated groundwater of Assam

    Directory of Open Access Journals (Sweden)

    Saurav Das

    2017-06-01

    Full Text Available Metagenomic approach was used to understand the structural and functional diversity present in arsenic contaminated groundwater of the Ganges Brahmaputra Delta aquifer system. A metagene dataset (coded as TTGW1 of 89,171 sequences (totaling 125,449,864 base pairs with an average length of 1406 bps was annotated. About 74,478 sequences containing 101,948 predicted protein coding regions passed the quality control. Taxonomical classification revealed abundance of bacteria that accounted for 98.3% of the microbial population of the metagenome. Eukaryota had an abundance of 1.1% followed by archea that showed 0.4% abundance. In phylum based classification, Proteobacteria was dominant (62.6% followed by Bacteroidetes (11.7%, Planctomycetes (7.7%, Verrucomicrobia (5.6%, Actinobacteria (3.7% and Firmicutes (1.9%. The Clusters of Orthologous Groups (COGs analysis indicated that the protein regulating the metabolic functions constituted a high percentage (18,199 reads; 39.3% of the whole metagenome followed by the proteins regulating the cellular processes (22.3%. About 0.07% sequences of the whole metagenome were related to genes coding for arsenic resistant mechanisms. Nearly 50% sequences of these coded for the arsenate reductase enzyme (EC. 1.20.4.1, the dominant enzyme of ars operon. Proteins associated with iron acquisition and metabolism were coded by 2% of the metagenome as revealed through SEED analysis. Our study reveals the microbial diversity and provides an insight into the functional aspect of the genes that might play crucial role in arsenic geocycle in contaminated ground water of Assam.

  16. FMAP: Functional Mapping and Analysis Pipeline for metagenomics and metatranscriptomics studies.

    Science.gov (United States)

    Kim, Jiwoong; Kim, Min Soo; Koh, Andrew Y; Xie, Yang; Zhan, Xiaowei

    2016-10-10

    Given the lack of a complete and comprehensive library of microbial reference genomes, determining the functional profile of diverse microbial communities is challenging. The available functional analysis pipelines lack several key features: (i) an integrated alignment tool, (ii) operon-level analysis, and (iii) the ability to process large datasets. Here we introduce our open-sourced, stand-alone functional analysis pipeline for analyzing whole metagenomic and metatranscriptomic sequencing data, FMAP (Functional Mapping and Analysis Pipeline). FMAP performs alignment, gene family abundance calculations, and statistical analysis (three levels of analyses are provided: differentially-abundant genes, operons and pathways). The resulting output can be easily visualized with heatmaps and functional pathway diagrams. FMAP functional predictions are consistent with currently available functional analysis pipelines. FMAP is a comprehensive tool for providing functional analysis of metagenomic/metatranscriptomic sequencing data. With the added features of integrated alignment, operon-level analysis, and the ability to process large datasets, FMAP will be a valuable addition to the currently available functional analysis toolbox. We believe that this software will be of great value to the wider biology and bioinformatics communities.

  17. Bacterial Human Virulence Genes across Diverse Habitats As Assessed by In silico Analysis of Environmental Metagenomes

    DEFF Research Database (Denmark)

    Søborg, Ditte A; Hendriksen, Niels B; Kilian, Mogens

    2016-01-01

    of natural environments in the evolution of bacterial virulence. Twenty four bacterial virulence genes were analyzed in 46 diverse environmental metagenomic datasets, representing various soils, seawater, freshwater, marine sediments, hot springs, the deep-sea, hypersaline mats, microbialites, gutless worms......The occurrence and distribution of clinically relevant bacterial virulence genes across natural (non-human) environments is not well understood. We aimed to investigate the occurrence of homologs to bacterial human virulence genes in a variety of ecological niches to better understand the role...... in non-human environments point to an important ecological role of the genes for the activity and survival of environmental bacteria. Furthermore, the high degree of sequence conservation between several of the environmental and clinical genes suggests common ancestral origins....

  18. Automated and Accurate Estimation of Gene Family Abundance from Shotgun Metagenomes.

    Directory of Open Access Journals (Sweden)

    Stephen Nayfach

    2015-11-01

    Full Text Available Shotgun metagenomic DNA sequencing is a widely applicable tool for characterizing the functions that are encoded by microbial communities. Several bioinformatic tools can be used to functionally annotate metagenomes, allowing researchers to draw inferences about the functional potential of the community and to identify putative functional biomarkers. However, little is known about how decisions made during annotation affect the reliability of the results. Here, we use statistical simulations to rigorously assess how to optimize annotation accuracy and speed, given parameters of the input data like read length and library size. We identify best practices in metagenome annotation and use them to guide the development of the Shotgun Metagenome Annotation Pipeline (ShotMAP. ShotMAP is an analytically flexible, end-to-end annotation pipeline that can be implemented either on a local computer or a cloud compute cluster. We use ShotMAP to assess how different annotation databases impact the interpretation of how marine metagenome and metatranscriptome functional capacity changes across seasons. We also apply ShotMAP to data obtained from a clinical microbiome investigation of inflammatory bowel disease. This analysis finds that gut microbiota collected from Crohn's disease patients are functionally distinct from gut microbiota collected from either ulcerative colitis patients or healthy controls, with differential abundance of metabolic pathways related to host-microbiome interactions that may serve as putative biomarkers of disease.

  19. Beyond biodiversity: fish metagenomes.

    Science.gov (United States)

    Ardura, Alba; Planes, Serge; Garcia-Vazquez, Eva

    2011-01-01

    Biodiversity and intra-specific genetic diversity are interrelated and determine the potential of a community to survive and evolve. Both are considered together in Prokaryote communities treated as metagenomes or ensembles of functional variants beyond species limits.Many factors alter biodiversity in higher Eukaryote communities, and human exploitation can be one of the most important for some groups of plants and animals. For example, fisheries can modify both biodiversity and genetic diversity (intra specific). Intra-specific diversity can be drastically altered by overfishing. Intense fishing pressure on one stock may imply extinction of some genetic variants and subsequent loss of intra-specific diversity. The objective of this study was to apply a metagenome approach to fish communities and explore its value for rapid evaluation of biodiversity and genetic diversity at community level. Here we have applied the metagenome approach employing the barcoding target gene coi as a model sequence in catch from four very different fish assemblages exploited by fisheries: freshwater communities from the Amazon River and northern Spanish rivers, and marine communities from the Cantabric and Mediterranean seas.Treating all sequences obtained from each regional catch as a biological unit (exploited community) we found that metagenomic diversity indices of the Amazonian catch sample here examined were lower than expected. Reduced diversity could be explained, at least partially, by overexploitation of the fish community that had been independently estimated by other methods.We propose using a metagenome approach for estimating diversity in Eukaryote communities and early evaluating genetic variation losses at multi-species level.

  20. Beyond biodiversity: fish metagenomes.

    Directory of Open Access Journals (Sweden)

    Alba Ardura

    Full Text Available Biodiversity and intra-specific genetic diversity are interrelated and determine the potential of a community to survive and evolve. Both are considered together in Prokaryote communities treated as metagenomes or ensembles of functional variants beyond species limits.Many factors alter biodiversity in higher Eukaryote communities, and human exploitation can be one of the most important for some groups of plants and animals. For example, fisheries can modify both biodiversity and genetic diversity (intra specific. Intra-specific diversity can be drastically altered by overfishing. Intense fishing pressure on one stock may imply extinction of some genetic variants and subsequent loss of intra-specific diversity. The objective of this study was to apply a metagenome approach to fish communities and explore its value for rapid evaluation of biodiversity and genetic diversity at community level. Here we have applied the metagenome approach employing the barcoding target gene coi as a model sequence in catch from four very different fish assemblages exploited by fisheries: freshwater communities from the Amazon River and northern Spanish rivers, and marine communities from the Cantabric and Mediterranean seas.Treating all sequences obtained from each regional catch as a biological unit (exploited community we found that metagenomic diversity indices of the Amazonian catch sample here examined were lower than expected. Reduced diversity could be explained, at least partially, by overexploitation of the fish community that had been independently estimated by other methods.We propose using a metagenome approach for estimating diversity in Eukaryote communities and early evaluating genetic variation losses at multi-species level.

  1. Metagenomic applications in environmental monitoring and bioremediation.

    Science.gov (United States)

    Techtmann, Stephen M; Hazen, Terry C

    2016-10-01

    With the rapid advances in sequencing technology, the cost of sequencing has dramatically dropped and the scale of sequencing projects has increased accordingly. This has provided the opportunity for the routine use of sequencing techniques in the monitoring of environmental microbes. While metagenomic applications have been routinely applied to better understand the ecology and diversity of microbes, their use in environmental monitoring and bioremediation is increasingly common. In this review we seek to provide an overview of some of the metagenomic techniques used in environmental systems biology, addressing their application and limitation. We will also provide several recent examples of the application of metagenomics to bioremediation. We discuss examples where microbial communities have been used to predict the presence and extent of contamination, examples of how metagenomics can be used to characterize the process of natural attenuation by unculturable microbes, as well as examples detailing the use of metagenomics to understand the impact of biostimulation on microbial communities.

  2. Toward molecular trait-based ecology through integration of biogeochemical, geographical and metagenomic data

    DEFF Research Database (Denmark)

    Raes, Jeroen; Letunic, Ivica; Yamada, Takuji

    2011-01-01

    Using metagenomic 'parts lists' to infer global patterns on microbial ecology remains a significant challenge. To deduce important ecological indicators such as environmental adaptation, molecular trait dispersal, diversity variation and primary production from the gene pool of an ecosystem, we...... integrated 25 ocean metagenomes with geographical, meteorological and geophysicochemical data. We find that climatic factors (temperature, sunlight) are the major determinants of the biomolecular repertoire of each sample and the main limiting factor on functional trait dispersal (absence of biogeographic...... provincialism). Molecular functional richness and diversity show a distinct latitudinal gradient peaking at 20° N and correlate with primary production. The latter can also be predicted from the molecular functional composition of an environmental sample. Together, our results show that the functional community...

  3. Metagenomic analysis of antibiotic resistance genes in coastal industrial mariculture systems.

    Science.gov (United States)

    Wang, Jian-Hua; Lu, Jian; Zhang, Yu-Xuan; Wu, Jun; Luo, Yongming; Liu, Hao

    2018-04-01

    The overuse of antibiotics has posed a propagation of antibiotic resistance genes (ARGs) in aquaculture systems. This study firstly explored the ARGs profiles of the typical mariculture farms including conventional and recirculating systems using metagenomics approach. Fifty ARGs subtypes belonging to 21 ARGs types were identified, showing the wide-spectrum profiles of ARGs in the coastal industrial mariculture systems. ARGs with multiple antibiotics resistance have emerged in the mariculure systems. The co-occurrence pattern between ARGs and microbial taxa showed that Proteobacteria and Bacteroidetes were potential dominant hosts of ARGs in the industrial mariculture systems. Typical nitrifying bacteria such as Nitrospinae in mariculture systems also carried with some resistance genes. Relative abundance of ARGs in fish ponds and wastewater treatment units was relatively high. The investigation showed that industrial mariculture systems were important ARGs reservoirs in coastal area, indicating the critical role of recirculating systems in the terms of ARGs pollution control. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Functional Screening of Antibiotic Resistance Genes from a Representative Metagenomic Library of Food Fermenting Microbiota

    Directory of Open Access Journals (Sweden)

    Chiara Devirgiliis

    2014-01-01

    Full Text Available Lactic acid bacteria (LAB represent the predominant microbiota in fermented foods. Foodborne LAB have received increasing attention as potential reservoir of antibiotic resistance (AR determinants, which may be horizontally transferred to opportunistic pathogens. We have previously reported isolation of AR LAB from the raw ingredients of a fermented cheese, while AR genes could be detected in the final, marketed product only by PCR amplification, thus pointing at the need for more sensitive microbial isolation techniques. We turned therefore to construction of a metagenomic library containing microbial DNA extracted directly from the food matrix. To maximize yield and purity and to ensure that genomic complexity of the library was representative of the original bacterial population, we defined a suitable protocol for total DNA extraction from cheese which can also be applied to other lipid-rich foods. Functional library screening on different antibiotics allowed recovery of ampicillin and kanamycin resistant clones originating from Streptococcus salivarius subsp. thermophilus and Lactobacillus helveticus genomes. We report molecular characterization of the cloned inserts, which were fully sequenced and shown to confer AR phenotype to recipient bacteria. We also show that metagenomics can be applied to food microbiota to identify underrepresented species carrying specific genes of interest.

  5. Challenges and Opportunities of Airborne Metagenomics

    KAUST Repository

    Behzad, H.

    2015-05-06

    Recent metagenomic studies of environments, such as marine and soil, have significantly enhanced our understanding of the diverse microbial communities living in these habitats and their essential roles in sustaining vast ecosystems. The increase in the number of publications related to soil and marine metagenomics is in sharp contrast to those of air, yet airborne microbes are thought to have significant impacts on many aspects of our lives from their potential roles in atmospheric events such as cloud formation, precipitation, and atmospheric chemistry to their major impact on human health. In this review, we will discuss the current progress in airborne metagenomics, with a special focus on exploring the challenges and opportunities of undertaking such studies. The main challenges of conducting metagenomic studies of airborne microbes are as follows: 1) Low density of microorganisms in the air, 2) efficient retrieval of microorganisms from the air, 3) variability in airborne microbial community composition, 4) the lack of standardized protocols and methodologies, and 5) DNA sequencing and bioinformatics-related challenges. Overcoming these challenges could provide the groundwork for comprehensive analysis of airborne microbes and their potential impact on the atmosphere, global climate, and our health. Metagenomic studies offer a unique opportunity to examine viral and bacterial diversity in the air and monitor their spread locally or across the globe, including threats from pathogenic microorganisms. Airborne metagenomic studies could also lead to discoveries of novel genes and metabolic pathways relevant to meteorological and industrial applications, environmental bioremediation, and biogeochemical cycles.

  6. Metagenomes reveal microbial structures, functional potentials, and biofouling-related genes in a membrane bioreactor.

    Science.gov (United States)

    Ma, Jinxing; Wang, Zhiwei; Li, Huan; Park, Hee-Deung; Wu, Zhichao

    2016-06-01

    Metagenomic sequencing was used to investigate the microbial structures, functional potentials, and biofouling-related genes in a membrane bioreactor (MBR). The results showed that the microbial community in the MBR was highly diverse. Notably, function analysis of the dominant genera indicated that common genes from different phylotypes were identified for important functional potentials with the observation of variation of abundances of genes in a certain taxon (e.g., Dechloromonas). Despite maintaining similar metabolic functional potentials with a parallel full-scale conventional activated sludge (CAS) system due to treating the identical wastewater, the MBR had more abundant nitrification-related bacteria and coding genes of ammonia monooxygenase, which could well explain its excellent ammonia removal in the low-temperature period. Furthermore, according to quantification of the genes involved in exopolysaccharide and extracellular polymeric substance (EPS) protein metabolism, the MBR did not show a much different potential in producing EPS compared to the CAS system, and bacteria from the membrane biofilm had lower abundances of genes associated with EPS biosynthesis and transport compared to the activated sludge in the MBR.

  7. OTU analysis using metagenomic shotgun sequencing data.

    Directory of Open Access Journals (Sweden)

    Xiaolin Hao

    Full Text Available Because of technological limitations, the primer and amplification biases in targeted sequencing of 16S rRNA genes have veiled the true microbial diversity underlying environmental samples. However, the protocol of metagenomic shotgun sequencing provides 16S rRNA gene fragment data with natural immunity against the biases raised during priming and thus the potential of uncovering the true structure of microbial community by giving more accurate predictions of operational taxonomic units (OTUs. Nonetheless, the lack of statistically rigorous comparison between 16S rRNA gene fragments and other data types makes it difficult to interpret previously reported results using 16S rRNA gene fragments. Therefore, in the present work, we established a standard analysis pipeline that would help confirm if the differences in the data are true or are just due to potential technical bias. This pipeline is built by using simulated data to find optimal mapping and OTU prediction methods. The comparison between simulated datasets revealed a relationship between 16S rRNA gene fragments and full-length 16S rRNA sequences that a 16S rRNA gene fragment having a length >150 bp provides the same accuracy as a full-length 16S rRNA sequence using our proposed pipeline, which could serve as a good starting point for experimental design and making the comparison between 16S rRNA gene fragment-based and targeted 16S rRNA sequencing-based surveys possible.

  8. A metagenomic snapshot of taxonomic and functional diversity in an alpine glacier cryoconite ecosystem

    International Nuclear Information System (INIS)

    Edwards, Arwyn; Pachebat, Justin A; Swain, Martin; Hegarty, Matt; Rassner, Sara M E; Hodson, Andrew J; Irvine-Fynn, Tristram D L; Sattler, Birgit

    2013-01-01

    Cryoconite is a microbe–mineral aggregate which darkens the ice surface of glaciers. Microbial process and marker gene PCR-dependent measurements reveal active and diverse cryoconite microbial communities on polar glaciers. Here, we provide the first report of a cryoconite metagenome and culture-independent study of alpine cryoconite microbial diversity. We assembled 1.2 Gbp of metagenomic DNA sequenced using an Illumina HiScanSQ from cryoconite holes across the ablation zone of Rotmoosferner in the Austrian Alps. The metagenome revealed a bacterially-dominated community, with Proteobacteria (62% of bacterial-assigned contigs) and Bacteroidetes (14%) considerably more abundant than Cyanobacteria (2.5%). Streptophyte DNA dominated the eukaryotic metagenome. Functional genes linked to N, Fe, S and P cycling illustrated an acquisitive trend and a nitrogen cycle based upon efficient ammonia recycling. A comparison of 32 metagenome datasets revealed a similarity in functional profiles between the cryoconite and metagenomes characterized from other cold microbe–mineral aggregates. Overall, the metagenomic snapshot reveals the cryoconite ecosystem of this alpine glacier as dependent on scavenging carbon and nutrients from allochthonous sources, in particular mosses transported by wind from ice-marginal habitats, consistent with net heterotrophy indicated by productivity measurements. A transition from singular snapshots of cryoconite metagenomes to comparative analyses is advocated. (letter)

  9. Genome-wide Selective Sweeps in Natural Bacterial Populations Revealed by Time-series Metagenomics

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Leong-Keat; Bendall, Matthew L.; Malfatti, Stephanie; Schwientek, Patrick; Tremblay, Julien; Schackwitz, Wendy; Martin, Joel; Pati, Amrita; Bushnell, Brian; Foster, Brian; Kang, Dongwan; Tringe, Susannah G.; Bertilsson, Stefan; Moran, Mary Ann; Shade, Ashley; Newton, Ryan J.; Stevens, Sarah; McMcahon, Katherine D.; Mamlstrom, Rex R.

    2014-05-12

    Multiple evolutionary models have been proposed to explain the formation of genetically and ecologically distinct bacterial groups. Time-series metagenomics enables direct observation of evolutionary processes in natural populations, and if applied over a sufficiently long time frame, this approach could capture events such as gene-specific or genome-wide selective sweeps. Direct observations of either process could help resolve how distinct groups form in natural microbial assemblages. Here, from a three-year metagenomic study of a freshwater lake, we explore changes in single nucleotide polymorphism (SNP) frequencies and patterns of gene gain and loss in populations of Chlorobiaceae and Methylophilaceae. SNP analyses revealed substantial genetic heterogeneity within these populations, although the degree of heterogeneity varied considerably among closely related, co-occurring Methylophilaceae populations. SNP allele frequencies, as well as the relative abundance of certain genes, changed dramatically over time in each population. Interestingly, SNP diversity was purged at nearly every genome position in one of the Chlorobiaceae populations over the course of three years, while at the same time multiple genes either swept through or were swept from this population. These patterns were consistent with a genome-wide selective sweep, a process predicted by the ecotype model? of diversification, but not previously observed in natural populations.

  10. Genome-wide Selective Sweeps in Natural Bacterial Populations Revealed by Time-series Metagenomics

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Leong-Keat; Bendall, Matthew L.; Malfatti, Stephanie; Schwientek, Patrick; Tremblay, Julien; Schackwitz, Wendy; Martin, Joel; Pati, Amrita; Bushnell, Brian; Foster, Brian; Kang, Dongwan; Tringe, Susannah G.; Bertilsson, Stefan; Moran, Mary Ann; Shade, Ashley; Newton, Ryan J.; Stevens, Sarah; McMahon, Katherine D.; Malmstrom, Rex R.

    2014-06-18

    Multiple evolutionary models have been proposed to explain the formation of genetically and ecologically distinct bacterial groups. Time-series metagenomics enables direct observation of evolutionary processes in natural populations, and if applied over a sufficiently long time frame, this approach could capture events such as gene-specific or genome-wide selective sweeps. Direct observations of either process could help resolve how distinct groups form in natural microbial assemblages. Here, from a three-year metagenomic study of a freshwater lake, we explore changes in single nucleotide polymorphism (SNP) frequencies and patterns of gene gain and loss in populations of Chlorobiaceae and Methylophilaceae. SNP analyses revealed substantial genetic heterogeneity within these populations, although the degree of heterogeneity varied considerably among closely related, co-occurring Methylophilaceae populations. SNP allele frequencies, as well as the relative abundance of certain genes, changed dramatically over time in each population. Interestingly, SNP diversity was purged at nearly every genome position in one of the Chlorobiaceae populations over the course of three years, while at the same time multiple genes either swept through or were swept from this population. These patterns were consistent with a genome-wide selective sweep, a process predicted by the ‘ecotype model’ of diversification, but not previously observed in natural populations.

  11. Analysis and comparison of very large metagenomes with fast clustering and functional annotation

    Directory of Open Access Journals (Sweden)

    Li Weizhong

    2009-10-01

    Full Text Available Abstract Background The remarkable advance of metagenomics presents significant new challenges in data analysis. Metagenomic datasets (metagenomes are large collections of sequencing reads from anonymous species within particular environments. Computational analyses for very large metagenomes are extremely time-consuming, and there are often many novel sequences in these metagenomes that are not fully utilized. The number of available metagenomes is rapidly increasing, so fast and efficient metagenome comparison methods are in great demand. Results The new metagenomic data analysis method Rapid Analysis of Multiple Metagenomes with a Clustering and Annotation Pipeline (RAMMCAP was developed using an ultra-fast sequence clustering algorithm, fast protein family annotation tools, and a novel statistical metagenome comparison method that employs a unique graphic interface. RAMMCAP processes extremely large datasets with only moderate computational effort. It identifies raw read clusters and protein clusters that may include novel gene families, and compares metagenomes using clusters or functional annotations calculated by RAMMCAP. In this study, RAMMCAP was applied to the two largest available metagenomic collections, the "Global Ocean Sampling" and the "Metagenomic Profiling of Nine Biomes". Conclusion RAMMCAP is a very fast method that can cluster and annotate one million metagenomic reads in only hundreds of CPU hours. It is available from http://tools.camera.calit2.net/camera/rammcap/.

  12. Bovine Host Genetic Variation Influences Rumen Microbial Methane Production with Best Selection Criterion for Low Methane Emitting and Efficiently Feed Converting Hosts Based on Metagenomic Gene Abundance.

    Directory of Open Access Journals (Sweden)

    Rainer Roehe

    2016-02-01

    Full Text Available Methane produced by methanogenic archaea in ruminants contributes significantly to anthropogenic greenhouse gas emissions. The host genetic link controlling microbial methane production is unknown and appropriate genetic selection strategies are not developed. We used sire progeny group differences to estimate the host genetic influence on rumen microbial methane production in a factorial experiment consisting of crossbred breed types and diets. Rumen metagenomic profiling was undertaken to investigate links between microbial genes and methane emissions or feed conversion efficiency. Sire progeny groups differed significantly in their methane emissions measured in respiration chambers. Ranking of the sire progeny groups based on methane emissions or relative archaeal abundance was consistent overall and within diet, suggesting that archaeal abundance in ruminal digesta is under host genetic control and can be used to genetically select animals without measuring methane directly. In the metagenomic analysis of rumen contents, we identified 3970 microbial genes of which 20 and 49 genes were significantly associated with methane emissions and feed conversion efficiency respectively. These explained 81% and 86% of the respective variation and were clustered in distinct functional gene networks. Methanogenesis genes (e.g. mcrA and fmdB were associated with methane emissions, whilst host-microbiome cross talk genes (e.g. TSTA3 and FucI were associated with feed conversion efficiency. These results strengthen the idea that the host animal controls its own microbiota to a significant extent and open up the implementation of effective breeding strategies using rumen microbial gene abundance as a predictor for difficult-to-measure traits on a large number of hosts. Generally, the results provide a proof of principle to use the relative abundance of microbial genes in the gastrointestinal tract of different species to predict their influence on traits e

  13. The binning of metagenomic contigs for microbial physiology of mixed cultures.

    Science.gov (United States)

    Strous, Marc; Kraft, Beate; Bisdorf, Regina; Tegetmeyer, Halina E

    2012-01-01

    So far, microbial physiology has dedicated itself mainly to pure cultures. In nature, cross feeding and competition are important aspects of microbial physiology and these can only be addressed by studying complete communities such as enrichment cultures. Metagenomic sequencing is a powerful tool to characterize such mixed cultures. In the analysis of metagenomic data, well established algorithms exist for the assembly of short reads into contigs and for the annotation of predicted genes. However, the binning of the assembled contigs or unassembled reads is still a major bottleneck and required to understand how the overall metabolism is partitioned over different community members. Binning consists of the clustering of contigs or reads that apparently originate from the same source population. In the present study eight metagenomic samples from the same habitat, a laboratory enrichment culture, were sequenced. Each sample contained 13-23 Mb of assembled contigs and up to eight abundant populations. Binning was attempted with existing methods but they were found to produce poor results, were slow, dependent on non-standard platforms or produced errors. A new binning procedure was developed based on multivariate statistics of tetranucleotide frequencies combined with the use of interpolated Markov models. Its performance was evaluated by comparison of the results between samples with BLAST and in comparison to existing algorithms for four publicly available metagenomes and one previously published artificial metagenome. The accuracy of the new approach was comparable or higher than existing methods. Further, it was up to a 100 times faster. It was implemented in Java Swing as a complete open source graphical binning application available for download and further development (http://sourceforge.net/projects/metawatt).

  14. The binning of metagenomic contigs for microbial physiology of mixed cultures

    Directory of Open Access Journals (Sweden)

    Marc eStrous

    2012-12-01

    Full Text Available So far, microbial physiology has dedicated itself mainly to pure cultures. In nature, cross feeding and competition are important aspects of microbial physiology and these can only be addressed by studying complete communities such as enrichment cultures. Metagenomic sequencing is a powerful tool to characterize such mixed cultures. In the analysis of metagenomic data, well established algorithms exist for the assembly of short reads into contigs and for the annotation of predicted genes. However, the binning of the assembled contigs or unassembled reads is still a major bottleneck and required to understand how the overall metabolism is partitioned over different community members. Binning consists of the clustering of contigs or reads that apparently originate from the same source population.In the present study eight metagenomic samples originating from the same habitat, a laboratory enrichment culture, were sequenced. Each sample contained 13-23 Mb of assembled contigs and up to eight abundant populations. Binning was attempted with existing methods but they were found to produce poor results, were slow, dependent on non-standard platforms or produced errors. A new binning procedure was developed based on multivariate statistics of tetranucleotide frequencies combined with the use of interpolated Markov models. Its performance was evaluated by comparison of the results between samples with BLAST and in comparison to exisiting algorithms for four publicly available metagenomes and one previously published artificial metagenome. The accuracy of the new approach was comparable or higher than existing methods. Further, it was up to a hunderd times faster. It was implemented in Java Swing as a complete open source graphical binning application available for download and further development (http://sourceforge.net/projects/metawatt.

  15. Cloning and identification of novel hydrolase genes from a dairy cow rumen metagenomic library and characterization of a cellulase gene

    Directory of Open Access Journals (Sweden)

    Gong Xia

    2012-10-01

    Full Text Available Abstract Background Interest in cellulose degrading enzymes has increased in recent years due to the expansion of the cellulosic biofuel industry. The rumen is a highly adapted environment for the degradation of cellulose and a promising source of enzymes for industrial use. To identify cellulase enzymes that may be of such use we have undertaken a functional metagenomic screen to identify cellulase enzymes from the bacterial community in the rumen of a grass-hay fed dairy cow. Results Twenty five clones specifying cellulose activity were identified. Subcloning and sequence analysis of a subset of these hydrolase-positive clones identified 10 endoglucanase genes. Preliminary characterization of the encoded cellulases was carried out using crude extracts of each of the subclones. Zymogram analysis using carboxymethylcellulose as a substrate showed a single positive band for each subclone, confirming that only one functional cellulase gene was present in each. One cellulase gene, designated Cel14b22, was expressed at a high level in Escherichia coli and purified for further characterization. The purified recombinant enzyme showed optimal activity at pH 6.0 and 50°C. It was stable over a broad pH range, from pH 4.0 to 10.0. The activity was significantly enhanced by Mn2+ and dramatically reduced by Fe3+ or Cu2+. The enzyme hydrolyzed a wide range of beta-1,3-, and beta-1,4-linked polysaccharides, with varying activities. Activities toward microcrystalline cellulose and filter paper were relatively high, while the highest activity was toward Oat Gum. Conclusion The present study shows that a functional metagenomic approach can be used to isolate previously uncharacterized cellulases from the rumen environment.

  16. Metagenomic approaches to exploit the biotechnological potential of the microbial consortia of marine sponges.

    Science.gov (United States)

    Kennedy, Jonathan; Marchesi, Julian R; Dobson, Alan D W

    2007-05-01

    Natural products isolated from sponges are an important source of new biologically active compounds. However, the development of these compounds into drugs has been held back by the difficulties in achieving a sustainable supply of these often-complex molecules for pre-clinical and clinical development. Increasing evidence implicates microbial symbionts as the source of many of these biologically active compounds, but the vast majority of the sponge microbial community remain uncultured. Metagenomics offers a biotechnological solution to this supply problem. Metagenomes of sponge microbial communities have been shown to contain genes and gene clusters typical for the biosynthesis of biologically active natural products. Heterologous expression approaches have also led to the isolation of secondary metabolism gene clusters from uncultured microbial symbionts of marine invertebrates and from soil metagenomic libraries. Combining a metagenomic approach with heterologous expression holds much promise for the sustainable exploitation of the chemical diversity present in the sponge microbial community.

  17. A function-based screen for seeking RubisCO active clones from metagenomes: novel enzymes influencing RubisCO activity.

    Science.gov (United States)

    Böhnke, Stefanie; Perner, Mirjam

    2015-03-01

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) is a key enzyme of the Calvin cycle, which is responsible for most of Earth's primary production. Although research on RubisCO genes and enzymes in plants, cyanobacteria and bacteria has been ongoing for years, still little is understood about its regulation and activation in bacteria. Even more so, hardly any information exists about the function of metagenomic RubisCOs and the role of the enzymes encoded on the flanking DNA owing to the lack of available function-based screens for seeking active RubisCOs from the environment. Here we present the first solely activity-based approach for identifying RubisCO active fosmid clones from a metagenomic library. We constructed a metagenomic library from hydrothermal vent fluids and screened 1056 fosmid clones. Twelve clones exhibited RubisCO activity and the metagenomic fragments resembled genes from Thiomicrospira crunogena. One of these clones was further analyzed. It contained a 35.2 kb metagenomic insert carrying the RubisCO gene cluster and flanking DNA regions. Knockouts of twelve genes and two intergenic regions on this metagenomic fragment demonstrated that the RubisCO activity was significantly impaired and was attributed to deletions in genes encoding putative transcriptional regulators and those believed to be vital for RubisCO activation. Our new technique revealed a novel link between a poorly characterized gene and RubisCO activity. This screen opens the door to directly investigating RubisCO genes and respective enzymes from environmental samples.

  18. Extremozymes from metagenome: Potential applications in food processing.

    Science.gov (United States)

    Khan, Mahejibin; Sathya, T A

    2017-06-12

    The long-established use of enzymes for food processing and product formulation has resulted in an increased enzyme market compounding to 7.0% annual growth rate. Advancements in molecular biology and recognition that enzymes with specific properties have application for industrial production of infant, baby and functional foods boosted research toward sourcing the genes of microorganisms for enzymes with distinctive properties. In this regard, functional metagenomics for extremozymes has gained attention on the premise that such enzymes can catalyze specific reactions. Hence, metagenomics that can isolate functional genes of unculturable extremophilic microorganisms has expanded attention as a promising tool. Developments in this field of research in relation to food sector are reviewed.

  19. Metagenomic Profiling of Soil Microbes to Mine Salt Stress Tolerance Genes

    Directory of Open Access Journals (Sweden)

    Vasim Ahmed

    2018-02-01

    Full Text Available Osmotolerance is one of the critical factors for successful survival and colonization of microbes in saline environments. Nonetheless, information about these osmotolerance mechanisms is still inadequate. Exploration of the saline soil microbiome for its community structure and novel genetic elements is likely to provide information on the mechanisms involved in osmoadaptation. The present study explores the saline soil microbiome for its native structure and novel genetic elements involved in osmoadaptation. 16S rRNA gene sequence analysis has indicated the dominance of halophilic/halotolerant phylotypes affiliated to Proteobacteria, Actinobacteria, Gemmatimonadetes, Bacteroidetes, Firmicutes, and Acidobacteria. A functional metagenomics approach led to the identification of osmotolerant clones SSR1, SSR4, SSR6, SSR2 harboring BCAA_ABCtp, GSDH, STK_Pknb, and duf3445 genes. Furthermore, transposon mutagenesis, genetic, physiological and functional studies in close association has confirmed the role of these genes in osmotolerance. Enhancement in host osmotolerance possibly though the cytosolic accumulation of amino acids, reducing equivalents and osmolytes involving BCAA-ABCtp, GSDH, and STKc_PknB. Decoding of the genetic elements prevalent within these microbes can be exploited either as such for ameliorating soils or their genetically modified forms can assist crops to resist and survive in saline environment.

  20. Challenges and opportunities of airborne metagenomics.

    Science.gov (United States)

    Behzad, Hayedeh; Gojobori, Takashi; Mineta, Katsuhiko

    2015-05-06

    Recent metagenomic studies of environments, such as marine and soil, have significantly enhanced our understanding of the diverse microbial communities living in these habitats and their essential roles in sustaining vast ecosystems. The increase in the number of publications related to soil and marine metagenomics is in sharp contrast to those of air, yet airborne microbes are thought to have significant impacts on many aspects of our lives from their potential roles in atmospheric events such as cloud formation, precipitation, and atmospheric chemistry to their major impact on human health. In this review, we will discuss the current progress in airborne metagenomics, with a special focus on exploring the challenges and opportunities of undertaking such studies. The main challenges of conducting metagenomic studies of airborne microbes are as follows: 1) Low density of microorganisms in the air, 2) efficient retrieval of microorganisms from the air, 3) variability in airborne microbial community composition, 4) the lack of standardized protocols and methodologies, and 5) DNA sequencing and bioinformatics-related challenges. Overcoming these challenges could provide the groundwork for comprehensive analysis of airborne microbes and their potential impact on the atmosphere, global climate, and our health. Metagenomic studies offer a unique opportunity to examine viral and bacterial diversity in the air and monitor their spread locally or across the globe, including threats from pathogenic microorganisms. Airborne metagenomic studies could also lead to discoveries of novel genes and metabolic pathways relevant to meteorological and industrial applications, environmental bioremediation, and biogeochemical cycles. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  1. Metagenomic analysis of buffalo rumen microbiome: Effect of roughage diet on Dormancy and Sporulation genes.

    Science.gov (United States)

    Singh, K M; Reddy, B; Patel, A K; Panchasara, H; Parmar, N; Patel, A B; Shah, T M; Bhatt, V D; Joshi, C G

    2014-12-01

    Buffalo rumen microbiome experiences a variety of diet stress and represents reservoir of Dormancy and Sporulation genes. However, the information on genomic responses to such conditions is very limited. The Ion Torrent PGM next generation sequencing technology was used to characterize general microbial diversity and the repertoire of microbial genes present, including genes associated with Dormancy and Sporulation in Mehsani buffalo rumen metagenome. The research findings revealed the abundance of bacteria at the domain level and presence of Dormancy and Sporulation genes which were predominantly associated with the Clostridia and Bacilli taxa belonging to the phyla Firmicutes. Genes associated with Sporulation cluster and Sporulation orphans were increased from 50% to 100% roughage treatment, thereby promoting sporulation all along the treatments. The spore germination is observed to be the highest in the 75% roughage treatment both in the liquid and solid rumen fraction samples with respect to the decrease in the values of the genes associated with spore core dehydration, thereby facilitating spore core hydration which is necessary for spore germination.

  2. A new tetracycline efflux gene, tet(40), is located in tandem with tet(O/32/O) in a human gut firmicute bacterium and in metagenomic library clones.

    Science.gov (United States)

    Kazimierczak, Katarzyna A; Rincon, Marco T; Patterson, Andrea J; Martin, Jennifer C; Young, Pauline; Flint, Harry J; Scott, Karen P

    2008-11-01

    The bacterium Clostridium saccharolyticum K10, isolated from a fecal sample obtained from a healthy donor who had received long-term tetracycline therapy, was found to carry three tetracycline resistance genes: tet(W) and the mosaic tet(O/32/O), both conferring ribosome protection-type resistance, and a novel, closely linked efflux-type resistance gene designated tet(40). tet(40) encodes a predicted membrane-associated protein with 42% amino acid identity to tetA(P). Tetracycline did not accumulate in Escherichia coli cells expressing the Tet(40) efflux protein, and resistance to tetracycline was reduced when cells were incubated with an efflux pump inhibitor. E. coli cells carrying tet(40) had a 50% inhibitory concentration of tetracycline of 60 microg/ml. Analysis of a transconjugant from a mating between donor strain C. saccharolyticum K10 and the recipient human gut commensal bacterium Roseburia inulinivorans suggested that tet(O/32/O) and tet(40) were cotransferred on a mobile element. Sequence analysis of a 37-kb insert identified on the basis of tetracycline resistance from a metagenomic fosmid library again revealed a tandem arrangement of tet(O/32/O) and tet(40), flanked by regions with homology to parts of the VanG operon previously identified in Enterococcus faecalis. At least 10 of the metagenomic inserts that carried tet(O/32/O) also carried tet(40), suggesting that tet(40), although previously undetected, may be an abundant efflux gene.

  3. Microbiota composition, gene pool and its expression in Gir cattle (Bos indicus) rumen under different forage diets using metagenomic and metatranscriptomic approaches.

    Science.gov (United States)

    Pandit, Ramesh J; Hinsu, Ankit T; Patel, Shriram H; Jakhesara, Subhash J; Koringa, Prakash G; Bruno, Fosso; Psifidi, Androniki; Shah, S V; Joshi, Chaitanya G

    2018-03-09

    Zebu (Bos indicus) is a domestic cattle species originating from the Indian subcontinent and now widely domesticated on several continents. In this study, we were particularly interested in understanding the functionally active rumen microbiota of an important Zebu breed, the Gir, under different dietary regimes. Metagenomic and metatranscriptomic data were compared at various taxonomic levels to elucidate the differential microbial population and its functional dynamics in Gir cattle rumen under different roughage dietary regimes. Different proportions of roughage rather than the type of roughage (dry or green) modulated microbiome composition and the expression of its gene pool. Fibre degrading bacteria (i.e. Clostridium, Ruminococcus, Eubacterium, Butyrivibrio, Bacillus and Roseburia) were higher in the solid fraction of rumen (Pcomparison of metagenomic shotgun and metatranscriptomic sequencing appeared to be a much richer source of information compared to conventional metagenomic analysis. Copyright © 2018 Elsevier GmbH. All rights reserved.

  4. An integrated metagenome and -proteome analysis of the microbial community residing in a biogas production plant.

    Science.gov (United States)

    Ortseifen, Vera; Stolze, Yvonne; Maus, Irena; Sczyrba, Alexander; Bremges, Andreas; Albaum, Stefan P; Jaenicke, Sebastian; Fracowiak, Jochen; Pühler, Alfred; Schlüter, Andreas

    2016-08-10

    To study the metaproteome of a biogas-producing microbial community, fermentation samples were taken from an agricultural biogas plant for microbial cell and protein extraction and corresponding metagenome analyses. Based on metagenome sequence data, taxonomic community profiling was performed to elucidate the composition of bacterial and archaeal sub-communities. The community's cytosolic metaproteome was represented in a 2D-PAGE approach. Metaproteome databases for protein identification were compiled based on the assembled metagenome sequence dataset for the biogas plant analyzed and non-corresponding biogas metagenomes. Protein identification results revealed that the corresponding biogas protein database facilitated the highest identification rate followed by other biogas-specific databases, whereas common public databases yielded insufficient identification rates. Proteins of the biogas microbiome identified as highly abundant were assigned to the pathways involved in methanogenesis, transport and carbon metabolism. Moreover, the integrated metagenome/-proteome approach enabled the examination of genetic-context information for genes encoding identified proteins by studying neighboring genes on the corresponding contig. Exemplarily, this approach led to the identification of a Methanoculleus sp. contig encoding 16 methanogenesis-related gene products, three of which were also detected as abundant proteins within the community's metaproteome. Thus, metagenome contigs provide additional information on the genetic environment of identified abundant proteins. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Interactive metagenomic visualization in a Web browser

    Directory of Open Access Journals (Sweden)

    Phillippy Adam M

    2011-09-01

    Full Text Available Abstract Background A critical output of metagenomic studies is the estimation of abundances of taxonomical or functional groups. The inherent uncertainty in assignments to these groups makes it important to consider both their hierarchical contexts and their prediction confidence. The current tools for visualizing metagenomic data, however, omit or distort quantitative hierarchical relationships and lack the facility for displaying secondary variables. Results Here we present Krona, a new visualization tool that allows intuitive exploration of relative abundances and confidences within the complex hierarchies of metagenomic classifications. Krona combines a variant of radial, space-filling displays with parametric coloring and interactive polar-coordinate zooming. The HTML5 and JavaScript implementation enables fully interactive charts that can be explored with any modern Web browser, without the need for installed software or plug-ins. This Web-based architecture also allows each chart to be an independent document, making them easy to share via e-mail or post to a standard Web server. To illustrate Krona's utility, we describe its application to various metagenomic data sets and its compatibility with popular metagenomic analysis tools. Conclusions Krona is both a powerful metagenomic visualization tool and a demonstration of the potential of HTML5 for highly accessible bioinformatic visualizations. Its rich and interactive displays facilitate more informed interpretations of metagenomic analyses, while its implementation as a browser-based application makes it extremely portable and easily adopted into existing analysis packages. Both the Krona rendering code and conversion tools are freely available under a BSD open-source license, and available from: http://krona.sourceforge.net.

  6. Metagenome reveals potential microbial degradation of hydrocarbon coupled with sulfate reduction in an oil-immersed chimney from Guaymas Basin

    Directory of Open Access Journals (Sweden)

    Ying eHe

    2013-06-01

    Full Text Available Deep-sea hydrothermal vent chimneys contain a high diversity of microorganisms, yet the metabolic activity and the ecological functions of the microbial communities remain largely unexplored. In this study, a metagenomic approach was applied to characterize the metabolic potential in a Guaymas hydrothermal vent chimney and to conduct comparative genomic analysis among a variety of environments with sequenced metagenomes. Complete clustering of functional gene categories with a comparative metagenomic approach showed that this Guaymas chimney metagenome was clustered most closely with a chimney metagenome from Juan de Fuca. All chimney samples were enriched with genes involved in recombination and repair, chemotaxis and flagellar assembly, highlighting their roles in coping with the fluctuating extreme deep-sea environments. A high proportion of transposases was observed in all the metagenomes from deep-sea chimneys, supporting the previous hypothesis that horizontal gene transfer may be common in the deep-sea vent chimney biosphere. In the Guaymas chimney metagenome, thermophilic sulfate reducing microorganisms including bacteria and archaea were found predominant, and genes coding for the degradation of refractory organic compounds such as cellulose, lipid, pullullan, as well as a few hydrocarbons including toluene, ethylbenzene and o-xylene were identified. Therefore, this oil-immersed chimney supported a thermophilic microbial community capable of oxidizing a range of hydrocarbons that served as electron donors for sulphate reduction under anaerobic conditions.

  7. Bracken: estimating species abundance in metagenomics data

    Directory of Open Access Journals (Sweden)

    Jennifer Lu

    2017-01-01

    Full Text Available Metagenomic experiments attempt to characterize microbial communities using high-throughput DNA sequencing. Identification of the microorganisms in a sample provides information about the genetic profile, population structure, and role of microorganisms within an environment. Until recently, most metagenomics studies focused on high-level characterization at the level of phyla, or alternatively sequenced the 16S ribosomal RNA gene that is present in bacterial species. As the cost of sequencing has fallen, though, metagenomics experiments have increasingly used unbiased shotgun sequencing to capture all the organisms in a sample. This approach requires a method for estimating abundance directly from the raw read data. Here we describe a fast, accurate new method that computes the abundance at the species level using the reads collected in a metagenomics experiment. Bracken (Bayesian Reestimation of Abundance after Classification with KrakEN uses the taxonomic assignments made by Kraken, a very fast read-level classifier, along with information about the genomes themselves to estimate abundance at the species level, the genus level, or above. We demonstrate that Bracken can produce accurate species- and genus-level abundance estimates even when a sample contains multiple near-identical species.

  8. Metagenomic sequence of saline desert microbiota from wild ass sanctuary, Little Rann of Kutch, Gujarat, India.

    Science.gov (United States)

    Patel, Rajesh; Mevada, Vishal; Prajapati, Dhaval; Dudhagara, Pravin; Koringa, Prakash; Joshi, C G

    2015-03-01

    We report Metagenome from the saline desert soil sample of Little Rann of Kutch, Gujarat State, India. Metagenome consisted of 633,760 sequences with size 141,307,202 bp and 56% G + C content. Metagenome sequence data are available at EBI under EBI Metagenomics database with accession no. ERP005612. Community metagenomics revealed total 1802 species belonged to 43 different phyla with dominating Marinobacter (48.7%) and Halobacterium (4.6%) genus in bacterial and archaeal domain respectively. Remarkably, 18.2% sequences in a poorly characterized group and 4% gene for various stress responses along with versatile presence of commercial enzyme were evident in a functional metagenome analysis.

  9. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes.

    Science.gov (United States)

    Fierer, Noah; Leff, Jonathan W; Adams, Byron J; Nielsen, Uffe N; Bates, Scott Thomas; Lauber, Christian L; Owens, Sarah; Gilbert, Jack A; Wall, Diana H; Caporaso, J Gregory

    2012-12-26

    For centuries ecologists have studied how the diversity and functional traits of plant and animal communities vary across biomes. In contrast, we have only just begun exploring similar questions for soil microbial communities despite soil microbes being the dominant engines of biogeochemical cycles and a major pool of living biomass in terrestrial ecosystems. We used metagenomic sequencing to compare the composition and functional attributes of 16 soil microbial communities collected from cold deserts, hot deserts, forests, grasslands, and tundra. Those communities found in plant-free cold desert soils typically had the lowest levels of functional diversity (diversity of protein-coding gene categories) and the lowest levels of phylogenetic and taxonomic diversity. Across all soils, functional beta diversity was strongly correlated with taxonomic and phylogenetic beta diversity; the desert microbial communities were clearly distinct from the nondesert communities regardless of the metric used. The desert communities had higher relative abundances of genes associated with osmoregulation and dormancy, but lower relative abundances of genes associated with nutrient cycling and the catabolism of plant-derived organic compounds. Antibiotic resistance genes were consistently threefold less abundant in the desert soils than in the nondesert soils, suggesting that abiotic conditions, not competitive interactions, are more important in shaping the desert microbial communities. As the most comprehensive survey of soil taxonomic, phylogenetic, and functional diversity to date, this study demonstrates that metagenomic approaches can be used to build a predictive understanding of how microbial diversity and function vary across terrestrial biomes.

  10. MetaStorm: A Public Resource for Customizable Metagenomics Annotation.

    Directory of Open Access Journals (Sweden)

    Gustavo Arango-Argoty

    Full Text Available Metagenomics is a trending research area, calling for the need to analyze large quantities of data generated from next generation DNA sequencing technologies. The need to store, retrieve, analyze, share, and visualize such data challenges current online computational systems. Interpretation and annotation of specific information is especially a challenge for metagenomic data sets derived from environmental samples, because current annotation systems only offer broad classification of microbial diversity and function. Moreover, existing resources are not configured to readily address common questions relevant to environmental systems. Here we developed a new online user-friendly metagenomic analysis server called MetaStorm (http://bench.cs.vt.edu/MetaStorm/, which facilitates customization of computational analysis for metagenomic data sets. Users can upload their own reference databases to tailor the metagenomics annotation to focus on various taxonomic and functional gene markers of interest. MetaStorm offers two major analysis pipelines: an assembly-based annotation pipeline and the standard read annotation pipeline used by existing web servers. These pipelines can be selected individually or together. Overall, MetaStorm provides enhanced interactive visualization to allow researchers to explore and manipulate taxonomy and functional annotation at various levels of resolution.

  11. MetaStorm: A Public Resource for Customizable Metagenomics Annotation.

    Science.gov (United States)

    Arango-Argoty, Gustavo; Singh, Gargi; Heath, Lenwood S; Pruden, Amy; Xiao, Weidong; Zhang, Liqing

    2016-01-01

    Metagenomics is a trending research area, calling for the need to analyze large quantities of data generated from next generation DNA sequencing technologies. The need to store, retrieve, analyze, share, and visualize such data challenges current online computational systems. Interpretation and annotation of specific information is especially a challenge for metagenomic data sets derived from environmental samples, because current annotation systems only offer broad classification of microbial diversity and function. Moreover, existing resources are not configured to readily address common questions relevant to environmental systems. Here we developed a new online user-friendly metagenomic analysis server called MetaStorm (http://bench.cs.vt.edu/MetaStorm/), which facilitates customization of computational analysis for metagenomic data sets. Users can upload their own reference databases to tailor the metagenomics annotation to focus on various taxonomic and functional gene markers of interest. MetaStorm offers two major analysis pipelines: an assembly-based annotation pipeline and the standard read annotation pipeline used by existing web servers. These pipelines can be selected individually or together. Overall, MetaStorm provides enhanced interactive visualization to allow researchers to explore and manipulate taxonomy and functional annotation at various levels of resolution.

  12. MetaStorm: A Public Resource for Customizable Metagenomics Annotation

    Science.gov (United States)

    Arango-Argoty, Gustavo; Singh, Gargi; Heath, Lenwood S.; Pruden, Amy; Xiao, Weidong; Zhang, Liqing

    2016-01-01

    Metagenomics is a trending research area, calling for the need to analyze large quantities of data generated from next generation DNA sequencing technologies. The need to store, retrieve, analyze, share, and visualize such data challenges current online computational systems. Interpretation and annotation of specific information is especially a challenge for metagenomic data sets derived from environmental samples, because current annotation systems only offer broad classification of microbial diversity and function. Moreover, existing resources are not configured to readily address common questions relevant to environmental systems. Here we developed a new online user-friendly metagenomic analysis server called MetaStorm (http://bench.cs.vt.edu/MetaStorm/), which facilitates customization of computational analysis for metagenomic data sets. Users can upload their own reference databases to tailor the metagenomics annotation to focus on various taxonomic and functional gene markers of interest. MetaStorm offers two major analysis pipelines: an assembly-based annotation pipeline and the standard read annotation pipeline used by existing web servers. These pipelines can be selected individually or together. Overall, MetaStorm provides enhanced interactive visualization to allow researchers to explore and manipulate taxonomy and functional annotation at various levels of resolution. PMID:27632579

  13. Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes.

    Science.gov (United States)

    Nielsen, H Bjørn; Almeida, Mathieu; Juncker, Agnieszka Sierakowska; Rasmussen, Simon; Li, Junhua; Sunagawa, Shinichi; Plichta, Damian R; Gautier, Laurent; Pedersen, Anders G; Le Chatelier, Emmanuelle; Pelletier, Eric; Bonde, Ida; Nielsen, Trine; Manichanh, Chaysavanh; Arumugam, Manimozhiyan; Batto, Jean-Michel; Quintanilha Dos Santos, Marcelo B; Blom, Nikolaj; Borruel, Natalia; Burgdorf, Kristoffer S; Boumezbeur, Fouad; Casellas, Francesc; Doré, Joël; Dworzynski, Piotr; Guarner, Francisco; Hansen, Torben; Hildebrand, Falk; Kaas, Rolf S; Kennedy, Sean; Kristiansen, Karsten; Kultima, Jens Roat; Léonard, Pierre; Levenez, Florence; Lund, Ole; Moumen, Bouziane; Le Paslier, Denis; Pons, Nicolas; Pedersen, Oluf; Prifti, Edi; Qin, Junjie; Raes, Jeroen; Sørensen, Søren; Tap, Julien; Tims, Sebastian; Ussery, David W; Yamada, Takuji; Renault, Pierre; Sicheritz-Ponten, Thomas; Bork, Peer; Wang, Jun; Brunak, Søren; Ehrlich, S Dusko

    2014-08-01

    Most current approaches for analyzing metagenomic data rely on comparisons to reference genomes, but the microbial diversity of many environments extends far beyond what is covered by reference databases. De novo segregation of complex metagenomic data into specific biological entities, such as particular bacterial strains or viruses, remains a largely unsolved problem. Here we present a method, based on binning co-abundant genes across a series of metagenomic samples, that enables comprehensive discovery of new microbial organisms, viruses and co-inherited genetic entities and aids assembly of microbial genomes without the need for reference sequences. We demonstrate the method on data from 396 human gut microbiome samples and identify 7,381 co-abundance gene groups (CAGs), including 741 metagenomic species (MGS). We use these to assemble 238 high-quality microbial genomes and identify affiliations between MGS and hundreds of viruses or genetic entities. Our method provides the means for comprehensive profiling of the diversity within complex metagenomic samples.

  14. Identification of Carbohydrate Metabolism Genes in the Metagenome of a Marine Biofilm Community Shown to Be Dominated by Gammaproteobacteria and Bacteroidetes

    Directory of Open Access Journals (Sweden)

    Jennifer L. Edwards

    2010-10-01

    Full Text Available Polysaccharides are an important source of organic carbon in the marine environment and degradation of the insoluble and globally abundant cellulose is a major component of the marine carbon cycle. Although a number of species of cultured bacteria are known to degrade crystalline cellulose, little is known of the polysaccharide hydrolases expressed by cellulose-degrading microbial communities, particularly in the marine environment. Next generation 454 Pyrosequencing was applied to analyze the microbial community that colonizes and degrades insoluble polysaccharides in situ in the Irish Sea. The bioinformatics tool MG-RAST was used to examine the randomly sampled data for taxonomic markers and functional genes, and showed that the community was dominated by members of the Gammaproteobacteria and Bacteroidetes. Furthermore, the identification of 211 gene sequences matched to a custom-made database comprising the members of nine glycoside hydrolase families revealed an extensive repertoire of functional genes predicted to be involved in cellulose utilization. This demonstrates that the use of an in situ cellulose baiting method yielded a marine microbial metagenome considerably enriched in functional genes involved in polysaccharide degradation. The research reported here is the first designed to specifically address the bacterial communities that colonize and degrade cellulose in the marine environment and to evaluate the glycoside hydrolase (cellulase and chitinase gene repertoire of that community, in the absence of the biases associated with PCR-based molecular techniques.

  15. Exploration of soil metagenome diversity for prospection of enzymes involved in lignocellulosic biomass conversion

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, T.M.; Squina, F.M. [Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas, SP (Brazil); Paixao, D.A.A.; Franco Cairo, J.P.L.; Buchli, F.; Ruller, R. [Laboratorio Nacional de Ciencia e Tecnologia do Bioetanol (CTBE), Campinas, SP (Brazil); Prade, R. [Oklahoma State University, Sillwater, OK (United States)

    2012-07-01

    Full text: Metagenomics allows access to genetic information encoded in DNA of microorganisms recalcitrant to cultivation. They represent a reservoir of novel biocatalyst with potential application in environmental friendly techniques aiming to overcome the dependence on fossil fuels and also to diminish air and water pollution. The focus of our work is the generation of a tool kit of lignocellulolytic enzymes from soil metagenome, which could be used for second generation ethanol production. Environmental samples were collected at a sugarcane field after harvesting, where it is expected that the microbial population involved on lignocellulose degradation was enriched due to the presence of straws covering the soil. Sugarcane Bagasse-Degrading-Soil (SBDS) metagenome was massively-parallel-454-Roche-sequenced. We identified a full repertoire of genes with significant match to glycosyl hydrolases catalytic domain and carbohydrate-binding modules. Soil metagenomics libraries cloned into pUC19 were screened through functional assays. CMC-agar screening resulted in positive clones, revealing new cellulases coding genes. Through a CMC-zymogram it was possible to observe that one of these genes, nominated as E-1, corresponds to an enzyme that is secreted to the extracellular medium, suggesting that the cloned gene carried the original signal peptide. Enzymatic assays and analysis through capillary electrophoresis showed that E-1 was able to cleave internal glycosidic bonds of cellulose. New rounds of functional screenings through chromogenic substrates are being conducted aiming the generation of a library of lignocellulolytic enzymes derived from soil metagenome, which may become key component for development of second generation biofuels. (author)

  16. Effect of temperature on removal of antibiotic resistance genes by anaerobic digestion of activated sludge revealed by metagenomic approach.

    Science.gov (United States)

    Zhang, Tong; Yang, Ying; Pruden, Amy

    2015-09-01

    As antibiotic resistance continues to spread globally, there is growing interest in the potential to limit the spread of antibiotic resistance genes (ARGs) from wastewater sources. In particular, operational conditions during sludge digestion may serve to discourage selection of resistant bacteria, reduce horizontal transfer of ARGs, and aid in hydrolysis of DNA. This study applied metagenomic analysis to examine the removal efficiency of ARGs through thermophilic and mesophilic anaerobic digestion using bench-scale reactors. Although the relative abundance of various ARGs shifted from influent to effluent sludge, there was no measureable change in the abundance of total ARGs or their diversity in either the thermophilic or mesophilic treatment. Among the 35 major ARG subtypes detected in feed sludge, substantial reductions (removal efficiency >90%) of 8 and 13 ARGs were achieved by thermophilic and mesophilic digestion, respectively. However, resistance genes of aadA, macB, and sul1 were enriched during the thermophilic anaerobic digestion, while resistance genes of erythromycin esterase type I, sul1, and tetM were enriched during the mesophilic anaerobic digestion. Efflux pump remained to be the major antibiotic resistance mechanism in sludge samples, but the portion of ARGs encoding resistance via target modification increased in the anaerobically digested sludge relative to the feed. Metagenomic analysis provided insight into the potential for anaerobic digestion to mitigate a broad array of ARGs.

  17. Metagenomic evidence for reciprocal particle exchange between the mainstem estuary and lateral bay sediments of the lower Columbia River

    Directory of Open Access Journals (Sweden)

    Mariya W Smith

    2015-10-01

    Full Text Available Lateral bays of the lower Columbia River estuary are areas of enhanced water retention that influence net ecosystem metabolism through activities of their diverse microbial communities. Metagenomic characterization of sediment microbiota from three disparate sites in two brackish lateral bays (Baker and Youngs produced approximately 100 Gbp of DNA sequence data analyzed subsequently for predicted SSU rRNA and peptide-coding genes. The metagenomes were dominated by Bacteria. A large component of Eukaryota was present in Youngs Bay samples, i.e. the inner bay sediment was enriched with the invasive New Zealand mudsnail, Potamopyrgus antipodarum, known for high ammonia production. The metagenome was also highly enriched with an archaeal ammonia oxidizer closely related to Nitrosoarchaeum limnia. Combined analysis of sequences and continuous, high-resolution time series of biogeochemical data from fixed and mobile platforms revealed the importance of large-scale reciprocal particle exchanges between the mainstem estuarine water column and lateral bay sediments. Deposition of marine diatom particles in sediments near Youngs Bay mouth was associated with a dramatic enrichment of Bacteroidetes (58% of total Bacteria and corresponding genes involved in phytoplankton polysaccharide degradation. The Baker Bay sediment metagenome contained abundant Archaea, including diverse methanogens, as well as functional genes for methylotrophy and taxonomic markers for syntrophic bacteria, suggesting that active methane cycling occurs at this location. Our previous work showed enrichments of similar anaerobic taxa in particulate matter of the mainstem estuarine water column. In total, our results identify the lateral bays as both sources and sinks of biogenic particles significantly impacting microbial community composition and biogeochemical activities in the estuary.

  18. A novel feruloyl esterase from rumen microbial metagenome: Gene cloning and enzyme characterization in the release of mono- and diferulic acids

    Science.gov (United States)

    A feruloyl esterase (FAE) gene was isolated from a rumen microbial metagenome, cloned into E. coli, and expressed in active form. The enzyme (RuFae4) was classified as a Type D feruloyl esterase based on its action on synthetic substrates and ability to release diferulates. The RuFae4 alone releas...

  19. A Statistical Framework for the Functional Analysis of Metagenomes

    Energy Technology Data Exchange (ETDEWEB)

    Sharon, Itai; Pati, Amrita; Markowitz, Victor; Pinter, Ron Y.

    2008-10-01

    Metagenomic studies consider the genetic makeup of microbial communities as a whole, rather than their individual member organisms. The functional and metabolic potential of microbial communities can be analyzed by comparing the relative abundance of gene families in their collective genomic sequences (metagenome) under different conditions. Such comparisons require accurate estimation of gene family frequencies. They present a statistical framework for assessing these frequencies based on the Lander-Waterman theory developed originally for Whole Genome Shotgun (WGS) sequencing projects. They also provide a novel method for assessing the reliability of the estimations which can be used for removing seemingly unreliable measurements. They tested their method on a wide range of datasets, including simulated genomes and real WGS data from sequencing projects of whole genomes. Results suggest that their framework corrects inherent biases in accepted methods and provides a good approximation to the true statistics of gene families in WGS projects.

  20. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients.

    Science.gov (United States)

    Fierer, Noah; Lauber, Christian L; Ramirez, Kelly S; Zaneveld, Jesse; Bradford, Mark A; Knight, Rob

    2012-05-01

    Terrestrial ecosystems are receiving elevated inputs of nitrogen (N) from anthropogenic sources and understanding how these increases in N availability affect soil microbial communities is critical for predicting the associated effects on belowground ecosystems. We used a suite of approaches to analyze the structure and functional characteristics of soil microbial communities from replicated plots in two long-term N fertilization experiments located in contrasting systems. Pyrosequencing-based analyses of 16S rRNA genes revealed no significant effects of N fertilization on bacterial diversity, but significant effects on community composition at both sites; copiotrophic taxa (including members of the Proteobacteria and Bacteroidetes phyla) typically increased in relative abundance in the high N plots, with oligotrophic taxa (mainly Acidobacteria) exhibiting the opposite pattern. Consistent with the phylogenetic shifts under N fertilization, shotgun metagenomic sequencing revealed increases in the relative abundances of genes associated with DNA/RNA replication, electron transport and protein metabolism, increases that could be resolved even with the shallow shotgun metagenomic sequencing conducted here (average of 75 000 reads per sample). We also observed shifts in the catabolic capabilities of the communities across the N gradients that were significantly correlated with the phylogenetic and metagenomic responses, indicating possible linkages between the structure and functioning of soil microbial communities. Overall, our results suggest that N fertilization may, directly or indirectly, induce a shift in the predominant microbial life-history strategies, favoring a more active, copiotrophic microbial community, a pattern that parallels the often observed replacement of K-selected with r-selected plant species with elevated N.

  1. Forest harvesting reduces the soil metagenomic potential for biomass decomposition.

    Science.gov (United States)

    Cardenas, Erick; Kranabetter, J M; Hope, Graeme; Maas, Kendra R; Hallam, Steven; Mohn, William W

    2015-11-01

    Soil is the key resource that must be managed to ensure sustainable forest productivity. Soil microbial communities mediate numerous essential ecosystem functions, and recent studies show that forest harvesting alters soil community composition. From a long-term soil productivity study site in a temperate coniferous forest in British Columbia, 21 forest soil shotgun metagenomes were generated, totaling 187 Gb. A method to analyze unassembled metagenome reads from the complex community was optimized and validated. The subsequent metagenome analysis revealed that, 12 years after forest harvesting, there were 16% and 8% reductions in relative abundances of biomass decomposition genes in the organic and mineral soil layers, respectively. Organic and mineral soil layers differed markedly in genetic potential for biomass degradation, with the organic layer having greater potential and being more strongly affected by harvesting. Gene families were disproportionately affected, and we identified 41 gene families consistently affected by harvesting, including families involved in lignin, cellulose, hemicellulose and pectin degradation. The results strongly suggest that harvesting profoundly altered below-ground cycling of carbon and other nutrients at this site, with potentially important consequences for forest regeneration. Thus, it is important to determine whether these changes foreshadow long-term changes in forest productivity or resilience and whether these changes are broadly characteristic of harvested forests.

  2. Gut metagenomes of type 2 diabetic patients have characteristic single-nucleotide polymorphism distribution in Bacteroides coprocola.

    Science.gov (United States)

    Chen, Yaowen; Li, Zongcheng; Hu, Shuofeng; Zhang, Jian; Wu, Jiaqi; Shao, Ningsheng; Bo, Xiaochen; Ni, Ming; Ying, Xiaomin

    2017-02-01

    Gut microbes play a critical role in human health and disease, and researchers have begun to characterize their genomes, the so-called gut metagenome. Thus far, metagenomics studies have focused on genus- or species-level composition and microbial gene sets, while strain-level composition and single-nucleotide polymorphism (SNP) have been overlooked. The gut metagenomes of type 2 diabetes (T2D) patients have been found to be enriched with butyrate-producing bacteria and sulfate reduction functions. However, it is not known whether the gut metagenomes of T2D patients have characteristic strain patterns or SNP distributions. We downloaded public gut metagenome datasets from 170 T2D patients and 174 healthy controls and performed a systematic comparative analysis of their metagenome SNPs. We found that Bacteroides coprocola, whose relative abundance did not differ between the groups, had a characteristic distribution of SNPs in the T2D patient group. We identified 65 genes, all in B. coprocola, that had remarkably different enrichment of SNPs. The first and sixth ranked genes encode glycosyl hydrolases (GenBank accession EDU99824.1 and EDV02301.1). Interestingly, alpha-glucosidase, which is also a glycosyl hydrolase located in the intestine, is an important drug target of T2D. These results suggest that different strains of B. coprocola may have different roles in human gut and a specific set of B. coprocola strains are correlated with T2D.

  3. Antibiotic Resistance Genes and Correlations with Microbial Community and Metal Resistance Genes in Full-Scale Biogas Reactors As Revealed by Metagenomic Analysis

    DEFF Research Database (Denmark)

    Luo, Gang; Li, Bing; Li, Li-Guan

    2017-01-01

    resistance genes (MRGs). The total abundance of ARGs in all the samples varied from 7 × 10-3 to 1.08 × 10-1 copy of ARG/copy of 16S-rRNA gene, and the samples obtained from thermophilic biogas reactors had a lower total abundance of ARGs, indicating the superiority of thermophilic anaerobic digestion......Digested residues from biogas plants are often used as biofertilizers for agricultural crops cultivation. The antibiotic resistance genes (ARGs) in digested residues pose a high risk to public health due to their potential spread to the disease-causing microorganisms and thus reduce...... the susceptibility of disease-causing microorganisms to antibiotics in medical treatment. A high-throughput sequencing (HTS)-based metagenomic approach was used in the present study to investigate the variations of ARGs in full-scale biogas reactors and the correlations of ARGs with microbial communities and metal...

  4. Culture-independent discovery of natural products from soil metagenomes.

    Science.gov (United States)

    Katz, Micah; Hover, Bradley M; Brady, Sean F

    2016-03-01

    Bacterial natural products have proven to be invaluable starting points in the development of many currently used therapeutic agents. Unfortunately, traditional culture-based methods for natural product discovery have been deemphasized by pharmaceutical companies due in large part to high rediscovery rates. Culture-independent, or "metagenomic," methods, which rely on the heterologous expression of DNA extracted directly from environmental samples (eDNA), have the potential to provide access to metabolites encoded by a large fraction of the earth's microbial biosynthetic diversity. As soil is both ubiquitous and rich in bacterial diversity, it is an appealing starting point for culture-independent natural product discovery efforts. This review provides an overview of the history of soil metagenome-driven natural product discovery studies and elaborates on the recent development of new tools for sequence-based, high-throughput profiling of environmental samples used in discovering novel natural product biosynthetic gene clusters. We conclude with several examples of these new tools being employed to facilitate the recovery of novel secondary metabolite encoding gene clusters from soil metagenomes and the subsequent heterologous expression of these clusters to produce bioactive small molecules.

  5. FY11 Report on Metagenome Analysis using Pathogen Marker Libraries

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, Shea N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Allen, Jonathan E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McLoughlin, Kevin S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Slezak, Tom [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2011-06-02

    detection probability appears to be a function of both coverages. Multiple species could be detected simultaneously in a simulated low-coverage, complex metagenome, and the largest PML gave no false negative species and no false positive genera. The presence of multiple species was predicted in a complex metagenome from a human gut microbiome with 1.9 GB of short reads (75 nt); the species predicted were reasonable gut flora and no biothreat agents were detected, showing the feasibility of PML analysis of empirical complex metagenomes.

  6. Vast diversity of prokaryotic virus genomes encoding double jelly-roll major capsid proteins uncovered by genomic and metagenomic sequence analysis.

    Science.gov (United States)

    Yutin, Natalya; Bäckström, Disa; Ettema, Thijs J G; Krupovic, Mart; Koonin, Eugene V

    2018-04-10

    Analysis of metagenomic sequences has become the principal approach for the study of the diversity of viruses. Many recent, extensive metagenomic studies on several classes of viruses have dramatically expanded the visible part of the virosphere, showing that previously undetected viruses, or those that have been considered rare, actually are important components of the global virome. We investigated the provenance of viruses related to tail-less bacteriophages of the family Tectiviridae by searching genomic and metagenomics sequence databases for distant homologs of the tectivirus-like Double Jelly-Roll major capsid proteins (DJR MCP). These searches resulted in the identification of numerous genomes of virus-like elements that are similar in size to tectiviruses (10-15 kilobases) and have diverse gene compositions. By comparison of the gene repertoires, the DJR MCP-encoding genomes were classified into 6 distinct groups that can be predicted to differ in reproduction strategies and host ranges. Only the DJR MCP gene that is present by design is shared by all these genomes, and most also encode a predicted DNA-packaging ATPase; the rest of the genes are present only in subgroups of this unexpectedly diverse collection of DJR MCP-encoding genomes. Only a minority encode a DNA polymerase which is a hallmark of the family Tectiviridae and the putative family "Autolykiviridae". Notably, one of the identified putative DJR MCP viruses encodes a homolog of Cas1 endonuclease, the integrase involved in CRISPR-Cas adaptation and integration of transposon-like elements called casposons. This is the first detected occurrence of Cas1 in a virus. Many of the identified elements are individual contigs flanked by inverted or direct repeats and appear to represent complete, extrachromosomal viral genomes, whereas others are flanked by bacterial genes and thus can be considered as proviruses. These contigs come from metagenomes of widely different environments, some dominated by

  7. Biotechnological applications of functional metagenomics in the food and pharmaceutical industries.

    Science.gov (United States)

    Coughlan, Laura M; Cotter, Paul D; Hill, Colin; Alvarez-Ordóñez, Avelino

    2015-01-01

    Microorganisms are found throughout nature, thriving in a vast range of environmental conditions. The majority of them are unculturable or difficult to culture by traditional methods. Metagenomics enables the study of all microorganisms, regardless of whether they can be cultured or not, through the analysis of genomic data obtained directly from an environmental sample, providing knowledge of the species present, and allowing the extraction of information regarding the functionality of microbial communities in their natural habitat. Function-based screenings, following the cloning and expression of metagenomic DNA in a heterologous host, can be applied to the discovery of novel proteins of industrial interest encoded by the genes of previously inaccessible microorganisms. Functional metagenomics has considerable potential in the food and pharmaceutical industries, where it can, for instance, aid (i) the identification of enzymes with desirable technological properties, capable of catalyzing novel reactions or replacing existing chemically synthesized catalysts which may be difficult or expensive to produce, and able to work under a wide range of environmental conditions encountered in food and pharmaceutical processing cycles including extreme conditions of temperature, pH, osmolarity, etc; (ii) the discovery of novel bioactives including antimicrobials active against microorganisms of concern both in food and medical settings; (iii) the investigation of industrial and societal issues such as antibiotic resistance development. This review article summarizes the state-of-the-art functional metagenomic methods available and discusses the potential of functional metagenomic approaches to mine as yet unexplored environments to discover novel genes with biotechnological application in the food and pharmaceutical industries.

  8. Biotechnological applications of functional metagenomics in the food and pharmaceutical industries

    Directory of Open Access Journals (Sweden)

    Laura M Coughlan

    2015-06-01

    Full Text Available Microorganisms are found throughout nature, thriving in a vast range of environmental conditions. The majority of them are unculturable or difficult to culture by traditional methods. Metagenomics enables the study of all microorganisms, regardless of whether they can be cultured or not, through the analysis of genomic data obtained directly from an environmental sample, providing knowledge of the species present and allowing the extraction of information regarding the functionality of microbial communities in their natural habitat. Function-based screenings, following the cloning and expression of metagenomic DNA in a heterologous host, can be applied to the discovery of novel proteins of industrial interest encoded by the genes of previously inaccessible microorganisms. Functional metagenomics has considerable potential in the food and pharmaceutical industries, where it can, for instance, aid (i the identification of enzymes with desirable technological properties, capable of catalysing novel reactions or replacing existing chemically synthesized catalysts which may be difficult or expensive to produce, and able to work under a wide range of environmental conditions encountered in food and pharmaceutical processing cycles including extreme conditions of temperature, pH, osmolarity, etc; (ii the discovery of novel bioactives including antimicrobials active against microorganisms of concern both in food and medical settings; (iii the investigation of industrial and societal issues such as antibiotic resistance development. This review article summarizes the state-of-the-art functional metagenomic methods available and discusses the potential of functional metagenomic approaches to mine as yet unexplored environments to discover novel genes with biotechnological application in the food and pharmaceutical industries.

  9. Enrichment allows identification of diverse, rare elements in metagenomic resistome-virulome sequencing.

    Science.gov (United States)

    Noyes, Noelle R; Weinroth, Maggie E; Parker, Jennifer K; Dean, Chris J; Lakin, Steven M; Raymond, Robert A; Rovira, Pablo; Doster, Enrique; Abdo, Zaid; Martin, Jennifer N; Jones, Kenneth L; Ruiz, Jaime; Boucher, Christina A; Belk, Keith E; Morley, Paul S

    2017-10-17

    Shotgun metagenomic sequencing is increasingly utilized as a tool to evaluate ecological-level dynamics of antimicrobial resistance and virulence, in conjunction with microbiome analysis. Interest in use of this method for environmental surveillance of antimicrobial resistance and pathogenic microorganisms is also increasing. In published metagenomic datasets, the total of all resistance- and virulence-related sequences accounts for enrichment system that incorporates unique molecular indices to count DNA molecules and correct for enrichment bias. The use of the bait-capture and enrichment system significantly increased on-target sequencing of the resistome-virulome, enabling detection of an additional 1441 gene accessions and revealing a low-abundance portion of the resistome-virulome that was more diverse and compositionally different than that detected by more traditional metagenomic assays. The low-abundance portion of the resistome-virulome also contained resistance genes with public health importance, such as extended-spectrum betalactamases, that were not detected using traditional shotgun metagenomic sequencing. In addition, the use of the bait-capture and enrichment system enabled identification of rare resistance gene haplotypes that were used to discriminate between sample origins. These results demonstrate that the rare resistome-virulome contains valuable and unique information that can be utilized for both surveillance and population genetic investigations of resistance. Access to the rare resistome-virulome using the bait-capture and enrichment system validated in this study can greatly advance our understanding of microbiome-resistome dynamics.

  10. Stalking the fourth domain in metagenomic data: searching for, discovering, and interpreting novel, deep branches in marker gene phylogenetic trees.

    Directory of Open Access Journals (Sweden)

    Dongying Wu

    Full Text Available BACKGROUND: Most of our knowledge about the ancient evolutionary history of organisms has been derived from data associated with specific known organisms (i.e., organisms that we can study directly such as plants, metazoans, and culturable microbes. Recently, however, a new source of data for such studies has arrived: DNA sequence data generated directly from environmental samples. Such metagenomic data has enormous potential in a variety of areas including, as we argue here, in studies of very early events in the evolution of gene families and of species. METHODOLOGY/PRINCIPAL FINDINGS: We designed and implemented new methods for analyzing metagenomic data and used them to search the Global Ocean Sampling (GOS expedition data set for novel lineages in three gene families commonly used in phylogenetic studies of known and unknown organisms: small subunit rRNA and the recA and rpoB superfamilies. Though the methods available could not accurately identify very deeply branched ss-rRNAs (largely due to difficulties in making robust sequence alignments for novel rRNA fragments, our analysis revealed the existence of multiple novel branches in the recA and rpoB gene families. Analysis of available sequence data likely from the same genomes as these novel recA and rpoB homologs was then used to further characterize the possible organismal source of the novel sequences. CONCLUSIONS/SIGNIFICANCE: Of the novel recA and rpoB homologs identified in the metagenomic data, some likely come from uncharacterized viruses while others may represent ancient paralogs not yet seen in any cultured organism. A third possibility is that some come from novel cellular lineages that are only distantly related to any organisms for which sequence data is currently available. If there exist any major, but so-far-undiscovered, deeply branching lineages in the tree of life, we suggest that methods such as those described herein currently offer the best way to search for them.

  11. Vikodak--A Modular Framework for Inferring Functional Potential of Microbial Communities from 16S Metagenomic Datasets.

    Directory of Open Access Journals (Sweden)

    Sunil Nagpal

    Full Text Available The overall metabolic/functional potential of any given environmental niche is a function of the sum total of genes/proteins/enzymes that are encoded and expressed by various interacting microbes residing in that niche. Consequently, prior (collated information pertaining to genes, enzymes encoded by the resident microbes can aid in indirectly (reconstructing/ inferring the metabolic/ functional potential of a given microbial community (given its taxonomic abundance profile. In this study, we present Vikodak--a multi-modular package that is based on the above assumption and automates inferring and/ or comparing the functional characteristics of an environment using taxonomic abundance generated from one or more environmental sample datasets. With the underlying assumptions of co-metabolism and independent contributions of different microbes in a community, a concerted effort has been made to accommodate microbial co-existence patterns in various modules incorporated in Vikodak.Validation experiments on over 1400 metagenomic samples have confirmed the utility of Vikodak in (a deciphering enzyme abundance profiles of any KEGG metabolic pathway, (b functional resolution of distinct metagenomic environments, (c inferring patterns of functional interaction between resident microbes, and (d automating statistical comparison of functional features of studied microbiomes. Novel features incorporated in Vikodak also facilitate automatic removal of false positives and spurious functional predictions.With novel provisions for comprehensive functional analysis, inclusion of microbial co-existence pattern based algorithms, automated inter-environment comparisons; in-depth analysis of individual metabolic pathways and greater flexibilities at the user end, Vikodak is expected to be an important value addition to the family of existing tools for 16S based function prediction.A web implementation of Vikodak can be publicly accessed at: http://metagenomics

  12. Prediction of Wild-type Enzyme Characteristics

    DEFF Research Database (Denmark)

    Geertz-Hansen, Henrik Marcus

    of biotechnology, including enzyme discovery and characterization. This work presents two articles on sequence-based discovery and functional annotation of enzymes in environmental samples, and two articles on analysis and prediction of enzyme thermostability and cofactor requirements. The first article presents...... a sequence-based approach to discovery of proteolytic enzymes in metagenomes obtained from the Polar oceans. We show that microorganisms living in these extreme environments of constant low temperature harbour genes encoding novel proteolytic enzymes with potential industrial relevance. The second article...... presents a web server for the processing and annotation of functional metagenomics sequencing data, tailored to meet the requirements of non-bioinformaticians. The third article presents analyses of the molecular determinants of enzyme thermostability, and a feature-based prediction method of the melting...

  13. Exploring nucleo-cytoplasmic large DNA viruses in Tara Oceans microbial metagenomes.

    Science.gov (United States)

    Hingamp, Pascal; Grimsley, Nigel; Acinas, Silvia G; Clerissi, Camille; Subirana, Lucie; Poulain, Julie; Ferrera, Isabel; Sarmento, Hugo; Villar, Emilie; Lima-Mendez, Gipsi; Faust, Karoline; Sunagawa, Shinichi; Claverie, Jean-Michel; Moreau, Hervé; Desdevises, Yves; Bork, Peer; Raes, Jeroen; de Vargas, Colomban; Karsenti, Eric; Kandels-Lewis, Stefanie; Jaillon, Olivier; Not, Fabrice; Pesant, Stéphane; Wincker, Patrick; Ogata, Hiroyuki

    2013-09-01

    Nucleo-cytoplasmic large DNA viruses (NCLDVs) constitute a group of eukaryotic viruses that can have crucial ecological roles in the sea by accelerating the turnover of their unicellular hosts or by causing diseases in animals. To better characterize the diversity, abundance and biogeography of marine NCLDVs, we analyzed 17 metagenomes derived from microbial samples (0.2-1.6 μm size range) collected during the Tara Oceans Expedition. The sample set includes ecosystems under-represented in previous studies, such as the Arabian Sea oxygen minimum zone (OMZ) and Indian Ocean lagoons. By combining computationally derived relative abundance and direct prokaryote cell counts, the abundance of NCLDVs was found to be in the order of 10(4)-10(5) genomes ml(-1) for the samples from the photic zone and 10(2)-10(3) genomes ml(-1) for the OMZ. The Megaviridae and Phycodnaviridae dominated the NCLDV populations in the metagenomes, although most of the reads classified in these families showed large divergence from known viral genomes. Our taxon co-occurrence analysis revealed a potential association between viruses of the Megaviridae family and eukaryotes related to oomycetes. In support of this predicted association, we identified six cases of lateral gene transfer between Megaviridae and oomycetes. Our results suggest that marine NCLDVs probably outnumber eukaryotic organisms in the photic layer (per given water mass) and that metagenomic sequence analyses promise to shed new light on the biodiversity of marine viruses and their interactions with potential hosts.

  14. Metagenomic insights into the carbohydrate-active enzymes carried by the microorganisms adhering to solid digesta in the rumen of cows.

    Directory of Open Access Journals (Sweden)

    Lingling Wang

    Full Text Available The ruminal microbial community is a unique source of enzymes that underpin the conversion of cellulosic biomass. In this study, the microbial consortia adherent on solid digesta in the rumen of Jersey cattle were subjected to an activity-based metagenomic study to explore the genetic diversity of carbohydrolytic enzymes in Jersey cows, with a particular focus on cellulases and xylanases. Pyrosequencing and bioinformatic analyses of 120 carbohydrate-active fosmids identified genes encoding 575 putative Carbohydrate-Active Enzymes (CAZymes and proteins putatively related to transcriptional regulation, transporters, and signal transduction coupled with polysaccharide degradation and metabolism. Most of these genes shared little similarity to sequences archived in databases. Genes that were predicted to encode glycoside hydrolases (GH involved in xylan and cellulose hydrolysis (e.g., GH3, 5, 9, 10, 39 and 43 were well represented. A new subfamily (S-8 of GH5 was identified from contigs assigned to Firmicutes. These subfamilies of GH5 proteins also showed significant phylum-dependent distribution. A number of polysaccharide utilization loci (PULs were found, and two of them contained genes encoding Sus-like proteins and cellulases that have not been reported in previous metagenomic studies of samples from the rumens of cows or other herbivores. Comparison with the large metagenomic datasets previously reported of other ruminant species (or cattle breeds and wallabies showed that the rumen microbiome of Jersey cows might contain differing CAZymes. Future studies are needed to further explore how host genetics and diets affect the diversity and distribution of CAZymes and utilization of plant cell wall materials.

  15. Construction and screening of marine metagenomic libraries.

    Science.gov (United States)

    Weiland, Nancy; Löscher, Carolin; Metzger, Rebekka; Schmitz, Ruth

    2010-01-01

    Marine microbial communities are highly diverse and have evolved during extended evolutionary processes of physiological adaptations under the influence of a variety of ecological conditions and selection pressures. They harbor an enormous diversity of microbes with still unknown and probably new physiological characteristics. Besides, the surfaces of marine multicellular organisms are typically covered by a consortium of epibiotic bacteria and act as barriers, where diverse interactions between microorganisms and hosts take place. Thus, microbial diversity in the water column of the oceans and the microbial consortia on marine tissues of multicellular organisms are rich sources for isolating novel bioactive compounds and genes. Here we describe the sampling, construction of large-insert metagenomic libraries from marine habitats and exemplarily one function based screen of metagenomic clones.

  16. Quantitative Field Testing Rotylenchulus reniformis DNA from Metagenomic Samples Isolated Directly from Soil

    Science.gov (United States)

    Showmaker, Kurt; Lawrence, Gary W.; Lu, Shien; Balbalian, Clarissa; Klink, Vincent P.

    2011-01-01

    A quantitative PCR procedure targeting the β-tubulin gene determined the number of Rotylenchulus reniformis Linford & Oliveira 1940 in metagenomic DNA samples isolated from soil. Of note, this outcome was in the presence of other soil-dwelling plant parasitic nematodes including its sister genus Helicotylenchus Steiner, 1945. The methodology provides a framework for molecular diagnostics of nematodes from metagenomic DNA isolated directly from soil. PMID:22194958

  17. Metagenomic Analysis of the Gut Microbiome of the Common Black Slug Arion ater in Search of Novel Lignocellulose Degrading Enzymes

    Directory of Open Access Journals (Sweden)

    Ryan Joynson

    2017-11-01

    Full Text Available Some eukaryotes are able to gain access to well-protected carbon sources in plant biomass by exploiting microorganisms in the environment or harbored in their digestive system. One is the land pulmonate Arion ater, which takes advantage of a gut microbial consortium that can break down the widely available, but difficult to digest, carbohydrate polymers in lignocellulose, enabling them to digest a broad range of fresh and partially degraded plant material efficiently. This ability is considered one of the major factors that have enabled A. ater to become one of the most widespread plant pest species in Western Europe and North America. Using metagenomic techniques we have characterized the bacterial diversity and functional capability of the gut microbiome of this notorious agricultural pest. Analysis of gut metagenomic community sequences identified abundant populations of known lignocellulose-degrading bacteria, along with well-characterized bacterial plant pathogens. This also revealed a repertoire of more than 3,383 carbohydrate active enzymes (CAZymes including multiple enzymes associated with lignin degradation, demonstrating a microbial consortium capable of degradation of all components of lignocellulose. This would allow A. ater to make extensive use of plant biomass as a source of nutrients through exploitation of the enzymatic capabilities of the gut microbial consortia. From this metagenome assembly we also demonstrate the successful amplification of multiple predicted gene sequences from metagenomic DNA subjected to whole genome amplification and expression of functional proteins, facilitating the low cost acquisition and biochemical testing of the many thousands of novel genes identified in metagenomics studies. These findings demonstrate the importance of studying Gastropod microbial communities. Firstly, with respect to understanding links between feeding and evolutionary success and, secondly, as sources of novel enzymes with

  18. Metaviz: interactive statistical and visual analysis of metagenomic data.

    Science.gov (United States)

    Wagner, Justin; Chelaru, Florin; Kancherla, Jayaram; Paulson, Joseph N; Zhang, Alexander; Felix, Victor; Mahurkar, Anup; Elmqvist, Niklas; Corrada Bravo, Héctor

    2018-04-06

    Large studies profiling microbial communities and their association with healthy or disease phenotypes are now commonplace. Processed data from many of these studies are publicly available but significant effort is required for users to effectively organize, explore and integrate it, limiting the utility of these rich data resources. Effective integrative and interactive visual and statistical tools to analyze many metagenomic samples can greatly increase the value of these data for researchers. We present Metaviz, a tool for interactive exploratory data analysis of annotated microbiome taxonomic community profiles derived from marker gene or whole metagenome shotgun sequencing. Metaviz is uniquely designed to address the challenge of browsing the hierarchical structure of metagenomic data features while rendering visualizations of data values that are dynamically updated in response to user navigation. We use Metaviz to provide the UMD Metagenome Browser web service, allowing users to browse and explore data for more than 7000 microbiomes from published studies. Users can also deploy Metaviz as a web service, or use it to analyze data through the metavizr package to interoperate with state-of-the-art analysis tools available through Bioconductor. Metaviz is free and open source with the code, documentation and tutorials publicly accessible.

  19. Databases of the marine metagenomics

    KAUST Repository

    Mineta, Katsuhiko

    2015-10-28

    The metagenomic data obtained from marine environments is significantly useful for understanding marine microbial communities. In comparison with the conventional amplicon-based approach of metagenomics, the recent shotgun sequencing-based approach has become a powerful tool that provides an efficient way of grasping a diversity of the entire microbial community at a sampling point in the sea. However, this approach accelerates accumulation of the metagenome data as well as increase of data complexity. Moreover, when metagenomic approach is used for monitoring a time change of marine environments at multiple locations of the seawater, accumulation of metagenomics data will become tremendous with an enormous speed. Because this kind of situation has started becoming of reality at many marine research institutions and stations all over the world, it looks obvious that the data management and analysis will be confronted by the so-called Big Data issues such as how the database can be constructed in an efficient way and how useful knowledge should be extracted from a vast amount of the data. In this review, we summarize the outline of all the major databases of marine metagenome that are currently publically available, noting that database exclusively on marine metagenome is none but the number of metagenome databases including marine metagenome data are six, unexpectedly still small. We also extend our explanation to the databases, as reference database we call, that will be useful for constructing a marine metagenome database as well as complementing important information with the database. Then, we would point out a number of challenges to be conquered in constructing the marine metagenome database.

  20. New Bacterial Phytase through Metagenomic Prospection

    Directory of Open Access Journals (Sweden)

    Nathálya Farias

    2018-02-01

    Full Text Available Alkaline phytases from uncultured microorganisms, which hydrolyze phytate to less phosphorylated myo-inositols and inorganic phosphate, have great potential as additives in agricultural industry. The development of metagenomics has stemmed from the ineluctable evidence that as-yet-uncultured microorganisms represent the vast majority of organisms in most environments on earth. In this study, a gene encoding a phytase was cloned from red rice crop residues and castor bean cake using a metagenomics strategy. The amino acid identity between this gene and its closest published counterparts is lower than 60%. The phytase was named PhyRC001 and was biochemically characterized. This recombinant protein showed activity on sodium phytate, indicating that PhyRC001 is a hydrolase enzyme. The enzymatic activity was optimal at a pH of 7.0 and at a temperature of 35 °C. β-propeller phytases possess great potential as feed additives because they are the only type of phytase with high activity at neutral pH. Therefore, to explore and exploit the underlying mechanism for β-propeller phytase functions could be of great benefit to biotechnology.

  1. Seasonal changes in the abundance of bacterial genes related to dimethylsulfoniopropionate catabolism in seawater from Ofunato Bay revealed by metagenomic analysis

    KAUST Repository

    Kudo, Toshiaki; Kobiyama, Atsushi; Rashid, Jonaira; Reza, Shaheed; Yamada, Yuichiro; Ikeda, Yuri; Ikeda, Daisuke; Mizusawa, Nanami; Ikeo, Kazuho; Sato, Shigeru; Ogata, Takehiko; Jimbo, Mitsuru; Kaga, Shinnosuke; Watanabe, Shiho; Naiki, Kimiaki; Kaga, Yoshimasa; Segawa, Satoshi; Mineta, Katsuhiko; Bajic, Vladimir B.; Gojobori, Takashi; Watabe, Shugo

    2018-01-01

    Ofunato Bay is located in the northeastern Pacific Ocean area of Japan, and it has the highest biodiversity of marine organisms in the world, primarily due to tidal influences from the cold Oyashio and warm Kuroshio currents. Our previous results from performing shotgun metagenomics indicated that Candidatus Pelagibacter ubique and Planktomarina temperata were the dominant bacteria (Reza et al., 2018a, 2018b). These bacteria are reportedly able to catabolize dimethylsulfoniopropionate (DMSP) produced from phytoplankton into dimethyl sulfide (DMS) or methanethiol (MeSH). This study was focused on seasonal changes in the abundances of bacterial genes (dddP, dmdA) related to DMSP catabolism in the seawater of Ofunato Bay by BLAST+ analysis using shotgun metagenomic datasets. We found seasonal changes among the Candidatus Pelagibacter ubique strains, including those of the HTCC1062 type and the Red Sea type. A good correlation was observed between the chlorophyll a concentrations and the abundances of the catabolic genes, suggesting that the bacteria directly interact with phytoplankton in the marine material cycle system and play important roles in producing DMS and MeSH from DMSP as signaling molecules for the possible formation of the scent of the tidewater or as fish attractants.

  2. Seasonal changes in the abundance of bacterial genes related to dimethylsulfoniopropionate catabolism in seawater from Ofunato Bay revealed by metagenomic analysis

    KAUST Repository

    Kudo, Toshiaki

    2018-04-26

    Ofunato Bay is located in the northeastern Pacific Ocean area of Japan, and it has the highest biodiversity of marine organisms in the world, primarily due to tidal influences from the cold Oyashio and warm Kuroshio currents. Our previous results from performing shotgun metagenomics indicated that Candidatus Pelagibacter ubique and Planktomarina temperata were the dominant bacteria (Reza et al., 2018a, 2018b). These bacteria are reportedly able to catabolize dimethylsulfoniopropionate (DMSP) produced from phytoplankton into dimethyl sulfide (DMS) or methanethiol (MeSH). This study was focused on seasonal changes in the abundances of bacterial genes (dddP, dmdA) related to DMSP catabolism in the seawater of Ofunato Bay by BLAST+ analysis using shotgun metagenomic datasets. We found seasonal changes among the Candidatus Pelagibacter ubique strains, including those of the HTCC1062 type and the Red Sea type. A good correlation was observed between the chlorophyll a concentrations and the abundances of the catabolic genes, suggesting that the bacteria directly interact with phytoplankton in the marine material cycle system and play important roles in producing DMS and MeSH from DMSP as signaling molecules for the possible formation of the scent of the tidewater or as fish attractants.

  3. A feruloyl esterase derived from a leachate metagenome library

    CSIR Research Space (South Africa)

    Rashamuse, K

    2012-01-01

    Full Text Available A feruloyl esterase encoding gene (designated fae6), derived from a leachate metagenomic library, was cloned and the nucleotide sequence of the insert DNA determined. Translational analysis revealed that fae6 consists of a 515 amino acid polypeptide...

  4. Stable isotope probing in the metagenomics era: a bridge towards improved bioremediation

    Science.gov (United States)

    Uhlik, Ondrej; Leewis, Mary-Cathrine; Strejcek, Michal; Musilova, Lucie; Mackova, Martina; Leigh, Mary Beth; Macek, Tomas

    2012-01-01

    Microbial biodegradation and biotransformation reactions are essential to most bioremediation processes, yet the specific organisms, genes, and mechanisms involved are often not well understood. Stable isotope probing (SIP) enables researchers to directly link microbial metabolic capability to phylogenetic and metagenomic information within a community context by tracking isotopically labeled substances into phylogenetically and functionally informative biomarkers. SIP is thus applicable as a tool for the identification of active members of the microbial community and associated genes integral to the community functional potential, such as biodegradative processes. The rapid evolution of SIP over the last decade and integration with metagenomics provides researchers with a much deeper insight into potential biodegradative genes, processes, and applications, thereby enabling an improved mechanistic understanding that can facilitate advances in the field of bioremediation. PMID:23022353

  5. Single-Cell-Genomics-Facilitated Read Binning of Candidate Phylum EM19 Genomes from Geothermal Spring Metagenomes.

    Science.gov (United States)

    Becraft, Eric D; Dodsworth, Jeremy A; Murugapiran, Senthil K; Ohlsson, J Ingemar; Briggs, Brandon R; Kanbar, Jad; De Vlaminck, Iwijn; Quake, Stephen R; Dong, Hailiang; Hedlund, Brian P; Swingley, Wesley D

    2016-02-15

    The vast majority of microbial life remains uncatalogued due to the inability to cultivate these organisms in the laboratory. This "microbial dark matter" represents a substantial portion of the tree of life and of the populations that contribute to chemical cycling in many ecosystems. In this work, we leveraged an existing single-cell genomic data set representing the candidate bacterial phylum "Calescamantes" (EM19) to calibrate machine learning algorithms and define metagenomic bins directly from pyrosequencing reads derived from Great Boiling Spring in the U.S. Great Basin. Compared to other assembly-based methods, taxonomic binning with a read-based machine learning approach yielded final assemblies with the highest predicted genome completeness of any method tested. Read-first binning subsequently was used to extract Calescamantes bins from all metagenomes with abundant Calescamantes populations, including metagenomes from Octopus Spring and Bison Pool in Yellowstone National Park and Gongxiaoshe Spring in Yunnan Province, China. Metabolic reconstruction suggests that Calescamantes are heterotrophic, facultative anaerobes, which can utilize oxidized nitrogen sources as terminal electron acceptors for respiration in the absence of oxygen and use proteins as their primary carbon source. Despite their phylogenetic divergence, the geographically separate Calescamantes populations were highly similar in their predicted metabolic capabilities and core gene content, respiring O2, or oxidized nitrogen species for energy conservation in distant but chemically similar hot springs. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  6. Microbial Diversity and Biochemical Potential Encoded by Thermal Spring Metagenomes Derived from the Kamchatka Peninsula

    Directory of Open Access Journals (Sweden)

    Bernd Wemheuer

    2013-01-01

    Full Text Available Volcanic regions contain a variety of environments suitable for extremophiles. This study was focused on assessing and exploiting the prokaryotic diversity of two microbial communities derived from different Kamchatkian thermal springs by metagenomic approaches. Samples were taken from a thermoacidophilic spring near the Mutnovsky Volcano and from a thermophilic spring in the Uzon Caldera. Environmental DNA for metagenomic analysis was isolated from collected sediment samples by direct cell lysis. The prokaryotic community composition was examined by analysis of archaeal and bacterial 16S rRNA genes. A total number of 1235 16S rRNA gene sequences were obtained and used for taxonomic classification. Most abundant in the samples were members of Thaumarchaeota, Thermotogae, and Proteobacteria. The Mutnovsky hot spring was dominated by the Terrestrial Hot Spring Group, Kosmotoga, and Acidithiobacillus. The Uzon Caldera was dominated by uncultured members of the Miscellaneous Crenarchaeotic Group and Enterobacteriaceae. The remaining 16S rRNA gene sequences belonged to the Aquificae, Dictyoglomi, Euryarchaeota, Korarchaeota, Thermodesulfobacteria, Firmicutes, and some potential new phyla. In addition, the recovered DNA was used for generation of metagenomic libraries, which were subsequently mined for genes encoding lipolytic and proteolytic enzymes. Three novel genes conferring lipolytic and one gene conferring proteolytic activity were identified.

  7. Functional metagenomics to decipher food-microbe-host crosstalk.

    Science.gov (United States)

    Larraufie, Pierre; de Wouters, Tomas; Potocki-Veronese, Gabrielle; Blottière, Hervé M; Doré, Joël

    2015-02-01

    The recent developments of metagenomics permit an extremely high-resolution molecular scan of the intestinal microbiota giving new insights and opening perspectives for clinical applications. Beyond the unprecedented vision of the intestinal microbiota given by large-scale quantitative metagenomics studies, such as the EU MetaHIT project, functional metagenomics tools allow the exploration of fine interactions between food constituents, microbiota and host, leading to the identification of signals and intimate mechanisms of crosstalk, especially between bacteria and human cells. Cloning of large genome fragments, either from complex intestinal communities or from selected bacteria, allows the screening of these biological resources for bioactivity towards complex plant polymers or functional food such as prebiotics. This permitted identification of novel carbohydrate-active enzyme families involved in dietary fibre and host glycan breakdown, and highlighted unsuspected bacterial players at the top of the intestinal microbial food chain. Similarly, exposure of fractions from genomic and metagenomic clones onto human cells engineered with reporter systems to track modulation of immune response, cell proliferation or cell metabolism has allowed the identification of bioactive clones modulating key cell signalling pathways or the induction of specific genes. This opens the possibility to decipher mechanisms by which commensal bacteria or candidate probiotics can modulate the activity of cells in the intestinal epithelium or even in distal organs such as the liver, adipose tissue or the brain. Hence, in spite of our inability to culture many of the dominant microbes of the human intestine, functional metagenomics open a new window for the exploration of food-microbe-host crosstalk.

  8. Characterization and detection of a widely distributed gene cluster that predicts anaerobic choline utilization by human gut bacteria.

    Science.gov (United States)

    Martínez-del Campo, Ana; Bodea, Smaranda; Hamer, Hilary A; Marks, Jonathan A; Haiser, Henry J; Turnbaugh, Peter J; Balskus, Emily P

    2015-04-14

    Elucidation of the molecular mechanisms underlying the human gut microbiota's effects on health and disease has been complicated by difficulties in linking metabolic functions associated with the gut community as a whole to individual microorganisms and activities. Anaerobic microbial choline metabolism, a disease-associated metabolic pathway, exemplifies this challenge, as the specific human gut microorganisms responsible for this transformation have not yet been clearly identified. In this study, we established the link between a bacterial gene cluster, the choline utilization (cut) cluster, and anaerobic choline metabolism in human gut isolates by combining transcriptional, biochemical, bioinformatic, and cultivation-based approaches. Quantitative reverse transcription-PCR analysis and in vitro biochemical characterization of two cut gene products linked the entire cluster to growth on choline and supported a model for this pathway. Analyses of sequenced bacterial genomes revealed that the cut cluster is present in many human gut bacteria, is predictive of choline utilization in sequenced isolates, and is widely but discontinuously distributed across multiple bacterial phyla. Given that bacterial phylogeny is a poor marker for choline utilization, we were prompted to develop a degenerate PCR-based method for detecting the key functional gene choline TMA-lyase (cutC) in genomic and metagenomic DNA. Using this tool, we found that new choline-metabolizing gut isolates universally possessed cutC. We also demonstrated that this gene is widespread in stool metagenomic data sets. Overall, this work represents a crucial step toward understanding anaerobic choline metabolism in the human gut microbiota and underscores the importance of examining this microbial community from a function-oriented perspective. Anaerobic choline utilization is a bacterial metabolic activity that occurs in the human gut and is linked to multiple diseases. While bacterial genes responsible for

  9. Compositional profile of α/β-hydrolase fold proteins in mangrove soil metagenomes: prevalence of epoxide hydrolases and haloalkane dehalogenases in oil-contaminated sites

    Science.gov (United States)

    Jiménez, Diego Javier; Dini-Andreote, Francisco; Ottoni, Júlia Ronzella; de Oliveira, Valéria Maia; van Elsas, Jan Dirk; Andreote, Fernando Dini

    2015-01-01

    The occurrence of genes encoding biotechnologically relevant α/β-hydrolases in mangrove soil microbial communities was assessed using data obtained by whole-metagenome sequencing of four mangroves areas, denoted BrMgv01 to BrMgv04, in São Paulo, Brazil. The sequences (215 Mb in total) were filtered based on local amino acid alignments against the Lipase Engineering Database. In total, 5923 unassembled sequences were affiliated with 30 different α/β-hydrolase fold superfamilies. The most abundant predicted proteins encompassed cytosolic hydrolases (abH08; ∼ 23%), microsomal hydrolases (abH09; ∼ 12%) and Moraxella lipase-like proteins (abH04 and abH01; mangroves BrMgv01-02-03. This suggested selection and putative involvement in local degradation/detoxification of the pollutants. Seven sequences that were annotated as genes for putative epoxide hydrolases and five for putative haloalkane dehalogenases were found in a fosmid library generated from BrMgv02 DNA. The latter enzymes were predicted to belong to Actinobacteria, Deinococcus-Thermus, Planctomycetes and Proteobacteria. Our integrated approach thus identified 12 genes (complete and/or partial) that may encode hitherto undescribed enzymes. The low amino acid identity (< 60%) with already-described genes opens perspectives for both production in an expression host and genetic screening of metagenomes. PMID:25171437

  10. Computational prediction of CRISPR cassettes in gut metagenome samples from Chinese type-2 diabetic patients and healthy controls.

    Science.gov (United States)

    Mangericao, Tatiana C; Peng, Zhanhao; Zhang, Xuegong

    2016-01-11

    CRISPR has been becoming a hot topic as a powerful technique for genome editing for human and other higher organisms. The original CRISPR-Cas (Clustered Regularly Interspaced Short Palindromic Repeats coupled with CRISPR-associated proteins) is an important adaptive defence system for prokaryotes that provides resistance against invading elements such as viruses and plasmids. A CRISPR cassette contains short nucleotide sequences called spacers. These unique regions retain a history of the interactions between prokaryotes and their invaders in individual strains and ecosystems. One important ecosystem in the human body is the human gut, a rich habitat populated by a great diversity of microorganisms. Gut microbiomes are important for human physiology and health. Metagenome sequencing has been widely applied for studying the gut microbiomes. Most efforts in metagenome study has been focused on profiling taxa compositions and gene catalogues and identifying their associations with human health. Less attention has been paid to the analysis of the ecosystems of microbiomes themselves especially their CRISPR composition. We conducted a preliminary analysis of CRISPR sequences in a human gut metagenomic data set of Chinese individuals of type-2 diabetes patients and healthy controls. Applying an available CRISPR-identification algorithm, PILER-CR, we identified 3169 CRISPR cassettes in the data, from which we constructed a set of 1302 unique repeat sequences and 36,709 spacers. A more extensive analysis was made for the CRISPR repeats: these repeats were submitted to a more comprehensive clustering and classification using the web server tool CRISPRmap. All repeats were compared with known CRISPRs in the database CRISPRdb. A total of 784 repeats had matches in the database, and the remaining 518 repeats from our set are potentially novel ones. The computational analysis of CRISPR composition based contigs of metagenome sequencing data is feasible. It provides an efficient

  11. Metagenomes provide valuable comparative information on soil microeukaryotes

    DEFF Research Database (Denmark)

    Jacquiod, Samuel Jehan Auguste; Stenbæk, Jonas; Santos, Susana

    2016-01-01

    has been identified. Our analyses suggest that publicly available metagenome data can provide valuable information on soil microeukaryotes for comparative purposes when handled appropriately, complementing the current view provided by ribosomal amplicon sequencing methods......., providing microbiologists with substantial amounts of accessible information. We took advantage of public metagenomes in order to investigate microeukaryote communities in a well characterized grassland soil. The data gathered allowed the evaluation of several factors impacting the community structure......, including the DNA extraction method, the database choice and also the annotation procedure. While most studies on soil microeukaryotes are based on sequencing of PCR-amplified taxonomic markers (18S rRNA genes, ITS regions), this work represents, to our knowledge, the first report based solely...

  12. Metagenomic survey of methanesulfonic acid (MSA catabolic genes in an Atlantic Ocean surface water sample and in a partial enrichment

    Directory of Open Access Journals (Sweden)

    Ana C. Henriques

    2016-10-01

    Full Text Available Methanesulfonic acid (MSA is a relevant intermediate of the biogeochemical cycle of sulfur and environmental microorganisms assume an important role in the mineralization of this compound. Several methylotrophic bacterial strains able to grow on MSA have been isolated from soil or marine water and two conserved operons, msmABCD coding for MSA monooxygenase and msmEFGH coding for a transport system, have been repeatedly encountered in most of these strains. Homologous sequences have also been amplified directly from the environment or observed in marine metagenomic data, but these showed a base composition (G + C content very different from their counterparts from cultivated bacteria. The aim of this study was to understand which microorganisms within the coastal surface oceanic microflora responded to MSA as a nutrient and how the community evolved in the early phases of an enrichment by means of metagenome and gene-targeted amplicon sequencing. From the phylogenetic point of view, the community shifted significantly with the disappearance of all signals related to the Archaea, the Pelagibacteraceae and phylum SAR406, and the increase in methylotroph-harboring taxa, accompanied by other groups so far not known to comprise methylotrophs such as the Hyphomonadaceae. At the functional level, the abundance of several genes related to sulfur metabolism and methylotrophy increased during the enrichment and the allelic distribution of gene msmA diagnostic for MSA monooxygenase altered considerably. Even more dramatic was the disappearance of MSA import-related gene msmE, which suggests that alternative transporters must be present in the enriched community and illustrate the inadequacy of msmE as an ecofunctional marker for MSA degradation at sea.

  13. Metagenomic profiling of antibiotic resistance genes and mobile genetic elements in a tannery wastewater treatment plant.

    Directory of Open Access Journals (Sweden)

    Zhu Wang

    Full Text Available Antibiotics are often used to prevent sickness and improve production in animal agriculture, and the residues in animal bodies may enter tannery wastewater during leather production. This study aimed to use Illumina high-throughput sequencing to investigate the occurrence, diversity and abundance of antibiotic resistance genes (ARGs and mobile genetic elements (MGEs in aerobic and anaerobic sludge of a full-scale tannery wastewater treatment plant (WWTP. Metagenomic analysis showed that Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria dominated in the WWTP, but the relative abundance of archaea in anaerobic sludge was higher than in aerobic sludge. Sequencing reads from aerobic and anaerobic sludge revealed differences in the abundance of functional genes between both microbial communities. Genes coding for antibiotic resistance were identified in both communities. BLAST analysis against Antibiotic Resistance Genes Database (ARDB further revealed that aerobic and anaerobic sludge contained various ARGs with high abundance, among which sulfonamide resistance gene sul1 had the highest abundance, occupying over 20% of the total ARGs reads. Tetracycline resistance genes (tet were highly rich in the anaerobic sludge, among which tet33 had the highest abundance, but was absent in aerobic sludge. Over 70 types of insertion sequences were detected in each sludge sample, and class 1 integrase genes were prevalent in the WWTP. The results highlighted prevalence of ARGs and MGEs in tannery WWTPs, which may deserve more public health concerns.

  14. Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases.

    Science.gov (United States)

    Brulc, Jennifer M; Antonopoulos, Dionysios A; Miller, Margret E Berg; Wilson, Melissa K; Yannarell, Anthony C; Dinsdale, Elizabeth A; Edwards, Robert E; Frank, Edward D; Emerson, Joanne B; Wacklin, Pirjo; Coutinho, Pedro M; Henrissat, Bernard; Nelson, Karen E; White, Bryan A

    2009-02-10

    The complex microbiome of the rumen functions as an effective system for the conversion of plant cell wall biomass to microbial protein, short chain fatty acids, and gases. As such, it provides a unique genetic resource for plant cell wall degrading microbial enzymes that could be used in the production of biofuels. The rumen and gastrointestinal tract harbor a dense and complex microbiome. To gain a greater understanding of the ecology and metabolic potential of this microbiome, we used comparative metagenomics (phylotype analysis and SEED subsystems-based annotations) to examine randomly sampled pyrosequence data from 3 fiber-adherent microbiomes and 1 pooled liquid sample (a mixture of the liquid microbiome fractions from the same bovine rumens). Even though the 3 animals were fed the same diet, the community structure, predicted phylotype, and metabolic potentials in the rumen were markedly different with respect to nutrient utilization. A comparison of the glycoside hydrolase and cellulosome functional genes revealed that in the rumen microbiome, initial colonization of fiber appears to be by organisms possessing enzymes that attack the easily available side chains of complex plant polysaccharides and not the more recalcitrant main chains, especially cellulose. Furthermore, when compared with the termite hindgut microbiome, there are fundamental differences in the glycoside hydrolase content that appear to be diet driven for either the bovine rumen (forages and legumes) or the termite hindgut (wood).

  15. Genomic and metagenomic challenges and opportunities for bioleaching: a mini-review.

    Science.gov (United States)

    Cárdenas, Juan Pablo; Quatrini, Raquel; Holmes, David S

    2016-09-01

    High-throughput genomic technologies are accelerating progress in understanding the diversity of microbial life in many environments. Here we highlight advances in genomics and metagenomics of microorganisms from bioleaching heaps and related acidic mining environments. Bioleaching heaps used for copper recovery provide significant opportunities to study the processes and mechanisms underlying microbial successions and the influence of community composition on ecosystem functioning. Obtaining quantitative and process-level knowledge of these dynamics is pivotal for understanding how microorganisms contribute to the solubilization of copper for industrial recovery. Advances in DNA sequencing technology provide unprecedented opportunities to obtain information about the genomes of bioleaching microorganisms, allowing predictive models of metabolic potential and ecosystem-level interactions to be constructed. These approaches are enabling predictive phenotyping of organisms many of which are recalcitrant to genetic approaches or are unculturable. This mini-review describes current bioleaching genomic and metagenomic projects and addresses the use of genome information to: (i) build metabolic models; (ii) predict microbial interactions; (iii) estimate genetic diversity; and (iv) study microbial evolution. Key challenges and perspectives of bioleaching genomics/metagenomics are addressed. Copyright © 2016 The Author(s). Published by Elsevier Masson SAS.. All rights reserved.

  16. Metagenomic analysis of microbial communities yields insight into impacts of nanoparticle design

    Science.gov (United States)

    Metch, Jacob W.; Burrows, Nathan D.; Murphy, Catherine J.; Pruden, Amy; Vikesland, Peter J.

    2018-01-01

    Next-generation DNA sequencing and metagenomic analysis provide powerful tools for the environmentally friendly design of nanoparticles. Herein we demonstrate this approach using a model community of environmental microbes (that is, wastewater-activated sludge) dosed with gold nanoparticles of varying surface coatings and morphologies. Metagenomic analysis was highly sensitive in detecting the microbial community response to gold nanospheres and nanorods with either cetyltrimethylammonium bromide or polyacrylic acid surface coatings. We observed that the gold-nanoparticle morphology imposes a stronger force in shaping the microbial community structure than does the surface coating. Trends were consistent in terms of the compositions of both taxonomic and functional genes, which include antibiotic resistance genes, metal resistance genes and gene-transfer elements associated with cell stress that are relevant to public health. Given that nanoparticle morphology remained constant, the potential influence of gold dissolution was minimal. Surface coating governed the nanoparticle partitioning between the bioparticulate and aqueous phases.

  17. Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer

    DEFF Research Database (Denmark)

    Yu, Jun; Feng, Qiang; Wong, Sunny Hei

    2017-01-01

    known associations of Fusobacterium nucleatum and Peptostreptococcus stomatis with CRC, we found significant associations with several species, including Parvimonas micra and Solobacterium moorei. We identified 20 microbial gene markers that differentiated CRC and control microbiomes, and validated 4...... in the independent Chinese cohort with AUC=0.84 and OR of 23. These genes were enriched in early-stage (I-II) patient microbiomes, highlighting the potential for using faecal metagenomic biomarkers for early diagnosis of CRC. CONCLUSIONS: We present the first metagenomic profiling study of CRC faecal microbiomes...

  18. Metagenome Analyses of Corroded Concrete Wastewater Pipe Biofilms Reveals a Complex Microbial System

    Science.gov (United States)

    Analysis of whole-metagenome pyrosequencing data and 16S rRNA gene clone libraries was used to determine microbial composition and functional genes associated with biomass harvested from crown (top) and invert (bottom) sections of a corroded wastewater pipe. Taxonomic and functio...

  19. Metagenomic analysis of soil and freshwater from zoo agricultural area with organic fertilization.

    Directory of Open Access Journals (Sweden)

    Aylan K Meneghine

    Full Text Available Microbial communities drive biogeochemical cycles in agricultural areas by decomposing organic materials and converting essential nutrients. Organic amendments improve soil quality by increasing the load of essential nutrients and enhancing the productivity. Additionally, fresh water used for irrigation can affect soil quality of agricultural soils, mainly due to the presence of microbial contaminants and pathogens. In this study, we investigated how microbial communities in irrigation water might contribute to the microbial diversity and function of soil. Whole-metagenomic sequencing approaches were used to investigate the taxonomic and the functional profiles of microbial communities present in fresh water used for irrigation, and in soil from a vegetable crop, which received fertilization with organic compost made from animal carcasses. The taxonomic analysis revealed that the most abundant genera were Polynucleobacter (~8% relative abundance and Bacillus (~10% in fresh water and soil from the vegetable crop, respectively. Low abundance (0.38% of cyanobacterial groups were identified. Based on functional gene prediction, denitrification appears to be an important process in the soil community analysed here. Conversely, genes for nitrogen fixation were abundant in freshwater, indicating that the N-fixation plays a crucial role in this particular ecosystem. Moreover, pathogenicity islands, antibiotic resistance and potential virulence related genes were identified in both samples, but no toxigenic genes were detected. This study provides a better understanding of the community structure of an area under strong agricultural activity with regular irrigation and fertilization with an organic compost made from animal carcasses. Additionally, the use of a metagenomic approach to investigate fresh water quality proved to be a relevant method to evaluate its use in an agricultural ecosystem.

  20. Metagenomic analysis of soil and freshwater from zoo agricultural area with organic fertilization

    Science.gov (United States)

    Meneghine, Aylan K.; Nielsen, Shaun; Thomas, Torsten; Carareto Alves, Lucia Maria

    2017-01-01

    Microbial communities drive biogeochemical cycles in agricultural areas by decomposing organic materials and converting essential nutrients. Organic amendments improve soil quality by increasing the load of essential nutrients and enhancing the productivity. Additionally, fresh water used for irrigation can affect soil quality of agricultural soils, mainly due to the presence of microbial contaminants and pathogens. In this study, we investigated how microbial communities in irrigation water might contribute to the microbial diversity and function of soil. Whole-metagenomic sequencing approaches were used to investigate the taxonomic and the functional profiles of microbial communities present in fresh water used for irrigation, and in soil from a vegetable crop, which received fertilization with organic compost made from animal carcasses. The taxonomic analysis revealed that the most abundant genera were Polynucleobacter (~8% relative abundance) and Bacillus (~10%) in fresh water and soil from the vegetable crop, respectively. Low abundance (0.38%) of cyanobacterial groups were identified. Based on functional gene prediction, denitrification appears to be an important process in the soil community analysed here. Conversely, genes for nitrogen fixation were abundant in freshwater, indicating that the N-fixation plays a crucial role in this particular ecosystem. Moreover, pathogenicity islands, antibiotic resistance and potential virulence related genes were identified in both samples, but no toxigenic genes were detected. This study provides a better understanding of the community structure of an area under strong agricultural activity with regular irrigation and fertilization with an organic compost made from animal carcasses. Additionally, the use of a metagenomic approach to investigate fresh water quality proved to be a relevant method to evaluate its use in an agricultural ecosystem. PMID:29267397

  1. An Improved Methodology to Overcome Key Issues in Human Fecal Metagenomic DNA Extraction

    Directory of Open Access Journals (Sweden)

    Jitendra Kumar

    2016-12-01

    Full Text Available Microbes are ubiquitously distributed in nature, and recent culture-independent studies have highlighted the significance of gut microbiota in human health and disease. Fecal DNA is the primary source for the majority of human gut microbiome studies. However, further improvement is needed to obtain fecal metagenomic DNA with sufficient amount and good quality but low host genomic DNA contamination. In the current study, we demonstrate a quick, robust, unbiased, and cost-effective method for the isolation of high molecular weight (>23 kb metagenomic DNA (260/280 ratio >1.8 with a good yield (55.8 ± 3.8 ng/mg of feces. We also confirm that there is very low human genomic DNA contamination (eubacterial: human genomic DNA marker genes = 227.9:1 in the human feces. The newly-developed method robustly performs for fresh as well as stored fecal samples as demonstrated by 16S rRNA gene sequencing using 454 FLX+. Moreover, 16S rRNA gene analysis indicated that compared to other DNA extraction methods tested, the fecal metagenomic DNA isolated with current methodology retains species richness and does not show microbial diversity biases, which is further confirmed by qPCR with a known quantity of spike-in genomes. Overall, our data highlight a protocol with a balance between quality, amount, user-friendliness, and cost effectiveness for its suitability toward usage for culture-independent analysis of the human gut microbiome, which provides a robust solution to overcome key issues associated with fecal metagenomic DNA isolation in human gut microbiome studies.

  2. Metagenomic profiling reveals lignocellulose degrading system in a microbial community associated with a wood-feeding beetle.

    Directory of Open Access Journals (Sweden)

    Erin D Scully

    Full Text Available The Asian longhorned beetle (Anoplophoraglabripennis is an invasive, wood-boring pest that thrives in the heartwood of deciduous tree species. A large impediment faced by A. glabripennis as it feeds on woody tissue is lignin, a highly recalcitrant biopolymer that reduces access to sugars and other nutrients locked in cellulose and hemicellulose. We previously demonstrated that lignin, cellulose, and hemicellulose are actively deconstructed in the beetle gut and that the gut harbors an assemblage of microbes hypothesized to make significant contributions to these processes. While lignin degrading mechanisms have been well characterized in pure cultures of white rot basidiomycetes, little is known about such processes in microbial communities associated with wood-feeding insects. The goals of this study were to develop a taxonomic and functional profile of a gut community derived from an invasive population of larval A. glabripennis collected from infested host trees and to identify genes that could be relevant for the digestion of woody tissue and nutrient acquisition. To accomplish this goal, we taxonomically and functionally characterized the A. glabripennis midgut microbiota through amplicon and shotgun metagenome sequencing and conducted a large-scale comparison with the metagenomes from a variety of other herbivore-associated communities. This analysis distinguished the A. glabripennis larval gut metagenome from the gut communities of other herbivores, including previously sequenced termite hindgut metagenomes. Genes encoding enzymes were identified in the A. glabripennis gut metagenome that could have key roles in woody tissue digestion including candidate lignin degrading genes (laccases, dye-decolorizing peroxidases, novel peroxidases and β-etherases, 36 families of glycoside hydrolases (such as cellulases and xylanases, and genes that could facilitate nutrient recovery, essential nutrient synthesis, and detoxification. This community

  3. Soil metagenomics and tropical soil productivity

    OpenAIRE

    Garrett, Karen A.

    2009-01-01

    This presentation summarizes research in the soil metagenomics cross cutting research activity. Soil metagenomics studies soil microbial communities as contributors to soil health.C CCRA-4 (Soil Metagenomics)

  4. Metagenome Assembly at the DOE JGI (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    Energy Technology Data Exchange (ETDEWEB)

    Chain, Patrick

    2011-10-13

    Patrick Chain of DOE JGI at LANL, Co-Chair of the Metagenome-specific Assembly session, on Metagenome Assembly at the DOE JGIat the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  5. Exploring neighborhoods in the metagenome universe.

    Science.gov (United States)

    Aßhauer, Kathrin P; Klingenberg, Heiner; Lingner, Thomas; Meinicke, Peter

    2014-07-14

    The variety of metagenomes in current databases provides a rapidly growing source of information for comparative studies. However, the quantity and quality of supplementary metadata is still lagging behind. It is therefore important to be able to identify related metagenomes by means of the available sequence data alone. We have studied efficient sequence-based methods for large-scale identification of similar metagenomes within a database retrieval context. In a broad comparison of different profiling methods we found that vector-based distance measures are well-suitable for the detection of metagenomic neighbors. Our evaluation on more than 1700 publicly available metagenomes indicates that for a query metagenome from a particular habitat on average nine out of ten nearest neighbors represent the same habitat category independent of the utilized profiling method or distance measure. While for well-defined labels a neighborhood accuracy of 100% can be achieved, in general the neighbor detection is severely affected by a natural overlap of manually annotated categories. In addition, we present results of a novel visualization method that is able to reflect the similarity of metagenomes in a 2D scatter plot. The visualization method shows a similarly high accuracy in the reduced space as compared with the high-dimensional profile space. Our study suggests that for inspection of metagenome neighborhoods the profiling methods and distance measures can be chosen to provide a convenient interpretation of results in terms of the underlying features. Furthermore, supplementary metadata of metagenome samples in the future needs to comply with readily available ontologies for fine-grained and standardized annotation. To make profile-based k-nearest-neighbor search and the 2D-visualization of the metagenome universe available to the research community, we included the proposed methods in our CoMet-Universe server for comparative metagenome analysis.

  6. Novel polyhydroxyalkanoate copolymers produced in Pseudomonas putida by metagenomic polyhydroxyalkanoate synthases.

    Science.gov (United States)

    Cheng, Jiujun; Charles, Trevor C

    2016-09-01

    Bacterially produced biodegradable polyhydroxyalkanoates (PHAs) with versatile properties can be achieved using different PHA synthases (PhaCs). This work aims to expand the diversity of known PhaCs via functional metagenomics and demonstrates the use of these novel enzymes in PHA production. Complementation of a PHA synthesis-deficient Pseudomonas putida strain with a soil metagenomic cosmid library retrieved 27 clones expressing either class I, class II, or unclassified PHA synthases, and many did not have close sequence matches to known PhaCs. The composition of PHA produced by these clones was dependent on both the supplied growth substrates and the nature of the PHA synthase, with various combinations of short-chain-length (SCL) and medium-chain-length (MCL) PHA. These data demonstrate the ability to isolate diverse genes for PHA synthesis by functional metagenomics and their use for the production of a variety of PHA polymer and copolymer mixtures.

  7. Metagenomics, metatranscriptomics and single cell genomics reveal functional response of active Oceanospirillales to Gulf oil spill

    Energy Technology Data Exchange (ETDEWEB)

    Mason, Olivia U.; Hazen, Terry C.; Borglin, Sharon; Chain, Patrick S. G.; Dubinsky, Eric A.; Fortney, Julian L.; Han, James; Holman, Hoi-Ying N.; Hultman, Jenni; Lamendella, Regina; Mackelprang, Rachel; Malfatti, Stephanie; Tom, Lauren M.; Tringe, Susannah G.; Woyke, Tanja; Zhou, Jizhong; Rubin, Edward M.; Jansson, Janet K.

    2012-06-12

    The Deepwater Horizon oil spill in the Gulf of Mexico resulted in a deep-sea hydrocarbon plume that caused a shift in the indigenous microbial community composition with unknown ecological consequences. Early in the spill history, a bloom of uncultured, thus uncharacterized, members of the Oceanospirillales was previously detected, but their role in oil disposition was unknown. Here our aim was to determine the functional role of the Oceanospirillales and other active members of the indigenous microbial community using deep sequencing of community DNA and RNA, as well as single-cell genomics. Shotgun metagenomic and metatranscriptomic sequencing revealed that genes for motility, chemotaxis and aliphatic hydrocarbon degradation were significantly enriched and expressed in the hydrocarbon plume samples compared with uncontaminated seawater collected from plume depth. In contrast, although genes coding for degradation of more recalcitrant compounds, such as benzene, toluene, ethylbenzene, total xylenes and polycyclic aromatic hydrocarbons, were identified in the metagenomes, they were expressed at low levels, or not at all based on analysis of the metatranscriptomes. Isolation and sequencing of two Oceanospirillales single cells revealed that both cells possessed genes coding for n-alkane and cycloalkane degradation. Specifically, the near-complete pathway for cyclohexane oxidation in the Oceanospirillales single cells was elucidated and supported by both metagenome and metatranscriptome data. The draft genome also included genes for chemotaxis, motility and nutrient acquisition strategies that were also identified in the metagenomes and metatranscriptomes. These data point towards a rapid response of members of the Oceanospirillales to aliphatic hydrocarbons in the deep sea.

  8. Metagenomic Sequencing of Marine Periphyton: Taxonomic and Functional Insights into Biofilm Communities

    Directory of Open Access Journals (Sweden)

    Kemal eSanli

    2015-10-01

    Full Text Available Periphyton communities are complex phototrophic, multispecies biofilms that develop on surfaces in aquatic environments. These communities harbor a large diversity of organisms comprising viruses, bacteria, algae, fungi, protozoans and metazoans. However, thus far the total biodiversity of periphyton has not been described. In this study, we use metagenomics to characterize periphyton communities from the marine environment of the Swedish west coast. Although we found approximately ten times more eukaryotic rRNA marker gene sequences compared to prokaryotic, the whole metagenome-based similarity searches showed that bacteria constitute the most abundant phyla in these biofilms. We show that marine periphyton encompass a range of heterotrophic and phototrophic organisms. Heterotrophic bacteria, including the majority of proteobacterial clades and Bacteroidetes, and eukaryotic macro-invertebrates were found to dominate periphyton. The phototrophic groups comprise Cyanobacteria and the alpha-proteobacterial genus Roseobacter, followed by different micro- and macro-algae. We also assess the metabolic pathways that predispose these communities to an attached lifestyle. Functional indicators of the biofilm form of life in periphyton involve genes coding for enzymes that catalyze the production and degradation of extracellular polymeric substances, mainly in the form of complex sugars such as starch and glycogen-like meshes together with chitin. Genes for 278 different transporter proteins were detected in the metagenome, constituting the most abundant protein complexes. Finally, genes encoding enzymes that participate in anaerobic pathways, such as denitrification and methanogenesis, were detected suggesting the presence of anaerobic or low-oxygen micro-zones within the biofilms.

  9. Mining the metagenome of activated biomass of an industrial wastewater treatment plant by a novel method.

    Science.gov (United States)

    Sharma, Nandita; Tanksale, Himgouri; Kapley, Atya; Purohit, Hemant J

    2012-12-01

    Metagenomic libraries herald the era of magnifying the microbial world, tapping into the vast metabolic potential of uncultivated microbes, and enhancing the rate of discovery of novel genes and pathways. In this paper, we describe a method that facilitates the extraction of metagenomic DNA from activated sludge of an industrial wastewater treatment plant and its use in mining the metagenome via library construction. The efficiency of this method was demonstrated by the large representation of the bacterial genome in the constructed metagenomic libraries and by the functional clones obtained. The BAC library represented 95.6 times the bacterial genome, while, the pUC library represented 41.7 times the bacterial genome. Twelve clones in the BAC library demonstrated lipolytic activity, while four clones demonstrated dioxygenase activity. Four clones in pUC library tested positive for cellulase activity. This method, using FTA cards, not only can be used for library construction, but can also store the metagenome at room temperature.

  10. Composition and predicted functional ecology of mussel - associated bacteria in Indonesian marine lakes

    NARCIS (Netherlands)

    Cleary, D.F.R.; Becking, L.E.; Polonia, A.; Freitas, R.M.; Gomes, N.

    2015-01-01

    In the present study, we sampled bacterial communities associated with mussels inhabiting two distinct coastal marine ecosystems in Kalimantan, Indonesia, namely, marine lakes and coastal mangroves. We used 16S rRNA gene pyrosequencing and predicted metagenomic analysis to compare microbial

  11. Metagenomic frameworks for monitoring antibiotic resistance in aquatic environments.

    Science.gov (United States)

    Port, Jesse A; Cullen, Alison C; Wallace, James C; Smith, Marissa N; Faustman, Elaine M

    2014-03-01

    High-throughput genomic technologies offer new approaches for environmental health monitoring, including metagenomic surveillance of antibiotic resistance determinants (ARDs). Although natural environments serve as reservoirs for antibiotic resistance genes that can be transferred to pathogenic and human commensal bacteria, monitoring of these determinants has been infrequent and incomplete. Furthermore, surveillance efforts have not been integrated into public health decision making. We used a metagenomic epidemiology-based approach to develop an ARD index that quantifies antibiotic resistance potential, and we analyzed this index for common modal patterns across environmental samples. We also explored how metagenomic data such as this index could be conceptually framed within an early risk management context. We analyzed 25 published data sets from shotgun pyrosequencing projects. The samples consisted of microbial community DNA collected from marine and freshwater environments across a gradient of human impact. We used principal component analysis to identify index patterns across samples. We observed significant differences in the overall index and index subcategory levels when comparing ecosystems more proximal versus distal to human impact. The selection of different sequence similarity thresholds strongly influenced the index measurements. Unique index subcategory modes distinguished the different metagenomes. Broad-scale screening of ARD potential using this index revealed utility for framing environmental health monitoring and surveillance. This approach holds promise as a screening tool for establishing baseline ARD levels that can be used to inform and prioritize decision making regarding management of ARD sources and human exposure routes. Port JA, Cullen AC, Wallace JC, Smith MN, Faustman EM. 2014. Metagenomic frameworks for monitoring antibiotic resistance in aquatic environments. Environ Health Perspect 122:222–228; http://dx.doi.org/10.1289/ehp

  12. A response regulator from a soil metagenome enhances resistance to the β-lactam antibiotic carbenicillin in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Heather K Allen

    Full Text Available Functional metagenomic analysis of soil metagenomes is a method for uncovering as-yet unidentified mechanisms for antibiotic resistance. Here we report an unconventional mode by which a response regulator derived from a soil metagenome confers resistance to the β-lactam antibiotic carbenicillin in Escherichia coli. A recombinant clone (βlr16 harboring a 5,169 bp DNA insert was selected from a metagenomic library previously constructed from a remote Alaskan soil. The βlr16 clone conferred specific resistance to carbenicillin, with limited increases in resistance to other tested antibiotics, including other β-lactams (penicillins and cephalosporins, rifampin, ciprofloxacin, erythromycin, chloramphenicol, nalidixic acid, fusidic acid, and gentamicin. Resistance was more pronounced at 24°C than at 37°C. Zone-of-inhibition assays suggested that the mechanism of carbenicillin resistance was not due to antibiotic inactivation. The DNA insert did not encode any genes known to confer antibiotic resistance, but did have two putative open reading frames (ORFs that were annotated as a metallopeptidase and a two-component response regulator. Transposon mutagenesis and subcloning of the two ORFs followed by phenotypic assays showed that the response regulator gene was necessary and sufficient to confer the resistance phenotype. Quantitative reverse transcriptase PCR showed that the response regulator suppressed expression of the ompF porin gene, independently of the small RNA regulator micF, and enhanced expression of the acrD, mdtA, and mdtB efflux pump genes. This work demonstrates that antibiotic resistance can be achieved by the modulation of gene regulation by heterologous DNA. Functional analyses such as these can be important for making discoveries in antibiotic resistance gene biology and ecology.

  13. MALINA: a web service for visual analytics of human gut microbiota whole-genome metagenomic reads.

    Science.gov (United States)

    Tyakht, Alexander V; Popenko, Anna S; Belenikin, Maxim S; Altukhov, Ilya A; Pavlenko, Alexander V; Kostryukova, Elena S; Selezneva, Oksana V; Larin, Andrei K; Karpova, Irina Y; Alexeev, Dmitry G

    2012-12-07

    MALINA is a web service for bioinformatic analysis of whole-genome metagenomic data obtained from human gut microbiota sequencing. As input data, it accepts metagenomic reads of various sequencing technologies, including long reads (such as Sanger and 454 sequencing) and next-generation (including SOLiD and Illumina). It is the first metagenomic web service that is capable of processing SOLiD color-space reads, to authors' knowledge. The web service allows phylogenetic and functional profiling of metagenomic samples using coverage depth resulting from the alignment of the reads to the catalogue of reference sequences which are built into the pipeline and contain prevalent microbial genomes and genes of human gut microbiota. The obtained metagenomic composition vectors are processed by the statistical analysis and visualization module containing methods for clustering, dimension reduction and group comparison. Additionally, the MALINA database includes vectors of bacterial and functional composition for human gut microbiota samples from a large number of existing studies allowing their comparative analysis together with user samples, namely datasets from Russian Metagenome project, MetaHIT and Human Microbiome Project (downloaded from http://hmpdacc.org). MALINA is made freely available on the web at http://malina.metagenome.ru. The website is implemented in JavaScript (using Ext JS), Microsoft .NET Framework, MS SQL, Python, with all major browsers supported.

  14. The Dark Side of the Mushroom Spring Microbial Mat: Life in the Shadow of Chlorophototrophs. II. Metabolic Functions of Abundant Community Members Predicted from Metagenomic Analyses.

    Science.gov (United States)

    Thiel, Vera; Hügler, Michael; Ward, David M; Bryant, Donald A

    2017-01-01

    Microbial mat communities in the effluent channels of Octopus and Mushroom Springs within the Lower Geyser Basin of Yellowstone National Park have been extensively characterized. Previous studies have focused on the chlorophototrophic organisms of the phyla Cyanobacteria and Chloroflexi . However, the diversity and metabolic functions of the other portion of the community in the microoxic/anoxic region of the mat are poorly understood. We recently described the diverse but extremely uneven microbial assemblage in the undermat of Mushroom Spring based on 16S rRNA amplicon sequences, which was dominated by Roseiflexus members, filamentous anoxygenic chlorophototrophs. In this study, we analyzed the orange-colored undermat portion of the community of Mushroom Spring mats in a genome-centric approach and discuss the metabolic potentials of the major members. Metagenome binning recovered partial genomes of all abundant community members, ranging in completeness from ~28 to 96%, and allowed affiliation of function with taxonomic identity even for representatives of novel and Candidate phyla. Less complete metagenomic bins correlated with high microdiversity. The undermat portion of the community was found to be a mixture of phototrophic and chemotrophic organisms, which use bicarbonate as well as organic carbon sources derived from different cell components and fermentation products. The presence of rhodopsin genes in many taxa strengthens the hypothesis that light energy is of major importance. Evidence for the usage of all four bacterial carbon fixation pathways was found in the metagenome. Nitrogen fixation appears to be limited to Synechococcus spp. in the upper mat layer and Thermodesulfovibrio sp. in the undermat, and nitrate/nitrite metabolism was limited. A closed sulfur cycle is indicated by biological sulfate reduction combined with the presence of genes for sulfide oxidation mainly in phototrophs. Finally, a variety of undermat microorganisms have genes for

  15. The Dark Side of the Mushroom Spring Microbial Mat: Life in the Shadow of Chlorophototrophs. II. Metabolic Functions of Abundant Community Members Predicted from Metagenomic Analyses

    Directory of Open Access Journals (Sweden)

    Vera Thiel

    2017-06-01

    Full Text Available Microbial mat communities in the effluent channels of Octopus and Mushroom Springs within the Lower Geyser Basin of Yellowstone National Park have been extensively characterized. Previous studies have focused on the chlorophototrophic organisms of the phyla Cyanobacteria and Chloroflexi. However, the diversity and metabolic functions of the other portion of the community in the microoxic/anoxic region of the mat are poorly understood. We recently described the diverse but extremely uneven microbial assemblage in the undermat of Mushroom Spring based on 16S rRNA amplicon sequences, which was dominated by Roseiflexus members, filamentous anoxygenic chlorophototrophs. In this study, we analyzed the orange-colored undermat portion of the community of Mushroom Spring mats in a genome-centric approach and discuss the metabolic potentials of the major members. Metagenome binning recovered partial genomes of all abundant community members, ranging in completeness from ~28 to 96%, and allowed affiliation of function with taxonomic identity even for representatives of novel and Candidate phyla. Less complete metagenomic bins correlated with high microdiversity. The undermat portion of the community was found to be a mixture of phototrophic and chemotrophic organisms, which use bicarbonate as well as organic carbon sources derived from different cell components and fermentation products. The presence of rhodopsin genes in many taxa strengthens the hypothesis that light energy is of major importance. Evidence for the usage of all four bacterial carbon fixation pathways was found in the metagenome. Nitrogen fixation appears to be limited to Synechococcus spp. in the upper mat layer and Thermodesulfovibrio sp. in the undermat, and nitrate/nitrite metabolism was limited. A closed sulfur cycle is indicated by biological sulfate reduction combined with the presence of genes for sulfide oxidation mainly in phototrophs. Finally, a variety of undermat

  16. Compositional profile of α / β-hydrolase fold proteins in mangrove soil metagenomes: prevalence of epoxide hydrolases and haloalkane dehalogenases in oil-contaminated sites.

    Science.gov (United States)

    Jiménez, Diego Javier; Dini-Andreote, Francisco; Ottoni, Júlia Ronzella; de Oliveira, Valéria Maia; van Elsas, Jan Dirk; Andreote, Fernando Dini

    2015-05-01

    The occurrence of genes encoding biotechnologically relevant α/β-hydrolases in mangrove soil microbial communities was assessed using data obtained by whole-metagenome sequencing of four mangroves areas, denoted BrMgv01 to BrMgv04, in São Paulo, Brazil. The sequences (215 Mb in total) were filtered based on local amino acid alignments against the Lipase Engineering Database. In total, 5923 unassembled sequences were affiliated with 30 different α/β-hydrolase fold superfamilies. The most abundant predicted proteins encompassed cytosolic hydrolases (abH08; ∼ 23%), microsomal hydrolases (abH09; ∼ 12%) and Moraxella lipase-like proteins (abH04 and abH01; mangroves BrMgv01-02-03. This suggested selection and putative involvement in local degradation/detoxification of the pollutants. Seven sequences that were annotated as genes for putative epoxide hydrolases and five for putative haloalkane dehalogenases were found in a fosmid library generated from BrMgv02 DNA. The latter enzymes were predicted to belong to Actinobacteria, Deinococcus-Thermus, Planctomycetes and Proteobacteria. Our integrated approach thus identified 12 genes (complete and/or partial) that may encode hitherto undescribed enzymes. The low amino acid identity (< 60%) with already-described genes opens perspectives for both production in an expression host and genetic screening of metagenomes. © 2014 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  17. Evaluation of FTA ® paper for storage of oral meta-genomic DNA.

    Science.gov (United States)

    Foitzik, Magdalena; Stumpp, Sascha N; Grischke, Jasmin; Eberhard, Jörg; Stiesch, Meike

    2014-10-01

    The purpose of the present study was to evaluate the short-term storage of meta-genomic DNA from native oral biofilms on FTA(®) paper. Thirteen volunteers of both sexes received an acrylic splint for intraoral biofilm formation over a period of 48 hours. The biofilms were collected, resuspended in phosphate-buffered saline, and either stored on FTA(®) paper or directly processed by standard laboratory DNA extraction. The nucleic acid extraction efficiencies were evaluated by 16S rDNA targeted SSCP fingerprinting. The acquired banding pattern of FTA-derived meta-genomic DNA was compared to a standard DNA preparation protocol. Sensitivity and positive predictive values were calculated. The volunteers showed inter-individual differences in their bacterial species composition. A total of 200 bands were found for both methods and 85% of the banding patterns were equal, representing a sensitivity of 0.941 and a false-negative predictive value of 0.059. Meta-genomic DNA sampling, extraction, and adhesion using FTA(®) paper is a reliable method for storage of microbial DNA for a short period of time.

  18. Experimental Design and Bioinformatics Analysis for the Application of Metagenomics in Environmental Sciences and Biotechnology.

    Science.gov (United States)

    Ju, Feng; Zhang, Tong

    2015-11-03

    Recent advances in DNA sequencing technologies have prompted the widespread application of metagenomics for the investigation of novel bioresources (e.g., industrial enzymes and bioactive molecules) and unknown biohazards (e.g., pathogens and antibiotic resistance genes) in natural and engineered microbial systems across multiple disciplines. This review discusses the rigorous experimental design and sample preparation in the context of applying metagenomics in environmental sciences and biotechnology. Moreover, this review summarizes the principles, methodologies, and state-of-the-art bioinformatics procedures, tools and database resources for metagenomics applications and discusses two popular strategies (analysis of unassembled reads versus assembled contigs/draft genomes) for quantitative or qualitative insights of microbial community structure and functions. Overall, this review aims to facilitate more extensive application of metagenomics in the investigation of uncultured microorganisms, novel enzymes, microbe-environment interactions, and biohazards in biotechnological applications where microbial communities are engineered for bioenergy production, wastewater treatment, and bioremediation.

  19. Vinasse fertirrigation alters soil resistome dynamics: an analysis based on metagenomic profiles.

    Science.gov (United States)

    Braga, Lucas P P; Alves, Rafael F; Dellias, Marina T F; Navarrete, Acacio A; Basso, Thiago O; Tsai, Siu M

    2017-01-01

    Every year around 300 Gl of vinasse, a by-product of ethanol distillation in sugarcane mills, are flushed into more than 9 Mha of sugarcane cropland in Brazil. This practice links fermentation waste management to fertilization for plant biomass production, and it is known as fertirrigation. Here we evaluate public datasets of soil metagenomes mining for changes in antibiotic resistance genes (ARGs) of soils from sugarcane mesocosms repeatedly amended with vinasse. The metagenomes were annotated using the ResFam database. We found that the abundance of open read frames (ORFs) annotated as ARGs changed significantly across 43 different families ( p -value resistome.

  20. The relative abundance of predicted genes associated with ammonia-oxidation, nitrate reduction, and biomass decomposition in mineral soil are altered by intensive timber harvest.

    Science.gov (United States)

    Mushinski, R. M.; Zhou, Y.; Gentry, T. J.; Boutton, T. W.

    2017-12-01

    Forest ecosystems in the southern United States are substantially altered by anthropogenic disturbances such as timber harvest and land conversion, with effects being observed in carbon and nutrient pools as well as biogeochemical processes. Furthermore, the desire to develop renewable energy sources in the form of biomass extraction from logging residues may result in alterations in soil community structure and function. While the impact of forest management on soil physicochemical properties of the region has been studied, its' long-term effect on soil bacterial community composition and metagenomic potential is relatively unknown, especially at deeper soil depths. This study investigates how intensive organic matter removal intensities associated with timber harvest influence decadal-scale alterations in bacterial community structure and functional potential in the upper 1-m of the soil profile, 18 years post-harvest in a Pinus taeda L. forest of eastern Texas. Amplicon sequencing of the 16S rRNA gene was used in conjunction with soil chemical analyses to evaluate treatment-induced differences in community composition and potential environmental drivers of associated change. Furthermore, functional potential was assessed by using amplicon data to make metagenomic predictions. Results indicate that increasing organic matter removal intensity leads to altered community composition and the relative abundance of dominant OTUs annotated to Burkholderia and Aciditerrimonas. The relative abundance of predicted genes associated with dissimilatory nitrate reduction and denitrification were highest in the most intensively harvested treatment while genes involved in nitrification were significantly lower in the most intensively harvested treatment. Furthermore, genes associated with glycosyltransferases were significantly reduced with increasing harvest intensity while polysaccharide lyases increased. These results imply that intensive organic matter removal may create

  1. Critical Assessment of Metagenome Interpretation – a benchmark of computational metagenomics software

    Science.gov (United States)

    Sczyrba, Alexander; Hofmann, Peter; Belmann, Peter; Koslicki, David; Janssen, Stefan; Dröge, Johannes; Gregor, Ivan; Majda, Stephan; Fiedler, Jessika; Dahms, Eik; Bremges, Andreas; Fritz, Adrian; Garrido-Oter, Ruben; Jørgensen, Tue Sparholt; Shapiro, Nicole; Blood, Philip D.; Gurevich, Alexey; Bai, Yang; Turaev, Dmitrij; DeMaere, Matthew Z.; Chikhi, Rayan; Nagarajan, Niranjan; Quince, Christopher; Meyer, Fernando; Balvočiūtė, Monika; Hansen, Lars Hestbjerg; Sørensen, Søren J.; Chia, Burton K. H.; Denis, Bertrand; Froula, Jeff L.; Wang, Zhong; Egan, Robert; Kang, Dongwan Don; Cook, Jeffrey J.; Deltel, Charles; Beckstette, Michael; Lemaitre, Claire; Peterlongo, Pierre; Rizk, Guillaume; Lavenier, Dominique; Wu, Yu-Wei; Singer, Steven W.; Jain, Chirag; Strous, Marc; Klingenberg, Heiner; Meinicke, Peter; Barton, Michael; Lingner, Thomas; Lin, Hsin-Hung; Liao, Yu-Chieh; Silva, Genivaldo Gueiros Z.; Cuevas, Daniel A.; Edwards, Robert A.; Saha, Surya; Piro, Vitor C.; Renard, Bernhard Y.; Pop, Mihai; Klenk, Hans-Peter; Göker, Markus; Kyrpides, Nikos C.; Woyke, Tanja; Vorholt, Julia A.; Schulze-Lefert, Paul; Rubin, Edward M.; Darling, Aaron E.; Rattei, Thomas; McHardy, Alice C.

    2018-01-01

    In metagenome analysis, computational methods for assembly, taxonomic profiling and binning are key components facilitating downstream biological data interpretation. However, a lack of consensus about benchmarking datasets and evaluation metrics complicates proper performance assessment. The Critical Assessment of Metagenome Interpretation (CAMI) challenge has engaged the global developer community to benchmark their programs on datasets of unprecedented complexity and realism. Benchmark metagenomes were generated from ~700 newly sequenced microorganisms and ~600 novel viruses and plasmids, including genomes with varying degrees of relatedness to each other and to publicly available ones and representing common experimental setups. Across all datasets, assembly and genome binning programs performed well for species represented by individual genomes, while performance was substantially affected by the presence of related strains. Taxonomic profiling and binning programs were proficient at high taxonomic ranks, with a notable performance decrease below the family level. Parameter settings substantially impacted performances, underscoring the importance of program reproducibility. While highlighting current challenges in computational metagenomics, the CAMI results provide a roadmap for software selection to answer specific research questions. PMID:28967888

  2. MEGGASENSE - The Metagenome/Genome Annotated Sequence Natural Language Search Engine: A Platform for 
the Construction of Sequence Data Warehouses.

    Science.gov (United States)

    Gacesa, Ranko; Zucko, Jurica; Petursdottir, Solveig K; Gudmundsdottir, Elisabet Eik; Fridjonsson, Olafur H; Diminic, Janko; Long, Paul F; Cullum, John; Hranueli, Daslav; Hreggvidsson, Gudmundur O; Starcevic, Antonio

    2017-06-01

    The MEGGASENSE platform constructs relational databases of DNA or protein sequences. The default functional analysis uses 14 106 hidden Markov model (HMM) profiles based on sequences in the KEGG database. The Solr search engine allows sophisticated queries and a BLAST search function is also incorporated. These standard capabilities were used to generate the SCATT database from the predicted proteome of Streptomyces cattleya . The implementation of a specialised metagenome database (AMYLOMICS) for bioprospecting of carbohydrate-modifying enzymes is described. In addition to standard assembly of reads, a novel 'functional' assembly was developed, in which screening of reads with the HMM profiles occurs before the assembly. The AMYLOMICS database incorporates additional HMM profiles for carbohydrate-modifying enzymes and it is illustrated how the combination of HMM and BLAST analyses helps identify interesting genes. A variety of different proteome and metagenome databases have been generated by MEGGASENSE.

  3. Isolation of xylose isomerases by sequence- and function-based screening from a soil metagenomic library

    Directory of Open Access Journals (Sweden)

    Parachin Nádia

    2011-05-01

    Full Text Available Abstract Background Xylose isomerase (XI catalyses the isomerisation of xylose to xylulose in bacteria and some fungi. Currently, only a limited number of XI genes have been functionally expressed in Saccharomyces cerevisiae, the microorganism of choice for lignocellulosic ethanol production. The objective of the present study was to search for novel XI genes in the vastly diverse microbial habitat present in soil. As the exploitation of microbial diversity is impaired by the ability to cultivate soil microorganisms under standard laboratory conditions, a metagenomic approach, consisting of total DNA extraction from a given environment followed by cloning of DNA into suitable vectors, was undertaken. Results A soil metagenomic library was constructed and two screening methods based on protein sequence similarity and enzyme activity were investigated to isolate novel XI encoding genes. These two screening approaches identified the xym1 and xym2 genes, respectively. Sequence and phylogenetic analyses revealed that the genes shared 67% similarity and belonged to different bacterial groups. When xym1 and xym2 were overexpressed in a xylA-deficient Escherichia coli strain, similar growth rates to those in which the Piromyces XI gene was expressed were obtained. However, expression in S. cerevisiae resulted in only one-fourth the growth rate of that obtained for the strain expressing the Piromyces XI gene. Conclusions For the first time, the screening of a soil metagenomic library in E. coli resulted in the successful isolation of two active XIs. However, the discrepancy between XI enzyme performance in E. coli and S. cerevisiae suggests that future screening for XI activity from soil should be pursued directly using yeast as a host.

  4. Web Resources for Metagenomics Studies

    Directory of Open Access Journals (Sweden)

    Pravin Dudhagara

    2015-10-01

    Full Text Available The development of next-generation sequencing (NGS platforms spawned an enormous volume of data. This explosion in data has unearthed new scalability challenges for existing bioinformatics tools. The analysis of metagenomic sequences using bioinformatics pipelines is complicated by the substantial complexity of these data. In this article, we review several commonly-used online tools for metagenomics data analysis with respect to their quality and detail of analysis using simulated metagenomics data. There are at least a dozen such software tools presently available in the public domain. Among them, MGRAST, IMG/M, and METAVIR are the most well-known tools according to the number of citations by peer-reviewed scientific media up to mid-2015. Here, we describe 12 online tools with respect to their web link, annotation pipelines, clustering methods, online user support, and availability of data storage. We have also done the rating for each tool to screen more potential and preferential tools and evaluated five best tools using synthetic metagenome. The article comprehensively deals with the contemporary problems and the prospects of metagenomics from a bioinformatics viewpoint.

  5. HuMiChip: Development of a Functional Gene Array for the Study of Human Microbiomes

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Q.; Deng, Ye; Lin, Lu; Hemme, Chris L.; He, Zhili; Zhou, Jizhong

    2010-05-17

    Microbiomes play very important roles in terms of nutrition, health and disease by interacting with their hosts. Based on sequence data currently available in public domains, we have developed a functional gene array to monitor both organismal and functional gene profiles of normal microbiota in human and mouse hosts, and such an array is called human and mouse microbiota array, HMM-Chip. First, seed sequences were identified from KEGG databases, and used to construct a seed database (seedDB) containing 136 gene families in 19 metabolic pathways closely related to human and mouse microbiomes. Second, a mother database (motherDB) was constructed with 81 genomes of bacterial strains with 54 from gut and 27 from oral environments, and 16 metagenomes, and used for selection of genes and probe design. Gene prediction was performed by Glimmer3 for bacterial genomes, and by the Metagene program for metagenomes. In total, 228,240 and 801,599 genes were identified for bacterial genomes and metagenomes, respectively. Then the motherDB was searched against the seedDB using the HMMer program, and gene sequences in the motherDB that were highly homologous with seed sequences in the seedDB were used for probe design by the CommOligo software. Different degrees of specific probes, including gene-specific, inclusive and exclusive group-specific probes were selected. All candidate probes were checked against the motherDB and NCBI databases for specificity. Finally, 7,763 probes covering 91.2percent (12,601 out of 13,814) HMMer confirmed sequences from 75 bacterial genomes and 16 metagenomes were selected. This developed HMM-Chip is able to detect the diversity and abundance of functional genes, the gene expression of microbial communities, and potentially, the interactions of microorganisms and their hosts.

  6. Moleculo Long-Read Sequencing Facilitates Assembly and Genomic Binning from Complex Soil Metagenomes

    Energy Technology Data Exchange (ETDEWEB)

    White, Richard Allen; Bottos, Eric M.; Roy Chowdhury, Taniya; Zucker, Jeremy D.; Brislawn, Colin J.; Nicora, Carrie D.; Fansler, Sarah J.; Glaesemann, Kurt R.; Glass, Kevin; Jansson, Janet K.; Langille, Morgan

    2016-06-28

    ABSTRACT

    Soil metagenomics has been touted as the “grand challenge” for metagenomics, as the high microbial diversity and spatial heterogeneity of soils make them unamenable to current assembly platforms. Here, we aimed to improve soil metagenomic sequence assembly by applying the Moleculo synthetic long-read sequencing technology. In total, we obtained 267 Gbp of raw sequence data from a native prairie soil; these data included 109.7 Gbp of short-read data (~100 bp) from the Joint Genome Institute (JGI), an additional 87.7 Gbp of rapid-mode read data (~250 bp), plus 69.6 Gbp (>1.5 kbp) from Moleculo sequencing. The Moleculo data alone yielded over 5,600 reads of >10 kbp in length, and over 95% of the unassembled reads mapped to contigs of >1.5 kbp. Hybrid assembly of all data resulted in more than 10,000 contigs over 10 kbp in length. We mapped three replicate metatranscriptomes derived from the same parent soil to the Moleculo subassembly and found that 95% of the predicted genes, based on their assignments to Enzyme Commission (EC) numbers, were expressed. The Moleculo subassembly also enabled binning of >100 microbial genome bins. We obtained via direct binning the first complete genome, that of “CandidatusPseudomonas sp. strain JKJ-1” from a native soil metagenome. By mapping metatranscriptome sequence reads back to the bins, we found that several bins corresponding to low-relative-abundanceAcidobacteriawere highly transcriptionally active, whereas bins corresponding to high-relative-abundanceVerrucomicrobiawere not. These results demonstrate that Moleculo sequencing provides a significant advance for resolving complex soil microbial communities.

    IMPORTANCESoil microorganisms carry out key processes for life on our planet, including cycling of carbon and other nutrients and supporting growth of plants. However, there is poor molecular-level understanding of their

  7. An enrichment of CRISPR and other defense-related features in marine sponge-associated microbial metagenomes

    Directory of Open Access Journals (Sweden)

    Hannes Horn

    2016-11-01

    Full Text Available Many marine sponges are populated by dense and taxonomically diverse microbial consortia. We employed a metagenomics approach to unravel the differences in the functional gene repertoire among three Mediterranean sponge species, Petrosia ficiformis, Sarcotragus foetidus, Aplysina aerophoba and seawater. Different signatures were observed between sponge and seawater metagenomes with regard to microbial community composition, GC content, and estimated bacterial genome size. Our analysis showed further a pronounced repertoire for defense systems in sponge metagenomes. Specifically, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR, restriction modification, DNA phosphorothioation and phage growth limitation systems were enriched in sponge metagenomes. These data suggest that defense is an important functional trait for an existence within sponges that requires mechanisms to defend against foreign DNA from microorganisms and viruses. This study contributes to an understanding of the evolutionary arms race between viruses/phages and bacterial genomes and it sheds light on the bacterial defenses that have evolved in the context of the sponge holobiont.

  8. Metagenomic data of fungal internal transcribed spacer from serofluid dish, a traditional Chinese fermented food

    Directory of Open Access Journals (Sweden)

    Peng Chen

    2016-03-01

    Full Text Available Serofluid dish (or Jiangshui, in Chinese, a traditional food in the Chinese culture for thousands of years, is made from vegetables by fermentation. In this work, microorganism community of the fermented serofluid dish was investigated by the culture-independent method. The metagenomic data in this article contains the sequences of fungal internal transcribed spacer (ITS regions of rRNA genes from 12 different serofluid dish samples. The metagenome comprised of 50,865 average raw reads with an average of 8,958,220 bp and G + C content is 45.62%. This is the first report on metagenomic data of fungal ITS from serofluid dish employing Illumina platform to profile the fungal communities of this little known fermented food from Gansu Province, China. The Metagenomic data of fungal internal transcribed spacer can be accessed at NCBI, SRA database accession no. SRP067411. Keywords: Serofluid dish, Jiangshui, Fungal ITS, Cultivation-independent, Microbial diversity

  9. Phylogeny-guided (meta)genome mining approach for the targeted discovery of new microbial natural products.

    Science.gov (United States)

    Kang, Hahk-Soo

    2017-02-01

    Genomics-based methods are now commonplace in natural products research. A phylogeny-guided mining approach provides a means to quickly screen a large number of microbial genomes or metagenomes in search of new biosynthetic gene clusters of interest. In this approach, biosynthetic genes serve as molecular markers, and phylogenetic trees built with known and unknown marker gene sequences are used to quickly prioritize biosynthetic gene clusters for their metabolites characterization. An increase in the use of this approach has been observed for the last couple of years along with the emergence of low cost sequencing technologies. The aim of this review is to discuss the basic concept of a phylogeny-guided mining approach, and also to provide examples in which this approach was successfully applied to discover new natural products from microbial genomes and metagenomes. I believe that the phylogeny-guided mining approach will continue to play an important role in genomics-based natural products research.

  10. Metagenomic profiles of antibiotic resistance genes (ARGs) between human impacted estuary and deep ocean sediments.

    Science.gov (United States)

    Chen, Baowei; Yang, Ying; Liang, Ximei; Yu, Ke; Zhang, Tong; Li, Xiangdong

    2013-11-19

    Knowledge of the origins and dissemination of antibiotic resistance genes (ARGs) is essential for understanding modern resistomes in the environment. The mechanisms of the dissemination of ARGs can be revealed through comparative studies on the metagenomic profiling of ARGs between relatively pristine and human-impacted environments. The deep ocean bed of the South China Sea (SCS) is considered to be largely devoid of anthropogenic impacts, while the Pearl River Estuary (PRE) in south China has been highly impacted by intensive human activities. Commonly used antibiotics (sulfamethazine, norfloxacin, ofloxacin, tetracycline, and erythromycin) have been detected through chemical analysis in the PRE sediments, but not in the SCS sediments. In the relatively pristine SCS sediments, the most prevalent and abundant ARGs are those related to resistance to macrolides and polypeptides, with efflux pumps as the predominant mechanism. In the contaminated PRE sediments, the typical ARG profiles suggest a prevailing resistance to antibiotics commonly used in human health and animal farming (including sulfonamides, fluoroquinolones, and aminoglycosides), and higher diversity in both genotype and resistance mechanism than those in the SCS. In particular, antibiotic inactivation significantly contributed to the resistance to aminoglycosides, β-lactams, and macrolides observed in the PRE sediments. There was a significant correlation in the levels of abundance of ARGs and those of mobile genetic elements (including integrons and plasmids), which serve as carriers in the dissemination of ARGs in the aquatic environment. The metagenomic results from the current study support the view that ARGs naturally originate in pristine environments, while human activities accelerate the dissemination of ARGs so that microbes would be able to tolerate selective environmental stress in response to anthropogenic impacts.

  11. Natural history bycatch: a pipeline for identifying metagenomic sequences in RADseq data

    Directory of Open Access Journals (Sweden)

    Iris Holmes

    2018-04-01

    Full Text Available Background Reduced representation genomic datasets are increasingly becoming available from a variety of organisms. These datasets do not target specific genes, and so may contain sequences from parasites and other organisms present in the target tissue sample. In this paper, we demonstrate that (1 RADseq datasets can be used for exploratory analysis of tissue-specific metagenomes, and (2 tissue collections house complete metagenomic communities, which can be investigated and quantified by a variety of techniques. Methods We present an exploratory method for mining metagenomic “bycatch” sequences from a range of host tissue types. We use a combination of the pyRAD assembly pipeline, NCBI’s blastn software, and custom R scripts to isolate metagenomic sequences from RADseq type datasets. Results When we focus on sequences that align with existing references in NCBI’s GenBank, we find that between three and five percent of identifiable double-digest restriction site associated DNA (ddRAD sequences from host tissue samples are from phyla to contain known blood parasites. In addition to tissue samples, we examine ddRAD sequences from metagenomic DNA extracted snake and lizard hind-gut samples. We find that the sequences recovered from these samples match with expected bacterial and eukaryotic gut microbiome phyla. Discussion Our results suggest that (1 museum tissue banks originally collected for host DNA archiving are also preserving valuable parasite and microbiome communities, (2 that publicly available RADseq datasets may include metagenomic sequences that could be explored, and (3 that restriction site approaches are a useful exploratory technique to identify microbiome lineages that could be missed by primer-based approaches.

  12. Metagenomic and proteomic analyses to elucidate the mechanism of anaerobic benzene degradation

    Energy Technology Data Exchange (ETDEWEB)

    Abu Laban, Nidal [Helmholtz (Germany)

    2011-07-01

    This paper presents the mechanism of anaerobic benzene degradation using metagenomic and proteomic analyses. The objective of the study is to find out the microbes and biochemistry involved in benzene degradation. Hypotheses are proposed for the initial activation mechanism of benzene under anaerobic conditions. Two methods for degradation, molecular characterization and identification of benzene-degrading enzymes, are described. The physiological and molecular characteristics of iron-reducing enrichment culture are given and the process is detailed. Metagenome analysis of iron-reducing culture is presented using a pie chart. From the metagenome analysis of benzene-degrading culture, putative mobile element genes were identified in the aromatic-degrading configurations. Metaproteomic analysis of iron-reducing cultures and the anaerobic benzene degradation pathway are also elucidated. From the study, it can be concluded that gram-positive bacteria are involved in benzene degradation under iron-reducing conditions and that the catalysis mechanism of putative anaerobic benzene carboxylase needs further investigation.

  13. Low Maternal Microbiota Sharing across Gut, Breast Milk and Vagina, as Revealed by 16S rRNA Gene and Reduced Metagenomic Sequencing

    Directory of Open Access Journals (Sweden)

    Ekaterina Avershina

    2018-05-01

    Full Text Available The maternal microbiota plays an important role in infant gut colonization. In this work we have investigated which bacterial species are shared across the breast milk, vaginal and stool microbiotas of 109 women shortly before and after giving birth using 16S rRNA gene sequencing and a novel reduced metagenomic sequencing (RMS approach in a subgroup of 16 women. All the species predicted by the 16S rRNA gene sequencing were also detected by RMS analysis and there was good correspondence between their relative abundances estimated by both approaches. Both approaches also demonstrate a low level of maternal microbiota sharing across the population and RMS analysis identified only two species common to most women and in all sample types (Bifidobacterium longum and Enterococcus faecalis. Breast milk was the only sample type that had significantly higher intra- than inter- individual similarity towards both vaginal and stool samples. We also searched our RMS dataset against an in silico generated reference database derived from bacterial isolates in the Human Microbiome Project. The use of this reference-based search enabled further separation of Bifidobacterium longum into Bifidobacterium longum ssp. longum and Bifidobacterium longum ssp. infantis. We also detected the Lactobacillus rhamnosus GG strain, which was used as a probiotic supplement by some women, demonstrating the potential of RMS approach for deeper taxonomic delineation and estimation.

  14. Strain-Level Discrimination of Shiga Toxin-Producing Escherichia coli in Spinach Using Metagenomic Sequencing.

    Directory of Open Access Journals (Sweden)

    Susan R Leonard

    Full Text Available Consumption of fresh bagged spinach contaminated with Shiga toxin-producing Escherichia coli (STEC has led to severe illness and death; however current culture-based methods to detect foodborne STEC are time consuming. Since not all STEC strains are considered pathogenic to humans, it is crucial to incorporate virulence characterization of STEC in the detection method. In this study, we assess the comprehensiveness of utilizing a shotgun metagenomics approach for detection and strain-level identification by spiking spinach with a variety of genomically disparate STEC strains at a low contamination level of 0.1 CFU/g. Molecular serotyping, virulence gene characterization, microbial community analysis, and E. coli core gene single nucleotide polymorphism (SNP analysis were performed on metagenomic sequence data from enriched samples. It was determined from bacterial community analysis that E. coli, which was classified at the phylogroup level, was a major component of the population in most samples. However, in over half the samples, molecular serotyping revealed the presence of indigenous E. coli which also contributed to the percent abundance of E. coli. Despite the presence of additional E. coli strains, the serotype and virulence genes of the spiked STEC, including correct Shiga toxin subtype, were detected in 94% of the samples with a total number of reads per sample averaging 2.4 million. Variation in STEC abundance and/or detection was observed in replicate spiked samples, indicating an effect from the indigenous microbiota during enrichment. SNP analysis of the metagenomic data correctly placed the spiked STEC in a phylogeny of related strains in cases where the indigenous E. coli did not predominate in the enriched sample. Also, for these samples, our analysis demonstrates that strain-level phylogenetic resolution is possible using shotgun metagenomic data for determining the genomic relatedness of a contaminating STEC strain to other

  15. Metagenomic evidence for sulfur lithotrophy by Epsilonproteobacteria as the major energy source for primary productivity in a sub-aerial arctic glacial deposit, Borup Fiord Pass.

    Science.gov (United States)

    Wright, Katherine E; Williamson, Charles; Grasby, Stephen E; Spear, John R; Templeton, Alexis S

    2013-01-01

    We combined free enenergy calculations and metagenomic analyses of an elemental sulfur (S(0)) deposit on the surface of Borup Fiord Pass Glacier in the Canadian High Arctic to investigate whether the energy available from different redox reactions in an environment predicts microbial metabolism. Many S, C, Fe, As, Mn, and [Formula: see text] oxidation reactions were predicted to be energetically feasible in the deposit, and aerobic oxidation of S(0) was the most abundant chemical energy source. Small subunit ribosomal RNA (SSU rRNA) gene sequence data showed that the dominant phylotypes were Sulfurovum and Sulfuricurvum, both Epsilonproteobacteria known to be capable of sulfur lithotrophy. Sulfur redox genes were abundant in the metagenome, but sox genes were significantly more abundant than reverse dsr (dissimilatory sulfite reductase)genes. Interestingly, there appeared to be habitable niches that were unoccupied at the depth of genome coverage obtained. Photosynthesis and [Formula: see text] oxidation should both be energetically favorable, but we found few or no functional genes for oxygenic or anoxygenic photosynthesis, or for [Formula: see text] oxidation by either oxygen (nitrification) or nitrite (anammox). The free energy, SSU rRNA gene and quantitative functional gene data are all consistent with the hypothesis that sulfur-based chemolithoautotrophy by Epsilonproteobacteria (Sulfurovum and Sulfuricurvum) is the main form of primary productivity at this site, instead of photosynthesis. This is despite the presence of 24-h sunlight, and the fact that photosynthesis is not known to be inhibited by any of the environmental conditions present. This is the first time that Sulfurovum and Sulfuricurvum have been shown to dominate a sub-aerial environment, rather than anoxic or sulfidic settings. We also found that Flavobacteria dominate the surface of the sulfur deposits. We hypothesize that this aerobic heterotroph uses enough oxygen to create a microoxic

  16. Metagenomic evidence for sulfur lithotrophy by Epsilonproteobacteria as the major energy source for primary productivity in a sub-aerial arctic glacial deposit, Borup Fiord Pass

    Directory of Open Access Journals (Sweden)

    Katherine E Wright

    2013-04-01

    Full Text Available We combined free energy calculations and metagenomic analyses of an elemental sulfur (S0 deposit on the surface of Borup Fiord Pass Glacier in the Canadian High Arctic to investigate whether the energy available from different redox reactions in an environment predicts microbial metabolism. Many S, C, Fe, As, Mn and NH4+ oxidation reactions were predicted to be energetically feasible in the deposit, and aerobic oxidation of S0 was the most abundant chemical energy source. Small subunit ribosomal RNA (SSU rRNA gene sequence data showed that the dominant phylotypes were Sulfurovum and Sulfuricurvum, both Epsilonproteobacteria known to be capable of sulfur lithotrophy. Sulfur redox genes were abundant in the metagenome, but sox genes were significantly more abundant than reverse dsr genes. Interestingly, there appeared to be habitable niches that were unoccupied at the depth of genome coverage obtained. Photosynthesis and NH4+ oxidation should both be energetically favorable, but we found few or no functional genes for oxygenic or anoxygenic photosynthesis, or for NH4+ oxidation by either oxygen (nitrification or nitrite (anammox. The free energy, SSU rRNA gene and quantitative functional gene data are all consistent with the hypothesis that sulfur-based chemolithoautotrophy by Epsilonproteobacteria (Sulfurovum and Sulfuricurvum is the main form of primary productivity at this site, instead of photosynthesis. This is despite the presence of 24-hour sunlight, and the fact that photosynthesis is not known to be inhibited by any of the environmental conditions present. This is the first time that Sulfurovum and Sulfuricurvum have been shown to dominate a sub-aerial environment, rather than anoxic or sulfidic settings. We also found that Flavobacteria dominate the surface of the sulfur deposits. We hypothesize that this aerobic heterotroph uses enough oxygen to create a microoxic environment in the sulfur below, where the Epsilonproteobacteria can

  17. Microbial survival strategies in ancient permafrost: insights from metagenomics.

    Science.gov (United States)

    Mackelprang, Rachel; Burkert, Alexander; Haw, Monica; Mahendrarajah, Tara; Conaway, Christopher H; Douglas, Thomas A; Waldrop, Mark P

    2017-10-01

    In permafrost (perennially frozen ground) microbes survive oligotrophic conditions, sub-zero temperatures, low water availability and high salinity over millennia. Viable life exists in permafrost tens of thousands of years old but we know little about the metabolic and physiological adaptations to the challenges presented by life in frozen ground over geologic time. In this study we asked whether increasing age and the associated stressors drive adaptive changes in community composition and function. We conducted deep metagenomic and 16 S rRNA gene sequencing across a Pleistocene permafrost chronosequence from 19 000 to 33 000 years before present (kyr). We found that age markedly affected community composition and reduced diversity. Reconstruction of paleovegetation from metagenomic sequence suggests vegetation differences in the paleo record are not responsible for shifts in community composition and function. Rather, we observed shifts consistent with long-term survival strategies in extreme cryogenic environments. These include increased reliance on scavenging detrital biomass, horizontal gene transfer, chemotaxis, dormancy, environmental sensing and stress response. Our results identify traits that may enable survival in ancient cryoenvironments with no influx of energy or new materials.

  18. Functional metagenomic profiling of intestinal microbiome in extreme ageing

    Science.gov (United States)

    Rampelli, Simone; Candela, Marco; Turroni, Silvia; Biagi, Elena; Collino, Sebastiano; Franceschi, Claudio; O'Toole, Paul W; Brigidi, Patrizia

    2013-01-01

    Age-related alterations in human gut microbiota composition have been thoroughly described, but a detailed functional description of the intestinal bacterial coding capacity is still missing. In order to elucidate the contribution of the gut metagenome to the complex mosaic of human longevity, we applied shotgun sequencing to total fecal bacterial DNA in a selection of samples belonging to a well-characterized human ageing cohort. The age-related trajectory of the human gut microbiome was characterized by loss of genes for shortchain fatty acid production and an overall decrease in the saccharolytic potential, while proteolytic functions were more abundant than in the intestinal metagenome of younger adults. This altered functional profile was associated with a relevant enrichment in “pathobionts”, i.e. opportunistic pro-inflammatory bacteria generally present in the adult gut ecosystem in low numbers. Finally, as a signature for long life we identified 116 microbial genes that significantly correlated with ageing. Collectively, our data emphasize the relationship between intestinal bacteria and human metabolism, by detailing the modifications in the gut microbiota as a consequence of and/or promoter of the physiological changes occurring in the human host upon ageing. PMID:24334635

  19. Functional metagenomic profiling of intestinal microbiome in extreme ageing.

    Science.gov (United States)

    Rampelli, Simone; Candela, Marco; Turroni, Silvia; Biagi, Elena; Collino, Sebastiano; Franceschi, Claudio; O'Toole, Paul W; Brigidi, Patrizia

    2013-12-01

    Age-related alterations in human gut microbiota composition have been thoroughly described, but a detailed functional description of the intestinal bacterial coding capacity is still missing. In order to elucidate the contribution of the gut metagenome to the complex mosaic of human longevity, we applied shotgun sequencing to total fecal bacterial DNA in a selection of samples belonging to a well-characterized human ageing cohort. The age-related trajectory of the human gut microbiome was characterized by loss of genes for shortchain fatty acid production and an overall decrease in the saccharolytic potential, while proteolytic functions were more abundant than in the intestinal metagenome of younger adults. This altered functional profile was associated with a relevant enrichment in "pathobionts", i.e. opportunistic pro-inflammatory bacteria generally present in the adult gut ecosystem in low numbers. Finally, as a signature for long life we identified 116 microbial genes that significantly correlated with ageing. Collectively, our data emphasize the relationship between intestinal bacteria and human metabolism, by detailing the modifications in the gut microbiota as a consequence of and/or promoter of the physiological changes occurring in the human host upon ageing.

  20. A novel method to discover fluoroquinolone antibiotic resistance (qnr genes in fragmented nucleotide sequences

    Directory of Open Access Journals (Sweden)

    Boulund Fredrik

    2012-12-01

    Full Text Available Abstract Background Broad-spectrum fluoroquinolone antibiotics are central in modern health care and are used to treat and prevent a wide range of bacterial infections. The recently discovered qnr genes provide a mechanism of resistance with the potential to rapidly spread between bacteria using horizontal gene transfer. As for many antibiotic resistance genes present in pathogens today, qnr genes are hypothesized to originate from environmental bacteria. The vast amount of data generated by shotgun metagenomics can therefore be used to explore the diversity of qnr genes in more detail. Results In this paper we describe a new method to identify qnr genes in nucleotide sequence data. We show, using cross-validation, that the method has a high statistical power of correctly classifying sequences from novel classes of qnr genes, even for fragments as short as 100 nucleotides. Based on sequences from public repositories, the method was able to identify all previously reported plasmid-mediated qnr genes. In addition, several fragments from novel putative qnr genes were identified in metagenomes. The method was also able to annotate 39 chromosomal variants of which 11 have previously not been reported in literature. Conclusions The method described in this paper significantly improves the sensitivity and specificity of identification and annotation of qnr genes in nucleotide sequence data. The predicted novel putative qnr genes in the metagenomic data support the hypothesis of a large and uncharacterized diversity within this family of resistance genes in environmental bacterial communities. An implementation of the method is freely available at http://bioinformatics.math.chalmers.se/qnr/.

  1. Critical Assessment of Metagenome Interpretation

    DEFF Research Database (Denmark)

    Sczyrba, Alexander; Hofmann, Peter; Belmann, Peter

    2017-01-01

    Methods for assembly, taxonomic profiling and binning are key to interpreting metagenome data, but a lack of consensus about benchmarking complicates performance assessment. The Critical Assessment of Metagenome Interpretation (CAMI) challenge has engaged the global developer community to benchma...

  2. Genomic and metagenomic technologies to explore the antibiotic resistance mobilome.

    Science.gov (United States)

    Martínez, José L; Coque, Teresa M; Lanza, Val F; de la Cruz, Fernando; Baquero, Fernando

    2017-01-01

    Antibiotic resistance is a relevant problem for human health that requires global approaches to establish a deep understanding of the processes of acquisition, stabilization, and spread of resistance among human bacterial pathogens. Since natural (nonclinical) ecosystems are reservoirs of resistance genes, a health-integrated study of the epidemiology of antibiotic resistance requires the exploration of such ecosystems with the aim of determining the role they may play in the selection, evolution, and spread of antibiotic resistance genes, involving the so-called resistance mobilome. High-throughput sequencing techniques allow an unprecedented opportunity to describe the genetic composition of a given microbiome without the need to subculture the organisms present inside. However, bioinformatic methods for analyzing this bulk of data, mainly with respect to binning each resistance gene with the organism hosting it, are still in their infancy. Here, we discuss how current genomic methodologies can serve to analyze the resistance mobilome and its linkage with different bacterial genomes and metagenomes. In addition, we describe the drawbacks of current methodologies for analyzing the resistance mobilome, mainly in cases of complex microbiotas, and discuss the possibility of implementing novel tools to improve our current metagenomic toolbox. © 2016 New York Academy of Sciences.

  3. Metagenomics reveals pervasive bacterial populations and reduced community diversity across the Alaska tundra ecosystem

    Directory of Open Access Journals (Sweden)

    Eric Robert Johnston

    2016-04-01

    Full Text Available How soil microbial communities contrast with respect to taxonomic and functional composition within and between ecosystems remains an unresolved question that is central to predicting how global anthropogenic change will affect soil functioning and services. In particular, it remains unclear how small-scale observations of soil communities based on the typical volume sampled (1-2 grams are generalizable to ecosystem-scale responses and processes. This is especially relevant for remote, northern latitude soils, which are challenging to sample and are also thought to be more vulnerable to climate change compared to temperate soils. Here, we employed well-replicated shotgun metagenome and 16S rRNA gene amplicon sequencing to characterize community composition and metabolic potential in Alaskan tundra soils, combining our own datasets with those publically available from distant tundra and temperate grassland and agriculture habitats. We found that the abundance of many taxa and metabolic functions differed substantially between tundra soil metagenomes relative to those from temperate soils, and that a high degree of OTU-sharing exists between tundra locations. Tundra soils were an order of magnitude less complex than their temperate counterparts, allowing for near-complete coverage of microbial community richness (~92% breadth by sequencing, and the recovery of twenty-seven high-quality, almost complete (>80% completeness population bins. These population bins, collectively, made up to ~10% of the metagenomic datasets, and represented diverse taxonomic groups and metabolic lifestyles tuned toward sulfur cycling, hydrogen metabolism, methanotrophy, and organic matter oxidation. Several population bins, including members of Acidobacteria, Actinobacteria, and Proteobacteria, were also present in geographically distant (~100-530 km apart tundra habitats (full genome representation and up to 99.6% genome-derived average nucleotide identity. Collectively

  4. Metagenomic insights into evolution of heavy metal-contaminated groundwater microbial community

    Energy Technology Data Exchange (ETDEWEB)

    Hemme, C.L.; Deng, Y.; Gentry, T.J.; Fields, M.W.; Wu, L.; Barua, S.; Barry, K.; Green-Tringe, S.; Watson, D.B.; He, Z.; Hazen, T.C.; Tiedje, J.M.; Rubin, E.M.; Zhou, J.

    2010-07-01

    Understanding adaptation of biological communities to environmental change is a central issue in ecology and evolution. Metagenomic analysis of a stressed groundwater microbial community reveals that prolonged exposure to high concentrations of heavy metals, nitric acid and organic solvents ({approx}50 years) has resulted in a massive decrease in species and allelic diversity as well as a significant loss of metabolic diversity. Although the surviving microbial community possesses all metabolic pathways necessary for survival and growth in such an extreme environment, its structure is very simple, primarily composed of clonal denitrifying {gamma}- and {beta}-proteobacterial populations. The resulting community is overabundant in key genes conferring resistance to specific stresses including nitrate, heavy metals and acetone. Evolutionary analysis indicates that lateral gene transfer could have a key function in rapid response and adaptation to environmental contamination. The results presented in this study have important implications in understanding, assessing and predicting the impacts of human-induced activities on microbial communities ranging from human health to agriculture to environmental management, and their responses to environmental changes.

  5. Metagenomic exploration reveals a marked change in the river resistome and mobilome after treated wastewater discharges.

    Science.gov (United States)

    Lekunberri, Itziar; Balcázar, José Luis; Borrego, Carles M

    2018-03-01

    Mobile genetic elements (MGEs) are key agents in the spread of antibiotic resistance genes (ARGs) across environments. Here we used metagenomics to compare the river resistome (collection of all ARGs) and mobilome (e.g., integrases, transposases, integron integrases and insertion sequence common region "ISCR" elements) between samples collected upstream (n = 6) and downstream (n = 6) of an urban wastewater treatment plant (UWWTP). In comparison to upstream metagenomes, downstream metagenomes showed a drastic increase in the abundance of ARGs, as well as markers of MGEs, particularly integron integrases and ISCR elements. These changes were accompanied by a concomitant prevalence of 16S rRNA gene signatures of bacteria affiliated to families encompassing well-known human and animal pathogens. Our results confirm that chronic discharges of treated wastewater severely impact the river resistome affecting not only the abundance and diversity of ARGs but also their potential spread by enriching the river mobilome in a wide variety of MGEs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Metagenomics of Bacterial Diversity in Villa Luz Caves with Sulfur Water Springs

    Directory of Open Access Journals (Sweden)

    Giuseppe D’Auria

    2018-01-01

    Full Text Available New biotechnology applications require in-depth preliminary studies of biodiversity. The methods of massive sequencing using metagenomics and bioinformatics tools offer us sufficient and reliable knowledge to understand environmental diversity, to know new microorganisms, and to take advantage of their functional genes. Villa Luz caves, in the southern Mexican state of Tabasco, are fed by at least 26 groundwater inlets, containing 300–500 mg L-1 H2S and <0.1 mg L-1 O2. We extracted environmental DNA for metagenomic analysis of collected samples in five selected Villa Luz caves sites, with pH values from 2.5 to 7. Foreign organisms found in this underground ecosystem can oxidize H2S to H2SO4. These include: biovermiculites, a bacterial association that can grow on the rock walls; snottites, that are whitish, viscous biofilms hanging from the rock walls, and sacks or bags of phlegm, which live within the aquatic environment of the springs. Through the emergency food assistance program (TEFAP pyrosequencing, a total of 20,901 readings of amplification products from hypervariable regions V1 and V3 of 16S rRNA bacterial gene in whole and pure metagenomic DNA samples were generated. Seven bacterial phyla were identified. As a result, Proteobacteria was more frequent than Acidobacteria. Finally, acidophilic Proteobacteria was detected in UJAT5 sample

  7. Metagenomes of complex microbial consortia derived from different soils as sources for novel genes conferring formation of carbonyls from short-chain polyols on Escherichia coli.

    Science.gov (United States)

    Knietsch, Anja; Waschkowitz, Tanja; Bowien, Susanne; Henne, Anke; Daniel, Rolf

    2003-01-01

    Metagenomic DNA libraries from three different soil samples (meadow, sugar beet field, cropland) were constructed. The three unamplified libraries comprised approximately 1267000 independent clones and harbored approximately 4.05 Gbp of environmental DNA. Approximately 300000 recombinant Escherichia coli strains of each library per test substrate were screened for the production of carbonyls from short-chain (C2 to C4) polyols such as 1,2-ethanediol, 2,3-butanediol, and a mixture of glycerol and 1,2-propanediol on indicator agar. Twenty-four positive E. COLI clones were obtained during the initial screen. Fifteen of them contained recombinant plasmids, designated pAK201-215, which conferred a stable carbonyl-forming phenotype on E. coli Sequencing revealed that the inserts of pAK201-215 encoded 26 complete and 14 incomplete predicted protein-encoding genes. Most of these genes were similar to genes with unknown functions from other microorganisms or unrelated to any other known gene. The further analysis was focused on the 7 plasmids (pAK204, pAK206, pAK208, and pAK210-213) recovered from the positive clones, which exhibited an NAD(H)-dependent alcohol oxidoreductase activity with polyols or the correlating carbonyls as substrates in crude extracts. Three genes (ORF6, ORF24, and ORF25) conferring this activity were identified during subcloning of the inserts of pAK204, pAK211, and pAK212. The sequences of the three deduced gene products revealed no significant similarities to known alcohol oxidoreductases, but contained putative glycine-rich regions, which are characteristic for binding of nicotinamide cofactors. Copyright 2003 S. Karger AG, Basel

  8. Preliminary High-Throughput Metagenome Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Dusheyko, Serge; Furman, Craig; Pangilinan, Jasmyn; Shapiro, Harris; Tu, Hank

    2007-03-26

    Metagenome data sets present a qualitatively different assembly problem than traditional single-organism whole-genome shotgun (WGS) assembly. The unique aspects of such projects include the presence of a potentially large number of distinct organisms and their representation in the data set at widely different fractions. In addition, multiple closely related strains could be present, which would be difficult to assemble separately. Failure to take these issues into account can result in poor assemblies that either jumble together different strains or which fail to yield useful results. The DOE Joint Genome Institute has sequenced a number of metagenomic projects and plans to considerably increase this number in the coming year. As a result, the JGI has a need for high-throughput tools and techniques for handling metagenome projects. We present the techniques developed to handle metagenome assemblies in a high-throughput environment. This includes a streamlined assembly wrapper, based on the JGI?s in-house WGS assembler, Jazz. It also includes the selection of sensible defaults targeted for metagenome data sets, as well as quality control automation for cleaning up the raw results. While analysis is ongoing, we will discuss preliminary assessments of the quality of the assembly results (http://fames.jgi-psf.org).

  9. Viral Metagenomics: MetaView Software

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, C; Smith, J

    2007-10-22

    The purpose of this report is to design and develop a tool for analysis of raw sequence read data from viral metagenomics experiments. The tool should compare read sequences of known viral nucleic acid sequence data and enable a user to attempt to determine, with some degree of confidence, what virus groups may be present in the sample. This project was conducted in two phases. In phase 1 we surveyed the literature and examined existing metagenomics tools to educate ourselves and to more precisely define the problem of analyzing raw read data from viral metagenomic experiments. In phase 2 we devised an approach and built a prototype code and database. This code takes viral metagenomic read data in fasta format as input and accesses all complete viral genomes from Kpath for sequence comparison. The system executes at the UNIX command line, producing output that is stored in an Oracle relational database. We provide here a description of the approach we came up with for handling un-assembled, short read data sets from viral metagenomics experiments. We include a discussion of the current MetaView code capabilities and additional functionality that we believe should be added, should additional funding be acquired to continue the work.

  10. GenomePeek—an online tool for prokaryotic genome and metagenome analysis

    Directory of Open Access Journals (Sweden)

    Katelyn McNair

    2015-06-01

    Full Text Available As more and more prokaryotic sequencing takes place, a method to quickly and accurately analyze this data is needed. Previous tools are mainly designed for metagenomic analysis and have limitations; such as long runtimes and significant false positive error rates. The online tool GenomePeek (edwards.sdsu.edu/GenomePeek was developed to analyze both single genome and metagenome sequencing files, quickly and with low error rates. GenomePeek uses a sequence assembly approach where reads to a set of conserved genes are extracted, assembled and then aligned against the highly specific reference database. GenomePeek was found to be faster than traditional approaches while still keeping error rates low, as well as offering unique data visualization options.

  11. Human milk metagenome: a functional capacity analysis

    Science.gov (United States)

    2013-01-01

    Background Human milk contains a diverse population of bacteria that likely influences colonization of the infant gastrointestinal tract. Recent studies, however, have been limited to characterization of this microbial community by 16S rRNA analysis. In the present study, a metagenomic approach using Illumina sequencing of a pooled milk sample (ten donors) was employed to determine the genera of bacteria and the types of bacterial open reading frames in human milk that may influence bacterial establishment and stability in this primal food matrix. The human milk metagenome was also compared to that of breast-fed and formula-fed infants’ feces (n = 5, each) and mothers’ feces (n = 3) at the phylum level and at a functional level using open reading frame abundance. Additionally, immune-modulatory bacterial-DNA motifs were also searched for within human milk. Results The bacterial community in human milk contained over 360 prokaryotic genera, with sequences aligning predominantly to the phyla of Proteobacteria (65%) and Firmicutes (34%), and the genera of Pseudomonas (61.1%), Staphylococcus (33.4%) and Streptococcus (0.5%). From assembled human milk-derived contigs, 30,128 open reading frames were annotated and assigned to functional categories. When compared to the metagenome of infants’ and mothers’ feces, the human milk metagenome was less diverse at the phylum level, and contained more open reading frames associated with nitrogen metabolism, membrane transport and stress response (P milk metagenome also contained a similar occurrence of immune-modulatory DNA motifs to that of infants’ and mothers’ fecal metagenomes. Conclusions Our results further expand the complexity of the human milk metagenome and enforce the benefits of human milk ingestion on the microbial colonization of the infant gut and immunity. Discovery of immune-modulatory motifs in the metagenome of human milk indicates more exhaustive analyses of the functionality of the human

  12. Metagenomic Analysis of the Sponge Discodermia Reveals the Production of the Cyanobacterial Natural Product Kasumigamide by 'Entotheonella'.

    Science.gov (United States)

    Nakashima, Yu; Egami, Yoko; Kimura, Miki; Wakimoto, Toshiyuki; Abe, Ikuro

    2016-01-01

    Sponge metagenomes are a useful platform to mine cryptic biosynthetic gene clusters responsible for production of natural products involved in the sponge-microbe association. Since numerous sponge-derived bioactive metabolites are biosynthesized by the symbiotic bacteria, this strategy may concurrently reveal sponge-symbiont produced compounds. Accordingly, a metagenomic analysis of the Japanese marine sponge Discodermia calyx has resulted in the identification of a hybrid type I polyketide synthase-nonribosomal peptide synthetase gene (kas). Bioinformatic analysis of the gene product suggested its involvement in the biosynthesis of kasumigamide, a tetrapeptide originally isolated from freshwater free-living cyanobacterium Microcystis aeruginosa NIES-87. Subsequent investigation of the sponge metabolic profile revealed the presence of kasumigamide in the sponge extract. The kasumigamide producing bacterium was identified as an 'Entotheonella' sp. Moreover, an in silico analysis of kas gene homologs uncovered the presence of kas family genes in two additional bacteria from different phyla. The production of kasumigamide by distantly related multiple bacterial strains implicates horizontal gene transfer and raises the potential for a wider distribution across other bacterial groups.

  13. Phylogenetic analysis of a spontaneous cocoa bean fermentation metagenome reveals new insights into its bacterial and fungal community diversity.

    Directory of Open Access Journals (Sweden)

    Koen Illeghems

    Full Text Available This is the first report on the phylogenetic analysis of the community diversity of a single spontaneous cocoa bean box fermentation sample through a metagenomic approach involving 454 pyrosequencing. Several sequence-based and composition-based taxonomic profiling tools were used and evaluated to avoid software-dependent results and their outcome was validated by comparison with previously obtained culture-dependent and culture-independent data. Overall, this approach revealed a wider bacterial (mainly γ-Proteobacteria and fungal diversity than previously found. Further, the use of a combination of different classification methods, in a software-independent way, helped to understand the actual composition of the microbial ecosystem under study. In addition, bacteriophage-related sequences were found. The bacterial diversity depended partially on the methods used, as composition-based methods predicted a wider diversity than sequence-based methods, and as classification methods based solely on phylogenetic marker genes predicted a more restricted diversity compared with methods that took all reads into account. The metagenomic sequencing analysis identified Hanseniaspora uvarum, Hanseniaspora opuntiae, Saccharomyces cerevisiae, Lactobacillus fermentum, and Acetobacter pasteurianus as the prevailing species. Also, the presence of occasional members of the cocoa bean fermentation process was revealed (such as Erwinia tasmaniensis, Lactobacillus brevis, Lactobacillus casei, Lactobacillus rhamnosus, Lactococcus lactis, Leuconostoc mesenteroides, and Oenococcus oeni. Furthermore, the sequence reads associated with viral communities were of a restricted diversity, dominated by Myoviridae and Siphoviridae, and reflecting Lactobacillus as the dominant host. To conclude, an accurate overview of all members of a cocoa bean fermentation process sample was revealed, indicating the superiority of metagenomic sequencing over previously used techniques.

  14. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes

    Science.gov (United States)

    Parks, Donovan H.; Imelfort, Michael; Skennerton, Connor T.; Hugenholtz, Philip; Tyson, Gene W.

    2015-01-01

    Large-scale recovery of genomes from isolates, single cells, and metagenomic data has been made possible by advances in computational methods and substantial reductions in sequencing costs. Although this increasing breadth of draft genomes is providing key information regarding the evolutionary and functional diversity of microbial life, it has become impractical to finish all available reference genomes. Making robust biological inferences from draft genomes requires accurate estimates of their completeness and contamination. Current methods for assessing genome quality are ad hoc and generally make use of a limited number of “marker” genes conserved across all bacterial or archaeal genomes. Here we introduce CheckM, an automated method for assessing the quality of a genome using a broader set of marker genes specific to the position of a genome within a reference genome tree and information about the collocation of these genes. We demonstrate the effectiveness of CheckM using synthetic data and a wide range of isolate-, single-cell-, and metagenome-derived genomes. CheckM is shown to provide accurate estimates of genome completeness and contamination and to outperform existing approaches. Using CheckM, we identify a diverse range of errors currently impacting publicly available isolate genomes and demonstrate that genomes obtained from single cells and metagenomic data vary substantially in quality. In order to facilitate the use of draft genomes, we propose an objective measure of genome quality that can be used to select genomes suitable for specific gene- and genome-centric analyses of microbial communities. PMID:25977477

  15. Vertebrate gene predictions and the problem of large genes

    DEFF Research Database (Denmark)

    Wang, Jun; Li, ShengTing; Zhang, Yong

    2003-01-01

    To find unknown protein-coding genes, annotation pipelines use a combination of ab initio gene prediction and similarity to experimentally confirmed genes or proteins. Here, we show that although the ab initio predictions have an intrinsically high false-positive rate, they also have a consistent...

  16. Metagenomic covariation along densely sampled environmental gradients in the Red Sea

    Science.gov (United States)

    Thompson, Luke R; Williams, Gareth J; Haroon, Mohamed F; Shibl, Ahmed; Larsen, Peter; Shorenstein, Joshua; Knight, Rob; Stingl, Ulrich

    2017-01-01

    Oceanic microbial diversity covaries with physicochemical parameters. Temperature, for example, explains approximately half of global variation in surface taxonomic abundance. It is unknown, however, whether covariation patterns hold over narrower parameter gradients and spatial scales, and extending to mesopelagic depths. We collected and sequenced 45 epipelagic and mesopelagic microbial metagenomes on a meridional transect through the eastern Red Sea. We asked which environmental parameters explain the most variation in relative abundances of taxonomic groups, gene ortholog groups, and pathways—at a spatial scale of water mass with different physicochemical properties. Temperature explained the most variation in each metric, followed by nitrate, chlorophyll, phosphate, and salinity. That nitrate explained more variation than phosphate suggested nitrogen limitation, consistent with low surface N:P ratios. Covariation of gene ortholog groups with environmental parameters revealed patterns of functional adaptation to the challenging Red Sea environment: high irradiance, temperature, salinity, and low nutrients. Nutrient-acquisition gene ortholog groups were anti-correlated with concentrations of their respective nutrient species, recapturing trends previously observed across much larger distances and environmental gradients. This dataset of metagenomic covariation along densely sampled environmental gradients includes online data exploration supplements, serving as a community resource for marine microbial ecology. PMID:27420030

  17. Metagenomic Insights into Evolution of a Heavy Metal-Contaminated Groundwater Microbial Community

    Energy Technology Data Exchange (ETDEWEB)

    Hemme, Christopher L.; Deng, Ye; Gentry, Terry J.; Fields, Matthew W.; Wu, Liyou; Barua, Soumitra; Barry, Kerrie; Tringe, Susannah G.; Watson, David B.; He, Zhili; Hazen, Terry C.; Tiedje, James M.; Rubin, Edward M.; Zhou, Jizhong

    2010-02-15

    Understanding adaptation of biological communities to environmental change is a central issue in ecology and evolution. Metagenomic analysis of a stressed groundwater microbial community reveals that prolonged exposure to high concentrations of heavy metals, nitric acid and organic solvents (~;;50 years) have resulted in a massive decrease in species and allelic diversity as well as a significant loss of metabolic diversity. Although the surviving microbial community possesses all metabolic pathways necessary for survival and growth in such an extreme environment, its structure is very simple, primarily composed of clonal denitrifying ?- and ?-proteobacterial populations. The resulting community is over-abundant in key genes conferring resistance to specific stresses including nitrate, heavy metals and acetone. Evolutionary analysis indicates that lateral gene transfer could be a key mechanism in rapidly responding and adapting to environmental contamination. The results presented in this study have important implications in understanding, assessing and predicting the impacts of human-induced activities on microbial communities ranging from human health to agriculture to environmental management, and their responses to environmental changes.

  18. A retrospective metagenomics approach to studying Blastocystis

    DEFF Research Database (Denmark)

    Andersen, Lee O'Brien; Bonde, Ida; Nielsen, Henrik Bjørn

    2015-01-01

    a selection of 316 human faecal samples, hence representing genes originating from a single subtype. The 316 faecal samples were from 236 healthy individuals, 13 patients with Crohn's disease (CD) and 67 patients with ulcerative colitis (UC). The prevalence of Blastocystis was 20.3% in the healthy individuals......Blastocystis is a common single-celled intestinal parasitic genus, comprising several subtypes. Here, we screened data obtained by metagenomic analysis of faecal DNA for Blastocystis by searching for subtype-specific genes in coabundance gene groups, which are groups of genes that covary across...... and 14.9% in patients with UC. Meanwhile, Blastocystis was absent in patients with CD. Individuals with intestinal microbiota dominated by Bacteroides were much less prone to having Blastocystis-positive stool (Matthew's correlation coefficient = -0.25, P

  19. Establishing Genotype-to-Phenotype Relationships in Bacteria Causing Hospital-Acquired Pneumonia: A Prelude to the Application of Clinical Metagenomics

    Directory of Open Access Journals (Sweden)

    Etienne Ruppé

    2017-11-01

    Full Text Available Clinical metagenomics (CMg, referred to as the application of next-generation sequencing (NGS to clinical samples, is a promising tool for the diagnosis of hospital-acquired pneumonia (HAP. Indeed, CMg allows identifying pathogens and antibiotic resistance genes (ARGs, thereby providing the information required for the optimization of the antibiotic regimen. Hence, provided that CMg would be faster than conventional culture, the probabilistic regimen used in HAP could be tailored faster, which should lead to an expected decrease of mortality and morbidity. While the inference of the antibiotic susceptibility testing from metagenomic or even genomic data is challenging, a limited number of antibiotics are used in the probabilistic regimen of HAP (namely beta-lactams, aminoglycosides, fluoroquinolones, glycopeptides and oxazolidinones. Accordingly, based on the perspective of applying CMg to the early diagnostic of HAP, we aimed at reviewing the performances of whole genomic sequencing (WGS of the main HAP-causing bacteria (Enterobacteriaceae, Pseudomonas aeruginosa, Acinetobacter baumannii, Stenotrophomonas maltophilia and Staphylococcus aureus for the prediction of susceptibility to the antibiotic families advocated in the probabilistic regimen of HAP.

  20. NeSSM: a Next-generation Sequencing Simulator for Metagenomics.

    Directory of Open Access Journals (Sweden)

    Ben Jia

    Full Text Available BACKGROUND: Metagenomics can reveal the vast majority of microbes that have been missed by traditional cultivation-based methods. Due to its extremely wide range of application areas, fast metagenome sequencing simulation systems with high fidelity are in great demand to facilitate the development and comparison of metagenomics analysis tools. RESULTS: We present here a customizable metagenome simulation system: NeSSM (Next-generation Sequencing Simulator for Metagenomics. Combining complete genomes currently available, a community composition table, and sequencing parameters, it can simulate metagenome sequencing better than existing systems. Sequencing error models based on the explicit distribution of errors at each base and sequencing coverage bias are incorporated in the simulation. In order to improve the fidelity of simulation, tools are provided by NeSSM to estimate the sequencing error models, sequencing coverage bias and the community composition directly from existing metagenome sequencing data. Currently, NeSSM supports single-end and pair-end sequencing for both 454 and Illumina platforms. In addition, a GPU (graphics processing units version of NeSSM is also developed to accelerate the simulation. By comparing the simulated sequencing data from NeSSM with experimental metagenome sequencing data, we have demonstrated that NeSSM performs better in many aspects than existing popular metagenome simulators, such as MetaSim, GemSIM and Grinder. The GPU version of NeSSM is more than one-order of magnitude faster than MetaSim. CONCLUSIONS: NeSSM is a fast simulation system for high-throughput metagenome sequencing. It can be helpful to develop tools and evaluate strategies for metagenomics analysis and it's freely available for academic users at http://cbb.sjtu.edu.cn/~ccwei/pub/software/NeSSM.php.

  1. Comparative metagenomics of the Red Sea

    KAUST Repository

    Mineta, Katsuhiko

    2016-01-01

    started monthly samplings of the metagenomes in the Red Sea under KAUST-CCF project. In collaboration with Kitasato University, we also collected the metagenome data from the ocean in Japan, which shows contrasting features to the Red Sea. Therefore

  2. Variations in the post-weaning human gut metagenome profile as result of Bifidobacterium acquisition in the Western microbiome

    Directory of Open Access Journals (Sweden)

    Matteo Soverini

    2016-07-01

    Full Text Available Studies of the gut microbiome variation among human populations revealed the existence of robust compositional and functional layouts matching the three subsistence strategies that describe a trajectory of changes across our recent evolutionary history: hunting and gathering, rural agriculture, and urban post-industrialized agriculture. In particular, beside the overall reduction of ecosystem diversity, the gut microbiome of Western industrial populations is typically characterized by the loss of Treponema and the acquisition of Bifidobacterium as an abundant inhabitant of the post-weaning gut microbial ecosystem. In order to advance the hypothesis about the possible adaptive nature of this exchange, here we explore specific functional attributes that correspond to the mutually exclusive presence of Treponema and Bifidobacterium using publically available gut metagenomic data from Hadza hunter-gatherers and urban industrial Italians. According to our findings, Bifidobacterium provides the enteric ecosystem with a diverse panel of saccharolytic functions, well suited to the array of gluco- and galacto-based saccharides that abound in the Western diet. On the other hand, the metagenomic functions assigned to Treponema are more predictive of a capacity to incorporate complex polysaccharides, such as those found in unrefined plant foods, which are consistently incorporated in the Hadza diet. Finally, unlike Treponema, the Bifidobacterium metagenome functions include genes that permit the establishment of microbe-host immunological cross-talk, suggesting recent co-evolutionary events between the human immune system and Bifidobacterium that are adaptive in the context of agricultural subsistence and sedentary societies.

  3. Metagenomic potential for and diversity of N-cycle driving microorganisms in the Bothnian Sea sediment.

    Science.gov (United States)

    Rasigraf, Olivia; Schmitt, Julia; Jetten, Mike S M; Lüke, Claudia

    2017-08-01

    The biological nitrogen cycle is driven by a plethora of reactions transforming nitrogen compounds between various redox states. Here, we investigated the metagenomic potential for nitrogen cycle of the in situ microbial community in an oligotrophic, brackish environment of the Bothnian Sea sediment. Total DNA from three sediment depths was isolated and sequenced. The characterization of the total community was performed based on 16S rRNA gene inventory using SILVA database as reference. The diversity of diagnostic functional genes coding for nitrate reductases (napA;narG), nitrite:nitrate oxidoreductase (nxrA), nitrite reductases (nirK;nirS;nrfA), nitric oxide reductase (nor), nitrous oxide reductase (nosZ), hydrazine synthase (hzsA), ammonia monooxygenase (amoA), hydroxylamine oxidoreductase (hao), and nitrogenase (nifH) was analyzed by blastx against curated reference databases. In addition, Polymerase chain reaction (PCR)-based amplification was performed on the hzsA gene of anammox bacteria. Our results reveal high genomic potential for full denitrification to N 2 , but minor importance of anaerobic ammonium oxidation and dissimilatory nitrite reduction to ammonium. Genomic potential for aerobic ammonia oxidation was dominated by Thaumarchaeota. A higher diversity of anammox bacteria was detected in metagenomes than with PCR-based technique. The results reveal the importance of various N-cycle driving processes and highlight the advantage of metagenomics in detection of novel microbial key players. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  4. Genome and metagenome enabled analyses reveal new insight into the global biogeography and potential urea utilization in marine Thaumarchaeota.

    Science.gov (United States)

    Ahlgren, N.; Parada, A. E.; Fuhrman, J. A.

    2016-02-01

    Marine Thaumarchaea are an abundant, important group of marine microbial communities as they fix carbon, oxidize ammonium, and thus contribute to key N and C cycles in the oceans. From an enrichment culture, we have sequenced the complete genome of a new Thaumarchaeota strain, SPOT01. Analysis of this genome and other Thaumarchaeal genomes contributes new insight into its role in N cycling and clarifies the broader biogeography of marine Thaumarchaeal genera. Phylogenomics of Thaumarchaeota genomes reveal coherent separation into clusters roughly equivalent to the genus level, and SPOT01 represents a new genus of marine Thaumarchaea. Competitive fragment recruitment of globally distributed metagenomes from TARA, Ocean Sampling Day, and those generated from a station off California shows that the SPOT01 genus is often the most abundant genus, especially where total Thaumarchaea are most abundant in the overall community. The SPOT01 genome contains urease genes allowing it to use an alternative form of N. Genomic and metagenomic analysis also reveal that among planktonic genomes and populations, the urease genes in general are more frequently found in members of the SPOT01 genus and another genus dominant in deep waters, thus we predict these two genera contribute most significantly to urea utilization among marine Thaumarchaea. Recruitment also revealed broader biogeographic and ecological patterns of the putative genera. The SPOT01 genus was most abundant at colder temperatures (45 degrees). The genus containing Nitrosopumilus maritimus had the highest temperature range, and the genus containing Candidatus Nitrosopelagicus brevis was typically most abundant at intermediate temperatures and intermediate latitudes ( 35-45 degrees). Together these genome and metagenome enabled analyses provide significant new insight into the ecology and biogeochemical contributions of marine archaea.

  5. Gene function prediction based on Gene Ontology Hierarchy Preserving Hashing.

    Science.gov (United States)

    Zhao, Yingwen; Fu, Guangyuan; Wang, Jun; Guo, Maozu; Yu, Guoxian

    2018-02-23

    Gene Ontology (GO) uses structured vocabularies (or terms) to describe the molecular functions, biological roles, and cellular locations of gene products in a hierarchical ontology. GO annotations associate genes with GO terms and indicate the given gene products carrying out the biological functions described by the relevant terms. However, predicting correct GO annotations for genes from a massive set of GO terms as defined by GO is a difficult challenge. To combat with this challenge, we introduce a Gene Ontology Hierarchy Preserving Hashing (HPHash) based semantic method for gene function prediction. HPHash firstly measures the taxonomic similarity between GO terms. It then uses a hierarchy preserving hashing technique to keep the hierarchical order between GO terms, and to optimize a series of hashing functions to encode massive GO terms via compact binary codes. After that, HPHash utilizes these hashing functions to project the gene-term association matrix into a low-dimensional one and performs semantic similarity based gene function prediction in the low-dimensional space. Experimental results on three model species (Homo sapiens, Mus musculus and Rattus norvegicus) for interspecies gene function prediction show that HPHash performs better than other related approaches and it is robust to the number of hash functions. In addition, we also take HPHash as a plugin for BLAST based gene function prediction. From the experimental results, HPHash again significantly improves the prediction performance. The codes of HPHash are available at: http://mlda.swu.edu.cn/codes.php?name=HPHash. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. PCR screening of an African fermented pearl-millet porridge metagenome to investigate the nutritional potential of its microbiota.

    Science.gov (United States)

    Saubade, Fabien; Humblot, Christèle; Hemery, Youna M; Guyot, Jean-Pierre

    2017-03-06

    Cereals are staple foods in most African countries, and many African cereal-based foods are spontaneously fermented. The nutritional quality of cereal products can be enhanced through fermentation, and traditional cereal-based fermented foods (CBFFs) are possible sources of lactic acid bacteria (LAB) with useful nutritional properties. The nutritional properties of LAB vary depending on the species and even on the strain, and the microbial composition of traditional CBFFs varies from one traditional production unit (TPU) to another. The nutritional quality of traditional CBFFs may thus vary depending on their microbial composition. As the isolation of potentially useful LAB from traditional CBFFs can be very time consuming, the aim of this study was to use PCR to assess the nutritional potential of LAB directly on the metagenomes of pearl-millet based fermented porridges (ben-saalga) from Burkina Faso. Genes encoding enzymes involved in different nutritional activities were screened in 50 metagenomes extracted from samples collected in 10 TPUs in Ouagadougou. The variability of the genetic potential was recorded. Certain genes were never detected in the metagenomes (genes involved in carotenoid synthesis) while others were frequently detected (genes involved in folate and riboflavin production, starch hydrolysis, polyphenol degradation). Highly variable microbial composition - assessed by real-time PCR - was observed among samples collected in different TPUs, but also among samples from the same TPU. The high frequency of the presence of genes did not necessarily correlate with in situ measurements of the expected products. Indeed, no significant correlation was found between the microbial variability and the variability of the genetic potential. In spite of the high rate of detection (80%) of both genes folP and folK, encoding enzymes involved in folate synthesis, the folate content in ben-saalga was rather low (median: 0.5μg/100g fresh weight basis). This work

  7. Molecular cloning, expression, and characterization of four novel thermo-alkaliphilic enzymes retrieved from a metagenomic library.

    Science.gov (United States)

    Maruthamuthu, Mukil; van Elsas, Jan Dirk

    2017-01-01

    Enzyme discovery is a promising approach to aid in the deconstruction of recalcitrant plant biomass in an industrial process. Novel enzymes can be readily discovered by applying metagenomics on whole microbiomes. Our goal was to select, examine, and characterize eight novel glycoside hydrolases that were previously detected in metagenomic libraries, to serve biotechnological applications with high performance. Here, eight glycosyl hydrolase family candidate genes were selected from metagenomes of wheat straw-degrading microbial consortia using molecular cloning and subsequent gene expression studies in Escherichia coli. Four of the eight enzymes had significant activities on either p NP-β-d-galactopyranoside, p NP-β-d-xylopyranoside, p NP-α-l-arabinopyranoside or p NP-α-d-glucopyranoside. These proteins, denoted as proteins 1, 2, 5 and 6, were his-tag purified and their nature and activities further characterized using molecular and activity screens with the p NP-labeled substrates. Proteins 1 and 2 showed high homologies with (1) a β-galactosidase (74%) and (2) a β-xylosidase (84%), whereas the remaining two (5 and 6) were homologous with proteins reported as a diguanylate cyclase and an aquaporin, respectively. The β-galactosidase- and β-xylosidase-like proteins 1 and 2 were confirmed as being responsible for previously found thermo-alkaliphilic glycosidase activities of extracts of E. coli carrying the respective source fosmids. Remarkably, the β-xylosidase-like protein 2 showed activities with both p NP-Xyl and p NP-Ara in the temperature range 40-50 °C and pH range 8.0-10.0. Moreover, proteins 5 and 6 showed thermotolerant α-glucosidase activity at pH 10.0. In silico structure prediction of protein 5 revealed the presence of a potential "GGDEF" catalytic site, encoding α-glucosidase activity, whereas that of protein 6 showed a "GDSL" site, encoding a 'new family' α-glucosidase activity. Using a rational screening approach, we identified and

  8. Metagenomic insights into ultraviolet disinfection effects on antibiotic resistome in biologically treated wastewater.

    Science.gov (United States)

    Hu, Qing; Zhang, Xu-Xiang; Jia, Shuyu; Huang, Kailong; Tang, Junying; Shi, Peng; Ye, Lin; Ren, Hongqiang

    2016-09-15

    High-throughput sequencing-based metagenomic approaches were used to comprehensively investigate ultraviolet effects on the microbial community structure, and diversity and abundance of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in biologically treated wastewater. After ultraviolet radiation, some dominant genera, like Aeromonas and Halomonas, in the wastewater almost disappeared, while the relative abundance of some minor genera including Pseudomonas and Bacillus increased dozens of times. Metagenomic analysis showed that 159 ARGs within 14 types were detectable in the samples, and the radiation at 500 mJ/cm(2) obviously increased their total relative abundance from 31.68 ppm to 190.78 ppm, which was supported by quantitative real time PCR. As the dominant persistent ARGs, multidrug resistance genes carried by Pseudomonas and bacitracin resistance gene bacA carried by Bacillus mainly contributed to the ARGs abundance increase. Bacterial community shift and MGEs replication induced by the radiation might drive the resistome alteration. The findings may shed new light on the mechanism behind the ultraviolet radiation effects on antibiotic resistance in wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Marine metagenomics: strategies for the discovery of novel enzymes with biotechnological applications from marine environments

    Directory of Open Access Journals (Sweden)

    Dobson Alan DW

    2008-08-01

    Full Text Available Abstract Metagenomic based strategies have previously been successfully employed as powerful tools to isolate and identify enzymes with novel biocatalytic activities from the unculturable component of microbial communities from various terrestrial environmental niches. Both sequence based and function based screening approaches have been employed to identify genes encoding novel biocatalytic activities and metabolic pathways from metagenomic libraries. While much of the focus to date has centred on terrestrial based microbial ecosystems, it is clear that the marine environment has enormous microbial biodiversity that remains largely unstudied. Marine microbes are both extremely abundant and diverse; the environments they occupy likewise consist of very diverse niches. As culture-dependent methods have thus far resulted in the isolation of only a tiny percentage of the marine microbiota the application of metagenomic strategies holds great potential to study and exploit the enormous microbial biodiversity which is present within these marine environments.

  10. Metagenome of a Versatile Chemolithoautotroph from Expanding Oceanic Dead Zones

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, David A.; Zaikova, Elena; Howes, Charles L.; Song, Young; Wright, Jody; Tringe, Susannah G.; Tortell, Philippe D.; Hallam, Steven J.

    2009-07-15

    Oxygen minimum zones (OMZs), also known as oceanic"dead zones", are widespread oceanographic features currently expanding due to global warming and coastal eutrophication. Although inhospitable to metazoan life, OMZs support a thriving but cryptic microbiota whose combined metabolic activity is intimately connected to nutrient and trace gas cycling within the global ocean. Here we report time-resolved metagenomic analyses of a ubiquitous and abundant but uncultivated OMZ microbe (SUP05) closely related to chemoautotrophic gill symbionts of deep-sea clams and mussels. The SUP05 metagenome harbors a versatile repertoire of genes mediating autotrophic carbon assimilation, sulfur-oxidation and nitrate respiration responsive to a wide range of water column redox states. Thus, SUP05 plays integral roles in shaping nutrient and energy flow within oxygen-deficient oceanic waters via carbon sequestration, sulfide detoxification and biological nitrogen loss with important implications for marine productivity and atmospheric greenhouse control.

  11. A metagenomic framework for the study of airborne microbial communities.

    Science.gov (United States)

    Yooseph, Shibu; Andrews-Pfannkoch, Cynthia; Tenney, Aaron; McQuaid, Jeff; Williamson, Shannon; Thiagarajan, Mathangi; Brami, Daniel; Zeigler-Allen, Lisa; Hoffman, Jeff; Goll, Johannes B; Fadrosh, Douglas; Glass, John; Adams, Mark D; Friedman, Robert; Venter, J Craig

    2013-01-01

    Understanding the microbial content of the air has important scientific, health, and economic implications. While studies have primarily characterized the taxonomic content of air samples by sequencing the 16S or 18S ribosomal RNA gene, direct analysis of the genomic content of airborne microorganisms has not been possible due to the extremely low density of biological material in airborne environments. We developed sampling and amplification methods to enable adequate DNA recovery to allow metagenomic profiling of air samples collected from indoor and outdoor environments. Air samples were collected from a large urban building, a medical center, a house, and a pier. Analyses of metagenomic data generated from these samples reveal airborne communities with a high degree of diversity and different genera abundance profiles. The identities of many of the taxonomic groups and protein families also allows for the identification of the likely sources of the sampled airborne bacteria.

  12. Single Cell and Metagenomic Assemblies: Biology Drives Technical Choices and Goals (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    Energy Technology Data Exchange (ETDEWEB)

    Stepanauskas, Ramunas

    2011-10-13

    DOE JGI's Tanja Woyke, chair of the Single Cells and Metagenomes session, delivers an introduction, followed by Bigelow Laboratory's Ramunas Stepanauskas on "Single Cell and Metagenomic Assemblies: Biology Drives Technical Choices and Goals" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  13. High definition for systems biology of microbial communities: metagenomics gets genome-centric and strain-resolved.

    Science.gov (United States)

    Turaev, Dmitrij; Rattei, Thomas

    2016-06-01

    The systems biology of microbial communities, organismal communities inhabiting all ecological niches on earth, has in recent years been strongly facilitated by the rapid development of experimental, sequencing and data analysis methods. Novel experimental approaches and binning methods in metagenomics render the semi-automatic reconstructions of near-complete genomes of uncultivable bacteria possible, while advances in high-resolution amplicon analysis allow for efficient and less biased taxonomic community characterization. This will also facilitate predictive modeling approaches, hitherto limited by the low resolution of metagenomic data. In this review, we pinpoint the most promising current developments in metagenomics. They facilitate microbial systems biology towards a systemic understanding of mechanisms in microbial communities with scopes of application in many areas of our daily life. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Marine metagenomics as a source for bioprospecting

    KAUST Repository

    Kodzius, Rimantas; Gojobori, Takashi

    2015-01-01

    This review summarizes usage of genome-editing technologies for metagenomic studies; these studies are used to retrieve and modify valuable microorganisms for production, particularly in marine metagenomics. Organisms may be cultivable

  15. Metagenomic Signatures of Microbial Communities in Deep-Sea Hydrothermal Sediments of Azores Vent Fields.

    Science.gov (United States)

    Cerqueira, Teresa; Barroso, Cristina; Froufe, Hugo; Egas, Conceição; Bettencourt, Raul

    2018-01-21

    The organisms inhabiting the deep-seafloor are known to play a crucial role in global biogeochemical cycles. Chemolithoautotrophic prokaryotes, which produce biomass from single carbon molecules, constitute the primary source of nutrition for the higher organisms, being critical for the sustainability of food webs and overall life in the deep-sea hydrothermal ecosystems. The present study investigates the metabolic profiles of chemolithoautotrophs inhabiting the sediments of Menez Gwen and Rainbow deep-sea vent fields, in the Mid-Atlantic Ridge. Differences in the microbial community structure might be reflecting the distinct depth, geology, and distance from vent of the studied sediments. A metagenomic sequencing approach was conducted to characterize the microbiome of the deep-sea hydrothermal sediments and the relevant metabolic pathways used by microbes. Both Menez Gwen and Rainbow metagenomes contained a significant number of genes involved in carbon fixation, revealing the largely autotrophic communities thriving in both sites. Carbon fixation at Menez Gwen site was predicted to occur mainly via the reductive tricarboxylic acid cycle, likely reflecting the dominance of sulfur-oxidizing Epsilonproteobacteria at this site, while different autotrophic pathways were identified at Rainbow site, in particular the Calvin-Benson-Bassham cycle. Chemolithotrophy appeared to be primarily driven by the oxidation of reduced sulfur compounds, whether through the SOX-dependent pathway at Menez Gwen site or through reverse sulfate reduction at Rainbow site. Other energy-yielding processes, such as methane, nitrite, or ammonia oxidation, were also detected but presumably contributing less to chemolithoautotrophy. This work furthers our knowledge of the microbial ecology of deep-sea hydrothermal sediments and represents an important repository of novel genes with potential biotechnological interest.

  16. Shotgun metagenomic data streams: surfing without fear

    Energy Technology Data Exchange (ETDEWEB)

    Berendzen, Joel R [Los Alamos National Laboratory

    2010-12-06

    Timely information about bio-threat prevalence, consequence, propagation, attribution, and mitigation is needed to support decision-making, both routinely and in a crisis. One DNA sequencer can stream 25 Gbp of information per day, but sampling strategies and analysis techniques are needed to turn raw sequencing power into actionable knowledge. Shotgun metagenomics can enable biosurveillance at the level of a single city, hospital, or airplane. Metagenomics characterizes viruses and bacteria from complex environments such as soil, air filters, or sewage. Unlike targeted-primer-based sequencing, shotgun methods are not blind to sequences that are truly novel, and they can measure absolute prevalence. Shotgun metagenomic sampling can be non-invasive, efficient, and inexpensive while being informative. We have developed analysis techniques for shotgun metagenomic sequencing that rely upon phylogenetic signature patterns. They work by indexing local sequence patterns in a manner similar to web search engines. Our methods are laptop-fast and favorable scaling properties ensure they will be sustainable as sequencing methods grow. We show examples of application to soil metagenomic samples.

  17. Metagenomic-based study of the phylogenetic and functional gene diversity in Galápagos land and marine iguanas.

    Science.gov (United States)

    Hong, Pei-Ying; Mao, Yuejian; Ortiz-Kofoed, Shannon; Shah, Rushabh; Cann, Isaac; Mackie, Roderick I

    2015-02-01

    In this study, a metagenome-based analysis of the fecal samples from the macrophytic algae-consuming marine iguana (MI; Amblyrhynchus cristatus) and terrestrial biomass-consuming land iguanas (LI; Conolophus spp.) was conducted. Phylogenetic affiliations of the fecal microbiome were more similar between both iguanas than to other mammalian herbivorous hosts. However, functional gene diversities in both MI and LI iguana hosts differed in relation to the diet, where the MI fecal microbiota had a functional diversity that clustered apart from the other terrestrial-biomass consuming reptilian and mammalian hosts. A further examination of the carbohydrate-degrading genes revealed that several of the prevalent glycosyl hydrolases (GH), glycosyl transferases (GT), carbohydrate binding modules (CBM), and carbohydrate esterases (CE) gene classes were conserved among all examined herbivorous hosts, reiterating the important roles these genes play in the breakdown and metabolism of herbivorous diets. Genes encoding some classes of carbohydrate-degrading families, including GH2, GH13, GT2, GT4, CBM50, CBM48, CE4, and CE11, as well as genes associated with sulfur metabolism and dehalogenation, were highly enriched or unique to the MI. In contrast, gene sequences that relate to archaeal methanogenesis were detected only in LI fecal microbiome, and genes coding for GH13, GH66, GT2, GT4, CBM50, CBM13, CE4, and CE8 carbohydrate active enzymes were highly abundant in the LI. Bacterial populations were enriched on various carbohydrates substrates (e.g., glucose, arabinose, xylose). The majority of the enriched bacterial populations belong to genera Clostridium spp. and Enterococcus spp. that likely accounted for the high prevalence of GH13 and GH2, as well as the GT families (e.g., GT2, GT4, GT28, GT35, and GT51) that were ubiquitously present in the fecal microbiota of all herbivorous hosts.

  18. Metagenomic-Based Study of the Phylogenetic and Functional Gene Diversity in Galápagos Land and Marine Iguanas

    KAUST Repository

    Hong, Pei-Ying

    2014-12-19

    In this study, a metagenome-based analysis of the fecal samples from the macrophytic algae-consuming marine iguana (MI; Amblyrhynchus cristatus) and terrestrial biomass-consuming land iguanas (LI; Conolophus spp.) was conducted. Phylogenetic affiliations of the fecal microbiome were more similar between both iguanas than to other mammalian herbivorous hosts. However, functional gene diversities in both MI and LI iguana hosts differed in relation to the diet, where the MI fecal microbiota had a functional diversity that clustered apart from the other terrestrial-biomass consuming reptilian and mammalian hosts. A further examination of the carbohydrate-degrading genes revealed that several of the prevalent glycosyl hydrolases (GH), glycosyl transferases (GT), carbohydrate binding modules (CBM), and carbohydrate esterases (CE) gene classes were conserved among all examined herbivorous hosts, reiterating the important roles these genes play in the breakdown and metabolism of herbivorous diets. Genes encoding some classes of carbohydrate-degrading families, including GH2, GH13, GT2, GT4, CBM50, CBM48, CE4, and CE11, as well as genes associated with sulfur metabolism and dehalogenation, were highly enriched or unique to the MI. In contrast, gene sequences that relate to archaeal methanogenesis were detected only in LI fecal microbiome, and genes coding for GH13, GH66, GT2, GT4, CBM50, CBM13, CE4, and CE8 carbohydrate active enzymes were highly abundant in the LI. Bacterial populations were enriched on various carbohydrates substrates (e.g., glucose, arabinose, xylose). The majority of the enriched bacterial populations belong to genera Clostridium spp. and Enterococcus spp. that likely accounted for the high prevalence of GH13 and GH2, as well as the GT families (e.g., GT2, GT4, GT28, GT35, and GT51) that were ubiquitously present in the fecal microbiota of all herbivorous hosts.

  19. BlastKOALA and GhostKOALA: KEGG Tools for Functional Characterization of Genome and Metagenome Sequences.

    Science.gov (United States)

    Kanehisa, Minoru; Sato, Yoko; Morishima, Kanae

    2016-02-22

    BlastKOALA and GhostKOALA are automatic annotation servers for genome and metagenome sequences, which perform KO (KEGG Orthology) assignments to characterize individual gene functions and reconstruct KEGG pathways, BRITE hierarchies and KEGG modules to infer high-level functions of the organism or the ecosystem. Both servers are made freely available at the KEGG Web site (http://www.kegg.jp/blastkoala/). In BlastKOALA, the KO assignment is performed by a modified version of the internally used KOALA algorithm after the BLAST search against a non-redundant dataset of pangenome sequences at the species, genus or family level, which is generated from the KEGG GENES database by retaining the KO content of each taxonomic category. In GhostKOALA, which utilizes more rapid GHOSTX for database search and is suitable for metagenome annotation, the pangenome dataset is supplemented with Cd-hit clusters including those for viral genes. The result files may be downloaded and manipulated for further KEGG Mapper analysis, such as comparative pathway analysis using multiple BlastKOALA results. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Rapid and efficient method to extract metagenomic DNA from estuarine sediments.

    Science.gov (United States)

    Shamim, Kashif; Sharma, Jaya; Dubey, Santosh Kumar

    2017-07-01

    Metagenomic DNA from sediments of selective estuaries of Goa, India was extracted using a simple, fast, efficient and environment friendly method. The recovery of pure metagenomic DNA from our method was significantly high as compared to other well-known methods since the concentration of recovered metagenomic DNA ranged from 1185.1 to 4579.7 µg/g of sediment. The purity of metagenomic DNA was also considerably high as the ratio of absorbance at 260 and 280 nm ranged from 1.88 to 1.94. Therefore, the recovered metagenomic DNA was directly used to perform various molecular biology experiments viz. restriction digestion, PCR amplification, cloning and metagenomic library construction. This clearly proved that our protocol for metagenomic DNA extraction using silica gel efficiently removed the contaminants and prevented shearing of the metagenomic DNA. Thus, this modified method can be used to recover pure metagenomic DNA from various estuarine sediments in a rapid, efficient and eco-friendly manner.

  1. Quantitative metagenomic analyses based on average genome size normalization

    DEFF Research Database (Denmark)

    Frank, Jeremy Alexander; Sørensen, Søren Johannes

    2011-01-01

    provide not just a census of the community members but direct information on metabolic capabilities and potential interactions among community members. Here we introduce a method for the quantitative characterization and comparison of microbial communities based on the normalization of metagenomic data...... marine sources using both conventional small-subunit (SSU) rRNA gene analyses and our quantitative method to calculate the proportion of genomes in each sample that are capable of a particular metabolic trait. With both environments, to determine what proportion of each community they make up and how......). These analyses demonstrate how genome proportionality compares to SSU rRNA gene relative abundance and how factors such as average genome size and SSU rRNA gene copy number affect sampling probability and therefore both types of community analysis....

  2. Tuning the performance of a natural treatment process using metagenomics for improved trace organic chemical attenuation

    KAUST Repository

    Drewes, Jorg

    2014-02-01

    By utilizing high-throughput sequencing and metagenomics, this study revealed how the microbial community characteristics including composition, diversity, as well as functional genes in managed aquifer recharge (MAR) systems can be tuned to enhance removal of trace organic chemicals of emerging concern (CECs). Increasing the humic content of the primary substrate resulted in higher microbial diversity. Lower concentrations and a higher humic content of the primary substrate promoted the attenuation of biodegradable CECs in laboratory and field MAR systems. Metagenomic results indicated that the metabolic capabilities of xenobiotic biodegradation were significantly promoted for the microbiome under carbon-starving conditions. © IWA Publishing 2014.

  3. Genome diversity of marine phages recovered from Mediterranean metagenomes: Size matters.

    Directory of Open Access Journals (Sweden)

    Mario López-Pérez

    2017-09-01

    Full Text Available Marine viruses play a critical role not only in the global geochemical cycles but also in the biology and evolution of their hosts. Despite their importance, viral diversity remains underexplored mostly due to sampling and cultivation challenges. Direct sequencing approaches such as viromics has provided new insights into the marine viral world. As a complementary approach, we analysed 24 microbial metagenomes (>0.2 μm size range obtained from six sites in the Mediterranean Sea that vary by depth, season and filter used to retrieve the fraction. Filter-size comparison showed a significant number of viral sequences that were retained on the larger-pore filters and were different from those found in the viral fraction from the same sample, indicating that some important viral information is missing using only assembly from viromes. Besides, we were able to describe 1,323 viral genomic fragments that were more than 10Kb in length, of which 36 represented complete viral genomes including some of them retrieved from a cross-assembly from different metagenomes. Host prediction based on sequence methods revealed new phage groups belonging to marine prokaryotes like SAR11, Cyanobacteria or SAR116. We also identified the first complete virophage from deep seawater and a new endemic clade of the recently discovered Marine group II Euryarchaeota virus. Furthermore, analysis of viral distribution using metagenomes and viromes indicated that most of the new phages were found exclusively in the Mediterranean Sea and some of them, mostly the ones recovered from deep metagenomes, do not recruit in any database probably indicating higher variability and endemicity in Mediterranean bathypelagic waters. Together these data provide the first detailed picture of genomic diversity, spatial and depth variations of viral communities within the Mediterranean Sea using metagenome assembly.

  4. Metagenomic analysis of bacterial community structure and diversity of lignocellulolytic bacteria in Vietnamese native goat rumen.

    Science.gov (United States)

    Do, Thi Huyen; Dao, Trong Khoa; Nguyen, Khanh Hoang Viet; Le, Ngoc Giang; Nguyen, Thi Mai Phuong; Le, Tung Lam; Phung, Thu Nguyet; van Straalen, Nico M; Roelofs, Dick; Truong, Nam Hai

    2018-05-01

    In a previous study, analysis of Illumina sequenced metagenomic DNA data of bacteria in Vietnamese goats' rumen showed a high diversity of putative lignocellulolytic genes. In this study, taxonomy speculation of microbial community and lignocellulolytic bacteria population in the rumen was conducted to elucidate a role of bacterial structure for effective degradation of plant materials. The metagenomic data had been subjected into Basic Local Alignment Search Tool (BLASTX) algorithm and the National Center for Biotechnology Information non-redundant sequence database. Here the BLASTX hits were further processed by the Metagenome Analyzer program to statistically analyze the abundance of taxa. Microbial community in the rumen is defined by dominance of Bacteroidetes compared to Firmicutes. The ratio of Firmicutes versus Bacteroidetes was 0.36:1. An abundance of Synergistetes was uniquely identified in the goat microbiome may be formed by host genotype. With regard to bacterial lignocellulose degraders, the ratio of lignocellulolytic genes affiliated with Firmicutes compared to the genes linked to Bacteroidetes was 0.11:1, in which the genes encoding putative hemicellulases, carbohydrate esterases, polysaccharide lyases originated from Bacteroidetes were 14 to 20 times higher than from Firmicutes. Firmicutes seem to possess more cellulose hydrolysis capacity showing a Firmicutes/Bacteroidetes ratio of 0.35:1. Analysis of lignocellulolytic potential degraders shows that four species belonged to Bacteroidetes phylum, while two species belonged to Firmicutes phylum harbouring at least 12 different catalytic domains for all lignocellulose pretreatment, cellulose, as well as hemicellulose saccharification. Based on these findings, we speculate that increasing the members of Bacteroidetes to keep a low ratio of Firmicutes versus Bacteroidetes in goat rumen has resulted most likely in an increased lignocellulose digestion.

  5. Metagenomic analysis of bacterial community structure and diversity of lignocellulolytic bacteria in Vietnamese native goat rumen

    NARCIS (Netherlands)

    Do, Huyen Thi; Dao, Khoa Trong; Nguyen, Viet Khanh Hoang; Le Ngoc, Giang; Nguyen, Phuong Thi Mai; Le, Lam Tung; Phung, Nguyet Thu; M. van Straalen, Nico; Roelofs, Dick; Truong, Hai Nam

    2017-01-01

    Objective: In a previous study, analysis of Illumina sequenced metagenomic DNA data of bacteria in Vietnamese goats' rumen showed a high diversity of putative lignocellulolytic genes. In this study, taxonomy speculation of microbial community and lignocellulolytic bacteria population in the rumen

  6. Back to the Future of Soil Metagenomics.\

    Czech Academy of Sciences Publication Activity Database

    Nesme J, J.; Achouak, W.; Agathos SN, S.N.; Bailey, M.; Baldrian, Petr; Brunel, D.; Frostegård, Å.; Heulin, T.; Jansson JK, J.K.; Jurkevitch, E.; Kruus, K.L.; Kowalchuk, G.A.; Lagares, A.; Lapin-Scott, H.M.; Lemanceau, P.; Le Paslier, D.; Mandic-Mulec, I.; Murrell, J.C.; Myrold, D.D.; Nalin, R.; Nannipieri, P.; Neufeld, J.D.; O'Gara, F.; Parnell, J.J.; Pühler, A.; Pylro, V.; Ramos, J.L.; Roesch, L.F.; Schloter, M.; Schleper, C.; Sczyrba, A.; Sessitsch, A.; Sjöling, S.; Sørensen, J.; Sørensen, S.J.; Tebbe, C.C.; Topp, E.; Tsiamis, G.; van Elsas, J.D.; van Keulen, G.; Widmer, F.; Wagner, M.; Zhang, T.; Zhang, X.; Zhao, L; Zhu, Y-G.; Vogel, T.M.; Simonet, P.

    2016-01-01

    Roč. 7, FEB 10 (2016), s. 73 ISSN 1664-302X Institutional support: RVO:61388971 Keywords : metagenomic * soil microbiology; terrestrial microbiology * metagenomic; soil microbiology; terrestrial microbiology Subject RIV: EE - Microbiology, Virology Impact factor: 4.076, year: 2016

  7. Bioinformatic analysis reveals high diversity of bacterial genes for laccase-like enzymes.

    Directory of Open Access Journals (Sweden)

    Luka Ausec

    Full Text Available Fungal laccases have been used in various fields ranging from processes in wood and paper industries to environmental applications. Although a few bacterial laccases have been characterized in recent years, prokaryotes have largely been neglected as a source of novel enzymes, in part due to the lack of knowledge about the diversity and distribution of laccases within Bacteria. In this work genes for laccase-like enzymes were searched for in over 2,200 complete and draft bacterial genomes and four metagenomic datasets, using the custom profile Hidden Markov Models for two- and three-domain laccases. More than 1,200 putative genes for laccase-like enzymes were retrieved from chromosomes and plasmids of diverse bacteria. In 76% of the genes, signal peptides were predicted, indicating that these bacterial laccases may be exported from the cytoplasm, which contrasts with the current belief. Moreover, several examples of putatively horizontally transferred bacterial laccase genes were described. Many metagenomic sequences encoding fragments of laccase-like enzymes could not be phylogenetically assigned, indicating considerable novelty. Laccase-like genes were also found in anaerobic bacteria, autotrophs and alkaliphiles, thus opening new hypotheses regarding their ecological functions. Bacteria identified as carrying laccase genes represent potential sources for future biotechnological applications.

  8. Resolving prokaryotic taxonomy without rRNA: longer oligonucleotide word lengths improve genome and metagenome taxonomic classification.

    Science.gov (United States)

    Alsop, Eric B; Raymond, Jason

    2013-01-01

    Oligonucleotide signatures, especially tetranucleotide signatures, have been used as method for homology binning by exploiting an organism's inherent biases towards the use of specific oligonucleotide words. Tetranucleotide signatures have been especially useful in environmental metagenomics samples as many of these samples contain organisms from poorly classified phyla which cannot be easily identified using traditional homology methods, including NCBI BLAST. This study examines oligonucleotide signatures across 1,424 completed genomes from across the tree of life, substantially expanding upon previous work. A comprehensive analysis of mononucleotide through nonanucleotide word lengths suggests that longer word lengths substantially improve the classification of DNA fragments across a range of sizes of relevance to high throughput sequencing. We find that, at present, heptanucleotide signatures represent an optimal balance between prediction accuracy and computational time for resolving taxonomy using both genomic and metagenomic fragments. We directly compare the ability of tetranucleotide and heptanucleotide world lengths (tetranucleotide signatures are the current standard for oligonucleotide word usage analyses) for taxonomic binning of metagenome reads. We present evidence that heptanucleotide word lengths consistently provide more taxonomic resolving power, particularly in distinguishing between closely related organisms that are often present in metagenomic samples. This implies that longer oligonucleotide word lengths should replace tetranucleotide signatures for most analyses. Finally, we show that the application of longer word lengths to metagenomic datasets leads to more accurate taxonomic binning of DNA scaffolds and have the potential to substantially improve taxonomic assignment and assembly of metagenomic data.

  9. Resolving prokaryotic taxonomy without rRNA: longer oligonucleotide word lengths improve genome and metagenome taxonomic classification.

    Directory of Open Access Journals (Sweden)

    Eric B Alsop

    Full Text Available Oligonucleotide signatures, especially tetranucleotide signatures, have been used as method for homology binning by exploiting an organism's inherent biases towards the use of specific oligonucleotide words. Tetranucleotide signatures have been especially useful in environmental metagenomics samples as many of these samples contain organisms from poorly classified phyla which cannot be easily identified using traditional homology methods, including NCBI BLAST. This study examines oligonucleotide signatures across 1,424 completed genomes from across the tree of life, substantially expanding upon previous work. A comprehensive analysis of mononucleotide through nonanucleotide word lengths suggests that longer word lengths substantially improve the classification of DNA fragments across a range of sizes of relevance to high throughput sequencing. We find that, at present, heptanucleotide signatures represent an optimal balance between prediction accuracy and computational time for resolving taxonomy using both genomic and metagenomic fragments. We directly compare the ability of tetranucleotide and heptanucleotide world lengths (tetranucleotide signatures are the current standard for oligonucleotide word usage analyses for taxonomic binning of metagenome reads. We present evidence that heptanucleotide word lengths consistently provide more taxonomic resolving power, particularly in distinguishing between closely related organisms that are often present in metagenomic samples. This implies that longer oligonucleotide word lengths should replace tetranucleotide signatures for most analyses. Finally, we show that the application of longer word lengths to metagenomic datasets leads to more accurate taxonomic binning of DNA scaffolds and have the potential to substantially improve taxonomic assignment and assembly of metagenomic data.

  10. Fate of antibiotic and metal resistance genes during two-phase anaerobic digestion of residue sludge revealed by metagenomic approach.

    Science.gov (United States)

    Wu, Ying; Cui, Erping; Zuo, Yiru; Cheng, Weixiao; Chen, Hong

    2018-03-07

    The prevalence and persistence of antibiotic resistance genes in wastewater treatment plants (WWTPs) is of growing interest, and residual sludge is among the main sources for the release of antibiotic resistance genes (ARGs). Moreover, heavy metals concentrated in dense microbial communities of sludge could potentially favor co-selection of ARGs and metal resistance genes (MRGs). Residual sludge treatment is needed to limit the spread of resistance from WWTPs into the environment. This study aimed to explore the fate of ARGs and MRGs during thermophilic two-phase (acidogenic/methanogenic phase) anaerobic digestion by metagenomic analysis. The occurrence and abundance of mobile genetic elements were also determined based on the SEED database. Among the 27 major ARG subtypes detected in feed sludge, large reductions (> 50%) in 6 ARG subtypes were achieved by acidogenic phase (AP), while 63.0% of the ARG subtypes proliferated in the following methanogenic phase (MP). In contrast, a 2.8-fold increase in total MRG abundance was found in AP, while the total abundance during MP decreased to the same order of magnitude as in feed sludge. The distinct dynamics of ARGs and MRGs during the two-phase anaerobic digestion are noteworthy, and more specific treatments are required to limit their proliferation in the environment.

  11. A Metagenomic Advance for the Cloning and Characterization of a Cellulase from Red Rice Crop Residues

    Directory of Open Access Journals (Sweden)

    Carlos Meneses

    2016-06-01

    Full Text Available Many naturally-occurring cellulolytic microorganisms are not readily cultivable, demanding a culture-independent approach in order to study their cellulolytic genes. Metagenomics involves the isolation of DNA from environmental sources and can be used to identify enzymes with biotechnological potential from uncultured microbes. In this study, a gene encoding an endoglucanase was cloned from red rice crop residues using a metagenomic strategy. The amino acid identity between this gene and its closest published counterparts is lower than 70%. The endoglucanase was named EglaRR01 and was biochemically characterized. This recombinant protein showed activity on carboxymethylcellulose, indicating that EglaRR01 is an endoactive lytic enzyme. The enzymatic activity was optimal at a pH of 6.8 and at a temperature of 30 °C. Ethanol production from this recombinant enzyme was also analyzed on EglaRR01 crop residues, and resulted in conversion of cellulose from red rice into simple sugars which were further fermented by Saccharomyces cerevisiae to produce ethanol after seven days. Ethanol yield in this study was approximately 8 g/L. The gene found herein shows strong potential for use in ethanol production from cellulosic biomass (second generation ethanol.

  12. A Metagenomic Advance for the Cloning and Characterization of a Cellulase from Red Rice Crop Residues.

    Science.gov (United States)

    Meneses, Carlos; Silva, Bruna; Medeiros, Betsy; Serrato, Rodrigo; Johnston-Monje, David

    2016-06-25

    Many naturally-occurring cellulolytic microorganisms are not readily cultivable, demanding a culture-independent approach in order to study their cellulolytic genes. Metagenomics involves the isolation of DNA from environmental sources and can be used to identify enzymes with biotechnological potential from uncultured microbes. In this study, a gene encoding an endoglucanase was cloned from red rice crop residues using a metagenomic strategy. The amino acid identity between this gene and its closest published counterparts is lower than 70%. The endoglucanase was named EglaRR01 and was biochemically characterized. This recombinant protein showed activity on carboxymethylcellulose, indicating that EglaRR01 is an endoactive lytic enzyme. The enzymatic activity was optimal at a pH of 6.8 and at a temperature of 30 °C. Ethanol production from this recombinant enzyme was also analyzed on EglaRR01 crop residues, and resulted in conversion of cellulose from red rice into simple sugars which were further fermented by Saccharomyces cerevisiae to produce ethanol after seven days. Ethanol yield in this study was approximately 8 g/L. The gene found herein shows strong potential for use in ethanol production from cellulosic biomass (second generation ethanol).

  13. Structural and functional insights from the metagenome of an acidic hot spring microbial planktonic community in the Colombian Andes.

    Directory of Open Access Journals (Sweden)

    Diego Javier Jiménez

    Full Text Available A taxonomic and annotated functional description of microbial life was deduced from 53 Mb of metagenomic sequence retrieved from a planktonic fraction of the Neotropical high Andean (3,973 meters above sea level acidic hot spring El Coquito (EC. A classification of unassembled metagenomic reads using different databases showed a high proportion of Gammaproteobacteria and Alphaproteobacteria (in total read affiliation, and through taxonomic affiliation of 16S rRNA gene fragments we observed the presence of Proteobacteria, micro-algae chloroplast and Firmicutes. Reads mapped against the genomes Acidiphilium cryptum JF-5, Legionella pneumophila str. Corby and Acidithiobacillus caldus revealed the presence of transposase-like sequences, potentially involved in horizontal gene transfer. Functional annotation and hierarchical comparison with different datasets obtained by pyrosequencing in different ecosystems showed that the microbial community also contained extensive DNA repair systems, possibly to cope with ultraviolet radiation at such high altitudes. Analysis of genes involved in the nitrogen cycle indicated the presence of dissimilatory nitrate reduction to N2 (narGHI, nirS, norBCDQ and nosZ, associated with Proteobacteria-like sequences. Genes involved in the sulfur cycle (cysDN, cysNC and aprA indicated adenylsulfate and sulfite production that were affiliated to several bacterial species. In summary, metagenomic sequence data provided insight regarding the structure and possible functions of this hot spring microbial community, describing some groups potentially involved in the nitrogen and sulfur cycling in this environment.

  14. Structural and Functional Insights from the Metagenome of an Acidic Hot Spring Microbial Planktonic Community in the Colombian Andes

    Science.gov (United States)

    Jiménez, Diego Javier; Andreote, Fernando Dini; Chaves, Diego; Montaña, José Salvador; Osorio-Forero, Cesar; Junca, Howard; Zambrano, María Mercedes; Baena, Sandra

    2012-01-01

    A taxonomic and annotated functional description of microbial life was deduced from 53 Mb of metagenomic sequence retrieved from a planktonic fraction of the Neotropical high Andean (3,973 meters above sea level) acidic hot spring El Coquito (EC). A classification of unassembled metagenomic reads using different databases showed a high proportion of Gammaproteobacteria and Alphaproteobacteria (in total read affiliation), and through taxonomic affiliation of 16S rRNA gene fragments we observed the presence of Proteobacteria, micro-algae chloroplast and Firmicutes. Reads mapped against the genomes Acidiphilium cryptum JF-5, Legionella pneumophila str. Corby and Acidithiobacillus caldus revealed the presence of transposase-like sequences, potentially involved in horizontal gene transfer. Functional annotation and hierarchical comparison with different datasets obtained by pyrosequencing in different ecosystems showed that the microbial community also contained extensive DNA repair systems, possibly to cope with ultraviolet radiation at such high altitudes. Analysis of genes involved in the nitrogen cycle indicated the presence of dissimilatory nitrate reduction to N2 (narGHI, nirS, norBCDQ and nosZ), associated with Proteobacteria-like sequences. Genes involved in the sulfur cycle (cysDN, cysNC and aprA) indicated adenylsulfate and sulfite production that were affiliated to several bacterial species. In summary, metagenomic sequence data provided insight regarding the structure and possible functions of this hot spring microbial community, describing some groups potentially involved in the nitrogen and sulfur cycling in this environment. PMID:23251687

  15. A metagenome for lacustrine Cladophora (Cladophorales) reveals remarkable diversity of eukaryotic epibionts and genes relevant to materials cycling.

    Science.gov (United States)

    Graham, Linda E; Knack, Jennifer J; Graham, Melissa E; Graham, James M; Zulkifly, Shahrizim

    2015-06-01

    Periphyton dominated by the cellulose-rich filamentous green alga Cladophora forms conspicuous growths along rocky marine and freshwater shorelines worldwide, providing habitat for diverse epibionts. Bacterial epibionts have been inferred to display diverse functions of biogeochemical significance: N-fixation and other redox reactions, phosphorus accumulation, and organic degradation. Here, we report taxonomic diversity of eukaryotic and prokaryotic epibionts and diversity of genes associated with materials cycling in a Cladophora metagenome sampled from Lake Mendota, Dane Co., WI, USA, during the growing season of 2012. A total of 1,060 distinct 16S, 173 18S, and 351 28S rRNA operational taxonomic units, from which >220 genera or species of bacteria (~60), protists (~80), fungi (6), and microscopic metazoa (~80), were distinguished with the use of reference databases. We inferred the presence of several algal taxa generally associated with marine systems and detected Jaoa, a freshwater periphytic ulvophyte previously thought endemic to China. We identified six distinct nifH gene sequences marking nitrogen fixation, >25 bacterial and eukaryotic cellulases relevant to sedimentary C-cycling and technological applications, and genes encoding enzymes in aerobic and anaerobic pathways for vitamin B12 biosynthesis. These results emphasize the importance of Cladophora in providing habitat for microscopic metazoa, fungi, protists, and bacteria that are often inconspicuous, yet play important roles in ecosystem biogeochemistry. © 2015 Phycological Society of America.

  16. Multiple comparative metagenomics using multiset k-mer counting

    Directory of Open Access Journals (Sweden)

    Gaëtan Benoit

    2016-11-01

    Full Text Available Background Large scale metagenomic projects aim to extract biodiversity knowledge between different environmental conditions. Current methods for comparing microbial communities face important limitations. Those based on taxonomical or functional assignation rely on a small subset of the sequences that can be associated to known organisms. On the other hand, de novo methods, that compare the whole sets of sequences, either do not scale up on ambitious metagenomic projects or do not provide precise and exhaustive results. Methods These limitations motivated the development of a new de novo metagenomic comparative method, called Simka. This method computes a large collection of standard ecological distances by replacing species counts by k-mer counts. Simka scales-up today’s metagenomic projects thanks to a new parallel k-mer counting strategy on multiple datasets. Results Experiments on public Human Microbiome Project datasets demonstrate that Simka captures the essential underlying biological structure. Simka was able to compute in a few hours both qualitative and quantitative ecological distances on hundreds of metagenomic samples (690 samples, 32 billions of reads. We also demonstrate that analyzing metagenomes at the k-mer level is highly correlated with extremely precise de novo comparison techniques which rely on all-versus-all sequences alignment strategy or which are based on taxonomic profiling.

  17. Metagenome Fragment Classification Using -Mer Frequency Profiles

    Directory of Open Access Journals (Sweden)

    Gail Rosen

    2008-01-01

    Full Text Available A vast amount of microbial sequencing data is being generated through large-scale projects in ecology, agriculture, and human health. Efficient high-throughput methods are needed to analyze the mass amounts of metagenomic data, all DNA present in an environmental sample. A major obstacle in metagenomics is the inability to obtain accuracy using technology that yields short reads. We construct the unique -mer frequency profiles of 635 microbial genomes publicly available as of February 2008. These profiles are used to train a naive Bayes classifier (NBC that can be used to identify the genome of any fragment. We show that our method is comparable to BLAST for small 25 bp fragments but does not have the ambiguity of BLAST's tied top scores. We demonstrate that this approach is scalable to identify any fragment from hundreds of genomes. It also performs quite well at the strain, species, and genera levels and achieves strain resolution despite classifying ubiquitous genomic fragments (gene and nongene regions. Cross-validation analysis demonstrates that species-accuracy achieves 90% for highly-represented species containing an average of 8 strains. We demonstrate that such a tool can be used on the Sargasso Sea dataset, and our analysis shows that NBC can be further enhanced.

  18. Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease.

    Science.gov (United States)

    Greenblum, Sharon; Turnbaugh, Peter J; Borenstein, Elhanan

    2012-01-10

    The human microbiome plays a key role in a wide range of host-related processes and has a profound effect on human health. Comparative analyses of the human microbiome have revealed substantial variation in species and gene composition associated with a variety of disease states but may fall short of providing a comprehensive understanding of the impact of this variation on the community and on the host. Here, we introduce a metagenomic systems biology computational framework, integrating metagenomic data with an in silico systems-level analysis of metabolic networks. Focusing on the gut microbiome, we analyze fecal metagenomic data from 124 unrelated individuals, as well as six monozygotic twin pairs and their mothers, and generate community-level metabolic networks of the microbiome. Placing variations in gene abundance in the context of these networks, we identify both gene-level and network-level topological differences associated with obesity and inflammatory bowel disease (IBD). We show that genes associated with either of these host states tend to be located at the periphery of the metabolic network and are enriched for topologically derived metabolic "inputs." These findings may indicate that lean and obese microbiomes differ primarily in their interface with the host and in the way they interact with host metabolism. We further demonstrate that obese microbiomes are less modular, a hallmark of adaptation to low-diversity environments. We additionally link these topological variations to community species composition. The system-level approach presented here lays the foundation for a unique framework for studying the human microbiome, its organization, and its impact on human health.

  19. Meta genome-wide network from functional linkages of genes in human gut microbial ecosystems.

    Science.gov (United States)

    Ji, Yan; Shi, Yixiang; Wang, Chuan; Dai, Jianliang; Li, Yixue

    2013-03-01

    The human gut microbial ecosystem (HGME) exerts an important influence on the human health. In recent researches, meta-genomics provided deep insights into the HGME in terms of gene contents, metabolic processes and genome constitutions of meta-genome. Here we present a novel methodology to investigate the HGME on the basis of a set of functionally coupled genes regardless of their genome origins when considering the co-evolution properties of genes. By analyzing these coupled genes, we showed some basic properties of HGME significantly associated with each other, and further constructed a protein interaction map of human gut meta-genome to discover some functional modules that may relate with essential metabolic processes. Compared with other studies, our method provides a new idea to extract basic function elements from meta-genome systems and investigate complex microbial environment by associating its biological traits with co-evolutionary fingerprints encoded in it.

  20. The Human Gut Antibiotic Resistome in the Metagenomic Era: Progress and Perspectives

    Directory of Open Access Journals (Sweden)

    Yongfei Hu

    2016-04-01

    Full Text Available The human gut is populated by a vast number of bacteria, which play a critical role in human health. In recent years, attention has focused on the gut bacteria as a reservoir of antibiotic resistance genes (ARGs. Both culture-dependent and culture-independent methods have been applied to investigate numerous ARGs, collectively called the antibiotic resistome, harbored by gut bacteria. This has led to an increased understanding of the overall profile of the gut antibiotic resistome, although it remains incompletely understood. In this review, we summarize the recent research findings on the human gut antibiotic resistome, with an emphasis on progress achieved using the culture-independent metagenomic strategy. We also describe the features of different available ARG databases used for annotation in metagenomic analysis, discuss the potential problems and limitations in current research, and suggest several directions for future investigation.

  1. Expanding the Repertoire of Carbapenem-Hydrolyzing Metallo-ß-Lactamases by Functional Metagenomic Analysis of Soil Microbiota

    DEFF Research Database (Denmark)

    Gudeta, Dereje D.; Bortolaia, Valeria; Pollini, Simona

    2016-01-01

    , diversity and functionality of carbapenemase-encoding genes in soil microbiota by functional metagenomics. Ten plasmid libraries were generated by cloning metagenomic DNA from agricultural (n = 6) and grassland (n = 4) soil into Escherichia coli. The libraries were cultured on amoxicillin-containing agar......% identity). RAIphy analysis indicated that six enzymes (CRD3-1, GRD23-1, DHT2-1, SPN79-1, ALG6-1, and ALG11-1) originated from Proteobacteria, two (PEDO-1 and ESP-2) from Bacteroidetes and one (GRD33-1) from Gemmatimonadetes. All MBLs detected in soil microbiota were functional when expressed in E. coli...... approaches targeted different subpopulations in soil microbiota....

  2. Unsupervised Two-Way Clustering of Metagenomic Sequences

    Directory of Open Access Journals (Sweden)

    Shruthi Prabhakara

    2012-01-01

    Full Text Available A major challenge facing metagenomics is the development of tools for the characterization of functional and taxonomic content of vast amounts of short metagenome reads. The efficacy of clustering methods depends on the number of reads in the dataset, the read length and relative abundances of source genomes in the microbial community. In this paper, we formulate an unsupervised naive Bayes multispecies, multidimensional mixture model for reads from a metagenome. We use the proposed model to cluster metagenomic reads by their species of origin and to characterize the abundance of each species. We model the distribution of word counts along a genome as a Gaussian for shorter, frequent words and as a Poisson for longer words that are rare. We employ either a mixture of Gaussians or mixture of Poissons to model reads within each bin. Further, we handle the high-dimensionality and sparsity associated with the data, by grouping the set of words comprising the reads, resulting in a two-way mixture model. Finally, we demonstrate the accuracy and applicability of this method on simulated and real metagenomes. Our method can accurately cluster reads as short as 100 bps and is robust to varying abundances, divergences and read lengths.

  3. Identification of the Core Set of Carbon-Associated Genes in a Bioenergy Grassland Soil.

    Directory of Open Access Journals (Sweden)

    Adina Howe

    Full Text Available Despite the central role of soil microbial communities in global carbon (C cycling, little is known about soil microbial community structure and even less about their metabolic pathways. Efforts to characterize soil communities often focus on identifying differences in gene content across environmental gradients, but an alternative question is what genes are similar in soils. These genes may indicate critical species or potential functions that are required in all soils. Here we identified the "core" set of C cycling sequences widely present in multiple soil metagenomes from a fertilized prairie (FP. Of 226,887 sequences associated with known enzymes involved in the synthesis, metabolism, and transport of carbohydrates, 843 were identified to be consistently prevalent across four replicate soil metagenomes. This core metagenome was functionally and taxonomically diverse, representing five enzyme classes and 99 enzyme families within the CAZy database. Though it only comprised 0.4% of all CAZy-associated genes identified in FP metagenomes, the core was found to be comprised of functions similar to those within cumulative soils. The FP CAZy-associated core sequences were present in multiple publicly available soil metagenomes and most similar to soils sharing geographic proximity. In soil ecosystems, where high diversity remains a key challenge for metagenomic investigations, these core genes represent a subset of critical functions necessary for carbohydrate metabolism, which can be targeted to evaluate important C fluxes in these and other similar soils.

  4. Characterization of Bacterial Hydrocarbon Degradation Potential in the Red Sea Through Metagenomic and Cultivation Methods

    KAUST Repository

    Bianchi, Patrick

    2018-01-01

    The focus of this thesis is on the characterization at the metagenomic level of the water column of the Red Sea and on the isolation and characterization of novel hydrocarbon-degrading species and genomes adapted to the unique environmental characteristics of the basin. The presence of metabolic genes responsible of both linear and aromatic hydrocarbon degradation has been evaluated from a metagenomic survey and a meta-analysis of already available datasets. In parallel, water column-based microcosms have been established with crude oil as the sole carbon source, with aim to isolate potential novel bacterial species and provide new genome-based insights on the hydrocarbon degradation potential available in the Red Sea.

  5. Critical Assessment of Metagenome Interpretation-a benchmark of metagenomics software.

    Science.gov (United States)

    Sczyrba, Alexander; Hofmann, Peter; Belmann, Peter; Koslicki, David; Janssen, Stefan; Dröge, Johannes; Gregor, Ivan; Majda, Stephan; Fiedler, Jessika; Dahms, Eik; Bremges, Andreas; Fritz, Adrian; Garrido-Oter, Ruben; Jørgensen, Tue Sparholt; Shapiro, Nicole; Blood, Philip D; Gurevich, Alexey; Bai, Yang; Turaev, Dmitrij; DeMaere, Matthew Z; Chikhi, Rayan; Nagarajan, Niranjan; Quince, Christopher; Meyer, Fernando; Balvočiūtė, Monika; Hansen, Lars Hestbjerg; Sørensen, Søren J; Chia, Burton K H; Denis, Bertrand; Froula, Jeff L; Wang, Zhong; Egan, Robert; Don Kang, Dongwan; Cook, Jeffrey J; Deltel, Charles; Beckstette, Michael; Lemaitre, Claire; Peterlongo, Pierre; Rizk, Guillaume; Lavenier, Dominique; Wu, Yu-Wei; Singer, Steven W; Jain, Chirag; Strous, Marc; Klingenberg, Heiner; Meinicke, Peter; Barton, Michael D; Lingner, Thomas; Lin, Hsin-Hung; Liao, Yu-Chieh; Silva, Genivaldo Gueiros Z; Cuevas, Daniel A; Edwards, Robert A; Saha, Surya; Piro, Vitor C; Renard, Bernhard Y; Pop, Mihai; Klenk, Hans-Peter; Göker, Markus; Kyrpides, Nikos C; Woyke, Tanja; Vorholt, Julia A; Schulze-Lefert, Paul; Rubin, Edward M; Darling, Aaron E; Rattei, Thomas; McHardy, Alice C

    2017-11-01

    Methods for assembly, taxonomic profiling and binning are key to interpreting metagenome data, but a lack of consensus about benchmarking complicates performance assessment. The Critical Assessment of Metagenome Interpretation (CAMI) challenge has engaged the global developer community to benchmark their programs on highly complex and realistic data sets, generated from ∼700 newly sequenced microorganisms and ∼600 novel viruses and plasmids and representing common experimental setups. Assembly and genome binning programs performed well for species represented by individual genomes but were substantially affected by the presence of related strains. Taxonomic profiling and binning programs were proficient at high taxonomic ranks, with a notable performance decrease below family level. Parameter settings markedly affected performance, underscoring their importance for program reproducibility. The CAMI results highlight current challenges but also provide a roadmap for software selection to answer specific research questions.

  6. Metagenomic identification of a novel salt tolerance gene from the human gut microbiome which encodes a membrane protein with homology to a brp/blh-family β-carotene 15,15'-monooxygenase.

    Directory of Open Access Journals (Sweden)

    Eamonn P Culligan

    Full Text Available The human gut microbiome consists of at least 3 million non-redundant genes, 150 times that of the core human genome. Herein, we report the identification and characterisation of a novel stress tolerance gene from the human gut metagenome. The locus, assigned brpA, encodes a membrane protein with homology to a brp/blh-family β-carotene monooxygenase. Cloning and heterologous expression of brpA in Escherichia coli confers a significant salt tolerance phenotype. Furthermore, when cultured in the presence of exogenous β-carotene, cell pellets adopt a red/orange pigmentation indicating the incorporation of carotenoids in the cell membrane.

  7. Metagenomics and development of the gut microbiota in infants

    DEFF Research Database (Denmark)

    Vallès, Y.; Gosalbes, M. J.; de Vries, Lisbeth Elvira

    2012-01-01

    Clin Microbiol Infect 2012; 18 (Suppl. 4): 21–26 The establishment of a balanced intestinal microbiota is essential for numerous aspects of human health, yet the microbial colonization of the gastrointestinal tract of infants is both complex and highly variable among individuals. In addition......, the gastrointestinal tract microbiota is often exposed to antibiotics, and may be an important reservoir of resistant strains and of transferable resistance genes from early infancy. We are investigating by means of diverse metagenomic approaches several areas of microbiota development in infants, including...

  8. Bacterial community composition and predicted functional ecology of sponges, sediment and seawater from the thousand islands reef complex, West Java, Indonesia.

    Science.gov (United States)

    de Voogd, Nicole J; Cleary, Daniel F R; Polónia, Ana R M; Gomes, Newton C M

    2015-04-01

    In the present study, we assessed the composition of Bacteria in four biotopes namely sediment, seawater and two sponge species (Stylissa massa and Xestospongia testudinaria) at four different reef sites in a coral reef ecosystem in West Java, Indonesia. In addition to this, we used a predictive metagenomic approach to estimate to what extent nitrogen metabolic pathways differed among bacterial communities from different biotopes. We observed marked differences in bacterial composition of the most abundant bacterial phyla, classes and orders among sponge species, water and sediment. Proteobacteria were by far the most abundant phylum in terms of both sequences and Operational Taxonomic Units (OTUs). Predicted counts for genes associated with the nitrogen metabolism suggested that several genes involved in the nitrogen cycle were enriched in sponge samples, including nosZ, nifD, nirK, norB and nrfA genes. Our data show that a combined barcoded pyrosequencing and predictive metagenomic approach can provide novel insights into the potential ecological functions of the microbial communities. Not only is this approach useful for our understanding of the vast microbial diversity found in sponges but also to understand the potential response of microbial communities to environmental change. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Horizontal gene transfer in an acid mine drainage microbial community.

    Science.gov (United States)

    Guo, Jiangtao; Wang, Qi; Wang, Xiaoqi; Wang, Fumeng; Yao, Jinxian; Zhu, Huaiqiu

    2015-07-04

    Horizontal gene transfer (HGT) has been widely identified in complete prokaryotic genomes. However, the roles of HGT among members of a microbial community and in evolution remain largely unknown. With the emergence of metagenomics, it is nontrivial to investigate such horizontal flow of genetic materials among members in a microbial community from the natural environment. Because of the lack of suitable methods for metagenomics gene transfer detection, microorganisms from a low-complexity community acid mine drainage (AMD) with near-complete genomes were used to detect possible gene transfer events and suggest the biological significance. Using the annotation of coding regions by the current tools, a phylogenetic approach, and an approximately unbiased test, we found that HGTs in AMD organisms are not rare, and we predicted 119 putative transferred genes. Among them, 14 HGT events were determined to be transfer events among the AMD members. Further analysis of the 14 transferred genes revealed that the HGT events affected the functional evolution of archaea or bacteria in AMD, and it probably shaped the community structure, such as the dominance of G-plasma in archaea in AMD through HGT. Our study provides a novel insight into HGT events among microorganisms in natural communities. The interconnectedness between HGT and community evolution is essential to understand microbial community formation and development.

  10. Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes

    DEFF Research Database (Denmark)

    Nielsen, Henrik Bjørn; Almeida, Mathieu; Juncker, Agnieszka

    2014-01-01

    of microbial genomes without the need for reference sequences. We demonstrate the method on data from 396 human gut microbiome samples and identify 7,381 co-abundance gene groups (CAGs), including 741 metagenomic species (MGS). We use these to assemble 238 high-quality microbial genomes and identify...

  11. Biochemical Characterization of a Family 15 Carbohydrate Esterase from a Bacterial Marine Arctic Metagenome.

    Directory of Open Access Journals (Sweden)

    Concetta De Santi

    Full Text Available The glucuronoyl esterase enzymes of wood-degrading fungi (Carbohydrate Esterase family 15; CE15 form part of the hemicellulolytic and cellulolytic enzyme systems that break down plant biomass, and have possible applications in biotechnology. Homologous enzymes are predicted in the genomes of several bacteria, however these have been much less studied than their fungal counterparts. Here we describe the recombinant production and biochemical characterization of a bacterial CE15 enzyme denoted MZ0003, which was identified by in silico screening of a prokaryotic metagenome library derived from marine Arctic sediment. MZ0003 has high similarity to several uncharacterized gene products of polysaccharide-degrading bacterial species, and phylogenetic analysis indicates a deep evolutionary split between these CE15s and fungal homologs.MZ0003 appears to differ from previously-studied CE15s in some aspects. Some glucuronoyl esterase activity could be measured by qualitative thin-layer chromatography which confirms its assignment as a CE15, however MZ0003 can also hydrolyze a range of other esters, including p-nitrophenyl acetate, which is not acted upon by some fungal homologs. The structure of MZ0003 also appears to differ as it is predicted to have several large loop regions that are absent in previously studied CE15s, and a combination of homology-based modelling and site-directed mutagenesis indicate its catalytic residues deviate from the conserved Ser-His-Glu triad of many fungal CE15s. Taken together, these results indicate that potentially unexplored diversity exists among bacterial CE15s, and this may be accessed by investigation of the microbial metagenome. The combination of low activity on typical glucuronoyl esterase substrates, and the lack of glucuronic acid esters in the marine environment suggest that the physiological substrate of MZ0003 and its homologs is likely to be different from that of related fungal enzymes.

  12. Gene prediction using the Self-Organizing Map: automatic generation of multiple gene models.

    Science.gov (United States)

    Mahony, Shaun; McInerney, James O; Smith, Terry J; Golden, Aaron

    2004-03-05

    Many current gene prediction methods use only one model to represent protein-coding regions in a genome, and so are less likely to predict the location of genes that have an atypical sequence composition. It is likely that future improvements in gene finding will involve the development of methods that can adequately deal with intra-genomic compositional variation. This work explores a new approach to gene-prediction, based on the Self-Organizing Map, which has the ability to automatically identify multiple gene models within a genome. The current implementation, named RescueNet, uses relative synonymous codon usage as the indicator of protein-coding potential. While its raw accuracy rate can be less than other methods, RescueNet consistently identifies some genes that other methods do not, and should therefore be of interest to gene-prediction software developers and genome annotation teams alike. RescueNet is recommended for use in conjunction with, or as a complement to, other gene prediction methods.

  13. Exploiting HPC Platforms for Metagenomics: Challenges and Opportunities (MICW - Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    Energy Technology Data Exchange (ETDEWEB)

    Canon, Shane

    2011-10-12

    DOE JGI's Zhong Wang, chair of the High-performance Computing session, gives a brief introduction before Berkeley Lab's Shane Canon talks about "Exploiting HPC Platforms for Metagenomics: Challenges and Opportunities" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  14. Marine Metagenome as A Resource for Novel Enzymes

    KAUST Repository

    Alma’ abadi, Amani D.; Gojobori, Takashi; Mineta, Katsuhiko

    2015-01-01

    the metagenomics approach has many limitations, it is expected to provide not only scientific insights but also economic benefits, especially in industry. This review highlights the importance of metagenomics in mining microbial lipases, as an example, by using

  15. Metagenomic Sequencing of an In Vitro-Simulated Microbial Community

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Jenna L.; Darling, Aaron E.; Eisen, Jonathan A.

    2009-12-01

    Background: Microbial life dominates the earth, but many species are difficult or even impossible to study under laboratory conditions. Sequencing DNA directly from the environment, a technique commonly referred to as metagenomics, is an important tool for cataloging microbial life. This culture-independent approach involves collecting samples that include microbes in them, extracting DNA from the samples, and sequencing the DNA. A sample may contain many different microorganisms, macroorganisms, and even free-floating environmental DNA. A fundamental challenge in metagenomics has been estimating the abundance of organisms in a sample based on the frequency with which the organism's DNA was observed in reads generated via DNA sequencing. Methodology/Principal Findings: We created mixtures of ten microbial species for which genome sequences are known. Each mixture contained an equal number of cells of each species. We then extracted DNA from the mixtures, sequenced the DNA, and measured the frequency with which genomic regions from each organism was observed in the sequenced DNA. We found that the observed frequency of reads mapping to each organism did not reflect the equal numbers of cells that were known to be included in each mixture. The relative organism abundances varied significantly depending on the DNA extraction and sequencing protocol utilized. Conclusions/Significance: We describe a new data resource for measuring the accuracy of metagenomic binning methods, created by in vitro-simulation of a metagenomic community. Our in vitro simulation can be used to complement previous in silico benchmark studies. In constructing a synthetic community and sequencing its metagenome, we encountered several sources of observation bias that likely affect most metagenomic experiments to date and present challenges for comparative metagenomic studies. DNA preparation methods have a particularly profound effect in our study, implying that samples prepared with

  16. Unravelling core microbial metabolisms in the hypersaline microbial mats of Shark Bay using high-throughput metagenomics

    Energy Technology Data Exchange (ETDEWEB)

    Ruvindy, Rendy; White III, Richard Allen; Neilan, Brett Anthony; Burns, Brendan Paul

    2015-05-29

    Modern microbial mats are potential analogues of some of Earth’s earliest ecosystems. Excellent examples can be found in Shark Bay, Australia, with mats of various morphologies. To further our understanding of the functional genetic potential of these complex microbial ecosystems, we conducted for the first time shotgun metagenomic analyses. We assembled metagenomic nextgeneration sequencing data to classify the taxonomic and metabolic potential across diverse morphologies of marine mats in Shark Bay. The microbial community across taxonomic classifications using protein-coding and small subunit rRNA genes directly extracted from the metagenomes suggests that three phyla Proteobacteria, Cyanobacteria and Bacteriodetes dominate all marine mats. However, the microbial community structure between Shark Bay and Highbourne Cay (Bahamas) marine systems appears to be distinct from each other. The metabolic potential (based on SEED subsystem classifications) of the Shark Bay and Highbourne Cay microbial communities were also distinct. Shark Bay metagenomes have a metabolic pathway profile consisting of both heterotrophic and photosynthetic pathways, whereas Highbourne Cay appears to be dominated almost exclusively by photosynthetic pathways. Alternative non-rubisco-based carbon metabolism including reductive TCA cycle and 3-hydroxypropionate/4-hydroxybutyrate pathways is highly represented in Shark Bay metagenomes while not represented in Highbourne Cay microbial mats or any other mat forming ecosystems investigated to date. Potentially novel aspects of nitrogen cycling were also observed, as well as putative heavy metal cycling (arsenic, mercury, copper and cadmium). Finally, archaea are highly represented in Shark Bay and may have critical roles in overall ecosystem function in these modern microbial mats.

  17. A comparative analysis of the intestinal metagenomes present in guinea pigs (Cavia porcellus) and humans (Homo sapiens)

    DEFF Research Database (Denmark)

    Hildebrand, Falk; Ebersbach, Tine; Nielsen, Henrik Bjørn

    2012-01-01

    Background: Guinea pig (Cavia porcellus) is an important model for human intestinal research. We have characterized the faecal microbiota of 60 guinea pigs using Illumina shotgun metagenomics, and used this data to compile a gene catalogue of its prevalent microbiota. Subsequently, we compared th...

  18. Screening a novel Na+/H+ antiporter gene from a metagenomic library of halophiles colonizing in the Dagong Ancient Brine Well in China.

    Science.gov (United States)

    Xiang, Wenliang; Zhang, Jie; Li, Lin; Liang, Huazhong; Luo, Hai; Zhao, Jian; Yang, Zhirong; Sun, Qun

    2010-05-01

    Metagenomic DNA libraries constructed from the Dagong Ancient Brine Well were screened for genes with Na(+)/H(+) antiporter activity on the antiporter-deficient Escherichia coli KNabc strain. One clone with a stable Na(+)-resistant phenotype was obtained and its Na(+)/H(+) antiporter gene was sequenced and designated as m-nha. The deduced amino acid sequence of M-Nha protein consists of 523 residues with a calculated molecular weight of 58 147 Da and a pI of 5.50, which is homologous with NhaH from Halobacillus dabanensis D-8(T) (92%) and Halobacillus aidingensis AD-6(T) (86%), and with Nhe2 from Bacillus sp. NRRL B-14911 (64%). It had a hydropathy profile with 10 putative transmembrane domains and a long carboxyl terminal hydrophilic tail of 140 amino acid residues, similar to Nhap from Synechocystis sp. and Aphanothece halophytica, as well as NhaG from Bacillus subtilis. The m-nha gene in the antiporter-negative mutant E. coli KNabc conferred resistance to Na(+) and the ability to grow under alkaline conditions. The difference in amino acid sequence and the putative secondary structure suggested that the m-nha isolated from the Dagong Ancient Brine Well in this study was a novel Na(+)/H(+) antiporter gene.

  19. Assembly of viral genomes from metagenomes

    Directory of Open Access Journals (Sweden)

    Saskia L Smits

    2014-12-01

    Full Text Available Viral infections remain a serious global health issue. Metagenomic approaches are increasingly used in the detection of novel viral pathogens but also to generate complete genomes of uncultivated viruses. In silico identification of complete viral genomes from sequence data would allow rapid phylogenetic characterization of these new viruses. Often, however, complete viral genomes are not recovered, but rather several distinct contigs derived from a single entity, some of which have no sequence homology to any known proteins. De novo assembly of single viruses from a metagenome is challenging, not only because of the lack of a reference genome, but also because of intrapopulation variation and uneven or insufficient coverage. Here we explored different assembly algorithms, remote homology searches, genome-specific sequence motifs, k-mer frequency ranking, and coverage profile binning to detect and obtain viral target genomes from metagenomes. All methods were tested on 454-generated sequencing datasets containing three recently described RNA viruses with a relatively large genome which were divergent to previously known viruses from the viral families Rhabdoviridae and Coronaviridae. Depending on specific characteristics of the target virus and the metagenomic community, different assembly and in silico gap closure strategies were successful in obtaining near complete viral genomes.

  20. BioCreative Workshops for DOE Genome Sciences: Text Mining for Metagenomics

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Cathy H. [Univ. of Delaware, Newark, DE (United States). Center for Bioinformatics and Computational Biology; Hirschman, Lynette [The MITRE Corporation, Bedford, MA (United States)

    2016-10-29

    The objective of this project was to host BioCreative workshops to define and develop text mining tasks to meet the needs of the Genome Sciences community, focusing on metadata information extraction in metagenomics. Following the successful introduction of metagenomics at the BioCreative IV workshop, members of the metagenomics community and BioCreative communities continued discussion to identify candidate topics for a BioCreative metagenomics track for BioCreative V. Of particular interest was the capture of environmental and isolation source information from text. The outcome was to form a “community of interest” around work on the interactive EXTRACT system, which supported interactive tagging of environmental and species data. This experiment is included in the BioCreative V virtual issue of Database. In addition, there was broad participation by members of the metagenomics community in the panels held at BioCreative V, leading to valuable exchanges between the text mining developers and members of the metagenomics research community. These exchanges are reflected in a number of the overview and perspective pieces also being captured in the BioCreative V virtual issue. Overall, this conversation has exposed the metagenomics researchers to the possibilities of text mining, and educated the text mining developers to the specific needs of the metagenomics community.

  1. Evaluation of ddRADseq for reduced representation metagenome sequencing

    Directory of Open Access Journals (Sweden)

    Michael Y. Liu

    2017-09-01

    Full Text Available Background Profiling of microbial communities via metagenomic shotgun sequencing has enabled researches to gain unprecedented insight into microbial community structure and the functional roles of community members. This study describes a method and basic analysis for a metagenomic adaptation of the double digest restriction site associated DNA sequencing (ddRADseq protocol for reduced representation metagenome profiling. Methods This technique takes advantage of the sequence specificity of restriction endonucleases to construct an Illumina-compatible sequencing library containing DNA fragments that are between a pair of restriction sites located within close proximity. This results in a reduced sequencing library with coverage breadth that can be tuned by size selection. We assessed the performance of the metagenomic ddRADseq approach by applying the full method to human stool samples and generating sequence data. Results The ddRADseq data yields a similar estimate of community taxonomic profile as obtained from shotgun metagenome sequencing of the same human stool samples. No obvious bias with respect to genomic G + C content and the estimated relative species abundance was detected. Discussion Although ddRADseq does introduce some bias in taxonomic representation, the bias is likely to be small relative to DNA extraction bias. ddRADseq appears feasible and could have value as a tool for metagenome-wide association studies.

  2. SmashCommunity: A metagenomic annotation and analysis tool

    DEFF Research Database (Denmark)

    Arumugam, Manimozhiyan; Harrington, Eoghan D; Foerstner, Konrad U

    2010-01-01

    the quantitative phylogenetic and functional compositions of metagenomes, to compare compositions of multiple metagenomes and to produce intuitive visual representations of such analyses. AVAILABILITY: SmashCommunity is freely available at http://www.bork.embl.de/software/smash CONTACT: bork@embl.de....

  3. FANTOM: Functional and taxonomic analysis of metagenomes

    Directory of Open Access Journals (Sweden)

    Sanli Kemal

    2013-02-01

    Full Text Available Abstract Background Interpretation of quantitative metagenomics data is important for our understanding of ecosystem functioning and assessing differences between various environmental samples. There is a need for an easy to use tool to explore the often complex metagenomics data in taxonomic and functional context. Results Here we introduce FANTOM, a tool that allows for exploratory and comparative analysis of metagenomics abundance data integrated with metadata information and biological databases. Importantly, FANTOM can make use of any hierarchical database and it comes supplied with NCBI taxonomic hierarchies as well as KEGG Orthology, COG, PFAM and TIGRFAM databases. Conclusions The software is implemented in Python, is platform independent, and is available at http://www.sysbio.se/Fantom.

  4. Towards diagnostic metagenomics of Campylobacter in fecal samples

    DEFF Research Database (Denmark)

    Andersen, Sandra Christine; Kiil, Kristoffer; Harder, Christoffer Bugge

    2017-01-01

    The development of diagnostic metagenomics is driven by the need for universal, culture-independent methods for detection and characterization of pathogens to substitute the time-consuming, organism-specific, and often culture-based laboratory procedures for epidemiological source-tracing. Some...... of the challenges in diagnostic metagenomics are, that it requires a great next-generation sequencing depth and unautomated data analysis. DNA from human fecal samples spiked with 7.75 × 101-7.75 × 107 colony forming unit (CFU)/ml Campylobacter jejuni and chicken fecal samples spiked with 1 × 102-1 × 106 CFU...... Campylobacter in all the clinical samples. Sensitivity in diagnostic metagenomics is improving and has reached a clinically relevant level. There are still challenges to overcome before real-time diagnostic metagenomics can replace quantitative polymerase chain reaction (qPCR) or culture-based surveillance...

  5. Metagenomic sequencing reveals the relationship between microbiota composition and quality of Chinese Rice Wine.

    Science.gov (United States)

    Hong, Xutao; Chen, Jing; Liu, Lin; Wu, Huan; Tan, Haiqin; Xie, Guangfa; Xu, Qian; Zou, Huijun; Yu, Wenjing; Wang, Lan; Qin, Nan

    2016-05-31

    Chinese Rice Wine (CRW) is a common alcoholic beverage in China. To investigate the influence of microbial composition on the quality of CRW, high throughput sequencing was performed for 110 wine samples on bacterial 16S rRNA gene and fungal Internal Transcribed Spacer II (ITS2). Bioinformatic analyses demonstrated that the quality of yeast starter and final wine correlated with microbial taxonomic composition, which was exemplified by our finding that wine spoilage resulted from a high proportion of genus Lactobacillus. Subsequently, based on Lactobacillus abundance of an early stage, a model was constructed to predict final wine quality. In addition, three batches of 20 representative wine samples selected from a pool of 110 samples were further analyzed in metagenomics. The results revealed that wine spoilage was due to rapid growth of Lactobacillus brevis at the early stage of fermentation. Gene functional analysis indicated the importance of some pathways such as synthesis of biotin, malolactic fermentation and production of short-chain fatty acid. These results led to a conclusion that metabolisms of microbes influence the wine quality. Thus, nurturing of beneficial microbes and inhibition of undesired ones are both important for the mechanized brewery.

  6. Effective Analysis of NGS Metagenomic Data with Ultra-Fast Clustering Algorithms (MICW - Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    Energy Technology Data Exchange (ETDEWEB)

    Li, Weizhong

    2011-10-12

    San Diego Supercomputer Center's Weizhong Li on "Effective Analysis of NGS Metagenomic Data with Ultra-fast Clustering Algorithms" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  7. Challenges and Opportunities of Airborne Metagenomics

    OpenAIRE

    Behzad, Hayedeh; Gojobori, Takashi; Mineta, Katsuhiko

    2015-01-01

    Recent metagenomic studies of environments, such as marine and soil, have significantly enhanced our understanding of the diverse microbial communities living in these habitats and their essential roles in sustaining vast ecosystems. The increase in the number of publications related to soil and marine metagenomics is in sharp contrast to those of air, yet airborne microbes are thought to have significant impacts on many aspects of our lives from their potential roles in atmospheric events su...

  8. Metagenomic covariation along densely sampled environmental gradients in the Red Sea

    KAUST Repository

    Thompson, Luke R

    2016-07-15

    Oceanic microbial diversity covaries with physicochemical parameters. Temperature, for example, explains approximately half of global variation in surface taxonomic abundance. It is unknown, however, whether covariation patterns hold over narrower parameter gradients and spatial scales, and extending to mesopelagic depths. We collected and sequenced 45 epipelagic and mesopelagic microbial metagenomes on a meridional transect through the eastern Red Sea. We asked which environmental parameters explain the most variation in relative abundances of taxonomic groups, gene ortholog groups, and pathways—at a spatial scale of <2000 km, along narrow but well-defined latitudinal and depth-dependent gradients. We also asked how microbes are adapted to gradients and extremes in irradiance, temperature, salinity, and nutrients, examining the responses of individual gene ortholog groups to these parameters. Functional and taxonomic metrics were equally well explained (75–79%) by environmental parameters. However, only functional and not taxonomic covariation patterns were conserved when comparing with an intruding water mass with different physicochemical properties. Temperature explained the most variation in each metric, followed by nitrate, chlorophyll, phosphate, and salinity. That nitrate explained more variation than phosphate suggested nitrogen limitation, consistent with low surface N:P ratios. Covariation of gene ortholog groups with environmental parameters revealed patterns of functional adaptation to the challenging Red Sea environment: high irradiance, temperature, salinity, and low nutrients. Nutrient-acquisition gene ortholog groups were anti-correlated with concentrations of their respective nutrient species, recapturing trends previously observed across much larger distances and environmental gradients. This dataset of metagenomic covariation along densely sampled environmental gradients includes online data exploration supplements, serving as a community

  9. Clinicopathologic and gene expression parameters predict liver cancer prognosis

    International Nuclear Information System (INIS)

    Hao, Ke; Zhong, Hua; Greenawalt, Danielle; Ferguson, Mark D; Ng, Irene O; Sham, Pak C; Poon, Ronnie T; Molony, Cliona; Schadt, Eric E; Dai, Hongyue; Luk, John M; Lamb, John; Zhang, Chunsheng; Xie, Tao; Wang, Kai; Zhang, Bin; Chudin, Eugene; Lee, Nikki P; Mao, Mao

    2011-01-01

    The prognosis of hepatocellular carcinoma (HCC) varies following surgical resection and the large variation remains largely unexplained. Studies have revealed the ability of clinicopathologic parameters and gene expression to predict HCC prognosis. However, there has been little systematic effort to compare the performance of these two types of predictors or combine them in a comprehensive model. Tumor and adjacent non-tumor liver tissues were collected from 272 ethnic Chinese HCC patients who received curative surgery. We combined clinicopathologic parameters and gene expression data (from both tissue types) in predicting HCC prognosis. Cross-validation and independent studies were employed to assess prediction. HCC prognosis was significantly associated with six clinicopathologic parameters, which can partition the patients into good- and poor-prognosis groups. Within each group, gene expression data further divide patients into distinct prognostic subgroups. Our predictive genes significantly overlap with previously published gene sets predictive of prognosis. Moreover, the predictive genes were enriched for genes that underwent normal-to-tumor gene network transformation. Previously documented liver eSNPs underlying the HCC predictive gene signatures were enriched for SNPs that associated with HCC prognosis, providing support that these genes are involved in key processes of tumorigenesis. When applied individually, clinicopathologic parameters and gene expression offered similar predictive power for HCC prognosis. In contrast, a combination of the two types of data dramatically improved the power to predict HCC prognosis. Our results also provided a framework for understanding the impact of gene expression on the processes of tumorigenesis and clinical outcome

  10. Metagenomic analysis reveals that modern microbialites and polar microbial mats have similar taxonomic and functional potential

    Directory of Open Access Journals (Sweden)

    Richard Allen White III

    2015-09-01

    Full Text Available Within the subarctic climate of Clinton Creek, Yukon, Canada, lies an abandoned and flooded open-pit asbestos mine that harbors rapidly growing microbialites. To understand their formation we completed a metagenomic community profile of the microbialites and their surrounding sediments. Assembled metagenomic data revealed that bacteria within the phylum Proteobacteria numerically dominated this system, although the relative abundances of taxa within the phylum varied among environments. Bacteria belonging to Alphaproteobacteria and Gammaproteobacteria were dominant in the microbialites and sediments, respectively. The microbialites were also home to many other groups associated with microbialite formation including filamentous cyanobacteria and dissimilatory sulfate-reducing Deltaproteobacteria, consistent with the idea of a shared global microbialite microbiome. Other members were present that are typically not associated with microbialites including Gemmatimonadetes and iron-oxidizing Betaproteobacteria, which participate in carbon metabolism and iron cycling. Compared to the sediments, the microbialite microbiome has significantly more genes associated with photosynthetic processes (e.g., photosystem II reaction centers, carotenoid and chlorophyll biosynthesis and carbon fixation (e.g., CO dehydrogenase. The Clinton Creek microbialite communities had strikingly similar functional potentials to non-lithifying microbial mats from the Canadian High Arctic and Antarctica, but are functionally distinct, from non-lithifying mats or biofilms from Yellowstone. Clinton Creek microbialites also share metabolic genes (R2 0.900. These metagenomic profiles from an anthropogenic microbialite-forming ecosystem provide context to microbialite formation on a human-relevant timescale.

  11. Reverse transcriptase genes are highly abundant and transcriptionally active in marine plankton assemblages

    KAUST Repository

    Lescot, Magali

    2015-11-27

    Genes encoding reverse transcriptases (RTs) are found in most eukaryotes, often as a component of retrotransposons, as well as in retroviruses and in prokaryotic retroelements. We investigated the abundance, classification and transcriptional status of RTs based on Tara Oceans marine metagenomes and metatranscriptomes encompassing a wide organism size range. Our analyses revealed that RTs predominate large-size fraction metagenomes (>5 μm), where they reached a maximum of 13.5% of the total gene abundance. Metagenomic RTs were widely distributed across the phylogeny of known RTs, but many belonged to previously uncharacterized clades. Metatranscriptomic RTs showed distinct abundance patterns across samples compared with metagenomic RTs. The relative abundances of viral and bacterial RTs among identified RT sequences were higher in metatranscriptomes than in metagenomes and these sequences were detected in all metatranscriptome size fractions. Overall, these observations suggest an active proliferation of various RT-assisted elements, which could be involved in genome evolution or adaptive processes of plankton assemblage.

  12. Reverse transcriptase genes are highly abundant and transcriptionally active in marine plankton assemblages

    KAUST Repository

    Lescot, Magali; Hingamp, Pascal; Kojima, Kenji K; Villar, Emilie; Romac, Sarah; Veluchamy, Alaguraj; Boccara, Martine; Jaillon, Olivier; Ludicone, Daniele; Bowler, Chris; Wincker, Patrick; Claverie, Jean-Michel; Ogata, Hiroyuki

    2015-01-01

    Genes encoding reverse transcriptases (RTs) are found in most eukaryotes, often as a component of retrotransposons, as well as in retroviruses and in prokaryotic retroelements. We investigated the abundance, classification and transcriptional status of RTs based on Tara Oceans marine metagenomes and metatranscriptomes encompassing a wide organism size range. Our analyses revealed that RTs predominate large-size fraction metagenomes (>5 μm), where they reached a maximum of 13.5% of the total gene abundance. Metagenomic RTs were widely distributed across the phylogeny of known RTs, but many belonged to previously uncharacterized clades. Metatranscriptomic RTs showed distinct abundance patterns across samples compared with metagenomic RTs. The relative abundances of viral and bacterial RTs among identified RT sequences were higher in metatranscriptomes than in metagenomes and these sequences were detected in all metatranscriptome size fractions. Overall, these observations suggest an active proliferation of various RT-assisted elements, which could be involved in genome evolution or adaptive processes of plankton assemblage.

  13. DOE JGI Quality Metrics; Approaches to Scaling and Improving Metagenome Assembly (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    Energy Technology Data Exchange (ETDEWEB)

    Copeland, Alex; Brown, C. Titus

    2011-10-13

    DOE JGI's Alex Copeland on "DOE JGI Quality Metrics" and Michigan State University's C. Titus Brown on "Approaches to Scaling and Improving Metagenome Assembly" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  14. Marine Metagenome as A Resource for Novel Enzymes

    KAUST Repository

    Alma’abadi, Amani D.

    2015-11-10

    More than 99% of identified prokaryotes, including many from the marine environment, cannot be cultured in the laboratory. This lack of capability restricts our knowledge of microbial genetics and community ecology. Metagenomics, the culture-independent cloning of environmental DNAs that are isolated directly from an environmental sample, has already provided a wealth of information about the uncultured microbial world. It has also facilitated the discovery of novel biocatalysts by allowing researchers to probe directly into a huge diversity of enzymes within natural microbial communities. Recent advances in these studies have led to great interest in recruiting microbial enzymes for the development of environmentally-friendly industry. Although the metagenomics approach has many limitations, it is expected to provide not only scientific insights but also economic benefits, especially in industry. This review highlights the importance of metagenomics in mining microbial lipases, as an example, by using high-throughput techniques. In addition, we discuss challenges in the metagenomics as an important part of bioinformatics analysis in big data.

  15. Metagenomic identification of bacterioplankton taxa and pathways involved in microcystin degradation in lake erie.

    Directory of Open Access Journals (Sweden)

    Xiaozhen Mou

    Full Text Available Cyanobacterial harmful blooms (CyanoHABs that produce microcystins are appearing in an increasing number of freshwater ecosystems worldwide, damaging quality of water for use by human and aquatic life. Heterotrophic bacteria assemblages are thought to be important in transforming and detoxifying microcystins in natural environments. However, little is known about their taxonomic composition or pathways involved in the process. To address this knowledge gap, we compared the metagenomes of Lake Erie free-living bacterioplankton assemblages in laboratory microcosms amended with microcystins relative to unamended controls. A diverse array of bacterial phyla were responsive to elevated supply of microcystins, including Acidobacteria, Actinobacteria, Bacteroidetes, Planctomycetes, Proteobacteria of the alpha, beta, gamma, delta and epsilon subdivisions and Verrucomicrobia. At more detailed taxonomic levels, Methylophilales (mainly in genus Methylotenera and Burkholderiales (mainly in genera Bordetella, Burkholderia, Cupriavidus, Polaromonas, Ralstonia, Polynucleobacter and Variovorax of Betaproteobacteria were suggested to be more important in microcystin degradation than Sphingomonadales of Alphaproteobacteria. The latter taxa were previously thought to be major microcystin degraders. Homologs to known microcystin-degrading genes (mlr were not overrepresented in microcystin-amended metagenomes, indicating that Lake Erie bacterioplankton might employ alternative genes and/or pathways in microcystin degradation. Genes for xenobiotic metabolism were overrepresented in microcystin-amended microcosms, suggesting they are important in bacterial degradation of microcystin, a phenomenon that has been identified previously only in eukaryotic systems.

  16. Metagenomics Study on the Polymorphism of Gut Microbiota and Their Function on Human Health

    DEFF Research Database (Denmark)

    Feng, Qiang

    diversity and functional complexity of the gut microbiome. Facilitated by the Next Generation Sequencing (NGS) technologies and the progress of bioinformatics in the past decade, we have acquired substantial achievements in metagenomic studies on human gut microbiome and established the fundamentals of our...... understanding of the interactions between gut microbes and human body, and also the importance of this interaction on human health. As one of the milestones, the first integrated gene catalog in the human gut microbiome was constructed in 2010 in the scheme of the Metagenomics of Human Intestinal Tract (Meta......’ are shared in the population. These microorganisms participate in various metabolic pathways and activities of the immune system and the nervous system of our bodies,and have fundamental impacts on our health. For example, an association study between gut microbiome and type 2 diabetes (T2D) highlighted...

  17. MetaQUAST: evaluation of metagenome assemblies.

    Science.gov (United States)

    Mikheenko, Alla; Saveliev, Vladislav; Gurevich, Alexey

    2016-04-01

    During the past years we have witnessed the rapid development of new metagenome assembly methods. Although there are many benchmark utilities designed for single-genome assemblies, there is no well-recognized evaluation and comparison tool for metagenomic-specific analogues. In this article, we present MetaQUAST, a modification of QUAST, the state-of-the-art tool for genome assembly evaluation based on alignment of contigs to a reference. MetaQUAST addresses such metagenome datasets features as (i) unknown species content by detecting and downloading reference sequences, (ii) huge diversity by giving comprehensive reports for multiple genomes and (iii) presence of highly relative species by detecting chimeric contigs. We demonstrate MetaQUAST performance by comparing several leading assemblers on one simulated and two real datasets. http://bioinf.spbau.ru/metaquast aleksey.gurevich@spbu.ru Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Fast and simple protein-alignment-guided assembly of orthologous gene families from microbiome sequencing reads.

    Science.gov (United States)

    Huson, Daniel H; Tappu, Rewati; Bazinet, Adam L; Xie, Chao; Cummings, Michael P; Nieselt, Kay; Williams, Rohan

    2017-01-25

    Microbiome sequencing projects typically collect tens of millions of short reads per sample. Depending on the goals of the project, the short reads can either be subjected to direct sequence analysis or be assembled into longer contigs. The assembly of whole genomes from metagenomic sequencing reads is a very difficult problem. However, for some questions, only specific genes of interest need to be assembled. This is then a gene-centric assembly where the goal is to assemble reads into contigs for a family of orthologous genes. We present a new method for performing gene-centric assembly, called protein-alignment-guided assembly, and provide an implementation in our metagenome analysis tool MEGAN. Genes are assembled on the fly, based on the alignment of all reads against a protein reference database such as NCBI-nr. Specifically, the user selects a gene family based on a classification such as KEGG and all reads binned to that gene family are assembled. Using published synthetic community metagenome sequencing reads and a set of 41 gene families, we show that the performance of this approach compares favorably with that of full-featured assemblers and that of a recently published HMM-based gene-centric assembler, both in terms of the number of reference genes detected and of the percentage of reference sequence covered. Protein-alignment-guided assembly of orthologous gene families complements whole-metagenome assembly in a new and very useful way.

  19. An algorithm to discover gene signatures with predictive potential

    Directory of Open Access Journals (Sweden)

    Hallett Robin M

    2010-09-01

    Full Text Available Abstract Background The advent of global gene expression profiling has generated unprecedented insight into our molecular understanding of cancer, including breast cancer. For example, human breast cancer patients display significant diversity in terms of their survival, recurrence, metastasis as well as response to treatment. These patient outcomes can be predicted by the transcriptional programs of their individual breast tumors. Predictive gene signatures allow us to correctly classify human breast tumors into various risk groups as well as to more accurately target therapy to ensure more durable cancer treatment. Results Here we present a novel algorithm to generate gene signatures with predictive potential. The method first classifies the expression intensity for each gene as determined by global gene expression profiling as low, average or high. The matrix containing the classified data for each gene is then used to score the expression of each gene based its individual ability to predict the patient characteristic of interest. Finally, all examined genes are ranked based on their predictive ability and the most highly ranked genes are included in the master gene signature, which is then ready for use as a predictor. This method was used to accurately predict the survival outcomes in a cohort of human breast cancer patients. Conclusions We confirmed the capacity of our algorithm to generate gene signatures with bona fide predictive ability. The simplicity of our algorithm will enable biological researchers to quickly generate valuable gene signatures without specialized software or extensive bioinformatics training.

  20. Metagenomics and Bioinformatics in Microbial Ecology: Current Status and Beyond.

    Science.gov (United States)

    Hiraoka, Satoshi; Yang, Ching-Chia; Iwasaki, Wataru

    2016-09-29

    Metagenomic approaches are now commonly used in microbial ecology to study microbial communities in more detail, including many strains that cannot be cultivated in the laboratory. Bioinformatic analyses make it possible to mine huge metagenomic datasets and discover general patterns that govern microbial ecosystems. However, the findings of typical metagenomic and bioinformatic analyses still do not completely describe the ecology and evolution of microbes in their environments. Most analyses still depend on straightforward sequence similarity searches against reference databases. We herein review the current state of metagenomics and bioinformatics in microbial ecology and discuss future directions for the field. New techniques will allow us to go beyond routine analyses and broaden our knowledge of microbial ecosystems. We need to enrich reference databases, promote platforms that enable meta- or comprehensive analyses of diverse metagenomic datasets, devise methods that utilize long-read sequence information, and develop more powerful bioinformatic methods to analyze data from diverse perspectives.

  1. Comparative analysis of taxonomic, functional, and metabolic patterns of microbiomes from 14 full-scale biogas reactors by metagenomic sequencing and radioisotopic analysis.

    Science.gov (United States)

    Luo, Gang; Fotidis, Ioannis A; Angelidaki, Irini

    2016-01-01

    Biogas production is a very complex process due to the high complexity in diversity and interactions of the microorganisms mediating it, and only limited and diffuse knowledge exists about the variation of taxonomic and functional patterns of microbiomes across different biogas reactors, and their relationships with the metabolic patterns. The present study used metagenomic sequencing and radioisotopic analysis to assess the taxonomic, functional, and metabolic patterns of microbiomes from 14 full-scale biogas reactors operated under various conditions treating either sludge or manure. The results from metagenomic analysis showed that the dominant methanogenic pathway revealed by radioisotopic analysis was not always correlated with the taxonomic and functional compositions. It was found by radioisotopic experiments that the aceticlastic methanogenic pathway was dominant, while metagenomics analysis showed higher relative abundance of hydrogenotrophic methanogens. Principal coordinates analysis showed the sludge-based samples were clearly distinct from the manure-based samples for both taxonomic and functional patterns, and canonical correspondence analysis showed that the both temperature and free ammonia were crucial environmental variables shaping the taxonomic and functional patterns. The study further the overall patterns of functional genes were strongly correlated with overall patterns of taxonomic composition across different biogas reactors. The discrepancy between the metabolic patterns determined by metagenomic analysis and metabolic pathways determined by radioisotopic analysis was found. Besides, a clear correlation between taxonomic and functional patterns was demonstrated for biogas reactors, and also the environmental factors that shaping both taxonomic and functional genes patterns were identified.

  2. Metagenome Analysis of Protein Domain Collocation within Cellulase Genes of Goat Rumen Microbes

    Directory of Open Access Journals (Sweden)

    SooYeon Lim

    2013-08-01

    Full Text Available In this study, protein domains with cellulase activity in goat rumen microbes were investigated using metagenomic and bioinformatic analyses. After the complete genome of goat rumen microbes was obtained using a shotgun sequencing method, 217,892,109 pair reads were filtered, including only those with 70% identity, 100-bp matches, and thresholds below E−10 using METAIDBA. These filtered contigs were assembled and annotated using blastN against the NCBI nucleotide database. As a result, a microbial community structure with 1431 species was analyzed, among which Prevotella ruminicola 23 bacteria and Butyrivibrio proteoclasticus B316 were the dominant groups. In parallel, 201 sequences related with cellulase activities (EC.3.2.1.4 were obtained through blast searches using the enzyme.dat file provided by the NCBI database. After translating the nucleotide sequence into a protein sequence using Interproscan, 28 protein domains with cellulase activity were identified using the HMMER package with threshold E values below 10−5. Cellulase activity protein domain profiling showed that the major protein domains such as lipase GDSL, cellulase, and Glyco hydro 10 were present in bacterial species with strong cellulase activities. Furthermore, correlation plots clearly displayed the strong positive correlation between some protein domain groups, which was indicative of microbial adaption in the goat rumen based on feeding habits. This is the first metagenomic analysis of cellulase activity protein domains using bioinformatics from the goat rumen.

  3. Comparative metagenomic analysis of plasmid encoded functions in the human gut microbiome

    Directory of Open Access Journals (Sweden)

    Marchesi Julian R

    2010-01-01

    Full Text Available Abstract Background Little is known regarding the pool of mobile genetic elements associated with the human gut microbiome. In this study we employed the culture independent TRACA system to isolate novel plasmids from the human gut microbiota, and a comparative metagenomic analysis to investigate the distribution and relative abundance of functions encoded by these plasmids in the human gut microbiome. Results Novel plasmids were acquired from the human gut microbiome, and homologous nucleotide sequences with high identity (>90% to two plasmids (pTRACA10 and pTRACA22 were identified in the multiple human gut microbiomes analysed here. However, no homologous nucleotide sequences to these plasmids were identified in the murine gut or environmental metagenomes. Functions encoded by the plasmids pTRACA10 and pTRACA22 were found to be more prevalent in the human gut microbiome when compared to microbial communities from other environments. Among the most prevalent functions identified was a putative RelBE toxin-antitoxin (TA addiction module, and subsequent analysis revealed that this was most closely related to putative TA modules from gut associated bacteria belonging to the Firmicutes. A broad phylogenetic distribution of RelE toxin genes was observed in gut associated bacterial species (Firmicutes, Bacteroidetes, Actinobacteria and Proteobacteria, but no RelE homologues were identified in gut associated archaeal species. We also provide indirect evidence for the horizontal transfer of these genes between bacterial species belonging to disparate phylogenetic divisions, namely Gram negative Proteobacteria and Gram positive species from the Firmicutes division. Conclusions The application of a culture independent system to capture novel plasmids from the human gut mobile metagenome, coupled with subsequent comparative metagenomic analysis, highlighted the unexpected prevalence of plasmid encoded functions in the gut microbial ecosystem. In

  4. Assembling the Marine Metagenome, One Cell at a Time

    Energy Technology Data Exchange (ETDEWEB)

    Woyke, Tanja; Xie, Gary; Copeland, Alex; Gonzalez, Jose M.; Han, Cliff; Kiss, Hajnalka; Saw, Jimmy H.; Senin, Pavel; Yang, Chi; Chatterji, Sourav; Cheng, Jan-Fang; Eisen, Jonathan A.; Sieracki, Michael E.; Stepanauskas, Ramunas

    2010-06-24

    The difficulty associated with the cultivation of most microorganisms and the complexity of natural microbial assemblages, such as marine plankton or human microbiome, hinder genome reconstruction of representative taxa using cultivation or metagenomic approaches. Here we used an alternative, single cell sequencing approach to obtain high-quality genome assemblies of two uncultured, numerically significant marine microorganisms. We employed fluorescence-activated cell sorting and multiple displacement amplification to obtain hundreds of micrograms of genomic DNA from individual, uncultured cells of two marine flavobacteria from the Gulf of Maine that were phylogenetically distant from existing cultured strains. Shotgun sequencing and genome finishing yielded 1.9 Mbp in 17 contigs and 1.5 Mbp in 21 contigs for the two flavobacteria, with estimated genome recoveries of about 91percent and 78percent, respectively. Only 0.24percent of the assembling sequences were contaminants and were removed from further analysis using rigorous quality control. In contrast to all cultured strains of marine flavobacteria, the two single cell genomes were excellent Global Ocean Sampling (GOS) metagenome fragment recruiters, demonstrating their numerical significance in the ocean. The geographic distribution of GOS recruits along the Northwest Atlantic coast coincided with ocean surface currents. Metabolic reconstruction indicated diverse potential energy sources, including biopolymer degradation, proteorhodopsin photometabolism, and hydrogen oxidation. Compared to cultured relatives, the two uncultured flavobacteria have small genome sizes, few non-coding nucleotides, and few paralogous genes, suggesting adaptations to narrow ecological niches. These features may have contributed to the abundance of the two taxa in specific regions of the ocean, and may have hindered their cultivation. We demonstrate the power of single cell DNA sequencing to generate reference genomes of uncultured

  5. Cloning, expression and characterization of a novel esterase from a South China Sea sediment metagenome

    Science.gov (United States)

    Zhang, Hao; Li, Fuchao; Chen, Huaxin; Zhao, Jin; Yan, Jinfei; Jiang, Peng; Li, Ronggui; Zhu, Baoli

    2015-07-01

    Lipolytic enzymes, including esterases and lipases, represent a group of hydrolases that catalyze the cleavage and formation of ester bonds. A novel esterase gene, scsEst01, was cloned from a South China Sea sediment metagenome. The scsEst01 gene consisted of 921 bp encoding 307 amino acid residues. The predicted amino acid sequence shared less than 90% identity with other lipolytic enzymes in the NCBI nonredundant protein database. ScsEst01 was successfully co-expressed in Escherichia coli BL21 (DE3) with chaperones (dnaK-dnaJ-grpE) to prevent the formation of inclusion bodies. The recombinant protein was purified on an immobilized metal ion affinity column containing chelating Sepharose charged with Ni2+. The enzyme was characterized using p -nitrophenol butyrate as a substrate. ScsEst01 had the highest lipolytic activity at 35°C and pH 8.0, indicative of a meso-thermophilic alkaline esterase. ScsEst01 was thermostable at 20°C. The lipolytic activity of scsEst01 was strongly increased by Fe2+, Mn2+ and 1% Tween 80 or Tween 20.

  6. Predictability of Genetic Interactions from Functional Gene Modules

    Directory of Open Access Journals (Sweden)

    Jonathan H. Young

    2017-02-01

    Full Text Available Characterizing genetic interactions is crucial to understanding cellular and organismal response to gene-level perturbations. Such knowledge can inform the selection of candidate disease therapy targets, yet experimentally determining whether genes interact is technically nontrivial and time-consuming. High-fidelity prediction of different classes of genetic interactions in multiple organisms would substantially alleviate this experimental burden. Under the hypothesis that functionally related genes tend to share common genetic interaction partners, we evaluate a computational approach to predict genetic interactions in Homo sapiens, Drosophila melanogaster, and Saccharomyces cerevisiae. By leveraging knowledge of functional relationships between genes, we cross-validate predictions on known genetic interactions and observe high predictive power of multiple classes of genetic interactions in all three organisms. Additionally, our method suggests high-confidence candidate interaction pairs that can be directly experimentally tested. A web application is provided for users to query genes for predicted novel genetic interaction partners. Finally, by subsampling the known yeast genetic interaction network, we found that novel genetic interactions are predictable even when knowledge of currently known interactions is minimal.

  7. Computational workflow for the fine-grained analysis of metagenomic samples.

    Science.gov (United States)

    Pérez-Wohlfeil, Esteban; Arjona-Medina, Jose A; Torreno, Oscar; Ulzurrun, Eugenia; Trelles, Oswaldo

    2016-10-25

    The field of metagenomics, defined as the direct genetic analysis of uncultured samples of genomes contained within an environmental sample, is gaining increasing popularity. The aim of studies of metagenomics is to determine the species present in an environmental community and identify changes in the abundance of species under different conditions. Current metagenomic analysis software faces bottlenecks due to the high computational load required to analyze complex samples. A computational open-source workflow has been developed for the detailed analysis of metagenomes. This workflow provides new tools and datafile specifications that facilitate the identification of differences in abundance of reads assigned to taxa (mapping), enables the detection of reads of low-abundance bacteria (producing evidence of their presence), provides new concepts for filtering spurious matches, etc. Innovative visualization ideas for improved display of metagenomic diversity are also proposed to better understand how reads are mapped to taxa. Illustrative examples are provided based on the study of two collections of metagenomes from faecal microbial communities of adult female monozygotic and dizygotic twin pairs concordant for leanness or obesity and their mothers. The proposed workflow provides an open environment that offers the opportunity to perform the mapping process using different reference databases. Additionally, this workflow shows the specifications of the mapping process and datafile formats to facilitate the development of new plugins for further post-processing. This open and extensible platform has been designed with the aim of enabling in-depth analysis of metagenomic samples and better understanding of the underlying biological processes.

  8. Computational workflow for the fine-grained analysis of metagenomic samples

    Directory of Open Access Journals (Sweden)

    Esteban Pérez-Wohlfeil

    2016-10-01

    Full Text Available Abstract Background The field of metagenomics, defined as the direct genetic analysis of uncultured samples of genomes contained within an environmental sample, is gaining increasing popularity. The aim of studies of metagenomics is to determine the species present in an environmental community and identify changes in the abundance of species under different conditions. Current metagenomic analysis software faces bottlenecks due to the high computational load required to analyze complex samples. Results A computational open-source workflow has been developed for the detailed analysis of metagenomes. This workflow provides new tools and datafile specifications that facilitate the identification of differences in abundance of reads assigned to taxa (mapping, enables the detection of reads of low-abundance bacteria (producing evidence of their presence, provides new concepts for filtering spurious matches, etc. Innovative visualization ideas for improved display of metagenomic diversity are also proposed to better understand how reads are mapped to taxa. Illustrative examples are provided based on the study of two collections of metagenomes from faecal microbial communities of adult female monozygotic and dizygotic twin pairs concordant for leanness or obesity and their mothers. Conclusions The proposed workflow provides an open environment that offers the opportunity to perform the mapping process using different reference databases. Additionally, this workflow shows the specifications of the mapping process and datafile formats to facilitate the development of new plugins for further post-processing. This open and extensible platform has been designed with the aim of enabling in-depth analysis of metagenomic samples and better understanding of the underlying biological processes.

  9. A novel salt-tolerant chitobiosidase discovered by genetic screening of a metagenomic library derived from chitin-amended agricultural soil

    NARCIS (Netherlands)

    Cretoiu, Mariana Silvia; Berini, Francesca; Kielak, Anna Maria; Marinelli, Flavia; van Elsas, Jan Dirk

    2015-01-01

    Here, we report on the construction of a metagenomic library from a chitin-amended disease-suppressive agricultural soil and its screening for genes that encode novel chitinolytic enzymes. The library, constructed in fosmids in an Escherichia coli host, comprised 145,000 clones containing inserts of

  10. deFUME: Dynamic exploration of functional metagenomic sequencing data

    DEFF Research Database (Denmark)

    van der Helm, Eric; Geertz-Hansen, Henrik Marcus; Genee, Hans Jasper

    2015-01-01

    is time consuming and constitutes a major bottleneck for experimental researchers in the field. Here we present the deFUME web server, an easy-to-use web-based interface for processing, annotation and visualization of functional metagenomics sequencing data, tailored to meet the requirements of non......-bioinformaticians. The web-server integrates multiple analysis steps into one single workflow: read assembly, open reading frame prediction, and annotation with BLAST, InterPro and GO classifiers. Analysis results are visualized in an online dynamic web-interface. The deFUME webserver provides a fast track from raw sequence...

  11. Marine Metagenome as A Resource for Novel Enzymes

    Directory of Open Access Journals (Sweden)

    Amani D. Alma’abadi

    2015-10-01

    Full Text Available More than 99% of identified prokaryotes, including many from the marine environment, cannot be cultured in the laboratory. This lack of capability restricts our knowledge of microbial genetics and community ecology. Metagenomics, the culture-independent cloning of environmental DNAs that are isolated directly from an environmental sample, has already provided a wealth of information about the uncultured microbial world. It has also facilitated the discovery of novel biocatalysts by allowing researchers to probe directly into a huge diversity of enzymes within natural microbial communities. Recent advances in these studies have led to a great interest in recruiting microbial enzymes for the development of environmentally-friendly industry. Although the metagenomics approach has many limitations, it is expected to provide not only scientific insights but also economic benefits, especially in industry. This review highlights the importance of metagenomics in mining microbial lipases, as an example, by using high-throughput techniques. In addition, we discuss challenges in the metagenomics as an important part of bioinformatics analysis in big data.

  12. The Metagenome of Utricularia gibba's Traps: Into the Microbial Input to a Carnivorous Plant

    Science.gov (United States)

    Alcaraz, Luis David; Martínez-Sánchez, Shamayim; Torres, Ignacio; Ibarra-Laclette, Enrique; Herrera-Estrella, Luis

    2016-01-01

    The genome and transcriptome sequences of the aquatic, rootless, and carnivorous plant Utricularia gibba L. (Lentibulariaceae), were recently determined. Traps are necessary for U. gibba because they help the plant to survive in nutrient-deprived environments. The U. gibba's traps (Ugt) are specialized structures that have been proposed to selectively filter microbial inhabitants. To determine whether the traps indeed have a microbiome that differs, in composition or abundance, from the microbiome in the surrounding environment, we used whole-genome shotgun (WGS) metagenomics to describe both the taxonomic and functional diversity of the Ugt microbiome. We collected U. gibba plants from their natural habitat and directly sequenced the metagenome of the Ugt microbiome and its surrounding water. The total predicted number of species in the Ugt was more than 1,100. Using pan-genome fragment recruitment analysis, we were able to identify to the species level of some key Ugt players, such as Pseudomonas monteilii. Functional analysis of the Ugt metagenome suggests that the trap microbiome plays an important role in nutrient scavenging and assimilation while complementing the hydrolytic functions of the plant. PMID:26859489

  13. Isolation and characterization of novel lipases/esterases from a bovine rumen metagenome.

    Science.gov (United States)

    Privé, Florence; Newbold, C Jamie; Kaderbhai, Naheed N; Girdwood, Susan G; Golyshina, Olga V; Golyshin, Peter N; Scollan, Nigel D; Huws, Sharon A

    2015-07-01

    Improving the health beneficial fatty acid content of meat and milk is a major challenge requiring an increased understanding of rumen lipid metabolism. In this study, we isolated and characterized rumen bacterial lipases/esterases using functional metagenomics. Metagenomic libraries were constructed from DNA extracted from strained rumen fluid (SRF), solid-attached bacteria (SAB) and liquid-associated rumen bacteria (LAB), ligated into a fosmid vector and subsequently transformed into an Escherichia coli host. Fosmid libraries consisted of 7,744; 8,448; and 7,680 clones with an average insert size of 30 to 35 kbp for SRF, SAB and LAB, respectively. Transformants were screened on spirit blue agar plates containing tributyrin for lipase/esterase activity. Five SAB and four LAB clones exhibited lipolytic activity, and no positive clones were found in the SRF library. Fosmids from positive clones were pyrosequenced and twelve putative lipase/esterase genes and two phospholipase genes retrieved. Although the derived proteins clustered into diverse esterase and lipase families, a degree of novelty was seen, with homology ranging from 40 to 78% following BlastP searches. Isolated lipases/esterases exhibited activity against mostly short- to medium-chain substrates across a range of temperatures and pH. The function of these novel enzymes recovered in ruminal metabolism needs further investigation, alongside their potential industrial uses.

  14. Statistical methods for detecting differentially abundant features in clinical metagenomic samples.

    Directory of Open Access Journals (Sweden)

    James Robert White

    2009-04-01

    Full Text Available Numerous studies are currently underway to characterize the microbial communities inhabiting our world. These studies aim to dramatically expand our understanding of the microbial biosphere and, more importantly, hope to reveal the secrets of the complex symbiotic relationship between us and our commensal bacterial microflora. An important prerequisite for such discoveries are computational tools that are able to rapidly and accurately compare large datasets generated from complex bacterial communities to identify features that distinguish them.We present a statistical method for comparing clinical metagenomic samples from two treatment populations on the basis of count data (e.g. as obtained through sequencing to detect differentially abundant features. Our method, Metastats, employs the false discovery rate to improve specificity in high-complexity environments, and separately handles sparsely-sampled features using Fisher's exact test. Under a variety of simulations, we show that Metastats performs well compared to previously used methods, and significantly outperforms other methods for features with sparse counts. We demonstrate the utility of our method on several datasets including a 16S rRNA survey of obese and lean human gut microbiomes, COG functional profiles of infant and mature gut microbiomes, and bacterial and viral metabolic subsystem data inferred from random sequencing of 85 metagenomes. The application of our method to the obesity dataset reveals differences between obese and lean subjects not reported in the original study. For the COG and subsystem datasets, we provide the first statistically rigorous assessment of the differences between these populations. The methods described in this paper are the first to address clinical metagenomic datasets comprising samples from multiple subjects. Our methods are robust across datasets of varied complexity and sampling level. While designed for metagenomic applications, our software

  15. Strong spurious transcription likely contributes to DNA insert bias in typical metagenomic clone libraries.

    Science.gov (United States)

    Lam, Kathy N; Charles, Trevor C

    2015-01-01

    Clone libraries provide researchers with a powerful resource to study nucleic acid from diverse sources. Metagenomic clone libraries in particular have aided in studies of microbial biodiversity and function, and allowed the mining of novel enzymes. Libraries are often constructed by cloning large inserts into cosmid or fosmid vectors. Recently, there have been reports of GC bias in fosmid metagenomic libraries, and it was speculated to be a result of fragmentation and loss of AT-rich sequences during cloning. However, evidence in the literature suggests that transcriptional activity or gene product toxicity may play a role. To explore possible mechanisms responsible for sequence bias in clone libraries, we constructed a cosmid library from a human microbiome sample and sequenced DNA from different steps during library construction: crude extract DNA, size-selected DNA, and cosmid library DNA. We confirmed a GC bias in the final cosmid library, and we provide evidence that the bias is not due to fragmentation and loss of AT-rich sequences but is likely occurring after DNA is introduced into Escherichia coli. To investigate the influence of strong constitutive transcription, we searched the sequence data for promoters and found that rpoD/σ(70) promoter sequences were underrepresented in the cosmid library. Furthermore, when we examined the genomes of taxa that were differentially abundant in the cosmid library relative to the original sample, we found the bias to be more correlated with the number of rpoD/σ(70) consensus sequences in the genome than with simple GC content. The GC bias of metagenomic libraries does not appear to be due to DNA fragmentation. Rather, analysis of promoter sequences provides support for the hypothesis that strong constitutive transcription from sequences recognized as rpoD/σ(70) consensus-like in E. coli may lead to instability, causing loss of the plasmid or loss of the insert DNA that gives rise to the transcription. Despite

  16. WebMGA: a customizable web server for fast metagenomic sequence analysis.

    Science.gov (United States)

    Wu, Sitao; Zhu, Zhengwei; Fu, Liming; Niu, Beifang; Li, Weizhong

    2011-09-07

    The new field of metagenomics studies microorganism communities by culture-independent sequencing. With the advances in next-generation sequencing techniques, researchers are facing tremendous challenges in metagenomic data analysis due to huge quantity and high complexity of sequence data. Analyzing large datasets is extremely time-consuming; also metagenomic annotation involves a wide range of computational tools, which are difficult to be installed and maintained by common users. The tools provided by the few available web servers are also limited and have various constraints such as login requirement, long waiting time, inability to configure pipelines etc. We developed WebMGA, a customizable web server for fast metagenomic analysis. WebMGA includes over 20 commonly used tools such as ORF calling, sequence clustering, quality control of raw reads, removal of sequencing artifacts and contaminations, taxonomic analysis, functional annotation etc. WebMGA provides users with rapid metagenomic data analysis using fast and effective tools, which have been implemented to run in parallel on our local computer cluster. Users can access WebMGA through web browsers or programming scripts to perform individual analysis or to configure and run customized pipelines. WebMGA is freely available at http://weizhongli-lab.org/metagenomic-analysis. WebMGA offers to researchers many fast and unique tools and great flexibility for complex metagenomic data analysis.

  17. WebMGA: a customizable web server for fast metagenomic sequence analysis

    Directory of Open Access Journals (Sweden)

    Niu Beifang

    2011-09-01

    Full Text Available Abstract Background The new field of metagenomics studies microorganism communities by culture-independent sequencing. With the advances in next-generation sequencing techniques, researchers are facing tremendous challenges in metagenomic data analysis due to huge quantity and high complexity of sequence data. Analyzing large datasets is extremely time-consuming; also metagenomic annotation involves a wide range of computational tools, which are difficult to be installed and maintained by common users. The tools provided by the few available web servers are also limited and have various constraints such as login requirement, long waiting time, inability to configure pipelines etc. Results We developed WebMGA, a customizable web server for fast metagenomic analysis. WebMGA includes over 20 commonly used tools such as ORF calling, sequence clustering, quality control of raw reads, removal of sequencing artifacts and contaminations, taxonomic analysis, functional annotation etc. WebMGA provides users with rapid metagenomic data analysis using fast and effective tools, which have been implemented to run in parallel on our local computer cluster. Users can access WebMGA through web browsers or programming scripts to perform individual analysis or to configure and run customized pipelines. WebMGA is freely available at http://weizhongli-lab.org/metagenomic-analysis. Conclusions WebMGA offers to researchers many fast and unique tools and great flexibility for complex metagenomic data analysis.

  18. Metagenomics at Grass Roots

    Indian Academy of Sciences (India)

    Metagenomics is a robust, interdisciplinary approach for studyingmicrobial community composition, function, and dynamics.It typically involves a core of molecular biology, microbiology,ecology, statistics, and computational biology. Excitingoutcomes anticipated from these studies include unravelingof complex interactions ...

  19. Metagenomic survey of the taxonomic and functional microbial communities of seawater and sea ice from the Canadian Arctic.

    Science.gov (United States)

    Yergeau, Etienne; Michel, Christine; Tremblay, Julien; Niemi, Andrea; King, Thomas L; Wyglinski, Joanne; Lee, Kenneth; Greer, Charles W

    2017-02-08

    Climate change has resulted in an accelerated decline of Arctic sea ice since 2001 resulting in primary production increases and prolongation of the ice-free season within the Northwest Passage. The taxonomic and functional microbial community composition of the seawater and sea ice of the Canadian Arctic is not very well known. Bacterial communities from the bottom layer of sea ice cores and surface water from 23 locations around Cornwallis Island, NU, Canada, were extensively screened. The bacterial 16S rRNA gene was sequenced for all samples while shotgun metagenomics was performed on selected samples. Bacterial community composition showed large variation throughout the sampling area both for sea ice and seawater. Seawater and sea ice samples harbored significantly distinct microbial communities, both at different taxonomic levels and at the functional level. A key difference between the two sample types was the dominance of algae in sea ice samples, as visualized by the higher relative abundance of algae and photosynthesis-related genes in the metagenomic datasets and the higher chl a concentrations. The relative abundance of various OTUs and functional genes were significantly correlated with multiple environmental parameters, highlighting many potential environmental drivers and ecological strategies.

  20. A hybrid approach of gene sets and single genes for the prediction of survival risks with gene expression data.

    Science.gov (United States)

    Seok, Junhee; Davis, Ronald W; Xiao, Wenzhong

    2015-01-01

    Accumulated biological knowledge is often encoded as gene sets, collections of genes associated with similar biological functions or pathways. The use of gene sets in the analyses of high-throughput gene expression data has been intensively studied and applied in clinical research. However, the main interest remains in finding modules of biological knowledge, or corresponding gene sets, significantly associated with disease conditions. Risk prediction from censored survival times using gene sets hasn't been well studied. In this work, we propose a hybrid method that uses both single gene and gene set information together to predict patient survival risks from gene expression profiles. In the proposed method, gene sets provide context-level information that is poorly reflected by single genes. Complementarily, single genes help to supplement incomplete information of gene sets due to our imperfect biomedical knowledge. Through the tests over multiple data sets of cancer and trauma injury, the proposed method showed robust and improved performance compared with the conventional approaches with only single genes or gene sets solely. Additionally, we examined the prediction result in the trauma injury data, and showed that the modules of biological knowledge used in the prediction by the proposed method were highly interpretable in biology. A wide range of survival prediction problems in clinical genomics is expected to benefit from the use of biological knowledge.

  1. Caught in the middle with multiple displacement amplification: the myth of pooling for avoiding multiple displacement amplification bias in a metagenome.

    Science.gov (United States)

    Marine, Rachel; McCarren, Coleen; Vorrasane, Vansay; Nasko, Dan; Crowgey, Erin; Polson, Shawn W; Wommack, K Eric

    2014-01-30

    Shotgun metagenomics has become an important tool for investigating the ecology of microorganisms. Underlying these investigations is the assumption that metagenome sequence data accurately estimates the census of microbial populations. Multiple displacement amplification (MDA) of microbial community DNA is often used in cases where it is difficult to obtain enough DNA for sequencing; however, MDA can result in amplification biases that may impact subsequent estimates of population census from metagenome data. Some have posited that pooling replicate MDA reactions negates these biases and restores the accuracy of population analyses. This assumption has not been empirically tested. Using mock viral communities, we examined the influence of pooling on population-scale analyses. In pooled and single reaction MDA treatments, sequence coverage of viral populations was highly variable and coverage patterns across viral genomes were nearly identical, indicating that initial priming biases were reproducible and that pooling did not alleviate biases. In contrast, control unamplified sequence libraries showed relatively even coverage across phage genomes. MDA should be avoided for metagenomic investigations that require quantitative estimates of microbial taxa and gene functional groups. While MDA is an indispensable technique in applications such as single-cell genomics, amplification biases cannot be overcome by combining replicate MDA reactions. Alternative library preparation techniques should be utilized for quantitative microbial ecology studies utilizing metagenomic sequencing approaches.

  2. Metagenomic analysis of the rumen microbial community following inhibition of methane formation by a halogenated methane analogue

    Directory of Open Access Journals (Sweden)

    Stuart E Denman

    2015-10-01

    Full Text Available Japanese goats fed a diet of 50% Timothy grass and 50% concentrate with increasing levels of the anti-methanogenic compound, bromochloromethane (BCM were investigated with respect to the microbial shifts in the rumen. Microbial ecology methods identified many species that exhibited positive and negative responses to the increasing levels of BCM. The methane-inhibited rumen appeared to adapt to the higher H2 levels by shifting fermentation to propionate which was mediated by an increase in the population of hydrogen-consuming Prevotella and Selenomonas spp. Metagenomic analysis of propionate production pathways was dominated by genomic content from these species. Reductive acetogenic marker gene libraries and metagenomics analysis indicate that reductive acetogenic species do not play a major role in the BCM treated rumen.

  3. Metagenomics at Grass Roots

    Indian Academy of Sciences (India)

    CAMERA (Community Cyber-infrastructure for Advanced Mi- crobial Ecology .... Acidobacteria known to metabolize a variety of car- bon sources .... [7] J Nesme et al., Back to the future of soil metagenomics, Frontiers in Microbi- ology, Vol.7 ...

  4. Unlocking the potential of metagenomics through replicated experimental design

    NARCIS (Netherlands)

    Knight, R.; Jansson, J.; Field, D.; Fierer, N.; Desai, N.; Fuhrman, J.A.; Hugenholtz, P.; Van der Lelie, D.; Meyer, F.; Stevens, R.; Bailey, M.J.; Gordon, J.I.; Kowalchuk, G.A.; Gilbert, J.A.

    2012-01-01

    Metagenomics holds enormous promise for discovering novel enzymes and organisms that are biomarkers or drivers of processes relevant to disease, industry and the environment. In the past two years, we have seen a paradigm shift in metagenomics to the application of cross-sectional and longitudinal

  5. Unlocking the potential of metagenomics through replicated experimental design.

    NARCIS (Netherlands)

    Knight, R.; Jansson, J.; Field, D.; Fierer, N.; Desai, N.; Fuhrman, J.A.; Hugenholtz, P.; van der Lelie, D.; Meyer, F.; Stevens, R.; Bailey, M.J.; Gordon, J.I.; Kowalchuk, G.A.; Gilbert, J.A.

    2012-01-01

    Metagenomics holds enormous promise for discovering novel enzymes and organisms that are biomarkers or drivers of processes relevant to disease, industry and the environment. In the past two years, we have seen a paradigm shift in metagenomics to the application of cross-sectional and longitudinal

  6. Characterization of Metagenomes in Urban Aquatic Compartments Reveals High Prevalence of Clinically Relevant Antibiotic Resistance Genes in Wastewaters

    Directory of Open Access Journals (Sweden)

    Charmaine Ng

    2017-11-01

    Full Text Available The dissemination of antimicrobial resistance (AMR is an escalating problem and a threat to public health. Comparative metagenomics was used to investigate the occurrence of antibiotic resistant genes (ARGs in wastewater and urban surface water environments in Singapore. Hospital and municipal wastewater (n = 6 were found to have higher diversity and average abundance of ARGs (303 ARG subtypes, 197,816 x/Gb compared to treated wastewater effluent (n = 2, 58 ARG subtypes, 2,692 x/Gb and surface water (n = 5, 35 subtypes, 7,985 x/Gb. A cluster analysis showed that the taxonomic composition of wastewaters was highly similar and had a bacterial community composition enriched in gut bacteria (Bacteroides, Faecalibacterium, Bifidobacterium, Blautia, Roseburia, Ruminococcus, the Enterobacteriaceae group (Klebsiella, Aeromonas, Enterobacter and opportunistic pathogens (Prevotella, Comamonas, Neisseria. Wastewater, treated effluents and surface waters had a shared resistome of 21 ARGs encoding multidrug resistant efflux pumps or resistance to aminoglycoside, macrolide-lincosamide-streptogramins (MLS, quinolones, sulfonamide, and tetracycline resistance which suggests that these genes are wide spread across different environments. Wastewater had a distinctively higher average abundance of clinically relevant, class A beta-lactamase resistant genes (i.e., blaKPC, blaCTX-M, blaSHV, blaTEM. The wastewaters from clinical isolation wards, in particular, had a exceedingly high levels of blaKPC-2 genes (142,200 x/Gb, encoding for carbapenem resistance. Assembled scaffolds (16 and 30 kbp from isolation ward wastewater samples indicated this gene was located on a Tn3-based transposon (Tn4401, a mobilization element found in Klebsiella pneumonia plasmids. In the longer scaffold, transposable elements were flanked by a toxin–antitoxin (TA system and other metal resistant genes that likely increase the persistence, fitness and propagation of the plasmid in the

  7. A comparative analysis of soft computing techniques for gene prediction.

    Science.gov (United States)

    Goel, Neelam; Singh, Shailendra; Aseri, Trilok Chand

    2013-07-01

    The rapid growth of genomic sequence data for both human and nonhuman species has made analyzing these sequences, especially predicting genes in them, very important and is currently the focus of many research efforts. Beside its scientific interest in the molecular biology and genomics community, gene prediction is of considerable importance in human health and medicine. A variety of gene prediction techniques have been developed for eukaryotes over the past few years. This article reviews and analyzes the application of certain soft computing techniques in gene prediction. First, the problem of gene prediction and its challenges are described. These are followed by different soft computing techniques along with their application to gene prediction. In addition, a comparative analysis of different soft computing techniques for gene prediction is given. Finally some limitations of the current research activities and future research directions are provided. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Bioreactor microbial ecosystems for thiocyanate and cyanide degradation unravelled with genome-resolved metagenomics.

    Science.gov (United States)

    Kantor, Rose S; van Zyl, A Wynand; van Hille, Robert P; Thomas, Brian C; Harrison, Susan T L; Banfield, Jillian F

    2015-12-01

    Gold ore processing uses cyanide (CN(-) ), which often results in large volumes of thiocyanate- (SCN(-) ) contaminated wastewater requiring treatment. Microbial communities can degrade SCN(-) and CN(-) , but little is known about their membership and metabolic potential. Microbial-based remediation strategies will benefit from an ecological understanding of organisms involved in the breakdown of SCN(-) and CN(-) into sulfur, carbon and nitrogen compounds. We performed metagenomic analysis of samples from two laboratory-scale bioreactors used to study SCN(-) and CN(-) degradation. Community analysis revealed the dominance of Thiobacillus spp., whose genomes harbour a previously unreported operon for SCN(-) degradation. Genome-based metabolic predictions suggest that a large portion of each bioreactor community is autotrophic, relying not on molasses in reactor feed but using energy gained from oxidation of sulfur compounds produced during SCN(-) degradation. Heterotrophs, including a bacterium from a previously uncharacterized phylum, compose a smaller portion of the reactor community. Predation by phage and eukaryotes is predicted to affect community dynamics. Genes for ammonium oxidation and denitrification were detected, indicating the potential for nitrogen removal, as required for complete remediation of wastewater. These findings suggest optimization strategies for reactor design, such as improved aerobic/anaerobic partitioning and elimination of organic carbon from reactor feed. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Metagenomics: The Next Culture-Independent Game Changer

    Directory of Open Access Journals (Sweden)

    Jessica D. Forbes

    2017-07-01

    Full Text Available A trend towards the abandonment of obtaining pure culture isolates in frontline laboratories is at a crossroads with the ability of public health agencies to perform their basic mandate of foodborne disease surveillance and response. The implementation of culture-independent diagnostic tests (CIDTs including nucleic acid and antigen-based assays for acute gastroenteritis is leaving public health agencies without laboratory evidence to link clinical cases to each other and to food or environmental substances. This limits the efficacy of public health epidemiology and surveillance as well as outbreak detection and investigation. Foodborne outbreaks have the potential to remain undetected or have insufficient evidence to support source attribution and may inadvertently increase the incidence of foodborne diseases. Next-generation sequencing of pure culture isolates in clinical microbiology laboratories has the potential to revolutionize the fields of food safety and public health. Metagenomics and other ‘omics’ disciplines could provide the solution to a cultureless future in clinical microbiology, food safety and public health. Data mining of information obtained from metagenomics assays can be particularly useful for the identification of clinical causative agents or foodborne contamination, detection of AMR and/or virulence factors, in addition to providing high-resolution subtyping data. Thus, metagenomics assays may provide a universal test for clinical diagnostics, foodborne pathogen detection, subtyping and investigation. This information has the potential to reform the field of enteric disease diagnostics and surveillance and also infectious diseases as a whole. The aim of this review will be to present the current state of CIDTs in diagnostic and public health laboratories as they relate to foodborne illness and food safety. Moreover, we will also discuss the diagnostic and subtyping utility and concomitant bias limitations of

  10. Cross-cutting activities: Soil quality and soil metagenomics

    OpenAIRE

    Motavalli, Peter P.; Garrett, Karen A.

    2008-01-01

    This presentation reports on the work of the SANREM CRSP cross-cutting activities "Assessing and Managing Soil Quality for Sustainable Agricultural Systems" and "Soil Metagenomics to Construct Indicators of Soil Degradation." The introduction gives an overview of the extensiveness of soil degradation globally and defines soil quality. The objectives of the soil quality cross cutting activity are: CCRA-4 (Soil Metagenomics)

  11. SPHINX--an algorithm for taxonomic binning of metagenomic sequences.

    Science.gov (United States)

    Mohammed, Monzoorul Haque; Ghosh, Tarini Shankar; Singh, Nitin Kumar; Mande, Sharmila S

    2011-01-01

    Compared with composition-based binning algorithms, the binning accuracy and specificity of alignment-based binning algorithms is significantly higher. However, being alignment-based, the latter class of algorithms require enormous amount of time and computing resources for binning huge metagenomic datasets. The motivation was to develop a binning approach that can analyze metagenomic datasets as rapidly as composition-based approaches, but nevertheless has the accuracy and specificity of alignment-based algorithms. This article describes a hybrid binning approach (SPHINX) that achieves high binning efficiency by utilizing the principles of both 'composition'- and 'alignment'-based binning algorithms. Validation results with simulated sequence datasets indicate that SPHINX is able to analyze metagenomic sequences as rapidly as composition-based algorithms. Furthermore, the binning efficiency (in terms of accuracy and specificity of assignments) of SPHINX is observed to be comparable with results obtained using alignment-based algorithms. A web server for the SPHINX algorithm is available at http://metagenomics.atc.tcs.com/SPHINX/.

  12. Separating metagenomic short reads into genomes via clustering

    Directory of Open Access Journals (Sweden)

    Tanaseichuk Olga

    2012-09-01

    Full Text Available Abstract Background The metagenomics approach allows the simultaneous sequencing of all genomes in an environmental sample. This results in high complexity datasets, where in addition to repeats and sequencing errors, the number of genomes and their abundance ratios are unknown. Recently developed next-generation sequencing (NGS technologies significantly improve the sequencing efficiency and cost. On the other hand, they result in shorter reads, which makes the separation of reads from different species harder. Among the existing computational tools for metagenomic analysis, there are similarity-based methods that use reference databases to align reads and composition-based methods that use composition patterns (i.e., frequencies of short words or l-mers to cluster reads. Similarity-based methods are unable to classify reads from unknown species without close references (which constitute the majority of reads. Since composition patterns are preserved only in significantly large fragments, composition-based tools cannot be used for very short reads, which becomes a significant limitation with the development of NGS. A recently proposed algorithm, AbundanceBin, introduced another method that bins reads based on predicted abundances of the genomes sequenced. However, it does not separate reads from genomes of similar abundance levels. Results In this work, we present a two-phase heuristic algorithm for separating short paired-end reads from different genomes in a metagenomic dataset. We use the observation that most of the l-mers belong to unique genomes when l is sufficiently large. The first phase of the algorithm results in clusters of l-mers each of which belongs to one genome. During the second phase, clusters are merged based on l-mer repeat information. These final clusters are used to assign reads. The algorithm could handle very short reads and sequencing errors. It is initially designed for genomes with similar abundance levels and then

  13. Metagenomic Analysis of the Microbiota from the Crop of an Invasive Snail Reveals a Rich Reservoir of Novel Genes

    Science.gov (United States)

    Cardoso, Alexander M.; Cavalcante, Janaína J. V.; Cantão, Maurício E.; Thompson, Claudia E.; Flatschart, Roberto B.; Glogauer, Arnaldo; Scapin, Sandra M. N.; Sade, Youssef B.; Beltrão, Paulo J. M. S. I.; Gerber, Alexandra L.; Martins, Orlando B.; Garcia, Eloi S.; de Souza, Wanderley; Vasconcelos, Ana Tereza R.

    2012-01-01

    The shortage of petroleum reserves and the increase in CO2 emissions have raised global concerns and highlighted the importance of adopting sustainable energy sources. Second-generation ethanol made from lignocellulosic materials is considered to be one of the most promising fuels for vehicles. The giant snail Achatina fulica is an agricultural pest whose biotechnological potential has been largely untested. Here, the composition of the microbial population within the crop of this invasive land snail, as well as key genes involved in various biochemical pathways, have been explored for the first time. In a high-throughput approach, 318 Mbp of 454-Titanium shotgun metagenomic sequencing data were obtained. The predominant bacterial phylum found was Proteobacteria, followed by Bacteroidetes and Firmicutes. Viruses, Fungi, and Archaea were present to lesser extents. The functional analysis reveals a variety of microbial genes that could assist the host in the degradation of recalcitrant lignocellulose, detoxification of xenobiotics, and synthesis of essential amino acids and vitamins, contributing to the adaptability and wide-ranging diet of this snail. More than 2,700 genes encoding glycoside hydrolase (GH) domains and carbohydrate-binding modules were detected. When we compared GH profiles, we found an abundance of sequences coding for oligosaccharide-degrading enzymes (36%), very similar to those from wallabies and giant pandas, as well as many novel cellulase and hemicellulase coding sequences, which points to this model as a remarkable potential source of enzymes for the biofuel industry. Furthermore, this work is a major step toward the understanding of the unique genetic profile of the land snail holobiont. PMID:23133637

  14. Metagenomic analysis of the microbiota from the crop of an invasive snail reveals a rich reservoir of novel genes.

    Directory of Open Access Journals (Sweden)

    Alexander M Cardoso

    Full Text Available The shortage of petroleum reserves and the increase in CO(2 emissions have raised global concerns and highlighted the importance of adopting sustainable energy sources. Second-generation ethanol made from lignocellulosic materials is considered to be one of the most promising fuels for vehicles. The giant snail Achatina fulica is an agricultural pest whose biotechnological potential has been largely untested. Here, the composition of the microbial population within the crop of this invasive land snail, as well as key genes involved in various biochemical pathways, have been explored for the first time. In a high-throughput approach, 318 Mbp of 454-Titanium shotgun metagenomic sequencing data were obtained. The predominant bacterial phylum found was Proteobacteria, followed by Bacteroidetes and Firmicutes. Viruses, Fungi, and Archaea were present to lesser extents. The functional analysis reveals a variety of microbial genes that could assist the host in the degradation of recalcitrant lignocellulose, detoxification of xenobiotics, and synthesis of essential amino acids and vitamins, contributing to the adaptability and wide-ranging diet of this snail. More than 2,700 genes encoding glycoside hydrolase (GH domains and carbohydrate-binding modules were detected. When we compared GH profiles, we found an abundance of sequences coding for oligosaccharide-degrading enzymes (36%, very similar to those from wallabies and giant pandas, as well as many novel cellulase and hemicellulase coding sequences, which points to this model as a remarkable potential source of enzymes for the biofuel industry. Furthermore, this work is a major step toward the understanding of the unique genetic profile of the land snail holobiont.

  15. Metagenomic insights into metabolic capacities of the gut microbiota in a fungus-cultivating termite (Odontotermes yunnanensis.

    Directory of Open Access Journals (Sweden)

    Ning Liu

    Full Text Available Macrotermitinae (fungus-cultivating termites are major decomposers in tropical and subtropical areas of Asia and Africa. They have specifically evolved mutualistic associations with both a Termitomyces fungi on the nest and a gut microbiota, providing a model system for probing host-microbe interactions. Yet the symbiotic roles of gut microbes residing in its major feeding caste remain largely undefined. Here, by pyrosequencing the whole gut metagenome of adult workers of a fungus-cultivating termite (Odontotermes yunnanensis, we showed that it did harbor a broad set of genes or gene modules encoding carbohydrate-active enzymes (CAZymes relevant to plant fiber degradation, particularly debranching enzymes and oligosaccharide-processing enzymes. Besides, it also contained a considerable number of genes encoding chitinases and glycoprotein oligosaccharide-processing enzymes for fungal cell wall degradation. To investigate the metabolic divergence of higher termites of different feeding guilds, a SEED subsystem-based gene-centric comparative analysis of the data with that of a previously sequenced wood-feeding Nasutitermes hindgut microbiome was also attempted, revealing that SEED classifications of nitrogen metabolism, and motility and chemotaxis were significantly overrepresented in the wood-feeder hindgut metagenome, while Bacteroidales conjugative transposons and subsystems related to central aromatic compounds metabolism were apparently overrepresented here. This work fills up our gaps in understanding the functional capacities of fungus-cultivating termite gut microbiota, especially their roles in the symbiotic digestion of lignocelluloses and utilization of fungal biomass, both of which greatly add to existing understandings of this peculiar symbiosis.

  16. Metagenomic analysis of size-fractionated picoplankton in a marine oxygen minimum zone

    OpenAIRE

    Ganesh, Sangita; Parris, Darren J; DeLong, Edward F; Stewart, Frank J

    2013-01-01

    Marine oxygen minimum zones (OMZs) support diverse microbial communities with roles in major elemental cycles. It is unclear how the taxonomic composition and metabolism of OMZ microorganisms vary between particle-associated and free-living size fractions. We used amplicon (16S rRNA gene) and shotgun metagenome sequencing to compare microbial communities from large (>1.6 μm) and small (0.2–1.6 μm) filter size fractions along a depth gradient in the OMZ off Chile. Despite steep vertical redox ...

  17. Improved cultivation and metagenomics as new tools for bioprospecting in cold environments

    DEFF Research Database (Denmark)

    Vester, Jan Kjølhede; Glaring, Mikkel Andreas; Stougaard, Peter

    2015-01-01

    Only a small minority of microorganisms from an environmental sample can be cultured in the laboratory leaving the enormous bioprospecting potential of the uncultured diversity unexplored. This resource can be accessed by improved cultivation methods in which the natural environment is brought...... be limited as few hosts are available for expression of genes with extremophilic properties. This review summarizes the methods developed for improved cultivation as well as the metagenomic approaches for bioprospecting with focus on the challenges faced by bioprospecting in cold environments....

  18. Oral Metagenomic Biomarkers in Rheumatoid Arthritis

    Science.gov (United States)

    2017-09-01

    individuals with rheumatoid arthritis (RA). The goal is to test the  hypothesis that oral microbiome and metagenomic analyses will allow  us  to identify new...biomarkers  that are  useful  for the diagnosis of early RA and/or biomarkers that help to predict the efficacy of  specific therapeutic interventions... RNA  microbiome analysis as well as whole genome shotgun sequencing.  Upon completion of these aims, any identified bacterial biomarkers may be

  19. Glucose-tolerant β-glucosidase retrieved from the metagenome

    Directory of Open Access Journals (Sweden)

    Taku eUchiyama

    2015-06-01

    Full Text Available β-glucosidases (BGLs hydrolyze cellooligosaccharides to glucose and play a crucial role in the enzymatic saccharification of cellulosic biomass. Despite their significance for the production of glucose, most identified BGLs are commonly inhibited by low (~mM concentrations of glucose. Therefore, BGLs that are insensitive to glucose inhibition have great biotechnological merit. We applied a metagenomic approach to screen for such rare glucose-tolerant BGLs. A metagenomic library was created in Escherichia coli (approximately 10,000 colonies and grown on LB agar plates containing 5-bromo-4-chloro-3-indolyl-β-D-glucoside, yielding 828 positive (blue colonies. These were then arrayed in 96-well plates, grown in LB, and secondarily screened for activity in the presence of 10% (w/v glucose. Seven glucose-tolerant clones were identified, each of which contained a single bgl gene. The genes were classified into two groups, differing by two nucleotides. The deduced amino acid sequences of these genes were identical (452 aa and found to belong to the glycosyl hydrolase family 1. The recombinant protein (Ks5A7 was overproduced in E. coli as a C-terminal 6 × His-tagged protein and purified to apparent homogeneity. The molecular mass of the purified Ks5A7 was determined to be 54 kDa by SDS-PAGE, and 160 kDa by gel filtration analysis. The enzyme was optimally active at 45°C and pH 5.0–6.5 and retained full or 1.5–2-fold enhanced activity in the presence of 0.1–0.5 M glucose. It had a low KM (78 µM with p-nitrophenyl β-D-glucoside; 0.36 mM with cellobiose and high Vmax (91 µmol min-1 mg-1 with p-nitrophenyl β-D-glucoside; 155 µmol min-1 mg-1 with cellobiose among known glucose-tolerant BGLs and was free from substrate (0.1 M cellobiose inhibition. The efficient use of Ks5A7 in conjunction with Trichoderma reesei cellulases in enzymatic saccharification of alkaline-treated rice straw was demonstrated by increased production of glucose.

  20. Meta-IDBA: a de Novo assembler for metagenomic data.

    Science.gov (United States)

    Peng, Yu; Leung, Henry C M; Yiu, S M; Chin, Francis Y L

    2011-07-01

    Next-generation sequencing techniques allow us to generate reads from a microbial environment in order to analyze the microbial community. However, assembling of a set of mixed reads from different species to form contigs is a bottleneck of metagenomic research. Although there are many assemblers for assembling reads from a single genome, there are no assemblers for assembling reads in metagenomic data without reference genome sequences. Moreover, the performances of these assemblers on metagenomic data are far from satisfactory, because of the existence of common regions in the genomes of subspecies and species, which make the assembly problem much more complicated. We introduce the Meta-IDBA algorithm for assembling reads in metagenomic data, which contain multiple genomes from different species. There are two core steps in Meta-IDBA. It first tries to partition the de Bruijn graph into isolated components of different species based on an important observation. Then, for each component, it captures the slight variants of the genomes of subspecies from the same species by multiple alignments and represents the genome of one species, using a consensus sequence. Comparison of the performances of Meta-IDBA and existing assemblers, such as Velvet and Abyss for different metagenomic datasets shows that Meta-IDBA can reconstruct longer contigs with similar accuracy. Meta-IDBA toolkit is available at our website http://www.cs.hku.hk/~alse/metaidba. chin@cs.hku.hk.

  1. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, Robert M.; Kyrpides, Nikos C.; Stepanauskas, Ramunas; Harmon-Smith, Miranda; Doud, Devin; Reddy, T. B. K.; Schulz, Frederik; Jarett, Jessica; Rivers, Adam R.; Eloe-Fadrosh, Emiley A.; Tringe, Susannah G.; Ivanova, Natalia N.; Copeland, Alex; Clum, Alicia; Becraft, Eric D.; Malmstrom, Rex R.; Birren, Bruce; Podar, Mircea; Bork, Peer; Weinstock, George M.; Garrity, George M.; Dodsworth, Jeremy A.; Yooseph, Shibu; Sutton, Granger; Glöckner, Frank O.; Gilbert, Jack A.; Nelson, William C.; Hallam, Steven J.; Jungbluth, Sean P.; Ettema, Thijs J. G.; Tighe, Scott; Konstantinidis, Konstantinos T.; Liu, Wen-Tso; Baker, Brett J.; Rattei, Thomas; Eisen, Jonathan A.; Hedlund, Brian; McMahon, Katherine D.; Fierer, Noah; Knight, Rob; Finn, Rob; Cochrane, Guy; Karsch-Mizrachi, Ilene; Tyson, Gene W.; Rinke, Christian; Kyrpides, Nikos C.; Schriml, Lynn; Garrity, George M.; Hugenholtz, Philip; Sutton, Granger; Yilmaz, Pelin; Meyer, Folker; Glöckner, Frank O.; Gilbert, Jack A.; Knight, Rob; Finn, Rob; Cochrane, Guy; Karsch-Mizrachi, Ilene; Lapidus, Alla; Meyer, Folker; Yilmaz, Pelin; Parks, Donovan H.; Eren, A. M.; Schriml, Lynn; Banfield, Jillian F.; Hugenholtz, Philip; Woyke, Tanja

    2017-08-08

    We present two standards developed by the Genomic Standards Consortium (GSC) for reporting bacterial and archaeal genome sequences. Both are extensions of the Minimum Information about Any (x) Sequence (MIxS). The standards are the Minimum Information about a Single Amplified Genome (MISAG) and the Minimum Information about a Metagenome-Assembled Genome (MIMAG), including, but not limited to, assembly quality, and estimates of genome completeness and contamination. These standards can be used in combination with other GSC checklists, including the Minimum Information about a Genome Sequence (MIGS), Minimum Information about a Metagenomic Sequence (MIMS), and Minimum Information about a Marker Gene Sequence (MIMARKS). Community-wide adoption of MISAG and MIMAG will facilitate more robust comparative genomic analyses of bacterial and archaeal diversity.

  2. Comparative metagenomic analysis of PAH degradation in soil by a mixed microbial consortium.

    Science.gov (United States)

    Zafra, German; Taylor, Todd D; Absalón, Angel E; Cortés-Espinosa, Diana V

    2016-11-15

    In this study, we used a taxonomic and functional metagenomic approach to analyze some of the effects (e.g. displacement, permanence, disappearance) produced between native microbiota and a previously constructed Polycyclic Aromatic Hydrocarbon (PAH)-degrading microbial consortium during the bioremediation process of a soil polluted with PAHs. Bioaugmentation with a fungal-bacterial consortium and biostimulation of native microbiota using corn stover as texturizer produced appreciable changes in the microbial diversity of polluted soils, shifting native microbial communities in favor of degrading specific populations. Functional metagenomics showed changes in gene abundance suggesting a bias towards aromatic hydrocarbon and intermediary degradation pathways, which greatly favored PAH mineralization. In contrast, pathways favoring the formation of toxic intermediates such as cytochrome P450-mediated reactions were found to be significantly reduced in bioaugmented soils. PAH biodegradation in soil using the microbial consortium was faster and reached higher degradation values (84% after 30 d) as a result of an increased co-metabolic degradation when compared with other mixed microbial consortia. The main differences between inoculated and non-inoculated soils were observed in aromatic ring-hydroxylating dioxygenases, laccase, protocatechuate, salicylate and benzoate-degrading enzyme genes. Based on our results, we propose that several concurrent metabolic pathways are taking place in soils during PAH degradation. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Exploring the Optimal Strategy to Predict Essential Genes in Microbes

    Directory of Open Access Journals (Sweden)

    Yao Lu

    2011-12-01

    Full Text Available Accurately predicting essential genes is important in many aspects of biology, medicine and bioengineering. In previous research, we have developed a machine learning based integrative algorithm to predict essential genes in bacterial species. This algorithm lends itself to two approaches for predicting essential genes: learning the traits from known essential genes in the target organism, or transferring essential gene annotations from a closely related model organism. However, for an understudied microbe, each approach has its potential limitations. The first is constricted by the often small number of known essential genes. The second is limited by the availability of model organisms and by evolutionary distance. In this study, we aim to determine the optimal strategy for predicting essential genes by examining four microbes with well-characterized essential genes. Our results suggest that, unless the known essential genes are few, learning from the known essential genes in the target organism usually outperforms transferring essential gene annotations from a related model organism. In fact, the required number of known essential genes is surprisingly small to make accurate predictions. In prokaryotes, when the number of known essential genes is greater than 2% of total genes, this approach already comes close to its optimal performance. In eukaryotes, achieving the same best performance requires over 4% of total genes, reflecting the increased complexity of eukaryotic organisms. Combining the two approaches resulted in an increased performance when the known essential genes are few. Our investigation thus provides key information on accurately predicting essential genes and will greatly facilitate annotations of microbial genomes.

  4. Discovery of Microorganisms and Enzymes Involved in High-Solids Decomposition of Rice Straw Using Metagenomic Analyses

    Science.gov (United States)

    D’haeseleer, Patrik; Khudyakov, Jane; Burd, Helcio; Hadi, Masood; Simmons, Blake A.; Singer, Steven W.; Thelen, Michael P.; VanderGheynst, Jean S.

    2013-01-01

    High-solids incubations were performed to enrich for microbial communities and enzymes that decompose rice straw under mesophilic (35°C) and thermophilic (55°C) conditions. Thermophilic enrichments yielded a community that was 7.5 times more metabolically active on rice straw than mesophilic enrichments. Extracted xylanase and endoglucanse activities were also 2.6 and 13.4 times greater, respectively, for thermophilic enrichments. Metagenome sequencing was performed on enriched communities to determine community composition and mine for genes encoding lignocellulolytic enzymes. Proteobacteria were found to dominate the mesophilic community while Actinobacteria were most abundant in the thermophilic community. Analysis of protein family representation in each metagenome indicated that cellobiohydrolases containing carbohydrate binding module 2 (CBM2) were significantly overrepresented in the thermophilic community. Micromonospora, a member of Actinobacteria, primarily housed these genes in the thermophilic community. In light of these findings, Micromonospora and other closely related Actinobacteria genera appear to be promising sources of thermophilic lignocellulolytic enzymes for rice straw deconstruction under high-solids conditions. Furthermore, these discoveries warrant future research to determine if exoglucanases with CBM2 represent thermostable enzymes tolerant to the process conditions expected to be encountered during industrial biofuel production. PMID:24205054

  5. Discovery of microorganisms and enzymes involved in high-solids decomposition of rice straw using metagenomic analyses.

    Directory of Open Access Journals (Sweden)

    Amitha P Reddy

    Full Text Available High-solids incubations were performed to enrich for microbial communities and enzymes that decompose rice straw under mesophilic (35°C and thermophilic (55°C conditions. Thermophilic enrichments yielded a community that was 7.5 times more metabolically active on rice straw than mesophilic enrichments. Extracted xylanase and endoglucanse activities were also 2.6 and 13.4 times greater, respectively, for thermophilic enrichments. Metagenome sequencing was performed on enriched communities to determine community composition and mine for genes encoding lignocellulolytic enzymes. Proteobacteria were found to dominate the mesophilic community while Actinobacteria were most abundant in the thermophilic community. Analysis of protein family representation in each metagenome indicated that cellobiohydrolases containing carbohydrate binding module 2 (CBM2 were significantly overrepresented in the thermophilic community. Micromonospora, a member of Actinobacteria, primarily housed these genes in the thermophilic community. In light of these findings, Micromonospora and other closely related Actinobacteria genera appear to be promising sources of thermophilic lignocellulolytic enzymes for rice straw deconstruction under high-solids conditions. Furthermore, these discoveries warrant future research to determine if exoglucanases with CBM2 represent thermostable enzymes tolerant to the process conditions expected to be encountered during industrial biofuel production.

  6. Seasonal patterns in Arctic prasinophytes and inferred ecology of Bathycoccus unveiled in an Arctic winter metagenome.

    Science.gov (United States)

    Joli, Nathalie; Monier, Adam; Logares, Ramiro; Lovejoy, Connie

    2017-06-01

    Prasinophytes occur in all oceans but rarely dominate phytoplankton populations. In contrast, a single ecotype of the prasinophyte Micromonas is frequently the most abundant photosynthetic taxon reported in the Arctic from summer through autumn. However, seasonal dynamics of prasinophytes outside of this period are little known. To address this, we analyzed high-throughput V4 18S rRNA amplicon data collected from November to July in the Amundsen Gulf Region, Beaufort Sea, Arctic. Surprisingly during polar sunset in November and December, we found a high proportion of reads from both DNA and RNA belonging to another prasinophyte, Bathycoccus. We then analyzed a metagenome from a December sample and the resulting Bathycoccus metagenome assembled genome (MAG) covered ~90% of the Bathycoccus Ban7 reference genome. In contrast, only ~20% of a reference Micromonas genome was found in the metagenome. Our phylogenetic analysis of marker genes placed the Arctic Bathycoccus in the B1 coastal clade. In addition, substitution rates of 129 coding DNA sequences were ~1.6% divergent between the Arctic MAG and coastal Chilean upwelling MAGs and 17.3% between it and a South East Atlantic open ocean MAG in the B2 Clade. The metagenomic analysis also revealed a winter viral community highly skewed toward viruses targeting Micromonas, with a much lower diversity of viruses targeting Bathycoccus. Overall a combination of Micromonas being relatively less able to maintain activity under dark winter conditions and viral suppression of Micromonas may have contributed to the success of Bathycoccus in the Amundsen Gulf during winter.

  7. Gene-specific function prediction for non-synonymous mutations in monogenic diabetes genes.

    Directory of Open Access Journals (Sweden)

    Quan Li

    Full Text Available The rapid progress of genomic technologies has been providing new opportunities to address the need of maturity-onset diabetes of the young (MODY molecular diagnosis. However, whether a new mutation causes MODY can be questionable. A number of in silico methods have been developed to predict functional effects of rare human mutations. The purpose of this study is to compare the performance of different bioinformatics methods in the functional prediction of nonsynonymous mutations in each MODY gene, and provides reference matrices to assist the molecular diagnosis of MODY. Our study showed that the prediction scores by different methods of the diabetes mutations were highly correlated, but were more complimentary than replacement to each other. The available in silico methods for the prediction of diabetes mutations had varied performances across different genes. Applying gene-specific thresholds defined by this study may be able to increase the performance of in silico prediction of disease-causing mutations.

  8. Metagenomic Analysis of Chicken Gut Microbiota for Improving Metabolism and Health of Chickens — A Review

    Directory of Open Access Journals (Sweden)

    Ki Young Choi

    2015-09-01

    Full Text Available Chicken is a major food source for humans, hence it is important to understand the mechanisms involved in nutrient absorption in chicken. In the gastrointestinal tract (GIT, the microbiota plays a central role in enhancing nutrient absorption and strengthening the immune system, thereby affecting both growth and health of chicken. There is little information on the diversity and functions of chicken GIT microbiota, its impact on the host, and the interactions between the microbiota and host. Here, we review the recent metagenomic strategies to analyze the chicken GIT microbiota composition and its functions related to improving metabolism and health. We summarize methodology of metagenomics in order to obtain bacterial taxonomy and functional inferences of the GIT microbiota and suggest a set of indicator genes for monitoring and manipulating the microbiota to promote host health in future.

  9. Genometa--a fast and accurate classifier for short metagenomic shotgun reads.

    Science.gov (United States)

    Davenport, Colin F; Neugebauer, Jens; Beckmann, Nils; Friedrich, Benedikt; Kameri, Burim; Kokott, Svea; Paetow, Malte; Siekmann, Björn; Wieding-Drewes, Matthias; Wienhöfer, Markus; Wolf, Stefan; Tümmler, Burkhard; Ahlers, Volker; Sprengel, Frauke

    2012-01-01

    Metagenomic studies use high-throughput sequence data to investigate microbial communities in situ. However, considerable challenges remain in the analysis of these data, particularly with regard to speed and reliable analysis of microbial species as opposed to higher level taxa such as phyla. We here present Genometa, a computationally undemanding graphical user interface program that enables identification of bacterial species and gene content from datasets generated by inexpensive high-throughput short read sequencing technologies. Our approach was first verified on two simulated metagenomic short read datasets, detecting 100% and 94% of the bacterial species included with few false positives or false negatives. Subsequent comparative benchmarking analysis against three popular metagenomic algorithms on an Illumina human gut dataset revealed Genometa to attribute the most reads to bacteria at species level (i.e. including all strains of that species) and demonstrate similar or better accuracy than the other programs. Lastly, speed was demonstrated to be many times that of BLAST due to the use of modern short read aligners. Our method is highly accurate if bacteria in the sample are represented by genomes in the reference sequence but cannot find species absent from the reference. This method is one of the most user-friendly and resource efficient approaches and is thus feasible for rapidly analysing millions of short reads on a personal computer. The Genometa program, a step by step tutorial and Java source code are freely available from http://genomics1.mh-hannover.de/genometa/ and on http://code.google.com/p/genometa/. This program has been tested on Ubuntu Linux and Windows XP/7.

  10. Genometa--a fast and accurate classifier for short metagenomic shotgun reads.

    Directory of Open Access Journals (Sweden)

    Colin F Davenport

    Full Text Available Metagenomic studies use high-throughput sequence data to investigate microbial communities in situ. However, considerable challenges remain in the analysis of these data, particularly with regard to speed and reliable analysis of microbial species as opposed to higher level taxa such as phyla. We here present Genometa, a computationally undemanding graphical user interface program that enables identification of bacterial species and gene content from datasets generated by inexpensive high-throughput short read sequencing technologies. Our approach was first verified on two simulated metagenomic short read datasets, detecting 100% and 94% of the bacterial species included with few false positives or false negatives. Subsequent comparative benchmarking analysis against three popular metagenomic algorithms on an Illumina human gut dataset revealed Genometa to attribute the most reads to bacteria at species level (i.e. including all strains of that species and demonstrate similar or better accuracy than the other programs. Lastly, speed was demonstrated to be many times that of BLAST due to the use of modern short read aligners. Our method is highly accurate if bacteria in the sample are represented by genomes in the reference sequence but cannot find species absent from the reference. This method is one of the most user-friendly and resource efficient approaches and is thus feasible for rapidly analysing millions of short reads on a personal computer.The Genometa program, a step by step tutorial and Java source code are freely available from http://genomics1.mh-hannover.de/genometa/ and on http://code.google.com/p/genometa/. This program has been tested on Ubuntu Linux and Windows XP/7.

  11. Metagenomic exploration of viruses throughout the Indian Ocean.

    Directory of Open Access Journals (Sweden)

    Shannon J Williamson

    Full Text Available The characterization of global marine microbial taxonomic and functional diversity is a primary goal of the Global Ocean Sampling Expedition. As part of this study, 19 water samples were collected aboard the Sorcerer II sailing vessel from the southern Indian Ocean in an effort to more thoroughly understand the lifestyle strategies of the microbial inhabitants of this ultra-oligotrophic region. No investigations of whole virioplankton assemblages have been conducted on waters collected from the Indian Ocean or across multiple size fractions thus far. Therefore, the goals of this study were to examine the effect of size fractionation on viral consortia structure and function and understand the diversity and functional potential of the Indian Ocean virome. Five samples were selected for comprehensive metagenomic exploration; and sequencing was performed on the microbes captured on 3.0-, 0.8- and 0.1 µm membrane filters as well as the viral fraction (<0.1 µm. Phylogenetic approaches were also used to identify predicted proteins of viral origin in the larger fractions of data from all Indian Ocean samples, which were included in subsequent metagenomic analyses. Taxonomic profiling of viral sequences suggested that size fractionation of marine microbial communities enriches for specific groups of viruses within the different size classes and functional characterization further substantiated this observation. Functional analyses also revealed a relative enrichment for metabolic proteins of viral origin that potentially reflect the physiological condition of host cells in the Indian Ocean including those involved in nitrogen metabolism and oxidative phosphorylation. A novel classification method, MGTAXA, was used to assess virus-host relationships in the Indian Ocean by predicting the taxonomy of putative host genera, with Prochlorococcus, Acanthochlois and members of the SAR86 cluster comprising the most abundant predictions. This is the first study

  12. The MAR databases: development and implementation of databases specific for marine metagenomics.

    Science.gov (United States)

    Klemetsen, Terje; Raknes, Inge A; Fu, Juan; Agafonov, Alexander; Balasundaram, Sudhagar V; Tartari, Giacomo; Robertsen, Espen; Willassen, Nils P

    2018-01-04

    We introduce the marine databases; MarRef, MarDB and MarCat (https://mmp.sfb.uit.no/databases/), which are publicly available resources that promote marine research and innovation. These data resources, which have been implemented in the Marine Metagenomics Portal (MMP) (https://mmp.sfb.uit.no/), are collections of richly annotated and manually curated contextual (metadata) and sequence databases representing three tiers of accuracy. While MarRef is a database for completely sequenced marine prokaryotic genomes, which represent a marine prokaryote reference genome database, MarDB includes all incomplete sequenced prokaryotic genomes regardless level of completeness. The last database, MarCat, represents a gene (protein) catalog of uncultivable (and cultivable) marine genes and proteins derived from marine metagenomics samples. The first versions of MarRef and MarDB contain 612 and 3726 records, respectively. Each record is built up of 106 metadata fields including attributes for sampling, sequencing, assembly and annotation in addition to the organism and taxonomic information. Currently, MarCat contains 1227 records with 55 metadata fields. Ontologies and controlled vocabularies are used in the contextual databases to enhance consistency. The user-friendly web interface lets the visitors browse, filter and search in the contextual databases and perform BLAST searches against the corresponding sequence databases. All contextual and sequence databases are freely accessible and downloadable from https://s1.sfb.uit.no/public/mar/. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Novel Cold-Adapted Esterase MHlip from an Antarctic Soil Metagenome

    Directory of Open Access Journals (Sweden)

    Moreno Galleni

    2013-01-01

    Full Text Available An Antarctic soil metagenomic library was screened for lipolytic enzymes and allowed for the isolation of a new cytosolic esterase from the a/b hydrolase family 6, named MHlip. This enzyme is related to hypothetical genes coding esterases, aryl-esterases and peroxydases, among others. MHlip was produced, purified and its activity was determined. The substrate profile of MHlip reveals a high specificity for short p-nitrophenyl-esters. The apparent optimal activity of MHlip was measured for p-nitrophenyl-acetate, at 33 °C, in the pH range of 6–9. The MHlip thermal unfolding was investigated by spectrophotometric methods, highlighting a transition (Tm at 50 °C. The biochemical characterization of this enzyme showed its adaptation to cold temperatures, even when it did not present evident signatures associated with cold-adapted proteins. Thus, MHlip adaptation to cold probably results from many discrete structural modifications, allowing the protein to remain active at low temperatures. Functional metagenomics is a powerful approach to isolate new enzymes with tailored biophysical properties (e.g., cold adaptation. In addition, beside the ever growing amount of sequenced DNA, the functional characterization of new catalysts derived from environment is still required, especially for poorly characterized protein families like α/b hydrolases.

  14. Quantitative metagenomics reveals unique gut microbiome biomarkers in ankylosing spondylitis.

    Science.gov (United States)

    Wen, Chengping; Zheng, Zhijun; Shao, Tiejuan; Liu, Lin; Xie, Zhijun; Le Chatelier, Emmanuelle; He, Zhixing; Zhong, Wendi; Fan, Yongsheng; Zhang, Linshuang; Li, Haichang; Wu, Chunyan; Hu, Changfeng; Xu, Qian; Zhou, Jia; Cai, Shunfeng; Wang, Dawei; Huang, Yun; Breban, Maxime; Qin, Nan; Ehrlich, Stanislav Dusko

    2017-07-27

    The assessment and characterization of the gut microbiome has become a focus of research in the area of human autoimmune diseases. Ankylosing spondylitis is an inflammatory autoimmune disease and evidence showed that ankylosing spondylitis may be a microbiome-driven disease. To investigate the relationship between the gut microbiome and ankylosing spondylitis, a quantitative metagenomics study based on deep shotgun sequencing was performed, using gut microbial DNA from 211 Chinese individuals. A total of 23,709 genes and 12 metagenomic species were shown to be differentially abundant between ankylosing spondylitis patients and healthy controls. Patients were characterized by a form of gut microbial dysbiosis that is more prominent than previously reported cases with inflammatory bowel disease. Specifically, the ankylosing spondylitis patients demonstrated increases in the abundance of Prevotella melaninogenica, Prevotella copri, and Prevotella sp. C561 and decreases in Bacteroides spp. It is noteworthy that the Bifidobacterium genus, which is commonly used in probiotics, accumulated in the ankylosing spondylitis patients. Diagnostic algorithms were established using a subset of these gut microbial biomarkers. Alterations of the gut microbiome are associated with development of ankylosing spondylitis. Our data suggest biomarkers identified in this study might participate in the pathogenesis or development process of ankylosing spondylitis, providing new leads for the development of new diagnostic tools and potential treatments.

  15. Comparative metagenome of a stream impacted by the urbanization phenomenon

    Directory of Open Access Journals (Sweden)

    Julliane Dutra Medeiros

    Full Text Available Abstract Rivers and streams are important reservoirs of freshwater for human consumption. These ecosystems are threatened by increasing urbanization, because raw sewage discharged into them alters their nutrient content and may affect the composition of their microbial community. In the present study, we investigate the taxonomic and functional profile of the microbial community in an urban lotic environment. Samples of running water were collected at two points in the São Pedro stream: an upstream preserved and non-urbanized area, and a polluted urbanized area with discharged sewage. The metagenomic DNA was sequenced by pyrosequencing. Differences were observed in the community composition at the two sites. The non-urbanized area was overrepresented by genera of ubiquitous microbes that act in the maintenance of environments. In contrast, the urbanized metagenome was rich in genera pathogenic to humans. The functional profile indicated that the microbes act on the metabolism of methane, nitrogen and sulfur, especially in the urbanized area. It was also found that virulence/defense (antibiotic resistance and metal resistance and stress response-related genes were disseminated in the urbanized environment. The structure of the microbial community was altered by uncontrolled anthropic interference, highlighting the selective pressure imposed by high loads of urban sewage discharged into freshwater environments.

  16. Metagenomic insights into anaerobic metabolism along an Arctic peat soil profile.

    Directory of Open Access Journals (Sweden)

    David A Lipson

    Full Text Available A metagenomic analysis was performed on a soil profile from a wet tundra site in northern Alaska. The goal was to link existing biogeochemical knowledge of the system with the organisms and genes responsible for the relevant metabolic pathways. We specifically investigated how the importance of iron (Fe oxides and humic substances (HS as terminal electron acceptors in this ecosystem is expressed genetically, and how respiratory and fermentative processes varied with soil depth into the active layer and into the upper permafrost. Overall, the metagenomes reflected a microbial community enriched in a diverse range of anaerobic pathways, with a preponderance of known Fe reducing species at all depths in the profile. The abundance of sequences associated with anaerobic metabolic processes generally increased with depth, while aerobic cytochrome c oxidases decreased. Methanogenesis genes and methanogen genomes followed the pattern of CH4 fluxes: they increased steeply with depth into the active layer, but declined somewhat over the transition zone between the lower active layer and the upper permafrost. The latter was relatively enriched in fermentative and anaerobic respiratory pathways. A survey of decaheme cytochromes (MtrA, MtrC and their homologs revealed that this is a promising approach to identifying potential reducers of Fe(III or HS, and indicated a possible role for Acidobacteria as Fe reducers in these soils. Methanogens appear to coexist in the same layers, though in lower abundance, with Fe reducing bacteria and other potential competitors, including acetogens. These observations provide a rich set of hypotheses for further targeted study.

  17. Metagenomes from two microbial consortia associated with Santa Barbara seep oil.

    Science.gov (United States)

    Hawley, Erik R; Malfatti, Stephanie A; Pagani, Ioanna; Huntemann, Marcel; Chen, Amy; Foster, Brian; Copeland, Alexander; del Rio, Tijana Glavina; Pati, Amrita; Jansson, Janet R; Gilbert, Jack A; Tringe, Susannah Green; Lorenson, Thomas D; Hess, Matthias

    2014-12-01

    The metagenomes from two microbial consortia associated with natural oils seeping into the Pacific Ocean offshore the coast of Santa Barbara (California, USA) were determined to complement already existing metagenomes generated from microbial communities associated with hydrocarbons that pollute the marine ecosystem. This genomics resource article is the first of two publications reporting a total of four new metagenomes from oils that seep into the Santa Barbara Channel. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Revealing the uncultivated majority: combining DNA stable-isotope probing, multiple displacement amplification and metagenomic analyses of uncultivated Methylocystis in acidic peatlands.

    Science.gov (United States)

    Chen, Yin; Dumont, Marc G; Neufeld, Josh D; Bodrossy, Levente; Stralis-Pavese, Nancy; McNamara, Niall P; Ostle, Nick; Briones, Maria J I; Murrell, J Colin

    2008-10-01

    Peatlands represent an enormous carbon reservoir and have a potential impact on the global climate because of the active methanogenesis and methanotrophy in these soils. Uncultivated methanotrophs from seven European peatlands were studied using a combination of molecular methods. Screening for methanotroph diversity using a particulate methane monooxygenase-based diagnostic gene array revealed that Methylocystis-related species were dominant in six of the seven peatlands studied. The abundance and methane oxidation activity of Methylocystis spp. were further confirmed by DNA stable-isotope probing analysis of a sample taken from the Moor House peatland (England). After ultracentrifugation, (13)C-labelled DNA, containing genomic DNA of these Methylocystis spp., was separated from (12)C DNA and subjected to multiple displacement amplification (MDA) to generate sufficient DNA for the preparation of a fosmid metagenomic library. Potential bias of MDA was detected by fingerprint analysis of 16S rRNA using denaturing gradient gel electrophoresis for low-template amplification (0.01 ng template). Sufficient template (1-5 ng) was used in MDA to circumvent this bias and chimeric artefacts were minimized by using an enzymatic treatment of MDA-generated DNA with S1 nuclease and DNA polymerase I. Screening of the metagenomic library revealed one fosmid containing methanol dehydrogenase and two fosmids containing 16S rRNA genes from these Methylocystis-related species as well as one fosmid containing a 16S rRNA gene related to that of Methylocella/Methylocapsa. Sequencing of the 14 kb methanol dehydrogenase-containing fosmid allowed the assembly of a gene cluster encoding polypeptides involved in bacterial methanol utilization (mxaFJGIRSAC). This combination of DNA stable-isotope probing, MDA and metagenomics provided access to genomic information of a relatively large DNA fragment of these thus far uncultivated, predominant and active methanotrophs in peatland soil.

  19. Metagenomic Screening of Urban Rattus Norvegicus for Virus and Pathogens

    DEFF Research Database (Denmark)

    Hansen, Thomas Arn

    the way for increasing rates of pathogen discovery and identification, thereby enabling faster containment of wildlife vectors. In this thesis, I have used metagenomics to assess the virome and resistome of the wild urban R. norvegicus. Many new potential viruses are discovered through virome analyses......; including the first known R. norvegicus associated polyomavirus, a novel papillomavirus, several circular ssDNA viruses and some cardioviruses. The resistome analyses on these samples reveals many shared as well as location-specific antibiotic resistance genes, but there is a clear selection for vancomycin...

  20. Metagenomics and the protein universe

    Science.gov (United States)

    Godzik, Adam

    2011-01-01

    Metagenomics sequencing projects have dramatically increased our knowledge of the protein universe and provided over one-half of currently known protein sequences; they have also introduced a much broader phylogenetic diversity into the protein databases. The full analysis of metagenomic datasets is only beginning, but it has already led to the discovery of thousands of new protein families, likely representing novel functions specific to given environments. At the same time, a deeper analysis of such novel families, including experimental structure determination of some representatives, suggests that most of them represent distant homologs of already characterized protein families, and thus most of the protein diversity present in the new environments are due to functional divergence of the known protein families rather than the emergence of new ones. PMID:21497084

  1. Metagenomic Detection Methods in Biopreparedness Outbreak Scenarios

    DEFF Research Database (Denmark)

    Karlsson, Oskar Erik; Hansen, Trine; Knutsson, Rickard

    2013-01-01

    In the field of diagnostic microbiology, rapid molecular methods are critically important for detecting pathogens. With rapid and accurate detection, preventive measures can be put in place early, thereby preventing loss of life and further spread of a disease. From a preparedness perspective...... of a clinical sample, creating a metagenome, in a single week of laboratory work. As new technologies emerge, their dissemination and capacity building must be facilitated, and criteria for use, as well as guidelines on how to report results, must be established. This article focuses on the use of metagenomics...

  2. Methods for the Isolation of Genes Encoding Novel PHA Metabolism Enzymes from Complex Microbial Communities.

    Science.gov (United States)

    Cheng, Jiujun; Nordeste, Ricardo; Trainer, Maria A; Charles, Trevor C

    2017-01-01

    Development of different PHAs as alternatives to petrochemically derived plastics can be facilitated by mining metagenomic libraries for diverse PHA cycle genes that might be useful for synthesis of bio-plastics. The specific phenotypes associated with mutations of the PHA synthesis pathway genes in Sinorhizobium meliloti and Pseudomonas putida, allows the use of powerful selection and screening tools to identify complementing novel PHA synthesis genes. Identification of novel genes through their function rather than sequence facilitates the functional proteins that may otherwise have been excluded through sequence-only screening methodology. We present here methods that we have developed for the isolation of clones expressing novel PHA metabolism genes from metagenomic libraries.

  3. Methods for the isolation of genes encoding novel PHB cycle enzymes from complex microbial communities.

    Science.gov (United States)

    Nordeste, Ricardo F; Trainer, Maria A; Charles, Trevor C

    2010-01-01

    Development of different PHAs as alternatives to petrochemically derived plastics can be facilitated by mining metagenomic libraries for diverse PHA cycle genes that might be useful for synthesis of bioplastics. The specific phenotypes associated with mutations of the PHA synthesis pathway genes in Sinorhizobium meliloti allows for the use of powerful selection and screening tools to identify complementing novel PHA synthesis genes. Identification of novel genes through their function rather than sequence facilitates finding functional proteins that may otherwise have been excluded through sequence-only screening methodology. We present here methods that we have developed for the isolation of clones expressing novel PHA metabolism genes from metagenomic libraries.

  4. Translational metagenomics and the human resistome: confronting the menace of the new millennium.

    Science.gov (United States)

    Willmann, Matthias; Peter, Silke

    2017-01-01

    The increasing threat of antimicrobial resistance poses one of the greatest challenges to modern medicine. The collection of all antimicrobial resistance genes carried by various microorganisms in the human body is called the human resistome and represents the source of resistance in pathogens that can eventually cause life-threatening and untreatable infections. A deep understanding of the human resistome and its multilateral interaction with various environments is necessary for developing proper measures that can efficiently reduce the spread of resistance. However, the human resistome and its evolution still remain, for the most part, a mystery to researchers. Metagenomics, particularly in combination with next-generation-sequencing technology, provides a powerful methodological approach for studying the human microbiome as well as the pathogenome, the virolume and especially the resistome. We summarize below current knowledge on how the human resistome is shaped and discuss how metagenomics can be employed to improve our understanding of these complex processes, particularly as regards a rapid translation of new findings into clinical diagnostics, infection control and public health.

  5. MetaVelvet: An Extension of Velvet Assembler to de novo Metagenome Assembly from Short Sequence Reads (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    Energy Technology Data Exchange (ETDEWEB)

    Sakakibara, Yasumbumi

    2011-10-13

    Keio University's Yasumbumi Sakakibara on "MetaVelvet: An Extension of Velvet Assembler to de novo Metagenome Assembly from Short Sequence Reads" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  6. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, Robert M.; Kyrpides, Nikos C.; Stepanauskas, Ramunas; Harmon-Smith, Miranda; Doud, Devin; Reddy, T. B. K.; Schulz, Frederik; Jarett, Jessica; Rivers, Adam R.; Eloe-Fadrosh, Emiley A.; Tringe, Susannah G.; Ivanova, Natalia N.; Copeland, Alex; Clum, Alicia; Becraft, Eric D.; Malmstrom, Rex R.; Birren, Bruce; Podar, Mircea; Bork, Peer; Weinstock, George M.; Garrity, George M.; Dodsworth, Jeremy A.; Yooseph, Shibu; Sutton, Granger; Glöckner, Frank O.; Gilbert, Jack A.; Nelson, William C.; Hallam, Steven J.; Jungbluth, Sean P.; Ettema, Thijs J. G.; Tighe, Scott; Konstantinidis, Konstantinos T.; Liu, Wen-Tso; Baker, Brett J.; Rattei, Thomas; Eisen, Jonathan A.; Hedlund, Brian; McMahon, Katherine D.; Fierer, Noah; Knight, Rob; Finn, Rob; Cochrane, Guy; Karsch-Mizrachi, Ilene; Tyson, Gene W.; Rinke, Christian; Kyrpides, Nikos C.; Schriml, Lynn; Garrity, George M.; Hugenholtz, Philip; Sutton, Granger; Yilmaz, Pelin; Meyer, Folker; Glöckner, Frank O.; Gilbert, Jack A.; Knight, Rob; Finn, Rob; Cochrane, Guy; Karsch-Mizrachi, Ilene; Lapidus, Alla; Meyer, Folker; Yilmaz, Pelin; Parks, Donovan H.; Eren, A. M.; Schriml, Lynn; Banfield, Jillian F.; Hugenholtz, Philip; Woyke, Tanja

    2017-08-08

    The number of genomes from uncultivated microbes will soon surpass the number of isolate genomes in public databases (Hugenholtz, Skarshewski, & Parks, 2016). Technological advancements in high-throughput sequencing and assembly, including single-cell genomics and the computational extraction of genomes from metagenomes (GFMs), are largely responsible. Here we propose community standards for reporting the Minimum Information about a Single-Cell Genome (MIxS-SCG) and Minimum Information about Genomes extracted From Metagenomes (MIxS-GFM) specific for Bacteria and Archaea. The standards have been developed in the context of the International Genomics Standards Consortium (GSC) community (Field et al., 2014) and can be viewed as a supplement to other GSC checklists including the Minimum Information about a Genome Sequence (MIGS), Minimum information about a Metagenomic Sequence(s) (MIMS) (Field et al., 2008) and Minimum Information about a Marker Gene Sequence (MIMARKS) (P. Yilmaz et al., 2011). Community-wide acceptance of MIxS-SCG and MIxS-GFM for Bacteria and Archaea will enable broad comparative analyses of genomes from the majority of taxa that remain uncultivated, improving our understanding of microbial function, ecology, and evolution.

  7. The YNP Metagenome Project: Environmental Parameters Responsible for Microbial Distribution in the Yellowstone Geothermal Ecosystem

    Directory of Open Access Journals (Sweden)

    William P. Inskeep

    2013-05-01

    Full Text Available The Yellowstone geothermal complex contains over 10,000 diverse geothermal features that host numerous phylogenetically deeply-rooted and poorly understood archaea, bacteria and viruses. Microbial communities in high-temperature environments are generally less diverse than soil, marine, sediment or lake habitats and therefore offer a tremendous opportunity for studying the structure and function of different model microbial communities using environmental metagenomics. One of the broader goals of this study was to establish linkages among microbial distribution, metabolic potential and environmental variables. Twenty geochemically distinct geothermal ecosystems representing a broad spectrum of Yellowstone hot-spring environments were used for metagenomic and geochemical analysis and included approximately equal numbers of: (1 phototrophic mats, (2 ‘filamentous streamer’ communities, and (3 archaeal-dominated sediments. The metagenomes were analyzed using a suite of complementary and integrative bioinformatic tools, including phylogenetic and functional analysis of both individual sequence reads and assemblies of predominant phylotypes. This volume identifies major environmental determinants of a large number of thermophilic microbial lineages, many of which have not been fully described in the literature nor previously cultivated to enable functional and genomic analyses. Moreover, protein family abundance comparisons and in-depth analyses of specific genes and metabolic pathways relevant to these hot-spring environments reveal hallmark signatures of metabolic capabilities that parallel the distribution of phylotypes across specific types of geochemical environments.

  8. The potential of viral metagenomics in blood transfusion safety.

    Science.gov (United States)

    Sauvage, V; Gomez, J; Boizeau, L; Laperche, S

    2017-09-01

    Thanks to the significant advent of high throughput sequencing in the last ten years, it is now possible via metagenomics to define the spectrum of the microbial sequences present in human blood samples. Therefore, metagenomics sequencing appears as a promising approach for the identification and global surveillance of new, emerging and/or unexpected viruses that could impair blood transfusion safety. However, despite considerable advantages compared to the traditional methods of pathogen identification, this non-targeted approach presents several drawbacks including a lack of sensitivity and sequence contaminant issues. With further improvements, especially to increase sensitivity, metagenomics sequencing should become in a near future an additional diagnostic tool in infectious disease field and especially in blood transfusion safety. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. Combining Gene Signatures Improves Prediction of Breast Cancer Survival

    Science.gov (United States)

    Zhao, Xi; Naume, Bjørn; Langerød, Anita; Frigessi, Arnoldo; Kristensen, Vessela N.; Børresen-Dale, Anne-Lise; Lingjærde, Ole Christian

    2011-01-01

    Background Several gene sets for prediction of breast cancer survival have been derived from whole-genome mRNA expression profiles. Here, we develop a statistical framework to explore whether combination of the information from such sets may improve prediction of recurrence and breast cancer specific death in early-stage breast cancers. Microarray data from two clinically similar cohorts of breast cancer patients are used as training (n = 123) and test set (n = 81), respectively. Gene sets from eleven previously published gene signatures are included in the study. Principal Findings To investigate the relationship between breast cancer survival and gene expression on a particular gene set, a Cox proportional hazards model is applied using partial likelihood regression with an L2 penalty to avoid overfitting and using cross-validation to determine the penalty weight. The fitted models are applied to an independent test set to obtain a predicted risk for each individual and each gene set. Hierarchical clustering of the test individuals on the basis of the vector of predicted risks results in two clusters with distinct clinical characteristics in terms of the distribution of molecular subtypes, ER, PR status, TP53 mutation status and histological grade category, and associated with significantly different survival probabilities (recurrence: p = 0.005; breast cancer death: p = 0.014). Finally, principal components analysis of the gene signatures is used to derive combined predictors used to fit a new Cox model. This model classifies test individuals into two risk groups with distinct survival characteristics (recurrence: p = 0.003; breast cancer death: p = 0.001). The latter classifier outperforms all the individual gene signatures, as well as Cox models based on traditional clinical parameters and the Adjuvant! Online for survival prediction. Conclusion Combining the predictive strength of multiple gene signatures improves prediction of breast

  10. Combining gene signatures improves prediction of breast cancer survival.

    Directory of Open Access Journals (Sweden)

    Xi Zhao

    Full Text Available BACKGROUND: Several gene sets for prediction of breast cancer survival have been derived from whole-genome mRNA expression profiles. Here, we develop a statistical framework to explore whether combination of the information from such sets may improve prediction of recurrence and breast cancer specific death in early-stage breast cancers. Microarray data from two clinically similar cohorts of breast cancer patients are used as training (n = 123 and test set (n = 81, respectively. Gene sets from eleven previously published gene signatures are included in the study. PRINCIPAL FINDINGS: To investigate the relationship between breast cancer survival and gene expression on a particular gene set, a Cox proportional hazards model is applied using partial likelihood regression with an L2 penalty to avoid overfitting and using cross-validation to determine the penalty weight. The fitted models are applied to an independent test set to obtain a predicted risk for each individual and each gene set. Hierarchical clustering of the test individuals on the basis of the vector of predicted risks results in two clusters with distinct clinical characteristics in terms of the distribution of molecular subtypes, ER, PR status, TP53 mutation status and histological grade category, and associated with significantly different survival probabilities (recurrence: p = 0.005; breast cancer death: p = 0.014. Finally, principal components analysis of the gene signatures is used to derive combined predictors used to fit a new Cox model. This model classifies test individuals into two risk groups with distinct survival characteristics (recurrence: p = 0.003; breast cancer death: p = 0.001. The latter classifier outperforms all the individual gene signatures, as well as Cox models based on traditional clinical parameters and the Adjuvant! Online for survival prediction. CONCLUSION: Combining the predictive strength of multiple gene signatures improves

  11. Metagenomics of urban sewage identifies an extensively shared antibiotic resistome in China.

    Science.gov (United States)

    Su, Jian-Qiang; An, Xin-Li; Li, Bing; Chen, Qing-Lin; Gillings, Michael R; Chen, Hong; Zhang, Tong; Zhu, Yong-Guan

    2017-07-19

    Antibiotic-resistant pathogens are challenging treatment of infections worldwide. Urban sewage is potentially a major conduit for dissemination of antibiotic resistance genes into various environmental compartments. However, the diversity and abundance of such genes in wastewater are not well known. Here, seasonal and geographical distributions of antibiotic resistance genes and their host bacterial communities from Chinese urban sewage were characterized, using metagenomic analyses and 16S rRNA gene-based Illumina sequencing, respectively. In total, 381 different resistance genes were detected, and these genes were extensively shared across China, with no geographical clustering. Seasonal variation in abundance of resistance genes was observed, with average concentrations of 3.27 × 10 11 and 1.79 × 10 12 copies/L in summer and winter, respectively. Bacterial communities did not exhibit geographical clusters, but did show a significant distance-decay relationship (P resistome accounted for 57.7% of the total resistance genes, and was significantly associated with the core microbial community (P resistome, demonstrating the potential contribution of human gut microbiota to the dissemination of resistance elements via sewage disposal. This study provides a baseline for investigating environmental dissemination of resistance elements and raises the possibility of using the abundance of resistance genes in sewage as a tool for antibiotic stewardship.

  12. Expanding the marine virosphere using metagenomics.

    Directory of Open Access Journals (Sweden)

    Carolina Megumi Mizuno

    Full Text Available Viruses infecting prokaryotic cells (phages are the most abundant entities of the biosphere and contain a largely uncharted wealth of genomic diversity. They play a critical role in the biology of their hosts and in ecosystem functioning at large. The classical approaches studying phages require isolation from a pure culture of the host. Direct sequencing approaches have been hampered by the small amounts of phage DNA present in most natural habitats and the difficulty in applying meta-omic approaches, such as annotation of small reads and assembly. Serendipitously, it has been discovered that cellular metagenomes of highly productive ocean waters (the deep chlorophyll maximum contain significant amounts of viral DNA derived from cells undergoing the lytic cycle. We have taken advantage of this phenomenon to retrieve metagenomic fosmids containing viral DNA from a Mediterranean deep chlorophyll maximum sample. This method allowed description of complete genomes of 208 new marine phages. The diversity of these genomes was remarkable, contributing 21 genomic groups of tailed bacteriophages of which 10 are completely new. Sequence based methods have allowed host assignment to many of them. These predicted hosts represent a wide variety of important marine prokaryotic microbes like members of SAR11 and SAR116 clades, Cyanobacteria and also the newly described low GC Actinobacteria. A metavirome constructed from the same habitat showed that many of the new phage genomes were abundantly represented. Furthermore, other available metaviromes also indicated that some of the new phages are globally distributed in low to medium latitude ocean waters. The availability of many genomes from the same sample allows a direct approach to viral population genomics confirming the remarkable mosaicism of phage genomes.

  13. MG-Digger: an automated pipeline to search for giant virus-related sequences in metagenomes

    Directory of Open Access Journals (Sweden)

    Jonathan eVerneau

    2016-03-01

    Full Text Available The number of metagenomic studies conducted each year is growing dramatically. Storage and analysis of such big data is difficult and time-consuming. Interestingly, analysis shows that environmental and human metagenomes include a significant amount of non-annotated sequences, representing a ‘dark matter’. We established a bioinformatics pipeline that automatically detects metagenome reads matching query sequences from a given set and applied this tool to the detection of sequences matching large and giant DNA viral members of the proposed order Megavirales or virophages. A total of 1,045 environmental and human metagenomes (≈ 1 Terabase pairs were collected, processed and stored on our bioinformatics server. In addition, nucleotide and protein sequences from 93 Megavirales representatives, including 19 giant viruses of amoeba, and five virophages, were collected. The pipeline was generated by scripts written in Python language and entitled MG-Digger. Metagenomes previously found to contain megavirus-like sequences were tested as controls. MG-Digger was able to annotate hundreds of metagenome sequences as best matching those of giant viruses. These sequences were most often found to be similar to phycodnavirus or mimivirus sequences, but included reads related to recently available pandoraviruses, Pithovirus sibericum, and faustoviruses. Compared to other tools, MG-Digger combined stand-alone use on Linux or Windows operating systems through a user-friendly interface, implementation of ready-to-use customized metagenome databases and query sequence databases, adjustable parameters for BLAST searches, and creation of output files containing selected reads with best match identification. Compared to Metavir 2, a reference tool in viral metagenome analysis, MG-Digger detected 8% more true positive Megavirales-related reads in a control metagenome. The present work shows that massive, automated and recurrent analyses of metagenomes are

  14. Integrative Workflows for Metagenomic Analysis

    Directory of Open Access Journals (Sweden)

    Efthymios eLadoukakis

    2014-11-01

    Full Text Available The rapid evolution of all sequencing technologies, described by the term Next Generation Sequencing (NGS, have revolutionized metagenomic analysis. They constitute a combination of high-throughput analytical protocols, coupled to delicate measuring techniques, in order to potentially discover, properly assemble and map allelic sequences to the correct genomes, achieving particularly high yields for only a fraction of the cost of traditional processes (i.e. Sanger. From a bioinformatic perspective, this boils down to many gigabytes of data being generated from each single sequencing experiment, rendering the management or even the storage, critical bottlenecks with respect to the overall analytical endeavor. The enormous complexity is even more aggravated by the versatility of the processing steps available, represented by the numerous bioinformatic tools that are essential, for each analytical task, in order to fully unveil the genetic content of a metagenomic dataset. These disparate tasks range from simple, nonetheless non-trivial, quality control of raw data to exceptionally complex protein annotation procedures, requesting a high level of expertise for their proper application or the neat implementation of the whole workflow. Furthermore, a bioinformatic analysis of such scale, requires grand computational resources, imposing as the sole realistic solution, the utilization of cloud computing infrastructures. In this review article we discuss different, integrative, bioinformatic solutions available, which address the aforementioned issues, by performing a critical assessment of the available automated pipelines for data management, quality control and annotation of metagenomic data, embracing various, major sequencing technologies and applications.

  15. Diversity Indices as Measures of Functional Annotation Methods in Metagenomics Studies

    KAUST Repository

    Jankovic, Boris R.

    2016-01-26

    Applications of high-throughput techniques in metagenomics studies produce massive amounts of data. Fragments of genomic, transcriptomic and proteomic molecules are all found in metagenomics samples. Laborious and meticulous effort in sequencing and functional annotation are then required to, amongst other objectives, reconstruct a taxonomic map of the environment that metagenomics samples were taken from. In addition to computational challenges faced by metagenomics studies, the analysis is further complicated by the presence of contaminants in the samples, potentially resulting in skewed taxonomic analysis. The functional annotation in metagenomics can utilize all available omics data and therefore different methods that are associated with a particular type of data. For example, protein-coding DNA, non-coding RNA or ribosomal RNA data can be used in such an analysis. These methods would have their advantages and disadvantages and the question of comparison among them naturally arises. There are several criteria that can be used when performing such a comparison. Loosely speaking, methods can be evaluated in terms of computational complexity or in terms of the expected biological accuracy. We propose that the concept of diversity that is used in the ecosystems and species diversity studies can be successfully used in evaluating certain aspects of the methods employed in metagenomics studies. We show that when applying the concept of Hill’s diversity, the analysis of variations in the diversity order provides valuable clues into the robustness of methods used in the taxonomical analysis.

  16. Phylogenetic convolutional neural networks in metagenomics.

    Science.gov (United States)

    Fioravanti, Diego; Giarratano, Ylenia; Maggio, Valerio; Agostinelli, Claudio; Chierici, Marco; Jurman, Giuseppe; Furlanello, Cesare

    2018-03-08

    Convolutional Neural Networks can be effectively used only when data are endowed with an intrinsic concept of neighbourhood in the input space, as is the case of pixels in images. We introduce here Ph-CNN, a novel deep learning architecture for the classification of metagenomics data based on the Convolutional Neural Networks, with the patristic distance defined on the phylogenetic tree being used as the proximity measure. The patristic distance between variables is used together with a sparsified version of MultiDimensional Scaling to embed the phylogenetic tree in a Euclidean space. Ph-CNN is tested with a domain adaptation approach on synthetic data and on a metagenomics collection of gut microbiota of 38 healthy subjects and 222 Inflammatory Bowel Disease patients, divided in 6 subclasses. Classification performance is promising when compared to classical algorithms like Support Vector Machines and Random Forest and a baseline fully connected neural network, e.g. the Multi-Layer Perceptron. Ph-CNN represents a novel deep learning approach for the classification of metagenomics data. Operatively, the algorithm has been implemented as a custom Keras layer taking care of passing to the following convolutional layer not only the data but also the ranked list of neighbourhood of each sample, thus mimicking the case of image data, transparently to the user.

  17. Metagenomic Taxonomy-Guided Database-Searching Strategy for Improving Metaproteomic Analysis.

    Science.gov (United States)

    Xiao, Jinqiu; Tanca, Alessandro; Jia, Ben; Yang, Runqing; Wang, Bo; Zhang, Yu; Li, Jing

    2018-04-06

    Metaproteomics provides a direct measure of the functional information by investigating all proteins expressed by a microbiota. However, due to the complexity and heterogeneity of microbial communities, it is very hard to construct a sequence database suitable for a metaproteomic study. Using a public database, researchers might not be able to identify proteins from poorly characterized microbial species, while a sequencing-based metagenomic database may not provide adequate coverage for all potentially expressed protein sequences. To address this challenge, we propose a metagenomic taxonomy-guided database-search strategy (MT), in which a merged database is employed, consisting of both taxonomy-guided reference protein sequences from public databases and proteins from metagenome assembly. By applying our MT strategy to a mock microbial mixture, about two times as many peptides were detected as with the metagenomic database only. According to the evaluation of the reliability of taxonomic attribution, the rate of misassignments was comparable to that obtained using an a priori matched database. We also evaluated the MT strategy with a human gut microbial sample, and we found 1.7 times as many peptides as using a standard metagenomic database. In conclusion, our MT strategy allows the construction of databases able to provide high sensitivity and precision in peptide identification in metaproteomic studies, enabling the detection of proteins from poorly characterized species within the microbiota.

  18. Transposases are the most abundant, most ubiquitous genes in nature.

    Science.gov (United States)

    Aziz, Ramy K; Breitbart, Mya; Edwards, Robert A

    2010-07-01

    Genes, like organisms, struggle for existence, and the most successful genes persist and widely disseminate in nature. The unbiased determination of the most successful genes requires access to sequence data from a wide range of phylogenetic taxa and ecosystems, which has finally become achievable thanks to the deluge of genomic and metagenomic sequences. Here, we analyzed 10 million protein-encoding genes and gene tags in sequenced bacterial, archaeal, eukaryotic and viral genomes and metagenomes, and our analysis demonstrates that genes encoding transposases are the most prevalent genes in nature. The finding that these genes, classically considered as selfish genes, outnumber essential or housekeeping genes suggests that they offer selective advantage to the genomes and ecosystems they inhabit, a hypothesis in agreement with an emerging body of literature. Their mobile nature not only promotes dissemination of transposable elements within and between genomes but also leads to mutations and rearrangements that can accelerate biological diversification and--consequently--evolution. By securing their own replication and dissemination, transposases guarantee to thrive so long as nucleic acid-based life forms exist.

  19. Neural Inductive Matrix Completion for Predicting Disease-Gene Associations

    KAUST Repository

    Hou, Siqing

    2018-05-21

    In silico prioritization of undiscovered associations can help find causal genes of newly discovered diseases. Some existing methods are based on known associations, and side information of diseases and genes. We exploit the possibility of using a neural network model, Neural inductive matrix completion (NIMC), in disease-gene prediction. Comparing to the state-of-the-art inductive matrix completion method, using neural networks allows us to learn latent features from non-linear functions of input features. Previous methods use disease features only from mining text. Comparing to text mining, disease ontology is a more informative way of discovering correlation of dis- eases, from which we can calculate the similarities between diseases and help increase the performance of predicting disease-gene associations. We compare the proposed method with other state-of-the-art methods for pre- dicting associated genes for diseases from the Online Mendelian Inheritance in Man (OMIM) database. Results show that both new features and the proposed NIMC model can improve the chance of recovering an unknown associated gene in the top 100 predicted genes. Best results are obtained by using both the new features and the new model. Results also show the proposed method does better in predicting associated genes for newly discovered diseases.

  20. Molecular cloning and characterization of a novel pyrethroid-hydrolyzing esterase originating from the Metagenome

    Directory of Open Access Journals (Sweden)

    Liu Yu

    2008-12-01

    Full Text Available Abstract Background Pyrethroids and pyrethrins are widely used insecticides. Extensive applications not only result in pest resistance to these insecticides, but also may lead to environmental issues and human exposure. Numerous studies have shown that very high exposure to pyrethroids might cause potential problems to man and aquatic organisms. Therefore, it is important to develop a rapid and efficient disposal process to eliminate or minimize contamination of surface water, groundwater and agricultural products by pyrethroid insecticides. Bioremediation is considered to be a reliable and cost-effective technique for pesticides abatement and a major factor determining the fate of pyrethroid pesticides in the environment, and suitable esterase is expected to be useful for potential application for detoxification of pyrethroid residues. Soil is a complex environment considered as one of the main reservoirs of microbial diversity on the planet. However, most of the microorganisms in nature are inaccessible as they are uncultivable in the laboratory. Metagenomic approaches provide a powerful tool for accessing novel valuable genetic resources (novel enzymes and developing various biotechnological applications. Results The pyrethroid pesticides residues on foods and the environmental contamination are a public safety concern. Pretreatment with pyrethroid-hydrolyzing esterase has the potential to alleviate the conditions. To this end, a pyrethroid-hydrolyzing esterase gene was successfully cloned using metagenomic DNA combined with activity-based functional screening from soil, sequence analysis of the DNA responsible for the pye3 gene revealed an open reading frame of 819 bp encoding for a protein of 272 amino acid residues. Extensive multiple sequence alignments of the deduced amino acid of Pye3 with the most homologous carboxylesterases revealed moderate identity (45–49%. The recombinant Pye3 was heterologously expressed in E. coli BL21(DE3

  1. Data on gut metagenomes of the patients with alcoholic dependence syndrome and alcoholic liver cirrhosis

    Directory of Open Access Journals (Sweden)

    Alexander V. Tyakht

    2017-04-01

    Full Text Available Alcoholism is associated with significant changes in gut microbiota composition. Metagenomic sequencing allows to assess the altered abundance levels of bacterial taxa and genes in a culture-independent way. We collected 99 stool samples from the patients with alcoholic dependence syndrome (n=72 and alcoholic liver cirrhosis (n=27. Each of the samples was surveyed using “shotgun” (whole-genome sequencing on SOLiD platform. The reads are deposited in the ENA (project ID: PRJEB18041.

  2. Genome sequence determination and metagenomic characterization of a Dehalococcoides mixed culture grown on cis-1,2-dichloroethene.

    Science.gov (United States)

    Yohda, Masafumi; Yagi, Osami; Takechi, Ayane; Kitajima, Mizuki; Matsuda, Hisashi; Miyamura, Naoaki; Aizawa, Tomoko; Nakajima, Mutsuyasu; Sunairi, Michio; Daiba, Akito; Miyajima, Takashi; Teruya, Morimi; Teruya, Kuniko; Shiroma, Akino; Shimoji, Makiko; Tamotsu, Hinako; Juan, Ayaka; Nakano, Kazuma; Aoyama, Misako; Terabayashi, Yasunobu; Satou, Kazuhito; Hirano, Takashi

    2015-07-01

    A Dehalococcoides-containing bacterial consortium that performed dechlorination of 0.20 mM cis-1,2-dichloroethene to ethene in 14 days was obtained from the sediment mud of the lotus field. To obtain detailed information of the consortium, the metagenome was analyzed using the short-read next-generation sequencer SOLiD 3. Matching the obtained sequence tags with the reference genome sequences indicated that the Dehalococcoides sp. in the consortium was highly homologous to Dehalococcoides mccartyi CBDB1 and BAV1. Sequence comparison with the reference sequence constructed from 16S rRNA gene sequences in a public database showed the presence of Sedimentibacter, Sulfurospirillum, Clostridium, Desulfovibrio, Parabacteroides, Alistipes, Eubacterium, Peptostreptococcus and Proteocatella in addition to Dehalococcoides sp. After further enrichment, the members of the consortium were narrowed down to almost three species. Finally, the full-length circular genome sequence of the Dehalococcoides sp. in the consortium, D. mccartyi IBARAKI, was determined by analyzing the metagenome with the single-molecule DNA sequencer PacBio RS. The accuracy of the sequence was confirmed by matching it to the tag sequences obtained by SOLiD 3. The genome is 1,451,062 nt and the number of CDS is 1566, which includes 3 rRNA genes and 47 tRNA genes. There exist twenty-eight RDase genes that are accompanied by the genes for anchor proteins. The genome exhibits significant sequence identity with other Dehalococcoides spp. throughout the genome, but there exists significant difference in the distribution RDase genes. The combination of a short-read next-generation DNA sequencer and a long-read single-molecule DNA sequencer gives detailed information of a bacterial consortium. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. Comparative metagenomic analysis of soil microbial communities across three hexachlorocyclohexane contamination levels.

    Directory of Open Access Journals (Sweden)

    Naseer Sangwan

    Full Text Available This paper presents the characterization of the microbial community responsible for the in-situ bioremediation of hexachlorocyclohexane (HCH. Microbial community structure and function was analyzed using 16S rRNA amplicon and shotgun metagenomic sequencing methods for three sets of soil samples. The three samples were collected from a HCH-dumpsite (450 mg HCH/g soil and comprised of a HCH/soil ratio of 0.45, 0.0007, and 0.00003, respectively. Certain bacterial; (Chromohalobacter, Marinimicrobium, Idiomarina, Salinosphaera, Halomonas, Sphingopyxis, Novosphingobium, Sphingomonas and Pseudomonas, archaeal; (Halobacterium, Haloarcula and Halorhabdus and fungal (Fusarium genera were found to be more abundant in the soil sample from the HCH-dumpsite. Consistent with the phylogenetic shift, the dumpsite also exhibited a relatively higher abundance of genes coding for chemotaxis/motility, chloroaromatic and HCH degradation (lin genes. Reassembly of a draft pangenome of Chromohalobacter salaxigenes sp. (∼8X coverage and 3 plasmids (pISP3, pISP4 and pLB1; 13X coverage containing lin genes/clusters also provides an evidence for the horizontal transfer of HCH catabolism genes.

  4. Exploration of Metagenome Assemblies with an Interactive Visualization Tool

    Energy Technology Data Exchange (ETDEWEB)

    Cantor, Michael; Nordberg, Henrik; Smirnova, Tatyana; Andersen, Evan; Tringe, Susannah; Hess, Matthias; Dubchak, Inna

    2014-07-09

    Metagenomics, one of the fastest growing areas of modern genomic science, is the genetic profiling of the entire community of microbial organisms present in an environmental sample. Elviz is a web-based tool for the interactive exploration of metagenome assemblies. Elviz can be used with publicly available data sets from the Joint Genome Institute or with custom user-loaded assemblies. Elviz is available at genome.jgi.doe.gov/viz

  5. Embryo quality predictive models based on cumulus cells gene expression

    Directory of Open Access Journals (Sweden)

    Devjak R

    2016-06-01

    Full Text Available Since the introduction of in vitro fertilization (IVF in clinical practice of infertility treatment, the indicators for high quality embryos were investigated. Cumulus cells (CC have a specific gene expression profile according to the developmental potential of the oocyte they are surrounding, and therefore, specific gene expression could be used as a biomarker. The aim of our study was to combine more than one biomarker to observe improvement in prediction value of embryo development. In this study, 58 CC samples from 17 IVF patients were analyzed. This study was approved by the Republic of Slovenia National Medical Ethics Committee. Gene expression analysis [quantitative real time polymerase chain reaction (qPCR] for five genes, analyzed according to embryo quality level, was performed. Two prediction models were tested for embryo quality prediction: a binary logistic and a decision tree model. As the main outcome, gene expression levels for five genes were taken and the area under the curve (AUC for two prediction models were calculated. Among tested genes, AMHR2 and LIF showed significant expression difference between high quality and low quality embryos. These two genes were used for the construction of two prediction models: the binary logistic model yielded an AUC of 0.72 ± 0.08 and the decision tree model yielded an AUC of 0.73 ± 0.03. Two different prediction models yielded similar predictive power to differentiate high and low quality embryos. In terms of eventual clinical decision making, the decision tree model resulted in easy-to-interpret rules that are highly applicable in clinical practice.

  6. Towards long-read metagenomics: complete assembly of three novel genomes from bacteria dependent on a diazotrophic cyanobacterium in a freshwater lake co-culture.

    Science.gov (United States)

    Driscoll, Connor B; Otten, Timothy G; Brown, Nathan M; Dreher, Theo W

    2017-01-01

    Here we report three complete bacterial genome assemblies from a PacBio shotgun metagenome of a co-culture from Upper Klamath Lake, OR. Genome annotations and culture conditions indicate these bacteria are dependent on carbon and nitrogen fixation from the cyanobacterium Aphanizomenon flos-aquae, whose genome was assembled to draft-quality . Due to their taxonomic novelty relative to previously sequenced bacteria, we have temporarily designated these bacteria as incertae sedis Hyphomonadaceae strain UKL13-1 (3,501,508 bp and 56.12% GC), incertae sedis Betaproteobacterium strain UKL13-2 (3,387,087 bp and 54.98% GC), and incertae sedis Bacteroidetes strain UKL13-3 (3,236,529 bp and 37.33% GC). Each genome consists of a single circular chromosome with no identified plasmids. When compared with binned Illumina assemblies of the same three genomes, there was ~7% discrepancy in total genome length. Gaps where Illumina assemblies broke were often due to repetitive elements. Within these missing sequences were essential genes and genes associated with a variety of functional categories. Annotated gene content reveals that both Proteobacteria are aerobic anoxygenic phototrophs, with Betaproteobacterium UKL13-2 potentially capable of phototrophic oxidation of sulfur compounds. Both proteobacterial genomes contain transporters suggesting they are scavenging fixed nitrogen from A. flos-aquae in the form of ammonium. Bacteroidetes UKL13-3 has few completely annotated biosynthetic pathways, and has a comparatively higher proportion of unannotated genes. The genomes were detected in only a few other freshwater metagenomes, suggesting that these bacteria are not ubiquitous in freshwater systems. Our results indicate that long-read sequencing is a viable method for sequencing dominant members from low-diversity microbial communities, and should be considered for environmental metagenomics when conditions meet these requirements.

  7. Reranking candidate gene models with cross-species comparison for improved gene prediction

    Directory of Open Access Journals (Sweden)

    Pereira Fernando CN

    2008-10-01

    Full Text Available Abstract Background Most gene finders score candidate gene models with state-based methods, typically HMMs, by combining local properties (coding potential, splice donor and acceptor patterns, etc. Competing models with similar state-based scores may be distinguishable with additional information. In particular, functional and comparative genomics datasets may help to select among competing models of comparable probability by exploiting features likely to be associated with the correct gene models, such as conserved exon/intron structure or protein sequence features. Results We have investigated the utility of a simple post-processing step for selecting among a set of alternative gene models, using global scoring rules to rerank competing models for more accurate prediction. For each gene locus, we first generate the K best candidate gene models using the gene finder Evigan, and then rerank these models using comparisons with putative orthologous genes from closely-related species. Candidate gene models with lower scores in the original gene finder may be selected if they exhibit strong similarity to probable orthologs in coding sequence, splice site location, or signal peptide occurrence. Experiments on Drosophila melanogaster demonstrate that reranking based on cross-species comparison outperforms the best gene models identified by Evigan alone, and also outperforms the comparative gene finders GeneWise and Augustus+. Conclusion Reranking gene models with cross-species comparison improves gene prediction accuracy. This straightforward method can be readily adapted to incorporate additional lines of evidence, as it requires only a ranked source of candidate gene models.

  8. Metabolic profiles of prokaryotic and eukaryotic communities in deep-sea sponge Neamphius huxleyi indicated by metagenomics

    Science.gov (United States)

    Li, Zhi-Yong; Wang, Yue-Zhu; He, Li-Ming; Zheng, Hua-Jun

    2014-01-01

    The whole metabolism of a sponge holobiont and the respective contributions of prokaryotic and eukaryotic symbionts and their associations with the sponge host remain largely unclear. Meanwhile, compared with shallow water sponges, deep-sea sponges are rarely understood. Here we report the metagenomic exploration of deep-sea sponge Neamphius huxleyi at the whole community level. Metagenomic data showed phylogenetically diverse prokaryotes and eukaryotes in Neamphius huxleyi. MEGAN and gene enrichment analyses indicated different metabolic potentials of prokaryotic symbionts from eukaryotic symbionts, especially in nitrogen and carbon metabolisms, and their molecular interactions with the sponge host. These results supported the hypothesis that prokaryotic and eukaryotic symbionts have different ecological roles and relationships with sponge host. Moreover, vigorous denitrification, and CO2 fixation by chemoautotrophic prokaryotes were suggested for this deep-sea sponge. The study provided novel insights into the respective potentials of prokaryotic and eukaryotic symbionts and their associations with deep-sea sponge Neamphius huxleyi. PMID:24463735

  9. Metabolic profiles of prokaryotic and eukaryotic communities in deep-sea sponge Lamellomorpha sp. indicated by metagenomics

    Science.gov (United States)

    Li, Zhi-Yong; Wang, Yue-Zhu; He, Li-Ming; Zheng, Hua-Jun

    2014-01-01

    The whole metabolism of a sponge holobiont and the respective contributions of prokaryotic and eukaryotic symbionts and their associations with the sponge host remain largely unclear. Meanwhile, compared with shallow water sponges, deep-sea sponges are rarely understood. Here we report the metagenomic exploration of deep-sea sponge Lamellomorpha sp. at the whole community level. Metagenomic data showed phylogenetically diverse prokaryotes and eukaryotes in Lamellomorpha sp.. MEGAN and gene enrichment analyses indicated different metabolic potentials of prokaryotic symbionts from eukaryotic symbionts, especially in nitrogen and carbon metabolisms, and their molecular interactions with the sponge host. These results supported the hypothesis that prokaryotic and eukaryotic symbionts have different ecological roles and relationships with sponge host. Moreover, vigorous denitrification, and CO2 fixation by chemoautotrophic prokaryotes were suggested for this deep-sea sponge. The study provided novel insights into the respective potentials of prokaryotic and eukaryotic symbionts and their associations with deep-sea sponge Lamellomorpha sp..

  10. Comprehensive benchmarking and ensemble approaches for metagenomic classifiers.

    Science.gov (United States)

    McIntyre, Alexa B R; Ounit, Rachid; Afshinnekoo, Ebrahim; Prill, Robert J; Hénaff, Elizabeth; Alexander, Noah; Minot, Samuel S; Danko, David; Foox, Jonathan; Ahsanuddin, Sofia; Tighe, Scott; Hasan, Nur A; Subramanian, Poorani; Moffat, Kelly; Levy, Shawn; Lonardi, Stefano; Greenfield, Nick; Colwell, Rita R; Rosen, Gail L; Mason, Christopher E

    2017-09-21

    One of the main challenges in metagenomics is the identification of microorganisms in clinical and environmental samples. While an extensive and heterogeneous set of computational tools is available to classify microorganisms using whole-genome shotgun sequencing data, comprehensive comparisons of these methods are limited. In this study, we use the largest-to-date set of laboratory-generated and simulated controls across 846 species to evaluate the performance of 11 metagenomic classifiers. Tools were characterized on the basis of their ability to identify taxa at the genus, species, and strain levels, quantify relative abundances of taxa, and classify individual reads to the species level. Strikingly, the number of species identified by the 11 tools can differ by over three orders of magnitude on the same datasets. Various strategies can ameliorate taxonomic misclassification, including abundance filtering, ensemble approaches, and tool intersection. Nevertheless, these strategies were often insufficient to completely eliminate false positives from environmental samples, which are especially important where they concern medically relevant species. Overall, pairing tools with different classification strategies (k-mer, alignment, marker) can combine their respective advantages. This study provides positive and negative controls, titrated standards, and a guide for selecting tools for metagenomic analyses by comparing ranges of precision, accuracy, and recall. We show that proper experimental design and analysis parameters can reduce false positives, provide greater resolution of species in complex metagenomic samples, and improve the interpretation of results.

  11. Metagenomic Analysis of Dairy Bacteriophages

    DEFF Research Database (Denmark)

    Muhammed, Musemma K.; Kot, Witold; Neve, Horst

    2017-01-01

    Despite their huge potential for characterizing the biodiversity of phages, metagenomic studies are currently not available for dairy bacteriophages, partly due to the lack of a standard procedure for phage extraction. We optimized an extraction method that allows to remove the bulk protein from...

  12. The chaperonin-60 universal target is a barcode for bacteria that enables de novo assembly of metagenomic sequence data.

    Science.gov (United States)

    Links, Matthew G; Dumonceaux, Tim J; Hemmingsen, Sean M; Hill, Janet E

    2012-01-01

    Barcoding with molecular sequences is widely used to catalogue eukaryotic biodiversity. Studies investigating the community dynamics of microbes have relied heavily on gene-centric metagenomic profiling using two genes (16S rRNA and cpn60) to identify and track Bacteria. While there have been criteria formalized for barcoding of eukaryotes, these criteria have not been used to evaluate gene targets for other domains of life. Using the framework of the International Barcode of Life we evaluated DNA barcodes for Bacteria. Candidates from the 16S rRNA gene and the protein coding cpn60 gene were evaluated. Within complete bacterial genomes in the public domain representing 983 species from 21 phyla, the largest difference between median pairwise inter- and intra-specific distances ("barcode gap") was found from cpn60. Distribution of sequence diversity along the ∼555 bp cpn60 target region was remarkably uniform. The barcode gap of the cpn60 universal target facilitated the faithful de novo assembly of full-length operational taxonomic units from pyrosequencing data from a synthetic microbial community. Analysis supported the recognition of both 16S rRNA and cpn60 as DNA barcodes for Bacteria. The cpn60 universal target was found to have a much larger barcode gap than 16S rRNA suggesting cpn60 as a preferred barcode for Bacteria. A large barcode gap for cpn60 provided a robust target for species-level characterization of data. The assembly of consensus sequences for barcodes was shown to be a reliable method for the identification and tracking of novel microbes in metagenomic studies.

  13. A genome-wide gene function prediction resource for Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Han Yan

    2010-08-01

    Full Text Available Predicting gene functions by integrating large-scale biological data remains a challenge for systems biology. Here we present a resource for Drosophila melanogaster gene function predictions. We trained function-specific classifiers to optimize the influence of different biological datasets for each functional category. Our model predicted GO terms and KEGG pathway memberships for Drosophila melanogaster genes with high accuracy, as affirmed by cross-validation, supporting literature evidence, and large-scale RNAi screens. The resulting resource of prioritized associations between Drosophila genes and their potential functions offers a guide for experimental investigations.

  14. ELIXIR pilot action: Marine metagenomics - towards a domain specific set of sustainable services.

    Science.gov (United States)

    Robertsen, Espen Mikal; Denise, Hubert; Mitchell, Alex; Finn, Robert D; Bongo, Lars Ailo; Willassen, Nils Peder

    2017-01-01

    Metagenomics, the study of genetic material recovered directly from environmental samples, has the potential to provide insight into the structure and function of heterogeneous microbial communities.  There has been an increased use of metagenomics to discover and understand the diverse biosynthetic capacities of marine microbes, thereby allowing them to be exploited for industrial, food, and health care products. This ELIXIR pilot action was motivated by the need to establish dedicated data resources and harmonized metagenomics pipelines for the marine domain, in order to enhance the exploration and exploitation of marine genetic resources. In this paper, we summarize some of the results from the ELIXIR pilot action "Marine metagenomics - towards user centric services".

  15. Challenges and opportunities in understanding microbial communities with metagenome assembly (accompanied by IPython Notebook tutorial)

    Science.gov (United States)

    Howe, Adina; Chain, Patrick S. G.

    2015-01-01

    Metagenomic investigations hold great promise for informing the genetics, physiology, and ecology of environmental microorganisms. Current challenges for metagenomic analysis are related to our ability to connect the dots between sequencing reads, their population of origin, and their encoding functions. Assembly-based methods reduce dataset size by extending overlapping reads into larger contiguous sequences (contigs), providing contextual information for genetic sequences that does not rely on existing references. These methods, however, tend to be computationally intensive and are again challenged by sequencing errors as well as by genomic repeats While numerous tools have been developed based on these methodological concepts, they present confounding choices and training requirements to metagenomic investigators. To help with accessibility to assembly tools, this review also includes an IPython Notebook metagenomic assembly tutorial. This tutorial has instructions for execution any operating system using Amazon Elastic Cloud Compute and guides users through downloading, assembly, and mapping reads to contigs of a mock microbiome metagenome. Despite its challenges, metagenomic analysis has already revealed novel insights into many environments on Earth. As software, training, and data continue to emerge, metagenomic data access and its discoveries will to grow. PMID:26217314

  16. Challenges and opportunities in understanding microbial communities with metagenome assembly (accompanied by IPython Notebook tutorial

    Directory of Open Access Journals (Sweden)

    Adina eHowe

    2015-07-01

    Full Text Available Metagenomic investigations hold great promise for informing the genetics, physiology, and ecology of environmental microorganisms. Current challenges for metagenomic analysis are related to our ability to connect the dots between sequencing reads, their population of origin, and their encoding functions. Assembly-based methods reduce dataset size by extending overlapping reads into larger contiguous sequences (contigs, providing contextual information for genetic sequences that does not rely on existing references. These methods, however, tend to be computationally intensive and are again challenged by sequencing errors as well as by genomic repeats While numerous tools have been developed based on these methodological concepts, they present confounding choices and training requirements to metagenomic investigators. To help with accessibility to assembly tools, this review also includes an IPython Notebook metagenomic assembly tutorial. This tutorial has instructions for execution any operating system using Amazon Elastic Cloud Compute and guides users through downloading, assembly, and mapping reads to contigs of a mock microbiome metagenome. Despite its challenges, metagenomic analysis has already revealed novel insights into many environments on Earth. As software, training, and data continue to emerge, metagenomic data access and its discoveries will to grow.

  17. Genomics and metagenomics in medical microbiology.

    Science.gov (United States)

    Padmanabhan, Roshan; Mishra, Ajay Kumar; Raoult, Didier; Fournier, Pierre-Edouard

    2013-12-01

    Over the last two decades, sequencing tools have evolved from laborious time-consuming methodologies to real-time detection and deciphering of genomic DNA. Genome sequencing, especially using next generation sequencing (NGS) has revolutionized the landscape of microbiology and infectious disease. This deluge of sequencing data has not only enabled advances in fundamental biology but also helped improve diagnosis, typing of pathogen, virulence and antibiotic resistance detection, and development of new vaccines and culture media. In addition, NGS also enabled efficient analysis of complex human micro-floras, both commensal, and pathological, through metagenomic methods, thus helping the comprehension and management of human diseases such as obesity. This review summarizes technological advances in genomics and metagenomics relevant to the field of medical microbiology. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Inductive matrix completion for predicting gene-disease associations.

    Science.gov (United States)

    Natarajan, Nagarajan; Dhillon, Inderjit S

    2014-06-15

    Most existing methods for predicting causal disease genes rely on specific type of evidence, and are therefore limited in terms of applicability. More often than not, the type of evidence available for diseases varies-for example, we may know linked genes, keywords associated with the disease obtained by mining text, or co-occurrence of disease symptoms in patients. Similarly, the type of evidence available for genes varies-for example, specific microarray probes convey information only for certain sets of genes. In this article, we apply a novel matrix-completion method called Inductive Matrix Completion to the problem of predicting gene-disease associations; it combines multiple types of evidence (features) for diseases and genes to learn latent factors that explain the observed gene-disease associations. We construct features from different biological sources such as microarray expression data and disease-related textual data. A crucial advantage of the method is that it is inductive; it can be applied to diseases not seen at training time, unlike traditional matrix-completion approaches and network-based inference methods that are transductive. Comparison with state-of-the-art methods on diseases from the Online Mendelian Inheritance in Man (OMIM) database shows that the proposed approach is substantially better-it has close to one-in-four chance of recovering a true association in the top 100 predictions, compared to the recently proposed Catapult method (second best) that has bigdata.ices.utexas.edu/project/gene-disease. © The Author 2014. Published by Oxford University Press.

  19. Metagenomic Analysis of Genes Encoding Nutrient Cycling Pathways in the Microbiota of Deep-Sea and Shallow-Water Sponges.

    Science.gov (United States)

    Li, Zhiyong; Wang, Yuezhu; Li, Jinlong; Liu, Fang; He, Liming; He, Ying; Wang, Shenyue

    2016-12-01

    Sponges host complex symbiotic communities, but to date, the whole picture of the metabolic potential of sponge microbiota remains unclear, particularly the difference between the shallow-water and deep-sea sponge holobionts. In this study, two completely different sponges, shallow-water sponge Theonella swinhoei from the South China Sea and deep-sea sponge Neamphius huxleyi from the Indian Ocean, were selected to compare their whole symbiotic communities and metabolic potential, particularly in element transformation. Phylogenetically diverse bacteria, archaea, fungi, and algae were detected in both shallow-water sponge T. swinhoei and deep-sea sponge N. huxleyi, and different microbial community structures were indicated between these two sponges. Metagenome-based gene abundance analysis indicated that, though the two sponge microbiota have similar core functions, they showed different potential strategies in detailed metabolic processes, e.g., in the transformation and utilization of carbon, nitrogen, phosphorus, and sulfur by corresponding microbial symbionts. This study provides insight into the putative metabolic potentials of the microbiota associated with the shallow-water and deep-sea sponges at the whole community level, extending our knowledge of the sponge microbiota's functions, the association of sponge- microbes, as well as the adaption of sponge microbiota to the marine environment.

  20. Metagenomic Analysis from the Interior of a Speleothem in Tjuv-Ante's Cave, Northern Sweden.

    Directory of Open Access Journals (Sweden)

    Marie Lisandra Zepeda Mendoza

    Full Text Available Speleothems are secondary mineral deposits normally formed by water supersaturated with calcium carbonate percolating into underground caves, and are often associated with low-nutrient and mostly non-phototrophic conditions. Tjuv-Ante's cave is a shallow-depth cave formed by the action of waves, with granite and dolerite as major components, and opal-A and calcite as part of the speleothems, making it a rare kind of cave. We generated two DNA shotgun sequencing metagenomic datasets from the interior of a speleothem from Tjuv-Ante's cave representing areas of old and relatively recent speleothem formation. We used these datasets to perform i an evaluation of the use of these speleothems as past biodiversity archives, ii functional and taxonomic profiling of the speleothem's different formation periods, and iii taxonomic comparison of the metagenomic results to previous microscopic analyses from a nearby speleothem of the same cave. Our analyses confirm the abundance of Actinobacteria and fungi as previously reported by microscopic analyses on this cave, however we also discovered a larger biodiversity. Interestingly, we identified photosynthetic genes, as well as genes related to iron and sulphur metabolism, suggesting the presence of chemoautotrophs. Furthermore, we identified taxa and functions related to biomineralization. However, we could not confidently establish the use of this type of speleothems as biological paleoarchives due to the potential leaching from the outside of the cave and the DNA damage that we propose has been caused by the fungal chemical etching.

  1. A deep auto-encoder model for gene expression prediction.

    Science.gov (United States)

    Xie, Rui; Wen, Jia; Quitadamo, Andrew; Cheng, Jianlin; Shi, Xinghua

    2017-11-17

    Gene expression is a key intermediate level that genotypes lead to a particular trait. Gene expression is affected by various factors including genotypes of genetic variants. With an aim of delineating the genetic impact on gene expression, we build a deep auto-encoder model to assess how good genetic variants will contribute to gene expression changes. This new deep learning model is a regression-based predictive model based on the MultiLayer Perceptron and Stacked Denoising Auto-encoder (MLP-SAE). The model is trained using a stacked denoising auto-encoder for feature selection and a multilayer perceptron framework for backpropagation. We further improve the model by introducing dropout to prevent overfitting and improve performance. To demonstrate the usage of this model, we apply MLP-SAE to a real genomic datasets with genotypes and gene expression profiles measured in yeast. Our results show that the MLP-SAE model with dropout outperforms other models including Lasso, Random Forests and the MLP-SAE model without dropout. Using the MLP-SAE model with dropout, we show that gene expression quantifications predicted by the model solely based on genotypes, align well with true gene expression patterns. We provide a deep auto-encoder model for predicting gene expression from SNP genotypes. This study demonstrates that deep learning is appropriate for tackling another genomic problem, i.e., building predictive models to understand genotypes' contribution to gene expression. With the emerging availability of richer genomic data, we anticipate that deep learning models play a bigger role in modeling and interpreting genomics.

  2. Metagenomic insights into lignocellulose-degrading genes through Illumina-based de novo sequencing of the microbiome in Vietnamese native goats' rumen

    NARCIS (Netherlands)

    Do, Thi Huyen; Le, Ngoc Giang; Dao, Trong Khoa; Nguyen, Thi Mai Phuong; Le, Tung Lam; Luu, Han Ly; Nguyen, Khanh Hoang Viet; Nguyen, Van Lam; Le, Lan Anh; Phung, Thu Nguyet; van Straalen, Nico M; Roelofs, Dick; Truong, Nam Hai

    2018-01-01

    The scarcity of enzymes having an optimal activity in lignocellulose deconstruction is an obstacle for industrial-scale conversion of cellulosic biomass into biofuels. With the aim of mining novel lignocellulolytic enzymes, a ~9 Gb metagenome of bacteria in Vietnamese native goats' rumen was

  3. Metagenomic profiling of microbial composition and antibiotic resistance determinants in Puget Sound.

    Science.gov (United States)

    Port, Jesse A; Wallace, James C; Griffith, William C; Faustman, Elaine M

    2012-01-01

    Human-health relevant impacts on marine ecosystems are increasing on both spatial and temporal scales. Traditional indicators for environmental health monitoring and microbial risk assessment have relied primarily on single species analyses and have provided only limited spatial and temporal information. More high-throughput, broad-scale approaches to evaluate these impacts are therefore needed to provide a platform for informing public health. This study uses shotgun metagenomics to survey the taxonomic composition and antibiotic resistance determinant content of surface water bacterial communities in the Puget Sound estuary. Metagenomic DNA was collected at six sites in Puget Sound in addition to one wastewater treatment plant (WWTP) that discharges into the Sound and pyrosequenced. A total of ~550 Mbp (1.4 million reads) were obtained, 22 Mbp of which could be assembled into contigs. While the taxonomic and resistance determinant profiles across the open Sound samples were similar, unique signatures were identified when comparing these profiles across the open Sound, a nearshore marina and WWTP effluent. The open Sound was dominated by α-Proteobacteria (in particular Rhodobacterales sp.), γ-Proteobacteria and Bacteroidetes while the marina and effluent had increased abundances of Actinobacteria, β-Proteobacteria and Firmicutes. There was a significant increase in the antibiotic resistance gene signal from the open Sound to marina to WWTP effluent, suggestive of a potential link to human impacts. Mobile genetic elements associated with environmental and pathogenic bacteria were also differentially abundant across the samples. This study is the first comparative metagenomic survey of Puget Sound and provides baseline data for further assessments of community composition and antibiotic resistance determinants in the environment using next generation sequencing technologies. In addition, these genomic signals of potential human impact can be used to guide initial

  4. Metagenomic profiling of microbial composition and antibiotic resistance determinants in Puget Sound.

    Directory of Open Access Journals (Sweden)

    Jesse A Port

    Full Text Available Human-health relevant impacts on marine ecosystems are increasing on both spatial and temporal scales. Traditional indicators for environmental health monitoring and microbial risk assessment have relied primarily on single species analyses and have provided only limited spatial and temporal information. More high-throughput, broad-scale approaches to evaluate these impacts are therefore needed to provide a platform for informing public health. This study uses shotgun metagenomics to survey the taxonomic composition and antibiotic resistance determinant content of surface water bacterial communities in the Puget Sound estuary. Metagenomic DNA was collected at six sites in Puget Sound in addition to one wastewater treatment plant (WWTP that discharges into the Sound and pyrosequenced. A total of ~550 Mbp (1.4 million reads were obtained, 22 Mbp of which could be assembled into contigs. While the taxonomic and resistance determinant profiles across the open Sound samples were similar, unique signatures were identified when comparing these profiles across the open Sound, a nearshore marina and WWTP effluent. The open Sound was dominated by α-Proteobacteria (in particular Rhodobacterales sp., γ-Proteobacteria and Bacteroidetes while the marina and effluent had increased abundances of Actinobacteria, β-Proteobacteria and Firmicutes. There was a significant increase in the antibiotic resistance gene signal from the open Sound to marina to WWTP effluent, suggestive of a potential link to human impacts. Mobile genetic elements associated with environmental and pathogenic bacteria were also differentially abundant across the samples. This study is the first comparative metagenomic survey of Puget Sound and provides baseline data for further assessments of community composition and antibiotic resistance determinants in the environment using next generation sequencing technologies. In addition, these genomic signals of potential human impact can be used

  5. Gene prediction validation and functional analysis of redundant pathways

    DEFF Research Database (Denmark)

    Sønderkær, Mads

    2011-01-01

    have employed a large mRNA-seq data set to improve and validate ab initio predicted gene models. This direct experimental evidence also provides reliable determinations of UTR regions and polyadenylation sites, which are not easily predicted in plants. Furthermore, once an annotated genome sequence...... is available, gene expression by mRNA-Seq enables acquisition of a more complete overview of gene isoform usage in complex enzymatic pathways enabling the identification of key genes. Metabolism in potatoes This information is useful e.g. for crop improvement based on manipulation of agronomically important...

  6. Metagenomic and functional analyses of the consequences of reduction of bacterial diversity on soil functions and bioremediation in diesel-contaminated microcosms.

    Science.gov (United States)

    Jung, Jaejoon; Philippot, Laurent; Park, Woojun

    2016-03-14

    The relationship between microbial biodiversity and soil function is an important issue in ecology, yet most studies have been performed in pristine ecosystems. Here, we assess the role of microbial diversity in ecological function and remediation strategies in diesel-contaminated soils. Soil microbial diversity was manipulated using a removal by dilution approach and microbial functions were determined using both metagenomic analyses and enzymatic assays. A shift from Proteobacteria- to Actinobacteria-dominant communities was observed when species diversity was reduced. Metagenomic analysis showed that a large proportion of functional gene categories were significantly altered by the reduction in biodiversity. The abundance of genes related to the nitrogen cycle was significantly reduced in the low-diversity community, impairing denitrification. In contrast, the efficiency of diesel biodegradation was increased in the low-diversity community and was further enhanced by addition of red clay as a stimulating agent. Our results suggest that the relationship between microbial diversity and ecological function involves trade-offs among ecological processes, and should not be generalized as a positive, neutral, or negative relationship.

  7. A Delphi Technology Foresight Study: Mapping Social Construction of Scientific Evidence on Metagenomics Tests for Water Safety.

    Directory of Open Access Journals (Sweden)

    Stanislav Birko

    Full Text Available Access to clean water is a grand challenge in the 21st century. Water safety testing for pathogens currently depends on surrogate measures such as fecal indicator bacteria (e.g., E. coli. Metagenomics concerns high-throughput, culture-independent, unbiased shotgun sequencing of DNA from environmental samples that might transform water safety by detecting waterborne pathogens directly instead of their surrogates. Yet emerging innovations such as metagenomics are often fiercely contested. Innovations are subject to shaping/construction not only by technology but also social systems/values in which they are embedded, such as experts' attitudes towards new scientific evidence. We conducted a classic three-round Delphi survey, comprised of 107 questions. A multidisciplinary expert panel (n = 24 representing the continuum of discovery scientists and policymakers evaluated the emergence of metagenomics tests. To the best of our knowledge, we report here the first Delphi foresight study of experts' attitudes on (1 the top 10 priority evidentiary criteria for adoption of metagenomics tests for water safety, (2 the specific issues critical to governance of metagenomics innovation trajectory where there is consensus or dissensus among experts, (3 the anticipated time lapse from discovery to practice of metagenomics tests, and (4 the role and timing of public engagement in development of metagenomics tests. The ability of a test to distinguish between harmful and benign waterborne organisms, analytical/clinical sensitivity, and reproducibility were the top three evidentiary criteria for adoption of metagenomics. Experts agree that metagenomic testing will provide novel information but there is dissensus on whether metagenomics will replace the current water safety testing methods or impact the public health end points (e.g., reduction in boil water advisories. Interestingly, experts view the publics relevant in a "downstream capacity" for adoption of

  8. Metagenomic analysis of microbial consortia enriched from compost: new insights into the role of Actinobacteria in lignocellulose decomposition.

    Science.gov (United States)

    Wang, Cheng; Dong, Da; Wang, Haoshu; Müller, Karin; Qin, Yong; Wang, Hailong; Wu, Weixiang

    2016-01-01

    Compost habitats sustain a vast ensemble of microbes specializing in the degradation of lignocellulosic plant materials and are thus important both for their roles in the global carbon cycle and as potential sources of biochemical catalysts for advanced biofuels production. Studies have revealed substantial diversity in compost microbiomes, yet how this diversity relates to functions and even to the genes encoding lignocellulolytic enzymes remains obscure. Here, we used a metagenomic analysis of the rice straw-adapted (RSA) microbial consortia enriched from compost ecosystems to decipher the systematic and functional contexts within such a distinctive microbiome. Analyses of the 16S pyrotag library and 5 Gbp of metagenomic sequence showed that the phylum Actinobacteria was the predominant group among the Bacteria in the RSA consortia, followed by Proteobacteria, Firmicutes, Chloroflexi, and Bacteroidetes. The CAZymes profile revealed that CAZyme genes in the RSA consortia were also widely distributed within these bacterial phyla. Strikingly, about 46.1 % of CAZyme genes were from actinomycetal communities, which harbored a substantially expanded catalog of the cellobiohydrolase, β-glucosidase, acetyl xylan esterase, arabinofuranosidase, pectin lyase, and ligninase genes. Among these communities, a variety of previously unrecognized species was found, which reveals a greater ecological functional diversity of thermophilic Actinobacteria than previously assumed. These data underline the pivotal role of thermophilic Actinobacteria in lignocellulose biodegradation processes in the compost habitat. Besides revealing a new benchmark for microbial enzymatic deconstruction of lignocelluloses, the results suggest that actinomycetes found in compost ecosystems are potential candidates for mining efficient lignocellulosic enzymes in the biofuel industry.

  9. Microbial Gene Abundance and Expression Patterns across a River to Ocean Salinity Gradient.

    Directory of Open Access Journals (Sweden)

    Caroline S Fortunato

    Full Text Available Microbial communities mediate the biogeochemical cycles that drive ecosystems, and it is important to understand how these communities are affected by changing environmental conditions, especially in complex coastal zones. As fresh and marine waters mix in estuaries and river plumes, the salinity, temperature, and nutrient gradients that are generated strongly influence bacterioplankton community structure, yet, a parallel change in functional diversity has not been described. Metagenomic and metatranscriptomic analyses were conducted on five water samples spanning the salinity gradient of the Columbia River coastal margin, including river, estuary, plume, and ocean, in August 2010. Samples were pre-filtered through 3 μm filters and collected on 0.2 μm filters, thus results were focused on changes among free-living microbial communities. Results from metagenomic 16S rRNA sequences showed taxonomically distinct bacterial communities in river, estuary, and coastal ocean. Despite the strong salinity gradient observed over sampling locations (0 to 33, the functional gene profiles in the metagenomes were very similar from river to ocean with an average similarity of 82%. The metatranscriptomes, however, had an average similarity of 31%. Although differences were few among the metagenomes, we observed a change from river to ocean in the abundance of genes encoding for catabolic pathways, osmoregulators, and metal transporters. Additionally, genes specifying both bacterial oxygenic and anoxygenic photosynthesis were abundant and expressed in the estuary and plume. Denitrification genes were found throughout the Columbia River coastal margin, and most highly expressed in the estuary. Across a river to ocean gradient, the free-living microbial community followed three different patterns of diversity: 1 the taxonomy of the community changed strongly with salinity, 2 metabolic potential was highly similar across samples, with few differences in

  10. Microbial Gene Abundance and Expression Patterns across a River to Ocean Salinity Gradient.

    Science.gov (United States)

    Fortunato, Caroline S; Crump, Byron C

    2015-01-01

    Microbial communities mediate the biogeochemical cycles that drive ecosystems, and it is important to understand how these communities are affected by changing environmental conditions, especially in complex coastal zones. As fresh and marine waters mix in estuaries and river plumes, the salinity, temperature, and nutrient gradients that are generated strongly influence bacterioplankton community structure, yet, a parallel change in functional diversity has not been described. Metagenomic and metatranscriptomic analyses were conducted on five water samples spanning the salinity gradient of the Columbia River coastal margin, including river, estuary, plume, and ocean, in August 2010. Samples were pre-filtered through 3 μm filters and collected on 0.2 μm filters, thus results were focused on changes among free-living microbial communities. Results from metagenomic 16S rRNA sequences showed taxonomically distinct bacterial communities in river, estuary, and coastal ocean. Despite the strong salinity gradient observed over sampling locations (0 to 33), the functional gene profiles in the metagenomes were very similar from river to ocean with an average similarity of 82%. The metatranscriptomes, however, had an average similarity of 31%. Although differences were few among the metagenomes, we observed a change from river to ocean in the abundance of genes encoding for catabolic pathways, osmoregulators, and metal transporters. Additionally, genes specifying both bacterial oxygenic and anoxygenic photosynthesis were abundant and expressed in the estuary and plume. Denitrification genes were found throughout the Columbia River coastal margin, and most highly expressed in the estuary. Across a river to ocean gradient, the free-living microbial community followed three different patterns of diversity: 1) the taxonomy of the community changed strongly with salinity, 2) metabolic potential was highly similar across samples, with few differences in functional gene abundance

  11. Microbial Diversity of Bovine Mastitic Milk as Described by Pyrosequencing of Metagenomic 16s rDNA

    OpenAIRE

    Oikonomou, Georgios; Machado, Vinicius Silva; Santisteban, Carlos; Schukken, Ynte Hein; Bicalho, Rodrigo Carvalho

    2012-01-01

    Dairy cow mastitis is an important disease in the dairy industry. Different microbial species have been identified as causative agents in mastitis, and are traditionally diagnosed by bacterial culture. The objective of this study was to use metagenomic pyrosequencing of bacterial 16S rRNA genes to investigate bacterial DNA diversity in milk samples of mastitic and healthy dairy cows and compare the results with those obtained by classical bacterial culture. One hundred and thirty-six milk sam...

  12. Dynamics of antibiotic resistance genes and presence of putative pathogens during ambient temperature anaerobic digestion.

    Science.gov (United States)

    Resende, J A; Diniz, C G; Silva, V L; Otenio, M H; Bonnafous, A; Arcuri, P B; Godon, J-J

    2014-12-01

    This study was focused on evaluating the persistency of antimicrobial resistance (AR) genes and putative pathogenic bacteria in an anaerobic digesters operating at mesophilic ambient temperature, in two different year seasons: summer and winter. Abundance and dynamic of AR genes encoding resistance to macrolides (ermB), aminoglycosides (aphA2) and beta-lactams (blaTEM -1 ) and persistency of potentially pathogenic bacteria in pilot-scale anaerobic digesters were investigated. AR genes were determined in the influent and effluent in both conditions. Overall, after 60 days, reduction was observed for all evaluated genes. However, during the summer, anaerobic digestion was more related to the gene reduction as compared to winter. Persistency of potentially pathogenic bacteria was also evaluated by metagenomic analyses compared to an in-house created database. Clostridium, Acinetobacter and Stenotrophomonas were the most identified. Overall, considering the mesophilic ambient temperature during anaerobic digestion (summer and winter), a decrease in pathogenic bacteria detection through metagenomic analysis and AR genes is reported. Although the mesophilic anaerobic digestion has been efficient, the results may suggest medically important bacteria and AR genes persistency during the process. This is the first report to show AR gene dynamics and persistency of potentially pathogenic bacteria through metagenomic approach in cattle manure ambient temperature anaerobic digestion. © 2014 The Society for Applied Microbiology.

  13. Metagenomic Analysis of Subtidal Sediments from Polar and Subpolar Coastal Environments Highlights the Relevance of Anaerobic Hydrocarbon Degradation Processes

    Energy Technology Data Exchange (ETDEWEB)

    Espinola, Fernando J.; Dionisi, Hebe M.; Borglin, Sharon; Brislawn, Colin J.; Jansson, Janet K.; Mac Cormack, Walter P.; Carroll, Jolynn; Sjoling, Sara; Lozada , Mariana

    2018-01-02

    In this work, we analyzed the community structure and metabolic potential of sediment microbial communities in high-latitude coastal environments subjected to low to moderate levels of chronic pollution. Subtidal sediments from four low-energy inlets located in polar and subpolar regions from both Hemispheres were analyzed using large-scale 16S rRNA gene and metagenomic sequencing. Communities showed high diversity (Shannon’s index 6.8 to 10.2), with distinct phylogenetic structures (<40% shared taxa at the Phylum level among regions) but similar metabolic potential in terms of sequences assigned to KOs. Environmental factors (mainly salinity, temperature, and in less extent organic pollution) were drivers of both phylogenetic and functional traits. Bacterial taxa correlating with hydrocarbon pollution included families of anaerobic or facultative anaerobic lifestyle, such as Desulfuromonadaceae, Geobacteraceae, and Rhodocyclaceae. In accordance, biomarker genes for anaerobic hydrocarbon degradation (bamA, ebdA, bcrA, and bssA) were prevalent, only outnumbered by alkB, and their sequences were taxonomically binned to the same bacterial groups. BssA-assigned metagenomic sequences showed an extremely wide diversity distributed all along the phylogeny known for this gene, including bssA sensu stricto, nmsA, assA, and other clusters from poorly or not yet described variants. This work increases our understanding of microbial community patterns in cold coastal sediments, and highlights the relevance of anaerobic hydrocarbon degradation processes in subtidal environments.

  14. A highly optimized grid deployment: the metagenomic analysis example.

    Science.gov (United States)

    Aparicio, Gabriel; Blanquer, Ignacio; Hernández, Vicente

    2008-01-01

    Computational resources and computationally expensive processes are two topics that are not growing at the same ratio. The availability of large amounts of computing resources in Grid infrastructures does not mean that efficiency is not an important issue. It is necessary to analyze the whole process to improve partitioning and submission schemas, especially in the most critical experiments. This is the case of metagenomic analysis, and this text shows the work done in order to optimize a Grid deployment, which has led to a reduction of the response time and the failure rates. Metagenomic studies aim at processing samples of multiple specimens to extract the genes and proteins that belong to the different species. In many cases, the sequencing of the DNA of many microorganisms is hindered by the impossibility of growing significant samples of isolated specimens. Many bacteria cannot survive alone, and require the interaction with other organisms. In such cases, the information of the DNA available belongs to different kinds of organisms. One important stage in Metagenomic analysis consists on the extraction of fragments followed by the comparison and analysis of their function stage. By the comparison to existing chains, whose function is well known, fragments can be classified. This process is computationally intensive and requires of several iterations of alignment and phylogeny classification steps. Source samples reach several millions of sequences, which could reach up to thousands of nucleotides each. These sequences are compared to a selected part of the "Non-redundant" database which only implies the information from eukaryotic species. From this first analysis, a refining process is performed and alignment analysis is restarted from the results. This process implies several CPU years. The article describes and analyzes the difficulties to fragment, automate and check the above operations in current Grid production environments. This environment has been

  15. Glucose-tolerant β-glucosidase retrieved from a Kusaya gravy metagenome.

    Science.gov (United States)

    Uchiyama, Taku; Yaoi, Katusro; Miyazaki, Kentaro

    2015-01-01

    β-glucosidases (BGLs) hydrolyze cello-oligosaccharides to glucose and play a crucial role in the enzymatic saccharification of cellulosic biomass. Despite their significance for the production of glucose, most identified BGLs are commonly inhibited by low (∼mM) concentrations of glucose. Therefore, BGLs that are insensitive to glucose inhibition have great biotechnological merit. We applied a metagenomic approach to screen for such rare glucose-tolerant BGLs. A metagenomic library was created in Escherichia coli (∼10,000 colonies) and grown on LB agar plates containing 5-bromo-4-chloro-3-indolyl-β-D-glucoside, yielding 828 positive (blue) colonies. These were then arrayed in 96-well plates, grown in LB, and secondarily screened for activity in the presence of 10% (w/v) glucose. Seven glucose-tolerant clones were identified, each of which contained a single bgl gene. The genes were classified into two groups, differing by two nucleotides. The deduced amino acid sequences of these genes were identical (452 aa) and found to belong to the glycosyl hydrolase family 1. The recombinant protein (Ks5A7) was overproduced in E. coli as a C-terminal 6 × His-tagged protein and purified to apparent homogeneity. The molecular mass of the purified Ks5A7 was determined to be 54 kDa by SDS-PAGE, and 160 kDa by gel filtration analysis. The enzyme was optimally active at 45°C and pH 5.0-6.5 and retained full or 1.5-2-fold enhanced activity in the presence of 0.1-0.5 M glucose. It had a low KM (78 μM with p-nitrophenyl β-D-glucoside; 0.36 mM with cellobiose) and high V max (91 μmol min(-1) mg(-1) with p-nitrophenyl β-D-glucoside; 155 μmol min(-1) mg(-1) with cellobiose) among known glucose-tolerant BGLs and was free from substrate (0.1 M cellobiose) inhibition. The efficient use of Ks5A7 in conjunction with Trichoderma reesei cellulases in enzymatic saccharification of alkaline-treated rice straw was demonstrated by increased production of glucose.

  16. Glycoside Hydrolases from a targeted Compost Metagenome, activity-screening and functional characterization

    Directory of Open Access Journals (Sweden)

    Dougherty Michael J

    2012-07-01

    Full Text Available Abstract Background Metagenomics approaches provide access to environmental genetic diversity for biotechnology applications, enabling the discovery of new enzymes and pathways for numerous catalytic processes. Discovery of new glycoside hydrolases with improved biocatalytic properties for the efficient conversion of lignocellulosic material to biofuels is a critical challenge in the development of economically viable routes from biomass to fuels and chemicals. Results Twenty-two putative ORFs (open reading frames were identified from a switchgrass-adapted compost community based on sequence homology to related gene families. These ORFs were expressed in E. coli and assayed for predicted activities. Seven of the ORFs were demonstrated to encode active enzymes, encompassing five classes of hemicellulases. Four enzymes were over expressed in vivo, purified to homogeneity and subjected to detailed biochemical characterization. Their pH optima ranged between 5.5 - 7.5 and they exhibit moderate thermostability up to ~60-70°C. Conclusions Seven active enzymes were identified from this set of ORFs comprising five different hemicellulose activities. These enzymes have been shown to have useful properties, such as moderate thermal stability and broad pH optima, and may serve as the starting points for future protein engineering towards the goal of developing efficient enzyme cocktails for biomass degradation under diverse process conditions.

  17. Metagenomic identification of active methanogens and methanotrophs in serpentinite springs of the Voltri Massif, Italy

    Directory of Open Access Journals (Sweden)

    William J. Brazelton

    2017-01-01

    Full Text Available The production of hydrogen and methane by geochemical reactions associated with the serpentinization of ultramafic rocks can potentially support subsurface microbial ecosystems independent of the photosynthetic biosphere. Methanogenic and methanotrophic microorganisms are abundant in marine hydrothermal systems heavily influenced by serpentinization, but evidence for methane-cycling archaea and bacteria in continental serpentinite springs has been limited. This report provides metagenomic and experimental evidence for active methanogenesis and methanotrophy by microbial communities in serpentinite springs of the Voltri Massif, Italy. Methanogens belonging to family Methanobacteriaceae and methanotrophic bacteria belonging to family Methylococcaceae were heavily enriched in three ultrabasic springs (pH 12. Metagenomic data also suggest the potential for hydrogen oxidation, hydrogen production, carbon fixation, fermentation, and organic acid metabolism in the ultrabasic springs. The predicted metabolic capabilities are consistent with an active subsurface ecosystem supported by energy and carbon liberated by geochemical reactions within the serpentinite rocks of the Voltri Massif.

  18. Metabolic profiles of prokaryotic and eukaryotic communities in deep-sea sponge Neamphius huxleyi [corrected]. indicated by metagenomics.

    Science.gov (United States)

    Li, Zhi-Yong; Wang, Yue-Zhu; He, Li-Ming; Zheng, Hua-Jun

    2014-01-27

    The whole metabolism of a sponge holobiont and the respective contributions of prokaryotic and eukaryotic symbionts and their associations with the sponge host remain largely unclear. Meanwhile, compared with shallow water sponges, deep-sea sponges are rarely understood. Here we report the metagenomic exploration of deep-sea sponge Neamphius huxleyi [corrected] . at the whole community level. Metagenomic data showed phylogenetically diverse prokaryotes and eukaryotes in Neamphius huxleyi [corrected]. MEGAN and gene enrichment analyses indicated different metabolic potentials of prokaryotic symbionts from eukaryotic symbionts, especially in nitrogen and carbon metabolisms, and their molecular interactions with the sponge host. These results supported the hypothesis that prokaryotic and eukaryotic symbionts have different ecological roles and relationships with sponge host. Moreover, vigorous denitrification, and CO2 fixation by chemoautotrophic prokaryotes were suggested for this deep-sea sponge. The study provided novel insights into the respective potentials of prokaryotic and eukaryotic symbionts and their associations with deep-sea sponge Neamphius huxleyi [corrected].

  19. Resolving the Complexity of Human Skin Metagenomes Using Single-Molecule Sequencing

    Directory of Open Access Journals (Sweden)

    Yu-Chih Tsai

    2016-02-01

    Full Text Available Deep metagenomic shotgun sequencing has emerged as a powerful tool to interrogate composition and function of complex microbial communities. Computational approaches to assemble genome fragments have been demonstrated to be an effective tool for de novo reconstruction of genomes from these communities. However, the resultant “genomes” are typically fragmented and incomplete due to the limited ability of short-read sequence data to assemble complex or low-coverage regions. Here, we use single-molecule, real-time (SMRT sequencing to reconstruct a high-quality, closed genome of a previously uncharacterized Corynebacterium simulans and its companion bacteriophage from a skin metagenomic sample. Considerable improvement in assembly quality occurs in hybrid approaches incorporating short-read data, with even relatively small amounts of long-read data being sufficient to improve metagenome reconstruction. Using short-read data to evaluate strain variation of this C. simulans in its skin community at single-nucleotide resolution, we observed a dominant C. simulans strain with moderate allelic heterozygosity throughout the population. We demonstrate the utility of SMRT sequencing and hybrid approaches in metagenome quantitation, reconstruction, and annotation.

  20. Resolving the Complexity of Human Skin Metagenomes Using Single-Molecule Sequencing

    Science.gov (United States)

    Tsai, Yu-Chih; Deming, Clayton; Segre, Julia A.; Kong, Heidi H.; Korlach, Jonas

    2016-01-01

    ABSTRACT Deep metagenomic shotgun sequencing has emerged as a powerful tool to interrogate composition and function of complex microbial communities. Computational approaches to assemble genome fragments have been demonstrated to be an effective tool for de novo reconstruction of genomes from these communities. However, the resultant “genomes” are typically fragmented and incomplete due to the limited ability of short-read sequence data to assemble complex or low-coverage regions. Here, we use single-molecule, real-time (SMRT) sequencing to reconstruct a high-quality, closed genome of a previously uncharacterized Corynebacterium simulans and its companion bacteriophage from a skin metagenomic sample. Considerable improvement in assembly quality occurs in hybrid approaches incorporating short-read data, with even relatively small amounts of long-read data being sufficient to improve metagenome reconstruction. Using short-read data to evaluate strain variation of this C. simulans in its skin community at single-nucleotide resolution, we observed a dominant C. simulans strain with moderate allelic heterozygosity throughout the population. We demonstrate the utility of SMRT sequencing and hybrid approaches in metagenome quantitation, reconstruction, and annotation. PMID:26861018

  1. Cyclodipeptides from metagenomic library of a japanese marine sponge

    Energy Technology Data Exchange (ETDEWEB)

    He, Rui; Wang, Bochu; Zhub, Liancai, E-mail: wangbc2000@126.com [Bioengineering College, Chongqing University, Chongqing, (China); Wang, Manyuan [School of Traditional Chinese Medicine, Capital University of Medical Sciences, Beijing (China); Wakimoto, Toshiyuki; Abe, Ikuro, E-mail: abei@mol.f.u-tokyo.ac.jp [Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo (Japan)

    2013-12-01

    Culture-independent metagenomics is an attractive and promising approach to explore unique bioactive small molecules from marine sponges harboring uncultured symbiotic microbes. Therefore, we conducted functional screening of the metagenomic library constructed from the Japanese marine sponge Discodermia calyx. Bioassay-guided fractionation of plate culture extract of antibacterial clone pDC113 afforded eleven cyclodipeptides: Cyclo(l-Thr-l-Leu) (1), Cyclo(l-Val-d-Pro) (2), Cyclo(l-Ile-d-Pro) (3), Cyclo(l-Leu-l-Pro) (4), Cyclo(l-Val-l-Leu) (5), Cyclo(l-Leu-l-Ile) (6), Cyclo(l-Leu-l-Leu) (7), Cyclo(l-Phe-l-Tyr) (8), Cyclo(l-Trp-l-Pro) (9), Cyclo(l-Val-l-Trp) (10) and Cyclo(l-Ile-l-Trp) (11). To the best of our knowledge, these are first cyclodepeptides isolated from metagenomic library. Sequence analysis suggested that isolated cyclodipeptides were not synthesized by nonribosomal peptide synthetases and there was no significant indication of cyclodipeptide synthetases. (author)

  2. Cyclodipeptides from metagenomic library of a japanese marine sponge

    International Nuclear Information System (INIS)

    He, Rui; Wang, Bochu; Zhub, Liancai; Wang, Manyuan; Wakimoto, Toshiyuki; Abe, Ikuro

    2013-01-01

    Culture-independent metagenomics is an attractive and promising approach to explore unique bioactive small molecules from marine sponges harboring uncultured symbiotic microbes. Therefore, we conducted functional screening of the metagenomic library constructed from the Japanese marine sponge Discodermia calyx. Bioassay-guided fractionation of plate culture extract of antibacterial clone pDC113 afforded eleven cyclodipeptides: Cyclo(l-Thr-l-Leu) (1), Cyclo(l-Val-d-Pro) (2), Cyclo(l-Ile-d-Pro) (3), Cyclo(l-Leu-l-Pro) (4), Cyclo(l-Val-l-Leu) (5), Cyclo(l-Leu-l-Ile) (6), Cyclo(l-Leu-l-Leu) (7), Cyclo(l-Phe-l-Tyr) (8), Cyclo(l-Trp-l-Pro) (9), Cyclo(l-Val-l-Trp) (10) and Cyclo(l-Ile-l-Trp) (11). To the best of our knowledge, these are first cyclodepeptides isolated from metagenomic library. Sequence analysis suggested that isolated cyclodipeptides were not synthesized by nonribosomal peptide synthetases and there was no significant indication of cyclodipeptide synthetases. (author)

  3. Comparative Metagenomics of Cellulose- and Poplar Hydrolysate-Degrading Microcosms from Gut Microflora of the Canadian Beaver (Castor canadensis and North American Moose (Alces americanus after Long-Term Enrichment

    Directory of Open Access Journals (Sweden)

    Mabel T. Wong

    2017-12-01

    Full Text Available To identify carbohydrate-active enzymes (CAZymes that might be particularly relevant for wood fiber processing, we performed a comparative metagenomic analysis of digestive systems from Canadian beaver (Castor canadensis and North American moose (Alces americanus following 3 years of enrichment on either microcrystalline cellulose or poplar hydrolysate. In total, 9,386 genes encoding CAZymes and carbohydrate-binding modules (CBMs were identified, with up to half predicted to originate from Firmicutes, Bacteroidetes, Chloroflexi, and Proteobacteria phyla, and up to 17% from unknown phyla. Both PCA and hierarchical cluster analysis distinguished the annotated glycoside hydrolase (GH distributions identified herein, from those previously reported for grass-feeding mammals and herbivorous foragers. The CAZyme profile of moose rumen enrichments also differed from a recently reported moose rumen metagenome, most notably by the absence of GH13-appended dockerins. Consistent with substrate-driven convergence, CAZyme profiles from both poplar hydrolysate-fed cultures differed from cellulose-fed cultures, most notably by increased numbers of unique sequences belonging to families GH3, GH5, GH43, GH53, and CE1. Moreover, pairwise comparisons of moose rumen enrichments further revealed higher counts of GH127 and CE15 families in cultures fed with poplar hydrolysate. To expand our scope to lesser known carbohydrate-active proteins, we identified and compared multi-domain proteins comprising both a CBM and domain of unknown function (DUF as well as proteins with unknown function within the 416 predicted polysaccharide utilization loci (PULs. Interestingly, DUF362, identified in iron–sulfur proteins, was consistently appended to CBM9; on the other hand, proteins with unknown function from PULs shared little identity unless from identical PULs. Overall, this study sheds new light on the lignocellulose degrading capabilities of microbes originating from

  4. Metagenomic of Actinomycetes Based on 16S rRNA and nifH Genes in Soil and Roots of Four Indonesian Rice Cultivars Using PCR-DGGE

    Directory of Open Access Journals (Sweden)

    Mahyarudin

    2015-07-01

    Full Text Available The research was conducted to study the metagenomic of actinomycetes based on 16S ribosomal RNA (rRNA and bacterial nifH genes in soil and roots of four rice cultivars. The denaturing gradient gel electrophoresis profile based on 16S rRNA gene showed that the diversity of actinomycetes in roots was higher than soil samples. The profile also showed that the diversity of actinomycetes was similar in four varieties of rice plant and three types of agroecosystem. The profile was partially sequenced and compared to GenBank database indicating their identity with closely related microbes. The blast results showed that 17 bands were closely related ranging from 93% to 100% of maximum identity with five genera of actinomycetes, which is Geodermatophilus, Actinokineospora, Actinoplanes, Streptomyces and Kocuria. Our study found that Streptomyces species in soil and roots of rice plants were more varied than other genera, with a dominance of Streptomyces alboniger and Streptomyces acidiscabies in almost all the samples. Bacterial community analyses based on nifH gene denaturing gradient gel electrophoresis showed that diversity of bacteria in soils which have nifH gene was higher than that in rice plant roots. The profile also showed that the diversity of those bacteria was similar in four varieties of rice plant and three types of agroecosystem. Five bands were closely related with nifH gene from uncultured bacterium clone J50, uncultured bacterium clone clod-38, and uncultured bacterium clone BG2.37 with maximum identity 99%, 98%, and 92%, respectively. The diversity analysis based on 16S rRNA gene differed from nifH gene and may not correlate with each other. The findings indicated the diversity of actinomycetes and several bacterial genomes analyzed here have an ability to fix nitrogen in soil and roots of rice plant.

  5. Snapshot of the eukaryotic gene expression in muskoxen rumen--a metatranscriptomic approach.

    Directory of Open Access Journals (Sweden)

    Meng Qi

    Full Text Available BACKGROUND: Herbivores rely on digestive tract lignocellulolytic microorganisms, including bacteria, fungi and protozoa, to derive energy and carbon from plant cell wall polysaccharides. Culture independent metagenomic studies have been used to reveal the genetic content of the bacterial species within gut microbiomes. However, the nature of the genes encoded by eukaryotic protozoa and fungi within these environments has not been explored using metagenomic or metatranscriptomic approaches. METHODOLOGY/PRINCIPAL FINDINGS: In this study, a metatranscriptomic approach was used to investigate the functional diversity of the eukaryotic microorganisms within the rumen of muskoxen (Ovibos moschatus, with a focus on plant cell wall degrading enzymes. Polyadenylated RNA (mRNA was sequenced on the Illumina Genome Analyzer II system and 2.8 gigabases of sequences were obtained and 59129 contigs assembled. Plant cell wall degrading enzyme modules including glycoside hydrolases, carbohydrate esterases and polysaccharide lyases were identified from over 2500 contigs. These included a number of glycoside hydrolase family 6 (GH6, GH48 and swollenin modules, which have rarely been described in previous gut metagenomic studies. CONCLUSIONS/SIGNIFICANCE: The muskoxen rumen metatranscriptome demonstrates a much higher percentage of cellulase enzyme discovery and an 8.7x higher rate of total carbohydrate active enzyme discovery per gigabase of sequence than previous rumen metagenomes. This study provides a snapshot of eukaryotic gene expression in the muskoxen rumen, and identifies a number of candidate genes coding for potentially valuable lignocellulolytic enzymes.

  6. Snapshot of the Eukaryotic Gene Expression in Muskoxen Rumen—A Metatranscriptomic Approach

    Science.gov (United States)

    O'Toole, Nicholas; Barboza, Perry S.; Ungerfeld, Emilio; Leigh, Mary Beth; Selinger, L. Brent; Butler, Greg; Tsang, Adrian; McAllister, Tim A.; Forster, Robert J.

    2011-01-01

    Background Herbivores rely on digestive tract lignocellulolytic microorganisms, including bacteria, fungi and protozoa, to derive energy and carbon from plant cell wall polysaccharides. Culture independent metagenomic studies have been used to reveal the genetic content of the bacterial species within gut microbiomes. However, the nature of the genes encoded by eukaryotic protozoa and fungi within these environments has not been explored using metagenomic or metatranscriptomic approaches. Methodology/Principal Findings In this study, a metatranscriptomic approach was used to investigate the functional diversity of the eukaryotic microorganisms within the rumen of muskoxen (Ovibos moschatus), with a focus on plant cell wall degrading enzymes. Polyadenylated RNA (mRNA) was sequenced on the Illumina Genome Analyzer II system and 2.8 gigabases of sequences were obtained and 59129 contigs assembled. Plant cell wall degrading enzyme modules including glycoside hydrolases, carbohydrate esterases and polysaccharide lyases were identified from over 2500 contigs. These included a number of glycoside hydrolase family 6 (GH6), GH48 and swollenin modules, which have rarely been described in previous gut metagenomic studies. Conclusions/Significance The muskoxen rumen metatranscriptome demonstrates a much higher percentage of cellulase enzyme discovery and an 8.7x higher rate of total carbohydrate active enzyme discovery per gigabase of sequence than previous rumen metagenomes. This study provides a snapshot of eukaryotic gene expression in the muskoxen rumen, and identifies a number of candidate genes coding for potentially valuable lignocellulolytic enzymes. PMID:21655220

  7. Metagenomic approach reveals microbial diversity and predictive microbial metabolic pathways in Yucha, a traditional Li fermented food

    OpenAIRE

    Zhang, Jiachao; Wang, Xiaoru; Huo, Dongxue; Li, Wu; Hu, Qisong; Xu, Chuanbiao; Liu, Sixin; Li, Congfa

    2016-01-01

    Yucha is a typical traditional fermented food of the Li population in the Hainan province of China, and it is made up of cooked rice and fresh fish. In the present study, metagenomic approach and culture-dependent technology were applied to describe the diversity of microbiota and identify beneficial microbes in the Yucha. At the genus level, Lactobacillus was the most abundant genus (43.82% of the total reads), followed by Lactococcus, Enterococcus, Vibrio, Weissella, Pediococcus, Enterobact...

  8. Year-long metagenomic study of river microbiomes across land use and water quality

    Directory of Open Access Journals (Sweden)

    Thea eVan Rossum

    2015-12-01

    Full Text Available Select bacteria, such as Escherichia coli or coliforms, have been widely used as sentinels of low water quality; however, there are concerns regarding their predictive accuracy for the protection of human and environmental health. To develop improved monitoring systems, a greater understanding of bacterial community structure, function and variability across time is required in the context of different pollution types, such as agricultural and urban contamination. Here, we present a year-long survey of free-living bacterial DNA collected from seven sites along rivers in three watersheds with varying land use in Southwestern Canada. This is the first study to examine the bacterial metagenome in flowing freshwater (lotic environments over such a time span, providing an opportunity to describe bacterial community variability as a function of land use and environmental conditions. Characteristics of the metagenomic data, such as sequence composition and average genome size, vary with sampling site, environmental conditions, and water chemistry. For example, average genome size was correlated with hours of daylight in the agricultural watershed and, across the agriculturally and urban-affected sites, k-mer composition clustering corresponded to nutrient concentrations. In addition to indicating a community shift, this change in average genome size has implications in terms of the normalisation strategies required, and considerations surrounding such strategies in general are discussed. When comparing abundances of gene functional groups between high- and low-quality water samples collected from an agricultural area, the latter had a higher abundance of nutrient metabolism and bacteriophage groups, possibly reflecting an increase in agricultural runoff. This work presents a valuable dataset representing a year of monthly sampling across watersheds and an analysis targeted at establishing a foundational understanding of how bacterial lotic communities

  9. ELIXIR pilot action: Marine metagenomics – towards a domain specific set of sustainable services

    Science.gov (United States)

    Robertsen, Espen Mikal; Denise, Hubert; Mitchell, Alex; Finn, Robert D.; Bongo, Lars Ailo; Willassen, Nils Peder

    2017-01-01

    Metagenomics, the study of genetic material recovered directly from environmental samples, has the potential to provide insight into the structure and function of heterogeneous microbial communities.  There has been an increased use of metagenomics to discover and understand the diverse biosynthetic capacities of marine microbes, thereby allowing them to be exploited for industrial, food, and health care products. This ELIXIR pilot action was motivated by the need to establish dedicated data resources and harmonized metagenomics pipelines for the marine domain, in order to enhance the exploration and exploitation of marine genetic resources. In this paper, we summarize some of the results from the ELIXIR pilot action “Marine metagenomics – towards user centric services”. PMID:28620454

  10. Metagenome Sequence Analysis of Filamentous Microbial Communities Obtained from Geochemically Distinct Geothermal Channels Reveals Specialization of Three Aquificales Lineages

    Directory of Open Access Journals (Sweden)

    Cristina eTakacs-vesbach

    2013-05-01

    Full Text Available The Aquificales are thermophilic microorganisms that inhabit hydrothermal systems worldwide and are considered one of the earliest lineages of the domain Bacteria. We analyzed metagenome sequence obtained from six thermal ‘filamentous streamer’ communities (~40 Mbp per site, which targeted three different groups of Aquificales found in Yellowstone National Park (YNP. Unassembled metagenome sequence and PCR-amplified 16S rRNA gene libraries revealed that acidic, sulfidic sites were dominated by Hydrogenobaculum (Aquificaceae populations, whereas the circumneutral pH (6.5 - 7.8 sites containing dissolved sulfide were dominated by Sulfurihydrogenibium spp. (Hydrogenothermaceae. Thermocrinis (Aquificaceae populations were found primarily in the circumneutral sites with undetectable sulfide, and to a lesser extent in one sulfidic system at pH 8. Phylogenetic analysis of assembled sequence containing 16S rRNA genes as well as conserved protein-encoding genes revealed that the composition and function of these communities varied across geochemical conditions. Each Aquificales lineage contained genes for CO2 fixation by the reverse TCA cycle, but only the Sulfurihydrogenibium populations perform citrate cleavage using ATP citrate lyase (Acl. The Aquificaceae populations use an alternative pathway catalyzed by two separate enzymes, citryl CoA synthetase (Ccs and citryl CoA lyase (Ccl. All three Aquificales lineages contained evidence of aerobic respiration, albeit due to completely different types of heme Cu oxidases (subunit I involved in oxygen reduction. The distribution of Aquificales populations and differences among functional genes involved in energy generation and electron transport is consistent with the hypothesis that geochemical parameters (e.g., pH, sulfide, H2, O2 have resulted in niche specialization among members of the Aquificales.

  11. Deciphering chicken gut microbial dynamics based on high-throughput 16S rRNA metagenomics analyses.

    Science.gov (United States)

    Mohd Shaufi, Mohd Asrore; Sieo, Chin Chin; Chong, Chun Wie; Gan, Han Ming; Ho, Yin Wan

    2015-01-01

    Chicken gut microbiota has paramount roles in host performance, health and immunity. Understanding the topological difference in gut microbial community composition is crucial to provide knowledge on the functions of each members of microbiota to the physiological maintenance of the host. The gut microbiota profiling of the chicken was commonly performed previously using culture-dependent and early culture-independent methods which had limited coverage and accuracy. Advances in technology based on next-generation sequencing (NGS), offers unparalleled coverage and depth in determining microbial gut dynamics. Thus, the aim of this study was to investigate the ileal and caecal microbiota development as chicken aged, which is important for future effective gut modulation. Ileal and caecal contents of broiler chicken were extracted from 7, 14, 21 and 42-day old chicken. Genomic DNA was then extracted and amplified based on V3 hyper-variable region of 16S rRNA. Bioinformatics, ecological and statistical analyses such as Principal Coordinate Analysis (PCoA) was performed in mothur software and plotted using PRIMER 6. Additional analyses for predicted metagenomes were performed through PICRUSt and STAMP software package based on Greengenes databases. A distinctive difference in bacterial communities was observed between ilea and caeca as the chicken aged (P microbial communities in the caeca were more diverse in comparison to the ilea communities. The potentially pathogenic bacteria such as Clostridium were elevated as the chicken aged and the population of beneficial microbe such as Lactobacillus was low at all intervals. On the other hand, based on predicted metagenomes analysed, clear distinction in functions and roles of gut microbiota such as gene pathways related to nutrient absorption (e.g. sugar and amino acid metabolism), and bacterial proliferation and colonization (e.g. bacterial motility proteins, two-component system and bacterial secretion system) were

  12. Use of simulated data sets to evaluate the fidelity of Metagenomicprocessing methods

    Energy Technology Data Exchange (ETDEWEB)

    Mavromatis, Konstantinos; Ivanova, Natalia; Barry, Kerri; Shapiro, Harris; Goltsman, Eugene; McHardy, Alice C.; Rigoutsos, Isidore; Salamov, Asaf; Korzeniewski, Frank; Land, Miriam; Lapidus, Alla; Grigoriev, Igor; Richardson, Paul; Hugenholtz, Philip; Kyrpides, Nikos C.

    2006-12-01

    Metagenomics is a rapidly emerging field of research for studying microbial communities. To evaluate methods presently used to process metagenomic sequences, we constructed three simulated data sets of varying complexity by combining sequencing reads randomly selected from 113 isolate genomes. These data sets were designed to model real metagenomes in terms of complexity and phylogenetic composition. We assembled sampled reads using three commonly used genome assemblers (Phrap, Arachne and JAZZ), and predicted genes using two popular gene finding pipelines (fgenesb and CRITICA/GLIMMER). The phylogenetic origins of the assembled contigs were predicted using one sequence similarity--based (blast hit distribution) and two sequence composition--based (PhyloPythia, oligonucleotide frequencies) binning methods. We explored the effects of the simulated community structure and method combinations on the fidelity of each processing step by comparison to the corresponding isolate genomes. The simulated data sets are available online to facilitate standardized benchmarking of tools for metagenomic analysis.

  13. MetaBAT: Metagenome Binning based on Abundance and Tetranucleotide frequence

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Dongwan; Froula, Jeff; Egan, Rob; Wang, Zhong

    2014-03-21

    Grouping large fragments assembled from shotgun metagenomic sequences to deconvolute complex microbial communities, or metagenome binning, enables the study of individual organisms and their interactions. Here we developed automated metagenome binning software, called MetaBAT, which integrates empirical probabilistic distances of genome abundance and tetranucleotide frequency. On synthetic datasets MetaBAT on average achieves 98percent precision and 90percent recall at the strain level with 281 near complete unique genomes. Applying MetaBAT to a human gut microbiome data set we recovered 176 genome bins with 92percent precision and 80percent recall. Further analyses suggest MetaBAT is able to recover genome fragments missed in reference genomes up to 19percent, while 53 genome bins are novel. In summary, we believe MetaBAT is a powerful tool to facilitate comprehensive understanding of complex microbial communities.

  14. A Combined Bioinformatics and Functional Metagenomics Approach to Discovering Lipolytic Biocatalysts

    Directory of Open Access Journals (Sweden)

    Thorsten eMasuch

    2015-10-01

    Full Text Available The majority of protein sequence data published today is of metagenomic origin. However, our ability to assign functions to these sequences is often hampered by our general inability to cultivate the larger part of microbial species and the sheer amount of sequence data generated in these projects. Here we present a combination of bioinformatics, synthetic biology and Escherichia coli genetics to discover biocatalysts in metagenomic datasets. We created a subset of the Global Ocean Sampling dataset, the largest metagenomic project published to date, by removing all proteins that matched Hidden Markov Models of known protein families from PFAM and TIGRFAM with high confidence (e-value > 10-5. This essentially left us with proteins with low or no homology to known protein families, still encompassing ~1.7 million different sequences. In this subset, we then identified protein families de novo with a Markov clustering algorithm. For each protein family, we defined a single representative based on its phylogenetic relationship to all other members in that family. This reduced the dataset to ~17,000 representatives of protein families with more than 10 members. Based on conserved regions typical for lipases and esterases, we selected a representative gene from a family of 27 members for synthesis. This protein, when expressed in E. coli, showed lipolytic activity towards para-nitrophenyl (pNP esters. The Km value of the enzyme was 66.68 µM for pNP-butyrate and 68.08 µM for pNP-palmitate with kcat/Km values at 3.4 x 106 and 6.6 x 105 M-1s-1, respectively. Hydrolysis of model substrates showed enantiopreference for the R-form. Reactions yielded 43% and 61% enantiomeric excess of products with ibuprofen methyl ester and 2-phenylpropanoic acid ethyl ester, respectively. The enzyme retains 50 % of its maximum activity at temperatures as low as 10 °C, its activity is enhanced in artificial seawater and buffers with higher salt concentrations with an

  15. Global discriminative learning for higher-accuracy computational gene prediction.

    Directory of Open Access Journals (Sweden)

    Axel Bernal

    2007-03-01

    Full Text Available Most ab initio gene predictors use a probabilistic sequence model, typically a hidden Markov model, to combine separately trained models of genomic signals and content. By combining separate models of relevant genomic features, such gene predictors can exploit small training sets and incomplete annotations, and can be trained fairly efficiently. However, that type of piecewise training does not optimize prediction accuracy and has difficulty in accounting for statistical dependencies among different parts of the gene model. With genomic information being created at an ever-increasing rate, it is worth investigating alternative approaches in which many different types of genomic evidence, with complex statistical dependencies, can be integrated by discriminative learning to maximize annotation accuracy. Among discriminative learning methods, large-margin classifiers have become prominent because of the success of support vector machines (SVM in many classification tasks. We describe CRAIG, a new program for ab initio gene prediction based on a conditional random field model with semi-Markov structure that is trained with an online large-margin algorithm related to multiclass SVMs. Our experiments on benchmark vertebrate datasets and on regions from the ENCODE project show significant improvements in prediction accuracy over published gene predictors that use intrinsic features only, particularly at the gene level and on genes with long introns.

  16. Blood Gene Expression Predicts Bronchiolitis Obliterans Syndrome

    Directory of Open Access Journals (Sweden)

    Richard Danger

    2018-01-01

    Full Text Available Bronchiolitis obliterans syndrome (BOS, the main manifestation of chronic lung allograft dysfunction, leads to poor long-term survival after lung transplantation. Identifying predictors of BOS is essential to prevent the progression of dysfunction before irreversible damage occurs. By using a large set of 107 samples from lung recipients, we performed microarray gene expression profiling of whole blood to identify early biomarkers of BOS, including samples from 49 patients with stable function for at least 3 years, 32 samples collected at least 6 months before BOS diagnosis (prediction group, and 26 samples at or after BOS diagnosis (diagnosis group. An independent set from 25 lung recipients was used for validation by quantitative PCR (13 stables, 11 in the prediction group, and 8 in the diagnosis group. We identified 50 transcripts differentially expressed between stable and BOS recipients. Three genes, namely POU class 2 associating factor 1 (POU2AF1, T-cell leukemia/lymphoma protein 1A (TCL1A, and B cell lymphocyte kinase, were validated as predictive biomarkers of BOS more than 6 months before diagnosis, with areas under the curve of 0.83, 0.77, and 0.78 respectively. These genes allow stratification based on BOS risk (log-rank test p < 0.01 and are not associated with time posttransplantation. This is the first published large-scale gene expression analysis of blood after lung transplantation. The three-gene blood signature could provide clinicians with new tools to improve follow-up and adapt treatment of patients likely to develop BOS.

  17. Microbial Functional Gene Diversity Predicts Groundwater Contamination and Ecosystem Functioning.

    Science.gov (United States)

    He, Zhili; Zhang, Ping; Wu, Linwei; Rocha, Andrea M; Tu, Qichao; Shi, Zhou; Wu, Bo; Qin, Yujia; Wang, Jianjun; Yan, Qingyun; Curtis, Daniel; Ning, Daliang; Van Nostrand, Joy D; Wu, Liyou; Yang, Yunfeng; Elias, Dwayne A; Watson, David B; Adams, Michael W W; Fields, Matthew W; Alm, Eric J; Hazen, Terry C; Adams, Paul D; Arkin, Adam P; Zhou, Jizhong

    2018-02-20

    Contamination from anthropogenic activities has significantly impacted Earth's biosphere. However, knowledge about how environmental contamination affects the biodiversity of groundwater microbiomes and ecosystem functioning remains very limited. Here, we used a comprehensive functional gene array to analyze groundwater microbiomes from 69 wells at the Oak Ridge Field Research Center (Oak Ridge, TN), representing a wide pH range and uranium, nitrate, and other contaminants. We hypothesized that the functional diversity of groundwater microbiomes would decrease as environmental contamination (e.g., uranium or nitrate) increased or at low or high pH, while some specific populations capable of utilizing or resistant to those contaminants would increase, and thus, such key microbial functional genes and/or populations could be used to predict groundwater contamination and ecosystem functioning. Our results indicated that functional richness/diversity decreased as uranium (but not nitrate) increased in groundwater. In addition, about 5.9% of specific key functional populations targeted by a comprehensive functional gene array (GeoChip 5) increased significantly ( P contamination and ecosystem functioning. This study indicates great potential for using microbial functional genes to predict environmental contamination and ecosystem functioning. IMPORTANCE Disentangling the relationships between biodiversity and ecosystem functioning is an important but poorly understood topic in ecology. Predicting ecosystem functioning on the basis of biodiversity is even more difficult, particularly with microbial biomarkers. As an exploratory effort, this study used key microbial functional genes as biomarkers to provide predictive understanding of environmental contamination and ecosystem functioning. The results indicated that the overall functional gene richness/diversity decreased as uranium increased in groundwater, while specific key microbial guilds increased significantly as

  18. Analysis of composition-based metagenomic classification.

    Science.gov (United States)

    Higashi, Susan; Barreto, André da Motta Salles; Cantão, Maurício Egidio; de Vasconcelos, Ana Tereza Ribeiro

    2012-01-01

    An essential step of a metagenomic study is the taxonomic classification, that is, the identification of the taxonomic lineage of the organisms in a given sample. The taxonomic classification process involves a series of decisions. Currently, in the context of metagenomics, such decisions are usually based on empirical studies that consider one specific type of classifier. In this study we propose a general framework for analyzing the impact that several decisions can have on the classification problem. Instead of focusing on any specific classifier, we define a generic score function that provides a measure of the difficulty of the classification task. Using this framework, we analyze the impact of the following parameters on the taxonomic classification problem: (i) the length of n-mers used to encode the metagenomic sequences, (ii) the similarity measure used to compare sequences, and (iii) the type of taxonomic classification, which can be conventional or hierarchical, depending on whether the classification process occurs in a single shot or in several steps according to the taxonomic tree. We defined a score function that measures the degree of separability of the taxonomic classes under a given configuration induced by the parameters above. We conducted an extensive computational experiment and found out that reasonable values for the parameters of interest could be (i) intermediate values of n, the length of the n-mers; (ii) any similarity measure, because all of them resulted in similar scores; and (iii) the hierarchical strategy, which performed better in all of the cases. As expected, short n-mers generate lower configuration scores because they give rise to frequency vectors that represent distinct sequences in a similar way. On the other hand, large values for n result in sparse frequency vectors that represent differently metagenomic fragments that are in fact similar, also leading to low configuration scores. Regarding the similarity measure, in

  19. Tapping uncultured microorganisms through metagenomics for drug ...

    African Journals Online (AJOL)

    African Journal of Biotechnology ... Microorganisms are major source of bioactive natural products, and several ... This review highlights the recent methodologies, limitations, and applications of metagenomics for the discovery of new drugs.

  20. Untangling Genomes from Metagenomes: Revealing an Uncultured Class of Marine Euryarchaeota

    Science.gov (United States)

    Iverson, Vaughn; Morris, Robert M.; Frazar, Christian D.; Berthiaume, Chris T.; Morales, Rhonda L.; Armbrust, E. Virginia

    2012-02-01

    Ecosystems are shaped by complex communities of mostly unculturable microbes. Metagenomes provide a fragmented view of such communities, but the ecosystem functions of major groups of organisms remain mysterious. To better characterize members of these communities, we developed methods to reconstruct genomes directly from mate-paired short-read metagenomes. We closed a genome representing the as-yet uncultured marine group II Euryarchaeota, assembled de novo from 1.7% of a metagenome sequenced from surface seawater. The genome describes a motile, photo-heterotrophic cell focused on degradation of protein and lipids and clarifies the origin of proteorhodopsin. It also demonstrates that high-coverage mate-paired sequence can overcome assembly difficulties caused by interstrain variation in complex microbial communities, enabling inference of ecosystem functions for uncultured members.

  1. Assembly of viral genomes from metagenomes

    NARCIS (Netherlands)

    S.L. Smits (Saskia); R. Bodewes (Rogier); A. Ruiz-Gonzalez (Aritz); V. Baumgärtner (Volkmar); M.P.G. Koopmans D.V.M. (Marion); A.D.M.E. Osterhaus (Albert); A. Schürch (Anita)

    2014-01-01

    textabstractViral infections remain a serious global health issue. Metagenomic approaches are increasingly used in the detection of novel viral pathogens but also to generate complete genomes of uncultivated viruses. In silico identification of complete viral genomes from sequence data would allow

  2. Metagenomes obtained by "deep sequencing" - what do they tell about the EBPR communities?

    DEFF Research Database (Denmark)

    Albertsen, Mads; Saunders, Aaron Marc; Nielsen, Kåre Lehmann

    2013-01-01

    Metagenomics enables studies of the genomic potential of complex microbial communities by sequencing bulk genomic DNA directly from the environment. Knowledge of the genetic potential of a community can be used to formulate and test ecological hypotheses about stability and performance...... demonstrate that metagenomics can be used as a powerful tool for system wide characterization of the EBPR community as well as for a deeper understanding of the function of specific community members. Furthermore, we discuss and illustrate some of the general pitfalls in metagenomics and stress the need...

  3. Laboratory procedures to generate viral metagenomes.

    Science.gov (United States)

    Thurber, Rebecca V; Haynes, Matthew; Breitbart, Mya; Wegley, Linda; Rohwer, Forest

    2009-01-01

    This collection of laboratory protocols describes the steps to collect viruses from various samples with the specific aim of generating viral metagenome sequence libraries (viromes). Viral metagenomics, the study of uncultured viral nucleic acid sequences from different biomes, relies on several concentration, purification, extraction, sequencing and heuristic bioinformatic methods. No single technique can provide an all-inclusive approach, and therefore the protocols presented here will be discussed in terms of hypothetical projects. However, care must be taken to individualize each step depending on the source and type of viral-particles. This protocol is a description of the processes we have successfully used to: (i) concentrate viral particles from various types of samples, (ii) eliminate contaminating cells and free nucleic acids and (iii) extract, amplify and purify viral nucleic acids. Overall, a sample can be processed to isolate viral nucleic acids suitable for high-throughput sequencing in approximately 1 week.

  4. Probability-based collaborative filtering model for predicting gene-disease associations.

    Science.gov (United States)

    Zeng, Xiangxiang; Ding, Ningxiang; Rodríguez-Patón, Alfonso; Zou, Quan

    2017-12-28

    Accurately predicting pathogenic human genes has been challenging in recent research. Considering extensive gene-disease data verified by biological experiments, we can apply computational methods to perform accurate predictions with reduced time and expenses. We propose a probability-based collaborative filtering model (PCFM) to predict pathogenic human genes. Several kinds of data sets, containing data of humans and data of other nonhuman species, are integrated in our model. Firstly, on the basis of a typical latent factorization model, we propose model I with an average heterogeneous regularization. Secondly, we develop modified model II with personal heterogeneous regularization to enhance the accuracy of aforementioned models. In this model, vector space similarity or Pearson correlation coefficient metrics and data on related species are also used. We compared the results of PCFM with the results of four state-of-arts approaches. The results show that PCFM performs better than other advanced approaches. PCFM model can be leveraged for predictions of disease genes, especially for new human genes or diseases with no known relationships.

  5. Merging metagenomics and geochemistry reveals environmental controls on biological diversity and evolution.

    Science.gov (United States)

    Alsop, Eric B; Boyd, Eric S; Raymond, Jason

    2014-05-28

    The metabolic strategies employed by microbes inhabiting natural systems are, in large part, dictated by the physical and geochemical properties of the environment. This study sheds light onto the complex relationship between biology and environmental geochemistry using forty-three metagenomes collected from geochemically diverse and globally distributed natural systems. It is widely hypothesized that many uncommonly measured geochemical parameters affect community dynamics and this study leverages the development and application of multidimensional biogeochemical metrics to study correlations between geochemistry and microbial ecology. Analysis techniques such as a Markov cluster-based measure of the evolutionary distance between whole communities and a principal component analysis (PCA) of the geochemical gradients between environments allows for the determination of correlations between microbial community dynamics and environmental geochemistry and provides insight into which geochemical parameters most strongly influence microbial biodiversity. By progressively building from samples taken along well defined geochemical gradients to samples widely dispersed in geochemical space this study reveals strong links between the extent of taxonomic and functional diversification of resident communities and environmental geochemistry and reveals temperature and pH as the primary factors that have shaped the evolution of these communities. Moreover, the inclusion of extensive geochemical data into analyses reveals new links between geochemical parameters (e.g. oxygen and trace element availability) and the distribution and taxonomic diversification of communities at the functional level. Further, an overall geochemical gradient (from multivariate analyses) between natural systems provides one of the most complete predictions of microbial taxonomic and functional composition. Clustering based on the frequency in which orthologous proteins occur among metagenomes

  6. High Potential Source for Biomass Degradation Enzyme Discovery and Environmental Aspects Revealed through Metagenomics of Indian Buffalo Rumen

    Directory of Open Access Journals (Sweden)

    K. M. Singh

    2014-01-01

    Full Text Available The complex microbiomes of the rumen functions as an effective system for plant cell wall degradation, and biomass utilization provide genetic resource for degrading microbial enzymes that could be used in the production of biofuel. Therefore the buffalo rumen microbiota was surveyed using shot gun sequencing. This metagenomic sequencing generated 3.9 GB of sequences and data were assembled into 137270 contiguous sequences (contigs. We identified potential 2614 contigs encoding biomass degrading enzymes including glycoside hydrolases (GH: 1943 contigs, carbohydrate binding module (CBM: 23 contigs, glycosyl transferase (GT: 373 contigs, carbohydrate esterases (CE: 259 contigs, and polysaccharide lyases (PE: 16 contigs. The hierarchical clustering of buffalo metagenomes demonstrated the similarities and dissimilarity in microbial community structures and functional capacity. This demonstrates that buffalo rumen microbiome was considerably enriched in functional genes involved in polysaccharide degradation with great prospects to obtain new molecules that may be applied in the biofuel industry.

  7. Bayesian mixture analysis for metagenomic community profiling.

    Science.gov (United States)

    Morfopoulou, Sofia; Plagnol, Vincent

    2015-09-15

    Deep sequencing of clinical samples is now an established tool for the detection of infectious pathogens, with direct medical applications. The large amount of data generated produces an opportunity to detect species even at very low levels, provided that computational tools can effectively profile the relevant metagenomic communities. Data interpretation is complicated by the fact that short sequencing reads can match multiple organisms and by the lack of completeness of existing databases, in particular for viral pathogens. Here we present metaMix, a Bayesian mixture model framework for resolving complex metagenomic mixtures. We show that the use of parallel Monte Carlo Markov chains for the exploration of the species space enables the identification of the set of species most likely to contribute to the mixture. We demonstrate the greater accuracy of metaMix compared with relevant methods, particularly for profiling complex communities consisting of several related species. We designed metaMix specifically for the analysis of deep transcriptome sequencing datasets, with a focus on viral pathogen detection; however, the principles are generally applicable to all types of metagenomic mixtures. metaMix is implemented as a user friendly R package, freely available on CRAN: http://cran.r-project.org/web/packages/metaMix sofia.morfopoulou.10@ucl.ac.uk Supplementary data are available at Bionformatics online. © The Author 2015. Published by Oxford University Press.

  8. Validation of Metagenomic Next-Generation Sequencing Tests for Universal Pathogen Detection.

    Science.gov (United States)

    Schlaberg, Robert; Chiu, Charles Y; Miller, Steve; Procop, Gary W; Weinstock, George

    2017-06-01

    - Metagenomic sequencing can be used for detection of any pathogens using unbiased, shotgun next-generation sequencing (NGS), without the need for sequence-specific amplification. Proof-of-concept has been demonstrated in infectious disease outbreaks of unknown causes and in patients with suspected infections but negative results for conventional tests. Metagenomic NGS tests hold great promise to improve infectious disease diagnostics, especially in immunocompromised and critically ill patients. - To discuss challenges and provide example solutions for validating metagenomic pathogen detection tests in clinical laboratories. A summary of current regulatory requirements, largely based on prior guidance for NGS testing in constitutional genetics and oncology, is provided. - Examples from 2 separate validation studies are provided for steps from assay design, and validation of wet bench and bioinformatics protocols, to quality control and assurance. - Although laboratory and data analysis workflows are still complex, metagenomic NGS tests for infectious diseases are increasingly being validated in clinical laboratories. Many parallels exist to NGS tests in other fields. Nevertheless, specimen preparation, rapidly evolving data analysis algorithms, and incomplete reference sequence databases are idiosyncratic to the field of microbiology and often overlooked.

  9. Metagenomic discovery of novel enzymes and biosurfactants in a slaughterhouse biofilm microbial community

    Science.gov (United States)

    Thies, Stephan; Rausch, Sonja Christina; Kovacic, Filip; Schmidt-Thaler, Alexandra; Wilhelm, Susanne; Rosenau, Frank; Daniel, Rolf; Streit, Wolfgang; Pietruszka, Jörg; Jaeger, Karl-Erich

    2016-01-01

    DNA derived from environmental samples is a rich source of novel bioactive molecules. The choice of the habitat to be sampled predefines the properties of the biomolecules to be discovered due to the physiological adaptation of the microbial community to the prevailing environmental conditions. We have constructed a metagenomic library in Escherichia coli DH10b with environmental DNA (eDNA) isolated from the microbial community of a slaughterhouse drain biofilm consisting mainly of species from the family Flavobacteriaceae. By functional screening of this library we have identified several lipases, proteases and two clones (SA343 and SA354) with biosurfactant and hemolytic activities. Sequence analysis of the respective eDNA fragments and subsequent structure homology modelling identified genes encoding putative N-acyl amino acid synthases with a unique two-domain organisation. The produced biosurfactants were identified by NMR spectroscopy as N-acyltyrosines with N-myristoyltyrosine as the predominant species. Critical micelle concentration and reduction of surface tension were similar to those of chemically synthesised N-myristoyltyrosine. Furthermore, we showed that the newly isolated N-acyltyrosines exhibit antibiotic activity against various bacteria. This is the first report describing the successful application of functional high-throughput screening assays for the identification of biosurfactant producing clones within a metagenomic library. PMID:27271534

  10. A highly abundant bacteriophage discovered in the unknown sequences of human faecal metagenomes

    NARCIS (Netherlands)

    Dutilh, Bas E; Cassman, Noriko; McNair, Katelyn; Sanchez, Savannah E; Silva, Genivaldo G Z; Boling, Lance; Barr, Jeremy J; Speth, Daan R; Seguritan, Victor; Aziz, Ramy K; Felts, Ben; Dinsdale, Elizabeth A; Mokili, John L; Edwards, Robert A

    2014-01-01

    Metagenomics, or sequencing of the genetic material from a complete microbial community, is a promising tool to discover novel microbes and viruses. Viral metagenomes typically contain many unknown sequences. Here we describe the discovery of a previously unidentified bacteriophage present in the

  11. Characterization of three plant biomass-degrading microbial consortia by metagenomics- and metasecretomics-based approaches

    DEFF Research Database (Denmark)

    Jiménez, Diego Javier; Brossi, Maria Julia de Lima; Schückel, Julia

    2016-01-01

    ). The highest degradation rates of lignin (~59 %) were observed with SG-M, whereas CS-M showed a high consumption of cellulose and hemicellulose. Analyses of the carbohydrate-active enzymes in the three microbial consortia showed the dominance of glycosyl hydrolases (e.g. of families GH3, GH43, GH13, GH10, GH29......), switchgrass (SG-M) and corn stover (CS-M) under aerobic and mesophilic conditions. Molecular fingerprintings, bacterial 16S ribosomal RNA (rRNA) gene amplicon sequencing and metagenomic analyses showed that the three microbial consortia were taxonomically distinct. Based on the taxonomic affiliation...

  12. A metagenomic approach to characterization of the vaginal microbiome signature in pregnancy.

    Science.gov (United States)

    Aagaard, Kjersti; Riehle, Kevin; Ma, Jun; Segata, Nicola; Mistretta, Toni-Ann; Coarfa, Cristian; Raza, Sabeen; Rosenbaum, Sean; Van den Veyver, Ignatia; Milosavljevic, Aleksandar; Gevers, Dirk; Huttenhower, Curtis; Petrosino, Joseph; Versalovic, James

    2012-01-01

    While current major national research efforts (i.e., the NIH Human Microbiome Project) will enable comprehensive metagenomic characterization of the adult human microbiota, how and when these diverse microbial communities take up residence in the host and during reproductive life are unexplored at a population level. Because microbial abundance and diversity might differ in pregnancy, we sought to generate comparative metagenomic signatures across gestational age strata. DNA was isolated from the vagina (introitus, posterior fornix, midvagina) and the V5V3 region of bacterial 16S rRNA genes were sequenced (454FLX Titanium platform). Sixty-eight samples from 24 healthy gravidae (18 to 40 confirmed weeks) were compared with 301 non-pregnant controls (60 subjects). Generated sequence data were quality filtered, taxonomically binned, normalized, and organized by phylogeny and into operational taxonomic units (OTU); principal coordinates analysis (PCoA) of the resultant beta diversity measures were used for visualization and analysis in association with sample clinical metadata. Altogether, 1.4 gigabytes of data containing >2.5 million reads (averaging 6,837 sequences/sample of 493 nt in length) were generated for computational analyses. Although gravidae were not excluded by virtue of a posterior fornix pH >4.5 at the time of screening, unique vaginal microbiome signature encompassing several specific OTUs and higher-level clades was nevertheless observed and confirmed using a combination of phylogenetic, non-phylogenetic, supervised, and unsupervised approaches. Both overall diversity and richness were reduced in pregnancy, with dominance of Lactobacillus species (L. iners crispatus, jensenii and johnsonii, and the orders Lactobacillales (and Lactobacillaceae family), Clostridiales, Bacteroidales, and Actinomycetales. This intergroup comparison using rigorous standardized sampling protocols and analytical methodologies provides robust initial evidence that the vaginal

  13. A metagenomic approach to characterization of the vaginal microbiome signature in pregnancy.

    Directory of Open Access Journals (Sweden)

    Kjersti Aagaard

    Full Text Available While current major national research efforts (i.e., the NIH Human Microbiome Project will enable comprehensive metagenomic characterization of the adult human microbiota, how and when these diverse microbial communities take up residence in the host and during reproductive life are unexplored at a population level. Because microbial abundance and diversity might differ in pregnancy, we sought to generate comparative metagenomic signatures across gestational age strata. DNA was isolated from the vagina (introitus, posterior fornix, midvagina and the V5V3 region of bacterial 16S rRNA genes were sequenced (454FLX Titanium platform. Sixty-eight samples from 24 healthy gravidae (18 to 40 confirmed weeks were compared with 301 non-pregnant controls (60 subjects. Generated sequence data were quality filtered, taxonomically binned, normalized, and organized by phylogeny and into operational taxonomic units (OTU; principal coordinates analysis (PCoA of the resultant beta diversity measures were used for visualization and analysis in association with sample clinical metadata. Altogether, 1.4 gigabytes of data containing >2.5 million reads (averaging 6,837 sequences/sample of 493 nt in length were generated for computational analyses. Although gravidae were not excluded by virtue of a posterior fornix pH >4.5 at the time of screening, unique vaginal microbiome signature encompassing several specific OTUs and higher-level clades was nevertheless observed and confirmed using a combination of phylogenetic, non-phylogenetic, supervised, and unsupervised approaches. Both overall diversity and richness were reduced in pregnancy, with dominance of Lactobacillus species (L. iners crispatus, jensenii and johnsonii, and the orders Lactobacillales (and Lactobacillaceae family, Clostridiales, Bacteroidales, and Actinomycetales. This intergroup comparison using rigorous standardized sampling protocols and analytical methodologies provides robust initial evidence that

  14. The prediction of candidate genes for cervix related cancer through gene ontology and graph theoretical approach.

    Science.gov (United States)

    Hindumathi, V; Kranthi, T; Rao, S B; Manimaran, P

    2014-06-01

    With rapidly changing technology, prediction of candidate genes has become an indispensable task in recent years mainly in the field of biological research. The empirical methods for candidate gene prioritization that succors to explore the potential pathway between genetic determinants and complex diseases are highly cumbersome and labor intensive. In such a scenario predicting potential targets for a disease state through in silico approaches are of researcher's interest. The prodigious availability of protein interaction data coupled with gene annotation renders an ease in the accurate determination of disease specific candidate genes. In our work we have prioritized the cervix related cancer candidate genes by employing Csaba Ortutay and his co-workers approach of identifying the candidate genes through graph theoretical centrality measures and gene ontology. With the advantage of the human protein interaction data, cervical cancer gene sets and the ontological terms, we were able to predict 15 novel candidates for cervical carcinogenesis. The disease relevance of the anticipated candidate genes was corroborated through a literature survey. Also the presence of the drugs for these candidates was detected through Therapeutic Target Database (TTD) and DrugMap Central (DMC) which affirms that they may be endowed as potential drug targets for cervical cancer.

  15. Metagenome and Metatranscriptome Analyses Using Protein Family Profiles.

    Directory of Open Access Journals (Sweden)

    Cuncong Zhong

    2016-07-01

    Full Text Available Analyses of metagenome data (MG and metatranscriptome data (MT are often challenged by a paucity of complete reference genome sequences and the uneven/low sequencing depth of the constituent organisms in the microbial community, which respectively limit the power of reference-based alignment and de novo sequence assembly. These limitations make accurate protein family classification and abundance estimation challenging, which in turn hamper downstream analyses such as abundance profiling of metabolic pathways, identification of differentially encoded/expressed genes, and de novo reconstruction of complete gene and protein sequences from the protein family of interest. The profile hidden Markov model (HMM framework enables the construction of very useful probabilistic models for protein families that allow for accurate modeling of position specific matches, insertions, and deletions. We present a novel homology detection algorithm that integrates banded Viterbi algorithm for profile HMM parsing with an iterative simultaneous alignment and assembly computational framework. The algorithm searches a given profile HMM of a protein family against a database of fragmentary MG/MT sequencing data and simultaneously assembles complete or near-complete gene and protein sequences of the protein family. The resulting program, HMM-GRASPx, demonstrates superior performance in aligning and assembling homologs when benchmarked on both simulated marine MG and real human saliva MG datasets. On real supragingival plaque and stool MG datasets that were generated from healthy individuals, HMM-GRASPx accurately estimates the abundances of the antimicrobial resistance (AMR gene families and enables accurate characterization of the resistome profiles of these microbial communities. For real human oral microbiome MT datasets, using the HMM-GRASPx estimated transcript abundances significantly improves detection of differentially expressed (DE genes. Finally, HMM

  16. Prediction of regulatory gene pairs using dynamic time warping and gene ontology.

    Science.gov (United States)

    Yang, Andy C; Hsu, Hui-Huang; Lu, Ming-Da; Tseng, Vincent S; Shih, Timothy K

    2014-01-01

    Selecting informative genes is the most important task for data analysis on microarray gene expression data. In this work, we aim at identifying regulatory gene pairs from microarray gene expression data. However, microarray data often contain multiple missing expression values. Missing value imputation is thus needed before further processing for regulatory gene pairs becomes possible. We develop a novel approach to first impute missing values in microarray time series data by combining k-Nearest Neighbour (KNN), Dynamic Time Warping (DTW) and Gene Ontology (GO). After missing values are imputed, we then perform gene regulation prediction based on our proposed DTW-GO distance measurement of gene pairs. Experimental results show that our approach is more accurate when compared with existing missing value imputation methods on real microarray data sets. Furthermore, our approach can also discover more regulatory gene pairs that are known in the literature than other methods.

  17. Metagenomic assesment of the potential microbial nitrogen pathways in the rhizosphere of a Mediterranean forest after wildfire

    OpenAIRE

    Cobo-Díaz, José F.; Fernández-González, Antonio J.; Villadas, Pablo J.; Robles, Ana B.; Toro, Nicolás; Fernández-López, Manuel

    2015-01-01

    Wildfires are frecuent in the forest of the Mediterranean Basin and have greatly influenced this ecosystem. Changes to the physical and chemical properties of the soil, due to fire and post-fire conditions result in alterations of both the bacterial communities and the nitrgen cycle,. We explored the effetcs of a holm-oak forest wildfire on the rhizospheric bacterial communities involved in the nitrogen cycle. Metagenomic data of the genes involved in the nitrogen cycle showed that both the u...

  18. Compositional profile of α / β-hydrolase fold proteins in mangrove soil metagenomes : Prevalence of epoxide hydrolases and haloalkane dehalogenases in oil-contaminated sites

    NARCIS (Netherlands)

    Jiménez Avella, Diego; Dini Andreote, Francisco; Ottoni, Júlia Ronzella; de Oliveira, Valéria Maia; van Elsas, Jan Dirk; Andreote, Fernando Dini

    The occurrence of genes encoding biotechnologically relevant α/β-hydrolases in mangrove soil microbial communities was assessed using data obtained by whole-metagenome sequencing of four mangroves areas, denoted BrMgv01 to BrMgv04, in São Paulo, Brazil. The sequences (215 Mb in total) were filtered

  19. Evolutionary strategies of viruses, bacteria and archaea in hydrothermal vent ecosystems revealed through metagenomics.

    Directory of Open Access Journals (Sweden)

    Rika E Anderson

    Full Text Available The deep-sea hydrothermal vent habitat hosts a diverse community of archaea and bacteria that withstand extreme fluctuations in environmental conditions. Abundant viruses in these systems, a high proportion of which are lysogenic, must also withstand these environmental extremes. Here, we explore the evolutionary strategies of both microorganisms and viruses in hydrothermal systems through comparative analysis of a cellular and viral metagenome, collected by size fractionation of high temperature fluids from a diffuse flow hydrothermal vent. We detected a high enrichment of mobile elements and proviruses in the cellular fraction relative to microorganisms in other environments. We observed a relatively high abundance of genes related to energy metabolism as well as cofactors and vitamins in the viral fraction compared to the cellular fraction, which suggest encoding of auxiliary metabolic genes on viral genomes. Moreover, the observation of stronger purifying selection in the viral versus cellular gene pool suggests viral strategies that promote prolonged host integration. Our results demonstrate that there is great potential for hydrothermal vent viruses to integrate into hosts, facilitate horizontal gene transfer, and express or transfer genes that manipulate the hosts' functional capabilities.

  20. Evolutionary strategies of viruses, bacteria and archaea in hydrothermal vent ecosystems revealed through metagenomics.

    Science.gov (United States)

    Anderson, Rika E; Sogin, Mitchell L; Baross, John A

    2014-01-01

    The deep-sea hydrothermal vent habitat hosts a diverse community of archaea and bacteria that withstand extreme fluctuations in environmental conditions. Abundant viruses in these systems, a high proportion of which are lysogenic, must also withstand these environmental extremes. Here, we explore the evolutionary strategies of both microorganisms and viruses in hydrothermal systems through comparative analysis of a cellular and viral metagenome, collected by size fractionation of high temperature fluids from a diffuse flow hydrothermal vent. We detected a high enrichment of mobile elements and proviruses in the cellular fraction relative to microorganisms in other environments. We observed a relatively high abundance of genes related to energy metabolism as well as cofactors and vitamins in the viral fraction compared to the cellular fraction, which suggest encoding of auxiliary metabolic genes on viral genomes. Moreover, the observation of stronger purifying selection in the viral versus cellular gene pool suggests viral strategies that promote prolonged host integration. Our results demonstrate that there is great potential for hydrothermal vent viruses to integrate into hosts, facilitate horizontal gene transfer, and express or transfer genes that manipulate the hosts' functional capabilities.

  1. Search Engine for Antimicrobial Resistance: A Cloud Compatible Pipeline and Web Interface for Rapidly Detecting Antimicrobial Resistance Genes Directly from Sequence Data.

    Science.gov (United States)

    Rowe, Will; Baker, Kate S; Verner-Jeffreys, David; Baker-Austin, Craig; Ryan, Jim J; Maskell, Duncan; Pearce, Gareth

    2015-01-01

    Antimicrobial resistance remains a growing and significant concern in human and veterinary medicine. Current laboratory methods for the detection and surveillance of antimicrobial resistant bacteria are limited in their effectiveness and scope. With the rapidly developing field of whole genome sequencing beginning to be utilised in clinical practice, the ability to interrogate sequencing data quickly and easily for the presence of antimicrobial resistance genes will become increasingly important and useful for informing clinical decisions. Additionally, use of such tools will provide insight into the dynamics of antimicrobial resistance genes in metagenomic samples such as those used in environmental monitoring. Here we present the Search Engine for Antimicrobial Resistance (SEAR), a pipeline and web interface for detection of horizontally acquired antimicrobial resistance genes in raw sequencing data. The pipeline provides gene information, abundance estimation and the reconstructed sequence of antimicrobial resistance genes; it also provides web links to additional information on each gene. The pipeline utilises clustering and read mapping to annotate full-length genes relative to a user-defined database. It also uses local alignment of annotated genes to a range of online databases to provide additional information. We demonstrate SEAR's application in the detection and abundance estimation of antimicrobial resistance genes in two novel environmental metagenomes, 32 human faecal microbiome datasets and 126 clinical isolates of Shigella sonnei. We have developed a pipeline that contributes to the improved capacity for antimicrobial resistance detection afforded by next generation sequencing technologies, allowing for rapid detection of antimicrobial resistance genes directly from sequencing data. SEAR uses raw sequencing data via an intuitive interface so can be run rapidly without requiring advanced bioinformatic skills or resources. Finally, we show that SEAR

  2. Prediction of highly expressed genes in microbes based on chromatin accessibility

    Directory of Open Access Journals (Sweden)

    Ussery David W

    2007-02-01

    Full Text Available Abstract Background It is well known that gene expression is dependent on chromatin structure in eukaryotes and it is likely that chromatin can play a role in bacterial gene expression as well. Here, we use a nucleosomal position preference measure of anisotropic DNA flexibility to predict highly expressed genes in microbial genomes. We compare these predictions with those based on codon adaptation index (CAI values, and also with experimental data for 6 different microbial genomes, with a particular interest in experimental data from Escherichia coli. Moreover, position preference is examined further in 328 sequenced microbial genomes. Results We find that absolute gene expression levels are correlated with the position preference in many microbial genomes. It is postulated that in these regions, the DNA may be more accessible to the transcriptional machinery. Moreover, ribosomal proteins and ribosomal RNA are encoded by DNA having significantly lower position preference values than other genes in fast-replicating microbes. Conclusion This insight into DNA structure-dependent gene expression in microbes may be exploited for predicting the expression of non-translated genes such as non-coding RNAs that may not be predicted by any of the conventional codon usage bias approaches.

  3. Semi-supervised prediction of gene regulatory networks using ...

    Indian Academy of Sciences (India)

    2015-09-28

    Sep 28, 2015 ... Use of computational methods to predict gene regulatory networks (GRNs) from gene expression data is a challenging ... two types of methods differ primarily based on whether ..... negligible, allowing us to draw the qualitative conclusions .... research will be conducted to develop additional biologically.

  4. Random Subspace Aggregation for Cancer Prediction with Gene Expression Profiles

    Directory of Open Access Journals (Sweden)

    Liying Yang

    2016-01-01

    Full Text Available Background. Precisely predicting cancer is crucial for cancer treatment. Gene expression profiles make it possible to analyze patterns between genes and cancers on the genome-wide scale. Gene expression data analysis, however, is confronted with enormous challenges for its characteristics, such as high dimensionality, small sample size, and low Signal-to-Noise Ratio. Results. This paper proposes a method, termed RS_SVM, to predict gene expression profiles via aggregating SVM trained on random subspaces. After choosing gene features through statistical analysis, RS_SVM randomly selects feature subsets to yield random subspaces and training SVM classifiers accordingly and then aggregates SVM classifiers to capture the advantage of ensemble learning. Experiments on eight real gene expression datasets are performed to validate the RS_SVM method. Experimental results show that RS_SVM achieved better classification accuracy and generalization performance in contrast with single SVM, K-nearest neighbor, decision tree, Bagging, AdaBoost, and the state-of-the-art methods. Experiments also explored the effect of subspace size on prediction performance. Conclusions. The proposed RS_SVM method yielded superior performance in analyzing gene expression profiles, which demonstrates that RS_SVM provides a good channel for such biological data.

  5. Assessing the genetic diversity of Cu resistance in mine tailings through high-throughput recovery of full-length copA genes

    Science.gov (United States)

    Li, Xiaofang; Zhu, Yong-Guan; Shaban, Babak; Bruxner, Timothy J. C.; Bond, Philip L.; Huang, Longbin

    2015-01-01

    Characterizing the genetic diversity of microbial copper (Cu) resistance at the community level remains challenging, mainly due to the polymorphism of the core functional gene copA. In this study, a local BLASTN method using a copA database built in this study was developed to recover full-length putative copA sequences from an assembled tailings metagenome; these sequences were then screened for potentially functioning CopA using conserved metal-binding motifs, inferred by evolutionary trace analysis of CopA sequences from known Cu resistant microorganisms. In total, 99 putative copA sequences were recovered from the tailings metagenome, out of which 70 were found with high potential to be functioning in Cu resistance. Phylogenetic analysis of selected copA sequences detected in the tailings metagenome showed that topology of the copA phylogeny is largely congruent with that of the 16S-based phylogeny of the tailings microbial community obtained in our previous study, indicating that the development of copA diversity in the tailings might be mainly through vertical descent with few lateral gene transfer events. The method established here can be used to explore copA (and potentially other metal resistance genes) diversity in any metagenome and has the potential to exhaust the full-length gene sequences for downstream analyses. PMID:26286020

  6. Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies

    KAUST Repository

    Wang, Yong

    2009-10-09

    Bacterial 16S ribosomal DNA (rDNA) amplicons have been widely used in the classification of uncultured bacteria inhabiting environmental niches. Primers targeting conservative regions of the rDNAs are used to generate amplicons of variant regions that are informative in taxonomic assignment. One problem is that the percentage coverage and application scope of the primers used in previous studies are largely unknown. In this study, conservative fragments of available rDNA sequences were first mined and then used to search for candidate primers within the fragments by measuring the coverage rate defined as the percentage of bacterial sequences containing the target. Thirty predicted primers with a high coverage rate (>90%) were identified, which were basically located in the same conservative regions as known primers in previous reports, whereas 30% of the known primers were associated with a coverage rate of <90%. The application scope of the primers was also examined by calculating the percentages of failed detections in bacterial phyla. Primers A519-539, E969- 983, E1063-1081, U515 and E517, are highly recommended because of their high coverage in almost all phyla. As expected, the three predominant phyla, Firmicutes, Gemmatimonadetes and Proteobacteria, are best covered by the predicted primers. The primers recommended in this report shall facilitate a comprehensive and reliable survey of bacterial diversity in metagenomic studies. © 2009 Wang, Qian.

  7. BeerDeCoded: the open beer metagenome project.

    Science.gov (United States)

    Sobel, Jonathan; Henry, Luc; Rotman, Nicolas; Rando, Gianpaolo

    2017-01-01

    Next generation sequencing has radically changed research in the life sciences, in both academic and corporate laboratories. The potential impact is tremendous, yet a majority of citizens have little or no understanding of the technological and ethical aspects of this widespread adoption. We designed BeerDeCoded as a pretext to discuss the societal issues related to genomic and metagenomic data with fellow citizens, while advancing scientific knowledge of the most popular beverage of all. In the spirit of citizen science, sample collection and DNA extraction were carried out with the participation of non-scientists in the community laboratory of Hackuarium, a not-for-profit organisation that supports unconventional research and promotes the public understanding of science. The dataset presented herein contains the targeted metagenomic profile of 39 bottled beers from 5 countries, based on internal transcribed spacer (ITS) sequencing of fungal species. A preliminary analysis reveals the presence of a large diversity of wild yeast species in commercial brews. With this project, we demonstrate that coupling simple laboratory procedures that can be carried out in a non-professional environment with state-of-the-art sequencing technologies and targeted metagenomic analyses, can lead to the detection and identification of the microbial content in bottled beer.

  8. PhyloSift: phylogenetic analysis of genomes and metagenomes.

    Science.gov (United States)

    Darling, Aaron E; Jospin, Guillaume; Lowe, Eric; Matsen, Frederick A; Bik, Holly M; Eisen, Jonathan A

    2014-01-01

    Like all organisms on the planet, environmental microbes are subject to the forces of molecular evolution. Metagenomic sequencing provides a means to access the DNA sequence of uncultured microbes. By combining DNA sequencing of microbial communities with evolutionary modeling and phylogenetic analysis we might obtain new insights into microbiology and also provide a basis for practical tools such as forensic pathogen detection. In this work we present an approach to leverage phylogenetic analysis of metagenomic sequence data to conduct several types of analysis. First, we present a method to conduct phylogeny-driven Bayesian hypothesis tests for the presence of an organism in a sample. Second, we present a means to compare community structure across a collection of many samples and develop direct associations between the abundance of certain organisms and sample metadata. Third, we apply new tools to analyze the phylogenetic diversity of microbial communities and again demonstrate how this can be associated to sample metadata. These analyses are implemented in an open source software pipeline called PhyloSift. As a pipeline, PhyloSift incorporates several other programs including LAST, HMMER, and pplacer to automate phylogenetic analysis of protein coding and RNA sequences in metagenomic datasets generated by modern sequencing platforms (e.g., Illumina, 454).

  9. PhyloSift: phylogenetic analysis of genomes and metagenomes

    Directory of Open Access Journals (Sweden)

    Aaron E. Darling

    2014-01-01

    Full Text Available Like all organisms on the planet, environmental microbes are subject to the forces of molecular evolution. Metagenomic sequencing provides a means to access the DNA sequence of uncultured microbes. By combining DNA sequencing of microbial communities with evolutionary modeling and phylogenetic analysis we might obtain new insights into microbiology and also provide a basis for practical tools such as forensic pathogen detection.In this work we present an approach to leverage phylogenetic analysis of metagenomic sequence data to conduct several types of analysis. First, we present a method to conduct phylogeny-driven Bayesian hypothesis tests for the presence of an organism in a sample. Second, we present a means to compare community structure across a collection of many samples and develop direct associations between the abundance of certain organisms and sample metadata. Third, we apply new tools to analyze the phylogenetic diversity of microbial communities and again demonstrate how this can be associated to sample metadata.These analyses are implemented in an open source software pipeline called PhyloSift. As a pipeline, PhyloSift incorporates several other programs including LAST, HMMER, and pplacer to automate phylogenetic analysis of protein coding and RNA sequences in metagenomic datasets generated by modern sequencing platforms (e.g., Illumina, 454.

  10. The YNP metagenome project

    DEFF Research Database (Denmark)

    Inskeep, William P.; Jay, Zackary J.; Tringe, Susannah G.

    2013-01-01

    The Yellowstone geothermal complex contains over 10,000 diverse geothermal features that host numerous phylogenetically deeply rooted and poorly understood archaea, bacteria, and viruses. Microbial communities in high-temperature environments are generally less diverse than soil, marine, sediment......, and environmental variables. Twenty geochemically distinct geothermal ecosystems representing a broad spectrum of Yellowstone hot-spring environments were used for metagenomic and geochemical analysis and included approximately equal numbers of: (1) phototrophic mats, (2) “filamentous streamer” communities, and (3...

  11. Tapping uncultured microorganisms through metagenomics for drug ...

    African Journals Online (AJOL)

    bdelnasser

    reached the market using this new technology. For these reasons and others, the interest in natural products has ..... Functional metagenomic library screening strategy ..... Bertrand H, Poly F, Van VT, Lombard N, Nalin R, Vogel TM, Simonet P.

  12. Hidden diversity revealed by genome-resolved metagenomics of iron-oxidizing microbial mats from Lō'ihi Seamount, Hawai'i.

    Science.gov (United States)

    Fullerton, Heather; Hager, Kevin W; McAllister, Sean M; Moyer, Craig L

    2017-08-01

    The Zetaproteobacteria are ubiquitous in marine environments, yet this class of Proteobacteria is only represented by a few closely-related cultured isolates. In high-iron environments, such as diffuse hydrothermal vents, the Zetaproteobacteria are important members of the community driving its structure. Biogeography of Zetaproteobacteria has shown two ubiquitous operational taxonomic units (OTUs), yet much is unknown about their genomic diversity. Genome-resolved metagenomics allows for the specific binning of microbial genomes based on genomic signatures present in composite metagenome assemblies. This resulted in the recovery of 93 genome bins, of which 34 were classified as Zetaproteobacteria. Form II ribulose 1,5-bisphosphate carboxylase genes were recovered from nearly all the Zetaproteobacteria genome bins. In addition, the Zetaproteobacteria genome bins contain genes for uptake and utilization of bioavailable nitrogen, detoxification of arsenic, and a terminal electron acceptor adapted for low oxygen concentration. Our results also support the hypothesis of a Cyc2-like protein as the site for iron oxidation, now detected across a majority of the Zetaproteobacteria genome bins. Whole genome comparisons showed a high genomic diversity across the Zetaproteobacteria OTUs and genome bins that were previously unidentified by SSU rRNA gene analysis. A single lineage of cosmopolitan Zetaproteobacteria (zOTU 2) was found to be monophyletic, based on cluster analysis of average nucleotide identity and average amino acid identity comparisons. From these data, we can begin to pinpoint genomic adaptations of the more ecologically ubiquitous Zetaproteobacteria, and further understand their environmental constraints and metabolic potential.

  13. Gene and genome-centric analyses of koala and wombat fecal microbiomes point to metabolic specialization for Eucalyptus digestion

    Directory of Open Access Journals (Sweden)

    Miriam E. Shiffman

    2017-11-01

    Full Text Available The koala has evolved to become a specialist Eucalyptus herbivore since diverging from its closest relative, the wombat, a generalist herbivore. This niche adaptation involves, in part, changes in the gut microbiota. The goal of this study was to compare koala and wombat fecal microbiomes using metagenomics to identify potential differences attributable to dietary specialization. Several populations discriminated between the koala and wombat fecal communities, most notably S24-7 and Synergistaceae in the koala, and Christensenellaceae and RF39 in the wombat. As expected for herbivores, both communities contained the genes necessary for lignocellulose degradation and urea recycling partitioned and redundantly encoded across multiple populations. Secondary metabolism was overrepresented in the koala fecal samples, consistent with the need to process Eucalyptus secondary metabolites. The Synergistaceae population encodes multiple pathways potentially relevant to Eucalyptus compound metabolism, and is predicted to be a key player in detoxification of the koala’s diet. Notably, characterized microbial isolates from the koala gut appear to be minor constituents of this habitat, and the metagenomes provide the opportunity for genome-directed isolation of more representative populations. Metagenomic analysis of other obligate and facultative Eucalyptus folivores will reveal whether putatively detoxifying bacteria identified in the koala are shared across these marsupials.

  14. Insight into Dominant Cellulolytic Bacteria from Two Biogas Digesters and Their Glycoside Hydrolase Genes

    Science.gov (United States)

    Zhang, Jun; Zhang, Lei; Geng, Alei; Liu, Fanghua; Zhao, Guoping; Wang, Shengyue; Zhou, Zhihua; Yan, Xing

    2015-01-01

    Diverse cellulolytic bacteria are essential for maintaining high lignocellulose degradation ability in biogas digesters. However, little was known about functional genes and gene clusters of dominant cellulolytic bacteria in biogas digesters. This is the foundation to understand lignocellulose degradation mechanisms of biogas digesters and apply these gene resource for optimizing biofuel production. A combination of metagenomic and 16S rRNA gene clone library methods was used to investigate the dominant cellulolytic bacteria and their glycoside hydrolase (GH) genes in two biogas digesters. The 16S rRNA gene analysis revealed that the dominant cellulolytic bacteria were strains closely related to Clostridium straminisolvens and an uncultured cellulolytic bacterium designated BG-1. To recover GH genes from cellulolytic bacteria in general, and BG-1 in particular, a refined assembly approach developed in this study was used to assemble GH genes from metagenomic reads; 163 GH-containing contigs ≥ 1 kb in length were obtained. Six recovered GH5 genes that were expressed in E. coli demonstrated multiple lignocellulase activities and one had high mannanase activity (1255 U/mg). Eleven fosmid clones harboring the recovered GH-containing contigs were sequenced and assembled into 10 fosmid contigs. The composition of GH genes in the 163 assembled metagenomic contigs and 10 fosmid contigs indicated that diverse GHs and lignocellulose degradation mechanisms were present in the biogas digesters. In particular, a small portion of BG-1 genome information was recovered by PhyloPythiaS analysis. The lignocellulase gene clusters in BG-1 suggested that it might use a possible novel lignocellulose degradation mechanism to efficiently degrade lignocellulose. Dominant cellulolytic bacteria of biogas digester possess diverse GH genes, not only in sequences but also in their functions, which may be applied for production of biofuel in the future. PMID:26070087

  15. MetaComp: comprehensive analysis software for comparative meta-omics including comparative metagenomics.

    Science.gov (United States)

    Zhai, Peng; Yang, Longshu; Guo, Xiao; Wang, Zhe; Guo, Jiangtao; Wang, Xiaoqi; Zhu, Huaiqiu

    2017-10-02

    During the past decade, the development of high throughput nucleic sequencing and mass spectrometry analysis techniques have enabled the characterization of microbial communities through metagenomics, metatranscriptomics, metaproteomics and metabolomics data. To reveal the diversity of microbial communities and interactions between living conditions and microbes, it is necessary to introduce comparative analysis based upon integration of all four types of data mentioned above. Comparative meta-omics, especially comparative metageomics, has been established as a routine process to highlight the significant differences in taxon composition and functional gene abundance among microbiota samples. Meanwhile, biologists are increasingly concerning about the correlations between meta-omics features and environmental factors, which may further decipher the adaptation strategy of a microbial community. We developed a graphical comprehensive analysis software named MetaComp comprising a series of statistical analysis approaches with visualized results for metagenomics and other meta-omics data comparison. This software is capable to read files generated by a variety of upstream programs. After data loading, analyses such as multivariate statistics, hypothesis testing of two-sample, multi-sample as well as two-group sample and a novel function-regression analysis of environmental factors are offered. Here, regression analysis regards meta-omic features as independent variable and environmental factors as dependent variables. Moreover, MetaComp is capable to automatically choose an appropriate two-group sample test based upon the traits of input abundance profiles. We further evaluate the performance of its choice, and exhibit applications for metagenomics, metaproteomics and metabolomics samples. MetaComp, an integrative software capable for applying to all meta-omics data, originally distills the influence of living environment on microbial community by regression analysis

  16. PCR-Based Analysis of ColE1 Plasmids in Clinical Isolates and Metagenomic Samples Reveals Their Importance as Gene Capture Platforms

    Directory of Open Access Journals (Sweden)

    Manuel Ares-Arroyo

    2018-03-01

    Full Text Available ColE1 plasmids are important vehicles for the spread of antibiotic resistance in the Enterobacteriaceae and Pasteurellaceae families of bacteria. Their monitoring is essential, as they harbor important resistant determinants in humans, animals and the environment. In this work, we have analyzed ColE1 replicons using bioinformatic and experimental approaches. First, we carried out a computational study examining the structure of different ColE1 plasmids deposited in databases. Bioinformatic analysis of these ColE1 replicons revealed a mosaic genetic structure consisting of a host-adapted conserved region responsible for the housekeeping functions of the plasmid, and a variable region encoding a wide variety of genes, including multiple antibiotic resistance determinants. From this exhaustive computational analysis we developed a new PCR-based technique, targeting a specific sequence in the conserved region, for the screening, capture and sequencing of these small plasmids, either specific for Enterobacteriaceae or specific for Pasteurellaceae. To validate this PCR-based system, we tested various collections of isolates from both bacterial families, finding that ColE1 replicons were not only highly prevalent in antibiotic-resistant isolates, but also present in susceptible bacteria. In Pasteurellaceae, ColE1 plasmids carried almost exclusively antibiotic resistance genes. In Enterobacteriaceae, these plasmids encoded a large range of traits, including not only antibiotic resistance determinants, but also a wide variety of genes, showing the huge genetic plasticity of these small replicons. Finally, we also used a metagenomic approach in order to validate this technique, performing this PCR system using total DNA extractions from fecal samples from poultry, turkeys, pigs and humans. Using Illumina sequencing of the PCR products we identified a great diversity of genes encoded by ColE1 replicons, including different antibiotic resistance

  17. Identification of a novel human papillomavirus by metagenomic analysis of samples from patients with febrile respiratory illness.

    Directory of Open Access Journals (Sweden)

    John L Mokili

    Full Text Available As part of a virus discovery investigation using a metagenomic approach, a highly divergent novel Human papillomavirus type was identified in pooled convenience nasal/oropharyngeal swab samples collected from patients with febrile respiratory illness. Phylogenetic analysis of the whole genome and the L1 gene reveals that the new HPV identified in this study clusters with previously described gamma papillomaviruses, sharing only 61.1% (whole genome and 63.1% (L1 sequence identity with its closest relative in the Papillomavirus episteme (PAVE database. This new virus was named HPV_SD2 pending official classification. The complete genome of HPV-SD2 is 7,299 bp long (36.3% G/C and contains 7 open reading frames (L2, L1, E6, E7, E1, E2 and E4 and a non-coding long control region (LCR between L1 and E6. The metagenomic procedures, coupled with the bioinformatic methods described herein are well suited to detect small circular genomes such as those of human papillomaviruses.

  18. Exploring the Antarctic soil metagenome as a source of novel cold-adapted enzymes and genetic mobile elements

    Directory of Open Access Journals (Sweden)

    Renaud Berlemont

    2011-06-01

    Full Text Available Metagenomic library PP1 was obtained from Antarctic soil samples. Both functional and genotypic metagenomic screening were used for the isolation of novel cold-adapted enzymes with potential applications, and for the detection of genetic elements associated with gene mobilization, respectively. Fourteen lipase/esterase-, 14 amylase-, 3 protease-, and 11 cellulase-producing clones were detected by activity-driven screening, with apparent maximum activities around 35 °C for both amylolytic and lipolytic enzymes, and 35-55 °C for cellulases, as observed for other cold-adapted enzymes. However, the behavior of at least one of the studied cellulases is more compatible to that observed for mesophilic enzymes. These enzymes are usually still active at temperatures above 60 °C, probably resulting in a psychrotolerant behavior in Antarctic soils. Metagenomics allows to access novel genes encoding for enzymatic and biophysic properties from almost every environment with potential benefits for biotechnological and industrial applications. Only intI- and tnp-like genes were detected by PCR, encoding for proteins with 58-86 %, and 58-73 % amino acid identity with known entries, respectively. Two clones, BAC 27A-9 and BAC 14A-5, seem to present unique syntenic organizations, suggesting the occurrence of gene rearrangements that were probably due to evolutionary divergences within the genus or facilitated by the association with transposable elements. The evidence for genetic elements related to recruitment and mobilization of genes (transposons/integrons in an extreme environment like Antarctica reinforces the hypothesis of the origin of some of the genes disseminated by mobile elements among "human-associated" microorganisms.A partir de muestras de suelo antártico se obtuvo la metagenoteca PP1. Esta fue sometida a análisis funcionales y genotípicos para el aislamiento de nuevas enzimas adaptadas al frío con potenciales aplicaciones, y para la detecci

  19. Identification of rat genes by TWINSCAN gene prediction, RT-PCR, and direct sequencing

    DEFF Research Database (Denmark)

    Wu, Jia Qian; Shteynberg, David; Arumugam, Manimozhiyan

    2004-01-01

    an alternative approach: reverse transcription-polymerase chain reaction (RT-PCR) and direct sequencing based on dual-genome de novo predictions from TWINSCAN. We tested 444 TWINSCAN-predicted rat genes that showed significant homology to known human genes implicated in disease but that were partially...... in the single-intron experiment. Spliced sequences were amplified in 46 cases (34%). We conclude that this procedure for elucidating gene structures with native cDNA sequences is cost-effective and will become even more so as it is further optimized.......The publication of a draft sequence of a third mammalian genome--that of the rat--suggests a need to rethink genome annotation. New mammalian sequences will not receive the kind of labor-intensive annotation efforts that are currently being devoted to human. In this paper, we demonstrate...

  20. Structural and mechanistic analysis of a β-glycoside phosphorylase identified by screening a metagenomic library.

    Science.gov (United States)

    Macdonald, Spencer S; Patel, Ankoor; Larmour, Veronica L C; Morgan-Lang, Connor; Hallam, Steven J; Mark, Brian L; Withers, Stephen G

    2018-03-02

    Glycoside phosphorylases have considerable potential as catalysts for the assembly of useful glycans for products ranging from functional foods and prebiotics to novel materials. However, the substrate diversity of currently identified phosphorylases is relatively small, limiting their practical applications. To address this limitation, we developed a high-throughput screening approach using the activated substrate 2,4-dinitrophenyl β-d-glucoside (DNPGlc) and inorganic phosphate for identifying glycoside phosphorylase activity and used it to screen a large insert metagenomic library. The initial screen, based on release of 2,4-dinitrophenyl from DNPGlc in the presence of phosphate, identified the gene bglP, encoding a retaining β-glycoside phosphorylase from the CAZy GH3 family. Kinetic and mechanistic analysis of the gene product, BglP, confirmed a double displacement ping-pong mechanism involving a covalent glycosyl-enzyme intermediate. X-ray crystallographic analysis provided insights into the phosphate-binding mode and identified a key glutamine residue in the active site important for substrate recognition. Substituting this glutamine for a serine swapped the substrate specificity from glucoside to N -acetylglucosaminide. In summary, we present a high-throughput screening approach for identifying β-glycoside phosphorylases, which was robust, simple to implement, and useful in identifying active clones within a metagenomics library. Implementation of this screen enabled discovery of a new glycoside phosphorylase class and has paved the way to devising simple ways in which enzyme specificity can be encoded and swapped, which has implications for biotechnological applications. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Genome-wide targeted prediction of ABA responsive genes in rice based on over-represented cis-motif in co-expressed genes.

    Science.gov (United States)

    Lenka, Sangram K; Lohia, Bikash; Kumar, Abhay; Chinnusamy, Viswanathan; Bansal, Kailash C

    2009-02-01

    Abscisic acid (ABA), the popular plant stress hormone, plays a key role in regulation of sub-set of stress responsive genes. These genes respond to ABA through specific transcription factors which bind to cis-regulatory elements present in their promoters. We discovered the ABA Responsive Element (ABRE) core (ACGT) containing CGMCACGTGB motif as over-represented motif among the promoters of ABA responsive co-expressed genes in rice. Targeted gene prediction strategy using this motif led to the identification of 402 protein coding genes potentially regulated by ABA-dependent molecular genetic network. RT-PCR analysis of arbitrarily chosen 45 genes from the predicted 402 genes confirmed 80% accuracy of our prediction. Plant Gene Ontology (GO) analysis of ABA responsive genes showed enrichment of signal transduction and stress related genes among diverse functional categories.

  2. Combining many interaction networks to predict gene function and analyze gene lists.

    Science.gov (United States)

    Mostafavi, Sara; Morris, Quaid

    2012-05-01

    In this article, we review how interaction networks can be used alone or in combination in an automated fashion to provide insight into gene and protein function. We describe the concept of a "gene-recommender system" that can be applied to any large collection of interaction networks to make predictions about gene or protein function based on a query list of proteins that share a function of interest. We discuss these systems in general and focus on one specific system, GeneMANIA, that has unique features and uses different algorithms from the majority of other systems. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The role of gene-gene interaction in the prediction of criminal behavior.

    Science.gov (United States)

    Boutwell, Brian B; Menard, Scott; Barnes, J C; Beaver, Kevin M; Armstrong, Todd A; Boisvert, Danielle

    2014-04-01

    A host of research has examined the possibility that environmental risk factors might condition the influence of genes on various outcomes. Less research, however, has been aimed at exploring the possibility that genetic factors might interact to impact the emergence of human traits. Even fewer studies exist examining the interaction of genes in the prediction of behavioral outcomes. The current study expands this body of research by testing the interaction between genes involved in neural transmission. Our findings suggest that certain dopamine genes interact to increase the odds of criminogenic outcomes in a national sample of Americans. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Metagenomics, metaMicrobesOnline and Kbase Data Integration (MICW - Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    Energy Technology Data Exchange (ETDEWEB)

    Dehal, Paramvir

    2011-10-12

    Berkeley Lab's Paramvir Dehal on "Managing and Storing large Datasets in MicrobesOnline, metaMicrobesOnline and the DOE Knowledgebase" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  5. Metagenomics of the Svalbard reindeer rumen microbiome reveals abundance of polysaccharide utilization loci.

    Directory of Open Access Journals (Sweden)

    Phillip B Pope

    Full Text Available Lignocellulosic biomass remains a largely untapped source of renewable energy predominantly due to its recalcitrance and an incomplete understanding of how this is overcome in nature. We present here a compositional and comparative analysis of metagenomic data pertaining to a natural biomass-converting ecosystem adapted to austere arctic nutritional conditions, namely the rumen microbiome of Svalbard reindeer (Rangifer tarandus platyrhynchus. Community analysis showed that deeply-branched cellulolytic lineages affiliated to the Bacteroidetes and Firmicutes are dominant, whilst sequence binning methods facilitated the assemblage of metagenomic sequence for a dominant and novel Bacteroidales clade (SRM-1. Analysis of unassembled metagenomic sequence as well as metabolic reconstruction of SRM-1 revealed the presence of multiple polysaccharide utilization loci-like systems (PULs as well as members of more than 20 glycoside hydrolase and other carbohydrate-active enzyme families targeting various polysaccharides including cellulose, xylan and pectin. Functional screening of cloned metagenome fragments revealed high cellulolytic activity and an abundance of PULs that are rich in endoglucanases (GH5 but devoid of other common enzymes thought to be involved in cellulose degradation. Combining these results with known and partly re-evaluated metagenomic data strongly indicates that much like the human distal gut, the digestive system of herbivores harbours high numbers of deeply branched and as-yet uncultured members of the Bacteroidetes that depend on PUL-like systems for plant biomass degradation.

  6. Metagenomes Reveal Global Distribution of Bacterial Steroid Catabolism in Natural, Engineered, and Host Environments

    Directory of Open Access Journals (Sweden)

    Johannes Holert

    2018-01-01

    Full Text Available Steroids are abundant growth substrates for bacteria in natural, engineered, and host-associated environments. This study analyzed the distribution of the aerobic 9,10-seco steroid degradation pathway in 346 publically available metagenomes from diverse environments. Our results show that steroid-degrading bacteria are globally distributed and prevalent in particular environments, such as wastewater treatment plants, soil, plant rhizospheres, and the marine environment, including marine sponges. Genomic signature-based sequence binning recovered 45 metagenome-assembled genomes containing a majority of 9,10-seco pathway genes. Only Actinobacteria and Proteobacteria were identified as steroid degraders, but we identified several alpha- and gammaproteobacterial lineages not previously known to degrade steroids. Actino- and proteobacterial steroid degraders coexisted in wastewater, while soil and rhizosphere samples contained mostly actinobacterial ones. Actinobacterial steroid degraders were found in deep ocean samples, while mostly alpha- and gammaproteobacterial ones were found in other marine samples, including sponges. Isolation of steroid-degrading bacteria from sponges confirmed their presence. Phylogenetic analysis of key steroid degradation proteins suggested their biochemical novelty in genomes from sponges and other environments. This study shows that the ecological significance as well as taxonomic and biochemical diversity of bacterial steroid degradation has so far been largely underestimated, especially in the marine environment.

  7. Challenges of the Unknown: Clinical Application of Microbial Metagenomics

    Directory of Open Access Journals (Sweden)

    Graham Rose

    2015-01-01

    Full Text Available Availability of fast, high throughput and low cost whole genome sequencing holds great promise within public health microbiology, with applications ranging from outbreak detection and tracking transmission events to understanding the role played by microbial communities in health and disease. Within clinical metagenomics, identifying microorganisms from a complex and host enriched background remains a central computational challenge. As proof of principle, we sequenced two metagenomic samples, a known viral mixture of 25 human pathogens and an unknown complex biological model using benchtop technology. The datasets were then analysed using a bioinformatic pipeline developed around recent fast classification methods. A targeted approach was able to detect 20 of the viruses against a background of host contamination from multiple sources and bacterial contamination. An alternative untargeted identification method was highly correlated with these classifications, and over 1,600 species were identified when applied to the complex biological model, including several species captured at over 50% genome coverage. In summary, this study demonstrates the great potential of applying metagenomics within the clinical laboratory setting and that this can be achieved using infrastructure available to nondedicated sequencing centres.

  8. Bioinformatic approaches reveal metagenomic characterization of soil microbial community.

    Directory of Open Access Journals (Sweden)

    Zhuofei Xu

    Full Text Available As is well known, soil is a complex ecosystem harboring the most prokaryotic biodiversity on the Earth. In recent years, the advent of high-throughput sequencing techniques has greatly facilitated the progress of soil ecological studies. However, how to effectively understand the underlying biological features of large-scale sequencing data is a new challenge. In the present study, we used 33 publicly available metagenomes from diverse soil sites (i.e. grassland, forest soil, desert, Arctic soil, and mangrove sediment and integrated some state-of-the-art computational tools to explore the phylogenetic and functional characterizations of the microbial communities in soil. Microbial composition and metabolic potential in soils were comprehensively illustrated at the metagenomic level. A spectrum of metagenomic biomarkers containing 46 taxa and 33 metabolic modules were detected to be significantly differential that could be used as indicators to distinguish at least one of five soil communities. The co-occurrence associations between complex microbial compositions and functions were inferred by network-based approaches. Our results together with the established bioinformatic pipelines should provide a foundation for future research into the relation between soil biodiversity and ecosystem function.

  9. Introduction to Metagenomics at DOE JGI (Opening Remarks for the Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    Energy Technology Data Exchange (ETDEWEB)

    Kyrpides, Nikos [DOE JGI

    2011-10-12

    After a quick introduction by DOE JGI Director Eddy Rubin, DOE JGI's Nikos Kyrpides delivers the opening remarks at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011

  10. Strategies for enhancing the effectiveness of metagenomic-based enzyme discovery in lignocellulytic microbial communities

    Energy Technology Data Exchange (ETDEWEB)

    DeAngelis, K.M.; Gladden, J.G.; Allgaier, M.; D' haeseleer, P.; Fortney, J.L.; Reddy, A.; Hugenholtz, P.; Singer, S.W.; Vander Gheynst, J.; Silver, W.L.; Simmons, B.; Hazen, T.C.

    2010-03-01

    Producing cellulosic biofuels from plant material has recently emerged as a key U.S. Department of Energy goal. For this technology to be commercially viable on a large scale, it is critical to make production cost efficient by streamlining both the deconstruction of lignocellulosic biomass and fuel production. Many natural ecosystems efficiently degrade lignocellulosic biomass and harbor enzymes that, when identified, could be used to increase the efficiency of commercial biomass deconstruction. However, ecosystems most likely to yield relevant enzymes, such as tropical rain forest soil in Puerto Rico, are often too complex for enzyme discovery using current metagenomic sequencing technologies. One potential strategy to overcome this problem is to selectively cultivate the microbial communities from these complex ecosystems on biomass under defined conditions, generating less complex biomass-degrading microbial populations. To test this premise, we cultivated microbes from Puerto Rican soil or green waste compost under precisely defined conditions in the presence dried ground switchgrass (Panicum virgatum L.) or lignin, respectively, as the sole carbon source. Phylogenetic profiling of the two feedstock-adapted communities using SSU rRNA gene amplicon pyrosequencing or phylogenetic microarray analysis revealed that the adapted communities were significantly simplified compared to the natural communities from which they were derived. Several members of the lignin-adapted and switchgrass-adapted consortia are related to organisms previously characterized as biomass degraders, while others were from less well-characterized phyla. The decrease in complexity of these communities make them good candidates for metagenomic sequencing and will likely enable the reconstruction of a greater number of full length genes, leading to the discovery of novel lignocellulose-degrading enzymes adapted to feedstocks and conditions of interest.

  11. Identification of a robust gene signature that predicts breast cancer outcome in independent data sets

    International Nuclear Information System (INIS)

    Korkola, James E; Waldman, Frederic M; Blaveri, Ekaterina; DeVries, Sandy; Moore, Dan H II; Hwang, E Shelley; Chen, Yunn-Yi; Estep, Anne LH; Chew, Karen L; Jensen, Ronald H

    2007-01-01

    Breast cancer is a heterogeneous disease, presenting with a wide range of histologic, clinical, and genetic features. Microarray technology has shown promise in predicting outcome in these patients. We profiled 162 breast tumors using expression microarrays to stratify tumors based on gene expression. A subset of 55 tumors with extensive follow-up was used to identify gene sets that predicted outcome. The predictive gene set was further tested in previously published data sets. We used different statistical methods to identify three gene sets associated with disease free survival. A fourth gene set, consisting of 21 genes in common to all three sets, also had the ability to predict patient outcome. To validate the predictive utility of this derived gene set, it was tested in two published data sets from other groups. This gene set resulted in significant separation of patients on the basis of survival in these data sets, correctly predicting outcome in 62–65% of patients. By comparing outcome prediction within subgroups based on ER status, grade, and nodal status, we found that our gene set was most effective in predicting outcome in ER positive and node negative tumors. This robust gene selection with extensive validation has identified a predictive gene set that may have clinical utility for outcome prediction in breast cancer patients

  12. Potential and pitfalls of eukaryotic metagenome skimming: a test case for lichens.

    Science.gov (United States)

    Greshake, Bastian; Zehr, Simonida; Dal Grande, Francesco; Meiser, Anjuli; Schmitt, Imke; Ebersberger, Ingo

    2016-03-01

    Whole-genome shotgun sequencing of multispecies communities using only a single library layout is commonly used to assess taxonomic and functional diversity of microbial assemblages. Here, we investigate to what extent such metagenome skimming approaches are applicable for in-depth genomic characterizations of eukaryotic communities, for example lichens. We address how to best assemble a particular eukaryotic metagenome skimming data, what pitfalls can occur, and what genome quality can be expected from these data. To facilitate a project-specific benchmarking, we introduce the concept of twin sets, simulated data resembling the outcome of a particular metagenome sequencing study. We show that the quality of genome reconstructions depends essentially on assembler choice. Individual tools, including the metagenome assemblers Omega and MetaVelvet, are surprisingly sensitive to low and uneven coverages. In combination with the routine of assembly parameter choice to optimize the assembly N50 size, these tools can preclude an entire genome from the assembly. In contrast, MIRA, an all-purpose overlap assembler, and SPAdes, a multisized de Bruijn graph assembler, facilitate a comprehensive view on the individual genomes across a wide range of coverage ratios. Testing assemblers on a real-world metagenome skimming data from the lichen Lasallia pustulata demonstrates the applicability of twin sets for guiding method selection. Furthermore, it reveals that the assembly outcome for the photobiont Trebouxia sp. falls behind the a priori expectation given the simulations. Although the underlying reasons remain still unclear, this highlights that further studies on this organism require special attention during sequence data generation and downstream analysis. © 2015 John Wiley & Sons Ltd.

  13. Metagenomic Signatures of Bacterial Adaptation to Life in the Phyllosphere of a Salt-Secreting Desert Tree.

    Science.gov (United States)

    Finkel, Omri M; Delmont, Tom O; Post, Anton F; Belkin, Shimshon

    2016-05-01

    The leaves of Tamarix aphylla, a globally distributed, salt-secreting desert tree, are dotted with alkaline droplets of high salinity. To successfully inhabit these organic carbon-rich droplets, bacteria need to be adapted to multiple stress factors, including high salinity, high alkalinity, high UV radiation, and periodic desiccation. To identify genes that are important for survival in this harsh habitat, microbial community DNA was extracted from the leaf surfaces of 10 Tamarix aphylla trees along a 350-km longitudinal gradient. Shotgun metagenomic sequencing, contig assembly, and binning yielded 17 genome bins, six of which were >80% complete. These genomic bins, representing three phyla (Proteobacteria,Bacteroidetes, and Firmicutes), were closely related to halophilic and alkaliphilic taxa isolated from aquatic and soil environments. Comparison of these genomic bins to the genomes of their closest relatives revealed functional traits characteristic of bacterial populations inhabiting the Tamarix phyllosphere, independent of their taxonomic affiliation. These functions, most notably light-sensing genes, are postulated to represent important adaptations toward colonization of this habitat. Plant leaves are an extensive and diverse microbial habitat, forming the main interface between solar energy and the terrestrial biosphere. There are hundreds of thousands of plant species in the world, exhibiting a wide range of morphologies, leaf surface chemistries, and ecological ranges. In order to understand the core adaptations of microorganisms to this habitat, it is important to diversify the type of leaves that are studied. This study provides an analysis of the genomic content of the most abundant bacterial inhabitants of the globally distributed, salt-secreting desert tree Tamarix aphylla Draft genomes of these bacteria were assembled, using the culture-independent technique of assembly and binning of metagenomic data. Analysis of the genomes reveals traits that

  14. Biogeographical distribution analysis of hydrocarbon degrading and biosurfactant producing genes suggests that near-equatorial biomes have higher abundance of genes with potential for bioremediation.

    Science.gov (United States)

    Oliveira, Jorge S; Araújo, Wydemberg J; Figueiredo, Ricardo M; Silva-Portela, Rita C B; de Brito Guerra, Alaine; da Silva Araújo, Sinara Carla; Minnicelli, Carolina; Carlos, Aline Cardoso; de Vasconcelos, Ana Tereza Ribeiro; Freitas, Ana Teresa; Agnez-Lima, Lucymara F

    2017-07-27

    Bacterial and Archaeal communities have a complex, symbiotic role in crude oil bioremediation. Their biosurfactants and degradation enzymes have been in the spotlight, mainly due to the awareness of ecosystem pollution caused by crude oil accidents and their use. Initially, the scientific community studied the role of individual microbial species by characterizing and optimizing their biosurfactant and oil degradation genes, studying their individual distribution. However, with the advances in genomics, in particular with the use of New-Generation-Sequencing and Metagenomics, it is now possible to have a macro view of the complex pathways related to the symbiotic degradation of hydrocarbons and surfactant production. It is now possible, although more challenging, to obtain the DNA information of an entire microbial community before automatically characterizing it. By characterizing and understanding the interconnected role of microorganisms and the role of degradation and biosurfactant genes in an ecosystem, it becomes possible to develop new biotechnological approaches for bioremediation use. This paper analyzes 46 different metagenome samples, spanning 20 biomes from different geographies obtained from different research projects. A metagenomics bioinformatics pipeline, focused on the biodegradation and biosurfactant-production pathways, genes and organisms, was applied. Our main results show that: (1) surfactation and degradation are correlated events, and therefore should be studied together; (2) terrestrial biomes present more degradation genes, especially cyclic compounds, and less surfactation genes, when compared to water biomes; and (3) latitude has a significant influence on the diversity of genes involved in biodegradation and biosurfactant production. This suggests that microbiomes found near the equator are richer in genes that have a role in these processes and thus have a higher biotechnological potential. In this work we have focused on the

  15. High-resolution metagenomics targets major functional types in complex microbial communities

    Energy Technology Data Exchange (ETDEWEB)

    Kalyuzhnaya, Marina G.; Lapidus, Alla; Ivanova, Natalia; Copeland, Alex C.; McHardy, Alice C.; Szeto, Ernest; Salamov, Asaf; Grigoriev, Igor V.; Suciu, Dominic; Levine, Samuel R.; Markowitz, Victor M.; Rigoutsos, Isidore; Tringe, Susannah G.; Bruce, David C.; Richardson, Paul M.; Lidstrom, Mary E.; Chistoserdova, Ludmila

    2009-08-01

    Most microbes in the biosphere remain uncultured and unknown. Whole genome shotgun (WGS) sequencing of environmental DNA (metagenomics) allows glimpses into genetic and metabolic potentials of natural microbial communities. However, in communities of high complexity metagenomics fail to link specific microbes to specific ecological functions. To overcome this limitation, we selectively targeted populations involved in oxidizing single-carbon (C{sub 1}) compounds in Lake Washington (Seattle, USA) by labeling their DNA via stable isotope probing (SIP), followed by WGS sequencing. Metagenome analysis demonstrated specific sequence enrichments in response to different C{sub 1} substrates, highlighting ecological roles of individual phylotypes. We further demonstrated the utility of our approach by extracting a nearly complete genome of a novel methylotroph Methylotenera mobilis, reconstructing its metabolism and conducting genome-wide analyses. This approach allowing high-resolution genomic analysis of ecologically relevant species has the potential to be applied to a wide variety of ecosystems.

  16. Ten years of maintaining and expanding a microbial genome and metagenome analysis system.

    Science.gov (United States)

    Markowitz, Victor M; Chen, I-Min A; Chu, Ken; Pati, Amrita; Ivanova, Natalia N; Kyrpides, Nikos C

    2015-11-01

    Launched in March 2005, the Integrated Microbial Genomes (IMG) system is a comprehensive data management system that supports multidimensional comparative analysis of genomic data. At the core of the IMG system is a data warehouse that contains genome and metagenome datasets sequenced at the Joint Genome Institute or provided by scientific users, as well as public genome datasets available at the National Center for Biotechnology Information Genbank sequence data archive. Genomes and metagenome datasets are processed using IMG's microbial genome and metagenome sequence data processing pipelines and are integrated into the data warehouse using IMG's data integration toolkits. Microbial genome and metagenome application specific data marts and user interfaces provide access to different subsets of IMG's data and analysis toolkits. This review article revisits IMG's original aims, highlights key milestones reached by the system during the past 10 years, and discusses the main challenges faced by a rapidly expanding system, in particular the complexity of maintaining such a system in an academic setting with limited budgets and computing and data management infrastructure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Metagenomic analyses reveal the involvement of syntrophic consortia in methanol/electricity conversion in microbial fuel cells.

    Science.gov (United States)

    Yamamuro, Ayaka; Kouzuma, Atsushi; Abe, Takashi; Watanabe, Kazuya

    2014-01-01

    Methanol is widely used in industrial processes, and as such, is discharged in large quantities in wastewater. Microbial fuel cells (MFCs) have the potential to recover electric energy from organic pollutants in wastewater; however, the use of MFCs to generate electricity from methanol has not been reported. In the present study, we developed single-chamber MFCs that generated electricity from methanol at the maximum power density of 220 mW m(-2) (based on the projected area of the anode). In order to reveal how microbes generate electricity from methanol, pyrosequencing of 16S rRNA-gene amplicons and Illumina shotgun sequencing of metagenome were conducted. The pyrosequencing detected in abundance Dysgonomonas, Sporomusa, and Desulfovibrio in the electrolyte and anode and cathode biofilms, while Geobacter was detected only in the anode biofilm. Based on known physiological properties of these bacteria, it is considered that Sporomusa converts methanol into acetate, which is then utilized by Geobacter to generate electricity. This speculation is supported by results of shotgun metagenomics of the anode-biofilm microbes, which reconstructed relevant catabolic pathways in these bacteria. These results suggest that methanol is anaerobically catabolized by syntrophic bacterial consortia with electrodes as electron acceptors.

  18. Estimating DNA coverage and abundance in metagenomes using a gamma approximation

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Sean D; Dalevi, Daniel; Pati, Amrita; Mavromatis, Konstantinos; Ivanova, Natalia N; Kyrpides, Nikos C

    2010-01-01

    Shotgun sequencing generates large numbers of short DNA reads from either an isolated organism or, in the case of metagenomics projects, from the aggregate genome of a microbial community. These reads are then assembled based on overlapping sequences into larger, contiguous sequences (contigs). The feasibility of assembly and the coverage achieved (reads per nucleotide or distinct sequence of nucleotides) depend on several factors: the number of reads sequenced, the read length and the relative abundances of their source genomes in the microbial community. A low coverage suggests that most of the genomic DNA in the sample has not been sequenced, but it is often difficult to estimate either the extent of the uncaptured diversity or the amount of additional sequencing that would be most efficacious. In this work, we regard a metagenome as a population of DNA fragments (bins), each of which may be covered by one or more reads. We employ a gamma distribution to model this bin population due to its flexibility and ease of use. When a gamma approximation can be found that adequately fits the data, we may estimate the number of bins that were not sequenced and that could potentially be revealed by additional sequencing. We evaluated the performance of this model using simulated metagenomes and demonstrate its applicability on three recent metagenomic datasets.

  19. Metagenomic binning of a marine sponge microbiome reveals unity in defense but metabolic specialization.

    Science.gov (United States)

    Slaby, Beate M; Hackl, Thomas; Horn, Hannes; Bayer, Kristina; Hentschel, Ute

    2017-11-01

    Marine sponges are ancient metazoans that are populated by distinct and highly diverse microbial communities. In order to obtain deeper insights into the functional gene repertoire of the Mediterranean sponge Aplysina aerophoba, we combined Illumina short-read and PacBio long-read sequencing followed by un-targeted metagenomic binning. We identified a total of 37 high-quality bins representing 11 bacterial phyla and two candidate phyla. Statistical comparison of symbiont genomes with selected reference genomes revealed a significant enrichment of genes related to bacterial defense (restriction-modification systems, toxin-antitoxin systems) as well as genes involved in host colonization and extracellular matrix utilization in sponge symbionts. A within-symbionts genome comparison revealed a nutritional specialization of at least two symbiont guilds, where one appears to metabolize carnitine and the other sulfated polysaccharides, both of which are abundant molecules in the sponge extracellular matrix. A third guild of symbionts may be viewed as nutritional generalists that perform largely the same metabolic pathways but lack such extraordinary numbers of the relevant genes. This study characterizes the genomic repertoire of sponge symbionts at an unprecedented resolution and it provides greater insights into the molecular mechanisms underlying microbial-sponge symbiosis.

  20. Pediatric fecal microbiota harbor diverse and novel antibiotic resistance genes.

    Directory of Open Access Journals (Sweden)

    Aimée M Moore

    Full Text Available Emerging antibiotic resistance threatens human health. Gut microbes are an epidemiologically important reservoir of resistance genes (resistome, yet prior studies indicate that the true diversity of gut-associated resistomes has been underestimated. To deeply characterize the pediatric gut-associated resistome, we created metagenomic recombinant libraries in an Escherichia coli host using fecal DNA from 22 healthy infants and children (most without recent antibiotic exposure, and performed functional selections for resistance to 18 antibiotics from eight drug classes. Resistance-conferring DNA fragments were sequenced (Illumina HiSeq 2000, and reads assembled and annotated with the PARFuMS computational pipeline. Resistance to 14 of the 18 antibiotics was found in stools of infants and children. Recovered genes included chloramphenicol acetyltransferases, drug-resistant dihydrofolate reductases, rRNA methyltransferases, transcriptional regulators, multidrug efflux pumps, and every major class of beta-lactamase, aminoglycoside-modifying enzyme, and tetracycline resistance protein. Many resistance-conferring sequences were mobilizable; some had low identity to any known organism, emphasizing cryptic organisms as potentially important resistance reservoirs. We functionally confirmed three novel resistance genes, including a 16S rRNA methylase conferring aminoglycoside resistance, and two tetracycline-resistance proteins nearly identical to a bifidobacterial MFS transporter (B. longum s. longum JDM301. We provide the first report to our knowledge of resistance to folate-synthesis inhibitors conferred by a predicted Nudix hydrolase (part of the folate synthesis pathway. This functional metagenomic survey of gut-associated resistomes, the largest of its kind to date, demonstrates that fecal resistomes of healthy children are far more diverse than previously suspected, that clinically relevant resistance genes are present even without recent selective