WorldWideScience

Sample records for metabolomics

  1. Metabolomics

    DEFF Research Database (Denmark)

    Kamstrup-Nielsen, Maja Hermann

    Metabolomics is the analysis of the whole metabolome and the focus in metabolomics studies is to measure as many metabolites as possible. The use of chemometrics in metabolomics studies is widespread, but there is a clear lack of validation in the developed models. The focus in this thesis has been...... how to properly handle complex metabolomics data, in order to achieve reliable and valid multivariate models. This has been illustrated by three case studies with examples of forecasting breast cancer and early detection of colorectal cancer based on data from nuclear magnetic resonance (NMR...... is a presentation of a core consistency diagnostic aiding in determining the number of components in a PARAFAC2 model. It is of great importance to validate especially PLS-DA models and if not done properly, the developed models might reveal spurious groupings. Furthermore, data from metabolomics studies contain...

  2. Nutritional Metabolomics

    DEFF Research Database (Denmark)

    Gürdeniz, Gözde

    strategy influences the patterns identified as important for the nutritional question under study. Therefore, in depth understanding of the study design and the specific effects of the analytical technology on the produced data is extremely important to achieve high quality data handling. Besides data......Metabolomics provides a holistic approach to investigate the perturbations in human metabolism with respect to a specific exposure. In nutritional metabolomics, the research question is generally related to the effect of a specific food intake on metabolic profiles commonly of plasma or urine....... Application of multiple analytical strategies may provide comprehensive information to reach a valid answer to these research questions. In this thesis, I investigated several analytical technologies and data handling strategies in order to evaluate their effects on the biological answer. In metabolomics, one...

  3. Informatics for Metabolomics.

    Science.gov (United States)

    Kusonmano, Kanthida; Vongsangnak, Wanwipa; Chumnanpuen, Pramote

    2016-01-01

    Metabolome profiling of biological systems has the powerful ability to provide the biological understanding of their metabolic functional states responding to the environmental factors or other perturbations. Tons of accumulative metabolomics data have thus been established since pre-metabolomics era. This is directly influenced by the high-throughput analytical techniques, especially mass spectrometry (MS)- and nuclear magnetic resonance (NMR)-based techniques. Continuously, the significant numbers of informatics techniques for data processing, statistical analysis, and data mining have been developed. The following tools and databases are advanced for the metabolomics society which provide the useful metabolomics information, e.g., the chemical structures, mass spectrum patterns for peak identification, metabolite profiles, biological functions, dynamic metabolite changes, and biochemical transformations of thousands of small molecules. In this chapter, we aim to introduce overall metabolomics studies from pre- to post-metabolomics era and their impact on society. Directing on post-metabolomics era, we provide a conceptual framework of informatics techniques for metabolomics and show useful examples of techniques, tools, and databases for metabolomics data analysis starting from preprocessing toward functional interpretation. Throughout the framework of informatics techniques for metabolomics provided, it can be further used as a scaffold for translational biomedical research which can thus lead to reveal new metabolite biomarkers, potential metabolic targets, or key metabolic pathways for future disease therapy.

  4. Metabolomics for laboratory diagnostics.

    Science.gov (United States)

    Bujak, Renata; Struck-Lewicka, Wiktoria; Markuszewski, Michał J; Kaliszan, Roman

    2015-09-10

    Metabolomics is an emerging approach in a systems biology field. Due to continuous development in advanced analytical techniques and in bioinformatics, metabolomics has been extensively applied as a novel, holistic diagnostic tool in clinical and biomedical studies. Metabolome's measurement, as a chemical reflection of a current phenotype of a particular biological system, is nowadays frequently implemented to understand pathophysiological processes involved in disease progression as well as to search for new diagnostic or prognostic biomarkers of various organism's disorders. In this review, we discussed the research strategies and analytical platforms commonly applied in the metabolomics studies. The applications of the metabolomics in laboratory diagnostics in the last 5 years were also reviewed according to the type of biological sample used in the metabolome's analysis. We also discussed some limitations and further improvements which should be considered taking in mind potential applications of metabolomic research and practice. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Metabolomics and Epidemiology Working Group

    Science.gov (United States)

    The Metabolomics and Epidemiology (MetEpi) Working Group promotes metabolomics analyses in population-based studies, as well as advancement in the field of metabolomics for broader biomedical and public health research.

  6. Metabolomic Studies in Drosophila.

    Science.gov (United States)

    Cox, James E; Thummel, Carl S; Tennessen, Jason M

    2017-07-01

    Metabolomic analysis provides a powerful new tool for studies of Drosophila physiology. This approach allows investigators to detect thousands of chemical compounds in a single sample, representing the combined contributions of gene expression, enzyme activity, and environmental context. Metabolomics has been used for a wide range of studies in Drosophila , often providing new insights into gene function and metabolic state that could not be obtained using any other approach. In this review, we survey the uses of metabolomic analysis since its entry into the field. We also cover the major methods used for metabolomic studies in Drosophila and highlight new directions for future research. Copyright © 2017 by the Genetics Society of America.

  7. Metabolomics: A Primer.

    Science.gov (United States)

    Liu, Xiaojing; Locasale, Jason W

    2017-04-01

    Metabolomics generates a profile of small molecules that are derived from cellular metabolism and can directly reflect the outcome of complex networks of biochemical reactions, thus providing insights into multiple aspects of cellular physiology. Technological advances have enabled rapid and increasingly expansive data acquisition with samples as small as single cells; however, substantial challenges in the field remain. In this primer we provide an overview of metabolomics, especially mass spectrometry (MS)-based metabolomics, which uses liquid chromatography (LC) for separation, and discuss its utilities and limitations. We identify and discuss several areas at the frontier of metabolomics. Our goal is to give the reader a sense of what might be accomplished when conducting a metabolomics experiment, now and in the near future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. The Human Serum Metabolome

    Science.gov (United States)

    Psychogios, Nikolaos; Hau, David D.; Peng, Jun; Guo, An Chi; Mandal, Rupasri; Bouatra, Souhaila; Sinelnikov, Igor; Krishnamurthy, Ramanarayan; Eisner, Roman; Gautam, Bijaya; Young, Nelson; Xia, Jianguo; Knox, Craig; Dong, Edison; Huang, Paul; Hollander, Zsuzsanna; Pedersen, Theresa L.; Smith, Steven R.; Bamforth, Fiona; Greiner, Russ; McManus, Bruce; Newman, John W.; Goodfriend, Theodore; Wishart, David S.

    2011-01-01

    Continuing improvements in analytical technology along with an increased interest in performing comprehensive, quantitative metabolic profiling, is leading to increased interest pressures within the metabolomics community to develop centralized metabolite reference resources for certain clinically important biofluids, such as cerebrospinal fluid, urine and blood. As part of an ongoing effort to systematically characterize the human metabolome through the Human Metabolome Project, we have undertaken the task of characterizing the human serum metabolome. In doing so, we have combined targeted and non-targeted NMR, GC-MS and LC-MS methods with computer-aided literature mining to identify and quantify a comprehensive, if not absolutely complete, set of metabolites commonly detected and quantified (with today's technology) in the human serum metabolome. Our use of multiple metabolomics platforms and technologies allowed us to substantially enhance the level of metabolome coverage while critically assessing the relative strengths and weaknesses of these platforms or technologies. Tables containing the complete set of 4229 confirmed and highly probable human serum compounds, their concentrations, related literature references and links to their known disease associations are freely available at http://www.serummetabolome.ca. PMID:21359215

  9. Metabolomics in chemical ecology.

    Science.gov (United States)

    Kuhlisch, Constanze; Pohnert, Georg

    2015-07-01

    Chemical ecology elucidates the nature and role of natural products as mediators of organismal interactions. The emerging techniques that can be summarized under the concept of metabolomics provide new opportunities to study such environmentally relevant signaling molecules. Especially comparative tools in metabolomics enable the identification of compounds that are regulated during interaction situations and that might play a role as e.g. pheromones, allelochemicals or in induced and activated defenses. This approach helps overcoming limitations of traditional bioassay-guided structure elucidation approaches. But the power of metabolomics is not limited to the comparison of metabolic profiles of interacting partners. Especially the link to other -omics techniques helps to unravel not only the compounds in question but the entire biosynthetic and genetic re-wiring, required for an ecological response. This review comprehensively highlights successful applications of metabolomics in chemical ecology and discusses existing limitations of these novel techniques. It focuses on recent developments in comparative metabolomics and discusses the use of metabolomics in the systems biology of organismal interactions. It also outlines the potential of large metabolomics initiatives for model organisms in the field of chemical ecology.

  10. Metabolomic studies in pulmonology

    Directory of Open Access Journals (Sweden)

    R. R. Furina

    2015-01-01

    Full Text Available The review shows the results of metabolomic studies in pulmonology. The key idea of metabolomics is to detect specific biomarkers in a biological sample for the diagnosis of diseases of the bronchi and lung. Main methods for the separation and identification of volatile organic substances as biomarkers (gas chromatography, mass spectrometry, and nuclear magnetic resonance spectrometry used in metabolomics are given. A solid-phase microextraction method used to pre-prepare a sample is also covered. The results of laboratory tests for biomarkers for lung cancer, acute respiratory distress syndrome, chronic obstructive pulmonary disease, cystic fibrosis, chronic infections, and pulmonary tuberculosis are presented. In addition, emphasis is placed on the possibilities of metabolomics used in experimental medicine, including to the study of asthma. The information is of interest to both theorists and practitioners.

  11. The food metabolome

    DEFF Research Database (Denmark)

    Scalbert, Augustin; Brennan, Lorraine; Manach, Claudine

    2014-01-01

    to the diet. By its very nature it represents a considerable and still largely unexploited source of novel dietary biomarkers that could be used to measure dietary exposures with a high level of detail and precision. Most dietary biomarkers currently have been identified on the basis of our knowledge of food......The food metabolome is defined as the part of the human metabolome directly derived from the digestion and biotransformation of foods and their constituents. With >25,000 compounds known in various foods, the food metabolome is extremely complex, with a composition varying widely according...... by the recent identification of novel biomarkers of intakes for fruit, vegetables, beverages, meats, or complex diets. Moreover, examples also show how the scrutiny of the food metabolome can lead to the discovery of bioactive molecules and dietary factors associated with diseases. However, researchers still...

  12. Current metabolomics: technological advances.

    Science.gov (United States)

    Putri, Sastia P; Yamamoto, Shinya; Tsugawa, Hiroshi; Fukusaki, Eiichiro

    2013-07-01

    Metabolomics, the global quantitative assessment of metabolites in a biological system, has played a pivotal role in various fields of science in the post-genomic era. Metabolites are the result of the interaction of the system's genome with its environment and are not merely the end product of gene expression, but also form part of the regulatory system in an integrated manner. Therefore, metabolomics is often considered a powerful tool to provide an instantaneous snapshot of the physiology of a cell. The power of metabolomics lies on the acquisition of analytical data in which metabolites in a cellular system are quantified, and the extraction of the most meaningful elements of the data by using various data analysis tool. In this review, we discuss the latest development of analytical techniques and data analyses methods in metabolomics study. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. Metabolomics er fremtiden

    DEFF Research Database (Denmark)

    Pedersern, Birger

    2010-01-01

    Forskningen i fødevarer har fået et potent redskab i hånden. Metabolomics er vejen frem, mener professor Søren Balling Engelsen fra Københavns Universitet......Forskningen i fødevarer har fået et potent redskab i hånden. Metabolomics er vejen frem, mener professor Søren Balling Engelsen fra Københavns Universitet...

  14. Quality assurance of metabolomics.

    Science.gov (United States)

    Bouhifd, Mounir; Beger, Richard; Flynn, Thomas; Guo, Lining; Harris, Georgina; Hogberg, Helena; Kaddurah-Daouk, Rima; Kamp, Hennicke; Kleensang, Andre; Maertens, Alexandra; Odwin-DaCosta, Shelly; Pamies, David; Robertson, Donald; Smirnova, Lena; Sun, Jinchun; Zhao, Liang; Hartung, Thomas

    2015-01-01

    Metabolomics promises a holistic phenotypic characterization of biological responses to toxicants. This technology is based on advanced chemical analytical tools with reasonable throughput, including mass-spectroscopy and NMR. Quality assurance, however - from experimental design, sample preparation, metabolite identification, to bioinformatics data-mining - is urgently needed to assure both quality of metabolomics data and reproducibility of biological models. In contrast to microarray-based transcriptomics, where consensus on quality assurance and reporting standards has been fostered over the last two decades, quality assurance of metabolomics is only now emerging. Regulatory use in safety sciences, and even proper scientific use of these technologies, demand quality assurance. In an effort to promote this discussion, an expert workshop discussed the quality assurance needs of metabolomics. The goals for this workshop were 1) to consider the challenges associated with metabolomics as an emerging science, with an emphasis on its application in toxicology and 2) to identify the key issues to be addressed in order to establish and implement quality assurance procedures in metabolomics-based toxicology. Consensus has still to be achieved regarding best practices to make sure sound, useful, and relevant information is derived from these new tools.

  15. Nanoparticle-Assisted Metabolomics

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2018-03-01

    Full Text Available Understanding and harnessing the interactions between nanoparticles and biological molecules is at the forefront of applications of nanotechnology to modern biology. Metabolomics has emerged as a prominent player in systems biology as a complement to genomics, transcriptomics and proteomics. Its focus is the systematic study of metabolite identities and concentration changes in living systems. Despite significant progress over the recent past, important challenges in metabolomics remain, such as the deconvolution of the spectra of complex mixtures with strong overlaps, the sensitive detection of metabolites at low abundance, unambiguous identification of known metabolites, structure determination of unknown metabolites and standardized sample preparation for quantitative comparisons. Recent research has demonstrated that some of these challenges can be substantially alleviated with the help of nanoscience. Nanoparticles in particular have found applications in various areas of bioanalytical chemistry and metabolomics. Their chemical surface properties and increased surface-to-volume ratio endows them with a broad range of binding affinities to biomacromolecules and metabolites. The specific interactions of nanoparticles with metabolites or biomacromolecules help, for example, simplify metabolomics spectra, improve the ionization efficiency for mass spectrometry or reveal relationships between spectral signals that belong to the same molecule. Lessons learned from nanoparticle-assisted metabolomics may also benefit other emerging areas, such as nanotoxicity and nanopharmaceutics.

  16. Clinical Metabolomics and Glaucoma.

    Science.gov (United States)

    Barbosa-Breda, João; Himmelreich, Uwe; Ghesquière, Bart; Rocha-Sousa, Amândio; Stalmans, Ingeborg

    2018-01-01

    Glaucoma is one of the leading causes of irreversible blindness worldwide. However, there are no biomarkers that accurately help clinicians perform an early diagnosis or detect patients with a high risk of progression. Metabolomics is the study of all metabolites in an organism, and it has the potential to provide a biomarker. This review summarizes the findings of metabolomics in glaucoma patients and explains why this field is promising for new research. We identified published studies that focused on metabolomics and ophthalmology. After providing an overview of metabolomics in ophthalmology, we focused on human glaucoma studies. Five studies have been conducted in glaucoma patients and all compared patients to healthy controls. Using mass spectrometry, significant differences were found in blood plasma in the metabolic pathways that involve palmitoylcarnitine, sphingolipids, vitamin D-related compounds, and steroid precursors. For nuclear magnetic resonance spectroscopy, a high glutamine-glutamate/creatine ratio was found in the vitreous and lateral geniculate body; no differences were detected in the optic radiations, and a lower N-acetylaspartate/choline ratio was observed in the geniculocalcarine and striate areas. Metabolomics can move glaucoma care towards a personalized approach and provide new knowledge concerning the pathophysiology of glaucoma, which can lead to new therapeutic options. © 2017 S. Karger AG, Basel.

  17. Gut metabolome meets microbiome

    DEFF Research Database (Denmark)

    Lamichhane, Santosh; Sen, Partho; Dickens, Alex M

    2018-01-01

    It is well established that gut microbes and their metabolic products regulate host metabolism. The interactions between the host and its gut microbiota are highly dynamic and complex. In this review we present and discuss the metabolomic strategies to study the gut microbial ecosystem. We...... highlight the metabolic profiling approaches to study faecal samples aimed at deciphering the metabolic product derived from gut microbiota. We also discuss how metabolomics data can be integrated with metagenomics data derived from gut microbiota and how such approaches may lead to better understanding...

  18. Metabolomics and Personalized Medicine.

    Science.gov (United States)

    Koen, Nadia; Du Preez, Ilse; Loots, Du Toit

    2016-01-01

    Current clinical practice strongly relies on the prognosis, diagnosis, and treatment of diseases using methods determined and averaged for the specific diseased cohort/population. Although this approach complies positively with most patients, misdiagnosis, treatment failure, relapse, and adverse drug effects are common occurrences in many individuals, which subsequently hamper the control and eradication of a number of diseases. These incidences can be explained by individual variation in the genome, transcriptome, proteome, and metabolome of a patient. Various "omics" approaches have investigated the influence of these factors on a molecular level, with the intention of developing personalized approaches to disease diagnosis and treatment. Metabolomics, the newest addition to the "omics" domain and the closest to the observed phenotype, reflects changes occurring at all molecular levels, as well as influences resulting from other internal and external factors. By comparing the metabolite profiles of two or more disease phenotypes, metabolomics can be applied to identify biomarkers related to the perturbation being investigated. These biomarkers can, in turn, be used to develop personalized prognostic, diagnostic, and treatment approaches, and can also be applied to the monitoring of disease progression, treatment efficacy, predisposition to drug-related side effects, and potential relapse. In this review, we discuss the contributions that metabolomics has made, and can potentially still make, towards the field of personalized medicine. © 2016 Elsevier Inc. All rights reserved.

  19. Single cell metabolomics

    NARCIS (Netherlands)

    Heinemann, Matthias; Zenobi, Renato

    Recent discoveries suggest that cells of a clonal population often display multiple metabolic phenotypes at the same time. Motivated by the success of mass spectrometry (MS) in the investigation of population-level metabolomics, the analytical community has initiated efforts towards MS-based single

  20. NMR-based milk metabolomics

    DEFF Research Database (Denmark)

    Sundekilde, Ulrik; Larsen, Lotte Bach; Bertram, Hanne Christine S.

    2013-01-01

    and processing capabilities of bovine milk is closely associated to milk composition. Metabolomics is ideal in the study of the low-molecular-weight compounds in milk, and this review focuses on the recent nuclear magnetic resonance (NMR)-based metabolomics trends in milk research, including applications linking...... compounds. Furthermore, metabolomics applications elucidating how the differential regulated genes affects milk composition are also reported. This review will highlight the recent advances in NMR-based metabolomics on milk, as well as give a brief summary of when NMR spectroscopy can be useful for gaining...

  1. Metabolomics in transfusion medicine.

    Science.gov (United States)

    Nemkov, Travis; Hansen, Kirk C; Dumont, Larry J; D'Alessandro, Angelo

    2016-04-01

    Biochemical investigations on the regulatory mechanisms of red blood cell (RBC) and platelet (PLT) metabolism have fostered a century of advances in the field of transfusion medicine. Owing to these advances, storage of RBCs and PLT concentrates has become a lifesaving practice in clinical and military settings. There, however, remains room for improvement, especially with regard to the introduction of novel storage and/or rejuvenation solutions, alternative cell processing strategies (e.g., pathogen inactivation technologies), and quality testing (e.g., evaluation of novel containers with alternative plasticizers). Recent advancements in mass spectrometry-based metabolomics and systems biology, the bioinformatics integration of omics data, promise to speed up the design and testing of innovative storage strategies developed to improve the quality, safety, and effectiveness of blood products. Here we review the currently available metabolomics technologies and briefly describe the routine workflow for transfusion medicine-relevant studies. The goal is to provide transfusion medicine experts with adequate tools to navigate through the otherwise overwhelming amount of metabolomics data burgeoning in the field during the past few years. Descriptive metabolomics data have represented the first step omics researchers have taken into the field of transfusion medicine. However, to up the ante, clinical and omics experts will need to merge their expertise to investigate correlative and mechanistic relationships among metabolic variables and transfusion-relevant variables, such as 24-hour in vivo recovery for transfused RBCs. Integration with systems biology models will potentially allow for in silico prediction of metabolic phenotypes, thus streamlining the design and testing of alternative storage strategies and/or solutions. © 2015 AABB.

  2. The Human Urine Metabolome

    Science.gov (United States)

    Bouatra, Souhaila; Aziat, Farid; Mandal, Rupasri; Guo, An Chi; Wilson, Michael R.; Knox, Craig; Bjorndahl, Trent C.; Krishnamurthy, Ramanarayan; Saleem, Fozia; Liu, Philip; Dame, Zerihun T.; Poelzer, Jenna; Huynh, Jessica; Yallou, Faizath S.; Psychogios, Nick; Dong, Edison; Bogumil, Ralf; Roehring, Cornelia; Wishart, David S.

    2013-01-01

    Urine has long been a “favored” biofluid among metabolomics researchers. It is sterile, easy-to-obtain in large volumes, largely free from interfering proteins or lipids and chemically complex. However, this chemical complexity has also made urine a particularly difficult substrate to fully understand. As a biological waste material, urine typically contains metabolic breakdown products from a wide range of foods, drinks, drugs, environmental contaminants, endogenous waste metabolites and bacterial by-products. Many of these compounds are poorly characterized and poorly understood. In an effort to improve our understanding of this biofluid we have undertaken a comprehensive, quantitative, metabolome-wide characterization of human urine. This involved both computer-aided literature mining and comprehensive, quantitative experimental assessment/validation. The experimental portion employed NMR spectroscopy, gas chromatography mass spectrometry (GC-MS), direct flow injection mass spectrometry (DFI/LC-MS/MS), inductively coupled plasma mass spectrometry (ICP-MS) and high performance liquid chromatography (HPLC) experiments performed on multiple human urine samples. This multi-platform metabolomic analysis allowed us to identify 445 and quantify 378 unique urine metabolites or metabolite species. The different analytical platforms were able to identify (quantify) a total of: 209 (209) by NMR, 179 (85) by GC-MS, 127 (127) by DFI/LC-MS/MS, 40 (40) by ICP-MS and 10 (10) by HPLC. Our use of multiple metabolomics platforms and technologies allowed us to identify several previously unknown urine metabolites and to substantially enhance the level of metabolome coverage. It also allowed us to critically assess the relative strengths and weaknesses of different platforms or technologies. The literature review led to the identification and annotation of another 2206 urinary compounds and was used to help guide the subsequent experimental studies. An online database containing

  3. Livestock metabolomics and the livestock metabolome: A systematic review.

    Science.gov (United States)

    Goldansaz, Seyed Ali; Guo, An Chi; Sajed, Tanvir; Steele, Michael A; Plastow, Graham S; Wishart, David S

    2017-01-01

    Metabolomics uses advanced analytical chemistry techniques to comprehensively measure large numbers of small molecule metabolites in cells, tissues and biofluids. The ability to rapidly detect and quantify hundreds or even thousands of metabolites within a single sample is helping scientists paint a far more complete picture of system-wide metabolism and biology. Metabolomics is also allowing researchers to focus on measuring the end-products of complex, hard-to-decipher genetic, epigenetic and environmental interactions. As a result, metabolomics has become an increasingly popular "omics" approach to assist with the robust phenotypic characterization of humans, crop plants and model organisms. Indeed, metabolomics is now routinely used in biomedical, nutritional and crop research. It is also being increasingly used in livestock research and livestock monitoring. The purpose of this systematic review is to quantitatively and objectively summarize the current status of livestock metabolomics and to identify emerging trends, preferred technologies and important gaps in the field. In conducting this review we also critically assessed the applications of livestock metabolomics in key areas such as animal health assessment, disease diagnosis, bioproduct characterization and biomarker discovery for highly desirable economic traits (i.e., feed efficiency, growth potential and milk production). A secondary goal of this critical review was to compile data on the known composition of the livestock metabolome (for 5 of the most common livestock species namely cattle, sheep, goats, horses and pigs). These data have been made available through an open access, comprehensive livestock metabolome database (LMDB, available at http://www.lmdb.ca). The LMDB should enable livestock researchers and producers to conduct more targeted metabolomic studies and to identify where further metabolome coverage is needed.

  4. Livestock metabolomics and the livestock metabolome: A systematic review

    Science.gov (United States)

    Guo, An Chi; Sajed, Tanvir; Steele, Michael A.; Plastow, Graham S.; Wishart, David S.

    2017-01-01

    Metabolomics uses advanced analytical chemistry techniques to comprehensively measure large numbers of small molecule metabolites in cells, tissues and biofluids. The ability to rapidly detect and quantify hundreds or even thousands of metabolites within a single sample is helping scientists paint a far more complete picture of system-wide metabolism and biology. Metabolomics is also allowing researchers to focus on measuring the end-products of complex, hard-to-decipher genetic, epigenetic and environmental interactions. As a result, metabolomics has become an increasingly popular “omics” approach to assist with the robust phenotypic characterization of humans, crop plants and model organisms. Indeed, metabolomics is now routinely used in biomedical, nutritional and crop research. It is also being increasingly used in livestock research and livestock monitoring. The purpose of this systematic review is to quantitatively and objectively summarize the current status of livestock metabolomics and to identify emerging trends, preferred technologies and important gaps in the field. In conducting this review we also critically assessed the applications of livestock metabolomics in key areas such as animal health assessment, disease diagnosis, bioproduct characterization and biomarker discovery for highly desirable economic traits (i.e., feed efficiency, growth potential and milk production). A secondary goal of this critical review was to compile data on the known composition of the livestock metabolome (for 5 of the most common livestock species namely cattle, sheep, goats, horses and pigs). These data have been made available through an open access, comprehensive livestock metabolome database (LMDB, available at http://www.lmdb.ca). The LMDB should enable livestock researchers and producers to conduct more targeted metabolomic studies and to identify where further metabolome coverage is needed. PMID:28531195

  5. Metabolomics of Genetically Modified Crops

    Directory of Open Access Journals (Sweden)

    Carolina Simó

    2014-10-01

    Full Text Available Metabolomic-based approaches are increasingly applied to analyse genetically modified organisms (GMOs making it possible to obtain broader and deeper information on the composition of GMOs compared to that obtained from traditional analytical approaches. The combination in metabolomics of advanced analytical methods and bioinformatics tools provides wide chemical compositional data that contributes to corroborate (or not the substantial equivalence and occurrence of unintended changes resulting from genetic transformation. This review provides insight into recent progress in metabolomics studies on transgenic crops focusing mainly in papers published in the last decade.

  6. Metabolomics of Genetically Modified Crops

    Science.gov (United States)

    Simó, Carolina; Ibáñez, Clara; Valdés, Alberto; Cifuentes, Alejandro; García-Cañas, Virginia

    2014-01-01

    Metabolomic-based approaches are increasingly applied to analyse genetically modified organisms (GMOs) making it possible to obtain broader and deeper information on the composition of GMOs compared to that obtained from traditional analytical approaches. The combination in metabolomics of advanced analytical methods and bioinformatics tools provides wide chemical compositional data that contributes to corroborate (or not) the substantial equivalence and occurrence of unintended changes resulting from genetic transformation. This review provides insight into recent progress in metabolomics studies on transgenic crops focusing mainly in papers published in the last decade. PMID:25334064

  7. Metabolomics Workbench (MetWB)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Metabolomics Program's Data Repository and Coordinating Center (DRCC), housed at the San Diego Supercomputer Center (SDSC), University of California, San Diego,...

  8. NMR-based metabolomics applications

    DEFF Research Database (Denmark)

    Iaccarino, Nunzia

    Metabolomics is the scientific discipline that identifies and quantifies endogenous and exogenous metabolites in different biological samples. Metabolites are crucial components of a biological system and they are highly informative about its functional state, due to their closeness to the organism...... focused on the analysis of various samples covering a wide range of fields, namely, food and nutraceutical sciences, cell metabolomics and medicine using a metabolomics approach. Indeed, the first part of the thesis describes two exploratory studies performed on Algerian extra virgin olive oil and apple...... juice from ancient Danish apple cultivars. Both studies revealed variety-related peculiarities that would have been difficult to detect by means of traditional analysis. The second part of the project includes four metabolomics studies performed on samples of biological origin. In particular, the first...

  9. The biology of plant metabolomics

    NARCIS (Netherlands)

    Hall, R.D.

    2011-01-01

    Following a general introduction, this book includes details of metabolomics of model species including Arabidopsis and tomato. Further chapters provide in-depth coverage of abiotic stress, data integration, systems biology, genetics, genomics, chemometrics and biostatisitcs. Applications of plant

  10. Metabolomics Society’s International Affiliations

    NARCIS (Netherlands)

    Roessner, U.; Rolin, D.; Rijswijk, van M.E.C.; Hall, R.D.; Hankemeier, T.

    2015-01-01

    In 2012 the Metabolomics Society established a more formal system for national and regional metabolomics initiatives, interest groups, societies and networks to become an International Affiliate of the Society. A number of groups (http://metabolomicssociety.org/international-affilia

  11. Role of metabolomics in TBI research

    Science.gov (United States)

    Wolahan, Stephanie M.; Hirt, Daniel; Braas, Daniel; Glenn, Thomas C.

    2016-01-01

    Synopsis Metabolomics is an important member of the omics community in that it defines which small molecules may be responsible for disease states. This article reviews the essential principles of metabolomics from specimen preparation, chemical analysis, and advanced statistical methods. Metabolomics in TBI has so far been underutilized. Future metabolomics based studies focused on the diagnoses, prognoses, and treatment effects, need to be conducted across all types of TBI. PMID:27637396

  12. ECMDB: The E. coli Metabolome Database

    OpenAIRE

    Guo, An Chi; Jewison, Timothy; Wilson, Michael; Liu, Yifeng; Knox, Craig; Djoumbou, Yannick; Lo, Patrick; Mandal, Rupasri; Krishnamurthy, Ram; Wishart, David S.

    2012-01-01

    The Escherichia coli Metabolome Database (ECMDB, http://www.ecmdb.ca) is a comprehensively annotated metabolomic database containing detailed information about the metabolome of E. coli (K-12). Modelled closely on the Human and Yeast Metabolome Databases, the ECMDB contains >2600 metabolites with links to ?1500 different genes and proteins, including enzymes and transporters. The information in the ECMDB has been collected from dozens of textbooks, journal articles and electronic databases. E...

  13. Metabolomics: the chemistry between ecology and genetics

    NARCIS (Netherlands)

    Macel, M.; Van Dam, N.M.; Keurentjes, J.J.B.

    2010-01-01

    Metabolomics is a fast developing field of comprehensive untargeted chemical analyses. It has many applications and can in principle be used on any organism without prior knowledge of the metabolome or genome. The amount of functional information that is acquired with metabolomics largely depends on

  14. An overview of renal metabolomics.

    Science.gov (United States)

    Kalim, Sahir; Rhee, Eugene P

    2017-01-01

    The high-throughput, high-resolution phenotyping enabled by metabolomics has been applied increasingly to a variety of questions in nephrology research. This article provides an overview of current metabolomics methodologies and nomenclature, citing specific considerations in sample preparation, metabolite measurement, and data analysis that investigators should understand when examining the literature or designing a study. Furthermore, we review several notable findings that have emerged in the literature that both highlight some of the limitations of current profiling approaches, as well as outline specific strengths unique to metabolomics. More specifically, we review data on the following: (i) tryptophan metabolites and chronic kidney disease onset, illustrating the interpretation of metabolite data in the context of established biochemical pathways; (ii) trimethylamine-N-oxide and cardiovascular disease in chronic kidney disease, illustrating the integration of exogenous and endogenous inputs to the blood metabolome; and (iii) renal mitochondrial function in diabetic kidney disease and acute kidney injury, illustrating the potential for rapid translation of metabolite data for diagnostic or therapeutic aims. Finally, we review future directions, including the need to better characterize interperson and intraperson variation in the metabolome, pool existing data sets to identify the most robust signals, and capitalize on the discovery potential of emerging nontargeted methods. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  15. Applied metabolomics in drug discovery.

    Science.gov (United States)

    Cuperlovic-Culf, M; Culf, A S

    2016-08-01

    The metabolic profile is a direct signature of phenotype and biochemical activity following any perturbation. Metabolites are small molecules present in a biological system including natural products as well as drugs and their metabolism by-products depending on the biological system studied. Metabolomics can provide activity information about possible novel drugs and drug scaffolds, indicate interesting targets for drug development and suggest binding partners of compounds. Furthermore, metabolomics can be used for the discovery of novel natural products and in drug development. Metabolomics can enhance the discovery and testing of new drugs and provide insight into the on- and off-target effects of drugs. This review focuses primarily on the application of metabolomics in the discovery of active drugs from natural products and the analysis of chemical libraries and the computational analysis of metabolic networks. Metabolomics methodology, both experimental and analytical is fast developing. At the same time, databases of compounds are ever growing with the inclusion of more molecular and spectral information. An increasing number of systems are being represented by very detailed metabolic network models. Combining these experimental and computational tools with high throughput drug testing and drug discovery techniques can provide new promising compounds and leads.

  16. Food metabolomics: from farm to human.

    Science.gov (United States)

    Kim, Sooah; Kim, Jungyeon; Yun, Eun Ju; Kim, Kyoung Heon

    2016-02-01

    Metabolomics, one of the latest components in the suite of systems biology, has been used to understand the metabolism and physiology of living systems, including microorganisms, plants, animals and humans. Food metabolomics can be defined as the application of metabolomics in food systems, including food resources, food processing and diet for humans. The study of food metabolomics has increased gradually in the recent years, because food systems are directly related to nutrition and human health. This review describes the recent trends and applications of metabolomics to food systems, from farm to human, including food resource production, industrial food processing and food intake by humans. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Vitamins, metabolomics, and prostate cancer.

    Science.gov (United States)

    Mondul, Alison M; Weinstein, Stephanie J; Albanes, Demetrius

    2017-06-01

    How micronutrients might influence risk of developing adenocarcinoma of the prostate has been the focus of a large body of research (especially regarding vitamins E, A, and D). Metabolomic profiling has the potential to discover molecular species relevant to prostate cancer etiology, early detection, and prevention, and may help elucidate the biologic mechanisms through which vitamins influence prostate cancer risk. Prostate cancer risk data related to vitamins E, A, and D and metabolomic profiling from clinical, cohort, and nested case-control studies, along with randomized controlled trials, are examined and summarized, along with recent metabolomic data of the vitamin phenotypes. Higher vitamin E serologic status is associated with lower prostate cancer risk, and vitamin E genetic variant data support this. By contrast, controlled vitamin E supplementation trials have had mixed results based on differing designs and dosages. Beta-carotene supplementation (in smokers) and higher circulating retinol and 25-hydroxy-vitamin D concentrations appear related to elevated prostate cancer risk. Our prospective metabolomic profiling of fasting serum collected 1-20 years prior to clinical diagnoses found reduced lipid and energy/TCA cycle metabolites, including inositol-1-phosphate, lysolipids, alpha-ketoglutarate, and citrate, significantly associated with lower risk of aggressive disease. Several active leads exist regarding the role of micronutrients and metabolites in prostate cancer carcinogenesis and risk. How vitamins D and A may adversely impact risk, and whether low-dose vitamin E supplementation remains a viable preventive approach, require further study.

  18. The metabolomics standards initiative (MSI)

    NARCIS (Netherlands)

    Fiehn, O.; Robertson, D.; Griffin, J.; Werf, M. van der; Nikolau, B.; Morrison, N.; Sumner, L.W.; Goodacre, R.; Hardy, N.W.; Taylor, C.; Fostel, J.; Kristal, B.; Kaddurah-Daouk, R.; Mendes, P.; Ommen, B. van; Lindon, J.C.; Sansone, S.-A.

    2007-01-01

    In 2005, the Metabolomics Standards Initiative has been formed. An outline and general introduction is provided to inform about the history, structure, working plan and intentions of this initiative. Comments on any of the suggested minimal reporting standards are welcome to be sent to the open

  19. YMDB: the Yeast Metabolome Database

    Science.gov (United States)

    Jewison, Timothy; Knox, Craig; Neveu, Vanessa; Djoumbou, Yannick; Guo, An Chi; Lee, Jacqueline; Liu, Philip; Mandal, Rupasri; Krishnamurthy, Ram; Sinelnikov, Igor; Wilson, Michael; Wishart, David S.

    2012-01-01

    The Yeast Metabolome Database (YMDB, http://www.ymdb.ca) is a richly annotated ‘metabolomic’ database containing detailed information about the metabolome of Saccharomyces cerevisiae. Modeled closely after the Human Metabolome Database, the YMDB contains >2000 metabolites with links to 995 different genes/proteins, including enzymes and transporters. The information in YMDB has been gathered from hundreds of books, journal articles and electronic databases. In addition to its comprehensive literature-derived data, the YMDB also contains an extensive collection of experimental intracellular and extracellular metabolite concentration data compiled from detailed Mass Spectrometry (MS) and Nuclear Magnetic Resonance (NMR) metabolomic analyses performed in our lab. This is further supplemented with thousands of NMR and MS spectra collected on pure, reference yeast metabolites. Each metabolite entry in the YMDB contains an average of 80 separate data fields including comprehensive compound description, names and synonyms, structural information, physico-chemical data, reference NMR and MS spectra, intracellular/extracellular concentrations, growth conditions and substrates, pathway information, enzyme data, gene/protein sequence data, as well as numerous hyperlinks to images, references and other public databases. Extensive searching, relational querying and data browsing tools are also provided that support text, chemical structure, spectral, molecular weight and gene/protein sequence queries. Because of S. cervesiae's importance as a model organism for biologists and as a biofactory for industry, we believe this kind of database could have considerable appeal not only to metabolomics researchers, but also to yeast biologists, systems biologists, the industrial fermentation industry, as well as the beer, wine and spirit industry. PMID:22064855

  20. The next wave in metabolome analysis

    DEFF Research Database (Denmark)

    Nielsen, Jens; Oliver, S.

    2005-01-01

    The metabolome of a cell represents the amplification and integration of signals from other functional genomic levels, such as the transcriptome and the proteome. Although this makes metabolomics a useful tool for the high-throughput analysis of phenotypes, the lack of a direct connection...... to the genome makes it difficult to interpret metabolomic data. Nevertheless, functional genomics has produced examples of the use of metabolomics to elucidate the phenotypes of otherwise silent mutations. Despite several successes, we believe that future metabolomic studies must focus on the accurate...... measurement of the concentrations of unambiguously identified metabolites. The research community must develop databases of metabolite concentrations in cells that are grown in several well-defined conditions if metabolomic data are to be integrated meaningfully with data from the other levels of functional...

  1. Metabolomics Application in Maternal-Fetal Medicine

    OpenAIRE

    Fanos, Vassilios; Atzori, Luigi; Makarenko, Karina; Melis, Gian Benedetto; Ferrazzi, Enrico

    2013-01-01

    Metabolomics in maternal-fetal medicine is still an “embryonic” science. However, there is already an increasing interest in metabolome of normal and complicated pregnancies, and neonatal outcomes. Tissues used for metabolomics interrogations of pregnant women, fetuses and newborns are amniotic fluid, blood, plasma, cord blood, placenta, urine, and vaginal secretions. All published papers highlight the strong correlation between biomarkers found in these tissues and fetal malformations, prete...

  2. Metabolomics in Toxicology and Preclinical Research

    Science.gov (United States)

    Ramirez, Tzutzuy; Daneshian, Mardas; Kamp, Hennicke; Bois, Frederic Y.; Clench, Malcolm R.; Coen, Muireann; Donley, Beth; Fischer, Steven M.; Ekman, Drew R.; Fabian, Eric; Guillou, Claude; Heuer, Joachim; Hogberg, Helena T.; Jungnickel, Harald; Keun, Hector C.; Krennrich, Gerhard; Krupp, Eckart; Luch, Andreas; Noor, Fozia; Peter, Erik; Riefke, Bjoern; Seymour, Mark; Skinner, Nigel; Smirnova, Lena; Verheij, Elwin; Wagner, Silvia; Hartung, Thomas; van Ravenzwaay, Bennard; Leist, Marcel

    2013-01-01

    Summary Metabolomics, the comprehensive analysis of metabolites in a biological system, provides detailed information about the biochemical/physiological status of a biological system, and about the changes caused by chemicals. Metabolomics analysis is used in many fields, ranging from the analysis of the physiological status of genetically modified organisms in safety science to the evaluation of human health conditions. In toxicology, metabolomics is the -omics discipline that is most closely related to classical knowledge of disturbed biochemical pathways. It allows rapid identification of the potential targets of a hazardous compound. It can give information on target organs and often can help to improve our understanding regarding the mode-of-action of a given compound. Such insights aid the discovery of biomarkers that either indicate pathophysiological conditions or help the monitoring of the efficacy of drug therapies. The first toxicological applications of metabolomics were for mechanistic research, but different ways to use the technology in a regulatory context are being explored. Ideally, further progress in that direction will position the metabolomics approach to address the challenges of toxicology of the 21st century. To address these issues, scientists from academia, industry, and regulatory bodies came together in a workshop to discuss the current status of applied metabolomics and its potential in the safety assessment of compounds. We report here on the conclusions of three working groups addressing questions regarding 1) metabolomics for in vitro studies 2) the appropriate use of metabolomics in systems toxicology, and 3) use of metabolomics in a regulatory context. PMID:23665807

  3. Endocrinology Meets Metabolomics: Achievements, Pitfalls, and Challenges.

    Science.gov (United States)

    Tokarz, Janina; Haid, Mark; Cecil, Alexander; Prehn, Cornelia; Artati, Anna; Möller, Gabriele; Adamski, Jerzy

    2017-10-01

    The metabolome, although very dynamic, is sufficiently stable to provide specific quantitative traits related to health and disease. Metabolomics requires balanced use of state-of-the-art study design, chemical analytics, biostatistics, and bioinformatics to deliver meaningful answers to contemporary questions in human disease research. The technology is now frequently employed for biomarker discovery and for elucidating the mechanisms underlying endocrine-related diseases. Metabolomics has also enriched genome-wide association studies (GWAS) in this area by providing functional data. The contributions of rare genetic variants to metabolome variance and to the human phenotype have been underestimated until now. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Functional metabolomics reveals novel active products in the DHA metabolome

    Directory of Open Access Journals (Sweden)

    Masakazu eShinohara

    2012-04-01

    Full Text Available Endogenous mechanisms for successful resolution of an acute inflammatory response and the local return to homeostasis are of interest because excessive inflammation underlies many human diseases. In this review, we provide an update and overview of functional metabolomics that identified a new bioactive metabolome of docosahexaenoic acid (DHA. Systematic studies revealed that DHA was converted to DHEA-derived novel bioactive products as well as aspirin-triggered (AT forms of protectins. The new oxygenated DHEA derived products blocked PMN chemotaxis, reduced P-selectin expression and platelet-leukocyte adhesion, and showed organ protection in ischemia/reperfusion injury. These products activated cannabinoid receptor (CB2 receptor and not CB1 receptors. The AT-PD1 reduced neutrophil (PMN recruitment in murine peritonitis. With human cells, AT-PD1 decreased transendothelial PMN migration as well as enhanced efferocytosis of apoptotic human PMN by macrophages. The recent findings reviewed here indicate that DHEA oxidative metabolism and aspirin-triggered conversion of DHA produce potent novel molecules with anti-inflammatory and organ-protective properties, opening the DHA metabolome functional roles.

  5. Metabolomics window into diabetic complications.

    Science.gov (United States)

    Wu, Tao; Qiao, Shuxuan; Shi, Chenze; Wang, Shuya; Ji, Guang

    2018-03-01

    Diabetes has become a major global health problem. The elucidation of characteristic metabolic alterations during the diabetic progression is critical for better understanding its pathogenesis, and identifying potential biomarkers and drug targets. Metabolomics is a promising tool to reveal the metabolic changes and the underlying mechanism involved in the pathogenesis of diabetic complications. The present review provides an update on the application of metabolomics in diabetic complications, including diabetic coronary artery disease, diabetic nephropathy, diabetic retinopathy and diabetic neuropathy, and this review provides notes on the prevention and prediction of diabetic complications. © 2017 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  6. Metabolomics investigation of whey intake

    DEFF Research Database (Denmark)

    Stanstrup, Jan

    syndrome are complex disorders and are not caused by a high-calorie diet and low exercise level alone. The specific nature of the nutrients, independent of their caloric value, also play a role. The question is which. In the quest to answer this question the qualitative intake of protein is of special...... and prevention of the metabolic syndrome related to obesity and diabetes. In this thesis the effects of whey intake on the human metabolome was investigated using a metabolomics approach. We demonstrated that intake of whey causes a decreased rate of gastric emptying compared to other protein sources....... Therefore this thesis will also present and discuss state-of-the-art tools for computer-assisted compound identification, including: annotation of adducts and fragments, determination of the molecular ion, in silico fragmentation, retention time mapping between analytical systems and de novo retention time...

  7. Metabolomics techniques for nanotoxicity investigations.

    Science.gov (United States)

    Lv, Mengying; Huang, Wanqiu; Chen, Zhipeng; Jiang, Hulin; Chen, Jiaqing; Tian, Yuan; Zhang, Zunjian; Xu, Fengguo

    2015-01-01

    Nanomaterials are commonly defined as engineered structures with at least one dimension of 100 nm or less. Investigations of their potential toxicological impact on biological systems and the environment have yet to catch up with the rapid development of nanotechnology and extensive production of nanoparticles. High-throughput methods are necessary to assess the potential toxicity of nanoparticles. The omics techniques are well suited to evaluate toxicity in both in vitro and in vivo systems. Besides genomic, transcriptomic and proteomic profiling, metabolomics holds great promises for globally evaluating and understanding the molecular mechanism of nanoparticle-organism interaction. This manuscript presents a general overview of metabolomics techniques, summarizes its early application in nanotoxicology and finally discusses opportunities and challenges faced in nanotoxicology.

  8. The future of metabolomics in ELIXIR

    Science.gov (United States)

    van Rijswijk, Merlijn; Beirnaert, Charlie; Caron, Christophe; Cascante, Marta; Dominguez, Victoria; Dunn, Warwick B.; Ebbels, Timothy M. D.; Giacomoni, Franck; Gonzalez-Beltran, Alejandra; Hankemeier, Thomas; Haug, Kenneth; Izquierdo-Garcia, Jose L.; Jimenez, Rafael C.; Jourdan, Fabien; Kale, Namrata; Klapa, Maria I.; Kohlbacher, Oliver; Koort, Kairi; Kultima, Kim; Le Corguillé, Gildas; Moreno, Pablo; Moschonas, Nicholas K.; Neumann, Steffen; O’Donovan, Claire; Reczko, Martin; Rocca-Serra, Philippe; Rosato, Antonio; Salek, Reza M.; Sansone, Susanna-Assunta; Satagopam, Venkata; Schober, Daniel; Shimmo, Ruth; Spicer, Rachel A.; Spjuth, Ola; Thévenot, Etienne A.; Viant, Mark R.; Weber, Ralf J. M.; Willighagen, Egon L.; Zanetti, Gianluigi; Steinbeck, Christoph

    2017-01-01

    Metabolomics, the youngest of the major omics technologies, is supported by an active community of researchers and infrastructure developers across Europe. To coordinate and focus efforts around infrastructure building for metabolomics within Europe, a workshop on the “Future of metabolomics in ELIXIR” was organised at Frankfurt Airport in Germany. This one-day strategic workshop involved representatives of ELIXIR Nodes, members of the PhenoMeNal consortium developing an e-infrastructure that supports workflow-based metabolomics analysis pipelines, and experts from the international metabolomics community. The workshop established metabolite identification as the critical area, where a maximal impact of computational metabolomics and data management on other fields could be achieved. In particular, the existing four ELIXIR Use Cases, where the metabolomics community - both industry and academia - would benefit most, and which could be exhaustively mapped onto the current five ELIXIR Platforms were discussed. This opinion article is a call for support for a new ELIXIR metabolomics Use Case, which aligns with and complements the existing and planned ELIXIR Platforms and Use Cases. PMID:29043062

  9. The future of metabolomics in ELIXIR.

    Science.gov (United States)

    van Rijswijk, Merlijn; Beirnaert, Charlie; Caron, Christophe; Cascante, Marta; Dominguez, Victoria; Dunn, Warwick B; Ebbels, Timothy M D; Giacomoni, Franck; Gonzalez-Beltran, Alejandra; Hankemeier, Thomas; Haug, Kenneth; Izquierdo-Garcia, Jose L; Jimenez, Rafael C; Jourdan, Fabien; Kale, Namrata; Klapa, Maria I; Kohlbacher, Oliver; Koort, Kairi; Kultima, Kim; Le Corguillé, Gildas; Moreno, Pablo; Moschonas, Nicholas K; Neumann, Steffen; O'Donovan, Claire; Reczko, Martin; Rocca-Serra, Philippe; Rosato, Antonio; Salek, Reza M; Sansone, Susanna-Assunta; Satagopam, Venkata; Schober, Daniel; Shimmo, Ruth; Spicer, Rachel A; Spjuth, Ola; Thévenot, Etienne A; Viant, Mark R; Weber, Ralf J M; Willighagen, Egon L; Zanetti, Gianluigi; Steinbeck, Christoph

    2017-01-01

    Metabolomics, the youngest of the major omics technologies, is supported by an active community of researchers and infrastructure developers across Europe. To coordinate and focus efforts around infrastructure building for metabolomics within Europe, a workshop on the "Future of metabolomics in ELIXIR" was organised at Frankfurt Airport in Germany. This one-day strategic workshop involved representatives of ELIXIR Nodes, members of the PhenoMeNal consortium developing an e-infrastructure that supports workflow-based metabolomics analysis pipelines, and experts from the international metabolomics community. The workshop established metabolite identification as the critical area, where a maximal impact of computational metabolomics and data management on other fields could be achieved. In particular, the existing four ELIXIR Use Cases, where the metabolomics community - both industry and academia - would benefit most, and which could be exhaustively mapped onto the current five ELIXIR Platforms were discussed. This opinion article is a call for support for a new ELIXIR metabolomics Use Case, which aligns with and complements the existing and planned ELIXIR Platforms and Use Cases.

  10. Symbiosis of chemometrics and metabolomics: past, present, and future

    NARCIS (Netherlands)

    van der Greef, J.; Smilde, A. K.

    2005-01-01

    Metabolomics is a growing area in the field of systems biology. Metabolomics has already a long history and also the connection of metabolomics with chemometrics goes back some time. This review discusses the symbiosis of metabolomics and chemometrics with emphasis on the medical domain, puts the

  11. Metabolomics and bioactive substances in plants

    DEFF Research Database (Denmark)

    Khakimov, Bekzod

    Metabolomic analysis of plants broadens understanding of how plants may benefit humans, animals and the environment, provide sustainable food and energy, and improve current agricultural, pharmacological and medicinal practices in order to bring about healthier and longer life. The quality...... and amount of the extractible biological information is largely determined by data acquisition, data processing and analysis methodologies of the plant metabolomics studies. This PhD study focused mainly on the development and implementation of new metabolomics methodologies for improved data acquisition...... and data processing. The study mainly concerned the three most commonly applied analytical techniques in plant metabolomics, GC-MS, LC-MS and NMR. In addition, advanced chemometrics methods e.g. PARAFAC2 and ASCA have been extensively used for development of complex metabolomics data processing...

  12. A Metabolomic Perspective on Coeliac Disease

    Science.gov (United States)

    Calabrò, Antonio

    2014-01-01

    Metabolomics is an “omic” science that is now emerging with the purpose of elaborating a comprehensive analysis of the metabolome, which is the complete set of metabolites (i.e., small molecules intermediates) in an organism, tissue, cell, or biofluid. In the past decade, metabolomics has already proved to be useful for the characterization of several pathological conditions and offers promises as a clinical tool. A metabolomics investigation of coeliac disease (CD) revealed that a metabolic fingerprint for CD can be defined, which accounts for three different but complementary components: malabsorption, energy metabolism, and alterations in gut microflora and/or intestinal permeability. In this review, we will discuss the major advancements in metabolomics of CD, in particular with respect to the role of gut microbiome and energy metabolism. PMID:24665364

  13. Functional Analysis of Metabolomics Data.

    Science.gov (United States)

    Chagoyen, Mónica; López-Ibáñez, Javier; Pazos, Florencio

    2016-01-01

    Metabolomics aims at characterizing the repertory of small chemical compounds in a biological sample. As it becomes more massive and larger sets of compounds are detected, a functional analysis is required to convert these raw lists of compounds into biological knowledge. The most common way of performing such analysis is "annotation enrichment analysis," also used in transcriptomics and proteomics. This approach extracts the annotations overrepresented in the set of chemical compounds arisen in a given experiment. Here, we describe the protocols for performing such analysis as well as for visualizing a set of compounds in different representations of the metabolic networks, in both cases using free accessible web tools.

  14. Probabilistic Principal Component Analysis for Metabolomic Data.

    LENUS (Irish Health Repository)

    Nyamundanda, Gift

    2010-11-23

    Abstract Background Data from metabolomic studies are typically complex and high-dimensional. Principal component analysis (PCA) is currently the most widely used statistical technique for analyzing metabolomic data. However, PCA is limited by the fact that it is not based on a statistical model. Results Here, probabilistic principal component analysis (PPCA) which addresses some of the limitations of PCA, is reviewed and extended. A novel extension of PPCA, called probabilistic principal component and covariates analysis (PPCCA), is introduced which provides a flexible approach to jointly model metabolomic data and additional covariate information. The use of a mixture of PPCA models for discovering the number of inherent groups in metabolomic data is demonstrated. The jackknife technique is employed to construct confidence intervals for estimated model parameters throughout. The optimal number of principal components is determined through the use of the Bayesian Information Criterion model selection tool, which is modified to address the high dimensionality of the data. Conclusions The methods presented are illustrated through an application to metabolomic data sets. Jointly modeling metabolomic data and covariates was successfully achieved and has the potential to provide deeper insight to the underlying data structure. Examination of confidence intervals for the model parameters, such as loadings, allows for principled and clear interpretation of the underlying data structure. A software package called MetabolAnalyze, freely available through the R statistical software, has been developed to facilitate implementation of the presented methods in the metabolomics field.

  15. Metabolomics: beyond biomarkers and towards mechanisms

    Science.gov (United States)

    Johnson, Caroline H.; Ivanisevic, Julijana; Siuzdak, Gary

    2017-01-01

    Metabolomics, which is the profiling of metabolites in biofluids, cells and tissues, is routinely applied as a tool for biomarker discovery. Owing to innovative developments in informatics and analytical technologies, and the integration of orthogonal biological approaches, it is now possible to expand metabolomic analyses to understand the systems-level effects of metabolites. Moreover, because of the inherent sensitivity of metabolomics, subtle alterations in biological pathways can be detected to provide insight into the mechanisms that underlie various physiological conditions and aberrant processes, including diseases. PMID:26979502

  16. Metabolomics applied to the pancreatic islet.

    Science.gov (United States)

    Gooding, Jessica R; Jensen, Mette V; Newgard, Christopher B

    2016-01-01

    Metabolomics, the characterization of the set of small molecules in a biological system, is advancing research in multiple areas of islet biology. Measuring a breadth of metabolites simultaneously provides a broad perspective on metabolic changes as the islets respond dynamically to metabolic fuels, hormones, or environmental stressors. As a result, metabolomics has the potential to provide new mechanistic insights into islet physiology and pathophysiology. Here we summarize advances in our understanding of islet physiology and the etiologies of type-1 and type-2 diabetes gained from metabolomics studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Mathematical Modeling Approaches in Plant Metabolomics.

    Science.gov (United States)

    Fürtauer, Lisa; Weiszmann, Jakob; Weckwerth, Wolfram; Nägele, Thomas

    2018-01-01

    The experimental analysis of a plant metabolome typically results in a comprehensive and multidimensional data set. To interpret metabolomics data in the context of biochemical regulation and environmental fluctuation, various approaches of mathematical modeling have been developed and have proven useful. In this chapter, a general introduction to mathematical modeling is presented and discussed in context of plant metabolism. A particular focus is laid on the suitability of mathematical approaches to functionally integrate plant metabolomics data in a metabolic network and combine it with other biochemical or physiological parameters.

  18. Using metabolomics to evaluate food intake

    DEFF Research Database (Denmark)

    Manach, Claudine; Brennan, Lorraine; Dragsted, Lars Ove

    2015-01-01

    Improving dietary assessment is essential for modern nutritional epidemiology. This chapter discusses the potential of metabolomics for the identification of new biomarkers of intake and presents the first candidate biomarkers discovered using this approach. It then describes the challenges...

  19. Metabolomics in Population-Based Research

    Science.gov (United States)

    Metabolomics is the study of small molecules of both endogenous and exogenous origin, such as metabolic substrates and their products, lipids, small peptides, vitamins and other protein cofactors generated by metabolism, which are downstream from genes.

  20. Proteomic and metabolomic approaches to biomarker discovery

    CERN Document Server

    Issaq, Haleem J

    2013-01-01

    Proteomic and Metabolomic Approaches to Biomarker Discovery demonstrates how to leverage biomarkers to improve accuracy and reduce errors in research. Disease biomarker discovery is one of the most vibrant and important areas of research today, as the identification of reliable biomarkers has an enormous impact on disease diagnosis, selection of treatment regimens, and therapeutic monitoring. Various techniques are used in the biomarker discovery process, including techniques used in proteomics, the study of the proteins that make up an organism, and metabolomics, the study of chemical fingerprints created from cellular processes. Proteomic and Metabolomic Approaches to Biomarker Discovery is the only publication that covers techniques from both proteomics and metabolomics and includes all steps involved in biomarker discovery, from study design to study execution.  The book describes methods, and presents a standard operating procedure for sample selection, preparation, and storage, as well as data analysis...

  1. Metabolomics Application in Maternal-Fetal Medicine

    Directory of Open Access Journals (Sweden)

    Vassilios Fanos

    2013-01-01

    Full Text Available Metabolomics in maternal-fetal medicine is still an “embryonic” science. However, there is already an increasing interest in metabolome of normal and complicated pregnancies, and neonatal outcomes. Tissues used for metabolomics interrogations of pregnant women, fetuses and newborns are amniotic fluid, blood, plasma, cord blood, placenta, urine, and vaginal secretions. All published papers highlight the strong correlation between biomarkers found in these tissues and fetal malformations, preterm delivery, premature rupture of membranes, gestational diabetes mellitus, preeclampsia, neonatal asphyxia, and hypoxic-ischemic encephalopathy. The aim of this review is to summarize and comment on original data available in relevant published works in order to emphasize the clinical potential of metabolomics in obstetrics in the immediate future.

  2. Sample normalization methods in quantitative metabolomics.

    Science.gov (United States)

    Wu, Yiman; Li, Liang

    2016-01-22

    To reveal metabolomic changes caused by a biological event in quantitative metabolomics, it is critical to use an analytical tool that can perform accurate and precise quantification to examine the true concentration differences of individual metabolites found in different samples. A number of steps are involved in metabolomic analysis including pre-analytical work (e.g., sample collection and storage), analytical work (e.g., sample analysis) and data analysis (e.g., feature extraction and quantification). Each one of them can influence the quantitative results significantly and thus should be performed with great care. Among them, the total sample amount or concentration of metabolites can be significantly different from one sample to another. Thus, it is critical to reduce or eliminate the effect of total sample amount variation on quantification of individual metabolites. In this review, we describe the importance of sample normalization in the analytical workflow with a focus on mass spectrometry (MS)-based platforms, discuss a number of methods recently reported in the literature and comment on their applicability in real world metabolomics applications. Sample normalization has been sometimes ignored in metabolomics, partially due to the lack of a convenient means of performing sample normalization. We show that several methods are now available and sample normalization should be performed in quantitative metabolomics where the analyzed samples have significant variations in total sample amounts. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Comprehensive metabolomic profiling and incident cardiovascular disease: a systematic review

    Science.gov (United States)

    Background: Metabolomics is a promising tool of cardiovascular biomarker discovery. We systematically reviewed the literature on comprehensive metabolomic profiling in association with incident cardiovascular disease (CVD). Methods and Results: We searched MEDLINE and EMBASE from inception to Janua...

  4. Plant Metabolomics : the missiong link in functional genomics strategies

    NARCIS (Netherlands)

    Hall, R.D.; Beale, M.; Fiehn, O.; Hardy, N.; Summer, L.; Bino, R.

    2002-01-01

    After the establishment of technologies for high-throughput DNA sequencing (genomics), gene expression analysis (transcriptomics), and protein analysis (proteomics), the remaining functional genomics challenge is that of metabolomics. Metabolomics is the term coined for essentially comprehensive,

  5. Metabolomics

    DEFF Research Database (Denmark)

    Pedersen, Hans

    fusion where data from different platforms can be combined. Complex data are obtained when samples are analysed using NMR, fluorescence and GC-MS. Chemometrics methods which can be used to extract the relevant information from the obtained data are presented. Focus has been on principal component...... based on NMR data with RRV and known risk markers. The sensitivity and specificity values are 0.80 and 0.79, respectively, for a test set validated model. The second case study is based on plasma samples with verified colorectal cancer and three types of control samples analysed by fluorescence...

  6. Metabolomics data normalization with EigenMS.

    Directory of Open Access Journals (Sweden)

    Yuliya V Karpievitch

    Full Text Available Liquid chromatography mass spectrometry has become one of the analytical platforms of choice for metabolomics studies. However, LC-MS metabolomics data can suffer from the effects of various systematic biases. These include batch effects, day-to-day variations in instrument performance, signal intensity loss due to time-dependent effects of the LC column performance, accumulation of contaminants in the MS ion source and MS sensitivity among others. In this study we aimed to test a singular value decomposition-based method, called EigenMS, for normalization of metabolomics data. We analyzed a clinical human dataset where LC-MS serum metabolomics data and physiological measurements were collected from thirty nine healthy subjects and forty with type 2 diabetes and applied EigenMS to detect and correct for any systematic bias. EigenMS works in several stages. First, EigenMS preserves the treatment group differences in the metabolomics data by estimating treatment effects with an ANOVA model (multiple fixed effects can be estimated. Singular value decomposition of the residuals matrix is then used to determine bias trends in the data. The number of bias trends is then estimated via a permutation test and the effects of the bias trends are eliminated. EigenMS removed bias of unknown complexity from the LC-MS metabolomics data, allowing for increased sensitivity in differential analysis. Moreover, normalized samples better correlated with both other normalized samples and corresponding physiological data, such as blood glucose level, glycated haemoglobin, exercise central augmentation pressure normalized to heart rate of 75, and total cholesterol. We were able to report 2578 discriminatory metabolite peaks in the normalized data (p<0.05 as compared to only 1840 metabolite signals in the raw data. Our results support the use of singular value decomposition-based normalization for metabolomics data.

  7. Fusion of mass spectrometry-based metabolomics data

    NARCIS (Netherlands)

    Smilde, Age K.; van der Werf, Mariët J.; Bijlsma, Sabina; van der Werff-van der Vat, Bianca J. C.; Jellema, Renger H.

    2005-01-01

    A general method is presented for combining mass spectrometry-based metabolomics data. Such data are becoming more and more abundant, and proper tools for fusing these types of data sets are needed. Fusion of metabolomics data leads to a comprehensive view on the metabolome of an organism or

  8. Systematic Applications of Metabolomics in Metabolic Engineering

    Directory of Open Access Journals (Sweden)

    Robert A. Dromms

    2012-12-01

    Full Text Available The goals of metabolic engineering are well-served by the biological information provided by metabolomics: information on how the cell is currently using its biochemical resources is perhaps one of the best ways to inform strategies to engineer a cell to produce a target compound. Using the analysis of extracellular or intracellular levels of the target compound (or a few closely related molecules to drive metabolic engineering is quite common. However, there is surprisingly little systematic use of metabolomics datasets, which simultaneously measure hundreds of metabolites rather than just a few, for that same purpose. Here, we review the most common systematic approaches to integrating metabolite data with metabolic engineering, with emphasis on existing efforts to use whole-metabolome datasets. We then review some of the most common approaches for computational modeling of cell-wide metabolism, including constraint-based models, and discuss current computational approaches that explicitly use metabolomics data. We conclude with discussion of the broader potential of computational approaches that systematically use metabolomics data to drive metabolic engineering.

  9. Causal Genetic Variation Underlying Metabolome Differences.

    Science.gov (United States)

    Swain-Lenz, Devjanee; Nikolskiy, Igor; Cheng, Jiye; Sudarsanam, Priya; Nayler, Darcy; Staller, Max V; Cohen, Barak A

    2017-08-01

    An ongoing challenge in biology is to predict the phenotypes of individuals from their genotypes. Genetic variants that cause disease often change an individual's total metabolite profile, or metabolome. In light of our extensive knowledge of metabolic pathways, genetic variants that alter the metabolome may help predict novel phenotypes. To link genetic variants to changes in the metabolome, we studied natural variation in the yeast Saccharomyces cerevisiae We used an untargeted mass spectrometry method to identify dozens of metabolite Quantitative Trait Loci (mQTL), genomic regions containing genetic variation that control differences in metabolite levels between individuals. We mapped differences in urea cycle metabolites to genetic variation in specific genes known to regulate amino acid biosynthesis. Our functional assays reveal that genetic variation in two genes, AUA1 and ARG81 , cause the differences in the abundance of several urea cycle metabolites. Based on knowledge of the urea cycle, we predicted and then validated a new phenotype: sensitivity to a particular class of amino acid isomers. Our results are a proof-of-concept that untargeted mass spectrometry can reveal links between natural genetic variants and metabolome diversity. The interpretability of our results demonstrates the promise of using genetic variants underlying natural differences in the metabolome to predict novel phenotypes from genotype. Copyright © 2017 by the Genetics Society of America.

  10. Application of Metabolomics in Thyroid Cancer Research

    Directory of Open Access Journals (Sweden)

    Anna Wojakowska

    2015-01-01

    Full Text Available Thyroid cancer is the most common endocrine malignancy with four major types distinguished on the basis of histopathological features: papillary, follicular, medullary, and anaplastic. Classification of thyroid cancer is the primary step in the assessment of prognosis and selection of the treatment. However, in some cases, cytological and histological patterns are inconclusive; hence, classification based on histopathology could be supported by molecular biomarkers, including markers identified with the use of high-throughput “omics” techniques. Beside genomics, transcriptomics, and proteomics, metabolomic approach emerges as the most downstream attitude reflecting phenotypic changes and alterations in pathophysiological states of biological systems. Metabolomics using mass spectrometry and magnetic resonance spectroscopy techniques allows qualitative and quantitative profiling of small molecules present in biological systems. This approach can be applied to reveal metabolic differences between different types of thyroid cancer and to identify new potential candidates for molecular biomarkers. In this review, we consider current results concerning application of metabolomics in the field of thyroid cancer research. Recent studies show that metabolomics can provide significant information about the discrimination between different types of thyroid lesions. In the near future, one could expect a further progress in thyroid cancer metabolomics leading to development of molecular markers and improvement of the tumor types classification and diagnosis.

  11. NMR and MS Methods for Metabolomics.

    Science.gov (United States)

    Amberg, Alexander; Riefke, Björn; Schlotterbeck, Götz; Ross, Alfred; Senn, Hans; Dieterle, Frank; Keck, Matthias

    2017-01-01

    Metabolomics, also often referred as "metabolic profiling," is the systematic profiling of metabolites in biofluids or tissues of organisms and their temporal changes. In the last decade, metabolomics has become more and more popular in drug development, molecular medicine, and other biotechnology fields, since it profiles directly the phenotype and changes thereof in contrast to other "-omics" technologies. The increasing popularity of metabolomics has been possible only due to the enormous development in the technology and bioinformatics fields. In particular, the analytical technologies supporting metabolomics, i.e., NMR, UPLC-MS, and GC-MS, have evolved into sensitive and highly reproducible platforms allowing the determination of hundreds of metabolites in parallel. This chapter describes the best practices of metabolomics as seen today. All important steps of metabolic profiling in drug development and molecular medicine are described in great detail, starting from sample preparation to determining the measurement details of all analytical platforms, and finally to discussing the corresponding specific steps of data analysis.

  12. Sulfites and the wine metabolome.

    Science.gov (United States)

    Roullier-Gall, Chloé; Hemmler, Daniel; Gonsior, Michael; Li, Yan; Nikolantonaki, Maria; Aron, Alissa; Coelho, Christian; Gougeon, Régis D; Schmitt-Kopplin, Philippe

    2017-12-15

    In a context of societal concern about food preservation, the reduction of sulfite input plays a major role in the wine industry. To improve the understanding of the chemistry involved in the SO 2 protection, a series of bottle aged Chardonnay wines made from the same must, but with different concentrations of SO 2 added at pressing were analyzed by ultrahigh resolution mass spectrometry (FT-ICR-MS) and excitation emission matrix fluorescence (EEMF). Metabolic fingerprints from FT-ICR-MS data could discriminate wines according to the added concentration to the must but they also revealed chemistry-related differences according to the type of stopper, providing a wine metabolomics picture of the impact of distinct stopping strategies. Spearman rank correlation was applied to link the statistically modeled EEMF components (parallel factor analysis (PARAFAC)) and the exact mass information from FT-ICR-MS, and thus revealing the extent of sulfur-containing compounds which could show some correlation with fluorescence fingerprints. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Metabolomics: Definitions and Significance in Systems Biology.

    Science.gov (United States)

    Klassen, Aline; Faccio, Andréa Tedesco; Canuto, Gisele André Baptista; da Cruz, Pedro Luis Rocha; Ribeiro, Henrique Caracho; Tavares, Marina Franco Maggi; Sussulini, Alessandra

    2017-01-01

    Nowadays, there is a growing interest in deeply understanding biological mechanisms not only at the molecular level (biological components) but also the effects of an ongoing biological process in the organism as a whole (biological functionality), as established by the concept of systems biology. Within this context, metabolomics is one of the most powerful bioanalytical strategies that allow obtaining a picture of the metabolites of an organism in the course of a biological process, being considered as a phenotyping tool. Briefly, metabolomics approach consists in identifying and determining the set of metabolites (or specific metabolites) in biological samples (tissues, cells, fluids, or organisms) under normal conditions in comparison with altered states promoted by disease, drug treatment, dietary intervention, or environmental modulation. The aim of this chapter is to review the fundamentals and definitions used in the metabolomics field, as well as to emphasize its importance in systems biology and clinical studies.

  14. Microbiome, Metabolome and Inflammatory Bowel Disease

    Directory of Open Access Journals (Sweden)

    Ishfaq Ahmed

    2016-06-01

    Full Text Available Inflammatory Bowel Disease (IBD is a multifactorial disorder that conceptually occurs as a result of altered immune responses to commensal and/or pathogenic gut microbes in individuals most susceptible to the disease. During Crohn’s Disease (CD or Ulcerative Colitis (UC, two components of the human IBD, distinct stages define the disease onset, severity, progression and remission. Epigenetic, environmental (microbiome, metabolome and nutritional factors are important in IBD pathogenesis. While the dysbiotic microbiota has been proposed to play a role in disease pathogenesis, the data on IBD and diet are still less convincing. Nonetheless, studies are ongoing to examine the effect of pre/probiotics and/or FODMAP reduced diets on both the gut microbiome and its metabolome in an effort to define the healthy diet in patients with IBD. Knowledge of a unique metabolomic fingerprint in IBD could be useful for diagnosis, treatment and detection of disease pathogenesis.

  15. Metabolomics to Explore Impact of Dairy Intake

    Directory of Open Access Journals (Sweden)

    Hong Zheng

    2015-06-01

    Full Text Available Dairy products are an important component in the Western diet and represent a valuable source of nutrients for humans. However, a reliable dairy intake assessment in nutrition research is crucial to correctly elucidate the link between dairy intake and human health. Metabolomics is considered a potential tool for assessment of dietary intake instead of traditional methods, such as food frequency questionnaires, food records, and 24-h recalls. Metabolomics has been successfully applied to discriminate between consumption of different dairy products under different experimental conditions. Moreover, potential metabolites related to dairy intake were identified, although these metabolites need to be further validated in other intervention studies before they can be used as valid biomarkers of dairy consumption. Therefore, this review provides an overview of metabolomics for assessment of dairy intake in order to better clarify the role of dairy products in human nutrition and health.

  16. Blood transcriptomics and metabolomics for personalized medicine.

    Science.gov (United States)

    Li, Shuzhao; Todor, Andrei; Luo, Ruiyan

    2016-01-01

    Molecular analysis of blood samples is pivotal to clinical diagnosis and has been intensively investigated since the rise of systems biology. Recent developments have opened new opportunities to utilize transcriptomics and metabolomics for personalized and precision medicine. Efforts from human immunology have infused into this area exquisite characterizations of subpopulations of blood cells. It is now possible to infer from blood transcriptomics, with fine accuracy, the contribution of immune activation and of cell subpopulations. In parallel, high-resolution mass spectrometry has brought revolutionary analytical capability, detecting > 10,000 metabolites, together with environmental exposure, dietary intake, microbial activity, and pharmaceutical drugs. Thus, the re-examination of blood chemicals by metabolomics is in order. Transcriptomics and metabolomics can be integrated to provide a more comprehensive understanding of the human biological states. We will review these new data and methods and discuss how they can contribute to personalized medicine.

  17. Linking metabolomics data to underlying metabolic regulation

    Directory of Open Access Journals (Sweden)

    Thomas eNägele

    2014-11-01

    Full Text Available The comprehensive experimental analysis of a metabolic constitution plays a central role in approaches of organismal systems biology.Quantifying the impact of a changing environment on the homeostasis of cellular metabolism has been the focus of numerous studies applying various metabolomics techniques. It has been proven that approaches which integrate different analytical techniques, e.g. LC-MS, GC-MS, CE-MS and H-NMR, can provide a comprehensive picture of a certain metabolic homeostasis. Identification of metabolic compounds and quantification of metabolite levels represent the groundwork for the analysis of regulatory strategies in cellular metabolism. This significantly promotes our current understanding of the molecular organization and regulation of cells, tissues and whole organisms.Nevertheless, it is demanding to elicit the pertinent information which is contained in metabolomics data sets.Based on the central dogma of molecular biology, metabolite levels and their fluctuations are the result of a directed flux of information from gene activation over transcription to translation and posttranslational modification.Hence, metabolomics data represent the summed output of a metabolic system comprising various levels of molecular organization.As a consequence, the inverse assignment of metabolomics data to underlying regulatory processes should yield information which-if deciphered correctly-provides comprehensive insight into a metabolic system.Yet, the deduction of regulatory principles is complex not only due to the high number of metabolic compounds, but also because of a high level of cellular compartmentalization and differentiation.Motivated by the question how metabolomics approaches can provide a representative view on regulatory biochemical processes, this article intends to present and discuss current metabolomics applications, strategies of data analysis and their limitations with respect to the interpretability in context of

  18. COordination of Standards in MetabOlomicS (COSMOS): facilitating integrated metabolomics data access

    NARCIS (Netherlands)

    Salek, R.M.; Neumann, S.; Schober, D.; Hummel, J.; Billiau, K.; Kopka, J.; Correa, E.; Reijmers, T.; Rosato, A.; Tenori, L.; Turano, P.; Marin, S.; Deborde, C.; Jacob, D.; Rolin, D.; Dartigues, B.; Conesa, P.; Haug, K.; Rocca-Serra, P.; O’Hagan, S.; Hao, J.; Vliet, M. van; Sysi-Aho, M.; Ludwig, C.; Bouwman, J.; Cascante, M.; Ebbels, T.; Griffin, J.L.; Moing, A.; Nikolski, M.; Oresic, M.; Sansone, S.A.; Viant, M.R.; Goodacre, R.; Günther, U.L.; Hankemeier, T.; Luchinat, C.; Walther, D.; Steinbeck, C.

    2015-01-01

    Metabolomics has become a crucial phenotyping technique in a range of research fields including medicine, the life sciences, biotechnology and the environmental sciences. This necessitates the transfer of experimental information between research groups, as well as potentially to publishers and

  19. The exo-metabolome in filamentous fungi

    DEFF Research Database (Denmark)

    Thrane, Ulf; Andersen, Birgitte; Frisvad, Jens Christian

    2007-01-01

    Filamentous fungi are a diverse group of eukaryotic microorganisms that have a significant impact on human life as spoilers of food and feed by degradation and toxin production. They are also most useful as a source of bulk and fine chemicals and pharmaceuticals. This chapter focuses on the exo-metabolome...

  20. Metabolome analysis of Drosophila melanogaster during embryogenesis.

    Science.gov (United States)

    An, Phan Nguyen Thuy; Yamaguchi, Masamitsu; Bamba, Takeshi; Fukusaki, Eiichiro

    2014-01-01

    The Drosophila melanogaster embryo has been widely utilized as a model for genetics and developmental biology due to its small size, short generation time, and large brood size. Information on embryonic metabolism during developmental progression is important for further understanding the mechanisms of Drosophila embryogenesis. Therefore, the aim of this study is to assess the changes in embryos' metabolome that occur at different stages of the Drosophila embryonic development. Time course samples of Drosophila embryos were subjected to GC/MS-based metabolome analysis for profiling of low molecular weight hydrophilic metabolites, including sugars, amino acids, and organic acids. The results showed that the metabolic profiles of Drosophila embryo varied during the course of development and there was a strong correlation between the metabolome and different embryonic stages. Using the metabolome information, we were able to establish a prediction model for developmental stages of embryos starting from their high-resolution quantitative metabolite composition. Among the important metabolites revealed from our model, we suggest that different amino acids appear to play distinct roles in different developmental stages and an appropriate balance in trehalose-glucose ratio is crucial to supply the carbohydrate source for the development of Drosophila embryo.

  1. Circadian Metabolomics in Time and Space

    Directory of Open Access Journals (Sweden)

    Kenneth A. Dyar

    2017-07-01

    Full Text Available Circadian rhythms are widely known to govern human health and disease, but specific pathogenic mechanisms linking circadian disruption to metabolic diseases are just beginning to come to light. This is thanks in part to the development and application of various “omics”-based tools in biology and medicine. Current high-throughput technologies allow for the simultaneous monitoring of multiple dynamic cellular events over time, ranging from gene expression to metabolite abundance and sub-cellular localization. These fundamental temporal and spatial perspectives have allowed for a more comprehensive understanding of how various dynamic cellular events and biochemical processes are related in health and disease. With advances in technology, metabolomics has become a more routine “omics” approach for studying metabolism, and “circadian metabolomics” (i.e., studying the 24-h metabolome has recently been undertaken by several groups. To date, circadian metabolomes have been reported for human serum, saliva, breath, and urine, as well as tissues from several species under specific disease or mutagenesis conditions. Importantly, these studies have consistently revealed that 24-h rhythms are prevalent in almost every tissue and metabolic pathway. Furthermore, these circadian rhythms in tissue metabolism are ultimately linked to and directed by internal 24-h biological clocks. In this review, we will attempt to put these data-rich circadian metabolomics experiments into perspective to find out what they can tell us about metabolic health and disease, and what additional biomarker potential they may reveal.

  2. Metabolomics in the fight against malaria

    Directory of Open Access Journals (Sweden)

    Jorge L Salinas

    2014-08-01

    Full Text Available Metabolomics uses high-resolution mass spectrometry to provide a chemical fingerprint of thousands of metabolites present in cells, tissues or body fluids. Such metabolic phenotyping has been successfully used to study various biologic processes and disease states. High-resolution metabolomics can shed new light on the intricacies of host-parasite interactions in each stage of the Plasmodium life cycle and the downstream ramifications on the host’s metabolism, pathogenesis and disease. Such data can become integrated with other large datasets generated using top-down systems biology approaches and be utilised by computational biologists to develop and enhance models of malaria pathogenesis relevant for identifying new drug targets or intervention strategies. Here, we focus on the promise of metabolomics to complement systems biology approaches in the quest for novel interventions in the fight against malaria. We introduce the Malaria Host-Pathogen Interaction Center (MaHPIC, a new systems biology research coalition. A primary goal of the MaHPIC is to generate systems biology datasets relating to human and non-human primate (NHP malaria parasites and their hosts making these openly available from an online relational database. Metabolomic data from NHP infections and clinical malaria infections from around the world will comprise a unique global resource.

  3. Metabolomics studies in brain tissue: A review.

    Science.gov (United States)

    Gonzalez-Riano, Carolina; Garcia, Antonia; Barbas, Coral

    2016-10-25

    Brain is still an organ with a composition to be discovered but beyond that, mental disorders and especially all diseases that curse with dementia are devastating for the patient, the family and the society. Metabolomics can offer an alternative tool for unveiling new insights in the discovery of new treatments and biomarkers of mental disorders. Until now, most of metabolomic studies have been based on biofluids: serum/plasma or urine, because brain tissue accessibility is limited to animal models or post mortem studies, but even so it is crucial for understanding the pathological processes. Metabolomics studies of brain tissue imply several challenges due to sample extraction, along with brain heterogeneity, sample storage, and sample treatment for a wide coverage of metabolites with a wide range of concentrations of many lipophilic and some polar compounds. In this review, the current analytical practices for target and non-targeted metabolomics are described and discussed with emphasis on critical aspects: sample treatment (quenching, homogenization, filtration, centrifugation and extraction), analytical methods, as well as findings considering the used strategies. Besides that, the altered analytes in the different brain regions have been associated with their corresponding pathways to obtain a global overview of their dysregulation, trying to establish the link between altered biological pathways and pathophysiological conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Microbial metabolomics in open microscale platforms

    Science.gov (United States)

    Barkal, Layla J.; Theberge, Ashleigh B.; Guo, Chun-Jun; Spraker, Joe; Rappert, Lucas; Berthier, Jean; Brakke, Kenneth A.; Wang, Clay C. C.; Beebe, David J.; Keller, Nancy P.; Berthier, Erwin

    2016-01-01

    The microbial secondary metabolome encompasses great synthetic diversity, empowering microbes to tune their chemical responses to changing microenvironments. Traditional metabolomics methods are ill-equipped to probe a wide variety of environments or environmental dynamics. Here we introduce a class of microscale culture platforms to analyse chemical diversity of fungal and bacterial secondary metabolomes. By leveraging stable biphasic interfaces to integrate microculture with small molecule isolation via liquid–liquid extraction, we enable metabolomics-scale analysis using mass spectrometry. This platform facilitates exploration of culture microenvironments (including rare media typically inaccessible using established methods), unusual organic solvents for metabolite isolation and microbial mutants. Utilizing Aspergillus, a fungal genus known for its rich secondary metabolism, we characterize the effects of culture geometry and growth matrix on secondary metabolism, highlighting the potential use of microscale systems to unlock unknown or cryptic secondary metabolites for natural products discovery. Finally, we demonstrate the potential for this class of microfluidic systems to study interkingdom communication between fungi and bacteria. PMID:26842393

  5. Exploring the analysis of structured metabolomics data

    NARCIS (Netherlands)

    Verouden, M.P.H.; Westerhuis, J.A.; van der Werf, M.J.; Smilde, A.K.

    2009-01-01

    In metabolomics research a large number of metabolites are measured that reflect the cellular state under the experimental conditions studied. In many occasions the experiments are performed according to an experimental design to make sure that sufficient variation is induced in the metabolite

  6. Analysis of metabolomics data from twin families

    NARCIS (Netherlands)

    Draisma, Hermanus Henricus Maria

    2011-01-01

    Metabolomics is the comprehensive analysis of small molecules involved in metabolism, on the basis of samples that have been obtained from organisms in a given physiological state. Data obtained from measurements of trait levels in twin families can be used to elucidate the importance of genetic and

  7. Data-processing strategies for metabolomics studies

    NARCIS (Netherlands)

    Hendriks, M.M.W.B.; Eeuwijk, van F.A.; Jellema, R.H.; Westerhuis, J.A.; Reijmers, T.H.; Hoefsloot, H.C.J.; Smilde, A.K.

    2011-01-01

    Metabolomics studies aim at a better understanding of biochemical processes by studying relations between metabolites and between metabolites and other types of information (e.g., sensory and phenotypic features). The objectives of these studies are diverse, but the types of data generated and the

  8. Quantitative metabolomics based on gas chromatography mass spectrometry: Status and perspectives

    NARCIS (Netherlands)

    Koek, M.M.; Jellema, R.H.; Greef, J. van der; Tas, A.C.; Hankemeier, T.

    2011-01-01

    Metabolomics involves the unbiased quantitative and qualitative analysis of the complete set of metabolites present in cells, body fluids and tissues (the metabolome). By analyzing differences between metabolomes using biostatistics (multivariate data analysis; pattern recognition), metabolites

  9. Metabolomics of Clostridial Biofuel Production

    Energy Technology Data Exchange (ETDEWEB)

    Rabinowitz, Joshua D [Princeton Univ., NJ (United States); Aristilde, Ludmilla [Cornell Univ., Ithaca, NY (United States); Amador-Noguez, Daniel [Univ. of Wisconsin, Madison, WI (United States)

    2015-09-08

    Members of the genus Clostridium collectively have the ideal set of the metabolic capabilities for fermentative biofuel production: cellulose degradation, hydrogen production, and solvent excretion. No single organism, however, can effectively convert cellulose into biofuels. Here we developed, using metabolomics and isotope tracers, basic science knowledge of Clostridial metabolism of utility for future efforts to engineer such an organism. In glucose fermentation carried out by the biofuel producer Clostridium acetobutylicum, we observed a remarkably ordered series of metabolite concentration changes as the fermentation progressed from acidogenesis to solventogenesis. In general, high-energy compounds decreased while low-energy species increased during solventogenesis. These changes in metabolite concentrations were accompanied by large changes in intracellular metabolic fluxes, with pyruvate directed towards acetyl-CoA and solvents instead of oxaloacetate and amino acids. Thus, the solventogenic transition involves global remodeling of metabolism to redirect resources from biomass production into solvent production. In contrast to C. acetobutylicum, which is an avid fermenter, C. cellulolyticum metabolizes glucose only slowly. We find that glycolytic intermediate concentrations are radically different from fast fermenting organisms. Associated thermodynamic and isotope tracer analysis revealed that the full glycolytic pathway in C. cellulolyticum is reversible. This arises from changes in cofactor utilization for phosphofructokinase and an alternative pathway from phosphoenolpyruvate to pyruvate. The net effect is to increase the high-energy phosphate bond yield of glycolysis by 150% (from 2 to 5) at the expense of lower net flux. Thus, C. cellulolyticum prioritizes glycolytic energy efficiency over speed. Degradation of cellulose results in other sugars in addition to glucose. Simultaneous feeding of stable isotope-labeled glucose and unlabeled pentose sugars

  10. Binary similarity measures for fingerprint analysis of qualitative metabolomic profiles.

    Science.gov (United States)

    Rácz, Anita; Andrić, Filip; Bajusz, Dávid; Héberger, Károly

    2018-01-01

    Contemporary metabolomic fingerprinting is based on multiple spectrometric and chromatographic signals, used either alone or combined with structural and chemical information of metabolic markers at the qualitative and semiquantitative level. However, signal shifting, convolution, and matrix effects may compromise metabolomic patterns. Recent increase in the use of qualitative metabolomic data, described by the presence (1) or absence (0) of particular metabolites, demonstrates great potential in the field of metabolomic profiling and fingerprint analysis. The aim of this study is a comprehensive evaluation of binary similarity measures for the elucidation of patterns among samples of different botanical origin and various metabolomic profiles. Nine qualitative metabolomic data sets covering a wide range of natural products and metabolomic profiles were applied to assess 44 binary similarity measures for the fingerprinting of plant extracts and natural products. The measures were analyzed by the novel sum of ranking differences method (SRD), searching for the most promising candidates. Baroni-Urbani-Buser (BUB) and Hawkins-Dotson (HD) similarity coefficients were selected as the best measures by SRD and analysis of variance (ANOVA), while Dice (Di1), Yule, Russel-Rao, and Consonni-Todeschini 3 ranked the worst. ANOVA revealed that concordantly and intermediately symmetric similarity coefficients are better candidates for metabolomic fingerprinting than the asymmetric and correlation based ones. The fingerprint analysis based on the BUB and HD coefficients and qualitative metabolomic data performed equally well as the quantitative metabolomic profile analysis. Fingerprint analysis based on the qualitative metabolomic profiles and binary similarity measures proved to be a reliable way in finding the same/similar patterns in metabolomic data as that extracted from quantitative data.

  11. Metabolomic analysis of three Mollicute species.

    Directory of Open Access Journals (Sweden)

    Anna A Vanyushkina

    Full Text Available We present a systematic study of three bacterial species that belong to the class Mollicutes, the smallest and simplest bacteria, Spiroplasma melliferum, Mycoplasma gallisepticum, and Acholeplasma laidlawii. To understand the difference in the basic principles of metabolism regulation and adaptation to environmental conditions in the three species, we analyzed the metabolome of these bacteria. Metabolic pathways were reconstructed using the proteogenomic annotation data provided by our lab. The results of metabolome, proteome and genome profiling suggest a fundamental difference in the adaptation of the three closely related Mollicute species to stress conditions. As the transaldolase is not annotated in Mollicutes, we propose variants of the pentose phosphate pathway catalyzed by annotated enzymes for three species. For metabolite detection we employed high performance liquid chromatography coupled with mass spectrometry. We used liquid chromatography method - hydrophilic interaction chromatography with silica column - as it effectively separates highly polar cellular metabolites prior to their detection by mass spectrometer.

  12. Metabolomics for Quality and food security

    International Nuclear Information System (INIS)

    Diretto, Gianfranco

    2015-01-01

    By the term 'Metabolomics' means the discipline which allows you to determine the set of small molecules (metabolites) produced by an organism in a given time. The metabolomic analysis requires complex technological platforms that allow, in the first place, the separation (chromatography liquid or gaseous) of the different molecules and, subsequently, the identification of the same on the basis of characteristic ratio between their mass and charge (m / z). This study arises by estimates that, between climate change planned for the coming decades, there will also be quick increasing the concentration of Co2 in the atmosphere. In this context, it is essential to predict how these changes weather will impact on product quality plant at the base of our diet. [it

  13. Metabolomics Workbench: An international repository for metabolomics data and metadata, metabolite standards, protocols, tutorials and training, and analysis tools.

    Science.gov (United States)

    Sud, Manish; Fahy, Eoin; Cotter, Dawn; Azam, Kenan; Vadivelu, Ilango; Burant, Charles; Edison, Arthur; Fiehn, Oliver; Higashi, Richard; Nair, K Sreekumaran; Sumner, Susan; Subramaniam, Shankar

    2016-01-04

    The Metabolomics Workbench, available at www.metabolomicsworkbench.org, is a public repository for metabolomics metadata and experimental data spanning various species and experimental platforms, metabolite standards, metabolite structures, protocols, tutorials, and training material and other educational resources. It provides a computational platform to integrate, analyze, track, deposit and disseminate large volumes of heterogeneous data from a wide variety of metabolomics studies including mass spectrometry (MS) and nuclear magnetic resonance spectrometry (NMR) data spanning over 20 different species covering all the major taxonomic categories including humans and other mammals, plants, insects, invertebrates and microorganisms. Additionally, a number of protocols are provided for a range of metabolite classes, sample types, and both MS and NMR-based studies, along with a metabolite structure database. The metabolites characterized in the studies available on the Metabolomics Workbench are linked to chemical structures in the metabolite structure database to facilitate comparative analysis across studies. The Metabolomics Workbench, part of the data coordinating effort of the National Institute of Health (NIH) Common Fund's Metabolomics Program, provides data from the Common Fund's Metabolomics Resource Cores, metabolite standards, and analysis tools to the wider metabolomics community and seeks data depositions from metabolomics researchers across the world. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Blood Transcriptomics and Metabolomics for Personalized Medicine

    Science.gov (United States)

    2015-10-31

    involved in rheumatoid arthritis . PLoS Comput Biol 2011;7. [100] Zhu J. Stitching together multiple data dimensions reveals interacting metabolomic...capability, detecting N10,000 metabo- lites, together with environmental exposure, dietary intake, microbial activity, and pharmaceutical drugs. Thus...research to clinical care has constantly seen huge disap- pointments. With the accumulation of detailed, information-rich data, human subjects start to

  15. Data fusion in metabolomic cancer diagnostics

    DEFF Research Database (Denmark)

    Bro, Rasmus; Nielsen, Hans Jørgen; Savorani, Francesco

    2013-01-01

    We have recently shown that fluorescence spectroscopy of plasma samples has promising abilities regarding early detection of colorectal cancer. In the present paper, these results were further developed by combining fluorescence with the biomarkers, CEA and TIMP-1 and traditional metabolomic meas...... measurements in the form of (1)H NMR spectroscopy. The results indicate that using an extensive profile established by combining such measurements together with the biomarkers is better than using single markers....

  16. Metabolomic Analysis in Brain Research: Opportunities & Challenges

    Directory of Open Access Journals (Sweden)

    Catherine G Vasilopoulou

    2016-05-01

    Full Text Available Metabolism being a fundamental part of molecular physiology, elucidating the structure and regulation of metabolic pathways is crucial for obtaining a comprehensive perspective of cellular function and understanding the underlying mechanisms of its dysfunction(s. Therefore, quantifying an accurate metabolic network activity map under various physiological conditions is among the major objectives of systems biology in the context of many biological applications. Especially for CNS, metabolic network activity analysis can substantially enhance our knowledge about the complex structure of the mammalian brain and the mechanisms of neurological disorders, leading to the design of effective therapeutic treatments. Metabolomics has emerged as the high-throughput quantitative analysis of the concentration profile of small molecular weight metabolites, which act as reactants and products in metabolic reactions and as regulatory molecules of proteins participating in many biological processes. Thus, the metabolic profile provides a metabolic activity fingerprint, through the simultaneous analysis of tens to hundreds of molecules of pathophysiological and pharmacological interest. The application of metabolomics is at its standardization phase in general, and the challenges for paving a standardized procedure are even more pronounced in brain studies. In this review, we support the value of metabolomics in brain research. Moreover, we demonstrate the challenges of designing and setting up a reliable brain metabolomic study, which, among other parameters, has to take into consideration the sex differentiation and the complexity of brain physiology manifested in its regional variation. We finally propose ways to overcome these challenges and design a study that produces reproducible and consistent results.

  17. PAMDB: a comprehensive Pseudomonas aeruginosa metabolome database.

    Science.gov (United States)

    Huang, Weiliang; Brewer, Luke K; Jones, Jace W; Nguyen, Angela T; Marcu, Ana; Wishart, David S; Oglesby-Sherrouse, Amanda G; Kane, Maureen A; Wilks, Angela

    2018-01-04

    The Pseudomonas aeruginosaMetabolome Database (PAMDB, http://pseudomonas.umaryland.edu) is a searchable, richly annotated metabolite database specific to P. aeruginosa. P. aeruginosa is a soil organism and significant opportunistic pathogen that adapts to its environment through a versatile energy metabolism network. Furthermore, P. aeruginosa is a model organism for the study of biofilm formation, quorum sensing, and bioremediation processes, each of which are dependent on unique pathways and metabolites. The PAMDB is modelled on the Escherichia coli (ECMDB), yeast (YMDB) and human (HMDB) metabolome databases and contains >4370 metabolites and 938 pathways with links to over 1260 genes and proteins. The database information was compiled from electronic databases, journal articles and mass spectrometry (MS) metabolomic data obtained in our laboratories. For each metabolite entered, we provide detailed compound descriptions, names and synonyms, structural and physiochemical information, nuclear magnetic resonance (NMR) and MS spectra, enzymes and pathway information, as well as gene and protein sequences. The database allows extensive searching via chemical names, structure and molecular weight, together with gene, protein and pathway relationships. The PAMBD and its future iterations will provide a valuable resource to biologists, natural product chemists and clinicians in identifying active compounds, potential biomarkers and clinical diagnostics. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Integration of metabolomics data into metabolic networks.

    Science.gov (United States)

    Töpfer, Nadine; Kleessen, Sabrina; Nikoloski, Zoran

    2015-01-01

    Metabolite levels together with their corresponding metabolic fluxes are integrative outcomes of biochemical transformations and regulatory processes and they can be used to characterize the response of biological systems to genetic and/or environmental changes. However, while changes in transcript or to some extent protein levels can usually be traced back to one or several responsible genes, changes in fluxes and particularly changes in metabolite levels do not follow such rationale and are often the outcome of complex interactions of several components. The increasing quality and coverage of metabolomics technologies have fostered the development of computational approaches for integrating metabolic read-outs with large-scale models to predict the physiological state of a system. Constraint-based approaches, relying on the stoichiometry of the considered reactions, provide a modeling framework amenable to analyses of large-scale systems and to the integration of high-throughput data. Here we review the existing approaches that integrate metabolomics data in variants of constrained-based approaches to refine model reconstructions, to constrain flux predictions in metabolic models, and to relate network structural properties to metabolite levels. Finally, we discuss the challenges and perspectives in the developments of constraint-based modeling approaches driven by metabolomics data.

  19. Metabolome analysis for discovering biomarkers of gastroenterological cancer.

    Science.gov (United States)

    Suzuki, Makoto; Nishiumi, Shin; Matsubara, Atsuki; Azuma, Takeshi; Yoshida, Masaru

    2014-09-01

    Improvements in analytical technologies have made it possible to rapidly determine the concentrations of thousands of metabolites in any biological sample, which has resulted in metabolome analysis being applied to various types of research, such as clinical, cell biology, and plant/food science studies. The metabolome represents all of the end products and by-products of the numerous complex metabolic pathways operating in a biological system. Thus, metabolome analysis allows one to survey the global changes in an organism's metabolic profile and gain a holistic understanding of the changes that occur in organisms during various biological processes, e.g., during disease development. In clinical metabolomic studies, there is a strong possibility that differences in the metabolic profiles of human specimens reflect disease-specific states. Recently, metabolome analysis of biofluids, e.g., blood, urine, or saliva, has been increasingly used for biomarker discovery and disease diagnosis. Mass spectrometry-based techniques have been extensively used for metabolome analysis because they exhibit high selectivity and sensitivity during the identification and quantification of metabolites. Here, we describe metabolome analysis using liquid chromatography-mass spectrometry, gas chromatography-mass spectrometry, and capillary electrophoresis-mass spectrometry. Furthermore, the findings of studies that attempted to discover biomarkers of gastroenterological cancer are also outlined. Finally, we discuss metabolome analysis-based disease diagnosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. A metabolomics study on human dietary intervention with apples

    DEFF Research Database (Denmark)

    Dragsted, L. O.; Kristensen, M.; Ravn-Haren, Gitte

    2009-01-01

    Metabolomics is a promising tool for searching out new biomarkers and the development of hypotheses in nutrition research. This chapter will describe the design of human dietary intervention studies where samples are collected for metabolomics analyses as well as the analytical issues and data...

  1. Plant metabolomics and its potential application for human nutrition

    NARCIS (Netherlands)

    Hall, R.D.; Brouwer, I.D.; Fitzgerald, M.A.

    2008-01-01

    With the growing interest in the use of metabolomic technologies for a wide range of biological targets, food applications related to nutrition and quality are rapidly emerging. Metabolomics offers us the opportunity to gain deeper insights into, and have better control of, the fundamental

  2. Untargeted Metabolomics Strategies—Challenges and Emerging Directions

    Science.gov (United States)

    Schrimpe-Rutledge, Alexandra C.; Codreanu, Simona G.; Sherrod, Stacy D.; McLean, John A.

    2016-12-01

    Metabolites are building blocks of cellular function. These species are involved in enzyme-catalyzed chemical reactions and are essential for cellular function. Upstream biological disruptions result in a series of metabolomic changes and, as such, the metabolome holds a wealth of information that is thought to be most predictive of phenotype. Uncovering this knowledge is a work in progress. The field of metabolomics is still maturing; the community has leveraged proteomics experience when applicable and developed a range of sample preparation and instrument methodology along with myriad data processing and analysis approaches. Research focuses have now shifted toward a fundamental understanding of the biology responsible for metabolomic changes. There are several types of metabolomics experiments including both targeted and untargeted analyses. While untargeted, hypothesis generating workflows exhibit many valuable attributes, challenges inherent to the approach remain. This Critical Insight comments on these challenges, focusing on the identification process of LC-MS-based untargeted metabolomics studies—specifically in mammalian systems. Biological interpretation of metabolomics data hinges on the ability to accurately identify metabolites. The range of confidence associated with identifications that is often overlooked is reviewed, and opportunities for advancing the metabolomics field are described.

  3. Gas chromatography mass spectrometry : key technology in metabolomics

    NARCIS (Netherlands)

    Koek, Maud Marijtje

    2009-01-01

    Metabolomics involves the unbiased quantitative and qualitative analysis of the complete set of metabolites present in cells, body fluids and tissues. Gas chromatography coupled to mass spectrometry (GC-MS) is very suitable for metabolomics analysis, as it combines high separation power with

  4. Metabolomics to study functional consequences in peroxisomal disorders

    NARCIS (Netherlands)

    Herzog, K.

    2017-01-01

    This thesis focusses on metabolomics approaches performed in cultured cells and blood samples from patients with peroxisomal disorders. By applying both targeted and untargeted metabolomics, the aim of these approaches was to study the functional consequences of the primary genetic defects causing

  5. Metabolomics for Undergraduates: Identification and Pathway Assignment of Mitochondrial Metabolites

    Science.gov (United States)

    Marques, Ana Patrícia; Serralheiro, Maria Luisa; Ferreira, António E. N.; Freire, Ana Ponces; Cordeiro, Carlos; Silva, Marta Sousa

    2016-01-01

    Metabolomics is a key discipline in systems biology, together with genomics, transcriptomics, and proteomics. In this omics cascade, the metabolome represents the biochemical products that arise from cellular processes and is often regarded as the final response of a biological system to environmental or genetic changes. The overall screening…

  6. Environmental metabolomics: a SWOT analysis (strengths, weaknesses, opportunities, and threats).

    Science.gov (United States)

    Miller, Marion G

    2007-02-01

    Metabolomic approaches have the potential to make an exceptional contribution to understanding how chemicals and other environmental stressors can affect both human and environmental health. However, the application of metabolomics to environmental exposures, although getting underway, has not yet been extensively explored. This review will use a SWOT analysis model to discuss some of the strengths, weaknesses, opportunities, and threats that are apparent to an investigator venturing into this relatively new field. SWOT has been used extensively in business settings to uncover new outlooks and identify problems that would impede progress. The field of environmental metabolomics provides great opportunities for discovery, and this is recognized by a high level of interest in potential applications. However, understanding the biological consequence of environmental exposures can be confounded by inter- and intra-individual differences. Metabolomic profiles can yield a plethora of data, the interpretation of which is complex and still being evaluated and researched. The development of the field will depend on the availability of technologies for data handling and that permit ready access metabolomic databases. Understanding the relevance of metabolomic endpoints to organism health vs adaptation vs variation is an important step in understanding what constitutes a substantive environmental threat. Metabolomic applications in reproductive research are discussed. Overall, the development of a comprehensive mechanistic-based interpretation of metabolomic changes offers the possibility of providing information that will significantly contribute to the protection of human health and the environment.

  7. Tools for the functional interpretation of metabolomic experiments.

    Science.gov (United States)

    Chagoyen, Monica; Pazos, Florencio

    2013-11-01

    The so-called 'omics' approaches used in modern biology aim at massively characterizing the molecular repertories of living systems at different levels. Metabolomics is one of the last additions to the 'omics' family and it deals with the characterization of the set of metabolites in a given biological system. As metabolomic techniques become more massive and allow characterizing larger sets of metabolites, automatic methods for analyzing these sets in order to obtain meaningful biological information are required. Only recently the first tools specifically designed for this task in metabolomics appeared. They are based on approaches previously used in transcriptomics and other 'omics', such as annotation enrichment analysis. These, together with generic tools for metabolic analysis and visualization not specifically designed for metabolomics will for sure be in the toolbox of the researches doing metabolomic experiments in the near future.

  8. Metabolomics in Sepsis and Its Impact on Public Health.

    Science.gov (United States)

    Evangelatos, Nikolaos; Bauer, Pia; Reumann, Matthias; Satyamoorthy, Kapaettu; Lehrach, Hans; Brand, Angela

    2017-01-01

    Sepsis, with its often devastating consequences for patients and their families, remains a major public health concern that poses an increasing financial burden. Early resuscitation together with the elucidation of the biological pathways and pathophysiological mechanisms with the use of "-omics" technologies have started changing the clinical and research landscape in sepsis. Metabolomics (i.e., the study of the metabolome), an "-omics" technology further down in the "-omics" cascade between the genome and the phenome, could be particularly fruitful in sepsis research with the potential to alter the clinical practice. Apart from its benefit for the individual patient, metabolomics has an impact on public health that extends beyond its applications in medicine. In this review, we present recent developments in metabolomics research in sepsis, with a focus on pneumonia, and we discuss the impact of metabolomics on public health, with a focus on free/libre open source software. © 2018 S. Karger AG, Basel.

  9. New tools and resources in metabolomics: 2016-2017.

    Science.gov (United States)

    Misra, Biswapriya B

    2018-04-01

    Rapid advances in mass spectrometry (MS) and nuclear magnetic resonance (NMR)-based platforms for metabolomics have led to an upsurge of data every single year. Newer high-throughput platforms, hyphenated technologies, miniaturization, and tool kits in data acquisition efforts in metabolomics have led to additional challenges in metabolomics data pre-processing, analysis, interpretation, and integration. Thanks to the informatics, statistics, and computational community, new resources continue to develop for metabolomics researchers. The purpose of this review is to provide a summary of the metabolomics tools, software, and databases that were developed or improved during 2016-2017, thus, enabling readers, developers, and researchers access to a succinct but thorough list of resources for further improvisation, implementation, and application in due course of time. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Compliance with minimum information guidelines in public metabolomics repositories.

    Science.gov (United States)

    Spicer, Rachel A; Salek, Reza; Steinbeck, Christoph

    2017-09-26

    The Metabolomics Standards Initiative (MSI) guidelines were first published in 2007. These guidelines provided reporting standards for all stages of metabolomics analysis: experimental design, biological context, chemical analysis and data processing. Since 2012, a series of public metabolomics databases and repositories, which accept the deposition of metabolomic datasets, have arisen. In this study, the compliance of 399 public data sets, from four major metabolomics data repositories, to the biological context MSI reporting standards was evaluated. None of the reporting standards were complied with in every publicly available study, although adherence rates varied greatly, from 0 to 97%. The plant minimum reporting standards were the most complied with and the microbial and in vitro were the least. Our results indicate the need for reassessment and revision of the existing MSI reporting standards.

  11. Updates in metabolomics tools and resources: 2014-2015.

    Science.gov (United States)

    Misra, Biswapriya B; van der Hooft, Justin J J

    2016-01-01

    Data processing and interpretation represent the most challenging and time-consuming steps in high-throughput metabolomic experiments, regardless of the analytical platforms (MS or NMR spectroscopy based) used for data acquisition. Improved machinery in metabolomics generates increasingly complex datasets that create the need for more and better processing and analysis software and in silico approaches to understand the resulting data. However, a comprehensive source of information describing the utility of the most recently developed and released metabolomics resources--in the form of tools, software, and databases--is currently lacking. Thus, here we provide an overview of freely-available, and open-source, tools, algorithms, and frameworks to make both upcoming and established metabolomics researchers aware of the recent developments in an attempt to advance and facilitate data processing workflows in their metabolomics research. The major topics include tools and researches for data processing, data annotation, and data visualization in MS and NMR-based metabolomics. Most in this review described tools are dedicated to untargeted metabolomics workflows; however, some more specialist tools are described as well. All tools and resources described including their analytical and computational platform dependencies are summarized in an overview Table. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Challenges of metabolomics in human gut microbiota research.

    Science.gov (United States)

    Smirnov, Kirill S; Maier, Tanja V; Walker, Alesia; Heinzmann, Silke S; Forcisi, Sara; Martinez, Inés; Walter, Jens; Schmitt-Kopplin, Philippe

    2016-08-01

    The review highlights the role of metabolomics in studying human gut microbial metabolism. Microbial communities in our gut exert a multitude of functions with huge impact on human health and disease. Within the meta-omics discipline, gut microbiome is studied by (meta)genomics, (meta)transcriptomics, (meta)proteomics and metabolomics. The goal of metabolomics research applied to fecal samples is to perform their metabolic profiling, to quantify compounds and classes of interest, to characterize small molecules produced by gut microbes. Nuclear magnetic resonance spectroscopy and mass spectrometry are main technologies that are applied in fecal metabolomics. Metabolomics studies have been increasingly used in gut microbiota related research regarding health and disease with main focus on understanding inflammatory bowel diseases. The elucidated metabolites in this field are summarized in this review. We also addressed the main challenges of metabolomics in current and future gut microbiota research. The first challenge reflects the need of adequate analytical tools and pipelines, including sample handling, selection of appropriate equipment, and statistical evaluation to enable meaningful biological interpretation. The second challenge is related to the choice of the right animal model for studies on gut microbiota. We exemplified this using NMR spectroscopy for the investigation of cross-species comparison of fecal metabolite profiles. Finally, we present the problem of variability of human gut microbiota and metabolome that has important consequences on the concepts of personalized nutrition and medicine. Copyright © 2016 Elsevier GmbH. All rights reserved.

  13. Metabolomic Studies of Oral Biofilm, Oral Cancer, and Beyond

    Directory of Open Access Journals (Sweden)

    Jumpei Washio

    2016-06-01

    Full Text Available Oral diseases are known to be closely associated with oral biofilm metabolism, while cancer tissue is reported to possess specific metabolism such as the ‘Warburg effect’. Metabolomics might be a useful method for clarifying the whole metabolic systems that operate in oral biofilm and oral cancer, however, technical limitations have hampered such research. Fortunately, metabolomics techniques have developed rapidly in the past decade, which has helped to solve these difficulties. In vivo metabolomic analyses of the oral biofilm have produced various findings. Some of these findings agreed with the in vitro results obtained in conventional metabolic studies using representative oral bacteria, while others differed markedly from them. Metabolomic analyses of oral cancer tissue not only revealed differences between metabolomic profiles of cancer and normal tissue, but have also suggested a specific metabolic system operates in oral cancer tissue. Saliva contains a variety of metabolites, some of which might be associated with oral or systemic disease; therefore, metabolomics analysis of saliva could be useful for identifying disease-specific biomarkers. Metabolomic analyses of the oral biofilm, oral cancer, and saliva could contribute to the development of accurate diagnostic, techniques, safe and effective treatments, and preventive strategies for oral and systemic diseases.

  14. Metabolomic Studies of Oral Biofilm, Oral Cancer, and Beyond.

    Science.gov (United States)

    Washio, Jumpei; Takahashi, Nobuhiro

    2016-06-02

    Oral diseases are known to be closely associated with oral biofilm metabolism, while cancer tissue is reported to possess specific metabolism such as the 'Warburg effect'. Metabolomics might be a useful method for clarifying the whole metabolic systems that operate in oral biofilm and oral cancer, however, technical limitations have hampered such research. Fortunately, metabolomics techniques have developed rapidly in the past decade, which has helped to solve these difficulties. In vivo metabolomic analyses of the oral biofilm have produced various findings. Some of these findings agreed with the in vitro results obtained in conventional metabolic studies using representative oral bacteria, while others differed markedly from them. Metabolomic analyses of oral cancer tissue not only revealed differences between metabolomic profiles of cancer and normal tissue, but have also suggested a specific metabolic system operates in oral cancer tissue. Saliva contains a variety of metabolites, some of which might be associated with oral or systemic disease; therefore, metabolomics analysis of saliva could be useful for identifying disease-specific biomarkers. Metabolomic analyses of the oral biofilm, oral cancer, and saliva could contribute to the development of accurate diagnostic, techniques, safe and effective treatments, and preventive strategies for oral and systemic diseases.

  15. Metabolomics, a promising approach to translational research in cardiology

    Directory of Open Access Journals (Sweden)

    Martino Deidda

    2015-12-01

    In this article, we will provide a description of metabolomics in comparison with other, better known “omics” disciplines such as genomics and proteomics. In addition, we will review the current rationale for the implementation of metabolomics in cardiology, its basic methodology and the available data from human studies in this discipline. The topics covered will delineate the importance of being able to use the metabolomic information to understand the mechanisms of diseases from the perspective of systems biology, and as a non-invasive approach to the diagnosis, grading and treatment of cardiovascular diseases.

  16. Introduction to metabolomics and its applications in ophthalmology

    Science.gov (United States)

    Tan, S Z; Begley, P; Mullard, G; Hollywood, K A; Bishop, P N

    2016-01-01

    Metabolomics is the study of endogenous and exogenous metabolites in biological systems, which aims to provide comparative semi-quantitative information about all metabolites in the system. Metabolomics is an emerging and potentially powerful tool in ophthalmology research. It is therefore important for health professionals and researchers involved in the speciality to understand the basic principles of metabolomics experiments. This article provides an overview of the experimental workflow and examples of its use in ophthalmology research from the study of disease metabolism and pathogenesis to identification of biomarkers. PMID:26987591

  17. Targeting of the hydrophobic metabolome by pathogens.

    Science.gov (United States)

    Helms, J Bernd; Kaloyanova, Dora V; Strating, Jeroen R P; van Hellemond, Jaap J; van der Schaar, Hilde M; Tielens, Aloysius G M; van Kuppeveld, Frank J M; Brouwers, Jos F

    2015-05-01

    The hydrophobic molecules of the metabolome - also named the lipidome - constitute a major part of the entire metabolome. Novel technologies show the existence of a staggering number of individual lipid species, the biological functions of which are, with the exception of only a few lipid species, unknown. Much can be learned from pathogens that have evolved to take advantage of the complexity of the lipidome to escape the immune system of the host organism and to allow their survival and replication. Different types of pathogens target different lipids as shown in interaction maps, allowing visualization of differences between different types of pathogens. Bacterial and viral pathogens target predominantly structural and signaling lipids to alter the cellular phenotype of the host cell. Fungal and parasitic pathogens have complex lipidomes themselves and target predominantly the release of polyunsaturated fatty acids from the host cell lipidome, resulting in the generation of eicosanoids by either the host cell or the pathogen. Thus, whereas viruses and bacteria induce predominantly alterations in lipid metabolites at the host cell level, eukaryotic pathogens focus on interference with lipid metabolites affecting systemic inflammatory reactions that are part of the immune system. A better understanding of the interplay between host-pathogen interactions will not only help elucidate the fundamental role of lipid species in cellular physiology, but will also aid in the generation of novel therapeutic drugs. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. The Human Blood Metabolome-Transcriptome Interface

    Science.gov (United States)

    Schramm, Katharina; Adamski, Jerzy; Gieger, Christian; Herder, Christian; Carstensen, Maren; Peters, Annette; Rathmann, Wolfgang; Roden, Michael; Strauch, Konstantin; Suhre, Karsten; Kastenmüller, Gabi; Prokisch, Holger; Theis, Fabian J.

    2015-01-01

    Biological systems consist of multiple organizational levels all densely interacting with each other to ensure function and flexibility of the system. Simultaneous analysis of cross-sectional multi-omics data from large population studies is a powerful tool to comprehensively characterize the underlying molecular mechanisms on a physiological scale. In this study, we systematically analyzed the relationship between fasting serum metabolomics and whole blood transcriptomics data from 712 individuals of the German KORA F4 cohort. Correlation-based analysis identified 1,109 significant associations between 522 transcripts and 114 metabolites summarized in an integrated network, the ‘human blood metabolome-transcriptome interface’ (BMTI). Bidirectional causality analysis using Mendelian randomization did not yield any statistically significant causal associations between transcripts and metabolites. A knowledge-based interpretation and integration with a genome-scale human metabolic reconstruction revealed systematic signatures of signaling, transport and metabolic processes, i.e. metabolic reactions mainly belonging to lipid, energy and amino acid metabolism. Moreover, the construction of a network based on functional categories illustrated the cross-talk between the biological layers at a pathway level. Using a transcription factor binding site enrichment analysis, this pathway cross-talk was further confirmed at a regulatory level. Finally, we demonstrated how the constructed networks can be used to gain novel insights into molecular mechanisms associated to intermediate clinical traits. Overall, our results demonstrate the utility of a multi-omics integrative approach to understand the molecular mechanisms underlying both normal physiology and disease. PMID:26086077

  19. The Human Blood Metabolome-Transcriptome Interface.

    Directory of Open Access Journals (Sweden)

    Jörg Bartel

    2015-06-01

    Full Text Available Biological systems consist of multiple organizational levels all densely interacting with each other to ensure function and flexibility of the system. Simultaneous analysis of cross-sectional multi-omics data from large population studies is a powerful tool to comprehensively characterize the underlying molecular mechanisms on a physiological scale. In this study, we systematically analyzed the relationship between fasting serum metabolomics and whole blood transcriptomics data from 712 individuals of the German KORA F4 cohort. Correlation-based analysis identified 1,109 significant associations between 522 transcripts and 114 metabolites summarized in an integrated network, the 'human blood metabolome-transcriptome interface' (BMTI. Bidirectional causality analysis using Mendelian randomization did not yield any statistically significant causal associations between transcripts and metabolites. A knowledge-based interpretation and integration with a genome-scale human metabolic reconstruction revealed systematic signatures of signaling, transport and metabolic processes, i.e. metabolic reactions mainly belonging to lipid, energy and amino acid metabolism. Moreover, the construction of a network based on functional categories illustrated the cross-talk between the biological layers at a pathway level. Using a transcription factor binding site enrichment analysis, this pathway cross-talk was further confirmed at a regulatory level. Finally, we demonstrated how the constructed networks can be used to gain novel insights into molecular mechanisms associated to intermediate clinical traits. Overall, our results demonstrate the utility of a multi-omics integrative approach to understand the molecular mechanisms underlying both normal physiology and disease.

  20. Radiation Metabolomics: Current Status and Future Directions

    Directory of Open Access Journals (Sweden)

    Smrithi eSugumaran Menon

    2016-02-01

    Full Text Available Human exposure to ionizing radiation disrupts normal metabolic processes in cells and organs by inducing complex biological responses that interfere with gene and protein expression. Conventional dosimetry, monitoring of prodromal symptoms and peripheral lymphocyte counts are of limited value as organ and tissue specific biomarkers for personnel exposed to radiation, particularly, weeks or months after exposure. Analysis of metabolites generated in known stress-responsive pathways by molecular profiling helps to predict the physiological status of an individual in response to environmental or genetic perturbations. Thus, a multi-metabolite profile obtained from a high resolution mass spectrometry-based metabolomics platform offers potential for identification of robust biomarkers to predict radiation toxicity of organs and tissues resulting from exposures to therapeutic or non-therapeutic ionizing radiation. Here, we review the status of radiation metabolomics and explore applications as a standalone technology, as well as its integration in systems biology, to facilitate a better understanding of the molecular basis of radiation response. Finally, we draw attention to the identification of specific pathways that can be targeted for the development of therapeutics to alleviate or mitigate harmful effects of radiation exposure.

  1. New approaches for metabolomics by mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Vertes, Akos [George Washington Univ., Washington, DC (United States)

    2017-07-10

    Small molecules constitute a large part of the world around us, including fossil and some renewable energy sources. Solar energy harvested by plants and bacteria is converted into energy rich small molecules on a massive scale. Some of the worst contaminants of the environment and compounds of interest for national security also fall in the category of small molecules. The development of large scale metabolomic analysis methods lags behind the state of the art established for genomics and proteomics. This is commonly attributed to the diversity of molecular classes included in a metabolome. Unlike nucleic acids and proteins, metabolites do not have standard building blocks, and, as a result, their molecular properties exhibit a wide spectrum. This impedes the development of dedicated separation and spectroscopic methods. Mass spectrometry (MS) is a strong contender in the quest for a quantitative analytical tool with extensive metabolite coverage. Although various MS-based techniques are emerging for metabolomics, many of these approaches include extensive sample preparation that make large scale studies resource intensive and slow. New ionization methods are redefining the range of analytical problems that can be solved using MS. This project developed new approaches for the direct analysis of small molecules in unprocessed samples, as well as pushed the limits of ultratrace analysis in volume limited complex samples. The projects resulted in techniques that enabled metabolomics investigations with enhanced molecular coverage, as well as the study of cellular response to stimuli on a single cell level. Effectively individual cells became reaction vessels, where we followed the response of a complex biological system to external perturbation. We established two new analytical platforms for the direct study of metabolic changes in cells and tissues following external perturbation. For this purpose we developed a novel technique, laser ablation electrospray

  2. The MetabolomeExpress Project: enabling web-based processing, analysis and transparent dissemination of GC/MS metabolomics datasets

    Directory of Open Access Journals (Sweden)

    Carroll Adam J

    2010-07-01

    Full Text Available Abstract Background Standardization of analytical approaches and reporting methods via community-wide collaboration can work synergistically with web-tool development to result in rapid community-driven expansion of online data repositories suitable for data mining and meta-analysis. In metabolomics, the inter-laboratory reproducibility of gas-chromatography/mass-spectrometry (GC/MS makes it an obvious target for such development. While a number of web-tools offer access to datasets and/or tools for raw data processing and statistical analysis, none of these systems are currently set up to act as a public repository by easily accepting, processing and presenting publicly submitted GC/MS metabolomics datasets for public re-analysis. Description Here, we present MetabolomeExpress, a new File Transfer Protocol (FTP server and web-tool for the online storage, processing, visualisation and statistical re-analysis of publicly submitted GC/MS metabolomics datasets. Users may search a quality-controlled database of metabolite response statistics from publicly submitted datasets by a number of parameters (eg. metabolite, species, organ/biofluid etc.. Users may also perform meta-analysis comparisons of multiple independent experiments or re-analyse public primary datasets via user-friendly tools for t-test, principal components analysis, hierarchical cluster analysis and correlation analysis. They may interact with chromatograms, mass spectra and peak detection results via an integrated raw data viewer. Researchers who register for a free account may upload (via FTP their own data to the server for online processing via a novel raw data processing pipeline. Conclusions MetabolomeExpress https://www.metabolome-express.org provides a new opportunity for the general metabolomics community to transparently present online the raw and processed GC/MS data underlying their metabolomics publications. Transparent sharing of these data will allow researchers to

  3. Microbial metabolomics with gas chromatography/mass spectrometry

    NARCIS (Netherlands)

    Koek, M.M.; Muilwijk, B.; Werf, M.J. van der; Hankemeier, T.

    2006-01-01

    An analytical method was set up suitable for the analysis of microbial metabolomes, consisting of an oximation and silylation derivatization reaction and subsequent analysis by gas chromatography coupled to mass spectrometry. Microbial matrixes contain many compounds that potentially interfere with

  4. Impact of Intestinal Microbiota on Intestinal Luminal Metabolome

    Science.gov (United States)

    Matsumoto, Mitsuharu; Kibe, Ryoko; Ooga, Takushi; Aiba, Yuji; Kurihara, Shin; Sawaki, Emiko; Koga, Yasuhiro; Benno, Yoshimi

    2012-01-01

    Low–molecular-weight metabolites produced by intestinal microbiota play a direct role in health and disease. In this study, we analyzed the colonic luminal metabolome using capillary electrophoresis mass spectrometry with time-of-flight (CE-TOFMS) —a novel technique for analyzing and differentially displaying metabolic profiles— in order to clarify the metabolite profiles in the intestinal lumen. CE-TOFMS identified 179 metabolites from the colonic luminal metabolome and 48 metabolites were present in significantly higher concentrations and/or incidence in the germ-free (GF) mice than in the Ex-GF mice (p metabolome and a comprehensive understanding of intestinal luminal metabolome is critical for clarifying host-intestinal bacterial interactions. PMID:22724057

  5. Sparse Mbplsr for Metabolomics Data and Biomarker Discovery

    DEFF Research Database (Denmark)

    Karaman, İbrahim

    2014-01-01

    the link between high throughput metabolomics data generated on different analytical platforms, discover important metabolites deriving from the digestion processes in the gut, and automate metabolic pathway discovery from mass spectrometry. PLS (partial least squares) based chemometric methods were...

  6. A Review of Applications of Metabolomics in Cancer

    Directory of Open Access Journals (Sweden)

    Richard D. Beger

    2013-07-01

    Full Text Available Cancer is a devastating disease that alters the metabolism of a cell and the surrounding milieu. Metabolomics is a growing and powerful technology capable of detecting hundreds to thousands of metabolites in tissues and biofluids. The recent advances in metabolomics technologies have enabled a deeper investigation into the metabolism of cancer and a better understanding of how cancer cells use glycolysis, known as the “Warburg effect,” advantageously to produce the amino acids, nucleotides and lipids necessary for tumor proliferation and vascularization. Currently, metabolomics research is being used to discover diagnostic cancer biomarkers in the clinic, to better understand its complex heterogeneous nature, to discover pathways involved in cancer that could be used for new targets and to monitor metabolic biomarkers during therapeutic intervention. These metabolomics approaches may also provide clues to personalized cancer treatments by providing useful information to the clinician about the cancer patient’s response to medical interventions.

  7. International NMR-based Environmental Metabolomics Intercomparison Exercise

    Science.gov (United States)

    Several fundamental requirements must be met so that NMR-based metabolomics and the related technique of metabonomics can be formally adopted into environmental monitoring and chemical risk assessment. Here we report an intercomparison exercise which has evaluated the effectivene...

  8. Spectral Relative Standard Deviation: A Practical Benchmark in Metabolomics

    Science.gov (United States)

    Metabolomics datasets, by definition, comprise of measurements of large numbers of metabolites. Both technical (analytical) and biological factors will induce variation within these measurements that is not consistent across all metabolites. Consequently, criteria are required to...

  9. NMR-based metabolomic profiling of overweight adolescents

    DEFF Research Database (Denmark)

    Zheng, Hong; Yde, Christian C; Arnberg, Karina

    2014-01-01

    The plasma and urine metabolome of 192 overweight 12-15-year-old adolescents (BMI of 25.4 ± 2.3 kg/m(2)) were examined in order to elucidate gender, pubertal development measured as Tanner stage, physical activity measured as number of steps taken daily, and intra-/interindividual differences...... and the metabolome could be identified. The present study for the first time provides comprehensive information about associations between the metabolome and gender, pubertal development, and physical activity in overweight adolescents, which is an important subject group to approach in the prevention of obesity...... affecting the metabolome detected by proton NMR spectroscopy. Higher urinary excretion of citrate, creatinine, hippurate, and phenylacetylglutamine and higher plasma level of phosphatidylcholine and unsaturated lipid were found for girls compared with boys. The results suggest that gender differences...

  10. Human gut microbes impact host serum metabolome and insulin sensitivity

    DEFF Research Database (Denmark)

    Pedersen, Helle Krogh; Gudmundsdottir, Valborg; Nielsen, Henrik Bjørn

    2016-01-01

    Insulin resistance is a forerunner state of ischaemic cardiovascular disease and type 2 diabetes. Here we show how the human gut microbiome impacts the serum metabolome and associates with insulin resistance in 277 non-diabetic Danish individuals. The serum metabolome of insulin-resistant individ......Insulin resistance is a forerunner state of ischaemic cardiovascular disease and type 2 diabetes. Here we show how the human gut microbiome impacts the serum metabolome and associates with insulin resistance in 277 non-diabetic Danish individuals. The serum metabolome of insulin......-resistant individuals is characterized by increased levels of branched-chain amino acids (BCAAs), which correlate with a gut microbiome that has an enriched biosynthetic potential for BCAAs and is deprived of genes encoding bacterial inward transporters for these amino acids. Prevotella copri and Bacteroides vulgatus...

  11. Metabolomic profiling of Green Frogs exposed to Mixed Pesticides

    Data.gov (United States)

    U.S. Environmental Protection Agency — GC/MS data from the metabolomic profiling of green frog livers after exposure to pesticides and their mixtures. This dataset is associated with the following...

  12. The food metabolome: a window over dietary exposure.

    Science.gov (United States)

    Scalbert, Augustin; Brennan, Lorraine; Manach, Claudine; Andres-Lacueva, Cristina; Dragsted, Lars O; Draper, John; Rappaport, Stephen M; van der Hooft, Justin J J; Wishart, David S

    2014-06-01

    The food metabolome is defined as the part of the human metabolome directly derived from the digestion and biotransformation of foods and their constituents. With >25,000 compounds known in various foods, the food metabolome is extremely complex, with a composition varying widely according to the diet. By its very nature it represents a considerable and still largely unexploited source of novel dietary biomarkers that could be used to measure dietary exposures with a high level of detail and precision. Most dietary biomarkers currently have been identified on the basis of our knowledge of food compositions by using hypothesis-driven approaches. However, the rapid development of metabolomics resulting from the development of highly sensitive modern analytic instruments, the availability of metabolite databases, and progress in (bio)informatics has made agnostic approaches more attractive as shown by the recent identification of novel biomarkers of intakes for fruit, vegetables, beverages, meats, or complex diets. Moreover, examples also show how the scrutiny of the food metabolome can lead to the discovery of bioactive molecules and dietary factors associated with diseases. However, researchers still face hurdles, which slow progress and need to be resolved to bring this emerging field of research to maturity. These limits were discussed during the First International Workshop on the Food Metabolome held in Glasgow. Key recommendations made during the workshop included more coordination of efforts; development of new databases, software tools, and chemical libraries for the food metabolome; and shared repositories of metabolomic data. Once achieved, major progress can be expected toward a better understanding of the complex interactions between diet and human health. © 2014 American Society for Nutrition.

  13. Metabolomic NMR fingerprinting: an exploratory and predictive tool

    OpenAIRE

    Lauri, Ilaria

    2014-01-01

    Metabolomics is the comprehensive assessment of low molecular weight organic metabolites within biological system. The identification and characterization of several chemical species, or metabolic fingerprinting, is an emergent approach in metabolomics field that provides a valuable “snapshot” of metabolic profiles. This approach is finding an increasing number of applications in many areas including cancer research, drug discovery and food science. The combined use of NMR spectroscopy, data ...

  14. Metabolomics approach for discovering disease biomarkers and understanding metabolic pathway

    Directory of Open Access Journals (Sweden)

    Jeeyoun Jung

    2011-12-01

    Full Text Available Metabolomics, the multi-targeted analysis of endogenous metabolites from biological samples, can be efficiently applied to screen disease biomarkers and investigate pathophysiological processes. Metabolites change rapidly in response to physiological perturbations, making them the closest link to disease phenotypes. This study explored the role of metabolomics in gaining mechanistic insight into disease processes and in searching for novel biomarkers of human diseases

  15. Stable isotope-resolved metabolomics and applications for drug development

    Science.gov (United States)

    Fan, Teresa W-M.; Lorkiewicz, Pawel; Sellers, Katherine; Moseley, Hunter N.B.; Higashi, Richard M.; Lane, Andrew N.

    2012-01-01

    Advances in analytical methodologies, principally nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS), during the last decade have made large-scale analysis of the human metabolome a reality. This is leading to the reawakening of the importance of metabolism in human diseases, particularly cancer. The metabolome is the functional readout of the genome, functional genome, and proteome; it is also an integral partner in molecular regulations for homeostasis. The interrogation of the metabolome, or metabolomics, is now being applied to numerous diseases, largely by metabolite profiling for biomarker discovery, but also in pharmacology and therapeutics. Recent advances in stable isotope tracer-based metabolomic approaches enable unambiguous tracking of individual atoms through compartmentalized metabolic networks directly in human subjects, which promises to decipher the complexity of the human metabolome at an unprecedented pace. This knowledge will revolutionize our understanding of complex human diseases, clinical diagnostics, as well as individualized therapeutics and drug response. In this review, we focus on the use of stable isotope tracers with metabolomics technologies for understanding metabolic network dynamics in both model systems and in clinical applications. Atom-resolved isotope tracing via the two major analytical platforms, NMR and MS, has the power to determine novel metabolic reprogramming in diseases, discover new drug targets, and facilitates ADME studies. We also illustrate new metabolic tracer-based imaging technologies, which enable direct visualization of metabolic processes in vivo. We further outline current practices and future requirements for biochemoinformatics development, which is an integral part of translating stable isotope-resolved metabolomics into clinical reality. PMID:22212615

  16. Metabolomics and Metabolic Diseases: Where Do We Stand?

    Science.gov (United States)

    Newgard, Christopher B

    2017-01-10

    Metabolomics, or the comprehensive profiling of small molecule metabolites in cells, tissues, or whole organisms, has undergone a rapid technological evolution in the past two decades. These advances have led to the application of metabolomics to defining predictive biomarkers for incident cardiometabolic diseases and, increasingly, as a blueprint for understanding those diseases' pathophysiologic mechanisms. Progress in this area and challenges for the future are reviewed here. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Pediatric obesity: could metabolomics be a useful tool?

    OpenAIRE

    Angelica Dessì; Vassilios Fanos

    2013-01-01

    Pediatric obesity represents an important health issue. In recent years applications of metabolomics have led to evaluation of responses to the various nutrients (nutrigenomics), in particular to lipids, in diseases such as obesity and diabetes. The experimental data and the studies in pediatrics  that evaluated the metabolic condition in infant obesity are presented. It is thus to be hoped that future progress in connection with this new technique, together with a metabolomic study of mother...

  18. Ultrasound: a subexploited tool for sample preparation in metabolomics.

    Science.gov (United States)

    Luque de Castro, M D; Delgado-Povedano, M M

    2014-01-02

    Metabolomics, one of the most recently emerged "omics", has taken advantage of ultrasound (US) to improve sample preparation (SP) steps. The metabolomics-US assisted SP step binomial has experienced a dissimilar development that has depended on the area (vegetal or animal) and the SP step. Thus, vegetal metabolomics and US assisted leaching has received the greater attention (encompassing subdisciplines such as metallomics, xenometabolomics and, mainly, lipidomics), but also liquid-liquid extraction and (bio)chemical reactions in metabolomics have taken advantage of US energy. Also clinical and animal samples have benefited from US assisted SP in metabolomics studies but in a lesser extension. The main effects of US have been shortening of the time required for the given step, and/or increase of its efficiency or availability for automation; nevertheless, attention paid to potential degradation caused by US has been scant or nil. Achievements and weak points of the metabolomics-US assisted SP step binomial are discussed and possible solutions to the present shortcomings are exposed. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Quality assurance procedures for mass spectrometry untargeted metabolomics. a review.

    Science.gov (United States)

    Dudzik, Danuta; Barbas-Bernardos, Cecilia; García, Antonia; Barbas, Coral

    2018-01-05

    Untargeted metabolomics, as a global approach, has already proven its great potential and capabilities for the investigation of health and disease, as well as the wide applicability for other research areas. Although great progress has been made on the feasibility of metabolomics experiments, there are still some challenges that should be faced and that includes all sources of fluctuations and bias affecting every step involved in multiplatform untargeted metabolomics studies. The identification and reduction of the main sources of unwanted variation regarding the pre-analytical, analytical and post-analytical phase of metabolomics experiments is essential to ensure high data quality. Nowadays, there is still a lack of information regarding harmonized guidelines for quality assurance as those available for targeted analysis. In this review, sources of variations to be considered and minimized along with methodologies and strategies for monitoring and improvement the quality of the results are discussed. The given information is based on evidences from different groups among our own experiences and recommendations for each stage of the metabolomics workflow. The comprehensive overview with tools presented here might serve other researchers interested in monitoring, controlling and improving the reliability of their findings by implementation of good experimental quality practices in the untargeted metabolomics study. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. SECIMTools: a suite of metabolomics data analysis tools.

    Science.gov (United States)

    Kirpich, Alexander S; Ibarra, Miguel; Moskalenko, Oleksandr; Fear, Justin M; Gerken, Joseph; Mi, Xinlei; Ashrafi, Ali; Morse, Alison M; McIntyre, Lauren M

    2018-04-20

    Metabolomics has the promise to transform the area of personalized medicine with the rapid development of high throughput technology for untargeted analysis of metabolites. Open access, easy to use, analytic tools that are broadly accessible to the biological community need to be developed. While technology used in metabolomics varies, most metabolomics studies have a set of features identified. Galaxy is an open access platform that enables scientists at all levels to interact with big data. Galaxy promotes reproducibility by saving histories and enabling the sharing workflows among scientists. SECIMTools (SouthEast Center for Integrated Metabolomics) is a set of Python applications that are available both as standalone tools and wrapped for use in Galaxy. The suite includes a comprehensive set of quality control metrics (retention time window evaluation and various peak evaluation tools), visualization techniques (hierarchical cluster heatmap, principal component analysis, modular modularity clustering), basic statistical analysis methods (partial least squares - discriminant analysis, analysis of variance, t-test, Kruskal-Wallis non-parametric test), advanced classification methods (random forest, support vector machines), and advanced variable selection tools (least absolute shrinkage and selection operator LASSO and Elastic Net). SECIMTools leverages the Galaxy platform and enables integrated workflows for metabolomics data analysis made from building blocks designed for easy use and interpretability. Standard data formats and a set of utilities allow arbitrary linkages between tools to encourage novel workflow designs. The Galaxy framework enables future data integration for metabolomics studies with other omics data.

  1. Metabolomics through the lens of precision cardiovascular medicine.

    Science.gov (United States)

    Lam, Sin Man; Wang, Yuan; Li, Bowen; Du, Jie; Shui, Guanghou

    2017-03-20

    Metabolomics, which targets at the extensive characterization and quantitation of global metabolites from both endogenous and exogenous sources, has emerged as a novel technological avenue to advance the field of precision medicine principally driven by genomics-oriented approaches. In particular, metabolomics has revealed the cardinal roles that the environment exerts in driving the progression of major diseases threatening public health. Herein, the existent and potential applications of metabolomics in two key areas of precision cardiovascular medicine will be critically discussed: 1) the use of metabolomics in unveiling novel disease biomarkers and pathological pathways; 2) the contribution of metabolomics in cardiovascular drug development. Major issues concerning the statistical handling of big data generated by metabolomics, as well as its interpretation, will be briefly addressed. Finally, the need for integration of various omics branches and adopting a multi-omics approach to precision medicine will be discussed. Copyright © 2017 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  2. Mass spectrometry-based metabolomics for tuberculosis meningitis.

    Science.gov (United States)

    Zhang, Peixu; Zhang, Weiguanliu; Lang, Yue; Qu, Yan; Chu, Fengna; Chen, Jiafeng; Cui, Li

    2018-04-18

    Tuberculosis meningitis (TBM) is a prevalent form of extra-pulmonary tuberculosis that causes substantial morbidity and mortality. Diagnosis of TBM is difficult because of the limited sensitivity of existing laboratory techniques. A metabolomics approach can be used to investigate the sets of metabolites of both bacteria and host, and has been used to clarify the mechanisms underlying disease development, and identify metabolic changes, leadings to improved methods for diagnosis, treatment, and prognostication. Mass spectrometry (MS) is a major analysis platform used in metabolomics, and MS-based metabolomics provides wide metabolite coverage, because of its high sensitivity, and is useful for the investigation of Mycobacterium tuberculosis (Mtb) and related diseases. It has been used to investigate TBM diagnosis; however, the processes involved in the MS-based metabolomics approach are complex and flexible, and often consist of several steps, and small changes in the methods used can have a huge impact on the final results. Here, the process of MS-based metabolomics is summarized and its applications in Mtb and Mtb-related diseases discussed. Moreover, the current status of TBM metabolomics is described. Copyright © 2018. Published by Elsevier B.V.

  3. Effects of a prolonged standardized diet on normalizing the human metabolome123

    OpenAIRE

    Winnike, Jason H; Busby, Marjorie G; Watkins, Paul B; O'Connell, Thomas M

    2009-01-01

    Background: Although the effects of acute dietary interventions on the human metabolome have been studied, the extent to which the metabolome can be normalized by extended dietary standardization has not yet been examined.

  4. Metabolomic markers of fatigue: Association between circulating metabolome and fatigue in women with chronic widespread pain.

    Science.gov (United States)

    Freidin, Maxim B; Wells, Helena R R; Potter, Tilly; Livshits, Gregory; Menni, Cristina; Williams, Frances M K

    2018-02-01

    Fatigue is a sensation of unbearable tiredness that frequently accompanies chronic widespread musculoskeletal pain (CWP) and inflammatory joint disease. Its mechanisms are poorly understood and there is a lack of effective biomarkers for diagnosis and onset prediction. We studied the circulating metabolome in a population sample characterised for CWP to identify biomarkers showing specificity for fatigue. Untargeted metabolomic profiling was conducted on fasting plasma and serum samples of 1106 females with and without CWP from the TwinsUK cohort. Linear mixed-effects models accounting for covariates were used to determine relationships between fatigue and metabolites. Receiver operating curve (ROC)-analysis was used to determine predictive value of metabolites for fatigue. While no association between fatigue and metabolites was identified in twins without CWP (n=711), in participants with CWP (n=395), levels of eicosapentaenoate (EPA) ω-3 fatty acid were significantly reduced in those with fatigue (β=-0.452±0.116; p=1.2×10 -4 ). A significant association between fatigue and two other metabolites also emerged when BMI was excluded from the model: 3-carboxy-4-methyl-5-propyl-2-furanpropanoate (CMPF), and C-glycosyltryptophan (p=1.5×10 -4 and p=3.1×10 -4 , respectively). ROC analysis has identified a combination of 15 circulating metabolites with good predictive potential for fatigue in CWP (AUC=75%; 95% CI 69-80%). The results of this agnostic metabolomics screening show that fatigue is metabolically distinct from CWP, and is associated with a decrease in circulating levels of EPA. Our panel of circulating metabolites provides the starting point for a diagnostic test for fatigue in CWP. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Metabolomics of Small Numbers of Cells: Metabolomic Profiling of 100, 1000, and 10000 Human Breast Cancer Cells.

    Science.gov (United States)

    Luo, Xian; Li, Liang

    2017-11-07

    In cellular metabolomics, it is desirable to carry out metabolomic profiling using a small number of cells in order to save time and cost. In some applications (e.g., working with circulating tumor cells in blood), only a limited number of cells are available for analysis. In this report, we describe a method based on high-performance chemical isotope labeling (CIL) nanoflow liquid chromatography mass spectrometry (nanoLC-MS) for high-coverage metabolomic analysis of small numbers of cells (i.e., ≤10000 cells). As an example, 12 C-/ 13 C-dansyl labeling of the metabolites in lysates of 100, 1000, and 10000 MCF-7 breast cancer cells was carried out using a new labeling protocol tailored to handle small amounts of metabolites. Chemical-vapor-assisted ionization in a captivespray interface was optimized for improving metabolite ionization and increasing robustness of nanoLC-MS. Compared to microflow LC-MS, the nanoflow system provided much improved metabolite detectability with a significantly reduced sample amount required for analysis. Experimental duplicate analyses of biological triplicates resulted in the detection of 1620 ± 148, 2091 ± 89 and 2402 ± 80 (n = 6) peak pairs or metabolites in the amine/phenol submetabolome from the 12 C-/ 13 C-dansyl labeled lysates of 100, 1000, and 10000 cells, respectively. About 63-69% of these peak pairs could be either identified using dansyl labeled standard library or mass-matched to chemical structures in human metabolome databases. We envisage the routine applications of this method for high-coverage quantitative cellular metabolomics using a starting material of 10000 cells. Even for analyzing 100 or 1000 cells, although the metabolomic coverage is reduced from the maximal coverage, this method can still detect thousands of metabolites, allowing the analysis of a large fraction of the metabolome and focused analysis of the detectable metabolites.

  6. LC-MS-BASED METABOLOMICS OF XENOBIOTIC-INDUCED TOXICITIES

    Directory of Open Access Journals (Sweden)

    Chi Chen

    2013-01-01

    Full Text Available Xenobiotic exposure, especially high-dose or repeated exposure of xenobiotics, can elicit detrimental effects on biological systems through diverse mechanisms. Changes in metabolic systems, including formation of reactive metabolites and disruption of endogenous metabolism, are not only the common consequences of toxic xenobiotic exposure, but in many cases are the major causes behind development of xenobiotic-induced toxicities (XIT. Therefore, examining the metabolic events associated with XIT generates mechanistic insights into the initiation and progression of XIT, and provides guidance for prevention and treatment. Traditional bioanalytical platforms that target only a few suspected metabolites are capable of validating the expected outcomes of xenobiotic exposure. However, these approaches lack the capacity to define global changes and to identify unexpected events in the metabolic system. Recent developments in high-throughput metabolomics have dramatically expanded the scope and potential of metabolite analysis. Among all analytical techniques adopted for metabolomics, liquid chromatography-mass spectrometry (LC-MS has been most widely used for metabolomic investigations of XIT due to its versatility and sensitivity in metabolite analysis. In this review, technical platform of LC-MS-based metabolomics, including experimental model, sample preparation, instrumentation, and data analysis, are discussed. Applications of LC-MS-based metabolomics in exploratory and hypothesis-driven investigations of XIT are illustrated by case studies of xenobiotic metabolism and endogenous metabolism associated with xenobiotic exposure.

  7. Can NMR solve some significant challenges in metabolomics?

    Science.gov (United States)

    Gowda, G.A. Nagana; Raftery, Daniel

    2015-01-01

    The field of metabolomics continues to witness rapid growth driven by fundamental studies, methods development, and applications in a number of disciplines that include biomedical science, plant and nutrition sciences, drug development, energy and environmental sciences, toxicology, etc. NMR spectroscopy is one of the two most widely used analytical platforms in the metabolomics field, along with mass spectrometry (MS). NMR's excellent reproducibility and quantitative accuracy, its ability to identify structures of unknown metabolites, its capacity to generate metabolite profiles using intact biospecimens with no need for separation, and its capabilities for tracing metabolic pathways using isotope labeled substrates offer unique strengths for metabolomics applications. However, NMR's limited sensitivity and resolution continue to pose a major challenge and have restricted both the number and the quantitative accuracy of metabolites analyzed by NMR. Further, the analysis of highly complex biological samples has increased the demand for new methods with improved detection, better unknown identification, and more accurate quantitation of larger numbers of metabolites. Recent efforts have contributed significant improvements in these areas, and have thereby enhanced the pool of routinely quantifiable metabolites. Additionally, efforts focused on combining NMR and MS promise opportunities to exploit the combined strength of the two analytical platforms for direct comparison of the metabolite data, unknown identification and reliable biomarker discovery that continue to challenge the metabolomics field. This article presents our perspectives on the emerging trends in NMR-based metabolomics and NMR's continuing role in the field with an emphasis on recent and ongoing research from our laboratory. PMID:26476597

  8. [Development of Plant Metabolomics and Medicinal Plant Genomics].

    Science.gov (United States)

    Saito, Kazuki

    2018-01-01

     A variety of chemicals produced by plants, often referred to as 'phytochemicals', have been used as medicines, food, fuels and industrial raw materials. Recent advances in the study of genomics and metabolomics in plant science have accelerated our understanding of the mechanisms, regulation and evolution of the biosynthesis of specialized plant products. We can now address such questions as how the metabolomic diversity of plants is originated at the levels of genome, and how we should apply this knowledge to drug discovery, industry and agriculture. Our research group has focused on metabolomics-based functional genomics over the last 15 years and we have developed a new research area called 'Phytochemical Genomics'. In this review, the development of a research platform for plant metabolomics is discussed first, to provide a better understanding of the chemical diversity of plants. Then, representative applications of metabolomics to functional genomics in a model plant, Arabidopsis thaliana, are described. The extension of integrated multi-omics analyses to non-model specialized plants, e.g., medicinal plants, is presented, including the identification of novel genes, metabolites and networks for the biosynthesis of flavonoids, alkaloids, sulfur-containing metabolites and terpenoids. Further, functional genomics studies on a variety of medicinal plants is presented. I also discuss future trends in pharmacognosy and related sciences.

  9. Can NMR solve some significant challenges in metabolomics?

    Science.gov (United States)

    Nagana Gowda, G. A.; Raftery, Daniel

    2015-11-01

    The field of metabolomics continues to witness rapid growth driven by fundamental studies, methods development, and applications in a number of disciplines that include biomedical science, plant and nutrition sciences, drug development, energy and environmental sciences, toxicology, etc. NMR spectroscopy is one of the two most widely used analytical platforms in the metabolomics field, along with mass spectrometry (MS). NMR's excellent reproducibility and quantitative accuracy, its ability to identify structures of unknown metabolites, its capacity to generate metabolite profiles using intact bio-specimens with no need for separation, and its capabilities for tracing metabolic pathways using isotope labeled substrates offer unique strengths for metabolomics applications. However, NMR's limited sensitivity and resolution continue to pose a major challenge and have restricted both the number and the quantitative accuracy of metabolites analyzed by NMR. Further, the analysis of highly complex biological samples has increased the demand for new methods with improved detection, better unknown identification, and more accurate quantitation of larger numbers of metabolites. Recent efforts have contributed significant improvements in these areas, and have thereby enhanced the pool of routinely quantifiable metabolites. Additionally, efforts focused on combining NMR and MS promise opportunities to exploit the combined strength of the two analytical platforms for direct comparison of the metabolite data, unknown identification and reliable biomarker discovery that continue to challenge the metabolomics field. This article presents our perspectives on the emerging trends in NMR-based metabolomics and NMR's continuing role in the field with an emphasis on recent and ongoing research from our laboratory.

  10. Metabolomics for functional genomics, systems biology, and biotechnology.

    Science.gov (United States)

    Saito, Kazuki; Matsuda, Fumio

    2010-01-01

    Metabolomics now plays a significant role in fundamental plant biology and applied biotechnology. Plants collectively produce a huge array of chemicals, far more than are produced by most other organisms; hence, metabolomics is of great importance in plant biology. Although substantial improvements have been made in the field of metabolomics, the uniform annotation of metabolite signals in databases and informatics through international standardization efforts remains a challenge, as does the development of new fields such as fluxome analysis and single cell analysis. The principle of transcript and metabolite cooccurrence, particularly transcriptome coexpression network analysis, is a powerful tool for decoding the function of genes in Arabidopsis thaliana. This strategy can now be used for the identification of genes involved in specific pathways in crops and medicinal plants. Metabolomics has gained importance in biotechnology applications, as exemplified by quantitative loci analysis, prediction of food quality, and evaluation of genetically modified crops. Systems biology driven by metabolome data will aid in deciphering the secrets of plant cell systems and their application to biotechnology.

  11. Tissue Multiplatform-Based Metabolomics/Metabonomics for Enhanced Metabolome Coverage.

    Science.gov (United States)

    Vorkas, Panagiotis A; Abellona U, M R; Li, Jia V

    2018-01-01

    The use of tissue as a matrix to elucidate disease pathology or explore intervention comes with several advantages. It allows investigation of the target alteration directly at the focal location and facilitates the detection of molecules that could become elusive after secretion into biofluids. However, tissue metabolomics/metabonomics comes with challenges not encountered in biofluid analyses. Furthermore, tissue heterogeneity does not allow for tissue aliquoting. Here we describe a multiplatform, multi-method workflow which enables metabolic profiling analysis of tissue samples, while it can deliver enhanced metabolome coverage. After applying a dual consecutive extraction (organic followed by aqueous), tissue extracts are analyzed by reversed-phase (RP-) and hydrophilic interaction liquid chromatography (HILIC-) ultra-performance liquid chromatography coupled to mass spectrometry (UPLC-MS) and nuclear magnetic resonance (NMR) spectroscopy. This pipeline incorporates the required quality control features, enhances versatility, allows provisional aliquoting of tissue extracts for future guided analyses, expands the range of metabolites robustly detected, and supports data integration. It has been successfully employed for the analysis of a wide range of tissue types.

  12. Diurnal effects of anoxia on the metabolome of the seagrass Zostera marina

    DEFF Research Database (Denmark)

    Hasler-Sheetal, Harald; Holmer, Marianne; Weckwerth, Wolfram

    2014-01-01

    Environmental metabolomics has become interesting in marine ecological studies. One example is the revealing of new insights in stress response of Zostera marina. This is essential to understand how, at which level and to what extend aquatic plants adapt, tolerate and react to environmental...... stressors. We exposed Z. marina to water column anoxia and assessed the diurnal metabolomic response by GC-TOF-MS based metabolomics identifying 109 known and 217 unknown metabolites. During day time photosynthetic oxygen production prevents severe effects of anoxia on the metabolome (complete set of small...... the applicability of metabolomics to assess environmental stress responses of Zostera marina....

  13. Metabolomics in plants and humans: applications in the prevention and diagnosis of diseases.

    Science.gov (United States)

    Gomez-Casati, Diego F; Zanor, Maria I; Busi, María V

    2013-01-01

    In the recent years, there has been an increase in the number of metabolomic approaches used, in parallel with proteomic and functional genomic studies. The wide variety of chemical types of metabolites available has also accelerated the use of different techniques in the investigation of the metabolome. At present, metabolomics is applied to investigate several human diseases, to improve their diagnosis and prevention, and to design better therapeutic strategies. In addition, metabolomic studies are also being carried out in areas such as toxicology and pharmacology, crop breeding, and plant biotechnology. In this review, we emphasize the use and application of metabolomics in human diseases and plant research to improve human health.

  14. Deconstructing the pig sex metabolome: Targeted metabolomics in heavy pigs revealed sexual dimorphisms in plasma biomarkers and metabolic pathways.

    Science.gov (United States)

    Bovo, S; Mazzoni, G; Calò, D G; Galimberti, G; Fanelli, F; Mezzullo, M; Schiavo, G; Scotti, E; Manisi, A; Samoré, A B; Bertolini, F; Trevisi, P; Bosi, P; Dall'Olio, S; Pagotto, U; Fontanesi, L

    2015-12-01

    Metabolomics has opened new possibilities to investigate metabolic differences among animals. In this study, we applied a targeted metabolomic approach to deconstruct the pig sex metabolome as defined by castrated males and entire gilts. Plasma from 545 performance-tested Italian Large White pigs (172 castrated males and 373 females) sampled at about 160 kg live weight were analyzed for 186 metabolites using the Biocrates AbsoluteIDQ p180 Kit. After filtering, 132 metabolites (20 AA, 11 biogenic amines, 1 hexose, 13 acylcarnitines, 11 sphingomyelins, 67 phosphatidylcholines, and 9 lysophosphatidylcholines) were retained for further analyses. The multivariate approach of the sparse partial least squares discriminant analysis was applied, together with a specifically designed statistical pipeline, that included a permutation test and a 10 cross-fold validation procedure that produced stability and effect size statistics for each metabolite. Using this approach, we identified 85 biomarkers (with metabolites from all analyzed chemical families) that contributed to the differences between the 2 groups of pigs ( metabolic shift in castrated males toward energy storage and lipid production. Similar general patterns were observed for most sphingomyelins, phosphatidylcholines, and lysophosphatidylcholines. Metabolomic pathway analysis and pathway enrichment identified several differences between the 2 sexes. This metabolomic overview opened new clues on the biochemical mechanisms underlying sexual dimorphism that, on one hand, might explain differences in terms of economic traits between castrated male pigs and entire gilts and, on the other hand, could strengthen the pig as a model to define metabolic mechanisms related to fat deposition.

  15. A Latitudinal Metabolome of the Atlantic Ocean

    Science.gov (United States)

    Johnson, W.; Kido Soule, M. C.; Longnecker, K.; Kujawinski, E. B.

    2016-02-01

    Microbial consortia function via the exchange and transformation of small organic molecules or metabolites. These metabolites make up a pool of rapidly cycling organic matter in the ocean that is challenging to characterize due to its low concentrations. We seek to determine the distribution of these molecules and the factors that shape their abundance and flux. Through measurements of the abundance of a core set of metabolites, including nucleic acids, amino acids, sugars, vitamins, and signaling molecules, we gain a real-time snapshot of microbial activity. We used a targeted metabolomics technique to profile metabolite abundance in particulate and dissolved organic matter extracts collected from a 14,000 km transect running from 38˚S to 55˚N in the Western Atlantic Ocean. This extensive dataset is the first of its kind in the Atlantic Ocean and allows us to explore connections among metabolites as well as latitudinal trends in metabolite abundance. We found changes in the intracellular abundance of certain metabolites between low and high nutrient regions and a wide distribution of certain dissolved vitamins in the surface ocean. These measurements give us baseline data on the distribution of these metabolites and allow us to extend our understanding of microbial community activity in different regions of the ocean.

  16. Genetic basis of metabolome variation in yeast.

    Directory of Open Access Journals (Sweden)

    Jeffrey S Breunig

    2014-03-01

    Full Text Available Metabolism, the conversion of nutrients into usable energy and biochemical building blocks, is an essential feature of all cells. The genetic factors responsible for inter-individual metabolic variability remain poorly understood. To investigate genetic causes of metabolome variation, we measured the concentrations of 74 metabolites across ~ 100 segregants from a Saccharomyces cerevisiae cross by liquid chromatography-tandem mass spectrometry. We found 52 quantitative trait loci for 34 metabolites. These included linkages due to overt changes in metabolic genes, e.g., linking pyrimidine intermediates to the deletion of ura3. They also included linkages not directly related to metabolic enzymes, such as those for five central carbon metabolites to ira2, a Ras/PKA pathway regulator, and for the metabolites, S-adenosyl-methionine and S-adenosyl-homocysteine to slt2, a MAP kinase involved in cell wall integrity. The variant of ira2 that elevates metabolite levels also increases glucose uptake and ethanol secretion. These results highlight specific examples of genetic variability, including in genes without prior known metabolic regulatory function, that impact yeast metabolism.

  17. Mass spectrometry as a quantitative tool in plant metabolomics

    Science.gov (United States)

    Jorge, Tiago F.; Mata, Ana T.

    2016-01-01

    Metabolomics is a research field used to acquire comprehensive information on the composition of a metabolite pool to provide a functional screen of the cellular state. Studies of the plant metabolome include the analysis of a wide range of chemical species with very diverse physico-chemical properties, and therefore powerful analytical tools are required for the separation, characterization and quantification of this vast compound diversity present in plant matrices. In this review, challenges in the use of mass spectrometry (MS) as a quantitative tool in plant metabolomics experiments are discussed, and important criteria for the development and validation of MS-based analytical methods provided. This article is part of the themed issue ‘Quantitative mass spectrometry’. PMID:27644967

  18. Plant Metabolomics: An Indispensable System Biology Tool for Plant Science

    Science.gov (United States)

    Hong, Jun; Yang, Litao; Zhang, Dabing; Shi, Jianxin

    2016-01-01

    As genomes of many plant species have been sequenced, demand for functional genomics has dramatically accelerated the improvement of other omics including metabolomics. Despite a large amount of metabolites still remaining to be identified, metabolomics has contributed significantly not only to the understanding of plant physiology and biology from the view of small chemical molecules that reflect the end point of biological activities, but also in past decades to the attempts to improve plant behavior under both normal and stressed conditions. Hereby, we summarize the current knowledge on the genetic and biochemical mechanisms underlying plant growth, development, and stress responses, focusing further on the contributions of metabolomics to practical applications in crop quality improvement and food safety assessment, as well as plant metabolic engineering. We also highlight the current challenges and future perspectives in this inspiring area, with the aim to stimulate further studies leading to better crop improvement of yield and quality. PMID:27258266

  19. Plant Metabolomics: An Indispensable System Biology Tool for Plant Science

    Directory of Open Access Journals (Sweden)

    Jun Hong

    2016-06-01

    Full Text Available As genomes of many plant species have been sequenced, demand for functional genomics has dramatically accelerated the improvement of other omics including metabolomics. Despite a large amount of metabolites still remaining to be identified, metabolomics has contributed significantly not only to the understanding of plant physiology and biology from the view of small chemical molecules that reflect the end point of biological activities, but also in past decades to the attempts to improve plant behavior under both normal and stressed conditions. Hereby, we summarize the current knowledge on the genetic and biochemical mechanisms underlying plant growth, development, and stress responses, focusing further on the contributions of metabolomics to practical applications in crop quality improvement and food safety assessment, as well as plant metabolic engineering. We also highlight the current challenges and future perspectives in this inspiring area, with the aim to stimulate further studies leading to better crop improvement of yield and quality.

  20. A primer to nutritional metabolomics by NMR spectroscopy and chemometrics

    DEFF Research Database (Denmark)

    Savorani, Francesco; Rasmussen, Morten Arendt; Mikkelsen, Mette Skau

    2013-01-01

    This paper outlines the advantages and disadvantages of using high throughput NMR metabolomics for nutritional studies with emphasis on the workflow and data analytical methods for generation of new knowledge. The paper describes one-by-one the major research activities in the interdisciplinary...... metabolomics platform and highlights the opportunities that NMR spectra can provide in future nutrition studies. Three areas are emphasized: (1) NMR as an unbiased and non-destructive platform for providing an overview of the metabolome under investigation, (2) NMR for providing versatile information and data...... structures for multivariate pattern recognition methods and (3) NMR for providing a unique fingerprint of the lipoprotein status of the subject. For the first time in history, by combining NMR spectroscopy and chemometrics we are able to perform inductive nutritional research as a complement to the deductive...

  1. Metabolomics in epidemiology: from metabolite concentrations to integrative reaction networks.

    Science.gov (United States)

    Fearnley, Liam G; Inouye, Michael

    2016-10-01

    Metabolomics is becoming feasible for population-scale studies of human disease. In this review, we survey epidemiological studies that leverage metabolomics and multi-omics to gain insight into disease mechanisms. We outline key practical, technological and analytical limitations while also highlighting recent successes in integrating these data. The use of multi-omics to infer reaction rates is discussed as a potential future direction for metabolomics research, as a means of identifying biomarkers as well as inferring causality. Furthermore, we highlight established analysis approaches as well as simulation-based methods currently used in single- and multi-cell levels in systems biology. © The Author 2016. Published by Oxford University Press on behalf of the International Epidemiological Association.

  2. The effects of gliadin on urine metabolome in mice

    DEFF Research Database (Denmark)

    Roager, Henrik Munch; Zhang, Li; Frandsen, Henrik Lauritz

    Gliadin, a proline-rich protein of gluten, is thought to modulate the gut microbiota and affect the intestinal permeability and immune system. However, little is known about the long-term effects of gliadin on the host and microbial metabolism. To study this, we compared the urine metabolome of two...... groups of mice, which were on a high fat diet with and without gliadin, respectively, for 23 weeks. Using liquid chromatography mass-spectrometry (MS) followed by multivariate analyses we were able to show a clear separation of the two groups of mice based on their urine metabolome. Discriminating...... in the gliadin mice. Also, Maillard reaction products and β-oxidized tocopherols were observed in higher levels in the urine of gliadin mice, suggesting increased oxidative stress in the gliadin mice. Indisputably, gliadin affected the urine metabolome. However, the mechanisms behind the observed metabolite...

  3. Mass spectrometric based approaches in urine metabolomics and biomarker discovery.

    Science.gov (United States)

    Khamis, Mona M; Adamko, Darryl J; El-Aneed, Anas

    2017-03-01

    Urine metabolomics has recently emerged as a prominent field for the discovery of non-invasive biomarkers that can detect subtle metabolic discrepancies in response to a specific disease or therapeutic intervention. Urine, compared to other biofluids, is characterized by its ease of collection, richness in metabolites and its ability to reflect imbalances of all biochemical pathways within the body. Following urine collection for metabolomic analysis, samples must be immediately frozen to quench any biogenic and/or non-biogenic chemical reactions. According to the aim of the experiment; sample preparation can vary from simple procedures such as filtration to more specific extraction protocols such as liquid-liquid extraction. Due to the lack of comprehensive studies on urine metabolome stability, higher storage temperatures (i.e. 4°C) and repetitive freeze-thaw cycles should be avoided. To date, among all analytical techniques, mass spectrometry (MS) provides the best sensitivity, selectivity and identification capabilities to analyze the majority of the metabolite composition in the urine. Combined with the qualitative and quantitative capabilities of MS, and due to the continuous improvements in its related technologies (i.e. ultra high-performance liquid chromatography [UPLC] and hydrophilic interaction liquid chromatography [HILIC]), liquid chromatography (LC)-MS is unequivocally the most utilized and the most informative analytical tool employed in urine metabolomics. Furthermore, differential isotope tagging techniques has provided a solution to ion suppression from urine matrix thus allowing for quantitative analysis. In addition to LC-MS, other MS-based technologies have been utilized in urine metabolomics. These include direct injection (infusion)-MS, capillary electrophoresis-MS and gas chromatography-MS. In this article, the current progresses of different MS-based techniques in exploring the urine metabolome as well as the recent findings in providing

  4. Medicinal Plants: A Public Resource for Metabolomics and Hypothesis Development

    Directory of Open Access Journals (Sweden)

    Eve Syrkin Wurtele

    2012-11-01

    Full Text Available Specialized compounds from photosynthetic organisms serve as rich resources for drug development. From aspirin to atropine, plant-derived natural products have had a profound impact on human health. Technological advances provide new opportunities to access these natural products in a metabolic context. Here, we describe a database and platform for storing, visualizing and statistically analyzing metabolomics data from fourteen medicinal plant species. The metabolomes and associated transcriptomes (RNAseq for each plant species, gathered from up to twenty tissue/organ samples that have experienced varied growth conditions and developmental histories, were analyzed in parallel. Three case studies illustrate different ways that the data can be integrally used to generate testable hypotheses concerning the biochemistry, phylogeny and natural product diversity of medicinal plants. Deep metabolomics analysis of Camptotheca acuminata exemplifies how such data can be used to inform metabolic understanding of natural product chemical diversity and begin to formulate hypotheses about their biogenesis. Metabolomics data from Prunella vulgaris, a species that contains a wide range of antioxidant, antiviral, tumoricidal and anti-inflammatory constituents, provide a case study of obtaining biosystematic and developmental fingerprint information from metabolite accumulation data in a little studied species. Digitalis purpurea, well known as a source of cardiac glycosides, is used to illustrate how integrating metabolomics and transcriptomics data can lead to identification of candidate genes encoding biosynthetic enzymes in the cardiac glycoside pathway. Medicinal Plant Metabolomics Resource (MPM [1] provides a framework for generating experimentally testable hypotheses about the metabolic networks that lead to the generation of specialized compounds, identifying genes that control their biosynthesis and establishing a basis for modeling metabolism in less

  5. Metabolomic biosignature differentiates melancholic depressive patients from healthy controls.

    Science.gov (United States)

    Liu, Yashu; Yieh, Lynn; Yang, Tao; Drinkenburg, Wilhelmus; Peeters, Pieter; Steckler, Thomas; Narayan, Vaibhav A; Wittenberg, Gayle; Ye, Jieping

    2016-08-23

    Major depressive disorder (MDD) is a heterogeneous disease at the level of clinical symptoms, and this heterogeneity is likely reflected at the level of biology. Two clinical subtypes within MDD that have garnered interest are "melancholic depression" and "anxious depression". Metabolomics enables us to characterize hundreds of small molecules that comprise the metabolome, and recent work suggests the blood metabolome may be able to inform treatment decisions for MDD, however work is at an early stage. Here we examine a metabolomics data set to (1) test whether clinically homogenous MDD subtypes are also more biologically homogeneous, and hence more predictiable, (2) devise a robust machine learning framework that preserves biological meaning, and (3) describe the metabolomic biosignature for melancholic depression. With the proposed computational system we achieves around 80 % classification accuracy, sensitivity and specificity for melancholic depression, but only ~72 % for anxious depression or MDD, suggesting the blood metabolome contains more information about melancholic depression.. We develop an ensemble feature selection framework (EFSF) in which features are first clustered, and learning then takes place on the cluster centroids, retaining information about correlated features during the feature selection process rather than discarding them as most machine learning methods will do. Analysis of the most discriminative feature clusters revealed differences in metabolic classes such as amino acids and lipids as well as pathways studied extensively in MDD such as the activation of cortisol in chronic stress. We find the greater clinical homogeneity does indeed lead to better prediction based on biological measurements in the case of melancholic depression. Melancholic depression is shown to be associated with changes in amino acids, catecholamines, lipids, stress hormones, and immune-related metabolites. The proposed computational framework can be adapted

  6. The potential biomarkers of drug addiction: proteomic and metabolomics challenges.

    Science.gov (United States)

    Wang, Lv; Wu, Ning; Zhao, Tai-Yun; Li, Jin

    2016-07-28

    Drug addiction places a significant burden on society and individuals. Proteomics and metabolomics approaches pave the road for searching potential biomarkers to assist the diagnosis and treatment. This review summarized putative drug addiction-related biomarkers in proteomics and metabolomics studies and discussed challenges and prospects in future studies. Alterations of several hundred proteins and metabolites were reported when exposure to abused drug, which enriched in energy metabolism, oxidative stress response, protein modification and degradation, synaptic function and neurotrasmission, etc. Hsp70, peroxiredoxin-6 and α- and β-synuclein, as well as n-methylserotonin and purine metabolites, were promising as potential biomarker for drug addiction.

  7. Application of metabolomics to toxicology of drugs of abuse: A mini review of metabolomics approach to acute and chronic toxicity studies.

    Science.gov (United States)

    Zaitsu, Kei; Hayashi, Yumi; Kusano, Maiko; Tsuchihashi, Hitoshi; Ishii, Akira

    2016-02-01

    Metabolomics has been widely applied to toxicological fields, especially to elucidate the mechanism of action of toxicity. In this review, metabolomics application with focus on the studies of chronic and acute toxicities of drugs of abuse like stimulants, opioids and the recently-distributed designer drugs will be presented in addition to an outline of basic analytical techniques used in metabolomics. Limitation of metabolomics studies and future perspectives will be also provided. Copyright © 2015 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  8. A LC-MS metabolomics approach to investigate the effect of raw apple intake in the rat plasma metabolome

    DEFF Research Database (Denmark)

    Rago, Daniela; Kristensen, Mette; Gürdeniz, Gözde

    2013-01-01

    Fruit and vegetable consumption has been associated with several health benefits; however the mechanisms are largely unknown at the biochemical level. Our research aims to investigate whether plasma metabolome profiling can reflect biological effects after feeding rats with raw apple by using...... an untargeted UPLC–ESI– TOF–MS based metabolomics approach in both positive and negative mode. Eighty young male rats were randomised into groups receiving daily 0, 5 or 10 g fresh apple slices, respectively, for 13 weeks. During weeks 3–6 some of the animals were receiving 4 mg/ml 1,2-dimethylhydrazine...

  9. The Development of Metabolomic Sampling Procedures for Pichia pastoris, and Baseline Metabolome Data

    Science.gov (United States)

    Tredwell, Gregory D.; Edwards-Jones, Bryn; Leak, David J.; Bundy, Jacob G.

    2011-01-01

    Metabolic profiling is increasingly being used to investigate a diverse range of biological questions. Due to the rapid turnover of intracellular metabolites it is important to have reliable, reproducible techniques for sampling and sample treatment. Through the use of non-targeted analytical techniques such as NMR and GC-MS we have performed a comprehensive quantitative investigation of sampling techniques for Pichia pastoris. It was clear that quenching metabolism using solutions based on the standard cold methanol protocol caused some metabolite losses from P. pastoris cells. However, these were at a low level, with the NMR results indicating metabolite increases in the quenching solution below 5% of their intracellular level for 75% of metabolites identified; while the GC-MS results suggest a slightly higher level with increases below 15% of their intracellular values. There were subtle differences between the four quenching solutions investigated but broadly, they all gave similar results. Total culture extraction of cells + broth using high cell density cultures typical of P. pastoris fermentations, was an efficient sampling technique for NMR analysis and provided a gold standard of intracellular metabolite levels; however, salts in the media affected the GC-MS analysis. Furthermore, there was no benefit in including an additional washing step in the quenching process, as the results were essentially identical to those obtained just by a single centrifugation step. We have identified the major high-concentration metabolites found in both the extra- and intracellular locations of P. pastoris cultures by NMR spectroscopy and GC-MS. This has provided us with a baseline metabolome for P. pastoris for future studies. The P. pastoris metabolome is significantly different from that of Saccharomyces cerevisiae, with the most notable difference being the production of high concentrations of arabitol by P. pastoris. PMID:21283710

  10. The Muscle Metabolome Differs between Healthy and Frail Older Adults

    NARCIS (Netherlands)

    Fazelzadeh, P.; Hangelbroek, R.W.J.; Tieland, M.; de Groot, C.P.G.M.; Verdijk, L.B.; van Loon, L.J.C.; Smilde, A.K.; Alves, R.D.A.M.; Vervoort, J.; Müller, M.; van Duynhoven, J.P.M.; Boekschoten, M.V.

    2016-01-01

    Populations around the world are aging rapidly. Age-related loss of physiological functions negatively affects quality of life. A major contributor to the frailty syndrome of aging is loss of skeletal muscle. In this study we assessed the skeletal muscle biopsy metabolome of healthy young, healthy

  11. Bagged K-means clustering of metabolome data

    NARCIS (Netherlands)

    Hageman, J. A.; van den Berg, R. A.; Westerhuis, J. A.; Hoefsloot, H. C. J.; Smilde, A. K.

    2006-01-01

    Clustering of metabolomics data can be hampered by noise originating from biological variation, physical sampling error and analytical error. Using data analysis methods which are not specially suited for dealing with noisy data will yield sub optimal solutions. Bootstrap aggregating (bagging) is a

  12. Application of Metabolomics to Study Effects of Bariatric Surgery

    Directory of Open Access Journals (Sweden)

    Paulina Samczuk

    2018-01-01

    Full Text Available Bariatric surgery was born in the 1950s at the University of Minnesota. From this time, it continues to evolve and, by the same token, gives new or better possibilities to treat not only obesity but also associated comorbidities. Metabolomics is also a relatively young science discipline, and similarly, it shows great potential for the comprehensive study of the dynamic alterations of the metabolome. It has been widely used in medicine, biology studies, biomarker discovery, and prognostic evaluations. Currently, several dozen metabolomics studies were performed to study the effects of bariatric surgery. LC-MS and NMR are the most frequently used techniques to study main effects of RYGB or SG. Research has yield many interesting results involving not only clinical parameters but also molecular modulations. Detected changes pertain to amino acid, lipids, carbohydrates, or gut microbiota alterations. It proves that including bariatric surgery to metabolic surgery is warranted. However, many molecular modulations after those procedures remain unexplained. Therefore, application of metabolomics to study this field seems to be a proper solution. New findings can suggest new directions of surgery technics modifications, contribute to broadening knowledge about obesity and diseases related to it, and perhaps develop nonsurgical methods of treatment in the future.

  13. CLOSTAT alters the serum metabolome of Holstein Steer Calves

    Science.gov (United States)

    Probiotics are gaining increased interest in calf feeding operations as some producers seek novel, non-antibiotic technologies to improve health and performance. Therefore, the objective of this study was to evaluate changes in serum metabolomic compounds of Holstein steer calves supplemented with C...

  14. Metabolomic Responses of Guard Cells and Mesophyll Cells to Bicarbonate

    Science.gov (United States)

    Misra, Biswapriya B.; de Armas, Evaldo; Tong, Zhaohui; Chen, Sixue

    2015-01-01

    Anthropogenic CO2 presently at 400 ppm is expected to reach 550 ppm in 2050, an increment expected to affect plant growth and productivity. Paired stomatal guard cells (GCs) are the gate-way for water, CO2, and pathogen, while mesophyll cells (MCs) represent the bulk cell-type of green leaves mainly for photosynthesis. We used the two different cell types, i.e., GCs and MCs from canola (Brassica napus) to profile metabolomic changes upon increased CO2 through supplementation with bicarbonate (HCO3 -). Two metabolomics platforms enabled quantification of 268 metabolites in a time-course study to reveal short-term responses. The HCO3 - responsive metabolomes of the cell types differed in their responsiveness. The MCs demonstrated increased amino acids, phenylpropanoids, redox metabolites, auxins and cytokinins, all of which were decreased in GCs in response to HCO3 -. In addition, the GCs showed differential increases of primary C-metabolites, N-metabolites (e.g., purines and amino acids), and defense-responsive pathways (e.g., alkaloids, phenolics, and flavonoids) as compared to the MCs, indicating differential C/N homeostasis in the cell-types. The metabolomics results provide insights into plant responses and crop productivity under future climatic changes where elevated CO2 conditions are to take center-stage. PMID:26641455

  15. Sample preparation procedures utilized in microbial metabolomics: An overview.

    Science.gov (United States)

    Patejko, Małgorzata; Jacyna, Julia; Markuszewski, Michał J

    2017-02-01

    Bacteria are remarkably diverse in terms of their size, structure and biochemical properties. Due to this fact, it is hard to develop a universal method for handling bacteria cultures during metabolomic analysis. The choice of suitable processing methods constitutes a key element in any analysis, because only appropriate selection of procedures may provide accurate results, leading to reliable conclusions. Because of that, every analytical experiment concerning bacteria requires individually and very carefully planned research methodology. Although every study varies in terms of sample preparation, there are few general steps to follow while planning experiment, like sampling, separation of cells from growth medium, stopping their metabolism and extraction. As a result of extraction, all intracellular metabolites should be washed out from cell environment. What is more, extraction method utilized cannot cause any chemical decomposition or degradation of the metabolome. Furthermore, chosen extraction method should correlate with analytical technique, so it will not disturb or prolong following sample preparation steps. For those reasons, we observe a need to summarize sample preparation procedures currently utilized in microbial metabolomic studies. In the presented overview, papers concerning analysis of extra- and intracellular metabolites, published over the last decade, have been discussed. Presented work gives some basic guidelines that might be useful while planning experiments in microbial metabolomics. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. High-resolution metabolomics of occupational exposure to trichloroethylene

    NARCIS (Netherlands)

    Walker, Douglas I; Uppal, Karan; Zhang, Luoping; Vermeulen, Roel; Smith, Martyn; Hu, Wei; Purdue, Mark P; Tang, Xiaojiang; Reiss, Boris; Kim, Sungkyoon; Li, Laiyu; Huang, Hanlin; Pennell, Kurt D; Jones, Dean P; Rothman, Nathaniel; Lan, Qing

    2016-01-01

    BACKGROUND: Occupational exposure to trichloroethylene (TCE) has been linked to adverse health outcomes including non-Hodgkin's lymphoma and kidney and liver cancer; however, TCE's mode of action for development of these diseases in humans is not well understood. METHODS: Non-targeted metabolomics

  17. Growth of Malignant Non-CNS Tumors Alters Brain Metabolome

    Science.gov (United States)

    Kovalchuk, Anna; Nersisyan, Lilit; Mandal, Rupasri; Wishart, David; Mancini, Maria; Sidransky, David; Kolb, Bryan; Kovalchuk, Olga

    2018-01-01

    Cancer survivors experience numerous treatment side effects that negatively affect their quality of life. Cognitive side effects are especially insidious, as they affect memory, cognition, and learning. Neurocognitive deficits occur prior to cancer treatment, arising even before cancer diagnosis, and we refer to them as “tumor brain.” Metabolomics is a new area of research that focuses on metabolome profiles and provides important mechanistic insights into various human diseases, including cancer, neurodegenerative diseases, and aging. Many neurological diseases and conditions affect metabolic processes in the brain. However, the tumor brain metabolome has never been analyzed. In our study we used direct flow injection/mass spectrometry (DI-MS) analysis to establish the effects of the growth of lung cancer, pancreatic cancer, and sarcoma on the brain metabolome of TumorGraft™ mice. We found that the growth of malignant non-CNS tumors impacted metabolic processes in the brain, affecting protein biosynthesis, and amino acid and sphingolipid metabolism. The observed metabolic changes were similar to those reported for neurodegenerative diseases and brain aging, and may have potential mechanistic value for future analysis of the tumor brain phenomenon. PMID:29515623

  18. Alterations of red blood cell metabolome in overhydrated hereditary stomatocytosis.

    NARCIS (Netherlands)

    Darghouth, D.; Koehl, B.; Heilier, J.F.; Madalinski, G.; Bovee, P.H.; Bosman, G.J.C.G.M.; Delaunay, J.; Junot, C.; Romeo, P.H.

    2011-01-01

    Overhydrated hereditary stomatocytosis, clinically characterized by hemolytic anemia, is a rare disorder of the erythrocyte membrane permeability to monovalent cations, associated with mutations in the Rh-associated glycoprotein gene. We assessed the red blood cell metabolome of 4 patients with this

  19. Recent Highlights of Metabolomics in Chinese Medicine Syndrome Research

    Directory of Open Access Journals (Sweden)

    Ai-hua Zhang

    2013-01-01

    Full Text Available Chinese medicine syndrome (CMS, “ZHENG” in Chinese is an understanding of the regularity of disease occurrence and development as well as a certain stage of a comprehensive response of patients with body condition. However, because of the complexity of CMS and the limitation of present investigation method, the research for deciphering the scientific basis and systematic features of CMS is difficult to go further. Metabolomics enables mapping of early biochemical changes in disease and hence provides an opportunity to develop predictive biomarkers. Moreover, its method and design resemble those of traditional Chinese medicine (TCM which focuses on human disease via the integrity of close relationship between body and syndromes. In the systemic context, metabolomics has a convergence with TCM syndrome; therefore it could provide useful tools for exploring essence of CMS disease, facilitating personalized TCM, and will help to in-depth understand CMS. The integration of the metabolomics and CMS aspects will give promise to bridge the gap between Chinese and Western medicine and help catch the traditional features of CMS. In this paper, particular attention will be paid to the past successes in applications of robust metabolomic approaches to contribute to low-molecular-weight metabolites (biomarkers discovery in CMS research and development.

  20. Validation of Metabolomic, Diagnostic, and Prognostic Classifiers of Lung Cancer

    Science.gov (United States)

    2016-10-01

    information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this...Additionally, global metabolomic profiling will allow us to interrogate whether the military have unique exposures that may be related to lung cancer

  1. Effect of sleep deprivation on the human metabolome

    NARCIS (Netherlands)

    S.K. Davies (Sarah); J.E. Ang (Joo Ern); V.L. Revell (Victoria); B. Holmes (Ben); A. Mann (Anuska); F.P. Robertson (Francesca); N. Cui (Nanyi); B. Middleton (Benita); K. Ackermann (Katrin); M.H. Kayser (Manfred); A.E. Thumser (Alfred); P. Raynaud (Philippe); D.J. Skene (Debra)

    2014-01-01

    textabstractSleep restriction and circadian clock disruption are associated with metabolic disorders such as obesity, insulin resistance, and diabetes. The metabolic pathways involved in human sleep, however, have yet to be investigatedwith the use of a metabolomics approach. Here we have used

  2. Metabolomics: Insulin Resistance and Type 2 Diabetes Mellitus

    Science.gov (United States)

    Type 2 diabetes mellitus (T2DM) develops over many years, providing an opportunity to consider early prognostic tools that guide interventions to thwart disease. Advancements in analytical chemistry enable quantitation of hundreds of metabolites in biofluids and tissues (metabolomics), providing in...

  3. Genetic algorithm based two-mode clustering of metabolomics data

    NARCIS (Netherlands)

    Hageman, J.A.; van den Berg, R.A.; Westerhuis, J.A.; van der Werf, M.J.; Smilde, A.K.

    2008-01-01

    Metabolomics and other omics tools are generally characterized by large data sets with many variables obtained under different environmental conditions. Clustering methods and more specifically two-mode clustering methods are excellent tools for analyzing this type of data. Two-mode clustering

  4. Women with preterm birth have a distinct cervicovaginal metabolome.

    Science.gov (United States)

    Ghartey, Jeny; Bastek, Jamie A; Brown, Amy G; Anglim, Laura; Elovitz, Michal A

    2015-06-01

    Metabolomics has the potential to reveal novel pathways involved in the pathogenesis of preterm birth (PTB). The objective of this study was to investigate whether the cervicovaginal (CV) metabolome was different in asymptomatic women destined to have a PTB compared with term birth. A nested case-control study was performed using CV fluid collected from a larger prospective cohort. The CV fluid was collected between 20-24 weeks (V1) and 24-28 weeks (V2). The metabolome was compared between women with a spontaneous PTB (n = 10) to women who delivered at term (n = 10). Samples were extracted and prepared for analysis using a standard extraction solvent method. Global biochemical profiles were determined using gas chromatography/mass spectrometry and ultra-performance liquid chromatography/tandem mass spectrometry. An ANOVA was used to detect differences in biochemical compounds between the groups. A false discovery rate was estimated to account for multiple comparisons. A total of 313 biochemicals were identified in CV fluid. Eighty-two biochemicals were different in the CV fluid at V1 in those destined to have a PTB compared with term birth, whereas 48 were different at V2. Amino acid, carbohydrate, and peptide metabolites were distinct between women with and without PTB. These data suggest that the CV space is metabolically active during pregnancy. Changes in the CV metabolome may be observed weeks, if not months, prior to any clinical symptoms. Understanding the CV metabolome may hold promise for unraveling the pathogenesis of PTB and may provide novel biomarkers to identify women most at risk. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Can NMR solve some significant challenges in metabolomics?

    Science.gov (United States)

    Nagana Gowda, G A; Raftery, Daniel

    2015-11-01

    The field of metabolomics continues to witness rapid growth driven by fundamental studies, methods development, and applications in a number of disciplines that include biomedical science, plant and nutrition sciences, drug development, energy and environmental sciences, toxicology, etc. NMR spectroscopy is one of the two most widely used analytical platforms in the metabolomics field, along with mass spectrometry (MS). NMR's excellent reproducibility and quantitative accuracy, its ability to identify structures of unknown metabolites, its capacity to generate metabolite profiles using intact bio-specimens with no need for separation, and its capabilities for tracing metabolic pathways using isotope labeled substrates offer unique strengths for metabolomics applications. However, NMR's limited sensitivity and resolution continue to pose a major challenge and have restricted both the number and the quantitative accuracy of metabolites analyzed by NMR. Further, the analysis of highly complex biological samples has increased the demand for new methods with improved detection, better unknown identification, and more accurate quantitation of larger numbers of metabolites. Recent efforts have contributed significant improvements in these areas, and have thereby enhanced the pool of routinely quantifiable metabolites. Additionally, efforts focused on combining NMR and MS promise opportunities to exploit the combined strength of the two analytical platforms for direct comparison of the metabolite data, unknown identification and reliable biomarker discovery that continue to challenge the metabolomics field. This article presents our perspectives on the emerging trends in NMR-based metabolomics and NMR's continuing role in the field with an emphasis on recent and ongoing research from our laboratory. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. MetaFIND: A feature analysis tool for metabolomics data

    Directory of Open Access Journals (Sweden)

    Cunningham Pádraig

    2008-11-01

    Full Text Available Abstract Background Metabolomics, or metabonomics, refers to the quantitative analysis of all metabolites present within a biological sample and is generally carried out using NMR spectroscopy or Mass Spectrometry. Such analysis produces a set of peaks, or features, indicative of the metabolic composition of the sample and may be used as a basis for sample classification. Feature selection may be employed to improve classification accuracy or aid model explanation by establishing a subset of class discriminating features. Factors such as experimental noise, choice of technique and threshold selection may adversely affect the set of selected features retrieved. Furthermore, the high dimensionality and multi-collinearity inherent within metabolomics data may exacerbate discrepancies between the set of features retrieved and those required to provide a complete explanation of metabolite signatures. Given these issues, the latter in particular, we present the MetaFIND application for 'post-feature selection' correlation analysis of metabolomics data. Results In our evaluation we show how MetaFIND may be used to elucidate metabolite signatures from the set of features selected by diverse techniques over two metabolomics datasets. Importantly, we also show how MetaFIND may augment standard feature selection and aid the discovery of additional significant features, including those which represent novel class discriminating metabolites. MetaFIND also supports the discovery of higher level metabolite correlations. Conclusion Standard feature selection techniques may fail to capture the full set of relevant features in the case of high dimensional, multi-collinear metabolomics data. We show that the MetaFIND 'post-feature selection' analysis tool may aid metabolite signature elucidation, feature discovery and inference of metabolic correlations.

  7. Metabolomics-Driven Nutraceutical Evaluation of Diverse Green Tea Cultivars

    Science.gov (United States)

    Ida, Megumi; Kosaka, Reia; Miura, Daisuke; Wariishi, Hiroyuki; Maeda-Yamamoto, Mari; Nesumi, Atsushi; Saito, Takeshi; Kanda, Tomomasa; Yamada, Koji; Tachibana, Hirofumi

    2011-01-01

    Background Green tea has various health promotion effects. Although there are numerous tea cultivars, little is known about the differences in their nutraceutical properties. Metabolic profiling techniques can provide information on the relationship between the metabolome and factors such as phenotype or quality. Here, we performed metabolomic analyses to explore the relationship between the metabolome and health-promoting attributes (bioactivity) of diverse Japanese green tea cultivars. Methodology/Principal Findings We investigated the ability of leaf extracts from 43 Japanese green tea cultivars to inhibit thrombin-induced phosphorylation of myosin regulatory light chain (MRLC) in human umbilical vein endothelial cells (HUVECs). This thrombin-induced phosphorylation is a potential hallmark of vascular endothelial dysfunction. Among the tested cultivars, Cha Chuukanbohon Nou-6 (Nou-6) and Sunrouge (SR) strongly inhibited MRLC phosphorylation. To evaluate the bioactivity of green tea cultivars using a metabolomics approach, the metabolite profiles of all tea extracts were determined by high-performance liquid chromatography-mass spectrometry (LC-MS). Multivariate statistical analyses, principal component analysis (PCA) and orthogonal partial least-squares-discriminant analysis (OPLS-DA), revealed differences among green tea cultivars with respect to their ability to inhibit MRLC phosphorylation. In the SR cultivar, polyphenols were associated with its unique metabolic profile and its bioactivity. In addition, using partial least-squares (PLS) regression analysis, we succeeded in constructing a reliable bioactivity-prediction model to predict the inhibitory effect of tea cultivars based on their metabolome. This model was based on certain identified metabolites that were associated with bioactivity. When added to an extract from the non-bioactive cultivar Yabukita, several metabolites enriched in SR were able to transform the extract into a bioactive extract

  8. NMR-based metabolomics reveals urinary metabolome modifications in female Sprague-Dawley rats by cranberry procyanidins.

    Science.gov (United States)

    Liu, Haiyan; Tayyari, Fariba; Edison, Arthur S; Su, Zhihua; Gu, Liwei

    2016-08-01

    A (1)H NMR global metabolomics approach was used to investigate the urinary metabolome changes in female rats gavaged with partially purified cranberry procyanidins (PPCP) or partially purified apple procyanidins (PPAP). After collecting 24-h baseline urine, 24 female Sprague-Dawley rats were randomly separated into two groups and gavaged with PPCP or PPAP twice using a dose of 250 mg extracts per kilogram body weight. The 24-h urine samples were collected after the gavage. Urine samples were analyzed using (1)H NMR. Multivariate analyses showed that the urinary metabolome in rats was modified after administering PPCP or PPAP compared to baseline urine metabolic profiles. 2D (1)H-(13)C HSQC NMR was conducted to assist identification of discriminant metabolites. An increase of hippurate, lactate and succinate and a decrease of citrate and α-ketoglutarate were observed in rat urine after administering PPCP. Urinary levels of d-glucose, d-maltose, 3-(3'-hydroxyphenyl)-3-hydroxypropanoic acid, p-hydroxyphenylacetic acid, formate and phenol increased but citrate, α-ketoglutarate and creatinine decreased in rats after administering PPAP. Furthermore, the NMR analysis showed that the metabolome in the urine of rats administered with PPCP differed from those gavaged with PPAP. Compared to PPAP, PPCP caused an increase of urinary excretion of hippurate but a decrease of 3-(3'-hydroxyphenyl)-3-hydroxypropanoic acid, p-hydroxyphenylacetic acid and phenol. These metabolome changes caused by cranberry procyanidins may help to explain its reported health benefits and identify biomarkers of cranberry procyanidin intake. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Advances in computational metabolomics and databases deepen the understanding of metabolisms.

    Science.gov (United States)

    Tsugawa, Hiroshi

    2018-01-29

    Mass spectrometry (MS)-based metabolomics is the popular platform for metabolome analyses. Computational techniques for the processing of MS raw data, for example, feature detection, peak alignment, and the exclusion of false-positive peaks, have been established. The next stage of untargeted metabolomics would be to decipher the mass fragmentation of small molecules for the global identification of human-, animal-, plant-, and microbiota metabolomes, resulting in a deeper understanding of metabolisms. This review is an update on the latest computational metabolomics including known/expected structure databases, chemical ontology classifications, and mass spectrometry cheminformatics for the interpretation of mass fragmentations and for the elucidation of unknown metabolites. The importance of metabolome 'databases' and 'repositories' is also discussed because novel biological discoveries are often attributable to the accumulation of data, to relational databases, and to their statistics. Lastly, a practical guide for metabolite annotations is presented as the summary of this review. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Analytical methods in untargeted metabolomics: state of the art in 2015

    Directory of Open Access Journals (Sweden)

    Arnald eAlonso

    2015-03-01

    Full Text Available Metabolomics comprises the methods and techniques that are used to measure the small molecule composition of biofluids and tissues, and is actually one of the most rapidly evolving research fields. The determination of the metabolomic profile –the metabolome- has multiple applications in many biological sciences, including the developing of new diagnostic tools in medicine. Recent technological advances in nuclear magnetic resonance (NMR and mass spectrometry (MS are significantly improving our capacity to obtain more data from each biological sample. Consequently, there is a need for fast and accurate statistical and bioinformatic tools that can deal with the complexity and volume of the data generated in metabolomic studies. In this review we provide an update of the most commonly used analytical methods in metabolomics, starting from raw data processing and ending with pathway analysis and biomarker identification. Finally, the integration of metabolomic profiles with molecular data from other high throughput biotechnologies is also reviewed.

  11. Impacts of endophyte infection of ryegrass on rhizosphere metabolome and microbial community

    DEFF Research Database (Denmark)

    Wakelin, S.; Harrison, Scott James; Mander, C.

    2015-01-01

    37, within a genetically uniform breeding line of perennial ryegrass (Lolium perenne cv. Samson 11104) on the rhizosphere metabolome and the composition of the fungal, bacterial, and Pseudomonas communities. There were strong differences in the rhizosphere metabolomes between infested and non......-infested ryegrass strains (P=0.06). These were attributed to shifts in various n-alkane hydrocarbon compounds. The endophyte-associated alteration in rhizosphere metabolome was linked to changes in the total bacterial (P

  12. Analysis of sequential hair segments reflects changes in the metabolome across the trimesters of pregnancy

    DEFF Research Database (Denmark)

    Delplancke, Thibaut D J; de Seymour, Jamie V; Tong, Chao

    2018-01-01

    The hair metabolome has been recognized as a valuable source of information in pregnancy research, as it provides stable metabolite information that could assist with studying biomarkers or metabolic mechanisms of pregnancy and its complications. We tested the hypothesis that hair segments could...... mellitus (p metabolome during pregnancy, as well as highlight the potential of the maternal hair metabolome to differentiate pregnancy complications from healthy pregnancies....

  13. Targeted metabolomics profiles are strongly correlated with nutritional patterns in women

    OpenAIRE

    Menni, Cristina; Zhai, Guangju; MacGregor, Alexander; Prehn, Cornelia; Römisch-Margl, Werner; Suhre, Karsten; Adamski, Jerzy; Cassidy, Aedin; Illig, Thomas; Spector, Tim D.; Valdes, Ana M.

    2013-01-01

    Nutrition plays an important role in human metabolism and health. Metabolomics is a promising tool for clinical, genetic and nutritional studies. A key question is to what extent metabolomic profiles reflect nutritional patterns in an epidemiological setting. We assessed the relationship between metabolomic profiles and nutritional intake in women from a large cross-sectional community study. Food frequency questionnaires (FFQs) were applied to 1,003 women from the TwinsUK cohort with targete...

  14. Proteomics and Metabolomics: two emerging areas for legume improvement

    Directory of Open Access Journals (Sweden)

    Abirami eRamalingam

    2015-12-01

    Full Text Available The crop legumes such as chickpea, common bean, cowpea, peanut, pigeonpea, soybean, etc. are important source of nutrition and contribute to a significant amount of biological nitrogen fixation (>20 million tons of fixed nitrogen in agriculture. However, the production of legumes is constrained due to abiotic and biotic stresses. It is therefore imperative to understand the molecular mechanisms of plant response to different stresses and identify key candidate genes regulating tolerance which can be deployed in breeding programs. The information obtained from transcriptomics has facilitated the identification of candidate genes for the given trait of interest and utilizing them in crop breeding programs to improve stress tolerance. However, the mechanisms of stress tolerance are complex due to the influence of multi-genes and post-transcriptional regulations. Furthermore, stress conditions greatly affect gene expression which in turn causes modifications in the composition of plant proteomes and metabolomes. Therefore, functional genomics involving various proteomics and metabolomics approaches have been obligatory for understanding plant stress tolerance. These approaches have also been found useful to unravel different pathways related to plant and seed development as well as symbiosis. Proteome and metabolome profiling using high-throughput based systems have been extensively applied in the model legume species Medicago truncatula and Lotus japonicus, as well as in the model crop legume, soybean, to examine stress signalling pathways, cellular and developmental processes and nodule symbiosis. Moreover, the availability of protein reference maps as well as proteomics and metabolomics databases greatly support research and understanding of various biological processes in legumes. Protein-protein interaction techniques, particularly the yeast two-hybrid system have been advantageous for studying symbiosis and stress signalling in legumes. In

  15. Metabolomic imaging of prostate cancer with magnetic resonance spectroscopy and mass spectrometry

    International Nuclear Information System (INIS)

    Spur, Eva-Margarete; Decelle, Emily A.; Cheng, Leo L.

    2013-01-01

    Metabolomic imaging of prostate cancer (PCa) aims to improve in vivo imaging capability so that PCa tumors can be localized noninvasively to guide biopsy and evaluated for aggressiveness prior to prostatectomy, as well as to assess and monitor PCa growth in patients with asymptomatic PCa newly diagnosed by biopsy. Metabolomics studies global variations of metabolites with which malignancy conditions can be evaluated by profiling the entire measurable metabolome, instead of focusing only on certain metabolites or isolated metabolic pathways. At present, PCa metabolomics is mainly studied by magnetic resonance spectroscopy (MRS) and mass spectrometry (MS). With MRS imaging, the anatomic image, obtained from magnetic resonance imaging, is mapped with values of disease condition-specific metabolomic profiles calculated from MRS of each location. For example, imaging of removed whole prostates has demonstrated the ability of metabolomic profiles to differentiate cancerous foci from histologically benign regions. Additionally, MS metabolomic imaging of prostate biopsies has uncovered metabolomic expression patterns that could discriminate between PCa and benign tissue. Metabolomic imaging offers the potential to identify cancer lesions to guide prostate biopsy and evaluate PCa aggressiveness noninvasively in vivo, or ex vivo to increase the power of pathology analysis. Potentially, this imaging ability could be applied not only to PCa, but also to different tissues and organs to evaluate other human malignancies and metabolic diseases. (orig.)

  16. Metabolomic imaging of prostate cancer with magnetic resonance spectroscopy and mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Spur, Eva-Margarete [Massachusetts General Hospital, Harvard Medical School, Department of Pathology, Boston, MA (United States); Massachusetts General Hospital, Harvard Medical School, Department of Radiology, Boston, MA (United States); Charite Universitaetsmedizin, Berlin (Germany); Decelle, Emily A.; Cheng, Leo L. [Massachusetts General Hospital, Harvard Medical School, Department of Pathology, Boston, MA (United States); Massachusetts General Hospital, Harvard Medical School, Department of Radiology, Boston, MA (United States)

    2013-07-15

    Metabolomic imaging of prostate cancer (PCa) aims to improve in vivo imaging capability so that PCa tumors can be localized noninvasively to guide biopsy and evaluated for aggressiveness prior to prostatectomy, as well as to assess and monitor PCa growth in patients with asymptomatic PCa newly diagnosed by biopsy. Metabolomics studies global variations of metabolites with which malignancy conditions can be evaluated by profiling the entire measurable metabolome, instead of focusing only on certain metabolites or isolated metabolic pathways. At present, PCa metabolomics is mainly studied by magnetic resonance spectroscopy (MRS) and mass spectrometry (MS). With MRS imaging, the anatomic image, obtained from magnetic resonance imaging, is mapped with values of disease condition-specific metabolomic profiles calculated from MRS of each location. For example, imaging of removed whole prostates has demonstrated the ability of metabolomic profiles to differentiate cancerous foci from histologically benign regions. Additionally, MS metabolomic imaging of prostate biopsies has uncovered metabolomic expression patterns that could discriminate between PCa and benign tissue. Metabolomic imaging offers the potential to identify cancer lesions to guide prostate biopsy and evaluate PCa aggressiveness noninvasively in vivo, or ex vivo to increase the power of pathology analysis. Potentially, this imaging ability could be applied not only to PCa, but also to different tissues and organs to evaluate other human malignancies and metabolic diseases. (orig.)

  17. The Recent Developments in Sample Preparation for Mass Spectrometry-Based Metabolomics.

    Science.gov (United States)

    Gong, Zhi-Gang; Hu, Jing; Wu, Xi; Xu, Yong-Jiang

    2017-07-04

    Metabolomics is a critical member in systems biology. Although great progress has been achieved in metabolomics, there are still some problems in sample preparation, data processing and data interpretation. In this review, we intend to explore the roles, challenges and trends in sample preparation for mass spectrometry- (MS-) based metabolomics. The newly emerged sample preparation methods were also critically examined, including laser microdissection, in vivo sampling, dried blood spot, microwave, ultrasound and enzyme-assisted extraction, as well as microextraction techniques. Finally, we provide some conclusions and perspectives for sample preparation in MS-based metabolomics.

  18. Metabolomics enables precision medicine: "A White Paper, Community Perspective".

    Science.gov (United States)

    Beger, Richard D; Dunn, Warwick; Schmidt, Michael A; Gross, Steven S; Kirwan, Jennifer A; Cascante, Marta; Brennan, Lorraine; Wishart, David S; Oresic, Matej; Hankemeier, Thomas; Broadhurst, David I; Lane, Andrew N; Suhre, Karsten; Kastenmüller, Gabi; Sumner, Susan J; Thiele, Ines; Fiehn, Oliver; Kaddurah-Daouk, Rima

    Metabolomics is the comprehensive study of the metabolome, the repertoire of biochemicals (or small molecules) present in cells, tissues, and body fluids. The study of metabolism at the global or "-omics" level is a rapidly growing field that has the potential to have a profound impact upon medical practice. At the center of metabolomics, is the concept that a person's metabolic state provides a close representation of that individual's overall health status. This metabolic state reflects what has been encoded by the genome, and modified by diet, environmental factors, and the gut microbiome. The metabolic profile provides a quantifiable readout of biochemical state from normal physiology to diverse pathophysiologies in a manner that is often not obvious from gene expression analyses. Today, clinicians capture only a very small part of the information contained in the metabolome, as they routinely measure only a narrow set of blood chemistry analytes to assess health and disease states. Examples include measuring glucose to monitor diabetes, measuring cholesterol and high density lipoprotein/low density lipoprotein ratio to assess cardiovascular health, BUN and creatinine for renal disorders, and measuring a panel of metabolites to diagnose potential inborn errors of metabolism in neonates. We anticipate that the narrow range of chemical analyses in current use by the medical community today will be replaced in the future by analyses that reveal a far more comprehensive metabolic signature. This signature is expected to describe global biochemical aberrations that reflect patterns of variance in states of wellness, more accurately describe specific diseases and their progression, and greatly aid in differential diagnosis. Such future metabolic signatures will: (1) provide predictive, prognostic, diagnostic, and surrogate markers of diverse disease states; (2) inform on underlying molecular mechanisms of diseases; (3) allow for sub-classification of diseases, and

  19. Metabolome analysis - mass spectrometry and microbial primary metabolites

    DEFF Research Database (Denmark)

    Højer-Pedersen, Jesper Juul

    2008-01-01

    , and therefore sample preparation is critical for metabolome analysis. The three major steps in sample preparation for metabolite analysis are sampling, extraction and concentration. These three steps were evaluated for the yeast Saccharomyces cerevisiae with primary focus on analysis of a large number...... of metabolites by one method. The results highlighted that there were discrepancies between different methods. To increase the throughput of cultivation, S. cerevisiae was grown in microtitier plates (MTPs), and the growth was found to be comparable with cultivations in shake flasks. The carbon source was either...... a theoretical metabolome. This showed that in combination with the specificity of MS up to 84% of the metabolites can be identified in a high-accuracy ESI-spectrum. A total of 66 metabolites were systematically analyzed by positive and negative ESI-MS/MS with the aim of initiating a spectral library for ESI...

  20. PROM and Labour Effects on Urinary Metabolome: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Alessandra Meloni

    2018-01-01

    Full Text Available Since pathologies and complications occurring during pregnancy and/or during labour may cause adverse outcomes for both newborns and mothers, there is a growing interest in metabolomic applications on pregnancy investigation. In fact, metabolomics has proved to be an efficient strategy for the description of several perinatal conditions. In particular, this study focuses on premature rupture of membranes (PROM in pregnancy at term. For this project, urine samples were collected at three different clinical conditions: out of labour before PROM occurrence (Ph1, out of labour with PROM (Ph2, and during labour with PROM (Ph3. GC-MS analysis, followed by univariate and multivariate statistical analysis, was able to discriminate among the different classes, highlighting the metabolites most involved in the discrimination.

  1. PROM and Labour Effects on Urinary Metabolome: A Pilot Study

    Science.gov (United States)

    Meloni, Alessandra; Palmas, Francesco; Mereu, Rossella; Deiana, Sara Francesca; Fais, Maria Francesca; Mussap, Michele; Ragusa, Antonio; Pintus, Roberta; Fanos, Vassilios; Melis, Gian Benedetto

    2018-01-01

    Since pathologies and complications occurring during pregnancy and/or during labour may cause adverse outcomes for both newborns and mothers, there is a growing interest in metabolomic applications on pregnancy investigation. In fact, metabolomics has proved to be an efficient strategy for the description of several perinatal conditions. In particular, this study focuses on premature rupture of membranes (PROM) in pregnancy at term. For this project, urine samples were collected at three different clinical conditions: out of labour before PROM occurrence (Ph1), out of labour with PROM (Ph2), and during labour with PROM (Ph3). GC-MS analysis, followed by univariate and multivariate statistical analysis, was able to discriminate among the different classes, highlighting the metabolites most involved in the discrimination. PMID:29511388

  2. Metabolomic Biomarkers in the Progression to Type 1 Diabetes

    DEFF Research Database (Denmark)

    Overgaard, Anne Julie; Kaur, Simranjeet; Pociot, Flemming

    2016-01-01

    diabetes has been studied using this technique, although in relatively small cohorts and at limited time points. Overall, three observations have been consistently reported; phospholipids at birth are lower in children developing type 1 diabetes early in childhood, methionine levels are lower in children......Metabolomics is the snapshot of all detectable metabolites and lipids in biological materials and has potential in reflecting genetic and environmental factors contributing to the development of complex diseases, such as type 1 diabetes. The progression to seroconversion to development of type 1...... at seroconversion, and triglycerides are increased at seroconversion and associated to microbiome diversity, indicating an association between the metabolome and microbiome in type 1 diabetes progression....

  3. Bridging the gap: basic metabolomics methods for natural product chemistry.

    Science.gov (United States)

    Jones, Oliver A H; Hügel, Helmut M

    2013-01-01

    Natural products and their derivatives often have potent physiological activities and therefore play important roles as both frontline treatments for many diseases and as the inspiration for chemically synthesized therapeutics. However, the detection and synthesis of new therapeutic compounds derived from, or inspired by natural compounds has declined in recent years due to the increased difficulty of identifying and isolating novel active compounds. A new strategy is therefore necessary to jumpstart this field of research. Metabolomics, including both targeted and global metabolite profiling strategies, has the potential to be instrumental in this effort since it allows a systematic study of complex mixtures (such as plant extracts) without the need for prior isolation of active ingredients (or mixtures thereof). Here we describe the basic steps for conducting metabolomics experiments and analyzing the results using some of the more commonly used analytical and statistical methodologies.

  4. Computational Approaches for Integrative Analysis of the Metabolome and Microbiome

    Directory of Open Access Journals (Sweden)

    Jasmine Chong

    2017-11-01

    Full Text Available The study of the microbiome, the totality of all microbes inhabiting the host or an environmental niche, has experienced exponential growth over the past few years. The microbiome contributes functional genes and metabolites, and is an important factor for maintaining health. In this context, metabolomics is increasingly applied to complement sequencing-based approaches (marker genes or shotgun metagenomics to enable resolution of microbiome-conferred functionalities associated with health. However, analyzing the resulting multi-omics data remains a significant challenge in current microbiome studies. In this review, we provide an overview of different computational approaches that have been used in recent years for integrative analysis of metabolome and microbiome data, ranging from statistical correlation analysis to metabolic network-based modeling approaches. Throughout the process, we strive to present a unified conceptual framework for multi-omics integration and interpretation, as well as point out potential future directions.

  5. Metabolomic biomarkers in serum and urine in women with preeclampsia

    OpenAIRE

    Austdal, Marie; Skråstad, Ragnhild; Gundersen, Astrid; Austgulen, Rigmor; Iversen, Ann-Charlotte; Bathen, Tone Frost

    2014-01-01

    Objective To explore the potential of magnetic resonance (MR) metabolomics for study of preeclampsia, for improved phenotyping and elucidating potential clues to etiology and pathogenesis. Methods Urine and serum samples from pregnant women with preeclampsia (n = 10), normal pregnancies (n = 10) and non-pregnant women (n = 10) matched by age and gestational age were analyzed with MR spectroscopy and subjected to multivariate analysis. Metabolites were then quantified and compared ...

  6. NMR metabolomics for assessment of exercise effects with mouse biofluids

    Energy Technology Data Exchange (ETDEWEB)

    Le Moyec, Laurence; Mille-Hamard, Laurence; Breuneval, Carole; Petot, Helene; Billat, Veronique L. [Universite Evry Val d' Essonne, UBIAE INSERM U902, Evry Cedex (France); Triba, Mohamed N. [Universite Paris 13, CSPBAT UMR 7244, Bobigny (France)

    2012-08-15

    Exercise modulates the metabolome in urine or blood as demonstrated previously for humans and animal models. Using nuclear magnetic resonance (NMR) metabolomics, the present study compares the metabolic consequences of an exhaustive exercise at peak velocity (Vp) and at critical velocity (Vc) on mice. Since small-volume samples (blood and urine) were collected, dilution was necessary to acquire NMR spectra. Consequently, specific processing methods were applied before statistical analysis. According to the type of exercise (control group, Vp group and Vc group), 26 male mice were divided into three groups. Mice were sacrificed 2 h after the end of exercise, and urine and blood samples were drawn from each mouse. Proton NMR spectra were acquired with urine and deproteinized blood. The NMR data were aligned with the icoshift method and normalised using the probabilistic quotient method. Finally, data were analysed with the orthogonal projection of latent-structure analysis. The spectra obtained with deproteinized blood can neither discriminate the control mice from exercised mice nor discriminate according to the duration of the exercise. With urine samples, a significant statistical model can be estimated when comparing the control mice to both groups, Vc and Vp. The best model is obtained according to the exercise duration with all mice. Taking into account the spectral regions having the highest correlations, the discriminant metabolites are allantoin, inosine and branched-chain amino acids. In conclusion, metabolomic profiles assessed with NMR are highly dependent on the exercise. These results show that urine samples are more informative than blood samples and that the duration of the exercise is a more important parameter to influence the metabolomic status than the exercise velocity. (orig.)

  7. Metabolomics to unveil and understand phenotypic diversity between pathogen populations.

    Directory of Open Access Journals (Sweden)

    Ruben t'Kindt

    Full Text Available Leishmaniasis is a debilitating disease caused by the parasite Leishmania. There is extensive clinical polymorphism, including variable responsiveness to treatment. We study Leishmania donovani parasites isolated from visceral leishmaniasis patients in Nepal that responded differently to antimonial treatment due to differing intrinsic drug sensitivity of the parasites. Here, we present a proof-of-principle study in which we applied a metabolomics pipeline specifically developed for L. donovani to characterize the global metabolic differences between antimonial-sensitive and antimonial-resistant L. donovani isolates. Clones of drug-sensitive and drug-resistant parasite isolates from clinical samples were cultured in vitro and harvested for metabolomics analysis. The relative abundance of 340 metabolites was determined by ZIC-HILIC chromatography coupled to LTQ-Orbitrap mass spectrometry. Our measurements cover approximately 20% of the predicted core metabolome of Leishmania and additionally detected a large number of lipids. Drug-sensitive and drug-resistant parasites showed distinct metabolic profiles, and unsupervised clustering and principal component analysis clearly distinguished the two phenotypes. For 100 metabolites, the detected intensity differed more than three-fold between the 2 phenotypes. Many of these were in specific areas of lipid metabolism, suggesting that the membrane composition of the drug-resistant parasites is extensively modified. Untargeted metabolomics has been applied on clinical Leishmania isolates to uncover major metabolic differences between drug-sensitive and drug-resistant isolates. The identified major differences provide novel insights into the mechanisms involved in resistance to antimonial drugs, and facilitate investigations using targeted approaches to unravel the key changes mediating drug resistance.

  8. An untargeted metabolomic assessment of cocoa beans during fermentation

    OpenAIRE

    Mayorga Gross, Ana Lucía; Quirós Guerrero, Luis Manuel; Fourny, G.; Vaillant Barka, Fabrice

    2016-01-01

    Fermentation is a critical step in the processing of high quality cocoa; however, the biochemistry behind is still not well understood at a molecular level. In this research, using a non-targeted approach, the main metabolomic changes that occur throughout the fermentation process were explored. Genetically undefined cocoa varieties from Trinidad and Tobago (n = 3), Costa Rica (n = 1) and one clone IMC-67 (n = 3) were subjected to spontaneous fermentation using farm-based and pilot plant cont...

  9. A Combined Metabolomic and Proteomic Analysis of Gestational Diabetes Mellitus

    OpenAIRE

    Hajduk, Joanna; Klupczynska, Agnieszka; Dereziński, Paweł; Matysiak, Jan; Kokot, Piotr; Nowak, Dorota; Gajęcka, Marzena; Nowak-Markwitz, Ewa; Kokot, Zenon

    2015-01-01

    The aim of this pilot study was to apply a novel combined metabolomic and proteomic approach in analysis of gestational diabetes mellitus. The investigation was performed with plasma samples derived from pregnant women with diagnosed gestational diabetes mellitus (n = 18) and a matched control group (n = 13). The mass spectrometry-based analyses allowed to determine 42 free amino acids and low molecular-weight peptide profiles. Different expressions of several peptides and altered amino acid ...

  10. Identifying biomarkers for asthma diagnosis using targeted metabolomics approaches.

    Science.gov (United States)

    Checkley, William; Deza, Maria P; Klawitter, Jost; Romero, Karina M; Klawitter, Jelena; Pollard, Suzanne L; Wise, Robert A; Christians, Uwe; Hansel, Nadia N

    2016-12-01

    The diagnosis of asthma in children is challenging and relies on a combination of clinical factors and biomarkers including methacholine challenge, lung function, bronchodilator responsiveness, and presence of airway inflammation. No single test is diagnostic. We sought to identify a pattern of inflammatory biomarkers that was unique to asthma using a targeted metabolomics approach combined with data science methods. We conducted a nested case-control study of 100 children living in a peri-urban community in Lima, Peru. We defined cases as children with current asthma, and controls as children with no prior history of asthma and normal lung function. We further categorized enrollment following a factorial design to enroll equal numbers of children as either overweight or not. We obtained a fasting venous blood sample to characterize a comprehensive panel of targeted markers using a metabolomics approach based on high performance liquid chromatography-mass spectrometry. A statistical comparison of targeted metabolites between children with asthma (n = 50) and healthy controls (n = 49) revealed distinct patterns in relative concentrations of several metabolites: children with asthma had approximately 40-50% lower relative concentrations of ascorbic acid, 2-isopropylmalic acid, shikimate-3-phosphate, and 6-phospho-d-gluconate when compared to children without asthma, and 70% lower relative concentrations of reduced glutathione (all p  13 077 normalized counts/second and betaine ≤ 16 47 121 normalized counts/second). By using a metabolomics approach applied to serum, we were able to discriminate between children with and without asthma by revealing different metabolic patterns. These results suggest that serum metabolomics may represent a diagnostic tool for asthma and may be helpful for distinguishing asthma phenotypes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. What Have Metabolomics Approaches Taught Us About Type 2 Diabetes?

    DEFF Research Database (Denmark)

    Gonzalez-Franquesa, Alba; Burkart, Alison M; Isganaitis, Elvira

    2016-01-01

    Type 2 diabetes (T2D) is increasing worldwide, making identification of biomarkers for detection, staging, and effective prevention strategies an especially critical scientific and medical goal. Fortunately, advances in metabolomics techniques, together with improvements in bioinformatics....... Conversely, tricarboxylic acid cycle intermediates, betaine, and other metabolites decrease. Future studies will be required to fully integrate these and other findings into our understanding of diabetes pathophysiology and to identify biomarkers of disease risk, stage, and responsiveness to specific...

  12. Diagnosis of acute and chronic enteric fever using metabolomics

    OpenAIRE

    Näsström, Elin

    2017-01-01

    Enteric (or typhoid) fever is a systemic infection mainly caused by Salmonella Typhi and Salmonella Paratyphi A. The disease is common in areas with poor water quality and insufficient sanitation. Humans are the only reservoir for transmission of the disease. The presence of asymptomatic chronic carriers is a complicating factor for the transmission. There are major limitations regarding the current diagnostic methods both for acute infection and chronic carriage. Metabolomics is a methodolog...

  13. Using next generation transcriptome sequencing to predict an ectomycorrhizal metabolome

    Directory of Open Access Journals (Sweden)

    Cseke Leland J

    2011-05-01

    Full Text Available Abstract Background Mycorrhizae, symbiotic interactions between soil fungi and tree roots, are ubiquitous in terrestrial ecosystems. The fungi contribute phosphorous, nitrogen and mobilized nutrients from organic matter in the soil and in return the fungus receives photosynthetically-derived carbohydrates. This union of plant and fungal metabolisms is the mycorrhizal metabolome. Understanding this symbiotic relationship at a molecular level provides important contributions to the understanding of forest ecosystems and global carbon cycling. Results We generated next generation short-read transcriptomic sequencing data from fully-formed ectomycorrhizae between Laccaria bicolor and aspen (Populus tremuloides roots. The transcriptomic data was used to identify statistically significantly expressed gene models using a bootstrap-style approach, and these expressed genes were mapped to specific metabolic pathways. Integration of expressed genes that code for metabolic enzymes and the set of expressed membrane transporters generates a predictive model of the ectomycorrhizal metabolome. The generated model of mycorrhizal metabolome predicts that the specific compounds glycine, glutamate, and allantoin are synthesized by L. bicolor and that these compounds or their metabolites may be used for the benefit of aspen in exchange for the photosynthetically-derived sugars fructose and glucose. Conclusions The analysis illustrates an approach to generate testable biological hypotheses to investigate the complex molecular interactions that drive ectomycorrhizal symbiosis. These models are consistent with experimental environmental data and provide insight into the molecular exchange processes for organisms in this complex ecosystem. The method used here for predicting metabolomic models of mycorrhizal systems from deep RNA sequencing data can be generalized and is broadly applicable to transcriptomic data derived from complex systems.

  14. Metabolome of human gut microbiome is predictive of host dysbiosis.

    Science.gov (United States)

    Larsen, Peter E; Dai, Yang

    2015-01-01

    Humans live in constant and vital symbiosis with a closely linked bacterial ecosystem called the microbiome, which influences many aspects of human health. When this microbial ecosystem becomes disrupted, the health of the human host can suffer; a condition called dysbiosis. However, the community compositions of human microbiomes also vary dramatically from individual to individual, and over time, making it difficult to uncover the underlying mechanisms linking the microbiome to human health. We propose that a microbiome's interaction with its human host is not necessarily dependent upon the presence or absence of particular bacterial species, but instead is dependent on its community metabolome; an emergent property of the microbiome. Using data from a previously published, longitudinal study of microbiome populations of the human gut, we extrapolated information about microbiome community enzyme profiles and metabolome models. Using machine learning techniques, we demonstrated that the aggregate predicted community enzyme function profiles and modeled metabolomes of a microbiome are more predictive of dysbiosis than either observed microbiome community composition or predicted enzyme function profiles. Specific enzyme functions and metabolites predictive of dysbiosis provide insights into the molecular mechanisms of microbiome-host interactions. The ability to use machine learning to predict dysbiosis from microbiome community interaction data provides a potentially powerful tool for understanding the links between the human microbiome and human health, pointing to potential microbiome-based diagnostics and therapeutic interventions.

  15. NMR-based metabolomics of mammalian cell and tissue cultures

    International Nuclear Information System (INIS)

    Aranibar, Nelly; Borys, Michael; Mackin, Nancy A.; Ly, Van; Abu-Absi, Nicholas; Abu-Absi, Susan; Niemitz, Matthias; Schilling, Bernhard; Li, Zheng Jian; Brock, Barry; Russell, Reb J.; Tymiak, Adrienne; Reily, Michael D.

    2011-01-01

    NMR spectroscopy was used to evaluate growth media and the cellular metabolome in two systems of interest to biomedical research. The first of these was a Chinese hamster ovary cell line engineered to express a recombinant protein. Here, NMR spectroscopy and a quantum mechanical total line shape analysis were utilized to quantify 30 metabolites such as amino acids, Krebs cycle intermediates, activated sugars, cofactors, and others in both media and cell extracts. The impact of bioreactor scale and addition of anti-apoptotic agents to the media on the extracellular and intracellular metabolome indicated changes in metabolic pathways of energy utilization. These results shed light into culture parameters that can be manipulated to optimize growth and protein production. Second, metabolomic analysis was performed on the superfusion media in a common model used for drug metabolism and toxicology studies, in vitro liver slices. In this study, it is demonstrated that two of the 48 standard media components, choline and histidine are depleted at a faster rate than many other nutrients. Augmenting the starting media with extra choline and histidine improves the long-term liver slice viability as measured by higher tissues levels of lactate dehydrogenase (LDH), glutathione and ATP, as well as lower LDH levels in the media at time points out to 94 h after initiation of incubation. In both models, media components and cellular metabolites are measured over time and correlated with currently accepted endpoint measures.

  16. Biomarker discovery in neurological diseases: a metabolomic approach

    Directory of Open Access Journals (Sweden)

    Afaf El-Ansary

    2009-12-01

    Full Text Available Afaf El-Ansary, Nouf Al-Afaleg, Yousra Al-YafaeeBiochemistry Department, Science College, King Saud University, Riyadh, Saudi ArabiaAbstract: Biomarkers are pharmacological and physiological measurements or specific biochemicals in the body that have a particular molecular feature that makes them useful for measuring the progress of disease or the effects of treatment. Due to the complexity of neurological disorders, it is very difficult to have perfect markers. Brain diseases require plenty of markers to reflect the metabolic impairment of different brain cells. The recent introduction of the metabolomic approach helps the study of neurological diseases based on profiling a multitude of biochemical components related to brain metabolism. This review is a trial to elucidate the possibility to use this approach to identify plasma metabolic markers related to neurological disorders. Previous trials using different metabolomic analyses including nuclear magnetic resonance spectroscopy, gas chromatography combined with mass spectrometry, liquid chromatography combined with mass spectrometry, and capillary electrophoresis will be traced.Keywords: metabolic biomarkers, neurological disorders. metabolome, nuclear magnetic resonance, mass spectrometry, chromatography

  17. Impact of red meat consumption on the metabolome of rats.

    Science.gov (United States)

    Jakobsen, Louise M A; Yde, Christian C; Van Hecke, Thomas; Jessen, Randi; Young, Jette F; De Smet, Stefaan; Bertram, Hanne Christine

    2017-03-01

    The scope of the present study was to investigate the effects of red versus white meat intake on the metabolome of rats. Twenty-four male Sprague-Dawley rats were randomly assigned to 15 days of ad libitum feeding of one of four experimental diets: (i) lean chicken, (ii) chicken with lard, (iii) lean beef, and (iv) beef with lard. Urine, feces, plasma, and colon tissue samples were analyzed using 1 H NMR-based metabolomics and real-time PCR was performed on colon tissue to examine the expression of specific genes. Urinary excretion of acetate and anserine was higher after chicken intake, while carnosine, fumarate, and trimethylamine N-oxide excretion were higher after beef intake. In colon tissue, higher choline levels and lower lipid levels were found after intake of chicken compared to beef. Expression of the apc gene was higher in response to the lean chicken and beef with lard diets. Correlation analysis revealed that intestinal apc gene expression was correlated with fecal lactate content (R 2 = 0.65). This study is the first to identify specific differences in the metabolome related to the intake of red and white meat. These differences may reflect perturbations in endogenous metabolism that can be linked to the proposed harmful effects associated with intake of red meat. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Nutritional impact on the plasma metabolome of rats.

    Science.gov (United States)

    Mellert, W; Kapp, M; Strauss, V; Wiemer, J; Kamp, H; Walk, T; Looser, R; Prokoudine, A; Fabian, E; Krennrich, G; Herold, M; van Ravenzwaay, B

    2011-11-30

    Metabolite profiling (metabolomics) elucidates changes in biochemical pathways under various conditions, e.g., different nutrition scenarios or compound administration. BASF and metanomics have obtained plasma metabolic profiles of approximately 500 compounds (agrochemicals, chemicals and pharmaceuticals) from 28-day rat studies. With these profiles the establishment of a database (MetaMap(®)Tox) containing specific metabolic patterns associated with many toxicological modes of action was achieved. To evaluate confounding factors influencing metabolome patterns, the effect of fasting vs. non-fasting prior to blood sampling, the influence of high caloric diet and caloric restriction as well as the administration of corn oil and olive oil was studied for its influence on the metabolome. All mentioned treatments had distinct effects: triacylglycerol, phospholipids and their degradation product levels (fatty acids, glycerol, lysophosphatidylcholine) were often altered depending on the nutritional status. Also some amino acid and related compounds were changed. Some metabolites derived from food (e.g. alpha-tocopherol, ascorbic acid, beta-sitosterol, campesterol) were biomarkers related to food consumption, whereas others indicated a changed energy metabolism (e.g. hydroxybutyrate, pyruvate). Strikingly, there was a profound difference in the metabolite responses to diet restriction in male and female rats. Consequently, when evaluating the metabolic profile of a compound, the effect of nutritional status should be taken into account. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  19. The Time Is Right to Focus on Model Organism Metabolomes

    Directory of Open Access Journals (Sweden)

    Arthur S. Edison

    2016-02-01

    Full Text Available Model organisms are an essential component of biological and biomedical research that can be used to study specific biological processes. These organisms are in part selected for facile experimental study. However, just as importantly, intensive study of a small number of model organisms yields important synergies as discoveries in one area of science for a given organism shed light on biological processes in other areas, even for other organisms. Furthermore, the extensive knowledge bases compiled for each model organism enable systems-level understandings of these species, which enhance the overall biological and biomedical knowledge for all organisms, including humans. Building upon extensive genomics research, we argue that the time is now right to focus intensively on model organism metabolomes. We propose a grand challenge for metabolomics studies of model organisms: to identify and map all metabolites onto metabolic pathways, to develop quantitative metabolic models for model organisms, and to relate organism metabolic pathways within the context of evolutionary metabolomics, i.e., phylometabolomics. These efforts should focus on a series of established model organisms in microbial, animal and plant research.

  20. A Combined Metabolomic and Proteomic Analysis of Gestational Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Joanna Hajduk

    2015-12-01

    Full Text Available The aim of this pilot study was to apply a novel combined metabolomic and proteomic approach in analysis of gestational diabetes mellitus. The investigation was performed with plasma samples derived from pregnant women with diagnosed gestational diabetes mellitus (n = 18 and a matched control group (n = 13. The mass spectrometry-based analyses allowed to determine 42 free amino acids and low molecular-weight peptide profiles. Different expressions of several peptides and altered amino acid profiles were observed in the analyzed groups. The combination of proteomic and metabolomic data allowed obtaining the model with a high discriminatory power, where amino acids ethanolamine, l-citrulline, l-asparagine, and peptide ions with m/z 1488.59; 4111.89 and 2913.15 had the highest contribution to the model. The sensitivity (94.44% and specificity (84.62%, as well as the total group membership classification value (90.32% calculated from the post hoc classification matrix of a joint model were the highest when compared with a single analysis of either amino acid levels or peptide ion intensities. The obtained results indicated a high potential of integration of proteomic and metabolomics analysis regardless the sample size. This promising approach together with clinical evaluation of the subjects can also be used in the study of other diseases.

  1. Metabolomics as a promising tool for early osteoarthritis diagnosis

    Directory of Open Access Journals (Sweden)

    E.B. de Sousa

    2017-09-01

    Full Text Available Osteoarthritis (OA is the main cause of disability worldwide, due to progressive articular cartilage loss and degeneration. According to recent research, OA is more than just a degenerative disease due to some metabolic components associated to its pathogenesis. However, no biomarker has been identified to detect this disease at early stages or to track its development. Metabolomics is an emerging field and has the potential to detect many metabolites in a single spectrum using high resolution nuclear magnetic resonance (NMR techniques or mass spectrometry (MS. NMR is a reproducible and reliable non-destructive analytical method. On the other hand, MS has a lower detection limit and is more destructive, but it is more sensitive. NMR and MS are useful for biological fluids, such as urine, blood plasma, serum, or synovial fluid, and have been used for metabolic profiling in dogs, mice, sheep, and humans. Thus, many metabolites have been listed as possibly associated to OA pathogenesis. The goal of this review is to provide an overview of the studies in animal models and humans, regarding the use of metabolomics as a tool for early osteoarthritis diagnosis. The concept of osteoarthritis as a metabolic disease and the importance of detecting a biomarker for its early diagnosis are highlighted. Then, some studies in plasma and synovial tissues are shown, and finally the application of metabolomics in the evaluation of synovial fluid is described.

  2. Behavioral metabolomics analysis identifies novel neurochemical signatures in methamphetamine sensitization

    Science.gov (United States)

    Adkins, Daniel E.; McClay, Joseph L.; Vunck, Sarah A.; Batman, Angela M.; Vann, Robert E.; Clark, Shaunna L.; Souza, Renan P.; Crowley, James J.; Sullivan, Patrick F.; van den Oord, Edwin J.C.G.; Beardsley, Patrick M.

    2014-01-01

    Behavioral sensitization has been widely studied in animal models and is theorized to reflect neural modifications associated with human psychostimulant addiction. While the mesolimbic dopaminergic pathway is known to play a role, the neurochemical mechanisms underlying behavioral sensitization remain incompletely understood. In the present study, we conducted the first metabolomics analysis to globally characterize neurochemical differences associated with behavioral sensitization. Methamphetamine-induced sensitization measures were generated by statistically modeling longitudinal activity data for eight inbred strains of mice. Subsequent to behavioral testing, nontargeted liquid and gas chromatography-mass spectrometry profiling was performed on 48 brain samples, yielding 301 metabolite levels per sample after quality control. Association testing between metabolite levels and three primary dimensions of behavioral sensitization (total distance, stereotypy and margin time) showed four robust, significant associations at a stringent metabolome-wide significance threshold (false discovery rate < 0.05). Results implicated homocarnosine, a dipeptide of GABA and histidine, in total distance sensitization, GABA metabolite 4-guanidinobutanoate and pantothenate in stereotypy sensitization, and myo-inositol in margin time sensitization. Secondary analyses indicated that these associations were independent of concurrent methamphetamine levels and, with the exception of the myo-inositol association, suggest a mechanism whereby strain-based genetic variation produces specific baseline neurochemical differences that substantially influence the magnitude of MA-induced sensitization. These findings demonstrate the utility of mouse metabolomics for identifying novel biomarkers, and developing more comprehensive neurochemical models, of psychostimulant sensitization. PMID:24034544

  3. Metabolomics for Biomarker Discovery: Moving to the Clinic

    Science.gov (United States)

    Zhang, Aihua; Sun, Hui; Yan, Guangli; Wang, Ping; Wang, Xijun

    2015-01-01

    To improve the clinical course of diseases, more accurate diagnostic and assessment methods are required as early as possible. In order to achieve this, metabolomics offers new opportunities for biomarker discovery in complex diseases and may provide pathological understanding of diseases beyond traditional technologies. It is the systematic analysis of low-molecular-weight metabolites in biological samples and has become an important tool in clinical research and the diagnosis of human disease and has been applied to discovery and identification of the perturbed pathways. It provides a powerful approach to discover biomarkers in biological systems and offers a holistic approach with the promise to clinically enhance diagnostics. When carried out properly, it could provide insight into the understanding of the underlying mechanisms of diseases, help to identify patients at risk of disease, and predict the response to specific treatments. Currently, metabolomics has become an important tool in clinical research and the diagnosis of human disease and becomes a hot topic. This review will highlight the importance and benefit of metabolomics for identifying biomarkers that accurately screen potential biomarkers of diseases. PMID:26090402

  4. Metabolomics in cancer biomarker discovery: current trends and future perspectives.

    Science.gov (United States)

    Armitage, Emily G; Barbas, Coral

    2014-01-01

    Cancer is one of the most devastating human diseases that causes a vast number of mortalities worldwide each year. Cancer research is one of the largest fields in the life sciences and despite many astounding breakthroughs and contributions over the past few decades, there is still a considerable amount to unveil on the function of cancer. It is well known that cancer metabolism differs from that of normal tissue and an important hypothesis published in the 1950s by Otto Warburg proposed that cancer cells rely on anaerobic metabolism as the source for energy, even under physiological oxygen levels. Following this, cancer central carbon metabolism has been researched extensively and beyond respiration, cancer has been found to involve a wide range of metabolic processes, and many more are still to be unveiled. Studying cancer through metabolomics could reveal new biomarkers for cancer that could be useful for its future prognosis, diagnosis and therapy. Metabolomics is becoming an increasingly popular tool in the life sciences since it is a relatively fast and accurate technique that can be applied with either a particular focus or in a global manner to reveal new knowledge about biological systems. There have been many examples of its application to reveal potential biomarkers in different cancers that have employed a range of different analytical platforms. In this review, approaches in metabolomics that have been employed in cancer biomarker discovery are discussed and some of the most noteworthy research in the field is highlighted. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Metabolomics as a tool in the identification of dietary biomarkers.

    Science.gov (United States)

    Gibbons, Helena; Brennan, Lorraine

    2017-02-01

    Current dietary assessment methods including FFQ, 24-h recalls and weighed food diaries are associated with many measurement errors. In an attempt to overcome some of these errors, dietary biomarkers have emerged as a complementary approach to these traditional methods. Metabolomics has developed as a key technology for the identification of new dietary biomarkers and to date, metabolomic-based approaches have led to the identification of a number of putative biomarkers. The three approaches generally employed when using metabolomics in dietary biomarker discovery are: (i) acute interventions where participants consume specific amounts of a test food, (ii) cohort studies where metabolic profiles are compared between consumers and non-consumers of a specific food and (iii) the analysis of dietary patterns and metabolic profiles to identify nutritypes and biomarkers. The present review critiques the current literature in terms of the approaches used for dietary biomarker discovery and gives a detailed overview of the currently proposed biomarkers, highlighting steps needed for their full validation. Furthermore, the present review also evaluates areas such as current databases and software tools, which are needed to advance the interpretation of results and therefore enhance the utility of dietary biomarkers in nutrition research.

  6. Chitosan and grape secondary metabolites: A proteomics and metabolomics approach

    Directory of Open Access Journals (Sweden)

    Bavaresco Luigi

    2017-01-01

    Full Text Available Chitosan is a polysaccharide obtained by deacetylation of chitin, and it is involved in defence mechanisms of plants toward diseases. In the present work, V. vinifera L. cv. Ortrugo, grafted on 420A rootstock was grown in pot and treated, at veraison, by 0.03% chitosan solution at cluster level. Just before the treatment (T0 and 24 hours (T1, 48 hours (T2, 72 hours (T3 and 10 days (T4 later, the concentration of stilbenic compounds was detected, and at T1 proteomics and metabolomics analyses were done. Proteomics relies on the analysis of the complete set of proteins existing in a given substrate, while metabolomics relies on the analyses of the complete set of metabolites in a given substrate. The treatment improved the stilbene concentration over the control at T1. Proteomic analysis showed that superoxide dismutase (SOD and phenylalanine ammonia-lyase (PAL were overexpressed in the treated grapes. SOD is known to be an enzyme active against reactive oxygen species (ROS while PAL is a key enzyme in the phenylpropanoids pathway. Metabolomics analysis highlighted the positive role of the treatment in improving the triperpenoid concentration (betulin, erythrodiol, uvaol, oleanolate; these compounds are known to be effective against microbes, insects and fungi.

  7. Fusing metabolomics data sets with heterogeneous measurement errors

    Science.gov (United States)

    Waaijenborg, Sandra; Korobko, Oksana; Willems van Dijk, Ko; Lips, Mirjam; Hankemeier, Thomas; Wilderjans, Tom F.; Smilde, Age K.

    2018-01-01

    Combining different metabolomics platforms can contribute significantly to the discovery of complementary processes expressed under different conditions. However, analysing the fused data might be hampered by the difference in their quality. In metabolomics data, one often observes that measurement errors increase with increasing measurement level and that different platforms have different measurement error variance. In this paper we compare three different approaches to correct for the measurement error heterogeneity, by transformation of the raw data, by weighted filtering before modelling and by a modelling approach using a weighted sum of residuals. For an illustration of these different approaches we analyse data from healthy obese and diabetic obese individuals, obtained from two metabolomics platforms. Concluding, the filtering and modelling approaches that both estimate a model of the measurement error did not outperform the data transformation approaches for this application. This is probably due to the limited difference in measurement error and the fact that estimation of measurement error models is unstable due to the small number of repeats available. A transformation of the data improves the classification of the two groups. PMID:29698490

  8. Understanding Plant Nitrogen Metabolism through Metabolomics and Computational Approaches

    Directory of Open Access Journals (Sweden)

    Perrin H. Beatty

    2016-10-01

    Full Text Available A comprehensive understanding of plant metabolism could provide a direct mechanism for improving nitrogen use efficiency (NUE in crops. One of the major barriers to achieving this outcome is our poor understanding of the complex metabolic networks, physiological factors, and signaling mechanisms that affect NUE in agricultural settings. However, an exciting collection of computational and experimental approaches has begun to elucidate whole-plant nitrogen usage and provides an avenue for connecting nitrogen-related phenotypes to genes. Herein, we describe how metabolomics, computational models of metabolism, and flux balance analysis have been harnessed to advance our understanding of plant nitrogen metabolism. We introduce a model describing the complex flow of nitrogen through crops in a real-world agricultural setting and describe how experimental metabolomics data, such as isotope labeling rates and analyses of nutrient uptake, can be used to refine these models. In summary, the metabolomics/computational approach offers an exciting mechanism for understanding NUE that may ultimately lead to more effective crop management and engineered plants with higher yields.

  9. NMR-based metabolomics of mammalian cell and tissue cultures

    Energy Technology Data Exchange (ETDEWEB)

    Aranibar, Nelly; Borys, Michael; Mackin, Nancy A.; Ly, Van; Abu-Absi, Nicholas; Abu-Absi, Susan [Bristol-Myers Squibb Company (United States); Niemitz, Matthias [PERCH Solutions Ltd. (Finland); Schilling, Bernhard; Li, Zheng Jian; Brock, Barry; Russell, Reb J.; Tymiak, Adrienne; Reily, Michael D., E-mail: michael.reily@bms.com [Bristol-Myers Squibb Company (United States)

    2011-04-15

    NMR spectroscopy was used to evaluate growth media and the cellular metabolome in two systems of interest to biomedical research. The first of these was a Chinese hamster ovary cell line engineered to express a recombinant protein. Here, NMR spectroscopy and a quantum mechanical total line shape analysis were utilized to quantify 30 metabolites such as amino acids, Krebs cycle intermediates, activated sugars, cofactors, and others in both media and cell extracts. The impact of bioreactor scale and addition of anti-apoptotic agents to the media on the extracellular and intracellular metabolome indicated changes in metabolic pathways of energy utilization. These results shed light into culture parameters that can be manipulated to optimize growth and protein production. Second, metabolomic analysis was performed on the superfusion media in a common model used for drug metabolism and toxicology studies, in vitro liver slices. In this study, it is demonstrated that two of the 48 standard media components, choline and histidine are depleted at a faster rate than many other nutrients. Augmenting the starting media with extra choline and histidine improves the long-term liver slice viability as measured by higher tissues levels of lactate dehydrogenase (LDH), glutathione and ATP, as well as lower LDH levels in the media at time points out to 94 h after initiation of incubation. In both models, media components and cellular metabolites are measured over time and correlated with currently accepted endpoint measures.

  10. NMR metabolomics of thrips (Frankliniella occidentalis) resistance in Senecio hybrids.

    Science.gov (United States)

    Leiss, Kirsten A; Choi, Young H; Abdel-Farid, Ibrahim B; Verpoorte, Robert; Klinkhamer, Peter G L

    2009-02-01

    Western flower thrips (Frankliniella occidentalis) has become a key insect pest of agricultural and horticultural crops worldwide. Little is known about host plant resistance to thrips. In this study, we investigated thrips resistance in F (2) hybrids of Senecio jacobaea and Senecio aquaticus. We identified thrips-resistant hybrids applying three different bioassays. Subsequently, we compared the metabolomic profiles of these hybrids applying nuclear magnetic resonance spectroscopy (NMR). The new developments of NMR facilitate a wide range coverage of the metabolome. This makes NMR especially suitable if there is no a priori knowledge of the compounds related to herbivore resistance and allows a holistic approach analyzing different chemical compounds simultaneously. We show that the metabolomes of thrips-resistant and -susceptible hybrids differed considerably. Thrips-resistant hybrids contained higher amounts of the pyrrolizidine alkaloids (PA), jacobine, and jaconine, especially in younger leaves. Also, a flavanoid, kaempferol glucoside, accumulated in the resistant plants. Both PAs and kaempferol are known for their inhibitory effect on herbivores. In resistant and susceptible F (2) hybrids, young leaves showed less thrips damage than old leaves. Consistent with the optimal plant defense theory, young leaves contained increased levels of primary metabolites such as sucrose, raffinose, and stachyose, but also accumulated jacaranone as a secondary plant defense compound. Our results prove NMR as a promising tool to identify different metabolites involved in herbivore resistance. It constitutes a significant advance in the study of plant-insect relationships, providing key information on the implementation of herbivore resistance breeding strategies in plants.

  11. Challenges of inversely estimating Jacobian from metabolomics data

    Directory of Open Access Journals (Sweden)

    Xiaoliang eSun

    2015-11-01

    Full Text Available Inferring dynamics of metabolic networks directly from metabolomics data provides a promising way to elucidate the underlying mechanisms of biological systems, as reported in our previous studies [1-3] by a differential Jacobian approach. The Jacobian is solved from an over-determined system of equations as JC + CJT = -2D, called Lyapunov Equation in its generic form , where J is the Jacobian, C is the covariance matrix of metabolomics data and D is the fluctuation matrix. Lyapunov Equation can be further simplified as the linear form Ax = b. Frequently, this linear equation system is ill-conditioned, i.e., a small variation in the right side b results in a big change in the solution x, thus making the solution unstable and error-prone. At the same time, inaccurate estimation of covariance matrix and uncertainties in the fluctuation matrix bring biases to the solution x. Here, we firstly reviewed common approaches to circumvent the ill-conditioned problems, including total least squares, Tikhonov regularization and truncated singular value decomposition. Then we benchmarked these methods on several in-silico kinetic models with small to large perturbations on the covariance and fluctuation matrices. The results identified that the accuracy of the reverse Jacobian is mainly dependent on the condition number of A, the perturbation amplitude of C and the stiffness of the kinetic models. Our research contributes a systematical comparison of methods to inversely solve Jacobian from metabolomics data.

  12. Metabolomic biomarkers correlating with hepatic lipidosis in dairy cows.

    Science.gov (United States)

    Imhasly, Sandro; Naegeli, Hanspeter; Baumann, Sven; von Bergen, Martin; Luch, Andreas; Jungnickel, Harald; Potratz, Sarah; Gerspach, Christian

    2014-06-02

    Hepatic lipidosis or fatty liver disease is a major metabolic disorder of high-producing dairy cows that compromises animal performance and, hence, causes heavy economic losses worldwide. This syndrome, occurring during the critical transition from gestation to early lactation, leads to an impaired health status, decreased milk yield, reduced fertility and shortened lifetime. Because the prevailing clinical chemistry parameters indicate advanced liver damage independently of the underlying disease, currently, hepatic lipidosis can only be ascertained by liver biopsy. We hypothesized that the condition of fatty liver disease may be accompanied by an altered profile of endogenous metabolites in the blood of affected animals. To identify potential small-molecule biomarkers as a novel diagnostic alternative, the serum samples of diseased dairy cows were subjected to a targeted metabolomics screen by triple quadrupole mass spectrometry. A subsequent multivariate test involving principal component and linear discriminant analyses yielded 29 metabolites (amino acids, phosphatidylcholines and sphingomyelines) that, in conjunction, were able to distinguish between dairy cows with no hepatic lipidosis and those displaying different stages of the disorder. This proof-of-concept study indicates that metabolomic profiles, including both amino acids and lipids, distinguish hepatic lipidosis from other peripartal disorders and, hence, provide a promising new tool for the diagnosis of hepatic lipidosis. By generating insights into the molecular pathogenesis of hepatic lipidosis, metabolomics studies may also facilitate the prevention of this syndrome.

  13. HMDB 3.0--The Human Metabolome Database in 2013.

    Science.gov (United States)

    Wishart, David S; Jewison, Timothy; Guo, An Chi; Wilson, Michael; Knox, Craig; Liu, Yifeng; Djoumbou, Yannick; Mandal, Rupasri; Aziat, Farid; Dong, Edison; Bouatra, Souhaila; Sinelnikov, Igor; Arndt, David; Xia, Jianguo; Liu, Philip; Yallou, Faizath; Bjorndahl, Trent; Perez-Pineiro, Rolando; Eisner, Roman; Allen, Felicity; Neveu, Vanessa; Greiner, Russ; Scalbert, Augustin

    2013-01-01

    The Human Metabolome Database (HMDB) (www.hmdb.ca) is a resource dedicated to providing scientists with the most current and comprehensive coverage of the human metabolome. Since its first release in 2007, the HMDB has been used to facilitate research for nearly 1000 published studies in metabolomics, clinical biochemistry and systems biology. The most recent release of HMDB (version 3.0) has been significantly expanded and enhanced over the 2009 release (version 2.0). In particular, the number of annotated metabolite entries has grown from 6500 to more than 40,000 (a 600% increase). This enormous expansion is a result of the inclusion of both 'detected' metabolites (those with measured concentrations or experimental confirmation of their existence) and 'expected' metabolites (those for which biochemical pathways are known or human intake/exposure is frequent but the compound has yet to be detected in the body). The latest release also has greatly increased the number of metabolites with biofluid or tissue concentration data, the number of compounds with reference spectra and the number of data fields per entry. In addition to this expansion in data quantity, new database visualization tools and new data content have been added or enhanced. These include better spectral viewing tools, more powerful chemical substructure searches, an improved chemical taxonomy and better, more interactive pathway maps. This article describes these enhancements to the HMDB, which was previously featured in the 2009 NAR Database Issue. (Note to referees, HMDB 3.0 will go live on 18 September 2012.).

  14. Salivary microbiota and metabolome associated with celiac disease.

    Science.gov (United States)

    Francavilla, Ruggiero; Ercolini, Danilo; Piccolo, Maria; Vannini, Lucia; Siragusa, Sonya; De Filippis, Francesca; De Pasquale, Ilaria; Di Cagno, Raffaella; Di Toma, Michele; Gozzi, Giorgia; Serrazanetti, Diana I; De Angelis, Maria; Gobbetti, Marco

    2014-06-01

    This study aimed to investigate the salivary microbiota and metabolome of 13 children with celiac disease (CD) under a gluten-free diet (treated celiac disease [T-CD]). The same number of healthy children (HC) was used as controls. The salivary microbiota was analyzed by an integrated approach using culture-dependent and -independent methods. Metabolome analysis was carried out by gas chromatography-mass spectrometry-solid-phase microextraction. Compared to HC, the number of some cultivable bacterial groups (e.g., total anaerobes) significantly (P endodontalis, and Prevotella nanceiensis), together with the smallest amount of Actinobacteria. T-CD children were also characterized by decreased levels of some Actinomyces species, Atopobium species, and Corynebacterium durum. Rothia mucilaginosa was the only Actinobacteria species found at the highest level in T-CD children. As shown by multivariate statistical analyses, the levels of organic volatile compounds markedly differentiated T-CD children. Some compounds (e.g., ethyl-acetate, nonanal, and 2-hexanone) were found to be associated with T-CD children. Correlations (false discovery rate [FDR], oral dysbiosis that could affect the oral metabolome.

  15. Metabolome of human gut microbiome is predictive of host dysbiosis

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Peter E.; Dai, Yang

    2015-09-14

    Background: Humans live in constant and vital symbiosis with a closely linked bacterial ecosystem called the microbiome, which influences many aspects of human health. When this microbial ecosystem becomes disrupted, the health of the human host can suffer; a condition called dysbiosis. However, the community compositions of human microbiomes also vary dramatically from individual to individual, and over time, making it difficult to uncover the underlying mechanisms linking the microbiome to human health. We propose that a microbiome’s interaction with its human host is not necessarily dependent upon the presence or absence of particular bacterial species, but instead is dependent on its community metabolome; an emergent property of the microbiome. Results: Using data from a previously published, longitudinal study of microbiome populations of the human gut, we extrapolated information about microbiome community enzyme profiles and metabolome models. Using machine learning techniques, we demonstrated that the aggregate predicted community enzyme function profiles and modeled metabolomes of a microbiome are more predictive of dysbiosis than either observed microbiome community composition or predicted enzyme function profiles. Conclusions: Specific enzyme functions and metabolites predictive of dysbiosis provide insights into the molecular mechanisms of microbiome–host interactions. The ability to use machine learning to predict dysbiosis from microbiome community interaction data provides a potentially powerful tool for understanding the links between the human microbiome and human health, pointing to potential microbiome-based diagnostics and therapeutic interventions.

  16. Metabolomics study of human urinary metabolome modifications after intake of almond (Prunus dulcis (Mill.) D.A. Webb) skin polyphenols.

    Science.gov (United States)

    Llorach, Rafael; Garrido, Ignacio; Monagas, Maria; Urpi-Sarda, Mireia; Tulipani, Sara; Bartolome, Begona; Andres-Lacueva, Cristina

    2010-11-05

    Almond, as a part of the nut family, is an important source of biological compounds, and specifically, almond skins have been considered an important source of polyphenols, including flavan-3-ols and flavonols. Polyphenol metabolism may produce several classes of metabolites that could often be more biologically active than their dietary precursor and could also become a robust new biomarker of almond polyphenol intake. In order to study urinary metabolome modifications during the 24 h after a single dose of almond skin extract, 24 volunteers (n = 24), who followed a polyphenol-free diet for 48 h before and during the study, ingested a dietary supplement of almond skin phenolic compounds (n = 12) or a placebo (n = 12). Urine samples were collected before ((-2)-0 h) and after (0-2 h, 2-6 h, 6-10 h, and 10-24 h) the intake and were analyzed by liquid chromatography-mass spectrometry (LC-q-TOF) and multivariate statistical analysis (principal component analysis (PCA) and orthogonal projection to latent structures (OPLS)). Putative identification of relevant biomarkers revealed a total of 34 metabolites associated with the single dose of almond extract, including host and, in particular, microbiota metabolites. As far as we know, this is the first time that conjugates of hydroxyphenylvaleric, hydroxyphenylpropionic, and hydroxyphenylacetic acids have been identified in human samples after the consumption of flavan-3-ols through a metabolomic approach. The results showed that this non-targeted approach could provide new intake biomarkers, contributing to the development of the food metabolome as an important part of the human urinary metabolome.

  17. Pasture Feeding Changes the Bovine Rumen and Milk Metabolome

    Directory of Open Access Journals (Sweden)

    Tom F. O’Callaghan

    2018-04-01

    Full Text Available The purpose of this study was to examine the effects of two pasture feeding systems—perennial ryegrass (GRS and perennial ryegrass and white clover (CLV—and an indoor total mixed ration (TMR system on the (a rumen microbiome; (b rumen fluid and milk metabolome; and (c to assess the potential to distinguish milk from different feeding systems by their respective metabolomes. Rumen fluid was collected from nine rumen cannulated cows under the different feeding systems in early, mid and late lactation, and raw milk samples were collected from ten non-cannulated cows in mid-lactation from each of the feeding systems. The microbiota present in rumen liquid and solid portions were analysed using 16S rRNA gene sequencing, while 1H-NMR untargeted metabolomic analysis was performed on rumen fluid and raw milk samples. The rumen microbiota composition was not found to be significantly altered by any feeding system in this study, likely as a result of a shortened adaptation period (two weeks’ exposure time. In contrast, feeding system had a significant effect on both the rumen and milk metabolome. Increased concentrations of volatile fatty acids including acetic acid, an important source of energy for the cow, were detected in the rumen of TMR and CLV-fed cows. Pasture feeding resulted in significantly higher concentrations of isoacids in the rumen. The ruminal fluids of both CLV and GRS-fed cows were found to have increased concentrations of p-cresol, a product of microbiome metabolism. CLV feeding resulted in increased rumen concentrations of formate, a substrate compound for methanogenesis. The TMR feeding resulted in significantly higher rumen choline content, which contributes to animal health and milk production, and succinate, a product of carbohydrate metabolism. Milk and rumen-fluids were shown to have varying levels of dimethyl sulfone in each feeding system, which was found to be an important compound for distinguishing between the diets

  18. Metagenomic and metabolomic analysis of the toxic effects of trichloroacetamide-induced gut microbiome and urine metabolome perturbations in mice.

    Science.gov (United States)

    Zhang, Yan; Zhao, Fuzheng; Deng, Yongfeng; Zhao, Yanping; Ren, Hongqiang

    2015-04-03

    Disinfection byproducts (DBPs) in drinking water have been linked to various diseases, including colon, colorectal, rectal, and bladder cancer. Trichloroacetamide (TCAcAm) is an emerging nitrogenous DBP, and our previous study found that TCAcAm could induce some changes associated with host-gut microbiota co-metabolism. In this study, we used an integrated approach combining metagenomics, based on high-throughput sequencing, and metabolomics, based on nuclear magnetic resonance (NMR), to evaluate the toxic effects of TCAcAm exposure on the gut microbiome and urine metabolome. High-throughput sequencing revealed that the gut microbiome's composition and function were significantly altered after TCAcAm exposure for 90 days in Mus musculus mice. In addition, metabolomic analysis showed that a number of gut microbiota-related metabolites were dramatically perturbed in the urine of the mice. These results may provide novel insight into evaluating the health risk of environmental pollutants as well as revealing the potential mechanism of TCAcAm's toxic effects.

  19. The metabolome and transcriptome of the interaction between Ustilago maydis and Fusarium verticillioides in vitro

    Science.gov (United States)

    The metabolome and transcriptome of the maize-infecting fungi Ustilago maydis and Fusarium verticillioides were analyzed as the two fungi interact. Both fungi were grown for seven days in liquid medium alone or together in order to study how this interaction changes their metabolomic and transcripto...

  20. Current trends and future requirements for the mass spectrometric investigation of microbial, mammalian and plant metabolomes

    International Nuclear Information System (INIS)

    Dunn, Warwick B

    2008-01-01

    The functional levels of biological cells or organisms can be separated into the genome, transcriptome, proteome and metabolome. Of these the metabolome offers specific advantages to the investigation of the phenotype of biological systems. The investigation of the metabolome (metabolomics) has only recently appeared as a mainstream scientific discipline and is currently developing rapidly for the study of microbial, plant and mammalian metabolomes. The metabolome pipeline or workflow encompasses the processes of sample collection and preparation, collection of analytical data, raw data pre-processing, data analysis and data storage. Of these processes the collection of analytical data will be discussed in this review with specific interest shown in the application of mass spectrometry in the metabolomics pipeline. The current developments in mass spectrometry platforms (GC–MS, LC–MS, DIMS and imaging MS) and applications of specific interest will be highlighted. The current limitations of these platforms and applications will be discussed with areas requiring further development also highlighted. These include the detectable coverage of the metabolome, the identification of metabolites and the process of converting raw data to biological knowledge. (review article)

  1. Impacts on the metabolome of down-regulating polyphenol oxidase in transgenic potato tubers

    Science.gov (United States)

    Tubers of potato (Solanum tuberosum L. cv. Estima) genetically modified (GM) to reduce polyphenol oxidase (PPO) activity and enzymatic discolouration were assessed for changes in the metabolome using Liquid Chromatography-Mass Spectrometry (LC-MS) and Gas Chromatography (GC)-MS. Metabolome changes ...

  2. Introducing Undergraduate Students to Metabolomics Using a NMR-Based Analysis of Coffee Beans

    Science.gov (United States)

    Sandusky, Peter Olaf

    2017-01-01

    Metabolomics applies multivariate statistical analysis to sets of high-resolution spectra taken over a population of biologically derived samples. The objective is to distinguish subpopulations within the overall sample population, and possibly also to identify biomarkers. While metabolomics has become part of the standard analytical toolbox in…

  3. Biomarkers for predicting type 2 diabetes development — Can metabolomics improve on existing biomarkers?

    DEFF Research Database (Denmark)

    Savolainen, Otto; Fagerberg, Björn; Lind, Mads Vendelbo

    2017-01-01

    resistance (HOMA), smoking, serum adiponectin)) alone, and in combination with metabolomics had the largest areas under the curve (AUC) (0.794 (95% confidence interval [0.738–0.850]) and 0.808 [0.749–0.867] respectively), with the standalone metabolomics model based on nine fasting plasma markers having...

  4. Standard reporting requirements for biological samples in metabolomics experiments: Microbial and in vitro biology experiments

    NARCIS (Netherlands)

    Werf, M.J. van der; Takors, R.; Smedsgaard, J.; Nielsen, J.; Ferenci, T.; Portais, J.C.; Wittmann, C.; Hooks, M.; Tomassini, A.; Oldiges, M.; Fostel, J.; Sauer, U.

    2007-01-01

    With the increasing use of metabolomics as a means to study a large number of different biological research questions, there is a need for a minimal set of reporting standards that allow the scientific community to evaluate, understand, repeat, compare and re-investigate metabolomics studies. Here

  5. metaMS: An open-source pipeline for GC–MS-based untargeted metabolomics

    NARCIS (Netherlands)

    Wehrens, H.R.M.J.; Weingart, G.; Mattivi, F.

    2014-01-01

    Untargeted metabolomics are rapidly becoming an important tool for studying complex biological samples. Gas chromatography–mass spectrometry (GC–MS) is the most widely used analytical technology for metabolomic analysis of compounds that are volatile or can be chemically derivatised into volatile

  6. Metabolite Profiling in the Pursuit of Biomarkers for IVF Outcome: The Case for Metabolomics Studies

    Directory of Open Access Journals (Sweden)

    C. McRae

    2013-01-01

    Full Text Available Background. This paper presents the literature on biomarkers of in vitro fertilisation (IVF outcome, demonstrating the progression of these studies towards metabolite profiling, specifically metabolomics. The need for more, and improved, metabolomics studies in the field of assisted conception is discussed. Methods. Searches were performed on ISI Web of Knowledge SM for literature associated with biomarkers of oocyte and embryo quality, and biomarkers of IVF outcome in embryo culture medium, follicular fluid (FF, and blood plasma in female mammals. Results. Metabolomics in the field of female reproduction is still in its infancy. Metabolomics investigations of embryo culture medium for embryo selection have been the most common, but only within the last five years. Only in 2012 has the first metabolomics investigation of FF for biomarkers of oocyte quality been reported. The only metabolomics studies of human blood plasma in this context have been aimed at identifying women with polycystic ovary syndrome (PCOS. Conclusions. Metabolomics is becoming more established in the field of assisted conception, but the studies performed so far have been preliminary and not all potential applications have yet been explored. With further improved metabolomics studies, the possibility of identifying a method for predicting IVF outcome may become a reality.

  7. The future of metabolomics in ELIXIR [version 1; referees: 2 approved, 1 approved with reservations

    Directory of Open Access Journals (Sweden)

    Merlijn van Rijswijk

    2017-09-01

    Full Text Available Metabolomics, the youngest of the major omics technologies, is supported by an active community of researchers and infrastructure developers across Europe. To coordinate and focus efforts around infrastructure building for metabolomics within Europe, a workshop on the “Future of metabolomics in ELIXIR” was organised at Frankfurt Airport in Germany. This one-day strategic workshop involved representatives of ELIXIR Nodes, members of the PhenoMeNal consortium developing an e-infrastructure that supports workflow-based metabolomics analysis pipelines, and experts from the international metabolomics community. The workshop established metabolite identification as the critical area, where a maximal impact of computational metabolomics and data management on other fields could be achieved. In particular, the existing four ELIXIR Use Cases, where the metabolomics community - both industry and academia - would benefit most, and which could be exhaustively mapped onto the current five ELIXIR Platforms were discussed. This opinion article is a call for support for a new ELIXIR metabolomics Use Case, which aligns with and complements the existing and planned ELIXIR Platforms and Use Cases.

  8. The future of metabolomics in ELIXIR [version 2; referees: 2 approved, 1 approved with reservations

    Directory of Open Access Journals (Sweden)

    Merlijn van Rijswijk

    2017-10-01

    Full Text Available Metabolomics, the youngest of the major omics technologies, is supported by an active community of researchers and infrastructure developers across Europe. To coordinate and focus efforts around infrastructure building for metabolomics within Europe, a workshop on the “Future of metabolomics in ELIXIR” was organised at Frankfurt Airport in Germany. This one-day strategic workshop involved representatives of ELIXIR Nodes, members of the PhenoMeNal consortium developing an e-infrastructure that supports workflow-based metabolomics analysis pipelines, and experts from the international metabolomics community. The workshop established metabolite identification as the critical area, where a maximal impact of computational metabolomics and data management on other fields could be achieved. In particular, the existing four ELIXIR Use Cases, where the metabolomics community - both industry and academia - would benefit most, and which could be exhaustively mapped onto the current five ELIXIR Platforms were discussed. This opinion article is a call for support for a new ELIXIR metabolomics Use Case, which aligns with and complements the existing and planned ELIXIR Platforms and Use Cases.

  9. A proposed framework for the description of plant metabolomics experiments and their results

    DEFF Research Database (Denmark)

    Jenkins, H.; Hardy, N.; Beckmann, M-

    2004-01-01

    The study of the metabolite complement of biological samples, known as metabolomics, is creating large amounts of data, and support for handling these data sets is required to facilitate meaningful analyses that will answer biological questions. We present a data model for plant metabolomics known...

  10. Metabolomic profiling of rapid cold hardening and cold shock in Drosophila melanogaster

    DEFF Research Database (Denmark)

    Overgaard, Johannes; Malmendal, Anders; Sørensen, Jesper

    2007-01-01

    study used untargeted (1)H NMR metabolomic profiling to examine the metabolomic response in Drosophila melanogaster during the 72 h following RCH and cold shock treatment. These findings are discussed in relation to the costs and benefits of RCH that are measured in terms of survival and reproductive...

  11. Associations of Nasopharyngeal Metabolome and Microbiome with Severity among Infants with Bronchiolitis. A Multiomic Analysis.

    Science.gov (United States)

    Stewart, Christopher J; Mansbach, Jonathan M; Wong, Matthew C; Ajami, Nadim J; Petrosino, Joseph F; Camargo, Carlos A; Hasegawa, Kohei

    2017-10-01

    Bronchiolitis is the most common lower respiratory infection in infants; however, it remains unclear which infants with bronchiolitis will develop severe illness. In addition, although emerging evidence indicates associations of the upper-airway microbiome with bronchiolitis severity, little is known about the mechanisms linking airway microbes and host response to disease severity. To determine the relations among the nasopharyngeal airway metabolome profiles, microbiome profiles, and severity in infants with bronchiolitis. We conducted a multicenter prospective cohort study of infants (age metabolomic and metagenomic (16S ribosomal RNA gene and whole-genome shotgun sequencing) approaches to 144 nasopharyngeal airway samples collected within 24 hours of hospitalization, we determined metabolome and microbiome profiles and their association with higher severity, defined by the use of positive pressure ventilation (i.e., continuous positive airway pressure and/or intubation). Nasopharyngeal airway metabolome profiles significantly differed by bronchiolitis severity (P metabolomics to predict bronchiolitis severity and better understand microbe-host interaction.

  12. The application of skin metabolomics in the context of transdermal drug delivery.

    Science.gov (United States)

    Li, Jinling; Xu, Weitong; Liang, Yibiao; Wang, Hui

    2017-04-01

    Metabolomics is a powerful emerging tool for the identification of biomarkers and the exploration of metabolic pathways in a high-throughput manner. As an administration site for percutaneous absorption, the skin has a variety of metabolic enzymes, except other than hepar. However, technologies to fully detect dermal metabolites remain lacking. Skin metabolomics studies have mainly focused on the regulation of dermal metabolites by drugs or on the metabolism of drugs themselves. Skin metabolomics techniques include collection and preparation of skin samples, data collection, data processing and analysis. Furthermore, studying dermal metabolic effects via metabolomics can provide novel explanations for the pathogenesis of some dermatoses and unique insights for designing targeted prodrugs, promoting drug absorption and controlling drug concentration. This paper reviews current progress in the field of skin metabolomics, with a specific focus on dermal drug delivery systems and dermatosis. Copyright © 2016. Published by Elsevier Urban & Partner Sp. z o.o.

  13. Metabolomics reveals mycoplasma contamination interferes with the metabolism of PANC-1 cells.

    Science.gov (United States)

    Yu, Tao; Wang, Yongtao; Zhang, Huizhen; Johnson, Caroline H; Jiang, Yiming; Li, Xiangjun; Wu, Zeming; Liu, Tian; Krausz, Kristopher W; Yu, Aiming; Gonzalez, Frank J; Huang, Min; Bi, Huichang

    2016-06-01

    Mycoplasma contamination is a common problem in cell culture and can alter cellular functions. Since cell metabolism is either directly or indirectly involved in every aspect of cell function, it is important to detect changes to the cellular metabolome after mycoplasma infection. In this study, liquid chromatography mass spectrometry (LC/MS)-based metabolomics was used to investigate the effect of mycoplasma contamination on the cellular metabolism of human pancreatic carcinoma cells (PANC-1). Multivariate analysis demonstrated that mycoplasma contamination induced significant metabolic changes in PANC-1 cells. Twenty-three metabolites were identified and found to be involved in arginine and purine metabolism and energy supply. This study demonstrates that mycoplasma contamination significantly alters cellular metabolite levels, confirming the compelling need for routine checking of cell cultures for mycoplasma contamination, particularly when used for metabolomics studies. Graphical abstract Metabolomics reveals mycoplasma contamination changes the metabolome of PANC-1 cells.

  14. Profiling the metabolome changes caused by cranberry procyanidins in plasma of female rats using (1) H NMR and UHPLC-Q-Orbitrap-HRMS global metabolomics approaches.

    Science.gov (United States)

    Liu, Haiyan; Garrett, Timothy J; Tayyari, Fariba; Gu, Liwei

    2015-11-01

    The objective was to investigate the metabolome changes in female rats gavaged with partially purified cranberry procyanidins (PPCP) using (1) H NMR and UHPLC-Q-Orbitrap-HRMS metabolomics approaches, and to identify the contributing metabolites. Twenty-four female Sprague-Dawley rats were randomly separated into two groups and administered PPCP or partially purified apple procyanidins (PPAP) for three times using a 250 mg extracts/kg body weight dose. Plasma was collected 6 h after the last gavage and analyzed using (1) H NMR and UHPLC-Q-Orbitrap-HRMS. No metabolome difference was observed using (1) H NMR metabolomics approach. However, LC-HRMS metabolomics data show that metabolome in the plasma of female rats administered PPCP differed from those gavaged with PPAP. Eleven metabolites were tentatively identified from a total of 36 discriminant metabolic features based on accurate masses and/or product ion spectra. PPCP caused a greater increase of exogenous metabolites including p-hydroxybenzoic acid, phenol, phenol-sulphate, catechol sulphate, 3, 4-dihydroxyphenylvaleric acid, and 4'-O-methyl-(-)-epicatechin-3'-O-beta-glucuronide in rat plasma. Furthermore, the plasma level of O-methyl-(-)-epicatechin-O-glucuronide, 4-hydroxy-5-(hydroxyphenyl)-valeric acid-O-sulphate, 5-(hydroxyphenyl)-ϒ-valerolactone-O-sulphate, 4-hydroxydiphenylamine, and peonidin-3-O-hexose were higher in female rats administered with PPAP. The metabolome changes caused by cranberry procyanidins were revealed using an UHPLC-Q-Orbitrap-HRMS global metabolomics approach. Exogenous and microbial metabolites were the major identified discriminate biomarkers. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Profiling the Metabolome Changes Caused by Cranberry Procyanidins in Plasma of Female Rats using 1H NMR and UHPLC-Q-Orbitrap-HRMS Global Metabolomics Approaches

    Science.gov (United States)

    Liu, Haiyan; Garrett, Timothy J.; Tayyari, Fariba; Gu, Liwei

    2015-01-01

    Scope The objective was to investigate the metabolome changes in female rats gavaged with partially purified cranberry procyanidins (PPCP) using 1H NMR and UHPLC-Q-Orbitrap-HRMS metabolomics approaches, and to identify the contributing metabolites. Methods and results Twenty four female Sprague-Dawley rats were randomly separated into two groups and administered PPCP or partially purified apple procyanidins (PPAP) for 3 times using a 250 mg extracts/kg body weight dose. Plasma were collected six hours after the last gavage and analyzed using 1H NMR and UHPLC-Q-Orbitrap-HRMS. No metabolome difference was observed using 1H NMR metabolomics approach. However, LC-HRMS metabolomics data show that metabolome in plasma of female rats administered PPCP differed from those gavaged with PPAP. Eleven metabolites were tentatively identified from a total of 36 discriminant metabolic features based on accurate masses and/or product ion spectra. PPCP caused a greater increase of exogenous metabolites including p-hydroxybenzoic acid, phenol, phenol-sulfate, catechol sulphate, 3, 4-dihydroxyphenylvaleric acid, and 4′-O-methyl-(−)-epicatechin-3′-O-beta-glucuronide in rat plasma. Furthermore, the plasma level of O-methyl-(−)-epicatechin-O-glucuronide, 4-hydroxy-5-(hydroxyphenyl)-valeric acid-O-sulphate, 5-(hydroxyphenyl)-γ-valerolactone-O-sulphate, 4-hydroxydiphenylamine, and peonidin-3-O-hexose were higher in female rats administered with PPAP. Conclusion The metabolome changes caused by cranberry procyanidins were revealed using an UHPLC-Q-Orbitrap-HRMS global metabolomics approach. Exogenous and microbial metabolites were the major identified discriminate biomarkers. PMID:26264887

  16. Fish mucus metabolome reveals fish life-history traits

    Science.gov (United States)

    Reverter, M.; Sasal, P.; Banaigs, B.; Lecchini, D.; Lecellier, G.; Tapissier-Bontemps, N.

    2017-06-01

    Fish mucus has important biological and ecological roles such as defense against fish pathogens and chemical mediation among several species. A non-targeted liquid chromatography-mass spectrometry metabolomic approach was developed to study gill mucus of eight butterflyfish species in Moorea (French Polynesia), and the influence of several fish traits (geographic site and reef habitat, species taxonomy, phylogeny, diet and parasitism levels) on the metabolic variability was investigated. A biphasic extraction yielding two fractions (polar and apolar) was used. Fish diet (obligate corallivorous, facultative corallivorous or omnivorous) arose as the main driver of the metabolic differences in the gill mucus in both fractions, accounting for 23% of the observed metabolic variability in the apolar fraction and 13% in the polar fraction. A partial least squares discriminant analysis allowed us to identify the metabolites (variable important in projection, VIP) driving the differences between fish with different diets (obligate corallivores, facultative corallivores and omnivorous). Using accurate mass data and fragmentation data, we identified some of these VIP as glycerophosphocholines, ceramides and fatty acids. Level of monogenean gill parasites was the second most important factor shaping the gill mucus metabolome, and it explained 10% of the metabolic variability in the polar fraction and 5% in the apolar fraction. A multiple regression tree revealed that the metabolic variability due to parasitism in the polar fraction was mainly due to differences between non-parasitized and parasitized fish. Phylogeny and butterflyfish species were factors contributing significantly to the metabolic variability of the apolar fraction (10 and 3%, respectively) but had a less pronounced effect in the polar fraction. Finally, geographic site and reef habitat of butterflyfish species did not influence the gill mucus metabolome of butterflyfishes.

  17. The Muscle Metabolome Differs between Healthy and Frail Older Adults.

    Science.gov (United States)

    Fazelzadeh, Parastoo; Hangelbroek, Roland W J; Tieland, Michael; de Groot, Lisette C P G M; Verdijk, Lex B; van Loon, Luc J C; Smilde, Age K; Alves, Rodrigo D A M; Vervoort, Jacques; Müller, Michael; van Duynhoven, John P M; Boekschoten, Mark V

    2016-02-05

    Populations around the world are aging rapidly. Age-related loss of physiological functions negatively affects quality of life. A major contributor to the frailty syndrome of aging is loss of skeletal muscle. In this study we assessed the skeletal muscle biopsy metabolome of healthy young, healthy older and frail older subjects to determine the effect of age and frailty on the metabolic signature of skeletal muscle tissue. In addition, the effects of prolonged whole-body resistance-type exercise training on the muscle metabolome of older subjects were examined. The baseline metabolome was measured in muscle biopsies collected from 30 young, 66 healthy older subjects, and 43 frail older subjects. Follow-up samples from frail older (24 samples) and healthy older subjects (38 samples) were collected after 6 months of prolonged resistance-type exercise training. Young subjects were included as a reference group. Primary differences in skeletal muscle metabolite levels between young and healthy older subjects were related to mitochondrial function, muscle fiber type, and tissue turnover. Similar differences were observed when comparing frail older subjects with healthy older subjects at baseline. Prolonged resistance-type exercise training resulted in an adaptive response of amino acid metabolism, especially reflected in branched chain amino acids and genes related to tissue remodeling. The effect of exercise training on branched-chain amino acid-derived acylcarnitines in older subjects points to a downward shift in branched-chain amino acid catabolism upon training. We observed only modest correlations between muscle and plasma metabolite levels, which pleads against the use of plasma metabolites as a direct read-out of muscle metabolism and stresses the need for direct assessment of metabolites in muscle tissue biopsies.

  18. Metabolomics applied to diabetes-lessons from human population studies.

    Science.gov (United States)

    Liggi, Sonia; Griffin, Julian L

    2017-12-01

    The 'classical' distribution of type 2 diabetes (T2D) across the globe is rapidly changing and it is no longer predominantly a disease of middle-aged/elderly adults of western countries, but it is becoming more common through Asia and the Middle East, as well as increasingly found in younger individuals. This global altered incidence of T2D is most likely associated with the spread of western diets and sedentary lifestyles, although there is still much debate as to whether the increased incidence rates are due to an overconsumption of fats, sugars or more generally high-calorie foods. In this context, understanding the interactions between genes of risk and diet and how they influence the incidence of T2D will help define the causative pathways of the disease. This review focuses on the use of metabolomics in large cohort studies to follow the incidence of type 2 diabetes in different populations. Such approaches have been used to identify new biomarkers of pre-diabetes, such as branch chain amino acids, and associate metabolomic profiles with genes of known risk in T2D from large scale GWAS studies. As the field develops, there are also examples of meta-analysis across metabolomics cohort studies and cross-comparisons with different populations to allow us to understand how genes and diet contribute to disease risk. Such approaches demonstrate that insulin resistance and T2D have far reaching metabolic effects beyond raised blood glucose and how the disease impacts systemic metabolism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Metabolomic profiles as reliable biomarkers of dietary composition123

    Science.gov (United States)

    Esko, Tõnu; Hirschhorn, Joel N; Feldman, Henry A; Hsu, Yu-Han H; Deik, Amy A; Clish, Clary B; Ebbeling, Cara B; Ludwig, David S

    2017-01-01

    Background: Clinical nutrition research often lacks robust markers of compliance, complicating the interpretation of clinical trials and observational studies of free-living subjects. Objective: We aimed to examine metabolomics profiles in response to 3 diets that differed widely in macronutrient composition during a controlled feeding protocol. Design: Twenty-one adults with a high body mass index (in kg/m2; mean ± SD: 34.4 ± 4.9) were given hypocaloric diets to promote weight loss corresponding to 10–15% of initial body weight. They were then studied during weight stability while consuming 3 test diets, each for a 4-wk period according to a crossover design: low fat (60% carbohydrate, 20% fat, 20% protein), low glycemic index (40% carbohydrate, 40% fat, 20% protein), or very-low carbohydrate (10% carbohydrate, 60% fat, 30% protein). Plasma samples were obtained at baseline and at the end of each 4-wk period in the fasting state for metabolomics analysis by using liquid chromatography–tandem mass spectrometry. Statistical analyses included adjustment for multiple comparisons. Results: Of 333 metabolites, we identified 152 whose concentrations differed for ≥1 diet compared with the others, including diacylglycerols and triacylglycerols, branched-chain amino acids, and markers reflecting metabolic status. Analysis of groups of related metabolites, with the use of either principal components or pathways, revealed coordinated metabolic changes affected by dietary composition, including pathways related to amino acid metabolism. We constructed a classifier using the metabolites that differed between diets and were able to correctly identify the test diet from metabolite profiles in 60 of 63 cases (>95% accuracy). Analyses also suggest differential effects by diet on numerous cardiometabolic disease risk factors. Conclusions: Metabolomic profiling may be used to assess compliance during clinical nutrition trials and the validity of dietary assessment in

  20. Serum metabolomics differentiating pancreatic cancer from new-onset diabetes

    Science.gov (United States)

    He, Xiangyi; Zhong, Jie; Wang, Shuwei; Zhou, Yufen; Wang, Lei; Zhang, Yongping; Yuan, Yaozong

    2017-01-01

    To establish a screening strategy for pancreatic cancer (PC) based on new-onset diabetic mellitus (NO-DM), serum metabolomics analysis and a search for the metabolic pathways associated with PC related DM were performed. Serum samples from patients with NO-DM (n = 30) and patients with pancreatic cancer and NO-DM were examined by liquid chromatography-mass spectrometry. Data were analyzed using principal components analysis (PCA) and orthogonal projection to latent structures (OPLS) of the most significant metabolites. The diagnostic model was constructed using logistic regression analysis. Metabolic pathways were analyzed using the web-based tool MetPA. PC patients with NO-DM were older and had a lower BMI and shorter duration of DM than those with NO-DM. The metabolomic profiles of patients with PC and NO-DM were significantly different from those of patients with NO-DM in the PCA and OPLS models. Sixty two differential metabolites were identified by the OPLS model. The logistic regression model using a panel of two metabolites including N_Succinyl_L_diaminopimelic_acid and PE (18:2) had high sensitivity (93.3%) and specificity (93.1%) for PC. The top three metabolic pathways associated with PC related DM were valine, leucine and isoleucine biosynthesis and degradation, primary bile acid biosynthesis, and sphingolipid metabolism. In conclusion, screening for PC based on NO-DM using serum metabolomics in combination with clinic characteristics and CA19-9 is a potential useful strategy. Several metabolic pathways differed between PC related DM and type 2 DM. PMID:28418859

  1. Haystack, a web-based tool for metabolomics research.

    Science.gov (United States)

    Grace, Stephen C; Embry, Stephen; Luo, Heng

    2014-01-01

    Liquid chromatography coupled to mass spectrometry (LCMS) has become a widely used technique in metabolomics research for differential profiling, the broad screening of biomolecular constituents across multiple samples to diagnose phenotypic differences and elucidate relevant features. However, a significant limitation in LCMS-based metabolomics is the high-throughput data processing required for robust statistical analysis and data modeling for large numbers of samples with hundreds of unique chemical species. To address this problem, we developed Haystack, a web-based tool designed to visualize, parse, filter, and extract significant features from LCMS datasets rapidly and efficiently. Haystack runs in a browser environment with an intuitive graphical user interface that provides both display and data processing options. Total ion chromatograms (TICs) and base peak chromatograms (BPCs) are automatically displayed, along with time-resolved mass spectra and extracted ion chromatograms (EICs) over any mass range. Output files in the common .csv format can be saved for further statistical analysis or customized graphing. Haystack's core function is a flexible binning procedure that converts the mass dimension of the chromatogram into a set of interval variables that can uniquely identify a sample. Binned mass data can be analyzed by exploratory methods such as principal component analysis (PCA) to model class assignment and identify discriminatory features. The validity of this approach is demonstrated by comparison of a dataset from plants grown at two light conditions with manual and automated peak detection methods. Haystack successfully predicted class assignment based on PCA and cluster analysis, and identified discriminatory features based on analysis of EICs of significant bins. Haystack, a new online tool for rapid processing and analysis of LCMS-based metabolomics data is described. It offers users a range of data visualization options and supports non

  2. Mass spectrometry data of metabolomics analysis of Nepenthes pitchers

    Directory of Open Access Journals (Sweden)

    Muhammad Aqil Fitri Rosli

    2017-10-01

    Full Text Available Hybridisation plays a significant role in the evolution and diversification of plants. Hybridisation among Nepenthes species is extensive, either naturally or man-made. To investigate the effects of hybridisation on the chemical compositions, we carried out metabolomics study on pitcher tissue of Nepenthes ampullaria, Nepenthes rafflesiana and their hybrid, Nepenthes × hookeriana. Pitcher samples were harvested and extracted in methanol:chloroform:water via sonication-assisted extraction before analysed using LC-TOF-MS. MS data were analysed using XCMS online version 2.2.5. This is the first MS data report towards the profiling, identification and comprehensive comparison of metabolites present in Nepenthes species.

  3. Application of a Smartphone Metabolomics Platform to the Authentication of Schisandra sinensis.

    Science.gov (United States)

    Kwon, Hyuk Nam; Phan, Hong-Duc; Xu, Wen Jun; Ko, Yoon-Joo; Park, Sunghyouk

    2016-05-01

    Herbal medicines have been used for a long time all around the world. Since the quality of herbal preparations depends on the source of herbal materials, there has been a strong need to develop methods to correctly identify the origin of materials. To develop a smartphone metabolomics platform as a simpler and low-cost alternative for the identification of herbal material source. Schisandra sinensis extracts from Korea and China were prepared. The visible spectra of all samples were measured by a smartphone spectrometer platform. This platform included all the necessary measures built-in for the metabolomics research: data acquisition, processing, chemometric analysis and visualisation of the results. The result of the smartphone metabolomics platform was compared to that of NMR-based metabolomics, suggesting the feasibility of smartphone platform in metabolomics research. The smartphone metabolomics platform gave similar results to the NMR method, showing good separation between Korean and Chinese materials and correct predictability for all test samples. With its accuracy and advantages of affordability, user-friendliness, and portability, the smartphone metabolomics platform could be applied to the authentication of other medicinal plants. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  4. The Emerging Field of Quantitative Blood Metabolomics for Biomarker Discovery in Critical Illnesses

    Science.gov (United States)

    Serkova, Natalie J.; Standiford, Theodore J.

    2011-01-01

    Metabolomics, a science of systems biology, is the global assessment of endogenous metabolites within a biologic system and represents a “snapshot” reading of gene function, enzyme activity, and the physiological landscape. Metabolite detection, either individual or grouped as a metabolomic profile, is usually performed in cells, tissues, or biofluids by either nuclear magnetic resonance spectroscopy or mass spectrometry followed by sophisticated multivariate data analysis. Because loss of metabolic homeostasis is common in critical illness, the metabolome could have many applications, including biomarker and drug target identification. Metabolomics could also significantly advance our understanding of the complex pathophysiology of acute illnesses, such as sepsis and acute lung injury/acute respiratory distress syndrome. Despite this potential, the clinical community is largely unfamiliar with the field of metabolomics, including the methodologies involved, technical challenges, and, most importantly, clinical uses. Although there is evidence of successful preclinical applications, the clinical usefulness and application of metabolomics in critical illness is just beginning to emerge, the advancement of which hinges on linking metabolite data to known and validated clinically relevant indices. In addition, other important aspects, such as patient selection, sample collection, and processing, as well as the needed multivariate data analysis, have to be taken into consideration before this innovative approach to biomarker discovery can become a reliable tool in the intensive care unit. The purpose of this review is to begin to familiarize clinicians with the field of metabolomics and its application for biomarker discovery in critical illnesses such as sepsis. PMID:21680948

  5. Experimental design and reporting standards for metabolomics studies of mammalian cell lines.

    Science.gov (United States)

    Hayton, Sarah; Maker, Garth L; Mullaney, Ian; Trengove, Robert D

    2017-12-01

    Metabolomics is an analytical technique that investigates the small biochemical molecules present within a biological sample isolated from a plant, animal, or cultured cells. It can be an extremely powerful tool in elucidating the specific metabolic changes within a biological system in response to an environmental challenge such as disease, infection, drugs, or toxins. A historically difficult step in the metabolomics pipeline is in data interpretation to a meaningful biological context, for such high-variability biological samples and in untargeted metabolomics studies that are hypothesis-generating by design. One way to achieve stronger biological context of metabolomic data is via the use of cultured cell models, particularly for mammalian biological systems. The benefits of in vitro metabolomics include a much greater control of external variables and no ethical concerns. The current concerns are with inconsistencies in experimental procedures and level of reporting standards between different studies. This review discusses some of these discrepancies between recent studies, such as metabolite extraction and data normalisation. The aim of this review is to highlight the importance of a standardised experimental approach to any cultured cell metabolomics study and suggests an example procedure fully inclusive of information that should be disclosed in regard to the cell type/s used and their culture conditions. Metabolomics of cultured cells has the potential to uncover previously unknown information about cell biology, functions and response mechanisms, and so the accurate biological interpretation of the data produced and its ability to be compared to other studies should be considered vitally important.

  6. Metabolomics in amyotrophic lateral sclerosis: how far can it take us?

    Science.gov (United States)

    Blasco, H; Patin, F; Madji Hounoum, B; Gordon, P H; Vourc'h, P; Andres, C R; Corcia, P

    2016-03-01

    Amyotrophic lateral sclerosis (ALS) is the most common adult-onset motor neuron disease. Alongside identification of aetiologies, development of biomarkers is a foremost research priority. Metabolomics is one promising approach that is being utilized in the search for diagnosis and prognosis markers. Our aim is to provide an overview of the principal research in metabolomics applied to ALS. References were identified using PubMed with the terms 'metabolomics' or 'metabolomic' and 'ALS' or 'amyotrophic lateral sclerosis' or 'MND' or 'motor neuron disorders'. To date, nine articles have reported metabolomics research in patients and a few additional studies examined disease physiology and drug effects in patients or models. Metabolomics contribute to a better understanding of ALS pathophysiology but, to date, no biomarker has been validated for diagnosis, principally due to the heterogeneity of the disease and the absence of applied standardized methodology for biomarker discovery. A consensus on best metabolomics methodology as well as systematic independent validation will be an important accomplishment on the path to identifying the long-awaited biomarkers for ALS and to improve clinical trial designs. © 2016 EAN.

  7. Metabolomics and Type 2 Diabetes: Translating Basic Research into Clinical Application.

    Science.gov (United States)

    Klein, Matthias S; Shearer, Jane

    2016-01-01

    Type 2 diabetes (T2D) and its comorbidities have reached epidemic proportions, with more than half a billion cases expected by 2030. Metabolomics is a fairly new approach for studying metabolic changes connected to disease development and progression and for finding predictive biomarkers to enable early interventions, which are most effective against T2D and its comorbidities. In metabolomics, the abundance of a comprehensive set of small biomolecules (metabolites) is measured, thus giving insight into disease-related metabolic alterations. This review shall give an overview of basic metabolomics methods and will highlight current metabolomics research successes in the prediction and diagnosis of T2D. We summarized key metabolites changing in response to T2D. Despite large variations in predictive biomarkers, many studies have replicated elevated plasma levels of branched-chain amino acids and their derivatives, aromatic amino acids and α-hydroxybutyrate ahead of T2D manifestation. In contrast, glycine levels and lysophosphatidylcholine C18:2 are depressed in both predictive studies and with overt disease. The use of metabolomics for predicting T2D comorbidities is gaining momentum, as are our approaches for translating basic metabolomics research into clinical applications. As a result, metabolomics has the potential to enable informed decision-making in the realm of personalized medicine.

  8. Nuclear magnetic resonance based metabolomics and liver diseases: Recent advances and future clinical applications.

    Science.gov (United States)

    Amathieu, Roland; Triba, Mohamed Nawfal; Goossens, Corentine; Bouchemal, Nadia; Nahon, Pierre; Savarin, Philippe; Le Moyec, Laurence

    2016-01-07

    Metabolomics is defined as the quantitative measurement of the dynamic multiparametric metabolic response of living systems to pathophysiological stimuli or genetic modification. It is an "omics" technique that is situated downstream of genomics, transcriptomics and proteomics. Metabolomics is recognized as a promising technique in the field of systems biology for the evaluation of global metabolic changes. During the last decade, metabolomics approaches have become widely used in the study of liver diseases for the detection of early biomarkers and altered metabolic pathways. It is a powerful technique to improve our pathophysiological knowledge of various liver diseases. It can be a useful tool to help clinicians in the diagnostic process especially to distinguish malignant and non-malignant liver disease as well as to determine the etiology or severity of the liver disease. It can also assess therapeutic response or predict drug induced liver injury. Nevertheless, the usefulness of metabolomics is often not understood by clinicians, especially the concept of metabolomics profiling or fingerprinting. In the present work, after a concise description of the different techniques and processes used in metabolomics, we will review the main research on this subject by focusing specifically on in vitro proton nuclear magnetic resonance spectroscopy based metabolomics approaches in human studies. We will first consider the clinical point of view enlighten physicians on this new approach and emphasis its future use in clinical "routine".

  9. Metabolomics and Type 2 Diabetes: Translating Basic Research into Clinical Application

    Directory of Open Access Journals (Sweden)

    Matthias S. Klein

    2016-01-01

    Full Text Available Type 2 diabetes (T2D and its comorbidities have reached epidemic proportions, with more than half a billion cases expected by 2030. Metabolomics is a fairly new approach for studying metabolic changes connected to disease development and progression and for finding predictive biomarkers to enable early interventions, which are most effective against T2D and its comorbidities. In metabolomics, the abundance of a comprehensive set of small biomolecules (metabolites is measured, thus giving insight into disease-related metabolic alterations. This review shall give an overview of basic metabolomics methods and will highlight current metabolomics research successes in the prediction and diagnosis of T2D. We summarized key metabolites changing in response to T2D. Despite large variations in predictive biomarkers, many studies have replicated elevated plasma levels of branched-chain amino acids and their derivatives, aromatic amino acids and α-hydroxybutyrate ahead of T2D manifestation. In contrast, glycine levels and lysophosphatidylcholine C18:2 are depressed in both predictive studies and with overt disease. The use of metabolomics for predicting T2D comorbidities is gaining momentum, as are our approaches for translating basic metabolomics research into clinical applications. As a result, metabolomics has the potential to enable informed decision-making in the realm of personalized medicine.

  10. Capillary electrophoresis - Mass spectrometry metabolomics analysis revealed enrichment of hypotaurine in rat glioma tissues.

    Science.gov (United States)

    Gao, Peng; Ji, Min; Fang, Xueyan; Liu, Yingyang; Yu, Zhigang; Cao, Yunfeng; Sun, Aijun; Zhao, Liang; Zhang, Yong

    2017-11-15

    Glioma is one of the most lethal brain malignancies with unknown etiologies. Many metabolomics analysis aiming at diverse kinds of samples had been performed. Due to the varied adopted analytical platforms, the reported disease-related metabolites were not consistent across different studies. Comparable metabolomics results are more likely to be acquired by analyzing the same sample types with identical analytical platform. For tumor researches, tissue samples metabolomics analysis own the unique advantage that it can gain more direct insight into disease-specific pathological molecules. In this light, a previous reported capillary electrophoresis - mass spectrometry human tissues metabolomics analysis method was employed to profile the metabolome of rat C6 cell implantation gliomas and the corresponding precancerous tissues. It was found that 9 metabolites increased in the glioma tissues. Of them, hypotaurine was the only metabolite that enriched in the malignant tissues as what had been reported in the relevant human tissues metabolomics analysis. Furthermore, hypotaurine was also proved to inhibit α-ketoglutarate-dependent dioxygenases (2-KDDs) through immunocytochemistry staining and in vitro enzymatic activity assays by using C6 cell cultures. This study reinforced the previous conclusion that hypotaurine acted as a competitive inhibitor of 2-KDDs and proved the value of metabolomics in oncology studies. Copyright © 2017. Published by Elsevier Inc.

  11. Deep Learning Accurately Predicts Estrogen Receptor Status in Breast Cancer Metabolomics Data.

    Science.gov (United States)

    Alakwaa, Fadhl M; Chaudhary, Kumardeep; Garmire, Lana X

    2018-01-05

    Metabolomics holds the promise as a new technology to diagnose highly heterogeneous diseases. Conventionally, metabolomics data analysis for diagnosis is done using various statistical and machine learning based classification methods. However, it remains unknown if deep neural network, a class of increasingly popular machine learning methods, is suitable to classify metabolomics data. Here we use a cohort of 271 breast cancer tissues, 204 positive estrogen receptor (ER+), and 67 negative estrogen receptor (ER-) to test the accuracies of feed-forward networks, a deep learning (DL) framework, as well as six widely used machine learning models, namely random forest (RF), support vector machines (SVM), recursive partitioning and regression trees (RPART), linear discriminant analysis (LDA), prediction analysis for microarrays (PAM), and generalized boosted models (GBM). DL framework has the highest area under the curve (AUC) of 0.93 in classifying ER+/ER- patients, compared to the other six machine learning algorithms. Furthermore, the biological interpretation of the first hidden layer reveals eight commonly enriched significant metabolomics pathways (adjusted P-value learning methods. Among them, protein digestion and absorption and ATP-binding cassette (ABC) transporters pathways are also confirmed in integrated analysis between metabolomics and gene expression data in these samples. In summary, deep learning method shows advantages for metabolomics based breast cancer ER status classification, with both the highest prediction accuracy (AUC = 0.93) and better revelation of disease biology. We encourage the adoption of feed-forward networks based deep learning method in the metabolomics research community for classification.

  12. New Strategies and Challenges in Lung Proteomics and Metabolomics. An Official American Thoracic Society Workshop Report.

    Science.gov (United States)

    Bowler, Russell P; Wendt, Chris H; Fessler, Michael B; Foster, Matthew W; Kelly, Rachel S; Lasky-Su, Jessica; Rogers, Angela J; Stringer, Kathleen A; Winston, Brent W

    2017-12-01

    This document presents the proceedings from the workshop entitled, "New Strategies and Challenges in Lung Proteomics and Metabolomics" held February 4th-5th, 2016, in Denver, Colorado. It was sponsored by the National Heart Lung Blood Institute, the American Thoracic Society, the Colorado Biological Mass Spectrometry Society, and National Jewish Health. The goal of this workshop was to convene, for the first time, relevant experts in lung proteomics and metabolomics to discuss and overcome specific challenges in these fields that are unique to the lung. The main objectives of this workshop were to identify, review, and/or understand: (1) emerging technologies in metabolomics and proteomics as applied to the study of the lung; (2) the unique composition and challenges of lung-specific biological specimens for metabolomic and proteomic analysis; (3) the diverse informatics approaches and databases unique to metabolomics and proteomics, with special emphasis on the lung; (4) integrative platforms across genetic and genomic databases that can be applied to lung-related metabolomic and proteomic studies; and (5) the clinical applications of proteomics and metabolomics. The major findings and conclusions of this workshop are summarized at the end of the report, and outline the progress and challenges that face these rapidly advancing fields.

  13. Postprandial metabolomics: A pilot mass spectrometry and NMR study of the human plasma metabolome in response to a challenge meal

    International Nuclear Information System (INIS)

    Karimpour, Masoumeh; Surowiec, Izabella; Wu, Junfang; Gouveia-Figueira, Sandra; Pinto, Rui; Trygg, Johan; Zivkovic, Angela M.; Nording, Malin L.

    2016-01-01

    The study of postprandial metabolism is relevant for understanding metabolic diseases and characterizing personal responses to diet. We combined three analytical platforms – gas chromatography-mass spectrometry (GC-MS), liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR) – to validate a multi-platform approach for characterizing individual variation in the postprandial state. We analyzed the postprandial plasma metabolome by introducing, at three occasions, meal challenges on a usual diet, and 1.5 years later, on a modified background diet. The postprandial response was stable over time and largely independent of the background diet as revealed by all three analytical platforms. Coverage of the metabolome between NMR and GC-MS included more polar metabolites detectable only by NMR and more hydrophobic compounds detected by GC-MS. The variability across three separate testing occasions among the identified metabolites was in the range of 1.1–86% for GC-MS and 0.9–42% for NMR in the fasting state at baseline. For the LC-MS analysis, the coefficients of variation of the detected compounds in the fasting state at baseline were in the range of 2–97% for the positive and 4–69% for the negative mode. Multivariate analysis (MVA) of metabolites detected with GC-MS revealed that for both background diets, levels of postprandial amino acids and sugars increased whereas those of fatty acids decreased at 0.5 h after the meal was consumed, reflecting the expected response to the challenge meal. MVA of NMR data revealed increasing postprandial levels of amino acids and other organic acids together with decreasing levels of acetoacetate and 3-hydroxybutanoic acid, also independent of the background diet. Together these data show that the postprandial response to the same challenge meal was stable even though it was tested 1.5 years apart, and that it was largely independent of background diet. This work demonstrates the efficacy of a

  14. Postprandial metabolomics: A pilot mass spectrometry and NMR study of the human plasma metabolome in response to a challenge meal

    Energy Technology Data Exchange (ETDEWEB)

    Karimpour, Masoumeh; Surowiec, Izabella; Wu, Junfang [Computational Life Science Cluster (CLiC), Department of Chemistry, Umeå University, 90187 Umeå (Sweden); Gouveia-Figueira, Sandra [Computational Life Science Cluster (CLiC), Department of Chemistry, Umeå University, 90187 Umeå (Sweden); Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå (Sweden); Pinto, Rui [Computational Life Science Cluster (CLiC), Department of Chemistry, Umeå University, 90187 Umeå (Sweden); Bioinformatics Infrastructure for Life Sciences (Sweden); Trygg, Johan [Computational Life Science Cluster (CLiC), Department of Chemistry, Umeå University, 90187 Umeå (Sweden); Zivkovic, Angela M. [Department of Nutrition, University of California, Davis, One Shields Ave, CA 95616 (United States); Nording, Malin L., E-mail: malin.nording@umu.se [Computational Life Science Cluster (CLiC), Department of Chemistry, Umeå University, 90187 Umeå (Sweden)

    2016-02-18

    The study of postprandial metabolism is relevant for understanding metabolic diseases and characterizing personal responses to diet. We combined three analytical platforms – gas chromatography-mass spectrometry (GC-MS), liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR) – to validate a multi-platform approach for characterizing individual variation in the postprandial state. We analyzed the postprandial plasma metabolome by introducing, at three occasions, meal challenges on a usual diet, and 1.5 years later, on a modified background diet. The postprandial response was stable over time and largely independent of the background diet as revealed by all three analytical platforms. Coverage of the metabolome between NMR and GC-MS included more polar metabolites detectable only by NMR and more hydrophobic compounds detected by GC-MS. The variability across three separate testing occasions among the identified metabolites was in the range of 1.1–86% for GC-MS and 0.9–42% for NMR in the fasting state at baseline. For the LC-MS analysis, the coefficients of variation of the detected compounds in the fasting state at baseline were in the range of 2–97% for the positive and 4–69% for the negative mode. Multivariate analysis (MVA) of metabolites detected with GC-MS revealed that for both background diets, levels of postprandial amino acids and sugars increased whereas those of fatty acids decreased at 0.5 h after the meal was consumed, reflecting the expected response to the challenge meal. MVA of NMR data revealed increasing postprandial levels of amino acids and other organic acids together with decreasing levels of acetoacetate and 3-hydroxybutanoic acid, also independent of the background diet. Together these data show that the postprandial response to the same challenge meal was stable even though it was tested 1.5 years apart, and that it was largely independent of background diet. This work demonstrates the efficacy of a

  15. Cytoplasmic genetic variation and extensive cytonuclear interactions influence natural variation in the metabolome

    DEFF Research Database (Denmark)

    Joseph, Bindu; Corwin, Jason A.; Li, Baohua

    2013-01-01

    Understanding genome to phenotype linkages has been greatly enabled by genomic sequencing. However, most genome analysis is typically confined to the nuclear genome. We conducted a metabolomic QTL analysis on a reciprocal RIL population structured to examine how variation in the organelle genomes...... was a central hub in the epistatic network controlling the plant metabolome. This epistatic influence manifested such that the cytoplasmic background could alter or hide pairwise epistasis between nuclear loci. Thus, cytoplasmic genetic variation plays a central role in controlling natural variation...... in metabolomic networks. This suggests that cytoplasmic genomes must be included in any future analysis of natural variation....

  16. Combining traditional dietary assessment methods with novel metabolomics techniques: present efforts by the Food Biomarker Alliance

    DEFF Research Database (Denmark)

    Brouwer-Brolsma, Elske M; Brennan, Lorraine; Drevon, Christian A

    2017-01-01

    food metabolomics techniques that allow the quantification of up to thousands of metabolites simultaneously, which may be applied in intervention and observational studies. As biomarkers are often influenced by various other factors than the food under investigation, FoodBAll developed a food intake...... in these metabolomics studies, knowledge about available electronic metabolomics resources is necessary and further developments of these resources are essential. Ultimately, present efforts in this research area aim to advance quality control of traditional dietary assessment methods, advance compliance evaluation...

  17. Metabolomic Profiling for Identification of Novel Potential Biomarkers in Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Maria G. Barderas

    2011-01-01

    Full Text Available Metabolomics involves the identification and quantification of metabolites present in a biological system. Three different approaches can be used: metabolomic fingerprinting, metabolic profiling, and metabolic footprinting, in order to evaluate the clinical course of a disease, patient recovery, changes in response to surgical intervention or pharmacological treatment, as well as other associated features. Characteristic patterns of metabolites can be revealed that broaden our understanding of a particular disorder. In the present paper, common strategies and analytical techniques used in metabolomic studies are reviewed, particularly with reference to the cardiovascular field.

  18. New frontiers in metabolomics: from measurement to insight [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Eli Riekeberg

    2017-07-01

    Full Text Available Metabolomics is the newest addition to the “omics” disciplines and has shown rapid growth in its application to human health research because of fundamental advancements in measurement and analysis techniques. Metabolomics has unique and proven advantages in systems biology and biomarker discovery. The next generation of analysis techniques promises even richer and more complete analysis capabilities that will enable earlier clinical diagnosis, drug refinement, and personalized medicine. A review of current advancements in methodologies and statistical analysis that are enhancing and improving the performance of metabolomics is presented along with highlights of some recent successful applications.

  19. Vitamin D prenatal programming of childhood metabolomics profiles at age 3 y

    DEFF Research Database (Denmark)

    Blighe, Kevin; Chawes, Bo L; Kelly, Rachel S

    2017-01-01

    was to analyze the programming role of in utero vitamin D exposure on children's metabolomics profiles.Design: First, unsupervised clustering was done with plasma metabolomics profiles from a case-control subset of 245 children aged 3 y with and without asthma from the Vitamin D Antenatal Asthma Reduction Trial...... children can be clustered into distinct biologically meaningful groups by their metabolomics profiles. The clusters differed in concentrations of inflammatory mediators, and cluster membership was influenced by in utero vitamin D exposure, suggesting a prenatal programming role of vitamin D on the child...

  20. Metabolomics in Radiation-Induced Biological Dosimetry: A Mini-Review and a Polyamine Study

    Directory of Open Access Journals (Sweden)

    Changhyun Roh

    2018-05-01

    Full Text Available In this study, we elucidate that polyamine metabolite is a powerful biomarker to study post-radiation changes. Metabolomics in radiation biodosimetry, the application of a metabolomics analysis to the field of radiobiology, promises to increase the understanding of biological responses by ionizing radiation (IR. Radiation exposure triggers a complex network of molecular and cellular responses that impacts metabolic processes and alters the levels of metabolites. Such metabolites have potential as biomarkers for radiation dosimetry. Among metabolites, polyamine is one of many potential biomarkers to estimate radiation response. In addition, this review provides an opportunity for the understanding of a radiation metabolomics in biodosimetry and a polyamine case study.

  1. High Resolution Separations and Improved Ion Production and Transmission in Metabolomics

    Energy Technology Data Exchange (ETDEWEB)

    Metz, Thomas O.; Page, Jason S.; Baker, Erin Shammel; Tang, Keqi; Ding, Jie; Shen, Yufeng; Smith, Richard D.

    2008-03-31

    The goal of metabolomics experiments is the detection and quantitation of as many sample components as reasonably possible in order to identify “features” that can be used to characterize the samples under study. When utilizing electrospray ionization to produce ions for analysis by mass spectrometry (MS), it is imperative that metabolome sample constituents be efficiently separated prior to ion production, in order to minimize the phenomenon of ionization suppression. Similarly, optimization of the MS inlet can lead to increased measurement sensitivity. This review will focus on the role of high resolution liquid chromatography (LC) separations in conjunction with improved ion production and transmission for LC-MS-based metabolomics.

  2. Metabolomic biomarkers in serum and urine in women with preeclampsia.

    Directory of Open Access Journals (Sweden)

    Marie Austdal

    Full Text Available To explore the potential of magnetic resonance (MR metabolomics for study of preeclampsia, for improved phenotyping and elucidating potential clues to etiology and pathogenesis.Urine and serum samples from pregnant women with preeclampsia (n = 10, normal pregnancies (n = 10 and non-pregnant women (n = 10 matched by age and gestational age were analyzed with MR spectroscopy and subjected to multivariate analysis. Metabolites were then quantified and compared between groups.Urine and serum samples revealed clear differences between women with preeclampsia and both control groups (normal pregnant and non-pregnant women. Nine urine metabolites were significantly different between preeclampsia and the normal pregnant group. Urine samples from women with early onset preeclampsia clustered together in the multivariate analysis. The preeclampsia serum spectra showed higher levels of low and very-low density lipoproteins and lower levels of high-density lipoproteins when compared to both non-pregnant and normal pregnant women.The MR determined metabolic profiles in urine and serum from women with preeclampsia are clearly different from normal pregnant women. The observed differences represent a potential to examine mechanisms underlying different preeclampsia phenotypes in urine and serum samples in larger studies. In addition, similarities between preeclampsia and cardiovascular disease in metabolomics are demonstrated.

  3. Towards the Fecal Metabolome Derived from Moderate Red Wine Intake

    Directory of Open Access Journals (Sweden)

    Ana Jiménez-Girón

    2014-12-01

    Full Text Available Dietary polyphenols, including red wine phenolic compounds, are extensively metabolized during their passage through the gastrointestinal tract; and their biological effects at the gut level (i.e., anti-inflammatory activity, microbiota modulation, interaction with cells, among others seem to be due more to their microbial-derived metabolites rather than to the original forms found in food. In an effort to improve our understanding of the biological effects that phenolic compounds exert at the gut level, this paper summarizes the changes observed in the human fecal metabolome after an intervention study consisting of a daily consumption of 250 mL of wine during four weeks by healthy volunteers (n = 33. It assembles data from two analytical approaches: (1 UPLC-ESI-MS/MS analysis of phenolic metabolites in fecal solutions (targeted analysis; and (2 UHPLC-TOF MS analysis of the fecal solutions (non-targeted analysis. Both approaches revealed statistically-significant changes in the concentration of several metabolites as a consequence of the wine intake. Similarity and complementarity between targeted and non-targeted approaches in the analysis of the fecal metabolome are discussed. Both strategies allowed the definition of a complex metabolic profile derived from wine intake. Likewise, the identification of endogenous markers could lead to new hypotheses to unravel the relationship between moderate wine consumption and the metabolic functionality of gut microbiota.

  4. Integration of metabolomics and transcriptomics in nanotoxicity studies.

    Science.gov (United States)

    Shin, Tae Hwan; Lee, Da Yeon; Lee, Hyeon-Seong; Park, Hyung Jin; Jin, Moon Suk; Paik, Man-Jeong; Manavalan, Balachandran; Mo, Jung-Soon; Lee, Gwang

    2018-01-01

    Biomedical research involving nanoparticles has produced useful products with medical applications. However, the potential toxicity of nanoparticles in biofluids, cells, tissues, and organisms is a major challenge. The '-omics' analyses provide molecular profiles of multifactorial biological systems instead of focusing on a single molecule. The 'omics' approaches are necessary to evaluate nanotoxicity because classical methods for the detection of nanotoxicity have limited ability in detecting miniscule variations within a cell and do not accurately reflect the actual levels of nanotoxicity. In addition, the 'omics' approaches allow analyses of in-depth changes and compensate for the differences associated with high-throughput technologies between actual nanotoxicity and results from traditional cytotoxic evaluations. However, compared with a single omics approach, integrated omics provides precise and sensitive information by integrating complex biological conditions. Thus, these technologies contribute to extended safety evaluations of nanotoxicity and allow the accurate diagnoses of diseases far earlier than was once possible in the nanotechnology era. Here, we review a novel approach for evaluating nanotoxicity by integrating metabolomics with metabolomic profiling and transcriptomics, which is termed "metabotranscriptomics". [BMB Reports 2018; 51(1): 14-20].

  5. Characterization and Discrimination of Ancient Grains: A Metabolomics Approach

    Directory of Open Access Journals (Sweden)

    Laura Righetti

    2016-07-01

    Full Text Available Hulled, or ancient, wheats were the earliest domesticated wheats by mankind and the ancestors of current wheats. Their cultivation drastically decreased during the 1960s; however, the increasing demand for a healthy and equilibrated diet led to rediscovering these grains. Our aim was to use a non-targeted metabolomic approach to discriminate and characterize similarities and differences between ancient Triticum varieties. For this purpose, 77 hulled wheat samples from three different varieties were collected: Garfagnana T. turgidum var. dicoccum L. (emmer, ID331 T. monococcum L. (einkorn and Rouquin T. spelta L. (spelt. The ultra high performance liquid chromatography coupled to high resolution tandem mass spectrometry (UHPLC-QTOF metabolomics approach highlighted a pronounced sample clustering according to the wheat variety, with an excellent predictability (Q2, for all the models built. Fifteen metabolites were tentatively identified based on accurate masses, isotopic pattern, and product ion spectra. Among these, alkylresorcinols (ARs were found to be significantly higher in spelt and emmer, showing different homologue composition. Furthermore, phosphatidylcholines (PC and lysophosphatidylcholines (lysoPC levels were higher in einkorn variety. The results obtained in this study confirmed the importance of ARs as markers to distinguish between Triticum species and revealed their values as cultivar markers, being not affected by the environmental influences.

  6. Obesity and psychotic disorders: uncovering common mechanisms through metabolomics

    Directory of Open Access Journals (Sweden)

    Matej Orešič

    2012-09-01

    Full Text Available Primary obesity and psychotic disorders are similar with respect to the associated changes in energy balance and co-morbidities, including metabolic syndrome. Such similarities do not necessarily demonstrate causal links, but instead suggest that specific causes of and metabolic disturbances associated with obesity play a pathogenic role in the development of co-morbid disorders, potentially even before obesity develops. Metabolomics – the systematic study of metabolites, which are small molecules generated by the process of metabolism – has been important in elucidating the pathways underlying obesity-associated co-morbidities. This review covers how recent metabolomic studies have advanced biomarker discovery and the elucidation of mechanisms underlying obesity and its co-morbidities, with a specific focus on metabolic syndrome and psychotic disorders. The importance of identifying metabolic markers of disease-associated intermediate phenotypes – traits modulated but not encoded by the DNA sequence – is emphasized. Such markers would be applicable as diagnostic tools in a personalized healthcare setting and might also open up novel therapeutic avenues.

  7. Comparative metabolomics of drought acclimation in model and forage legumes.

    Science.gov (United States)

    Sanchez, Diego H; Schwabe, Franziska; Erban, Alexander; Udvardi, Michael K; Kopka, Joachim

    2012-01-01

    Water limitation has become a major concern for agriculture. Such constraints reinforce the urgent need to understand mechanisms by which plants cope with water deprivation. We used a non-targeted metabolomic approach to explore plastic systems responses to non-lethal drought in model and forage legume species of the Lotus genus. In the model legume Lotus. japonicus, increased water stress caused gradual increases of most of the soluble small molecules profiled, reflecting a global and progressive reprogramming of metabolic pathways. The comparative metabolomic approach between Lotus species revealed conserved and unique metabolic responses to drought stress. Importantly, only few drought-responsive metabolites were conserved among all species. Thus we highlight a potential impediment to translational approaches that aim to engineer traits linked to the accumulation of compatible solutes. Finally, a broad comparison of the metabolic changes elicited by drought and salt acclimation revealed partial conservation of these metabolic stress responses within each of the Lotus species, but only few salt- and drought-responsive metabolites were shared between all. The implications of these results are discussed with regard to the current insights into legume water stress physiology. © 2011 Blackwell Publishing Ltd.

  8. Structured plant metabolomics for the simultaneous exploration of multiple factors.

    Science.gov (United States)

    Vasilev, Nikolay; Boccard, Julien; Lang, Gerhard; Grömping, Ulrike; Fischer, Rainer; Goepfert, Simon; Rudaz, Serge; Schillberg, Stefan

    2016-11-17

    Multiple factors act simultaneously on plants to establish complex interaction networks involving nutrients, elicitors and metabolites. Metabolomics offers a better understanding of complex biological systems, but evaluating the simultaneous impact of different parameters on metabolic pathways that have many components is a challenging task. We therefore developed a novel approach that combines experimental design, untargeted metabolic profiling based on multiple chromatography systems and ionization modes, and multiblock data analysis, facilitating the systematic analysis of metabolic changes in plants caused by different factors acting at the same time. Using this method, target geraniol compounds produced in transgenic tobacco cell cultures were grouped into clusters based on their response to different factors. We hypothesized that our novel approach may provide more robust data for process optimization in plant cell cultures producing any target secondary metabolite, based on the simultaneous exploration of multiple factors rather than varying one factor each time. The suitability of our approach was verified by confirming several previously reported examples of elicitor-metabolite crosstalk. However, unravelling all factor-metabolite networks remains challenging because it requires the identification of all biochemically significant metabolites in the metabolomics dataset.

  9. Perinatal Asphyxia: A Review from a Metabolomics Perspective

    Directory of Open Access Journals (Sweden)

    Claudia Fattuoni

    2015-04-01

    Full Text Available Perinatal asphyxia is defined as an oxygen deprivation that occurs around the time of birth, and may be caused by several perinatal events. This medical condition affects some four million neonates worldwide per year, causing the death of one million subjects. In most cases, infants successfully recover from hypoxia episodes; however, some patients may develop HIE, leading to permanent neurological conditions or impairment of different organs and systems. Given its multifactor dependency, the timing, severity and outcome of this disease, mainly assessed through Sarnat staging, are of difficult evaluation. Moreover, although the latest newborn resuscitation guideline suggests the use of a 21% oxygen concentration or room air, such an approach is still under debate. Therefore, the pathological mechanism is still not clear and a golden standard treatment has yet to be defined. In this context, metabolomics, a new discipline that has described important perinatal issues over the last years, proved to be a useful tool for the monitoring, the assessment, and the identification of potential biomarkers associated with asphyxia events. This review covers metabolomics research on perinatal asphyxia condition, examining in detail the studies reported both on animal and human models.

  10. MetaboAnalyst 3.0--making metabolomics more meaningful.

    Science.gov (United States)

    Xia, Jianguo; Sinelnikov, Igor V; Han, Beomsoo; Wishart, David S

    2015-07-01

    MetaboAnalyst (www.metaboanalyst.ca) is a web server designed to permit comprehensive metabolomic data analysis, visualization and interpretation. It supports a wide range of complex statistical calculations and high quality graphical rendering functions that require significant computational resources. First introduced in 2009, MetaboAnalyst has experienced more than a 50X growth in user traffic (>50 000 jobs processed each month). In order to keep up with the rapidly increasing computational demands and a growing number of requests to support translational and systems biology applications, we performed a substantial rewrite and major feature upgrade of the server. The result is MetaboAnalyst 3.0. By completely re-implementing the MetaboAnalyst suite using the latest web framework technologies, we have been able substantially improve its performance, capacity and user interactivity. Three new modules have also been added including: (i) a module for biomarker analysis based on the calculation of receiver operating characteristic curves; (ii) a module for sample size estimation and power analysis for improved planning of metabolomics studies and (iii) a module to support integrative pathway analysis for both genes and metabolites. In addition, popular features found in existing modules have been significantly enhanced by upgrading the graphical output, expanding the compound libraries and by adding support for more diverse organisms. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Serum Metabolomic Profiles for Human Pancreatic Cancer Discrimination

    Directory of Open Access Journals (Sweden)

    Takao Itoi

    2017-04-01

    Full Text Available This study evaluated the clinical use of serum metabolomics to discriminate malignant cancers including pancreatic cancer (PC from malignant diseases, such as biliary tract cancer (BTC, intraductal papillary mucinous carcinoma (IPMC, and various benign pancreaticobiliary diseases. Capillary electrophoresismass spectrometry was used to analyze charged metabolites. We repeatedly analyzed serum samples (n = 41 of different storage durations to identify metabolites showing high quantitative reproducibility, and subsequently analyzed all samples (n = 140. Overall, 189 metabolites were quantified and 66 metabolites had a 20% coefficient of variation and, of these, 24 metabolites showed significant differences among control, benign, and malignant groups (p < 0.05; Steel–Dwass test. Four multiple logistic regression models (MLR were developed and one MLR model clearly discriminated all disease patients from healthy controls with an area under receiver operating characteristic curve (AUC of 0.970 (95% confidential interval (CI, 0.946–0.994, p < 0.0001. Another model to discriminate PC from BTC and IPMC yielded AUC = 0.831 (95% CI, 0.650–1.01, p = 0.0020 with higher accuracy compared with tumor markers including carcinoembryonic antigen (CEA, carbohydrate antigen 19-9 (CA19-9, pancreatic cancer-associated antigen (DUPAN2 and s-pancreas-1 antigen (SPAN1. Changes in metabolomic profiles might be used to screen for malignant cancers as well as to differentiate between PC and other malignant diseases.

  12. Development of a universal metabolome-standard method for long-term LC-MS metabolome profiling and its application for bladder cancer urine-metabolite-biomarker discovery.

    Science.gov (United States)

    Peng, Jun; Chen, Yi-Ting; Chen, Chien-Lun; Li, Liang

    2014-07-01

    Large-scale metabolomics study requires a quantitative method to generate metabolome data over an extended period with high technical reproducibility. We report a universal metabolome-standard (UMS) method, in conjunction with chemical isotope labeling liquid chromatography-mass spectrometry (LC-MS), to provide long-term analytical reproducibility and facilitate metabolome comparison among different data sets. In this method, UMS of a specific type of sample labeled by an isotope reagent is prepared a priori. The UMS is spiked into any individual samples labeled by another form of the isotope reagent in a metabolomics study. The resultant mixture is analyzed by LC-MS to provide relative quantification of the individual sample metabolome to UMS. UMS is independent of a study undertaking as well as the time of analysis and useful for profiling the same type of samples in multiple studies. In this work, the UMS method was developed and applied for a urine metabolomics study of bladder cancer. UMS of human urine was prepared by (13)C2-dansyl labeling of a pooled sample from 20 healthy individuals. This method was first used to profile the discovery samples to generate a list of putative biomarkers potentially useful for bladder cancer detection and then used to analyze the verification samples about one year later. Within the discovery sample set, three-month technical reproducibility was examined using a quality control sample and found a mean CV of 13.9% and median CV of 9.4% for all the quantified metabolites. Statistical analysis of the urine metabolome data showed a clear separation between the bladder cancer group and the control group from the discovery samples, which was confirmed by the verification samples. Receiver operating characteristic (ROC) test showed that the area under the curve (AUC) was 0.956 in the discovery data set and 0.935 in the verification data set. These results demonstrated the utility of the UMS method for long-term metabolomics and

  13. Metabolomics as an emerging strategy for the investigation of yogurt components

    NARCIS (Netherlands)

    Settachaimongkon, S.; Valenberg, van H.J.F.; Smid, E.J.

    2017-01-01

    The advanced development in metabolomics allows discovery of a wide range of metabolites in complex biological systems including food matrices. This analytical approach provides opportunities to attain a global metabolite profile and discover potential biomarkers and various chemical contaminants

  14. Systems toxicology: applications of toxicogenomics, transcriptomics, proteomics and metabolomics in toxicology

    NARCIS (Netherlands)

    Heijne, W.H.M.; Kienhuis, A.S.; Ommen, van B.; Stierum, R.; Groten, J.P.

    2005-01-01

    Toxicogenomics can facilitate the identification and characterization of toxicity, as illustrated in this review. Toxicogenomics, the application of the functional genomics technologies (transcriptomics, proteomics and metabolomics) in toxicology enables the study of adverse effects of xenobiotic

  15. Advantages and Pitfalls of Mass Spectrometry Based Metabolome Profiling in Systems Biology.

    Science.gov (United States)

    Aretz, Ina; Meierhofer, David

    2016-04-27

    Mass spectrometry-based metabolome profiling became the method of choice in systems biology approaches and aims to enhance biological understanding of complex biological systems. Genomics, transcriptomics, and proteomics are well established technologies and are commonly used by many scientists. In comparison, metabolomics is an emerging field and has not reached such high-throughput, routine and coverage than other omics technologies. Nevertheless, substantial improvements were achieved during the last years. Integrated data derived from multi-omics approaches will provide a deeper understanding of entire biological systems. Metabolome profiling is mainly hampered by its diversity, variation of metabolite concentration by several orders of magnitude and biological data interpretation. Thus, multiple approaches are required to cover most of the metabolites. No software tool is capable of comprehensively translating all the data into a biologically meaningful context yet. In this review, we discuss the advantages of metabolome profiling and main obstacles limiting progress in systems biology.

  16. Recent advances in liquid and gas chromatography methodology for extending coverage of the metabolome.

    Science.gov (United States)

    Haggarty, Jennifer; Burgess, Karl Ev

    2017-02-01

    The metabolome is the complete complement of metabolites (small organic biomolecules). In order to comprehensively understand the effect of stimuli on a biological system, it is important to detect as many of the metabolites within that system as possible. This review briefly describes some new advances in liquid and gas chromatography to improve coverage of the metabolome, including the serial combination of two columns in tandem, column switching and different variations of two-dimensional chromatography. Supercritical fluid chromatography could provide complimentary data to liquid and gas chromatography. Although there have been many recent advancements in the field of metabolomics, it is evident that a combination, rather than a single method, is required to approach full coverage of the metabolome. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Statistical methods for the analysis of high-throughput metabolomics data

    Directory of Open Access Journals (Sweden)

    Fabian J. Theis

    2013-01-01

    Full Text Available Metabolomics is a relatively new high-throughput technology that aims at measuring all endogenous metabolites within a biological sample in an unbiased fashion. The resulting metabolic profiles may be regarded as functional signatures of the physiological state, and have been shown to comprise effects of genetic regulation as well as environmental factors. This potential to connect genotypic to phenotypic information promises new insights and biomarkers for different research fields, including biomedical and pharmaceutical research. In the statistical analysis of metabolomics data, many techniques from other omics fields can be reused. However recently, a number of tools specific for metabolomics data have been developed as well. The focus of this mini review will be on recent advancements in the analysis of metabolomics data especially by utilizing Gaussian graphical models and independent component analysis.

  18. When transcriptome meets metabolome : Fast cellular responses of yeast to sudden relief of glucose limitation

    NARCIS (Netherlands)

    Heijnen, J.J.; Daran, J.M.; Pronk, J.T.; Daran-Lapujade, P.; Knijnenburg, T.A.; Ras, C.; Ten Pierick, A.; Akmering, M.J.; Van Winden, W.A.; Kresnowati, M.T.

    2006-01-01

    Within the first 5 min after a sudden relief from glucose limitation, Saccharomyces cerevisiae exhibited fast changes of intracellular metabolite levels and a major transcriptional reprogramming. Integration of transcriptome and metabolome data revealed tight relationships between the changes at

  19. Advantages and Pitfalls of Mass Spectrometry Based Metabolome Profiling in Systems Biology

    Directory of Open Access Journals (Sweden)

    Ina Aretz

    2016-04-01

    Full Text Available Mass spectrometry-based metabolome profiling became the method of choice in systems biology approaches and aims to enhance biological understanding of complex biological systems. Genomics, transcriptomics, and proteomics are well established technologies and are commonly used by many scientists. In comparison, metabolomics is an emerging field and has not reached such high-throughput, routine and coverage than other omics technologies. Nevertheless, substantial improvements were achieved during the last years. Integrated data derived from multi-omics approaches will provide a deeper understanding of entire biological systems. Metabolome profiling is mainly hampered by its diversity, variation of metabolite concentration by several orders of magnitude and biological data interpretation. Thus, multiple approaches are required to cover most of the metabolites. No software tool is capable of comprehensively translating all the data into a biologically meaningful context yet. In this review, we discuss the advantages of metabolome profiling and main obstacles limiting progress in systems biology.

  20. RAMAN SPECTROSCOPY-BASED METABOLOMICS FOR DIFFERENTIATING EXPOSURES TO TRIAZOLE FUNGICIDES USING RAT URINE

    Science.gov (United States)

    Normal Raman spectroscopy was evaluated as a metabolomic tool for assessing the impacts of exposure to environmental contaminants, using rat urine collected during the course of a toxicological study. Specifically, one of three triazole fungicides, myclobutanil, propiconazole or ...

  1. Novel Applications of Metabolomics in Personalized Medicine: A Mini-Review.

    Science.gov (United States)

    Li, Bingbing; He, Xuyun; Jia, Wei; Li, Houkai

    2017-07-13

    Interindividual variability in drug responses and disease susceptibility is common in the clinic. Currently, personalized medicine is highly valued, the idea being to prescribe the right medicine to the right patient. Metabolomics has been increasingly applied in evaluating the therapeutic outcomes of clinical drugs by correlating the baseline metabolic profiles of patients with their responses, i.e., pharmacometabonomics, as well as prediction of disease susceptibility among population in advance, i.e., patient stratification. The accelerated advance in metabolomics technology pinpoints the huge potential of its application in personalized medicine. In current review, we discussed the novel applications of metabolomics with typical examples in evaluating drug therapy and patient stratification, and underlined the potential of metabolomics in personalized medicine in the future.

  2. Drought enhances folivory by shifting foliar metabolomes in Quercus ilex trees

    Czech Academy of Sciences Publication Activity Database

    Rivas-Ubach, A.; Gargallo-Garriga, A.; Sardans, J.; Oravec, Michal; Mateu-Castell, L.; Pérez-Trujillo, M.; Parella, T.; Ogaya, R.; Urban, Otmar; Penuelas, J.

    2014-01-01

    Roč. 202, č. 3 (2014), s. 874-885 ISSN 1469-8137 Institutional support: RVO:67179843 Keywords : drought * ecology * ecometabolomics * folivory * metabolomics * stoichiometry Subject RIV: EF - Botanics Impact factor: 6.545, year: 2013

  3. Current practice of liquid chromatography-mass spectrometry in metabolomics and metabonomics.

    Science.gov (United States)

    Gika, Helen G; Theodoridis, Georgios A; Plumb, Robert S; Wilson, Ian D

    2014-01-01

    Based on publication and citation numbers liquid chromatography (LC-MS) has become the major analytical technology in the field of global metabolite profiling. This dominance reflects significant investments from both the research community and instrument manufacturers. Here an overview of the approaches taken for LC-MS-based metabolomics research is given, describing critical steps in the realisation of such studies: study design and its needs, specific technological problems to be addressed and major obstacles in data treatment and biomarker identification. The current state of the art for LC-MS-based analysis in metabonomics/metabolomics is described including recent developments in liquid chromatography, mass spectrometry and data treatment as these are applied in metabolomics underlining the challenges, limitations and prospects for metabolomics research. Examples of the application of metabolite profiling in the life sciences focusing on disease biomarker discovery are highlighted. In addition, new developments and future prospects are described. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Collision energy alteration during mass spectrometric acquisition is essential to ensure unbiased metabolomic analysis

    CSIR Research Space (South Africa)

    Madala, NE

    2012-08-01

    Full Text Available Metabolomics entails identification and quantification of all metabolites within a biological system with a given physiological status; as such, it should be unbiased. A variety of techniques are used to measure the metabolite content of living...

  5. INVESTIGATING THE ENANTIOSELECTIVE TOXICITY OF CONAZOLE FUNGICIDES IN RAINBOW TROUT THROUGH NMR BASED METABOLOMICS

    Science.gov (United States)

    Recently, metabolomics, or the quantitative measurement of a broad spectrum of metabolic responses of living systems in response to disease onset or genetic modification, has been employed to enable rapid identification of the mechanisms of toxicity for compounds of environmental...

  6. Variable selection in the explorative analysis of several data blocks in metabolomics

    DEFF Research Database (Denmark)

    Karaman, İbrahim; Nørskov, Natalja; Yde, Christian Clement

    highly correlated data sets in one integrated approach. Due to the high number of variables in data sets from metabolomics (both raw data and after peak picking) the selection of important variables in an explorative analysis is difficult, especially when different data sets of metabolomics data need...... to be related. Tools for the handling of mental overflow minimising false discovery rates both by using statistical and biological validation in an integrative approach are needed. In this paper different strategies for variable selection were considered with respect to false discovery and the possibility...... for biological validation. The data set used in this study is metabolomics data from an animal intervention study. The aim of the metabolomics study was to investigate the metabolic profile in pigs fed various cereal fractions with special attention to the metabolism of lignans using NMR and LC-MS based...

  7. Mass spectrometry in plant metabolomics strategies: from analytical platforms to data acquisition and processing.

    Science.gov (United States)

    Ernst, Madeleine; Silva, Denise Brentan; Silva, Ricardo Roberto; Vêncio, Ricardo Z N; Lopes, Norberto Peporine

    2014-06-01

    Covering: up to 2013. Plant metabolomics is a relatively recent research field that has gained increasing interest in the past few years. Up to the present day numerous review articles and guide books on the subject have been published. This review article focuses on the current applications and limitations of the modern mass spectrometry techniques, especially in combination with electrospray ionisation (ESI), an ionisation method which is most commonly applied in metabolomics studies. As a possible alternative to ESI, perspectives on matrix-assisted laser desorption/ionisation mass spectrometry (MALDI-MS) in metabolomics studies are introduced, a method which still is not widespread in the field. In metabolomics studies the results must always be interpreted in the context of the applied sampling procedures as well as data analysis. Different sampling strategies are introduced and the importance of data analysis is illustrated in the example of metabolic network modelling.

  8. Profiling of altered metabolomic states in Nicotiana tabacum cells induced by priming agents

    CSIR Research Space (South Africa)

    Mhlongo, MI

    2016-10-01

    Full Text Available tabacum cells. Identified biomarkers were then compared to responses induced by three phytohormones—abscisic acid, methyljasmonate, and salicylic acid. Altered metabolomes were studied using a metabolite fingerprinting approach based on liquid...

  9. Highlights of the 2012 Research Workshop: Using nutrigenomics and metabolomics in clinical nutrition research.

    Science.gov (United States)

    Zeisel, Steven H; Waterland, Robert A; Ordovás, José M; Muoio, Deborah M; Jia, Wei; Fodor, Anthony

    2013-03-01

    The American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.) Research Workshop, "Using Nutrigenomics and Metabolomics in Clinical Nutrition Research," was held on January 21, 2012, in Orlando, Florida. The conference brought together experts in human nutrition who use nutrigenomic and metabolomic methods to better understand metabolic individuality and nutrition effects on health. We are beginning to understand how genetic variation and epigenetic events alter requirements for and responses to foods in our diet (the field of nutrigenetics/nutrigenomics and epigenetics). At the same time, methods for profiling almost all of the products of metabolism in plasma, urine, and tissues (metabolomics) are being refined. The relationships between diet and nutrigenomic-metabolomic profiles, as well as between these profiles and health, are being elucidated, and this will dramatically alter clinical practice in nutrition.

  10. Increasing rigor in NMR-based metabolomics through validated and open source tools.

    Science.gov (United States)

    Eghbalnia, Hamid R; Romero, Pedro R; Westler, William M; Baskaran, Kumaran; Ulrich, Eldon L; Markley, John L

    2017-02-01

    The metabolome, the collection of small molecules associated with an organism, is a growing subject of inquiry, with the data utilized for data-intensive systems biology, disease diagnostics, biomarker discovery, and the broader characterization of small molecules in mixtures. Owing to their close proximity to the functional endpoints that govern an organism's phenotype, metabolites are highly informative about functional states. The field of metabolomics identifies and quantifies endogenous and exogenous metabolites in biological samples. Information acquired from nuclear magnetic spectroscopy (NMR), mass spectrometry (MS), and the published literature, as processed by statistical approaches, are driving increasingly wider applications of metabolomics. This review focuses on the role of databases and software tools in advancing the rigor, robustness, reproducibility, and validation of metabolomics studies. Copyright © 2016. Published by Elsevier Ltd.

  11. IDEOM : an Excel interface for analysis of LC-MS-based metabolomics data

    NARCIS (Netherlands)

    Creek, Darren J.; Jankevics, Andris; Burgess, Karl E. V.; Breitling, Rainer; Barrett, Michael P.; Wren, Jonathan

    2012-01-01

    The application of emerging metabolomics technologies to the comprehensive investigation of cellular biochemistry has been limited by bottlenecks in data processing, particularly noise filtering and metabolite identification. IDEOM provides a user-friendly data processing application that automates

  12. Influence of Freezing and Storage Procedure on Human Urine Samples in NMR-Based Metabolomics

    OpenAIRE

    Rist, Manuela; Muhle-Goll, Claudia; Görling, Benjamin; Bub, Achim; Heissler, Stefan; Watzl, Bernhard; Luy, Burkhard

    2013-01-01

    It is consensus in the metabolomics community that standardized protocols should be followed for sample handling, storage and analysis, as it is of utmost importance to maintain constant measurement conditions to identify subtle biological differences. The aim of this work, therefore, was to systematically investigate the influence of freezing procedures and storage temperatures and their effect on NMR spectra as a potentially disturbing aspect for NMR-based metabolomics studies. Urine sample...

  13. Topsoil depth substantially influences the responses to drought of the foliar metabolomes of Mediterranean forests

    Energy Technology Data Exchange (ETDEWEB)

    Rivas-Ubach, Albert; Barbeta, Adrià; Sardans, Jordi; Guenther, Alex; Ogaya, Romà; Oravec, Michal; Urban, Otmar; Peñuelas, Josep

    2016-08-01

    Soils provide physical support, water, and nutrients to terrestrial plants. Upper soil layers are crucial for forest dynamics, especially under drought conditions, because many biological processes occur there and provide support, water and nutrients to terrestrial plants. We postulated that tree size and overall plant function manifested in the metabolome composition, the total set of metabolites, were dependent on the depth of upper soil layers and on water availability. We sampled leaves for stoichiometric and metabolomic analyses once per season from differently sized Quercus ilex trees under natural and experimental drought conditions as projected for the coming decades. Different sized trees had different metabolomes and plots with shallower soils had smaller trees. Soil moisture of the upper soil did not explain the tree size and smaller trees did not show higher concentrations of biomarker metabolites related to drought stress. However, the impact of drought treatment on metabolomes was higher in smaller trees in shallower soils. Our results suggested that tree size was more dependent on the depth of the upper soil layers, which indirectly affect the metabolomes of the trees, than on the moisture content of the upper soil layers. Metabolomic profiling of Q. ilex supported the premise that water availability in the upper soil layers was not necessarily correlated with tree size. The higher impact of drought on trees growing in shallower soils nevertheless indicates a higher vulnerability of small trees to the future increase in frequency, intensity, and duration of drought projected for the Mediterranean Basin and other areas. Metabolomics has proven to be an excellent tool detecting significant metabolic changes among differently sized individuals of the same species and it improves our understanding of the connection between plant metabolomes and environmental variables such as soil depth and moisture content.

  14. Software and Database Usage on Metabolomic Studies: Using XCMS on LC-MS Data Analysis

    Directory of Open Access Journals (Sweden)

    Mustafa Celebier

    2014-04-01

    Full Text Available Metabolome is the complete set of small-molecule metabolites to be found in a cell or a single organism. Metabolomics is the scientific study to determine and identify the chemicals in metabolome with advanced analytical techniques. Nowadays, the elucidation of the molecular mechanism of any disease with genome analysis and proteome analysis is not sufficient. Instead of these, a holistic assessment including metabolomic studies provides rational and accurate results. Metabolite levels in an organism are associated with the cellular functions. Thus, determination of the metabolite amounts identifies the phenotype of a cell or tissue related with the genetic and some other variations. Even though, the analysis of metabolites for medical diagnosis and therapy have been performed for a long time, the studies to improve the analysis methods for metabolite profiling are recently increased. The application of metabolomics includes the identification of biomarkers, enzyme-substract interactions, drug-activity studies, metabolic pathway analysis and some other studies related with the system biology. The preprocessing and computing of the data obtained from LC-MS, GC-MS, CE-MS and NMR for metabolite profiling are helpful for preventing from time consuming manual data analysis processes and possible random errors on profiling period. In addition, such preprocesses allow us to identify low amount of metabolites which are not possible to be analyzed by manual processing. Therefore, the usage of software and databases for this purpose could not be ignored. In this study, it is briefly presented the software and database used on metabolomics and it is evaluated the capability of these software on metabolite profiling. Particularly, the performance of one of the most popular software called XCMS on the evaluation of LC-MS results for metabolomics was overviewed. In the near future, metabolomics with software and database support is estimated to be a routine

  15. Metabolomic analysis using porcine skin: a pilot study of analytical techniques

    OpenAIRE

    Wu, Julie; Fiehn, Oliver; Armstrong, April W

    2014-01-01

    Background: Metabolic byproducts serve as indicators of the chemical processes and can provide valuable information on pathogenesis by measuring the amplified output. Standardized techniques for metabolome extraction of skin samples serve as a critical foundation to this field but have not been developed. Objectives: We sought to determine the optimal cell lysage techniques for skin sample preparation and to compare GC-TOF-MS and UHPLC-QTOF-MS for metabolomic analysis. ...

  16. Metabolomic Elucidation of the Effects of Curcumin on Fibroblast-Like Synoviocytes in Rheumatoid Arthritis

    OpenAIRE

    Ahn, Joong Kyong; Kim, Sooah; Hwang, Jiwon; Kim, Jungyeon; Lee, You Sun; Koh, Eun-Mi; Kim, Kyoung Heon; Cha, Hoon-Suk

    2015-01-01

    Rheumatoid arthritis (RA) is a chronic systemic inflammatory disease characterized by synovial inflammation and joint disability. Curcumin is known to be effective in ameliorating joint inflammation in RA. To obtain new insights into the effect of curcumin on primary fibroblast-like synoviocytes (FLS, N = 3), which are key effector cells in RA, we employed gas chromatography/time-of-flight mass spectrometry (GC/TOF-MS)-based metabolomics. Metabolomic profiling of tumor necrosis factor (TNF)-α...

  17. Untargeted metabolomics reveals specific withanolides and fatty acyl glycoside as tentative metabolites to differentiate organic and conventional Physalis peruviana fruits.

    Science.gov (United States)

    Llano, Sandra M; Muñoz-Jiménez, Ana M; Jiménez-Cartagena, Claudio; Londoño-Londoño, Julián; Medina, Sonia

    2018-04-01

    The agronomic production systems may affect the levels of food metabolites. Metabolomics approaches have been applied as useful tool for the characterization of fruit metabolome. In this study, metabolomics techniques were used to assess the differences in phytochemical composition between goldenberry samples produced by organic and conventional systems. To verify that the organic samples were free of pesticides, individual pesticides were analyzed. Principal component analysis showed a clear separation of goldenberry samples from two different farming systems. Via targeted metabolomics assays, whereby carotenoids and ascorbic acid were analyzed, not statistical differences between both crops were found. Conversely, untargeted metabolomics allowed us to identify two withanolides and one fatty acyl glycoside as tentative metabolites to differentiate goldenberry fruits, recording organic fruits higher amounts of these compounds than conventional samples. Hence, untargeted metabolomics technology could be suitable to research differences on phytochemicals under different agricultural management practices and to authenticate organic products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. High-resolution metabolomics of occupational exposure to trichloroethylene.

    Science.gov (United States)

    Walker, Douglas I; Uppal, Karan; Zhang, Luoping; Vermeulen, Roel; Smith, Martyn; Hu, Wei; Purdue, Mark P; Tang, Xiaojiang; Reiss, Boris; Kim, Sungkyoon; Li, Laiyu; Huang, Hanlin; Pennell, Kurt D; Jones, Dean P; Rothman, Nathaniel; Lan, Qing

    2016-10-01

    Occupational exposure to trichloroethylene (TCE) has been linked to adverse health outcomes including non-Hodgkin's lymphoma and kidney and liver cancer; however, TCE's mode of action for development of these diseases in humans is not well understood. Non-targeted metabolomics analysis of plasma obtained from 80 TCE-exposed workers [full shift exposure range of 0.4 to 230 parts-per-million of air (ppm a )] and 95 matched controls were completed by ultra-high resolution mass spectrometry. Biological response to TCE exposure was determined using a metabolome-wide association study (MWAS) framework, with metabolic changes and plasma TCE metabolites evaluated by dose-response and pathway enrichment. Biological perturbations were then linked to immunological, renal and exposure molecular markers measured in the same population. Metabolic features associated with TCE exposure included known TCE metabolites, unidentifiable chlorinated compounds and endogenous metabolites. Exposure resulted in a systemic response in endogenous metabolism, including disruption in purine catabolism and decreases in sulphur amino acid and bile acid biosynthesis pathways. Metabolite associations with TCE exposure included uric acid (β = 0.13, P-value = 3.6 × 10 -5 ), glutamine (β = 0.08, P-value = 0.0013), cystine (β = 0.75, P-value = 0.0022), methylthioadenosine (β = -1.6, P-value = 0.0043), taurine (β = -2.4, P-value = 0.0011) and chenodeoxycholic acid (β = -1.3, P-value = 0.0039), which are consistent with known toxic effects of TCE, including immunosuppression, hepatotoxicity and nephrotoxicity. Correlation with additional exposure markers and physiological endpoints supported known disease associations. High-resolution metabolomics correlates measured occupational exposure to internal dose and metabolic response, providing insight into molecular mechanisms of exposure-related disease aetiology. © The Author 2016; all rights

  19. Metabolomics reveals distinct neurochemical profiles associated with stress resilience

    Directory of Open Access Journals (Sweden)

    Brooke N. Dulka

    2017-12-01

    Full Text Available Acute social defeat represents a naturalistic form of conditioned fear and is an excellent model in which to investigate the biological basis of stress resilience. While there is growing interest in identifying biomarkers of stress resilience, until recently, it has not been feasible to associate levels of large numbers of neurochemicals and metabolites to stress-related phenotypes. The objective of the present study was to use an untargeted metabolomics approach to identify known and unknown neurochemicals in select brain regions that distinguish susceptible and resistant individuals in two rodent models of acute social defeat. In the first experiment, male mice were first phenotyped as resistant or susceptible. Then, mice were subjected to acute social defeat, and tissues were immediately collected from the ventromedial prefrontal cortex (vmPFC, basolateral/central amygdala (BLA/CeA, nucleus accumbens (NAc, and dorsal hippocampus (dHPC. Ultra-high performance liquid chromatography coupled with high resolution mass spectrometry (UPLC-HRMS was used for the detection of water-soluble neurochemicals. In the second experiment, male Syrian hamsters were paired in daily agonistic encounters for 2 weeks, during which they formed stable dominant-subordinate relationships. Then, 24 h after the last dominance encounter, animals were exposed to acute social defeat stress. Immediately after social defeat, tissue was collected from the vmPFC, BLA/CeA, NAc, and dHPC for analysis using UPLC-HRMS. Although no single biomarker characterized stress-related phenotypes in both species, commonalities were found. For instance, in both model systems, animals resistant to social defeat stress also show increased concentration of molecules to protect against oxidative stress in the NAc and vmPFC. Additionally, in both mice and hamsters, unidentified spectral features were preliminarily annotated as potential targets for future experiments. Overall, these findings

  20. NMR and pattern recognition methods in metabolomics: From data acquisition to biomarker discovery: A review

    International Nuclear Information System (INIS)

    Smolinska, Agnieszka; Blanchet, Lionel; Buydens, Lutgarde M.C.; Wijmenga, Sybren S.

    2012-01-01

    Highlights: ► Procedures for acquisition of different biofluids by NMR. ► Recent developments in metabolic profiling of different biofluids by NMR are presented. ► The crucial steps involved in data preprocessing and multivariate chemometric analysis are reviewed. ► Emphasis is given on recent findings on Multiple Sclerosis via NMR and pattern recognition methods. - Abstract: Metabolomics is the discipline where endogenous and exogenous metabolites are assessed, identified and quantified in different biological samples. Metabolites are crucial components of biological system and highly informative about its functional state, due to their closeness to functional endpoints and to the organism's phenotypes. Nuclear Magnetic Resonance (NMR) spectroscopy, next to Mass Spectrometry (MS), is one of the main metabolomics analytical platforms. The technological developments in the field of NMR spectroscopy have enabled the identification and quantitative measurement of the many metabolites in a single sample of biofluids in a non-targeted and non-destructive manner. Combination of NMR spectra of biofluids and pattern recognition methods has driven forward the application of metabolomics in the field of biomarker discovery. The importance of metabolomics in diagnostics, e.g. in identifying biomarkers or defining pathological status, has been growing exponentially as evidenced by the number of published papers. In this review, we describe the developments in data acquisition and multivariate analysis of NMR-based metabolomics data, with particular emphasis on the metabolomics of Cerebrospinal Fluid (CSF) and biomarker discovery in Multiple Sclerosis (MScl).

  1. Metabolomics approaches for discovering biomarkers of drug-induced hepatotoxicity and nephrotoxicity

    International Nuclear Information System (INIS)

    Beger, Richard D.; Sun, Jinchun; Schnackenberg, Laura K.

    2010-01-01

    Hepatotoxicity and nephrotoxicity are two major reasons that drugs are withdrawn post-market, and hence it is of major concern to both the FDA and pharmaceutical companies. The number of cases of serious adverse effects (SAEs) in marketed drugs has climbed faster than the number of total drug prescriptions issued. In some cases, preclinical animal studies fail to identify the potential toxicity of a new chemical entity (NCE) under development. The current clinical chemistry biomarkers of liver and kidney injury are inadequate in terms of sensitivity and/or specificity, prompting the need to discover new translational specific biomarkers of organ injury. Metabolomics along with genomics and proteomics technologies have the capability of providing translational diagnostic and prognostic biomarkers specific for early stages of liver and kidney injury. Metabolomics has several advantages over the other omics platforms such as ease of sample preparation, data acquisition and use of biofluids collected through minimally invasive procedures in preclinical and clinical studies. The metabolomics platform is reviewed with particular emphasis on applications involving drug-induced hepatotoxicity and nephrotoxicity. Analytical platforms for metabolomics, chemometrics for mining metabolomics data and the applications of the metabolomics technologies are covered in detail with emphasis on recent work in the field.

  2. Targeted metabolomics and medication classification data from participants in the ADNI1 cohort

    Science.gov (United States)

    St John-Williams, Lisa; Blach, Colette; Toledo, Jon B.; Rotroff, Daniel M.; Kim, Sungeun; Klavins, Kristaps; Baillie, Rebecca; Han, Xianlin; Mahmoudiandehkordi, Siamak; Jack, John; Massaro, Tyler J.; Lucas, Joseph E.; Louie, Gregory; Motsinger-Reif, Alison A.; Risacher, Shannon L.; Saykin, Andrew J.; Kastenmüller, Gabi; Arnold, Matthias; Koal, Therese; Moseley, M. Arthur; Mangravite, Lara M.; Peters, Mette A.; Tenenbaum, Jessica D.; Thompson, J. Will; Kaddurah-Daouk, Rima

    2017-01-01

    Alzheimer’s disease (AD) is the most common neurodegenerative disease presenting major health and economic challenges that continue to grow. Mechanisms of disease are poorly understood but significant data point to metabolic defects that might contribute to disease pathogenesis. The Alzheimer Disease Metabolomics Consortium (ADMC) in partnership with Alzheimer Disease Neuroimaging Initiative (ADNI) is creating a comprehensive biochemical database for AD. Using targeted and non- targeted metabolomics and lipidomics platforms we are mapping metabolic pathway and network failures across the trajectory of disease. In this report we present quantitative metabolomics data generated on serum from 199 control, 356 mild cognitive impairment and 175 AD subjects enrolled in ADNI1 using AbsoluteIDQ-p180 platform, along with the pipeline for data preprocessing and medication classification for confound correction. The dataset presented here is the first of eight metabolomics datasets being generated for broad biochemical investigation of the AD metabolome. We expect that these collective metabolomics datasets will provide valuable resources for researchers to identify novel molecular mechanisms contributing to AD pathogenesis and disease phenotypes. PMID:29039849

  3. MetaboLights: An Open-Access Database Repository for Metabolomics Data.

    Science.gov (United States)

    Kale, Namrata S; Haug, Kenneth; Conesa, Pablo; Jayseelan, Kalaivani; Moreno, Pablo; Rocca-Serra, Philippe; Nainala, Venkata Chandrasekhar; Spicer, Rachel A; Williams, Mark; Li, Xuefei; Salek, Reza M; Griffin, Julian L; Steinbeck, Christoph

    2016-03-24

    MetaboLights is the first general purpose, open-access database repository for cross-platform and cross-species metabolomics research at the European Bioinformatics Institute (EMBL-EBI). Based upon the open-source ISA framework, MetaboLights provides Metabolomics Standard Initiative (MSI) compliant metadata and raw experimental data associated with metabolomics experiments. Users can upload their study datasets into the MetaboLights Repository. These studies are then automatically assigned a stable and unique identifier (e.g., MTBLS1) that can be used for publication reference. The MetaboLights Reference Layer associates metabolites with metabolomics studies in the archive and is extensively annotated with data fields such as structural and chemical information, NMR and MS spectra, target species, metabolic pathways, and reactions. The database is manually curated with no specific release schedules. MetaboLights is also recommended by journals for metabolomics data deposition. This unit provides a guide to using MetaboLights, downloading experimental data, and depositing metabolomics datasets using user-friendly submission tools. Copyright © 2016 John Wiley & Sons, Inc.

  4. Targeted metabolomics and medication classification data from participants in the ADNI1 cohort.

    Science.gov (United States)

    St John-Williams, Lisa; Blach, Colette; Toledo, Jon B; Rotroff, Daniel M; Kim, Sungeun; Klavins, Kristaps; Baillie, Rebecca; Han, Xianlin; Mahmoudiandehkordi, Siamak; Jack, John; Massaro, Tyler J; Lucas, Joseph E; Louie, Gregory; Motsinger-Reif, Alison A; Risacher, Shannon L; Saykin, Andrew J; Kastenmüller, Gabi; Arnold, Matthias; Koal, Therese; Moseley, M Arthur; Mangravite, Lara M; Peters, Mette A; Tenenbaum, Jessica D; Thompson, J Will; Kaddurah-Daouk, Rima

    2017-10-17

    Alzheimer's disease (AD) is the most common neurodegenerative disease presenting major health and economic challenges that continue to grow. Mechanisms of disease are poorly understood but significant data point to metabolic defects that might contribute to disease pathogenesis. The Alzheimer Disease Metabolomics Consortium (ADMC) in partnership with Alzheimer Disease Neuroimaging Initiative (ADNI) is creating a comprehensive biochemical database for AD. Using targeted and non- targeted metabolomics and lipidomics platforms we are mapping metabolic pathway and network failures across the trajectory of disease. In this report we present quantitative metabolomics data generated on serum from 199 control, 356 mild cognitive impairment and 175 AD subjects enrolled in ADNI1 using AbsoluteIDQ-p180 platform, along with the pipeline for data preprocessing and medication classification for confound correction. The dataset presented here is the first of eight metabolomics datasets being generated for broad biochemical investigation of the AD metabolome. We expect that these collective metabolomics datasets will provide valuable resources for researchers to identify novel molecular mechanisms contributing to AD pathogenesis and disease phenotypes.

  5. Gut Microbiota Profiling: Metabolomics Based Approach to Unravel Compounds Affecting Human Health.

    Science.gov (United States)

    Vernocchi, Pamela; Del Chierico, Federica; Putignani, Lorenza

    2016-01-01

    The gut microbiota is composed of a huge number of different bacteria, that produce a large amount of compounds playing a key role in microbe selection and in the construction of a metabolic signaling network. The microbial activities are affected by environmental stimuli leading to the generation of a wide number of compounds, that influence the host metabolome and human health. Indeed, metabolite profiles related to the gut microbiota can offer deep insights on the impact of lifestyle and dietary factors on chronic and acute diseases. Metagenomics, metaproteomics and metabolomics are some of the meta-omics approaches to study the modulation of the gut microbiota. Metabolomic research applied to biofluids allows to: define the metabolic profile; identify and quantify classes and compounds of interest; characterize small molecules produced by intestinal microbes; and define the biochemical pathways of metabolites. Mass spectrometry and nuclear magnetic resonance spectroscopy are the principal technologies applied to metabolomics in terms of coverage, sensitivity and quantification. Moreover, the use of biostatistics and mathematical approaches coupled with metabolomics play a key role in the extraction of biologically meaningful information from wide datasets. Metabolomic studies in gut microbiota-related research have increased, focusing on the generation of novel biomarkers, which could lead to the development of mechanistic hypotheses potentially applicable to the development of nutritional and personalized therapies.

  6. The dental calculus metabolome in modern and historic samples

    DEFF Research Database (Denmark)

    Velsko, Irina M.; Overmyer, Katherine A.; Speller, Camilla

    2017-01-01

    Introduction: Dental calculus is a mineralized microbial dental plaque biofilm that forms throughout life by precipitation of salivary calcium salts. Successive cycles of dental plaque growth and calcification make it an unusually well-preserved, long-term record of host-microbial interaction...... in the archaeological record. Recent studies have confirmed the survival of authentic ancient DNA and proteins within historic and prehistoric dental calculus, making it a promising substrate for investigating oral microbiome evolution via direct measurement and comparison of modern and ancient specimens. Objective: We...... present the first comprehensive characterization of the human dental calculus metabolome using a multi-platform approach. Methods: Ultra performance liquid chromatography-tandem mass spectrometry (UPLC–MS/MS) quantified 285 metabolites in modern and historic (200 years old) dental calculus, including...

  7. Emerging New Strategies for Successful Metabolite Identification in Metabolomics

    Energy Technology Data Exchange (ETDEWEB)

    Bingol, Ahmet K.; Bruschweiler-Li, Lei; Li, Dawei; Zhang, Bo; Xie, Mouzhe; Bruschweiler, Rafael

    2016-02-26

    NMR is a very powerful tool for the identification of known and unknown (or unnamed) metabolites in complex mixtures as encountered in metabolomics. Known compounds can be reliably identified using 2D NMR methods, such as 13C-1H HSQC, for which powerful web servers with databases are available for semi-automated analysis. For the identification of unknown compounds, new combinations of NMR with MS have been developed recently that make synergistic use of the mutual strengths of the two techniques. The use of chemical additives to the NMR tube, such as reactive agents, paramagnetic ions, or charged silica nanoparticles, permit the identification of metabolites with specific physical chemical properties. In the following sections, we give an overview of some of the recent advances in metabolite identification and discuss remaining challenges.

  8. Metabolomics: new prospects in low-dose radio-toxicology

    International Nuclear Information System (INIS)

    Souidi, Maamar; Grison, Stephane

    2014-01-01

    There is recurring public concern regarding the health impact of chronic exposure to low-dose ionizing radiation. This concern is further heightened when possible sources of exposure are identified, such as disused mines, the operation of nuclear facilities and radioactive waste disposal facilities, accidental release from fuel cycle facilities or the possible return of residents to areas contaminated following a reactor accident, such as the one that occurred at Fukushima. In keeping with the guidelines set out in the European strategic research agenda for MELODI, IRSN is conducting an extensive, largely experiment-based, research program to acquire scientific data to respond to this concern. The program has already revealed that chronic ingestion of cesium-137 or uranium induces many subtle, generally slight, metabolic changes, the overall biological effects of which remain to be studied. A recent 'broad-spectrum' analytical technique known as metabolomics was used to pinpoint these metabolic changes. (authors)

  9. The human NAD metabolome: Functions, metabolism and compartmentalization

    Science.gov (United States)

    Nikiforov, Andrey; Kulikova, Veronika; Ziegler, Mathias

    2015-01-01

    Abstract The metabolism of NAD has emerged as a key regulator of cellular and organismal homeostasis. Being a major component of both bioenergetic and signaling pathways, the molecule is ideally suited to regulate metabolism and major cellular events. In humans, NAD is synthesized from vitamin B3 precursors, most prominently from nicotinamide, which is the degradation product of all NAD-dependent signaling reactions. The scope of NAD-mediated regulatory processes is wide including enzyme regulation, control of gene expression and health span, DNA repair, cell cycle regulation and calcium signaling. In these processes, nicotinamide is cleaved from NAD+ and the remaining ADP-ribosyl moiety used to modify proteins (deacetylation by sirtuins or ADP-ribosylation) or to generate calcium-mobilizing agents such as cyclic ADP-ribose. This review will also emphasize the role of the intermediates in the NAD metabolome, their intra- and extra-cellular conversions and potential contributions to subcellular compartmentalization of NAD pools. PMID:25837229

  10. Independent component analysis in non-hypothesis driven metabolomics

    DEFF Research Database (Denmark)

    Li, Xiang; Hansen, Jakob; Zhao, Xinjie

    2012-01-01

    In a non-hypothesis driven metabolomics approach plasma samples collected at six different time points (before, during and after an exercise bout) were analyzed by gas chromatography-time of flight mass spectrometry (GC-TOF MS). Since independent component analysis (ICA) does not need a priori...... information on the investigated process and moreover can separate statistically independent source signals with non-Gaussian distribution, we aimed to elucidate the analytical power of ICA for the metabolic pattern analysis and the identification of key metabolites in this exercise study. A novel approach...... based on descriptive statistics was established to optimize ICA model. In the GC-TOF MS data set the number of principal components after whitening and the number of independent components of ICA were optimized and systematically selected by descriptive statistics. The elucidated dominating independent...

  11. Integration of metabolome data with metabolic networks reveals reporter reactions

    DEFF Research Database (Denmark)

    Çakir, Tunahan; Patil, Kiran Raosaheb; Önsan, Zeynep Ilsen

    2006-01-01

    Interpreting quantitative metabolome data is a difficult task owing to the high connectivity in metabolic networks and inherent interdependency between enzymatic regulation, metabolite levels and fluxes. Here we present a hypothesis-driven algorithm for the integration of such data with metabolic...... network topology. The algorithm thus enables identification of reporter reactions, which are reactions where there are significant coordinated changes in the level of surrounding metabolites following environmental/genetic perturbations. Applicability of the algorithm is demonstrated by using data from...... is measured. By combining the results with transcriptome data, we further show that it is possible to infer whether the reactions are hierarchically or metabolically regulated. Hereby, the reported approach represents an attempt to map different layers of regulation within metabolic networks through...

  12. Siderophore biosynthesis coordinately modulated the virulence-associated interactive metabolome of uropathogenic Escherichia coli and human urine.

    Science.gov (United States)

    Su, Qiao; Guan, Tianbing; Lv, Haitao

    2016-04-14

    Uropathogenic Escherichia coli (UPEC) growth in women's bladders during urinary tract infection (UTI) incurs substantial chemical exchange, termed the "interactive metabolome", which primarily accounts for the metabolic costs (utilized metabolome) and metabolic donations (excreted metabolome) between UPEC and human urine. Here, we attempted to identify the individualized interactive metabolome between UPEC and human urine. We were able to distinguish UPEC from non-UPEC by employing a combination of metabolomics and genetics. Our results revealed that the interactive metabolome between UPEC and human urine was markedly different from that between non-UPEC and human urine, and that UPEC triggered much stronger perturbations in the interactive metabolome in human urine. Furthermore, siderophore biosynthesis coordinately modulated the individualized interactive metabolome, which we found to be a critical component of UPEC virulence. The individualized virulence-associated interactive metabolome contained 31 different metabolites and 17 central metabolic pathways that were annotated to host these different metabolites, including energetic metabolism, amino acid metabolism, and gut microbe metabolism. Changes in the activities of these pathways mechanistically pinpointed the virulent capability of siderophore biosynthesis. Together, our findings provide novel insights into UPEC virulence, and we propose that siderophores are potential targets for further discovery of drugs to treat UPEC-induced UTI.

  13. Accurate, fully-automated NMR spectral profiling for metabolomics.

    Directory of Open Access Journals (Sweden)

    Siamak Ravanbakhsh

    Full Text Available Many diseases cause significant changes to the concentrations of small molecules (a.k.a. metabolites that appear in a person's biofluids, which means such diseases can often be readily detected from a person's "metabolic profile"-i.e., the list of concentrations of those metabolites. This information can be extracted from a biofluids Nuclear Magnetic Resonance (NMR spectrum. However, due to its complexity, NMR spectral profiling has remained manual, resulting in slow, expensive and error-prone procedures that have hindered clinical and industrial adoption of metabolomics via NMR. This paper presents a system, BAYESIL, which can quickly, accurately, and autonomously produce a person's metabolic profile. Given a 1D 1H NMR spectrum of a complex biofluid (specifically serum or cerebrospinal fluid, BAYESIL can automatically determine the metabolic profile. This requires first performing several spectral processing steps, then matching the resulting spectrum against a reference compound library, which contains the "signatures" of each relevant metabolite. BAYESIL views spectral matching as an inference problem within a probabilistic graphical model that rapidly approximates the most probable metabolic profile. Our extensive studies on a diverse set of complex mixtures including real biological samples (serum and CSF, defined mixtures and realistic computer generated spectra; involving > 50 compounds, show that BAYESIL can autonomously find the concentration of NMR-detectable metabolites accurately (~ 90% correct identification and ~ 10% quantification error, in less than 5 minutes on a single CPU. These results demonstrate that BAYESIL is the first fully-automatic publicly-accessible system that provides quantitative NMR spectral profiling effectively-with an accuracy on these biofluids that meets or exceeds the performance of trained experts. We anticipate this tool will usher in high-throughput metabolomics and enable a wealth of new applications of

  14. Radiation metabolomics : a window to high throughput radiation biodosimetry

    International Nuclear Information System (INIS)

    Rana, Poonam

    2016-01-01

    In the event of an intentional or accidental release of ionizing radiation in a densely populated area, timely assessment and triage of the general population for radiation exposure is critical. In particular, a significant number of victims may sustain radiation injury, which increases mortality and worsens the overall prognosis of victims from radiation trauma. Availability of a high-throughput noninvasive in vivo biodosimetry tool for assessing the radiation exposure is of particular importance for timely diagnosis of radiation injury. In this study, we describe the potential NMR techniques in evaluating the radiation injury. NMR is the most versatile technique that has been extensively used in the diverse fields of science since its discovery. NMR and biomedical sciences have been going hand in hand since its application in clinical imaging as MRI and metabolic profiling of biofluids was identified. We have established an NMR based metabonomic and in vivo spectroscopy approach to analyse and identify metabolic profile to measure metabolic fingerprint for radiation exposure. NMR spectroscopy experiments were conducted on urine and serum samples collected from mice irradiated with different doses of radiation. Additionally, in vivo NMR spectroscopy was also performed in different region of brains post irradiation in animal model. A number of metabolites associated with energy metabolism, gut flora metabolites, osmolytes, amino acids and membrane metabolism were identified in serum and urine metabolome. Our results illustrated a metabolic fingerprint for radiation exposure that elucidates perturbed physiological functions. Quantitative as well as multivariate analysis/assessment of these metabolites demonstrated dose and time dependent toxicological effect. In vivo spectroscopy from brain showed radiation induced changes in hippocampus region indicating whole body radiation had striking effect on brain metabolism as well. The results of the present work lay a

  15. Stoichiometric Correlation Analysis: Principles of Metabolic Functionality from Metabolomics Data

    Directory of Open Access Journals (Sweden)

    Kevin Schwahn

    2017-12-01

    Full Text Available Recent advances in metabolomics technologies have resulted in high-quality (time-resolved metabolic profiles with an increasing coverage of metabolic pathways. These data profiles represent read-outs from often non-linear dynamics of metabolic networks. Yet, metabolic profiles have largely been explored with regression-based approaches that only capture linear relationships, rendering it difficult to determine the extent to which the data reflect the underlying reaction rates and their couplings. Here we propose an approach termed Stoichiometric Correlation Analysis (SCA based on correlation between positive linear combinations of log-transformed metabolic profiles. The log-transformation is due to the evidence that metabolic networks can be modeled by mass action law and kinetics derived from it. Unlike the existing approaches which establish a relation between pairs of metabolites, SCA facilitates the discovery of higher-order dependence between more than two metabolites. By using a paradigmatic model of the tricarboxylic acid cycle we show that the higher-order dependence reflects the coupling of concentration of reactant complexes, capturing the subtle difference between the employed enzyme kinetics. Using time-resolved metabolic profiles from Arabidopsis thaliana and Escherichia coli, we show that SCA can be used to quantify the difference in coupling of reactant complexes, and hence, reaction rates, underlying the stringent response in these model organisms. By using SCA with data from natural variation of wild and domesticated wheat and tomato accession, we demonstrate that the domestication is accompanied by loss of such couplings, in these species. Therefore, application of SCA to metabolomics data from natural variation in wild and domesticated populations provides a mechanistic way to understanding domestication and its relation to metabolic networks.

  16. Metabolomic Profiling in Individuals with a Failing Kidney Allograft.

    Directory of Open Access Journals (Sweden)

    Roberto Bassi

    Full Text Available Alteration of certain metabolites may play a role in the pathophysiology of renal allograft disease.To explore metabolomic abnormalities in individuals with a failing kidney allograft, we analyzed by liquid chromatography-mass spectrometry (LC-MS/MS; for ex vivo profiling of serum and urine and two dimensional correlated spectroscopy (2D COSY; for in vivo study of the kidney graft 40 subjects with varying degrees of chronic allograft dysfunction stratified by tertiles of glomerular filtration rate (GFR; T1, T2, T3. Ten healthy non-allograft individuals were chosen as controls.LC-MS/MS analysis revealed a dose-response association between GFR and serum concentration of tryptophan, glutamine, dimethylarginine isomers (asymmetric [A]DMA and symmetric [S]DMA and short-chain acylcarnitines (C4 and C12, (test for trend: T1-T3 = p<0.05; p = 0.01; p<0.001; p = 0.01; p = 0.01; p<0.05, respectively. The same association was found between GFR and urinary levels of histidine, DOPA, dopamine, carnosine, SDMA and ADMA (test for trend: T1-T3 = p<0.05; p<0.01; p = 0.001; p<0.05; p = 0.001; p<0.001; p<0.01, respectively. In vivo 2D COSY of the kidney allograft revealed significant reduction in the parenchymal content of choline, creatine, taurine and threonine (all: p<0.05 in individuals with lower GFR levels.We report an association between renal function and altered metabolomic profile in renal transplant individuals with different degrees of kidney graft function.

  17. Characterizing Dissolved Organic Matter and Metabolites in an Actively Serpentinizing Ophiolite Using Global Metabolomics Techniques

    Science.gov (United States)

    Seyler, L. M.; Rempfert, K. R.; Kraus, E. A.; Spear, J. R.; Templeton, A. S.; Schrenk, M. O.

    2017-12-01

    Environmental metabolomics is an emerging approach used to study ecosystem properties. Through bioinformatic comparisons to metagenomic data sets, metabolomics can be used to study microbial adaptations and responses to varying environmental conditions. Since the techniques are highly parallel to organic geochemistry approaches, metabolomics can also provide insight into biogeochemical processes. These analyses are a reflection of metabolic potential and intersection with other organisms and environmental components. Here, we used an untargeted metabolomics approach to characterize dissolved organic carbon and aqueous metabolites from groundwater obtained from an actively serpentinizing habitat. Serpentinites are known to support microbial communities that feed off of the products of serpentinization (such as methane and H2 gas), while adapted to harsh environmental conditions such as high pH and low DIC availability. However, the biochemistry of microbial populations that inhabit these environments are understudied and are complicated by overlapping biotic and abiotic processes. The aim of this study was to identify potential sources of carbon in an environment that is depleted of soluble inorganic carbon, and to characterize the flow of metabolites and describe overlapping biogenic and abiogenic processes impacting carbon cycling in serpentinizing rocks. We applied untargeted metabolomics techniques to groundwater taken from a series of wells drilled into the Semail Ophiolite in Oman.. Samples were analyzed via quadrupole time-of-flight liquid chromatography tandem mass spectrometry (QToF-LC/MS/MS). Metabolomes and metagenomic data were imported into Progenesis QI software for statistical analysis and correlation, and metabolic networks constructed using the Genome-Linked Application for Metabolic Maps (GLAMM), a web interface tool. Further multivariate statistical analyses and quality control was performed using EZinfo. Pools of dissolved organic carbon could

  18. The effect of antibiotics and diet on enterolactone concentration and metabolome studied by targeted and non-targeted LC-MS metabolomics

    DEFF Research Database (Denmark)

    Bolvig, Anne Katrine; Nørskov, Natalja; Hedemann, Mette Skou

    2017-01-01

    with lower levels of ENL. Here, we investigate the link between antibiotic use and lignan metabolism in pigs using LC-MS/MS. The effect of lignan intake and antibiotic use on the gut microbial community and the pig metabolome is studied by 16S rRNA sequencing and non-targeted LC-MS. Treatment...

  19. Are the metabolomic responses to folivory of closely related plant species linked to macroevolutionary and plant-folivore coevolutionary processes?

    Energy Technology Data Exchange (ETDEWEB)

    Rivas-Ubach, Albert [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland Washington 99354 USA; CREAF, Cerdanyola del Vallès 08913 Catalonia Spain; Hódar, José A. [Grupo de Ecología Terrestre, Departamento de Biología Animal y Ecología, Facultad de Ciencias, Universidad de Granada, 18071 Granada Spain; Sardans, Jordi [CREAF, Cerdanyola del Vallès 08913 Catalonia Spain; CSIC, Global Ecology Unit CREAF-CEAB-CSIC-UAB, Cerdanyola del Vallès 08913 Catalonia Spain; Kyle, Jennifer E. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland Washington 99354 USA; Kim, Young-Mo [Biological Sciences Division, Pacific Northwest National Laboratory, Richland Washington 99354 USA; Oravec, Michal [Global Change Research Centre, Academy of Sciences of the Czech Republic, Bĕlidla 4a CZ-603 00 Brno Czech Republic; Urban, Otmar [Global Change Research Centre, Academy of Sciences of the Czech Republic, Bĕlidla 4a CZ-603 00 Brno Czech Republic; Guenther, Alex [Department of Earth System Science, University of California, Irvine California 92697 USA; Peñuelas, Josep [CREAF, Cerdanyola del Vallès 08913 Catalonia Spain; CSIC, Global Ecology Unit CREAF-CEAB-CSIC-UAB, Cerdanyola del Vallès 08913 Catalonia Spain

    2016-06-02

    The debate whether the coevolution of plants and insects or macroevolutionary processes (phylogeny) is the main driver determining the arsenal of molecular defensive compounds of plants remains unresolved. Attacks by herbivorous insects affect not only the composition of defensive compounds in plants but the entire metabolome (the set of molecular metabolites), including defensive compounds. Metabolomes are the final products of genotypes and are directly affected by macroevolutionary processes, so closely related species should have similar metabolomic compositions and may respond in similar ways to attacks by folivores. We analyzed the elemental compositions and metabolomes of needles from Pinus pinaster, P. nigra and P. sylvestris to determine if these closely related Pinus species with different coevolutionary histories with the caterpillars of the processionary moth respond similarly to attacks by this lepidopteran. All pines had different metabolomes and metabolic responses to herbivorous attack. The metabolomic variation among the pine species and the responses to folivory reflected their macroevolutionary relationships, with P. pinaster having the most divergent metabolome. The concentrations of phenolic metabolites were generally not higher in the attacked trees, which had lower concentrations of terpenes, suggesting that herbivores avoid individuals with high concentrations of terpenes. Our results suggest that macroevolutionary history plays important roles in the metabolomic responses of these pine species to folivory, but plant-insect coevolution probably constrains those responses. Combinations of different evolutionary factors and trade-offs are likely responsible for the different responses of each species to folivory, which is not necessarily exclusively linked to plant-insect coevolution.

  20. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI)

    Science.gov (United States)

    Amberg, Alexander; Barrett, Dave; Beale, Michael H.; Beger, Richard; Daykin, Clare A.; Fan, Teresa W.-M.; Fiehn, Oliver; Goodacre, Royston; Griffin, Julian L.; Hankemeier, Thomas; Hardy, Nigel; Harnly, James; Higashi, Richard; Kopka, Joachim; Lane, Andrew N.; Lindon, John C.; Marriott, Philip; Nicholls, Andrew W.; Reily, Michael D.; Thaden, John J.; Viant, Mark R.

    2013-01-01

    There is a general consensus that supports the need for standardized reporting of metadata or information describing large-scale metabolomics and other functional genomics data sets. Reporting of standard metadata provides a biological and empirical context for the data, facilitates experimental replication, and enables the re-interrogation and comparison of data by others. Accordingly, the Metabolomics Standards Initiative is building a general consensus concerning the minimum reporting standards for metabolomics experiments of which the Chemical Analysis Working Group (CAWG) is a member of this community effort. This article proposes the minimum reporting standards related to the chemical analysis aspects of metabolomics experiments including: sample preparation, experimental analysis, quality control, metabolite identification, and data pre-processing. These minimum standards currently focus mostly upon mass spectrometry and nuclear magnetic resonance spectroscopy due to the popularity of these techniques in metabolomics. However, additional input concerning other techniques is welcomed and can be provided via the CAWG on-line discussion forum at http://msi-workgroups.sourceforge.net/ or http://Msi-workgroups-feedback@lists.sourceforge.net. Further, community input related to this document can also be provided via this electronic forum. PMID:24039616

  1. Mass Spectrometry Strategies for Clinical Metabolomics and Lipidomics in Psychiatry, Neurology, and Neuro-Oncology

    Science.gov (United States)

    Wood, Paul L

    2014-01-01

    Metabolomics research has the potential to provide biomarkers for the detection of disease, for subtyping complex disease populations, for monitoring disease progression and therapy, and for defining new molecular targets for therapeutic intervention. These potentials are far from being realized because of a number of technical, conceptual, financial, and bioinformatics issues. Mass spectrometry provides analytical platforms that address the technical barriers to success in metabolomics research; however, the limited commercial availability of analytical and stable isotope standards has created a bottleneck for the absolute quantitation of a number of metabolites. Conceptual and financial factors contribute to the generation of statistically under-powered clinical studies, whereas bioinformatics issues result in the publication of a large number of unidentified metabolites. The path forward in this field involves targeted metabolomics analyses of large control and patient populations to define both the normal range of a defined metabolite and the potential heterogeneity (eg, bimodal) in complex patient populations. This approach requires that metabolomics research groups, in addition to developing a number of analytical platforms, build sufficient chemistry resources to supply the analytical standards required for absolute metabolite quantitation. Examples of metabolomics evaluations of sulfur amino-acid metabolism in psychiatry, neurology, and neuro-oncology and of lipidomics in neurology will be reviewed. PMID:23842599

  2. Sweat: a sample with limited present applications and promising future in metabolomics.

    Science.gov (United States)

    Mena-Bravo, A; Luque de Castro, M D

    2014-03-01

    Sweat is a biofluid with present scant use as clinical sample. This review tries to demonstrate the advantages of sweat over other biofluids such as blood or urine for routine clinical analyses and the potential when related to metabolomics. With this aim, critical discussion of sweat samplers and equipment for analysis of target compounds in this sample is made. Well established routine analyses in sweat as is that to diagnose cystic fibrosis, and the advantages and disadvantages of sweat versus urine or blood for doping control have also been discussed. Methods for analytes such as essential metals and xenometals, ethanol and electrolytes in sweat in fact constitute target metabolomics approaches or belong to any metabolomics subdiscipline such as metallomics, ionomics or xenometabolomics. The higher development of biomarkers based on genomics or proteomics as omics older than metabolomics is discussed and also the potential role of metabolomics in systems biology taking into account its emergent implementation. Normalization of the volume of sampled sweat constitutes a present unsolved shortcoming that deserves investigation. Foreseeable trends in this area are outlined. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Characterizing Alzheimer's disease through metabolomics and investigating anti-Alzheimer's disease effects of natural products.

    Science.gov (United States)

    Yi, Lunzhao; Liu, Wenbin; Wang, Zhe; Ren, Dabing; Peng, Weijun

    2017-06-01

    Alzheimer's disease (AD) is the most common cause of dementia in elderly people and is among the greatest healthcare challenges of the 21st century. However, the etiology and pathogenesis of AD remain poorly understood, and no curative treatments are available to slow down or stop the degenerative effects of AD. As a high-throughput approach, metabolomics is gaining significant attention in AD research, because it has a powerful potential to discover novel biomarkers, unravel new therapeutic targets for AD, and identify perturbed metabolic pathways involved in AD progression. Here, we systematically review metabolomics with regard to its recent advances and applications in the identification of potential biomarkers for early AD diagnosis and pathogenesis research. In addition, we illustrate the developments in metabolomics as an effective tool for understanding the anti-AD mechanisms of natural products. We believe that the insights from these advances can narrow the gap between metabolomics research and clinical applications of laboratory findings. Moreover, we discuss some limitations and perspectives of biomarker identification in metabolomics. © 2017 New York Academy of Sciences.

  4. Integrated and global pseudotargeted metabolomics strategy applied to screening for quality control markers of Citrus TCMs.

    Science.gov (United States)

    Shu, Yisong; Liu, Zhenli; Zhao, Siyu; Song, Zhiqian; He, Dan; Wang, Menglei; Zeng, Honglian; Lu, Cheng; Lu, Aiping; Liu, Yuanyan

    2017-08-01

    Traditional Chinese medicine (TCM) exerts its therapeutic effect in a holistic fashion with the synergistic function of multiple characteristic constituents. The holism philosophy of TCM is coincident with global and systematic theories of metabolomics. The proposed pseudotargeted metabolomics methodologies were employed for the establishment of reliable quality control markers for use in the screening strategy of TCMs. Pseudotargeted metabolomics integrates the advantages of both targeted and untargeted methods. In the present study, targeted metabolomics equipped with the gold standard RRLC-QqQ-MS method was employed for in vivo quantitative plasma pharmacochemistry study of characteristic prototypic constituents. Meanwhile, untargeted metabolomics using UHPLC-QE Orbitrap HRMS with better specificity and selectivity was employed for identification of untargeted metabolites in the complex plasma matrix. In all, 32 prototypic metabolites were quantitatively determined, and 66 biotransformed metabolites were convincingly identified after being orally administered with standard extracts of four labeled Citrus TCMs. The global absorption and metabolism process of complex TCMs was depicted in a systematic manner.

  5. CE-MS for metabolomics: developments and applications in the period 2012-2014.

    Science.gov (United States)

    Ramautar, Rawi; Somsen, Govert W; de Jong, Gerhardus J

    2015-01-01

    In the field of metabolomics, CE-MS is now regarded as a useful complementary analytical technique for the profiling of (highly) polar ionogenic metabolites in biological samples. Over the past few years, significant advancements have been made in CE-MS approaches for metabolic profiling studies. This paper, which is a follow-up of three previous review papers covering the years 2000-2012 [Electrophoresis 2009, 30, 276-291; Electrophoresis 2011, 32, 52-65; Electrophoresis 2013, 34, 86-98], provides an update of these developments covering the scientific literature from July 2012 to June 2014. Attention will be paid to novel interfacing techniques for coupling CE to MS and their implications for metabolomics studies. The potential of CEC-MS and MEKC-MS are also considered, and CE-MS systems for high-throughput metabolic profiling are discussed. The applicability of CE-MS for metabolomics studies is demonstrated by representative examples in the fields of biomedical, clinical, microbial, plant, environmental, and food metabolomics. An overview of recent CE-MS-based metabolomics studies is given in a table, which provides information on sample type and pretreatment, capillary coatings, and MS detection mode. Finally, general conclusions and perspectives are given. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Targeted metabolomics profiles are strongly correlated with nutritional patterns in women.

    Science.gov (United States)

    Menni, Cristina; Zhai, Guangju; Macgregor, Alexander; Prehn, Cornelia; Römisch-Margl, Werner; Suhre, Karsten; Adamski, Jerzy; Cassidy, Aedin; Illig, Thomas; Spector, Tim D; Valdes, Ana M

    2013-04-01

    Nutrition plays an important role in human metabolism and health. Metabolomics is a promising tool for clinical, genetic and nutritional studies. A key question is to what extent metabolomic profiles reflect nutritional patterns in an epidemiological setting. We assessed the relationship between metabolomic profiles and nutritional intake in women from a large cross-sectional community study. Food frequency questionnaires (FFQs) were applied to 1,003 women from the TwinsUK cohort with targeted metabolomic analyses of serum samples using the Biocrates Absolute-IDQ™ Kit p150 (163 metabolites). We analyzed seven nutritional parameters: coffee intake, garlic intake and nutritional scores derived from the FFQs summarizing fruit and vegetable intake, alcohol intake, meat intake, hypo-caloric dieting and a "traditional English" diet. We studied the correlation between metabolite levels and dietary intake patterns in the larger population and identified for each trait between 14 and 20 independent monozygotic twins pairs discordant for nutritional intake and replicated results in this set. Results from both analyses were then meta-analyzed. For the metabolites associated with nutritional patterns, we calculated heritability using structural equation modelling. 42 metabolite nutrient intake associations were statistically significant in the discovery samples (Bonferroni P  hypo-caloric dieting. Using the twin study design we find that two thirds the metabolites associated with nutritional patterns have a significant genetic contribution, and the remaining third are solely environmentally determined. Our data confirm the value of metabolomic studies for nutritional epidemiologic research.

  7. Untargeted Metabolomics Approach in Halophiles: Understanding the Biodeterioration Process of Building Materials

    Directory of Open Access Journals (Sweden)

    Justyna Adamiak

    2017-12-01

    Full Text Available The aim of the study was to explore the halophile metabolome in building materials using untargeted metabolomics which allows for broad metabolome coverage. For this reason, we used high-performance liquid chromatography interfaced to high-resolution mass spectrometry (HPLC/HRMS. As an alternative to standard microscopy techniques, we introduced pioneering Coherent Anti-stokes Raman Scattering Microscopy (CARS to non-invasively visualize microbial cells. Brick samples saturated with salt solution (KCl, NaCl (two salinity levels, MgSO4, Mg(NO32, were inoculated with the mixture of preselected halophilic microorganisms, i.e., bacteria: Halobacillus styriensis, Halobacillus naozhouensis, Halobacillus hunanensis, Staphylococcus succinus, Marinococcus halophilus, Virgibacillus halodenitryficans, and yeast: Sterigmatomyces halophilus and stored at 28°C and 80% relative humidity for a year. Metabolites were extracted directly from the brick samples and measured via HPLC/HRMS in both positive and negative ion modes. Overall, untargeted metabolomics allowed for discovering the interactions of halophilic microorganisms with buildings materials which together with CARS microscopy enabled us to elucidate the biodeterioration process caused by halophiles. We observed that halophile metabolome was differently affected by different salt solutions. Furthermore, we found indications for haloadaptive strategies and degradation of brick samples due to microbial pigment production as a salt stress response. Finally, we detected changes in lipid content related to changes in the structure of phospholipid bilayers and membrane fluidity.

  8. A Plasma Metabolomic Signature of the Exfoliation Syndrome Involves Amino Acids, Acylcarnitines, and Polyamines.

    Science.gov (United States)

    Leruez, Stéphanie; Bresson, Thomas; Chao de la Barca, Juan M; Marill, Alexandre; de Saint Martin, Grégoire; Buisset, Adrien; Muller, Jeanne; Tessier, Lydie; Gadras, Cédric; Verny, Christophe; Amati-Bonneau, Patrizia; Lenaers, Guy; Gohier, Philippe; Bonneau, Dominique; Simard, Gilles; Milea, Dan; Procaccio, Vincent; Reynier, Pascal

    2018-02-01

    To determine the plasma metabolomic signature of the exfoliative syndrome (XFS), the most common cause worldwide of secondary open-angle glaucoma. We performed a targeted metabolomic study, using the standardized p180 Biocrates Absolute IDQ p180 kit with a QTRAP 5500 mass spectrometer, to compare the metabolomic profiles of plasma from individuals with XFS (n = 16), and an age- and sex-matched control group with cataract (n = 18). A total of 151 metabolites were detected correctly, 16 of which allowed for construction of an OPLS-DA model with a good predictive capability (Q2cum = 0.51) associated with a low risk of over-fitting (permQ2 = -0.48, CV-ANOVA P-value <0.001). The metabolites contributing the most to the signature were octanoyl-carnitine (C8) and decanoyl-carnitine (C10), the branched-chain amino acids (i.e., isoleucine, leucine, and valine), and tyrosine, all of which were at higher concentrations in the XFS group, whereas spermine and spermidine, together with their precursor acetyl-ornithine, were at lower concentrations than in the control group. We identified a significant metabolomic signature in the plasma of individuals with XFS. Paradoxically, this signature, characterized by lower concentrations of the neuroprotective spermine and spermidine polyamines than in controls, partially overlaps the plasma metabolomic profile associated with insulin resistance, despite the absence of evidence of insulin resistance in XFS.

  9. Feline urine metabolomic signature: characterization of low-molecular-weight substances in urine from domestic cats.

    Science.gov (United States)

    Rivera-Vélez, Sol-Maiam; Villarino, Nicolas F

    2018-02-01

    Objectives This aim of this study was to characterize the composition and content of the feline urine metabolome. Methods Eight healthy domestic cats were acclimated at least 10 days before starting the study. Urine samples (~2 ml) were collected by ultrasound-guided cystocentesis. Samples were centrifuged at 1000 × g for 8 mins, and the supernatant was analyzed by gas chromatography/time-of-flight mass spectrometery. The urine metabolome was characterized using an untargeted metabolomics approach. Results Three hundred and eighteen metabolites were detected in the urine of the eight cats. These molecules are key components of at least 100 metabolic pathways. Feline urine appears to be dominated by carbohydrates, carbohydrate conjugates, organic acid and derivatives, and amino acids and analogs. The five most abundant molecules were phenaceturic acid, hippuric acid, pseudouridine phosphate and 3-(4-hydroxyphenyl) propionic acid. Conclusions and relevance This study is the first to characterize the feline urine metabolome. The results of this study revealed the presence of multiple low-molecular-weight substances that were not known to be present in feline urine. As expected, the origin of the metabolites detected in urine was diverse, including endogenous compounds and molecules biosynthesized by microbes. Also, the diet seemed to have had a relevant role on the urine metabolome. Further exploration of the urine metabolic phenotype will open a window for discovering unknown, or poorly understood, metabolic pathways. In turn, this will advance our understanding of feline biology and lead to new insights in feline physiology, nutrition and medicine.

  10. Mass spectrometry strategies for clinical metabolomics and lipidomics in psychiatry, neurology, and neuro-oncology.

    Science.gov (United States)

    Wood, Paul L

    2014-01-01

    Metabolomics research has the potential to provide biomarkers for the detection of disease, for subtyping complex disease populations, for monitoring disease progression and therapy, and for defining new molecular targets for therapeutic intervention. These potentials are far from being realized because of a number of technical, conceptual, financial, and bioinformatics issues. Mass spectrometry provides analytical platforms that address the technical barriers to success in metabolomics research; however, the limited commercial availability of analytical and stable isotope standards has created a bottleneck for the absolute quantitation of a number of metabolites. Conceptual and financial factors contribute to the generation of statistically under-powered clinical studies, whereas bioinformatics issues result in the publication of a large number of unidentified metabolites. The path forward in this field involves targeted metabolomics analyses of large control and patient populations to define both the normal range of a defined metabolite and the potential heterogeneity (eg, bimodal) in complex patient populations. This approach requires that metabolomics research groups, in addition to developing a number of analytical platforms, build sufficient chemistry resources to supply the analytical standards required for absolute metabolite quantitation. Examples of metabolomics evaluations of sulfur amino-acid metabolism in psychiatry, neurology, and neuro-oncology and of lipidomics in neurology will be reviewed.

  11. Arbuscular Mycorrhizal Fungi and Plant Chemical Defence: Effects of Colonisation on Aboveground and Belowground Metabolomes.

    Science.gov (United States)

    Hill, Elizabeth M; Robinson, Lynne A; Abdul-Sada, Ali; Vanbergen, Adam J; Hodge, Angela; Hartley, Sue E

    2018-02-01

    Arbuscular mycorrhizal fungal (AMF) colonisation of plant roots is one of the most ancient and widespread interactions in ecology, yet the systemic consequences for plant secondary chemistry remain unclear. We performed the first metabolomic investigation into the impact of AMF colonisation by Rhizophagus irregularis on the chemical defences, spanning above- and below-ground tissues, in its host-plant ragwort (Senecio jacobaea). We used a non-targeted metabolomics approach to profile, and where possible identify, compounds induced by AMF colonisation in both roots and shoots. Metabolomics analyses revealed that 33 compounds were significantly increased in the root tissue of AMF colonised plants, including seven blumenols, plant-derived compounds known to be associated with AMF colonisation. One of these was a novel structure conjugated with a malonyl-sugar and uronic acid moiety, hitherto an unreported combination. Such structural modifications of blumenols could be significant for their previously reported functional roles associated with the establishment and maintenance of AM colonisation. Pyrrolizidine alkaloids (PAs), key anti-herbivore defence compounds in ragwort, dominated the metabolomic profiles of root and shoot extracts. Analyses of the metabolomic profiles revealed an increase in four PAs in roots (but not shoots) of AMF colonised plants, with the potential to protect colonised plants from below-ground organisms.

  12. Conventional and accelerated-solvent extractions of green tea (camellia sinensis) for metabolomics-based chemometrics.

    Science.gov (United States)

    Kellogg, Joshua J; Wallace, Emily D; Graf, Tyler N; Oberlies, Nicholas H; Cech, Nadja B

    2017-10-25

    Metabolomics has emerged as an important analytical technique for multiple applications. The value of information obtained from metabolomics analysis depends on the degree to which the entire metabolome is present and the reliability of sample treatment to ensure reproducibility across the study. The purpose of this study was to compare methods of preparing complex botanical extract samples prior to metabolomics profiling. Two extraction methodologies, accelerated solvent extraction and a conventional solvent maceration, were compared using commercial green tea [Camellia sinensis (L.) Kuntze (Theaceae)] products as a test case. The accelerated solvent protocol was first evaluated to ascertain critical factors influencing extraction using a D-optimal experimental design study. The accelerated solvent and conventional extraction methods yielded similar metabolite profiles for the green tea samples studied. The accelerated solvent extraction yielded higher total amounts of extracted catechins, was more reproducible, and required less active bench time to prepare the samples. This study demonstrates the effectiveness of accelerated solvent as an efficient methodology for metabolomics studies. Copyright © 2017. Published by Elsevier B.V.

  13. Short overview on metabolomic approach and redox changes in psychiatric disorders

    Directory of Open Access Journals (Sweden)

    Gordana Nedic Erjavec

    2018-04-01

    Full Text Available Schizophrenia, depression and posttraumatic stress disorder (PTSD are severe mental disorders and complicated diagnostic entities, due to their phenotypic, biological and genetic heterogeneity, unknown etiology, and poorly understood alterations in biological pathways and biological mechanisms. Disturbed homeostasis between overproduction of oxidant species, overcoming redox regulation and a lack of cellular antioxidant defenses, resulting in free radical-mediated pathology and subsequent neurotoxicity contributes to development of depression, schizophrenia and PTSD, their heterogeneous clinical presentation and resistance to treatment. Metabolomics is a discipline that combines different strategies with the aim to extract, detect, identify and quantify all metabolites that are present in a biological sample and might provide mechanistic insights into the etiology of various psychiatric disorders. Therefore, oxidative stress research combined with metabolomics might offer a novel approach in dissecting psychiatric disorders, since these data-driven but not necessarily hypothesis-driven methods might identify new targets, molecules and pathways responsible for development of schizophrenia, depression or PTSD. Findings from the oxidative research in psychiatry together with metabolomics data might facilitate development of specific and validated prognostic, therapeutic and clinical biomarkers. These methods might reveal bio-signatures of individual patients, leading to individualized treatment approach. In reviewing findings related to oxidative stress and metabolomics in selected psychiatric disorders, we have highlighted how these novel approaches might make a unique contribution to deeper understanding of psychopathological alterations underlying schizophrenia, depression and PTSD. Keywords: Schizophrenia, Depression, Posttraumatic stress disorder, Oxidative stress, Lipid peroxidation, Metabolomics, Biomarkers

  14. Tools and databases of the KOMICS web portal for preprocessing, mining, and dissemination of metabolomics data.

    Science.gov (United States)

    Sakurai, Nozomu; Ara, Takeshi; Enomoto, Mitsuo; Motegi, Takeshi; Morishita, Yoshihiko; Kurabayashi, Atsushi; Iijima, Yoko; Ogata, Yoshiyuki; Nakajima, Daisuke; Suzuki, Hideyuki; Shibata, Daisuke

    2014-01-01

    A metabolome--the collection of comprehensive quantitative data on metabolites in an organism--has been increasingly utilized for applications such as data-intensive systems biology, disease diagnostics, biomarker discovery, and assessment of food quality. A considerable number of tools and databases have been developed to date for the analysis of data generated by various combinations of chromatography and mass spectrometry. We report here a web portal named KOMICS (The Kazusa Metabolomics Portal), where the tools and databases that we developed are available for free to academic users. KOMICS includes the tools and databases for preprocessing, mining, visualization, and publication of metabolomics data. Improvements in the annotation of unknown metabolites and dissemination of comprehensive metabolomic data are the primary aims behind the development of this portal. For this purpose, PowerGet and FragmentAlign include a manual curation function for the results of metabolite feature alignments. A metadata-specific wiki-based database, Metabolonote, functions as a hub of web resources related to the submitters' work. This feature is expected to increase citation of the submitters' work, thereby promoting data publication. As an example of the practical use of KOMICS, a workflow for a study on Jatropha curcas is presented. The tools and databases available at KOMICS should contribute to enhanced production, interpretation, and utilization of metabolomic Big Data.

  15. Using MetaboAnalyst 3.0 for Comprehensive Metabolomics Data Analysis.

    Science.gov (United States)

    Xia, Jianguo; Wishart, David S

    2016-09-07

    MetaboAnalyst (http://www.metaboanalyst.ca) is a comprehensive Web application for metabolomic data analysis and interpretation. MetaboAnalyst handles most of the common metabolomic data types from most kinds of metabolomics platforms (MS and NMR) for most kinds of metabolomics experiments (targeted, untargeted, quantitative). In addition to providing a variety of data processing and normalization procedures, MetaboAnalyst also supports a number of data analysis and data visualization tasks using a range of univariate, multivariate methods such as PCA (principal component analysis), PLS-DA (partial least squares discriminant analysis), heatmap clustering and machine learning methods. MetaboAnalyst also offers a variety of tools for metabolomic data interpretation including MSEA (metabolite set enrichment analysis), MetPA (metabolite pathway analysis), and biomarker selection via ROC (receiver operating characteristic) curve analysis, as well as time series and power analysis. This unit provides an overview of the main functional modules and the general workflow of the latest version of MetaboAnalyst (MetaboAnalyst 3.0), followed by eight detailed protocols. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  16. Identification of drug targets by chemogenomic and metabolomic profiling in yeast

    KAUST Repository

    Wu, Manhong

    2012-12-01

    OBJECTIVE: To advance our understanding of disease biology, the characterization of the molecular target for clinically proven or new drugs is very important. Because of its simplicity and the availability of strains with individual deletions in all of its genes, chemogenomic profiling in yeast has been used to identify drug targets. As measurement of drug-induced changes in cellular metabolites can yield considerable information about the effects of a drug, we investigated whether combining chemogenomic and metabolomic profiling in yeast could improve the characterization of drug targets. BASIC METHODS: We used chemogenomic and metabolomic profiling in yeast to characterize the target for five drugs acting on two biologically important pathways. A novel computational method that uses a curated metabolic network was also developed, and it was used to identify the genes that are likely to be responsible for the metabolomic differences found. RESULTS AND CONCLUSION: The combination of metabolomic and chemogenomic profiling, along with data analyses carried out using a novel computational method, could robustly identify the enzymes targeted by five drugs. Moreover, this novel computational method has the potential to identify genes that are causative of metabolomic differences or drug targets. © 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins.

  17. Linking diet to acne metabolomics, inflammation, and comedogenesis: an update

    Directory of Open Access Journals (Sweden)

    Melnik BC

    2015-07-01

    proliferation. Oleate stimulates P. acnes adhesion, keratinocyte proliferation, and comedogenesis via interleukin-1α release. Thus, diet-induced metabolomic alterations promote the visible sebofollicular inflammasomopathy acne vulgaris. Nutrition therapy of acne has to increase FoxO1 and to attenuate mTORC1/SREBP-1c signaling. Patients should balance total calorie uptake and restrict refined carbohydrates, milk, dairy protein supplements, saturated fats, and trans-fats. A paleolithic-like diet enriched in vegetables and fish is recommended. Plant-derived mTORC1 inhibitors and ω-3-PUFAs are promising dietary supplements supporting nutrition therapy of acne vulgaris. Keywords: acne, comedogenesis, diet, inflammasome, metabolomics, quorum sensing

  18. The application of metabolomics in traditional Chinese medicine opens up a dialogue between Chinese and Western medicine.

    Science.gov (United States)

    Cao, Hongxin; Zhang, Aihua; Zhang, Huamin; Sun, Hui; Wang, Xijun

    2015-02-01

    Metabolomics provides an opportunity to develop the systematic analysis of the metabolites and has been applied to discovering biomarkers and perturbed pathways which can clarify the action mechanism of traditional Chinese medicines (TCM). TCM is a comprehensive system of medical practice that has been used to diagnose, treat and prevent illnesses more than 3000 years. Metabolomics represents a powerful approach that provides a dynamic picture of the phenotype of biosystems through the study of endogenous metabolites, and its methods resemble those of TCM. Recently, metabolomics tools have been used for facilitating interactional effects of both Western medicine and TCM. We describe a protocol for investigating how metabolomics can be used to open up 'dialogue' between Chinese and Western medicine, and facilitate lead compound discovery and development from TCM. Metabolomics will bridge the cultural gap between TCM and Western medicine and improve development of integrative medicine, and maximally benefiting the human. Copyright © 2014 John Wiley & Sons, Ltd.

  19. Optimal preprocessing of serum and urine metabolomic data fusion for staging prostate cancer through design of experiment

    International Nuclear Information System (INIS)

    Zheng, Hong; Cai, Aimin; Zhou, Qi; Xu, Pengtao; Zhao, Liangcai; Li, Chen; Dong, Baijun; Gao, Hongchang

    2017-01-01

    Accurate classification of cancer stages will achieve precision treatment for cancer. Metabolomics presents biological phenotypes at the metabolite level and holds a great potential for cancer classification. Since metabolomic data can be obtained from different samples or analytical techniques, data fusion has been applied to improve classification accuracy. Data preprocessing is an essential step during metabolomic data analysis. Therefore, we developed an innovative optimization method to select a proper data preprocessing strategy for metabolomic data fusion using a design of experiment approach for improving the classification of prostate cancer (PCa) stages. In this study, urine and serum samples were collected from participants at five phases of PCa and analyzed using a 1 H NMR-based metabolomic approach. Partial least squares-discriminant analysis (PLS-DA) was used as a classification model and its performance was assessed by goodness of fit (R 2 ) and predictive ability (Q 2 ). Results show that data preprocessing significantly affect classification performance and depends on data properties. Using the fused metabolomic data from urine and serum, PLS-DA model with the optimal data preprocessing (R 2  = 0.729, Q 2  = 0.504, P < 0.0001) can effectively improve model performance and achieve a better classification result for PCa stages as compared with that without data preprocessing (R 2  = 0.139, Q 2  = 0.006, P = 0.450). Therefore, we propose that metabolomic data fusion integrated with an optimal data preprocessing strategy can significantly improve the classification of cancer stages for precision treatment. - Highlights: • NMR metabolomic analysis of body fluids can be used for staging prostate cancer. • Data preprocessing is an essential step for metabolomic analysis. • Data fusion improves information recovery for cancer classification. • Design of experiment achieves optimal preprocessing of metabolomic data fusion.

  20. Metabolomics of the tumor microenvironment in pediatric acute lymphoblastic leukemia.

    Directory of Open Access Journals (Sweden)

    Stefano Tiziani

    Full Text Available The tumor microenvironment is emerging as an important therapeutic target. Most studies, however, are focused on the protein components, and relatively little is known of how the microenvironmental metabolome might influence tumor survival. In this study, we examined the metabolic profiles of paired bone marrow (BM and peripheral blood (PB samples from 10 children with acute lymphoblastic leukemia (ALL. BM and PB samples from the same patient were collected at the time of diagnosis and after 29 days of induction therapy, at which point all patients were in remission. We employed two analytical platforms, high-resolution magnetic resonance spectroscopy and gas chromatography-mass spectrometry, to identify and quantify 102 metabolites in the BM and PB. Standard ALL therapy, which includes l-asparaginase, completely removed circulating asparagine, but not glutamine. Statistical analyses of metabolite correlations and network reconstructions showed that the untreated BM microenvironment was characterized by a significant network-level signature: a cluster of highly correlated lipids and metabolites involved in lipid metabolism (p<0.006. In contrast, the strongest correlations in the BM upon remission were observed among amino acid metabolites and derivatives (p<9.2 × 10(-10. This study provides evidence that metabolic characterization of the cancer niche could generate new hypotheses for the development of cancer therapies.

  1. Phosphate stresses affect ionome and metabolome in tea plants.

    Science.gov (United States)

    Ding, Zhaotang; Jia, Sisi; Wang, Yu; Xiao, Jun; Zhang, Yinfei

    2017-11-01

    In order to study the response of tea plants to P stress, we conducted the ionomic and metabolomic analysis by ICP-OES, GC-MS and LC-MS. The results demonstrated that P was antagonistic with S, and was cooperative with Cu, Zn, Mn and Fe under P-deficiency. However, P was antagonistic with Mn, Fe and S, and was cooperative with Cu and Zn under P-excess. Moreover, P-deficiency or excess reduced the syntheses of flavonoids and phosphorylated metabolites. P-deficiency decreased the amount of glutamate and increased the content of glutamine, while P-excess decreased the content of glutamine. Besides, P-deficiency increased three organic acids and decreased three organic acids. P-excess increased the contents of malic acid, oxalic acid, ribonic acid and etc. involved in primary metabolism, but decreased the contents of p-coumaric acid, indoleacrylic acid, related to secondary metabolism. Furthermore, the contents of Mn and Zn were found to be positively related to the amounts of myricetin and quercetin, and the content of Mn to be positively related to the amount of arabinose. The results implied that the P stresses severely disturbed the metabolism of minerals and metabolites in tea plants, which influenced the yield and quality of tea. Copyright © 2017. Published by Elsevier Masson SAS.

  2. Serum and Plasma Metabolomic Biomarkers for Lung Cancer.

    Science.gov (United States)

    Kumar, Nishith; Shahjaman, Md; Mollah, Md Nurul Haque; Islam, S M Shahinul; Hoque, Md Aminul

    2017-01-01

    In drug invention and early disease prediction of lung cancer, metabolomic biomarker detection is very important. Mortality rate can be decreased, if cancer is predicted at the earlier stage. Recent diagnostic techniques for lung cancer are not prognosis diagnostic techniques. However, if we know the name of the metabolites, whose intensity levels are considerably changing between cancer subject and control subject, then it will be easy to early diagnosis the disease as well as to discover the drug. Therefore, in this paper we have identified the influential plasma and serum blood sample metabolites for lung cancer and also identified the biomarkers that will be helpful for early disease prediction as well as for drug invention. To identify the influential metabolites, we considered a parametric and a nonparametric test namely student׳s t-test as parametric and Kruskal-Wallis test as non-parametric test. We also categorized the up-regulated and down-regulated metabolites by the heatmap plot and identified the biomarkers by support vector machine (SVM) classifier and pathway analysis. From our analysis, we got 27 influential (p-value<0.05) metabolites from plasma sample and 13 influential (p-value<0.05) metabolites from serum sample. According to the importance plot through SVM classifier, pathway analysis and correlation network analysis, we declared 4 metabolites (taurine, aspertic acid, glutamine and pyruvic acid) as plasma biomarker and 3 metabolites (aspartic acid, taurine and inosine) as serum biomarker.

  3. NMR-based stable isotope resolved metabolomics in systems biochemistry

    International Nuclear Information System (INIS)

    Fan, Teresa W-M.; Lane, Andrew N.

    2011-01-01

    An important goal of metabolomics is to characterize the changes in metabolic networks in cells or various tissues of an organism in response to external perturbations or pathologies. The profiling of metabolites and their steady state concentrations does not directly provide information regarding the architecture and fluxes through metabolic networks. This requires tracer approaches. NMR is especially powerful as it can be used not only to identify and quantify metabolites in an unfractionated mixture such as biofluids or crude cell/tissue extracts, but also determine the positional isotopomer distributions of metabolites derived from a precursor enriched in stable isotopes such as 13 C and 15 N via metabolic transformations. In this article we demonstrate the application of a variety of 2-D NMR editing experiments to define the positional isotopomers of compounds present in polar and non-polar extracts of human lung cancer cells grown in either [U– 13 C]-glucose or [U– 13 C, 15 N]-glutamine as source tracers. The information provided by such experiments enabled unambiguous reconstruction of metabolic pathways, which is the foundation for further metabolic flux modeling.

  4. Metabolomic profiling to characterize acute intestinal ischemia/reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Rachel G Khadaroo

    Full Text Available Sepsis and septic shock are the leading causes of death in critically ill patients. Acute intestinal ischemia/reperfusion (AII/R is an adaptive response to shock. The high mortality rate from AII/R is due to the severity of the disease and, more importantly, the failure of timely diagnosis. The objective of this investigation is to use nuclear magnetic resonance (NMR analysis to characterize urine metabolomic profile of AII/R injury in a mouse model. Animals were exposed to sham, early (30 min or late (60 min acute intestinal ischemia by complete occlusion of the superior mesenteric artery, followed by 2 hrs of reperfusion. Urine was collected and analyzed by NMR spectroscopy. Urinary metabolite concentrations demonstrated that different profiles could be delineated based on the duration of the intestinal ischemia. Metabolites such as allantoin, creatinine, proline, and methylamine could be predictive of AII/R injury. Lactate, currently used for clinical diagnosis, was found not to significantly contribute to the classification model for either early or late ischemia. This study demonstrates that patterns of changes in urinary metabolites are effective at distinguishing AII/R progression in an animal model. This is a proof-of-concept study to further support examination of metabolites in the clinical diagnosis of intestinal ischemia reperfusion injury in patients. The discovery of a fingerprint metabolite profile of AII/R will be a major advancement in the diagnosis, treatment, and prevention of systemic injury in critically ill patients.

  5. Environmental metabolomics with data science for investigating ecosystem homeostasis.

    Science.gov (United States)

    Kikuchi, Jun; Ito, Kengo; Date, Yasuhiro

    2018-02-01

    A natural ecosystem can be viewed as the interconnections between complex metabolic reactions and environments. Humans, a part of these ecosystems, and their activities strongly affect the environments. To account for human effects within ecosystems, understanding what benefits humans receive by facilitating the maintenance of environmental homeostasis is important. This review describes recent applications of several NMR approaches to the evaluation of environmental homeostasis by metabolic profiling and data science. The basic NMR strategy used to evaluate homeostasis using big data collection is similar to that used in human health studies. Sophisticated metabolomic approaches (metabolic profiling) are widely reported in the literature. Further challenges include the analysis of complex macromolecular structures, and of the compositions and interactions of plant biomass, soil humic substances, and aqueous particulate organic matter. To support the study of these topics, we also discuss sample preparation techniques and solid-state NMR approaches. Because NMR approaches can produce a number of data with high reproducibility and inter-institution compatibility, further analysis of such data using machine learning approaches is often worthwhile. We also describe methods for data pretreatment in solid-state NMR and for environmental feature extraction from heterogeneously-measured spectroscopic data by machine learning approaches. Copyright © 2017. Published by Elsevier B.V.

  6. Oxidative and Non-Oxidative Metabolomics of Ethanol.

    Science.gov (United States)

    Dinis-Oliveira, Ricardo Jorge

    2016-01-01

    It is well known that ethanol can cause significant morbidity and mortality, and much of the related toxic effects can be explained by its metabolic profile. This work performs a complete review of the metabolism of ethanol focusing on both major and minor metabolites. An exhaustive literature search was carried out using textual and structural queries for ethanol and related known metabolizing enzymes and metabolites. The main pathway of metabolism is catalyzed by cytosolic alcohol dehydrogenase, which exhibits multiple isoenzymes and genetic polymorphisms with clinical and forensic implications. Another two oxidative routes, the highly inducible CYP2E1 system and peroxisomal catalase may acquire relevance under specific circumstances. In addition to oxidative metabolism, ethanol also originates minor metabolites such as ethyl glucuronide, ethyl sulfate, ethyl phosphate, ethyl nitrite, phosphatidylethanol and fatty acid ethyl esters. These metabolites represent alternative biomarkers since they can be detected several hours or days after ethanol exposure. It is expected that knowing the metabolomics of ethanol may provide additional insights to better understand the toxicological effects and the variability of dose response.

  7. "Gear mechanism" of bariatric interventions revealed by untargeted metabolomics.

    Science.gov (United States)

    Samczuk, Paulina; Luba, Magdalena; Godzien, Joanna; Mastrangelo, Annalaura; Hady, Hady Razak; Dadan, Jacek; Barbas, Coral; Gorska, Maria; Kretowski, Adam; Ciborowski, Michal

    2018-03-20

    Mechanisms responsible for metabolic gains after bariatric surgery are not entirely clear. The purpose of this study was evaluation of metabolic changes after laparoscopic Roux-en-Y gastric bypass or laparoscopic sleeve gastrectomy in semi-annual follow up. The study participants were selected from obese patients with T2DM who underwent one of the mentioned bariatric procedures. Serum metabolic fingerprinting by use of liquid and gas chromatography with mass spectrometry detection was performed on samples obtained from studied patients before, one, and six months post-surgery. Performed analyses resulted in 49 significant and identified metabolites. Comparison of the two described procedures has allowed to detect metabolites linked with numerous pathways, processes and diseases. Based on the metabolites detected and pathways affected, we propose a "gear mechanism" showing molecular changes evoked by both bariatric procedures. Critical evaluation of clinical data and obtained metabolomics results enables us to conclude that both procedures are very similar in terms of general clinical outcome, but they strongly differ from each other in molecular mechanisms leading to the final effect. For the first time general metabolic effect of bariatric procedures is described. New hypotheses concerning molecular mechanisms induced by bariatric surgeries and new gut microbiota modulations are presented. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Untargeted Metabolomic Analysis of Capsicum spp. by GC-MS.

    Science.gov (United States)

    Aranha, Bianca Camargo; Hoffmann, Jessica Fernanda; Barbieri, Rosa Lia; Rombaldi, Cesar Valmor; Chaves, Fábio Clasen

    2017-09-01

    In order to conserve the biodiversity of Capsicum species and find genotypes with potential to be utilised commercially, Embrapa Clima Temperado maintains an active germplasm collection (AGC) that requires characterisation, enabling genotype selection and support for breeding programmes. The objective of this study was to characterise pepper accessions from the Embrapa Clima Temperado AGC and differentiate species based on their metabolic profile using an untargeted metabolomics approach. Cold (-20°C) methanol extraction residue of freeze-dried fruit samples was partitioned into water/methanol (A) and chloroform (B) fractions. The polar fraction (A) was derivatised and both fractions (A and B) were analysed by gas chromatography coupled to mass spectrometry (GC-MS). Data from each fraction was analysed using a multivariate principal component analysis (PCA) with XCMS software. Amino acids, sugars, organic acids, capsaicinoids, and hydrocarbons were identified. Outlying accessions including P116 (C. chinense), P46, and P76 (C. annuum) were observed in a PCA plot mainly due to their high sucrose and fructose contents. PCA also indicated a separation of P221 (C. annuum) and P200 (C. chinense), because of their high dihydrocapsaicin content. Although the metabolic profiling did not allow for grouping by species, it permitted the simultaneous identification and quantification of several compounds complementing and expanding the metabolic database of the studied Capsicum spp. in the AGC. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  9. Metabolomics Approach Reveals Integrated Metabolic Network Associated with Serotonin Deficiency

    Science.gov (United States)

    Weng, Rui; Shen, Sensen; Tian, Yonglu; Burton, Casey; Xu, Xinyuan; Liu, Yi; Chang, Cuilan; Bai, Yu; Liu, Huwei

    2015-07-01

    Serotonin is an important neurotransmitter that broadly participates in various biological processes. While serotonin deficiency has been associated with multiple pathological conditions such as depression, schizophrenia, Alzheimer’s disease and Parkinson’s disease, the serotonin-dependent mechanisms remain poorly understood. This study therefore aimed to identify novel biomarkers and metabolic pathways perturbed by serotonin deficiency using metabolomics approach in order to gain new metabolic insights into the serotonin deficiency-related molecular mechanisms. Serotonin deficiency was achieved through pharmacological inhibition of tryptophan hydroxylase (Tph) using p-chlorophenylalanine (pCPA) or genetic knockout of the neuronal specific Tph2 isoform. This dual approach improved specificity for the serotonin deficiency-associated biomarkers while minimizing nonspecific effects of pCPA treatment or Tph2 knockout (Tph2-/-). Non-targeted metabolic profiling and a targeted pCPA dose-response study identified 21 biomarkers in the pCPA-treated mice while 17 metabolites in the Tph2-/- mice were found to be significantly altered compared with the control mice. These newly identified biomarkers were associated with amino acid, energy, purine, lipid and gut microflora metabolisms. Oxidative stress was also found to be significantly increased in the serotonin deficient mice. These new biomarkers and the overall metabolic pathways may provide new understanding for the serotonin deficiency-associated mechanisms under multiple pathological states.

  10. Exploratory urinary metabolomics of type 1 leprosy reactions.

    Science.gov (United States)

    Mayboroda, Oleg A; van Hooij, Anouk; Derks, Rico; van den Eeden, Susan J F; Dijkman, Karin; Khadge, Saraswoti; Thapa, Pratibha; Kunwar, Chhatra B; Hagge, Deanna A; Geluk, Annemieke

    2016-04-01

    Leprosy is an infectious disease caused by Mycobacterium leprae that affects the skin and nerves. Although curable with multidrug therapy, leprosy is complicated by acute inflammatory episodes called reactions, which are the major causes of irreversible neuropathy in leprosy that occur before, during, and even after treatment. Early diagnosis and prompt treatment of reactions reduces the risk of permanent disability. This exploratory study investigated whether urinary metabolic profiles could be identified that correlate with early signs of reversal reactions (RR). A prospective cohort of leprosy patients with and without reactions and endemic controls was recruited in Nepal. Urine-derived metabolic profiles were measured longitudinally. Thus, a conventional area of biomarker identification for leprosy was extended to non-invasive urine testing. It was found that the urinary metabolome could be used to discriminate endemic controls from untreated patients with mycobacterial disease. Moreover, metabolic signatures in the urine of patients developing RR were clearly different before RR onset compared to those at RR diagnosis. This study indicates that urinary metabolic profiles are promising host biomarkers for the detection of intra-individual changes during acute inflammation in leprosy and could contribute to early treatment and prevention of tissue damage. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Exceptional evolutionary divergence of human muscle and brain metabolomes parallels human cognitive and physical uniqueness.

    Directory of Open Access Journals (Sweden)

    Katarzyna Bozek

    2014-05-01

    Full Text Available Metabolite concentrations reflect the physiological states of tissues and cells. However, the role of metabolic changes in species evolution is currently unknown. Here, we present a study of metabolome evolution conducted in three brain regions and two non-neural tissues from humans, chimpanzees, macaque monkeys, and mice based on over 10,000 hydrophilic compounds. While chimpanzee, macaque, and mouse metabolomes diverge following the genetic distances among species, we detect remarkable acceleration of metabolome evolution in human prefrontal cortex and skeletal muscle affecting neural and energy metabolism pathways. These metabolic changes could not be attributed to environmental conditions and were confirmed against the expression of their corresponding enzymes. We further conducted muscle strength tests in humans, chimpanzees, and macaques. The results suggest that, while humans are characterized by superior cognition, their muscular performance might be markedly inferior to that of chimpanzees and macaque monkeys.

  12. Using fragmentation trees and mass spectral trees for identifying unknown compounds in metabolomics.

    Science.gov (United States)

    Vaniya, Arpana; Fiehn, Oliver

    2015-06-01

    Identification of unknown metabolites is the bottleneck in advancing metabolomics, leaving interpretation of metabolomics results ambiguous. The chemical diversity of metabolism is vast, making structure identification arduous and time consuming. Currently, comprehensive analysis of mass spectra in metabolomics is limited to library matching, but tandem mass spectral libraries are small compared to the large number of compounds found in the biosphere, including xenobiotics. Resolving this bottleneck requires richer data acquisition and better computational tools. Multi-stage mass spectrometry (MSn) trees show promise to aid in this regard. Fragmentation trees explore the fragmentation process, generate fragmentation rules and aid in sub-structure identification, while mass spectral trees delineate the dependencies in multi-stage MS of collision-induced dissociations. This review covers advancements over the past 10 years as a tool for metabolite identification, including algorithms, software and databases used to build and to implement fragmentation trees and mass spectral annotations.

  13. A pilot study of the effect of human breast milk on urinary metabolome analysis in infants.

    Science.gov (United States)

    Shoji, Hiromichi; Taka, Hikari; Kaga, Naoko; Ikeda, Naho; Kitamura, Tomohiro; Miura, Yoshiki; Shimizu, Toshiaki

    2017-08-28

    This study aimed to examine the nutritional effect of breast feeding on healthy term infants by using urinary metabolome analysis. Urine samples were collected from 19 and 14 infants at 1 and 6 months, respectively. Infants were separated into two groups: the breast-fed group receiving metabolome analysis was performed using capillary electrophoresis-time-of-flight mass spectrometry (CE-TOF/MS). A total of 29 metabolites were detected by CE-TOF/MS metabolome analysis in all samples. Urinary excretion of choline metabolites (choline base solution, N,N-dimethylglycine, sarcosine, and betaine) at 1 month were significantly (pmetabolome analysis by the CE-TOF/MS method is useful for assessing nutritional metabolism in infants.

  14. Diurnal effects of anoxia on the metabolome of the seagrass Zostera marina

    DEFF Research Database (Denmark)

    Hasler-Sheetal, Harald; Fragner, Lena; Holmer, Marianne

    2015-01-01

    We investigated the response, adaptation and tolerance mechanisms of the temperate seagrass Zostera marina to water column anoxia. We exposed Z. marina to a diurnal light/dark cycle under anoxia and assessed the metabolic response by measuring the metabolome with gas chromatography coupled to mass...... spectrometry (GC–MS). During anoxia and light exposure the roots showed an altered metabolome whereas the leaves were only marginally affected, indicating that photosynthetically derived oxygen could satisfy the oxygen demand in the leaves but not in the roots. Nocturnal anoxia caused a biphasic shift...... in the metabolome of roots and leaves. The first phase, after 15 h under anoxia and 3 h of darkness showed a fast increase of lactate, pyruvate, GABA (γ-aminobutyric acid), succinate, alanine and a decrease in glutamate and glutamine. The second phase, after 21 h under anoxia and 9 h of darkness showed a decrease...

  15. Metabolomics and Integrative Omics for the Development of Thai Traditional Medicine

    Science.gov (United States)

    Khoomrung, Sakda; Wanichthanarak, Kwanjeera; Nookaew, Intawat; Thamsermsang, Onusa; Seubnooch, Patcharamon; Laohapand, Tawee; Akarasereenont, Pravit

    2017-01-01

    In recent years, interest in studies of traditional medicine in Asian and African countries has gradually increased due to its potential to complement modern medicine. In this review, we provide an overview of Thai traditional medicine (TTM) current development, and ongoing research activities of TTM related to metabolomics. This review will also focus on three important elements of systems biology analysis of TTM including analytical techniques, statistical approaches and bioinformatics tools for handling and analyzing untargeted metabolomics data. The main objective of this data analysis is to gain a comprehensive understanding of the system wide effects that TTM has on individuals. Furthermore, potential applications of metabolomics and systems medicine in TTM will also be discussed. PMID:28769804

  16. An introduction to metabolomics and its potential application in veterinary science.

    Science.gov (United States)

    Jones, Oliver A H; Cheung, Victoria L

    2007-10-01

    Metabolomics has been found to be applicable to a wide range of fields, including the study of gene function, toxicology, plant sciences, environmental analysis, clinical diagnostics, nutrition, and the discrimination of organism genotypes. This approach combines high-throughput sample analysis with computer-assisted multivariate pattern-recognition techniques. It is increasingly being deployed in toxico- and pharmacokinetic studies in the pharmaceutical industry, especially during the safety assessment of candidate drugs in human medicine. However, despite the potential of this technique to reduce both costs and the numbers of animals used for research, examples of the application of metabolomics in veterinary research are, thus far, rare. Here we give an introduction to metabolomics and discuss its potential in the field of veterinary science.

  17. Recent Advances in Targeted and Untargeted Metabolomics by NMR and MS/NMR Methods

    Energy Technology Data Exchange (ETDEWEB)

    Bingol, Kerem

    2018-04-18

    Metabolomics has made significant progress in multiple fronts in the last 18 months. This minireview aimed to give an overview of these advancements in the light of their contribution to targeted and untargeted metabolomics. New computational approaches have emerged to overcome manual absolute quantitation step of metabolites in 1D 1H NMR spectra. This provides more consistency between inter-laboratory comparisons. Integration of 2D NMR metabolomics databases under a unified web server allowed very accurate identification of the metabolites that have been catalogued in these databases. For the remaining uncatalogued and unknown metabolites, new cheminformatics approaches have been developed by combining NMR and mass spectrometry. These hybrid NMR/MS approaches accelerated the identification of unknowns in untargeted studies, and now they are allowing to profile ever larger number of metabolites in application studies.

  18. Variable selection methods in PLS regression - a comparison study on metabolomics data

    DEFF Research Database (Denmark)

    Karaman, İbrahim; Hedemann, Mette Skou; Knudsen, Knud Erik Bach

    . The aim of the metabolomics study was to investigate the metabolic profile in pigs fed various cereal fractions with special attention to the metabolism of lignans using LC-MS based metabolomic approach. References 1. Lê Cao KA, Rossouw D, Robert-Granié C, Besse P: A Sparse PLS for Variable Selection when...... integrated approach. Due to the high number of variables in data sets (both raw data and after peak picking) the selection of important variables in an explorative analysis is difficult, especially when different data sets of metabolomics data need to be related. Variable selection (or removal of irrelevant...... different strategies for variable selection on PLSR method were considered and compared with respect to selected subset of variables and the possibility for biological validation. Sparse PLSR [1] as well as PLSR with Jack-knifing [2] was applied to data in order to achieve variable selection prior...

  19. Discovery and validation of urinary exposure markers for different plant foods by untargeted metabolomics

    DEFF Research Database (Denmark)

    Andersen, Maj-Britt Schmidt; Kristensen, Mette; Manach, Claudine

    2014-01-01

    While metabolomics is increasingly used to investigate the food metabolome and identify new markers of food exposure, limited attention has been given to the validation of such markers. The main objectives of the present study were to (1) discover potential food exposure markers (PEMs) for a range...... of plant foods in a study setting with a mixed dietary background and (2) validate PEMs found in a previous meal study. Three-day weighed dietary records and 24-h urine samples were collected three times during a 6-month parallel intervention study from 107 subjects randomized to two distinct dietary...... patterns. An untargeted UPLC-qTOF-MS metabolomics analysis was performed on the urine samples, and all features detected underwent strict data analyses, including an iterative paired t test and sensitivity and specificity analyses for foods. A total of 22 unique PEMs were identified that covered 7 out...

  20. The Role of Mass Spectrometry-Based Metabolomics in Medical Countermeasures Against Radiation

    Science.gov (United States)

    Patterson, Andrew D.; Lanz, Christian; Gonzalez, Frank J.; Idle, Jeffrey R.

    2013-01-01

    Radiation metabolomics can be defined as the global profiling of biological fluids to uncover latent, endogenous small molecules whose concentrations change in a dose-response manner following exposure to ionizing radiation. In response to the potential threat of nuclear or radiological terrorism, the Center for High-Throughput Minimally Invasive Radiation Biodosimetry (CMCR) was established to develop field-deployable biodosimeters based, in principle, on rapid analysis by mass spectrometry of readily and easily obtainable biofluids. In this review, we briefly summarize radiation biology and key events related to actual and potential nuclear disasters, discuss the important contributions the field of mass spectrometry has made to the field of radiation metabolomics, and summarize current discovery efforts to use mass spectrometry-based metabolomics to identify dose-responsive urinary constituents, and ultimately to build and deploy a noninvasive high-throughput biodosimeter. PMID:19890938

  1. The effects of age and dietary restriction on the tissue-specific metabolome of Drosophila.

    Science.gov (United States)

    Laye, Matthew J; Tran, ViLinh; Jones, Dean P; Kapahi, Pankaj; Promislow, Daniel E L

    2015-10-01

    Dietary restriction (DR) is a robust intervention that extends lifespan and slows the onset of age-related diseases in diverse organisms. While significant progress has been made in attempts to uncover the genetic mechanisms of DR, there are few studies on the effects of DR on the metabolome. In recent years, metabolomic profiling has emerged as a powerful technology to understand the molecular causes and consequences of natural aging and disease-associated phenotypes. Here, we use high-resolution mass spectroscopy and novel computational approaches to examine changes in the metabolome from the head, thorax, abdomen, and whole body at multiple ages in Drosophila fed either a nutrient-rich ad libitum (AL) or nutrient-restricted (DR) diet. Multivariate analysis clearly separates the metabolome by diet in different tissues and different ages. DR significantly altered the metabolome and, in particular, slowed age-related changes in the metabolome. Interestingly, we observed interacting metabolites whose correlation coefficients, but not mean levels, differed significantly between AL and DR. The number and magnitude of positively correlated metabolites was greater under a DR diet. Furthermore, there was a decrease in positive metabolite correlations as flies aged on an AL diet. Conversely, DR enhanced these correlations with age. Metabolic set enrichment analysis identified several known (e.g., amino acid and NAD metabolism) and novel metabolic pathways that may affect how DR effects aging. Our results suggest that network structure of metabolites is altered upon DR and may play an important role in preventing the decline of homeostasis with age. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  2. Influence of the collection tube on metabolomic changes in serum and plasma.

    Science.gov (United States)

    López-Bascón, M A; Priego-Capote, F; Peralbo-Molina, A; Calderón-Santiago, M; Luque de Castro, M D

    2016-04-01

    Major threats in metabolomics clinical research are biases in sampling and preparation of biological samples. Bias in sample collection is a frequently forgotten aspect responsible for uncontrolled errors in metabolomics analysis. There is a great diversity of blood collection tubes for sampling serum or plasma, which are widely used in metabolomics analysis. Most of the existing studies dealing with the influence of blood collection on metabolomics analysis have been restricted to comparison between plasma and serum. However, polymeric gel tubes, which are frequently proposed to accelerate the separation of serum and plasma, have not been studied. In the present research, samples of serum or plasma collected in polymeric gel tubes were compared with those taken in conventional tubes from a metabolomics perspective using an untargeted GC-TOF/MS approach. The main differences between serum and plasma collected in conventional tubes affected to critical pathways such as the citric acid cycle, metabolism of amino acids, fructose and mannose metabolism and that of glycerolipids, and pentose and glucuronate interconversion. On the other hand, the polymeric gel only promoted differences at the metabolite level in serum since no critical differences were observed between plasma collected with EDTA tubes and polymeric gel tubes. Thus, the main changes were attributable to serum collected in gel and affected to the metabolism of amino acids such as alanine, proline and threonine, the glycerolipids metabolism, and two primary metabolites such as aconitic acid and lactic acid. Therefore, these metabolite changes should be taken into account in planning an experimental protocol for metabolomics analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. MetabR: an R script for linear model analysis of quantitative metabolomic data

    Directory of Open Access Journals (Sweden)

    Ernest Ben

    2012-10-01

    Full Text Available Abstract Background Metabolomics is an emerging high-throughput approach to systems biology, but data analysis tools are lacking compared to other systems level disciplines such as transcriptomics and proteomics. Metabolomic data analysis requires a normalization step to remove systematic effects of confounding variables on metabolite measurements. Current tools may not correctly normalize every metabolite when the relationships between each metabolite quantity and fixed-effect confounding variables are different, or for the effects of random-effect confounding variables. Linear mixed models, an established methodology in the microarray literature, offer a standardized and flexible approach for removing the effects of fixed- and random-effect confounding variables from metabolomic data. Findings Here we present a simple menu-driven program, “MetabR”, designed to aid researchers with no programming background in statistical analysis of metabolomic data. Written in the open-source statistical programming language R, MetabR implements linear mixed models to normalize metabolomic data and analysis of variance (ANOVA to test treatment differences. MetabR exports normalized data, checks statistical model assumptions, identifies differentially abundant metabolites, and produces output files to help with data interpretation. Example data are provided to illustrate normalization for common confounding variables and to demonstrate the utility of the MetabR program. Conclusions We developed MetabR as a simple and user-friendly tool for implementing linear mixed model-based normalization and statistical analysis of targeted metabolomic data, which helps to fill a lack of available data analysis tools in this field. The program, user guide, example data, and any future news or updates related to the program may be found at http://metabr.r-forge.r-project.org/.

  4. Data standards can boost metabolomics research, and if there is a will, there is a way.

    Science.gov (United States)

    Rocca-Serra, Philippe; Salek, Reza M; Arita, Masanori; Correa, Elon; Dayalan, Saravanan; Gonzalez-Beltran, Alejandra; Ebbels, Tim; Goodacre, Royston; Hastings, Janna; Haug, Kenneth; Koulman, Albert; Nikolski, Macha; Oresic, Matej; Sansone, Susanna-Assunta; Schober, Daniel; Smith, James; Steinbeck, Christoph; Viant, Mark R; Neumann, Steffen

    2016-01-01

    Thousands of articles using metabolomics approaches are published every year. With the increasing amounts of data being produced, mere description of investigations as text in manuscripts is not sufficient to enable re-use anymore: the underlying data needs to be published together with the findings in the literature to maximise the benefit from public and private expenditure and to take advantage of an enormous opportunity to improve scientific reproducibility in metabolomics and cognate disciplines. Reporting recommendations in metabolomics started to emerge about a decade ago and were mostly concerned with inventories of the information that had to be reported in the literature for consistency. In recent years, metabolomics data standards have developed extensively, to include the primary research data, derived results and the experimental description and importantly the metadata in a machine-readable way. This includes vendor independent data standards such as mzML for mass spectrometry and nmrML for NMR raw data that have both enabled the development of advanced data processing algorithms by the scientific community. Standards such as ISA-Tab cover essential metadata, including the experimental design, the applied protocols, association between samples, data files and the experimental factors for further statistical analysis. Altogether, they pave the way for both reproducible research and data reuse, including meta-analyses. Further incentives to prepare standards compliant data sets include new opportunities to publish data sets, but also require a little "arm twisting" in the author guidelines of scientific journals to submit the data sets to public repositories such as the NIH Metabolomics Workbench or MetaboLights at EMBL-EBI. In the present article, we look at standards for data sharing, investigate their impact in metabolomics and give suggestions to improve their adoption.

  5. Protective effect of natural products and hormones in colon cancer using metabolome: A physiological overview

    Directory of Open Access Journals (Sweden)

    Khaled Mohamed Mohamed Koriem

    2017-10-01

    Full Text Available Globally, the third cause of males cancer and the fourth cause of females cancer is colon cancer (CC. In Egypt, high CC percentage occurs in children and in individuals below 40 years of age. The complete loss of biological enzyme function is the main cause of CC and consequently CC increased in smoking and pollution exposure. The aim of this review is to focus on the application of metabolome as a physiological tool that can play an important role in preventing CC incidence by natural products and hormones. The dietary factors, intestinal micro-flora and endogenously produced metabolites are the main three causes that produce free radicals in the colon. A correlation occurs between the enzyme activity and CC polymorphisms or property. Nowadays metabolome is applied with the progress of different analytical methods, data bases and tools for cancer predication and stimulation especially in CC cases. Metabolism is defined as intracellular chemical reactions that produce chemical substances and energies sustaining life. Metabolic pathway networks are also composed of links that are defined as transformation of chemical structures between two metabolites and an enzyme reaction. The most important advantage of metabolome is its ability to analyze metabolites from any source, regardless of origin, where the application of liquid chromatography combined with mass spectra in metabolome analysis to a series of cancer cell lines that were progressively more tumorigenic due to the induction of 1,2,3 or 4 oncogenes to cell lines could be a metabolome example application. In conclusion, natural products and hormones are very important in preventing CC in humans and animal models where both natural products and hormones play a significant and important effect in regulating physiological process especially in CC cases. In this situation, metabolome must increase in its application in the future for the diagnosis of CC cases.

  6. NMR and pattern recognition methods in metabolomics: From data acquisition to biomarker discovery: A review

    Energy Technology Data Exchange (ETDEWEB)

    Smolinska, Agnieszka, E-mail: A.Smolinska@science.ru.nl [Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen (Netherlands); Blanchet, Lionel [Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen (Netherlands); Department of Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Buydens, Lutgarde M.C.; Wijmenga, Sybren S. [Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen (Netherlands)

    2012-10-31

    Highlights: Black-Right-Pointing-Pointer Procedures for acquisition of different biofluids by NMR. Black-Right-Pointing-Pointer Recent developments in metabolic profiling of different biofluids by NMR are presented. Black-Right-Pointing-Pointer The crucial steps involved in data preprocessing and multivariate chemometric analysis are reviewed. Black-Right-Pointing-Pointer Emphasis is given on recent findings on Multiple Sclerosis via NMR and pattern recognition methods. - Abstract: Metabolomics is the discipline where endogenous and exogenous metabolites are assessed, identified and quantified in different biological samples. Metabolites are crucial components of biological system and highly informative about its functional state, due to their closeness to functional endpoints and to the organism's phenotypes. Nuclear Magnetic Resonance (NMR) spectroscopy, next to Mass Spectrometry (MS), is one of the main metabolomics analytical platforms. The technological developments in the field of NMR spectroscopy have enabled the identification and quantitative measurement of the many metabolites in a single sample of biofluids in a non-targeted and non-destructive manner. Combination of NMR spectra of biofluids and pattern recognition methods has driven forward the application of metabolomics in the field of biomarker discovery. The importance of metabolomics in diagnostics, e.g. in identifying biomarkers or defining pathological status, has been growing exponentially as evidenced by the number of published papers. In this review, we describe the developments in data acquisition and multivariate analysis of NMR-based metabolomics data, with particular emphasis on the metabolomics of Cerebrospinal Fluid (CSF) and biomarker discovery in Multiple Sclerosis (MScl).

  7. Biomarker Discovery in Human Prostate Cancer: an Update in Metabolomics Studies

    Directory of Open Access Journals (Sweden)

    Ana Rita Lima

    2016-08-01

    Full Text Available Prostate cancer (PCa is the most frequently diagnosed cancer and the second leading cause of cancer death among men in Western countries. Current screening techniques are based on the measurement of serum prostate specific antigen (PSA levels and digital rectal examination. A decisive diagnosis of PCa is based on prostate biopsies; however, this approach can lead to false-positive and false-negative results. Therefore, it is important to discover new biomarkers for the diagnosis of PCa, preferably noninvasive ones. Metabolomics is an approach that allows the analysis of the entire metabolic profile of a biological system. As neoplastic cells have a unique metabolic phenotype related to cancer development and progression, the identification of dysfunctional metabolic pathways using metabolomics can be used to discover cancer biomarkers and therapeutic targets. In this study, we review several metabolomics studies performed in prostatic fluid, blood plasma/serum, urine, tissues and immortalized cultured cell lines with the objective of discovering alterations in the metabolic phenotype of PCa and thus discovering new biomarkers for the diagnosis of PCa. Encouraging results using metabolomics have been reported for PCa, with sarcosine being one of the most promising biomarkers identified to date. However, the use of sarcosine as a PCa biomarker in the clinic remains a controversial issue within the scientific community. Beyond sarcosine, other metabolites are considered to be biomarkers for PCa, but they still need clinical validation. Despite the lack of metabolomics biomarkers reaching clinical practice, metabolomics proved to be a powerful tool in the discovery of new biomarkers for PCa detection.

  8. Biomarkers for predicting type 2 diabetes development-Can metabolomics improve on existing biomarkers?

    Directory of Open Access Journals (Sweden)

    Otto Savolainen

    Full Text Available The aim was to determine if metabolomics could be used to build a predictive model for type 2 diabetes (T2D risk that would improve prediction of T2D over current risk markers.Gas chromatography-tandem mass spectrometry metabolomics was used in a nested case-control study based on a screening sample of 64-year-old Caucasian women (n = 629. Candidate metabolic markers of T2D were identified in plasma obtained at baseline and the power to predict diabetes was tested in 69 incident cases occurring during 5.5 years follow-up. The metabolomics results were used as a standalone prediction model and in combination with established T2D predictive biomarkers for building eight T2D prediction models that were compared with each other based on their sensitivity and selectivity for predicting T2D.Established markers of T2D (impaired fasting glucose, impaired glucose tolerance, insulin resistance (HOMA, smoking, serum adiponectin alone, and in combination with metabolomics had the largest areas under the curve (AUC (0.794 (95% confidence interval [0.738-0.850] and 0.808 [0.749-0.867] respectively, with the standalone metabolomics model based on nine fasting plasma markers having a lower predictive power (0.657 [0.577-0.736]. Prediction based on non-blood based measures was 0.638 [0.565-0.711].Established measures of T2D risk remain the best predictor of T2D risk in this population. Additional markers detected using metabolomics are likely related to these measures as they did not enhance the overall prediction in a combined model.

  9. Metabolomics of pulmonary exacerbations reveals the personalized nature of cystic fibrosis disease

    Directory of Open Access Journals (Sweden)

    Robert A. Quinn

    2016-08-01

    Full Text Available Background. Cystic fibrosis (CF is a genetic disease that results in chronic infections of the lungs. CF patients experience intermittent pulmonary exacerbations (CFPE that are associated with poor clinical outcomes. CFPE involves an increase in disease symptoms requiring more aggressive therapy. Methods. Longitudinal sputum samples were collected from 11 patients (n = 44 samples to assess the effect of exacerbations on the sputum metabolome using liquid chromatography-tandem mass spectrometry (LC-MS/MS. The data was analyzed with MS/MS molecular networking and multivariate statistics. Results. The individual patient source had a larger influence on the metabolome of sputum than the clinical state (exacerbation, treatment, post-treatment, or stable. Of the 4,369 metabolites detected, 12% were unique to CFPE samples; however, the only known metabolites significantly elevated at exacerbation across the dataset were platelet activating factor (PAF and a related monacylglycerophosphocholine lipid. Due to the personalized nature of the sputum metabolome, a single patient was followed for 4.2 years (capturing four separate exacerbation events as a case study for the detection of personalized biomarkers with metabolomics. PAF and related lipids were significantly elevated during CFPEs of this patient and ceramide was elevated during CFPE treatment. Correlating the abundance of bacterial 16S rRNA gene amplicons to metabolomics data from the same samples during a CFPE demonstrated that antibiotics were positively correlated to Stenotrophomonas and Pseudomonas, while ceramides and other lipids were correlated with Streptococcus, Rothia, and anaerobes. Conclusions. This study identified PAF and other inflammatory lipids as potential biomarkers of CFPE, but overall, the metabolome of CF sputum was patient specific, supporting a personalized approach to molecular detection of CFPE onset.

  10. A targeted metabolomics approach for clinical diagnosis of inborn errors of metabolism.

    Science.gov (United States)

    Jacob, Minnie; Malkawi, Abeer; Albast, Nour; Al Bougha, Salam; Lopata, Andreas; Dasouki, Majed; Abdel Rahman, Anas M

    2018-09-26

    Metabolome, the ultimate functional product of the genome, can be studied through identification and quantification of small molecules. The global metabolome influences the individual phenotype through clinical and environmental interventions. Metabolomics has become an integral part of clinical research and allowed for another dimension of better understanding of disease pathophysiology and mechanism. More than 95% of the clinical biochemistry laboratory routine workload is based on small molecular identification, which can potentially be analyzed through metabolomics. However, multiple challenges in clinical metabolomics impact the entire workflow and data quality, thus the biological interpretation needs to be standardized for a reproducible outcome. Herein, we introduce the establishment of a comprehensive targeted metabolomics method for a panel of 220 clinically relevant metabolites using Liquid chromatography-tandem mass spectrometry (LC-MS/MS) standardized for clinical research. The sensitivity, reproducibility and molecular stability of each targeted metabolite (amino acids, organic acids, acylcarnitines, sugars, bile acids, neurotransmitters, polyamines, and hormones) were assessed under multiple experimental conditions. The metabolic tissue distribution was determined in various rat organs. Furthermore, the method was validated in dry blood spot (DBS) samples collected from patients known to have various inborn errors of metabolism (IEMs). Using this approach, our panel appears to be sensitive and robust as it demonstrated differential and unique metabolic profiles in various rat tissues. Also, as a prospective screening method, this panel of diverse metabolites has the ability to identify patients with a wide range of IEMs who otherwise may need multiple, time-consuming and expensive biochemical assays causing a delay in clinical management. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Mono-colonization with Lactobacillus acidophilus NCFM affects the intestinal metabolome in mice

    DEFF Research Database (Denmark)

    Roager, Henrik Munch; Sulek, Karolina; Skov, Kasper

    (NCFM) on the intestinal metabolome (jejunum, caecum, and colon) in mice by comparing NCFM mono-colonized (MC) mice with GF mice using liquid chromatography coupled to mass-spectrometry (LC-MS). The study adds to existing evidence that NCFM in vivo affects the bile acid signature of mice......-tocopherol acetate) in higher levels in the intestine of GF mice compared to MC mice, suggesting that NCFM either metabolizes the compound or indirectly affects the absorption by changing the metabolome in the intestine. The use of NCFM to increase the uptake of vitamin E supplements in humans and animals...

  12. RapidRIP quantifies the intracellular metabolome of 7 industrial strains of E. coli

    DEFF Research Database (Denmark)

    McCloskey, Douglas; Xu, Julia; Schrübbers, Lars

    2018-01-01

    Fast metabolite quantification methods are required for high throughput screening of microbial strains obtained by combinatorial or evolutionary engineering approaches. In this study, a rapid RIP-LC-MS/MS (RapidRIP) method for high-throughput quantitative metabolomics was developed and validated...... to quantify the metabolome of seven industrial strains of E. coli revealing significant differences in glycolytic, pentose phosphate, TCA cycle, amino acid, and energy and cofactor metabolites were found. These differences translated to statistically and biologically significant differences in thermodynamics...

  13. Chicken hepatic response to chronic heat stress using integrated transcriptome and metabolome analysis.

    Directory of Open Access Journals (Sweden)

    Sara F Jastrebski

    Full Text Available The liver plays a central role in metabolism and is important in maintaining homeostasis throughout the body. This study integrated transcriptomic and metabolomic data to understand how the liver responds under chronic heat stress. Chickens from a rapidly growing broiler line were heat stressed for 8 hours per day for one week and liver samples were collected at 28 days post hatch. Transcriptome analysis reveals changes in genes responsible for cell cycle regulation, DNA replication, and DNA repair along with immune function. Integrating the metabolome and transcriptome data highlighted multiple pathways affected by heat stress including glucose, amino acid, and lipid metabolism along with glutathione production and beta-oxidation.

  14. Coping with iron limitation: a metabolomic study of Synechocystis sp PCC 6803

    Czech Academy of Sciences Publication Activity Database

    Rivas-Ubach, A.; Poret-Peterson, A. T.; Penuelas, J.; Sardans, J.; Pérez-Trujillo, M.; Legido-Quigley, C.; Oravec, Michal; Urban, Otmar; Elser, J. J.

    2018-01-01

    Roč. 40, č. 2 (2018), č. článku 28. ISSN 0137-5881 R&D Projects: GA MŠk(CZ) LO1415; GA MŠk(CZ) LM2015061 Institutional support: RVO:86652079 Keywords : sp strain pcc-6803 * ocean acidification * unicellular cyanobacterium * marine-phytoplankton * foliar metabolomes * nitrogen-fixation * metal homeostasis * oxidative stress * pacific-ocean * responses * Metabolomics * Metallomics * Iron limitation * Cyanobacteria * Ecological stoichiometry Subject RIV: EH - Ecology, Behaviour OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 1.364, year: 2016

  15. Conventional and Advanced Separations in Mass Spectrometry-Based Metabolomics: Methodologies and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Heyman, Heino M.; Zhang, Xing; Tang, Keqi; Baker, Erin Shammel; Metz, Thomas O.

    2016-02-16

    Metabolomics is the quantitative analysis of all metabolites in a given sample. Due to the chemical complexity of the metabolome, optimal separations are required for comprehensive identification and quantification of sample constituents. This chapter provides an overview of both conventional and advanced separations methods in practice for reducing the complexity of metabolite extracts delivered to the mass spectrometer detector, and covers gas chromatography (GC), liquid chromatography (LC), capillary electrophoresis (CE), supercritical fluid chromatography (SFC) and ion mobility spectrometry (IMS) separation techniques coupled with mass spectrometry (MS) as both uni-dimensional and as multi-dimensional approaches.

  16. Elucidating dynamic metabolic physiology through network integration of quantitative time-course metabolomics

    DEFF Research Database (Denmark)

    Bordbar, Aarash; Yurkovich, James T.; Paglia, Giuseppe

    2017-01-01

    The increasing availability of metabolomics data necessitates novel methods for deeper data analysis and interpretation. We present a flux balance analysis method that allows for the computation of dynamic intracellular metabolic changes at the cellular scale through integration of time-course ab......The increasing availability of metabolomics data necessitates novel methods for deeper data analysis and interpretation. We present a flux balance analysis method that allows for the computation of dynamic intracellular metabolic changes at the cellular scale through integration of time...

  17. Navigating the human metabolome for biomarker identification and design of pharmaceutical molecules

    DEFF Research Database (Denmark)

    Kouskoumvekaki, Irene; Panagiotou, Gianni

    2010-01-01

    medical practice, as well as drug discovery. In this paper, we present the most up-to-date metabolite and metabolic pathway resources, and we summarize the statistical, and machine-learning tools used for the analysis of data from clinical metabolomics. Through specific applications on cancer, diabetes...... Metabolome Database (HMDB) and the Chinese Natural Product Database (CNPD), we demonstrate the close relatedness of the two data sets of compounds, and we further illustrate how structural similarity with human metabolites could assist in the design of novel pharmaceuticals and the elucidation...

  18. Pre-analytic evaluation of volumetric absorptive microsampling and integration in a mass spectrometry-based metabolomics workflow.

    Science.gov (United States)

    Volani, Chiara; Caprioli, Giulia; Calderisi, Giovanni; Sigurdsson, Baldur B; Rainer, Johannes; Gentilini, Ivo; Hicks, Andrew A; Pramstaller, Peter P; Weiss, Guenter; Smarason, Sigurdur V; Paglia, Giuseppe

    2017-10-01

    Volumetric absorptive microsampling (VAMS) is a novel approach that allows single-drop (10 μL) blood collection. Integration of VAMS with mass spectrometry (MS)-based untargeted metabolomics is an attractive solution for both human and animal studies. However, to boost the use of VAMS in metabolomics, key pre-analytical questions need to be addressed. Therefore, in this work, we integrated VAMS in a MS-based untargeted metabolomics workflow and investigated pre-analytical strategies such as sample extraction procedures and metabolome stability at different storage conditions. We first evaluated the best extraction procedure for the polar metabolome and found that the highest number and amount of metabolites were recovered upon extraction with acetonitrile/water (70:30). In contrast, basic conditions (pH 9) resulted in divergent metabolite profiles mainly resulting from the extraction of intracellular metabolites originating from red blood cells. In addition, the prolonged storage of blood samples at room temperature caused significant changes in metabolome composition, but once the VAMS devices were stored at - 80 °C, the metabolome remained stable for up to 6 months. The time used for drying the sample did also affect the metabolome. In fact, some metabolites were rapidly degraded or accumulated in the sample during the first 48 h at room temperature, indicating that a longer drying step will significantly change the concentration in the sample. Graphical abstract Volumetric absorptive microsampling (VAMS) is a novel technology that allows single-drop blood collection and, in combination with mass spectrometry (MS)-based untargeted metabolomics, represents an attractive solution for both human and animal studies. In this work, we integrated VAMS in a MS-based untargeted metabolomics workflow and investigated pre-analytical strategies such as sample extraction procedures and metabolome stability at different storage conditions. The latter revealed that

  19. Effect of Antibiotics and Diet on Enterolactone Concentration and Metabolome Studied by Targeted and Nontargeted LC-MS Metabolomics.

    Science.gov (United States)

    Bolvig, Anne K; Nørskov, Natalja P; Hedemann, Mette S; Foldager, Leslie; McCarthy-Sinclair, Brendan; Marco, Maria L; Lærke, Helle N; Bach Knudsen, Knud E

    2017-06-02

    High plant lignan intake is associated with a number of health benefits, possibly induced by the lignan metabolite enterolactone (ENL). The gut microbiota plays a crucial role in converting dietary lignans into ENL, and epidemiological studies have shown that use of antibiotics is associated with lower levels of ENL. Here we investigate the link between antibiotic use and lignan metabolism in pigs using LC-MS/MS. The effect of lignan intake and antibiotic use on the gut microbial community and the pig metabolome is studied by 16S rRNA sequencing and nontargeted LC-MS. Treatment with antibiotics resulted in substantially lower concentrations of ENL compared with concentrations detected in untreated animals, whereas the plasma concentrations of plant lignans were unchanged. Both diet and antibiotic treatment affected the clustering of urinary metabolites and significantly altered the proportions of taxa in the gut microbiota. Diet, but not antibiotic treatment, affected the plasma lipid profile, and a lower concentration of LDL cholesterol was observed in the pigs fed a high lignan diet. This study provides solid support for the associations between ENL concentrations and use of antibiotics found in humans and indicates that the lower ENL concentration may be a consequence of the ecological changes in the microbiota.

  20. Metabolomic approach to human brain spectroscopy identifies associations between clinical features and the frontal lobe metabolome in multiple sclerosis

    Science.gov (United States)

    Vingara, Lisa K.; Yu, Hui Jing; Wagshul, Mark E.; Serafin, Dana; Christodoulou, Christopher; Pelczer, István; Krupp, Lauren B.; Maletić-Savatić, Mirjana

    2013-01-01

    Proton magnetic resonance spectroscopy (1H-MRS) is capable of noninvasively detecting metabolic changes that occur in the brain tissue in vivo. Its clinical utility has been limited so far, however, by analytic methods that focus on independently evaluated metabolites and require prior knowledge about which metabolites to examine. Here, we applied advanced computational methodologies from the field of metabolomics, specifically partial least squares discriminant analysis and orthogonal partial least squares, to in vivo 1H-MRS from frontal lobe white matter of 27 patients with relapsing–remitting multiple sclerosis (RRMS) and 14 healthy controls. We chose RRMS, a chronic demyelinating disorder of the central nervous system, because its complex pathology and variable disease course make the need for reliable biomarkers of disease progression more pressing. We show that in vivo MRS data, when analyzed by multivariate statistical methods, can provide reliable, distinct profiles of MRS-detectable metabolites in different patient populations. Specifically, we find that brain tissue in RRMS patients deviates significantly in its metabolic profile from that of healthy controls, even though it appears normal by standard MRI techniques. We also identify, using statistical means, the metabolic signatures of certain clinical features common in RRMS, such as disability score, cognitive impairments, and response to stress. This approach to human in vivo MRS data should promote understanding of the specific metabolic changes accompanying disease pathogenesis, and could provide biomarkers of disease progression that would be useful in clinical trials. PMID:23751863

  1. Create, run, share, publish, and reference your LC-MS, FIA-MS, GC-MS, and NMR data analysis workflows with the Workflow4Metabolomics 3.0 Galaxy online infrastructure for metabolomics.

    Science.gov (United States)

    Guitton, Yann; Tremblay-Franco, Marie; Le Corguillé, Gildas; Martin, Jean-François; Pétéra, Mélanie; Roger-Mele, Pierrick; Delabrière, Alexis; Goulitquer, Sophie; Monsoor, Misharl; Duperier, Christophe; Canlet, Cécile; Servien, Rémi; Tardivel, Patrick; Caron, Christophe; Giacomoni, Franck; Thévenot, Etienne A

    2017-12-01

    Metabolomics is a key approach in modern functional genomics and systems biology. Due to the complexity of metabolomics data, the variety of experimental designs, and the multiplicity of bioinformatics tools, providing experimenters with a simple and efficient resource to conduct comprehensive and rigorous analysis of their data is of utmost importance. In 2014, we launched the Workflow4Metabolomics (W4M; http://workflow4metabolomics.org) online infrastructure for metabolomics built on the Galaxy environment, which offers user-friendly features to build and run data analysis workflows including preprocessing, statistical analysis, and annotation steps. Here we present the new W4M 3.0 release, which contains twice as many tools as the first version, and provides two features which are, to our knowledge, unique among online resources. First, data from the four major metabolomics technologies (i.e., LC-MS, FIA-MS, GC-MS, and NMR) can be analyzed on a single platform. By using three studies in human physiology, alga evolution, and animal toxicology, we demonstrate how the 40 available tools can be easily combined to address biological issues. Second, the full analysis (including the workflow, the parameter values, the input data and output results) can be referenced with a permanent digital object identifier (DOI). Publication of data analyses is of major importance for robust and reproducible science. Furthermore, the publicly shared workflows are of high-value for e-learning and training. The Workflow4Metabolomics 3.0 e-infrastructure thus not only offers a unique online environment for analysis of data from the main metabolomics technologies, but it is also the first reference repository for metabolomics workflows. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Metabolomics reveals energetic impairments in Daphnia magna exposed to diazinon, malathion and bisphenol-A

    International Nuclear Information System (INIS)

    Nagato, Edward G.; Simpson, André J.; Simpson, Myrna J.

    2016-01-01

    Highlights: • Metabolomics detected shifts with sub-lethal exposure to contaminants. • Diazinon and malathion induced comparable, non-linear responses. • Bisphenol-A resulted in energy impairment. • Overall, insight into sub-lethal toxicity was garnered using NMR-based metabolomics. - Abstract: "1H nuclear magnetic resonance (NMR)-based metabolomics was used to study the response of Daphnia magna to increasing sub-lethal concentrations of either an organophosphate (diazinon or malathion) or bisphenol-A (BPA). Principal component analysis (PCA) of "1H NMR spectra were used to screen metabolome changes after 48 h of contaminant exposure. The PCA scores plots showed that diazinon exposures resulted in aberrant metabolomic profiles at all exposure concentrations tested (0.009–0.135 μg/L), while for malathion the second lowest (0.08 μg/L) and two highest exposure concentrations (0.32 μg/L and 0.47 μg/L) caused significant shifts from the control. Individual metabolite changes for both organophosphates indicated that the response to increasing exposure was non-linear and described perturbations in the metabolome that were characteristic of the severity of exposure. For example, intermediate concentrations of diazinon (0.045 μg/L and 0.09 μg/L) and malathion (0.08 μg/L) elicited a decrease in amino acids such as leucine, valine, arginine, glycine, lysine, glutamate, glutamine, phenylalanine and tyrosine, with concurrent increases in glucose and lactate, suggesting a mobilization of energy resources to combat stress. At the highest exposure concentrations for both organophosphates there was evidence of a cessation in metabolic activity, where the same amino acids increased and glucose and lactate decreased, suggesting a slowdown in protein synthesis and depletion of energy stocks. This demonstrated a similar response in the metabolome between two organophosphates but also that intermediate and severe stress levels could be differentiated by changes in the

  3. Metabolomics reveals energetic impairments in Daphnia magna exposed to diazinon, malathion and bisphenol-A

    Energy Technology Data Exchange (ETDEWEB)

    Nagato, Edward G.; Simpson, André J.; Simpson, Myrna J., E-mail: myrna.simpson@utoronto.ca

    2016-01-15

    Highlights: • Metabolomics detected shifts with sub-lethal exposure to contaminants. • Diazinon and malathion induced comparable, non-linear responses. • Bisphenol-A resulted in energy impairment. • Overall, insight into sub-lethal toxicity was garnered using NMR-based metabolomics. - Abstract: {sup 1}H nuclear magnetic resonance (NMR)-based metabolomics was used to study the response of Daphnia magna to increasing sub-lethal concentrations of either an organophosphate (diazinon or malathion) or bisphenol-A (BPA). Principal component analysis (PCA) of {sup 1}H NMR spectra were used to screen metabolome changes after 48 h of contaminant exposure. The PCA scores plots showed that diazinon exposures resulted in aberrant metabolomic profiles at all exposure concentrations tested (0.009–0.135 μg/L), while for malathion the second lowest (0.08 μg/L) and two highest exposure concentrations (0.32 μg/L and 0.47 μg/L) caused significant shifts from the control. Individual metabolite changes for both organophosphates indicated that the response to increasing exposure was non-linear and described perturbations in the metabolome that were characteristic of the severity of exposure. For example, intermediate concentrations of diazinon (0.045 μg/L and 0.09 μg/L) and malathion (0.08 μg/L) elicited a decrease in amino acids such as leucine, valine, arginine, glycine, lysine, glutamate, glutamine, phenylalanine and tyrosine, with concurrent increases in glucose and lactate, suggesting a mobilization of energy resources to combat stress. At the highest exposure concentrations for both organophosphates there was evidence of a cessation in metabolic activity, where the same amino acids increased and glucose and lactate decreased, suggesting a slowdown in protein synthesis and depletion of energy stocks. This demonstrated a similar response in the metabolome between two organophosphates but also that intermediate and severe stress levels could be differentiated by

  4. Understanding Aquatic Rhizosphere Processes Through Metabolomics and Metagenomics Approach

    Science.gov (United States)

    Lee, Yong Jian; Mynampati, Kalyan; Drautz, Daniela; Arumugam, Krithika; Williams, Rohan; Schuster, Stephan; Kjelleberg, Staffan; Swarup, Sanjay

    2013-04-01

    The aquatic rhizosphere is a region around the roots of aquatic plants. Many studies focusing on terrestrial rhizosphere have led to a good understanding of the interactions between the roots, its exudates and its associated rhizobacteria. The rhizosphere of free-floating roots, however, is a different habitat that poses several additional challenges, including rapid diffusion rates of signals and nutrient molecules, which are further influenced by the hydrodynamic forces. These can lead to rapid diffusion and complicates the studying of diffusible factors from both plant and/or rhizobacterial origins. These plant systems are being increasingly used for self purification of water bodies to provide sustainable solution. A better understanding of these processes will help in improving their performance for ecological engineering of freshwater systems. The same principles can also be used to improve the yield of hydroponic cultures. Novel toolsets and approaches are needed to investigate the processes occurring in the aquatic rhizosphere. We are interested in understanding the interaction between root exudates and the complex microbial communities that are associated with the roots, using a systems biology approach involving metabolomics and metagenomics. With this aim, we have developed a RhizoFlowCell (RFC) system that provides a controlled study of aquatic plants, observed the root biofilms, collect root exudates and subject the rhizosphere system to changes in various chemical or physical perturbations. As proof of concept, we have used RFC to test the response of root exudation patterns of Pandanus amaryllifolius after exposure to the pollutant naphthalene. Complexity of root exudates in the aquatic rhizosphere was captured using this device and analysed using LC-qTOF-MS. The highly complex metabolomic profile allowed us to study the dynamics of the response of roots to varying levels of naphthalene. The metabolic profile changed within 5mins after spiking with

  5. Metabolic changes in serum metabolome in response to a meal.

    Science.gov (United States)

    Shrestha, Aahana; Müllner, Elisabeth; Poutanen, Kaisa; Mykkänen, Hannu; Moazzami, Ali A

    2017-03-01

    The change in serum metabolic response from fasting state to postprandial state provides novel insights into the impact of a single meal on human metabolism. Therefore, this study explored changes in serum metabolite profile after a single meal. Nineteen healthy postmenopausal women with normal glucose tolerance participated in the study. They received a meal consisting of refined wheat bread (50 g carbohydrates, 9 g protein, 4.2 g fat and 2.7 g dietary fibre), 40 g cucumber and 300 mL noncaloric orange drink. Blood samples were collected at fasting and five postprandial time points. Metabolic profile was measured by nuclear magnetic resonance and targeted liquid chromatography-mass spectrometry. Changes over time were assessed with multivariate models and ANOVA, with baseline as control. The metabolomic analyses demonstrated alterations in phospholipids, amino acids and their breakdown products, glycolytic products, acylcarnitines and ketone bodies after a single meal. More specifically, phosphatidylcholines, lysophosphatidylcholines and citrate displayed an overall declining pattern, while leucine, isoleucine, methionine and succinate increased initially but declined thereafter. A sharp decline in acylcarnitines and ketone bodies and increase in glycolytic products postprandially suggest a switch in the body's energy source from β-oxidation to glycolysis. Moreover, individuals with relatively high postprandial insulin responses generated a higher postprandial leucine responses compared to participants with lower insulin responses. The study demonstrated complex changes from catabolic to anabolic metabolism after a meal and indicated that the extent of postprandial responses is different between individuals with high and low insulin response.

  6. Exploring the Saccharomyces cerevisiae Volatile Metabolome: Indigenous versus Commercial Strains

    Science.gov (United States)

    Alves, Zélia; Melo, André; Figueiredo, Ana Raquel; Coimbra, Manuel A.; Gomes, Ana C.; Rocha, Sílvia M.

    2015-01-01

    Winemaking is a highly industrialized process and a number of commercial Saccharomyces cerevisiae strains are used around the world, neglecting the diversity of native yeast strains that are responsible for the production of wines peculiar flavours. The aim of this study was to in-depth establish the S. cerevisiae volatile metabolome and to assess inter-strains variability. To fulfill this objective, two indigenous strains (BT2652 and BT2453 isolated from spontaneous fermentation of grapes collected in Bairrada Appellation, Portugal) and two commercial strains (CSc1 and CSc2) S. cerevisiae were analysed using a methodology based on advanced multidimensional gas chromatography (HS-SPME/GC×GC-ToFMS) tandem with multivariate analysis. A total of 257 volatile metabolites were identified, distributed over the chemical families of acetals, acids, alcohols, aldehydes, ketones, terpenic compounds, esters, ethers, furan-type compounds, hydrocarbons, pyrans, pyrazines and S-compounds. Some of these families are related with metabolic pathways of amino acid, carbohydrate and fatty acid metabolism as well as mono and sesquiterpenic biosynthesis. Principal Component Analysis (PCA) was used with a dataset comprising all variables (257 volatile components), and a distinction was observed between commercial and indigenous strains, which suggests inter-strains variability. In a second step, a subset containing esters and terpenic compounds (C10 and C15), metabolites of particular relevance to wine aroma, was also analysed using PCA. The terpenic and ester profiles express the strains variability and their potential contribution to the wine aromas, specially the BT2453, which produced the higher terpenic content. This research contributes to understand the metabolic diversity of indigenous wine microflora versus commercial strains and achieved knowledge that may be further exploited to produce wines with peculiar aroma properties. PMID:26600152

  7. The dental calculus metabolome in modern and historic samples.

    Science.gov (United States)

    Velsko, Irina M; Overmyer, Katherine A; Speller, Camilla; Klaus, Lauren; Collins, Matthew J; Loe, Louise; Frantz, Laurent A F; Sankaranarayanan, Krithivasan; Lewis, Cecil M; Martinez, Juan Bautista Rodriguez; Chaves, Eros; Coon, Joshua J; Larson, Greger; Warinner, Christina

    2017-01-01

    Dental calculus is a mineralized microbial dental plaque biofilm that forms throughout life by precipitation of salivary calcium salts. Successive cycles of dental plaque growth and calcification make it an unusually well-preserved, long-term record of host-microbial interaction in the archaeological record. Recent studies have confirmed the survival of authentic ancient DNA and proteins within historic and prehistoric dental calculus, making it a promising substrate for investigating oral microbiome evolution via direct measurement and comparison of modern and ancient specimens. We present the first comprehensive characterization of the human dental calculus metabolome using a multi-platform approach. Ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) quantified 285 metabolites in modern and historic (200 years old) dental calculus, including metabolites of drug and dietary origin. A subset of historic samples was additionally analyzed by high-resolution gas chromatography-MS (GC-MS) and UPLC-MS/MS for further characterization of metabolites and lipids. Metabolite profiles of modern and historic calculus were compared to identify patterns of persistence and loss. Dipeptides, free amino acids, free nucleotides, and carbohydrates substantially decrease in abundance and ubiquity in archaeological samples, with some exceptions. Lipids generally persist, and saturated and mono-unsaturated medium and long chain fatty acids appear to be well-preserved, while metabolic derivatives related to oxidation and chemical degradation are found at higher levels in archaeological dental calculus than fresh samples. The results of this study indicate that certain metabolite classes have higher potential for recovery over long time scales and may serve as appropriate targets for oral microbiome evolutionary studies.

  8. Metabolic versatility in Haemophilus influenzae: a metabolomic and genomic analysis

    Directory of Open Access Journals (Sweden)

    Dk Seti Maimonah Pg eOthman

    2014-03-01

    Full Text Available Haemophilus influenzae is a host adapted human pathogen known to contribute to a variety of acute and chronic diseases of the upper and lower respiratory tract as well as the middle ear. At the sites of infection as well as during growth as a commensal the environmental conditions encountered by H. influenzae will vary significantly, especially in terms of oxygen availability, however, the mechanisms by which the bacteria can adapt their metabolism to cope with such changes have not been studied in detail. Using targeted metabolomics the spectrum of metabolites produced during growth of H. influenzae on glucose in RPMI-based medium was found to change from acetate as the main product during aerobic growth to formate as the major product during anaerobic growth. This is likely caused by a switch in the major pyruvate degrading route. Neither lactate nor succinate or fumarate were major products of H. influenzae growth under any condition studied Gene expression studies and enzyme activity data revealed that despite an identical genetic makeup and very similar metabolite production profiles, H. influenzae strain Rd appeared to favour glucose degradation via the PPP, while strain 2019, a clinical isolate, showed higher expression of enzymes involved in glycolysis. Components of the respiratory chain were most highly expressed during microaerophilic and anaerobic growth in both strains, but again clear differences existed in the expression of genes associated e.g. with NADH oxidation, nitrate and nitrite reduction in the two strains studied.Together our results indicate that H. influenzae uses a specialized type of metabolism that could be termed ‘respiration assisted fermentation’ where the respiratory chain likely serves to alleviate redox imbalances caused by incomplete glucose oxidation, and at the same time provides a means of converting a variety of compounds including nitrite and nitrate that arise as part of the host defence mechanisms.

  9. Reconstruction of food webs in biological soil crusts using metabolomics.

    Science.gov (United States)

    Baran, Richard; Brodie, Eoin L.; Mayberry-Lewis, Jazmine; Nunes Da Rocha, Ulisses; Bowen, Benjamin P.; Karaoz, Ulas; Cadillo-Quiroz, Hinsby; Garcia-Pichel, Ferran; Northen, Trent R.

    2015-04-01

    Biological soil crusts (BSCs) are communities of organisms inhabiting the upper layer of soil in arid environments. BSCs persist in a dessicated dormant state for extended periods of time and experience pulsed periods of activity facilitated by infrequent rainfall. Microcoleus vaginatus, a non-diazotrophic filamentous cyanobacterium, is the key primary producer in BSCs in the Colorado Plateau and is an early pioneer in colonizing arid environments. Over decades, BSCs proceed through developmental stages with increasing complexity of constituent microorganisms and macroscopic properties. Metabolic interactions among BSC microorganisms probably play a key role in determining the community dynamics and cycling of carbon and nitrogen. However, these metabolic interactions have not been studied systematically. Towards this goal, exometabolomic analysis was performed using liquid chromatography coupled to tandem mass spectrometry on biological soil crust pore water and spent media of key soil bacterial isolates. Comparison of spent vs. fresh media was used to determine uptake or release of metabolites by specific microbes. To link pore water experiments with isolate studies, metabolite extracts of authentic soil were used as supplements for isolate exometabolomic profiling. Our soil metabolomics methods detected hundreds of metabolites from soils including many novel compounds. Overall, Microcoleus vaginatus was found to release and utilize a broad range of metabolites. Many of these metabolites were also taken up by heterotrophs but there were surprisingly few metabolites uptaken by all isolates. This points to a competition for a small set of central metabolites and specialization of individual heterotrophs towards a diverse pool of available organic nutrients. Overall, these data suggest that understanding the substrate specialization of biological soil crust bacteria can help link community structure to nutrient cycling.

  10. Robust early pregnancy prediction of later preeclampsia using metabolomic biomarkers.

    LENUS (Irish Health Repository)

    Kenny, Louise C

    2012-01-31

    Preeclampsia is a pregnancy-specific syndrome that causes substantial maternal and fetal morbidity and mortality. The etiology is incompletely understood, and there is no clinically useful screening test. Current metabolomic technologies have allowed the establishment of metabolic signatures of preeclampsia in early pregnancy. Here, a 2-phase discovery\\/validation metabolic profiling study was performed. In the discovery phase, a nested case-control study was designed, using samples obtained at 15+\\/-1 weeks\\' gestation from 60 women who subsequently developed preeclampsia and 60 controls taking part in the prospective Screening for Pregnancy Endpoints cohort study. Controls were proportionally population matched for age, ethnicity, and body mass index at booking. Plasma samples were analyzed using ultra performance liquid chromatography-mass spectrometry. A multivariate predictive model combining 14 metabolites gave an odds ratio for developing preeclampsia of 36 (95% CI: 12 to 108), with an area under the receiver operator characteristic curve of 0.94. These findings were then validated using an independent case-control study on plasma obtained at 15+\\/-1 weeks from 39 women who subsequently developed preeclampsia and 40 similarly matched controls from a participating center in a different country. The same 14 metabolites produced an odds ratio of 23 (95% CI: 7 to 73) with an area under receiver operator characteristic curve of 0.92. The finding of a consistent discriminatory metabolite signature in early pregnancy plasma preceding the onset of preeclampsia offers insight into disease pathogenesis and offers the tantalizing promise of a robust presymptomatic screening test.

  11. Robust Early Pregnancy Prediction of Later Preeclampsia Using Metabolomic Biomarkers.

    LENUS (Irish Health Repository)

    Kenny, Louise C

    2010-09-13

    Preeclampsia is a pregnancy-specific syndrome that causes substantial maternal and fetal morbidity and mortality. The etiology is incompletely understood, and there is no clinically useful screening test. Current metabolomic technologies have allowed the establishment of metabolic signatures of preeclampsia in early pregnancy. Here, a 2-phase discovery\\/validation metabolic profiling study was performed. In the discovery phase, a nested case-control study was designed, using samples obtained at 15±1 weeks\\' gestation from 60 women who subsequently developed preeclampsia and 60 controls taking part in the prospective Screening for Pregnancy Endpoints cohort study. Controls were proportionally population matched for age, ethnicity, and body mass index at booking. Plasma samples were analyzed using ultra performance liquid chromatography-mass spectrometry. A multivariate predictive model combining 14 metabolites gave an odds ratio for developing preeclampsia of 36 (95% CI: 12 to 108), with an area under the receiver operator characteristic curve of 0.94. These findings were then validated using an independent case-control study on plasma obtained at 15±1 weeks from 39 women who subsequently developed preeclampsia and 40 similarly matched controls from a participating center in a different country. The same 14 metabolites produced an odds ratio of 23 (95% CI: 7 to 73) with an area under receiver operator characteristic curve of 0.92. The finding of a consistent discriminatory metabolite signature in early pregnancy plasma preceding the onset of preeclampsia offers insight into disease pathogenesis and offers the tantalizing promise of a robust presymptomatic screening test.

  12. Atmospheric vs. anaerobic processing of metabolome samples for the metabolite profiling of a strict anaerobic bacterium, Clostridium acetobutylicum.

    Science.gov (United States)

    Lee, Sang-Hyun; Kim, Sooah; Kwon, Min-A; Jung, Young Hoon; Shin, Yong-An; Kim, Kyoung Heon

    2014-12-01

    Well-established metabolome sample preparation is a prerequisite for reliable metabolomic data. For metabolome sampling of a Gram-positive strict anaerobe, Clostridium acetobutylicum, fast filtration and metabolite extraction with acetonitrile/methanol/water (2:2:1, v/v) at -20°C under anaerobic conditions has been commonly used. This anaerobic metabolite processing method is laborious and time-consuming since it is conducted in an anaerobic chamber. Also, there have not been any systematic method evaluation and development of metabolome sample preparation for strict anaerobes and Gram-positive bacteria. In this study, metabolome sampling and extraction methods were rigorously evaluated and optimized for C. acetobutylicum by using gas chromatography/time-of-flight mass spectrometry-based metabolomics, in which a total of 116 metabolites were identified. When comparing the atmospheric (i.e., in air) and anaerobic (i.e., in an anaerobic chamber) processing of metabolome sample preparation, there was no significant difference in the quality and quantity of the metabolomic data. For metabolite extraction, pure methanol at -20°C was a better solvent than acetonitrile/methanol/water (2:2:1, v/v/v) at -20°C that is frequently used for C. acetobutylicum, and metabolite profiles were significantly different depending on extraction solvents. This is the first evaluation of metabolite sample preparation under aerobic processing conditions for an anaerobe. This method could be applied conveniently, efficiently, and reliably to metabolome analysis for strict anaerobes in air. © 2014 Wiley Periodicals, Inc.

  13. Whole Blood Reveals More Metabolic Detail of the Human Metabolome than Serum as Measured by 1H-NMR Spectroscopy: Implications for Sepsis Metabolomics

    Science.gov (United States)

    Stringer, Kathleen A.; Younger, John G.; McHugh, Cora; Yeomans, Larisa; Finkel, Michael A.; Puskarich, Michael A.; Jones, Alan E.; Trexel, Julie; Karnovsky, Alla

    2015-01-01

    Serum is a common sample of convenience for metabolomics studies. Its processing time can be lengthy and may result in the loss of metabolites including those of red blood cells (RBC). Unlike serum, whole blood (WB) is quickly processed, minimizing the influence of variable hemolysis while including RBC metabolites. To determine differences between serum and WB metabolomes, both sample types, collected from healthy volunteers, were assayed by 1H-NMR spectroscopy. A total of 34 and 50 aqueous metabolites were quantified from serum and WB, respectively. Free hemoglobin (Hgb) levels in serum were measured and the correlation between Hgb and metabolite concentrations was determined. All metabolites detected in serum were at higher concentrations in WB with the exception of acetoacetate and propylene glycol. The 18 unique metabolites of WB included adenosine, AMP, ADP and ATP, which are associated with RBC metabolism. The use of serum results in the underrepresentation of a number of metabolic pathways including branched chain amino acid degradation and glycolysis and gluconeogenesis. The range of free Hgb in serum was 0.03-0.01 g/dL and 8 metabolites were associated (p ≤ 0.05) with free Hgb. The range of free Hgb in serum samples from 18 sepsis patients was 0.02-0.46 g/dL. WB and serum have unique aqueous metabolite profiles but the use of serum may introduce potential pathway bias. Use of WB for metabolomics may be particularly important for studies in diseases like sepsis in which RBC metabolism is altered and mechanical and sepsis-induced hemolysis contributes to variance in the metabolome. PMID:26009817

  14. New and vintage solutions to enhance the plasma metabolome coverage by LC-ESI-MS untargeted metabolomics: the not-so-simple process of method performance evaluation.

    Science.gov (United States)

    Tulipani, Sara; Mora-Cubillos, Ximena; Jáuregui, Olga; Llorach, Rafael; García-Fuentes, Eduardo; Tinahones, Francisco J; Andres-Lacueva, Cristina

    2015-03-03

    Although LC-MS untargeted metabolomics continues to expand into exiting research domains, methodological issues have not been solved yet by the definition of unbiased, standardized and globally accepted analytical protocols. In the present study, the response of the plasma metabolome coverage to specific methodological choices of the sample preparation (two SPE technologies, three sample-to-solvent dilution ratios) and the LC-ESI-MS data acquisition steps of the metabolomics workflow (four RP columns, four elution solvent combinations, two solvent quality grades, postcolumn modification of the mobile phase) was investigated in a pragmatic and decision tree-like performance evaluation strategy. Quality control samples, reference plasma and human plasma from a real nutrimetabolomic study were used for intermethod comparisons. Uni- and multivariate data analysis approaches were independently applied. The highest method performance was obtained by combining the plasma hybrid extraction with the highest solvent proportion during sample preparation, the use of a RP column compatible with 100% aqueous polar phase (Atlantis T3), and the ESI enhancement by using UHPLC-MS purity grade methanol as both organic phase and postcolumn modifier. Results led to the following considerations: submit plasma samples to hybrid extraction for removal of interfering components to minimize the major sample-dependent matrix effects; avoid solvent evaporation following sample extraction if loss in detection and peak shape distortion of early eluting metabolites are not noticed; opt for a RP column for superior retention of highly polar species when analysis fractionation is not feasible; use ultrahigh quality grade solvents and "vintage" analytical tricks such as postcolumn organic enrichment of the mobile phase to enhance ESI efficiency. The final proposed protocol offers an example of how novel and old-fashioned analytical solutions may fruitfully cohabit in untargeted metabolomics

  15. An Ultrahigh-Performance Liquid Chromatography-Time-of-Flight Mass Spectrometry Metabolomic Approach to Studying the Impact of Moderate Red-Wine Consumption on Urinary Metabolome.

    Science.gov (United States)

    Esteban-Fernández, Adelaida; Ibañez, Clara; Simó, Carolina; Bartolomé, Begoña; Moreno-Arribas, M Victoria

    2018-04-06

    Moderate red-wine consumption has been widely described to exert several benefits in human health. This is mainly due to its unique content of bioactive polyphenols, which suffer several modifications along their pass through the digestive system, including microbial transformation in the colon and phase-II metabolism, until they are finally excreted in urine and feces. To determine the impact of moderate wine consumption in the overall urinary metabolome of healthy volunteers ( n = 41), samples from a red-wine interventional study (250 mL/day, 28 days) were investigated. Urine (24 h) was collected before and after intervention and analyzed by an untargeted ultrahigh-performance liquid chromatography-time-of-flight mass spectrometry metabolomics approach. 94 compounds linked to wine consumption, including specific wine components (tartaric acid), microbial-derived phenolic metabolites (5-(dihydroxyphenyl)-γ-valerolactones and 4-hydroxyl-5-(phenyl)-valeric acids), and endogenous compounds were identified. Also, some relationships between parallel fecal and urinary metabolomes are discussed.

  16. Mono-colonization with Lactobacillus acidophilus NCFM affects the intestinal metabolome as compared to germ-free mice

    DEFF Research Database (Denmark)

    Roager, Henrik Munch; Sulek, Karolina; Skov, Kasper

    Every single species of the gut microbiota produce low-molecular-weight compounds that are absorbed constantly from the intestinal lumen and carried to systemic circulation where they play a direct role in health and disease. However, very few studies address the host metabolome as a function...... of colonizing bacteria. In this study the effect of the Lactobacillus acidophilus NCFM strain was investigated by comparing the metabolome of mono-colonized and germ-free mice in several compartments. By liquid-chromatography coupled to mass spectrometry, we were able to show that the metabolome differed...

  17. Metabolomic applications in radiation biodosimetry: exploring radiation effects through small molecules.

    Science.gov (United States)

    Pannkuk, Evan L; Fornace, Albert J; Laiakis, Evagelia C

    2017-10-01

    Exposure of the general population to ionizing radiation has increased in the past decades, primarily due to long distance travel and medical procedures. On the other hand, accidental exposures, nuclear accidents, and elevated threats of terrorism with the potential detonation of a radiological dispersal device or improvised nuclear device in a major city, all have led to increased needs for rapid biodosimetry and assessment of exposure to different radiation qualities and scenarios. Metabolomics, the qualitative and quantitative assessment of small molecules in a given biological specimen, has emerged as a promising technology to allow for rapid determination of an individual's exposure level and metabolic phenotype. Advancements in mass spectrometry techniques have led to untargeted (discovery phase, global assessment) and targeted (quantitative phase) methods not only to identify biomarkers of radiation exposure, but also to assess general perturbations of metabolism with potential long-term consequences, such as cancer, cardiovascular, and pulmonary disease. Metabolomics of radiation exposure has provided a highly informative snapshot of metabolic dysregulation. Biomarkers in easily accessible biofluids and biospecimens (urine, blood, saliva, sebum, fecal material) from mouse, rat, and minipig models, to non-human primates and humans have provided the basis for determination of a radiation signature to assess the need for medical intervention. Here we provide a comprehensive description of the current status of radiation metabolomic studies for the purpose of rapid high-throughput radiation biodosimetry in easily accessible biofluids and discuss future directions of radiation metabolomics research.

  18. Potential impact of soil microbiomes on the leaf metabolome and on herbivore feeding behavior

    Science.gov (United States)

    : It is known that environmental factors can affect the biosynthesis of leaf metabolites. Similarly, specific pairwise plant-microbe interactions modulate specifically the plant’s metabolome by stimulating production of phytoalexins and other defense-related compounds. However, there is no informati...

  19. Putative regulatory sites unraveled by network-embedded thermodynamic analysis of metabolome data

    NARCIS (Netherlands)

    Kümmel, Anne; Panke, Sven; Heinemann, Matthias

    2006-01-01

    As one of the most recent members of the omics family, large-scale quantitative metabolomics data are currently complementing our systems biology data pool and offer the chance to integrate the metabolite level into the functional analysis of cellular networks. Network-embedded thermodynamic

  20. Deciphering the genome and secondary metabolome of the plant pathogen Fusarium culmorum

    NARCIS (Netherlands)

    Schmidt, R.L.; Durling, M.; de Jager, V.C.L.; Menezes, R. C.; Nordkvist, E.; Svatos, A.; Dubey, Mohit; Lauterbach, L.; Dikschat, J.S.; Karlsson, M.; Garbeva, P.V.

    2018-01-01

    Fusarium culmorum is one of the most important fungal plant pathogens that causes diseases on a wide diversity of cereal and non-cereal crops. We report herein for the first time the genome sequence of F. culmorum strain PV and its associated secondary metabolome that plays a role in the interaction

  1. Tools and Databases of the KOMICS Web Portal for Preprocessing, Mining, and Dissemination of Metabolomics Data

    Directory of Open Access Journals (Sweden)

    Nozomu Sakurai

    2014-01-01

    Full Text Available A metabolome—the collection of comprehensive quantitative data on metabolites in an organism—has been increasingly utilized for applications such as data-intensive systems biology, disease diagnostics, biomarker discovery, and assessment of food quality. A considerable number of tools and databases have been developed to date for the analysis of data generated by various combinations of chromatography and mass spectrometry. We report here a web portal named KOMICS (The Kazusa Metabolomics Portal, where the tools and databases that we developed are available for free to academic users. KOMICS includes the tools and databases for preprocessing, mining, visualization, and publication of metabolomics data. Improvements in the annotation of unknown metabolites and dissemination of comprehensive metabolomic data are the primary aims behind the development of this portal. For this purpose, PowerGet and FragmentAlign include a manual curation function for the results of metabolite feature alignments. A metadata-specific wiki-based database, Metabolonote, functions as a hub of web resources related to the submitters' work. This feature is expected to increase citation of the submitters' work, thereby promoting data publication. As an example of the practical use of KOMICS, a workflow for a study on Jatropha curcas is presented. The tools and databases available at KOMICS should contribute to enhanced production, interpretation, and utilization of metabolomic Big Data.

  2. The volatile metabolome and microbiome in pulmonary and gastro-intestinal disease

    NARCIS (Netherlands)

    van der Schee, M.P.C.

    2015-01-01

    Omics-technologies allow detailed characterization of biochemical molecular families enabling data-driven and hypothesis-generating research. In this thesis we explore potential merits and pitfalls of such an approach by studying the volatile metabolome and microbiome in disease diagnosis,

  3. Propiconazole induces alterations in the hepatic metabolome of mice: relevance to propiconazole-induced hepatocarcinogenesis

    Science.gov (United States)

    Propiconazole is a mouse hepatotumorigenic fungicide and has been the subject of recent mechanistic investigations on its carcinogenic mechanism of action. The goals of this study were: 1. To identify metabolomic changes induced in the liver by increasing doses of propiconazole i...

  4. 1H NMR metabolomics of earthworm exposure to sub-lethal concentrations of phenanthrene in soil

    International Nuclear Information System (INIS)

    Brown, Sarah A.E.; McKelvie, Jennifer R.; Simpson, Andre J.; Simpson, Myrna J.

    2010-01-01

    1 H NMR metabolomics was used to monitor earthworm responses to sub-lethal (50-1500 mg/kg) phenanthrene exposure in soil. Total phenanthrene was analyzed via soxhlet extraction, bioavailable phenanthrene was estimated by hydroxypropyl-β-cyclodextrin (HPCD) and 1-butanol extractions and sorption to soil was assessed by batch equilibration. Bioavailable phenanthrene (HPCD-extracted) comprised ∼65-97% of total phenanthrene added to the soil. Principal component analysis (PCA) showed differences in responses between exposed earthworms and controls after 48 h exposure. The metabolites that varied with exposure included amino acids (isoleucine, alanine and glutamine) and maltose. PLS models indicated that earthworm response is positively correlated to both total phenanthrene concentration and bioavailable (HPCD-extracted) phenanthrene in a freshly spiked, unaged soil. These results show that metabolomics is a powerful, direct technique that may be used to monitor contaminant bioavailability and toxicity of sub-lethal concentrations of contaminants in the environment. These initial findings warrant further metabolomic studies with aged contaminated soils. - 1 H NMR metabolomics is used to directly monitor metabolic responses of Eisenia fetida after 48 h of exposure to sub-lethal concentrations of phenanthrene in soil.

  5. The human serum metabolome of vitamin B-12 deficiency and repletion, and associations with neurological function

    Science.gov (United States)

    We characterize the human serum metabolome in sub-clinical vitamin B-12 (B-12) deficiency and repletion. A pre-post treatment study provided one injection of 10 mg B-12 to 27 community-dwelling elderly Chileans with B-12 deficiency evaluated with serum B-12, plasma homocysteine, methylmalonic acid a...

  6. Differential metabolome analysis of field-grown maize kernels in response to drought stress

    Science.gov (United States)

    Drought stress constrains maize kernel development and can exacerbate aflatoxin contamination. In order to identify drought responsive metabolites and explore pathways involved in kernel responses, a metabolomics analysis was conducted on kernels from a drought tolerant line, Lo964, and a sensitive ...

  7. A 'Foodomic' Approach for the Evaluation of Food Quality and its Impact on the Human Metabolome

    DEFF Research Database (Denmark)

    Trimigno, Alessia

    In recent years, omic sciences have been increasingly employed in a multitude of research fields thanks to their high-throughput capabilities and holistic approach. Among the omic sciences, metabolomics and foodomics have recently emerged in the investigation of food and nutrition and their relat......In recent years, omic sciences have been increasingly employed in a multitude of research fields thanks to their high-throughput capabilities and holistic approach. Among the omic sciences, metabolomics and foodomics have recently emerged in the investigation of food and nutrition...... and their relation to the individual health and wellness status (Chapter 1). The analytical platforms used are ideal for non-targeted analysis, due to their capability of detecting and identifying a large set of variables (or metabolites) in complex biological samples. The most employed metabolomics techniques...... carried out both in Italy and in Denmark, outlines the analytical pipeline of the foodomic approach and highlights the current challenges in the field (Chapter 2.3). The thesis traces the path of modern foodomics and metabolomics from the definition and description of food quality (Chapters 3 to 6...

  8. Towards a scientific interpretation of the terroir concept: plasticity of the grape berry metabolome.

    Science.gov (United States)

    Anesi, Andrea; Stocchero, Matteo; Dal Santo, Silvia; Commisso, Mauro; Zenoni, Sara; Ceoldo, Stefania; Tornielli, Giovanni Battista; Siebert, Tracey E; Herderich, Markus; Pezzotti, Mario; Guzzo, Flavia

    2015-08-07

    The definition of the terroir concept is one of the most debated issues in oenology and viticulture. The dynamic interaction among diverse factors including the environment, the grapevine plant and the imposed viticultural techniques means that the wine produced in a given terroir is unique. However, there is an increasing interest to define and quantify the contribution of individual factors to a specific terroir objectively. Here, we characterized the metabolome and transcriptome of berries from a single clone of the Corvina variety cultivated in seven different vineyards, located in three macrozones, over a 3-year trial period. To overcome the anticipated strong vintage effect, we developed statistical tools that allowed us to identify distinct terroir signatures in the metabolic composition of berries from each macrozone, and from different vineyards within each macrozone. We also identified non-volatile and volatile components of the metabolome which are more plastic and therefore respond differently to terroir diversity. We observed some relationships between the plasticity of the metabolome and transcriptome, allowing a multifaceted scientific interpretation of the terroir concept. Our experiments with a single Corvina clone in different vineyards have revealed the existence of a clear terroir-specific effect on the transcriptome and metabolome which persists over several vintages and allows each vineyard to be characterized by the unique profile of specific metabolites.

  9. Non-targeted plasma metabolome of early and late lactation gilts

    Science.gov (United States)

    Female pigs nursing their first litter (first-parity gilts) have increased energy requirements not only to support their piglets, but they themselves are still maturing. Non-targeted plasma metabolomics were used to investigate the differences between (1) post-farrowing and weaning (early or late l...

  10. An initial non-targeted analysis of the peanut seed metabolome

    Science.gov (United States)

    There are likely a large number of compounds that constitute the peanut seed metabolome that have yet to be elucidated. Although the proximate composition and nutrients such as vitamins and minerals are well known, the composition of many other small molecule metabolites present have not been syste...

  11. Impact of a western diet on the ovarian and serum metabolome.

    Science.gov (United States)

    Dhungana, Suraj; Carlson, James E; Pathmasiri, Wimal; McRitchie, Susan; Davis, Matt; Sumner, Susan; Appt, Susan E

    2016-10-01

    The objective of this investigation was to determine differences in the profiles of endogenous metabolites (metabolomics) among ovaries and serum derived from Old World nonhuman primates fed prudent or Western diets. A retrospective, observational study was done using archived ovarian tissue and serum from midlife cynomolgus monkeys (Macaca fasicularis). Targeted and broad spectrum metabolomics analysis was used to compare ovarian tissue and serum from monkeys that had been exposed to a prudent diet or a Western diet. Monkeys in the prudent diet group (n=13) were research naïve and had been exposed only to a commercial monkey chow diet (low in cholesterol and saturated fats, high in complex carbohydrates). Western diet monkeys (n=8) had consumed a diet that was high in cholesterol, saturated animal fats and soluble carbohydrates for 2 years prior to ovarian tissue and serum collection. Metabolomic analyses were done on extracts of homogenized ovary tissue samples, and extracts of serum. Targeted analysis was conducted using the Biocrates p180 kit and broad spectrum analysis was conducted using UPLC-TOF-MS, resulting in the detection of 3500 compound ions. Using metabolomics methods, which capture thousands of signals for metabolites, 64 metabolites were identified in serum and 47 metabolites were identified in ovarian tissue that differed by diet. Quantitative targeted analysis revealed 13 amino acids, 6 acrylcarnitines, and 2 biogenic amines that were significantly (pmetabolome, and demonstrated perturbation in carnitine, lipids/fatty acid, and amino acid metabolic pathways. Published by Elsevier Ireland Ltd.

  12. Blood metabolome profiles of cattle colonized with Escherichia coli O157

    Science.gov (United States)

    Metabolomics is being increasingly used for diagnosis of asymptomatic/difficult-to-diagnose diseases in humans including parasitic (i.e. protozoan, schistosomal), viral (i.e. cytomegalovirus), bacterial (i.e. cystic fibrosis caused by Pseudomonas), genetic (i.e. autism) and cancer (i.e. gastric canc...

  13. Metabolome strategy against Edwardsiella tarda infection through glucose-enhanced metabolic modulation in tilapias.

    Science.gov (United States)

    Peng, Bo; Ma, Yan-Mei; Zhang, Jian-Ying; Li, Hui

    2015-08-01

    Edwardsiella tarda causes fish disease and great economic loss. However, metabolic strategy against the pathogen remains unexplored. In the present study, GC-MS based metabolomics was used to investigate the metabolic profile from tilapias infected by sublethal dose of E. tarda. The metabolic differences between the dying group and survival group allow the identification of key pathways and crucial metabolites during infections. More importantly, those metabolites may modulate the survival-related metabolome to enhance the anti-infective ability. Our data showed that tilapias generated two different strategies, survival-metabolome and death-metabolome, to encounter EIB202 infection, leading to differential outputs of the survival and dying. Glucose was the most crucial biomarker, which was upregulated and downregulated in the survival and dying groups, respectively. Exogenous glucose by injection or oral administration enhanced hosts' ability against EIB202 infection and increased the chances of survival. These findings highlight that host mounts the metabolic strategy to cope with bacterial infection, from which crucial biomarkers may be identified to enhance the metabolic strategy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Dynamic metabolome profiling reveals significant metabolic changes during grain development of bread wheat (Triticum aestivum L.).

    Science.gov (United States)

    Zhen, Shoumin; Dong, Kun; Deng, Xiong; Zhou, Jiaxing; Xu, Xuexin; Han, Caixia; Zhang, Wenying; Xu, Yanhao; Wang, Zhimin; Yan, Yueming

    2016-08-01

    Metabolites in wheat grains greatly influence nutritional values. Wheat provides proteins, minerals, B-group vitamins and dietary fiber to humans. These metabolites are important to human health. However, the metabolome of the grain during the development of bread wheat has not been studied so far. In this work the first dynamic metabolome of the developing grain of the elite Chinese bread wheat cultivar Zhongmai 175 was analyzed, using non-targeted gas chromatography/mass spectrometry (GC/MS) for metabolite profiling. In total, 74 metabolites were identified over the grain developmental stages. Metabolite-metabolite correlation analysis revealed that the metabolism of amino acids, carbohydrates, organic acids, amines and lipids was interrelated. An integrated metabolic map revealed a distinct regulatory profile. The results provide information that can be used by metabolic engineers and molecular breeders to improve wheat grain quality. The present metabolome approach identified dynamic changes in metabolite levels, and correlations among such levels, in developing seeds. The comprehensive metabolic map may be useful when breeding programs seek to improve grain quality. The work highlights the utility of GC/MS-based metabolomics, in conjunction with univariate and multivariate data analysis, when it is sought to understand metabolic changes in developing seeds. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  15. Comparative whole genome transcriptome and metabolome analyses of five Klebsiella pneumonia strains.

    Science.gov (United States)

    Lee, Soojin; Kim, Borim; Yang, Jeongmo; Jeong, Daun; Park, Soohyun; Shin, Sang Heum; Kook, Jun Ho; Yang, Kap-Seok; Lee, Jinwon

    2015-11-01

    The integration of transcriptomics and metabolomics can provide precise information on gene-to-metabolite networks for identifying the function of novel genes. The goal of this study was to identify novel gene functions involved in 2,3-butanediol (2,3-BDO) biosynthesis by a comprehensive analysis of the transcriptome and metabolome of five mutated Klebsiella pneumonia strains (∆wabG = SGSB100, ∆wabG∆budA = SGSB106, ∆wabG∆budB = SGSB107, ∆wabG∆budC = SGSB108, ∆wabG∆budABC = SGSB109). First, the transcriptomes of all five mutants were analyzed and the genes exhibiting reproducible changes in expression were determined. The transcriptome was well conserved among the five strains, and differences in gene expression occurred mainly in genes coding for 2,3-BDO biosynthesis (budA, budB, and budC) and the genes involved in the degradation of reactive oxygen, biosynthesis and transport of arginine, cysteine biosynthesis, sulfur metabolism, oxidoreductase reaction, and formate dehydrogenase reaction. Second, differences in the metabolome (estimated by carbon distribution, CO2 emission, and redox balance) among the five mutant strains due to gene alteration of the 2,3-BDO operon were detected. The functional genomics approach integrating metabolomics and transcriptomics in K. Pneumonia presented here provides an innovative means of identifying novel gene functions involved in 2,3-BDO biosynthesis metabolism and whole cell metabolism.

  16. Metabolomics of Hydrazine-Induced Hepatotoxicity in Rats for Discovering Potential Biomarkers

    Directory of Open Access Journals (Sweden)

    Zhuoling An

    2018-01-01

    Full Text Available Metabolic pathway disturbances associated with drug-induced liver injury remain unsatisfactorily characterized. Diagnostic biomarkers for hepatotoxicity have been used to minimize drug-induced liver injury and to increase the clinical safety. A metabolomics strategy using rapid-resolution liquid chromatography/tandem mass spectrometry (RRLC-MS/MS analyses and multivariate statistics was implemented to identify potential biomarkers for hydrazine-induced hepatotoxicity. The global serum and urine metabolomics of 30 hydrazine-treated rats at 24 or 48 h postdosing and 24 healthy rats were characterized by a metabolomics approach. Multivariate statistical data analyses and receiver operating characteristic (ROC curves were performed to identify the most significantly altered metabolites. The 16 most significant potential biomarkers were identified to be closely related to hydrazine-induced liver injury. The combination of these biomarkers had an area under the curve (AUC > 0.85, with 100% specificity and sensitivity, respectively. This high-quality classification group included amino acids and their derivatives, glutathione metabolites, vitamins, fatty acids, intermediates of pyrimidine metabolism, and lipids. Additionally, metabolomics pathway analyses confirmed that phenylalanine, tyrosine, and tryptophan biosynthesis as well as tyrosine metabolism had great interactions with hydrazine-induced liver injury in rats. These discriminating metabolites might be useful in understanding the pathogenesis mechanisms of liver injury and provide good prospects for drug-induced liver injury diagnosis clinically.

  17. System-Wide Hypersensitive Response-Associated Transcriptome and Metabolome Reprogramming in Tomato

    NARCIS (Netherlands)

    Etalo, D.W.; Stulemeijer, I.J.E.; Esse, van H.P.; Vos, de R.C.H.; Bouwmeester, H.J.; Joosten, M.H.A.J.

    2013-01-01

    The hypersensitive response (HR) is considered to be the hallmark of the resistance response of plants to pathogens. To study HR-associated transcriptome and metabolome reprogramming in tomato (Solanum lycopersicum), we used plants that express both a resistance gene to Cladosporium fulvum and the

  18. Metabolomic applications to decipher gut microbial metabolic influence in health and disease

    Directory of Open Access Journals (Sweden)

    Francois-Pierre eMartin

    2012-04-01

    Full Text Available Dietary preferences and nutrients composition have been shown to influence human and gut microbial metabolism, which ultimately has specific effects on health and diseases’ risk. Increasingly, results from molecular biology and microbiology demonstrate the key role of the gut microbiota metabolic interface to the overall mammalian host’s health status. There is therefore raising interest in nutrition research to characterize the molecular foundations of the gut microbial mammalian cross-talk at both physiological and biochemical pathway levels. Tackling these challenges can be achieved through systems biology approaches, such as metabolomics, to underpin the highly complex metabolic exchanges between diverse biological compartments, including organs, systemic biofluids and microbial symbionts. By the development of specific biomarkers for prediction of health and disease, metabolomics is increasingly used in clinical applications as regard to disease aetiology, diagnostic stratification and potentially mechanism of action of therapeutical and nutraceutical solutions. Surprisingly, an increasing number of metabolomics investigations in pre-clinical and clinical studies based on proton nuclear magnetic resonance (1H NMR spectroscopy and mass spectrometry (MS provided compelling evidence that system wide and organ-specific biochemical processes are under the influence of gut microbial metabolism. This review aims at describing recent applications of metabolomics in clinical fields where main objective is to discern the biochemical mechanisms under the influence of the gut microbiota, with insight into gastrointestinal health and diseases diagnostics and improvement of homeostasis metabolic regulation.

  19. RAMAN SPECTROSCOPY-BASED METABOLOMICS: EVALUATION OF SAMPLE PREPARATION AND OPTICAL ACCESSORIES

    Science.gov (United States)

    The field of metabonomics/metabolomics involves observing endogenous metabolites from organisms that change in response to exposure to a stressor or chemical of interest. Methods are being developed for measuring the Raman spectra of low-concentration metabolites in urine. The ...

  20. Phenotyping of Chronic Obstructive Pulmonary Disease Based on the Integration of Metabolomes and Clinical Characteristics

    Directory of Open Access Journals (Sweden)

    Kalle Kilk

    2018-02-01

    Full Text Available Apart from the refined management-oriented clinical stratification of chronic obstructive pulmonary disease (COPD, the molecular pathologies behind this highly prevalent disease have remained obscure. The aim of this study was the characterization of patients with COPD, based on the metabolomic profiling of peripheral blood and exhaled breath condensate (EBC within the context of defined clinical and demographic variables. Mass-spectrometry-based targeted analysis of serum metabolites (mainly amino acids and lipid species, untargeted profiles of serum and EBC of patients with COPD of different clinical characteristics (n = 25 and control individuals (n = 21 were performed. From the combined clinical/demographic and metabolomics data, associations between clinical/demographic and metabolic parameters were searched and a de novo phenotyping for COPD was attempted. Adjoining the clinical parameters, sphingomyelins were the best to differentiate COPD patients from controls. Unsaturated fatty acid-containing lipids, ornithine metabolism and plasma protein composition-associated signals from the untargeted analysis differentiated the Global Initiative for COPD (GOLD categories. Hierarchical clustering did not reveal a clinical-metabolomic stratification superior to the strata set by the GOLD consensus. We conclude that while metabolomics approaches are good for finding biomarkers and clarifying the mechanism of the disease, there are no distinct co-variate independent clinical-metabolic phenotypes.

  1. A Metabolome-Wide Study of Dry Eye Disease Reveals Serum Androgens as Biomarkers

    NARCIS (Netherlands)

    Vehof, Jelle; Hysi, Pirro G.; Hammond, Christopher J.

    Purpose: To test the association between serum metabolites and dry eye disease (DED) using a hypothesisfree metabolomics approach. Design: Cross-sectional association study. Participants: A total of 2819 subjects from the population-representative TwinsUK cohort in the United Kingdom, with a mean

  2. NMR-based metabolomics for identification of α-amylase inhibitors in rowan berries (Sorbus spp.)

    DEFF Research Database (Denmark)

    Broholm, Sofie L.; Gramsbergen, Simone; Nyberg, Nils

    Type 2 diabetes is a metabolic disorder estimated to affect millions of people all over the world.1 One way of reducing diabetes-related complications is to control postprandial glucose.2 Inhibition of the carbohydrate digestive enzyme α-amylase is a therapeutic target for maintaining low blood g...... a 1H-NMR method suitable for NMR-based metabolomics...

  3. Real-life metabolomics data analysis: how to deal with complex data?

    NARCIS (Netherlands)

    Rubingh, C.M.

    2010-01-01

    Door de grote datasets die gegenereerd worden in metabolomics studies, in combinatie met de ingewikkelde studiedesigns die vaak nodig zijn om subtiele verschillen in metabolietprofielen te kunnen detecteren, zijn standaard multivariate technieken niet meer afdoende. Dit geldt voor alle fasen van de

  4. Metabolomics by Gas Chromatography-Mass Spectrometry: the combination of targeted and untargeted profiling

    Science.gov (United States)

    Fiehn, Oliver

    2016-01-01

    Gas chromatography-mass spectrometry (GC-MS)-based metabolomics is ideal for identifying and quantitating small molecular metabolites (metabolomics easily allows integrating targeted assays for absolute quantification of specific metabolites with untargeted metabolomics to discover novel compounds. Complemented by database annotations using large spectral libraries and validated, standardized standard operating procedures, GC-MS can identify and semi-quantify over 200 compounds per study in human body fluids (e.g., plasma, urine or stool) samples. Deconvolution software enables detection of more than 300 additional unidentified signals that can be annotated through accurate mass instruments with appropriate data processing workflows, similar to liquid chromatography-MS untargeted profiling (LC-MS). Hence, GC-MS is a mature technology that not only uses classic detectors (‘quadrupole’) but also target mass spectrometers (‘triple quadrupole’) and accurate mass instruments (‘quadrupole-time of flight’). This unit covers the following aspects of GC-MS-based metabolomics: (i) sample preparation from mammalian samples, (ii) acquisition of data, (iii) quality control, and (iv) data processing. PMID:27038389

  5. Direct infusion mass spectrometry metabolomics dataset: a benchmark for data processing and quality control

    Science.gov (United States)

    Kirwan, Jennifer A; Weber, Ralf J M; Broadhurst, David I; Viant, Mark R

    2014-01-01

    Direct-infusion mass spectrometry (DIMS) metabolomics is an important approach for characterising molecular responses of organisms to disease, drugs and the environment. Increasingly large-scale metabolomics studies are being conducted, necessitating improvements in both bioanalytical and computational workflows to maintain data quality. This dataset represents a systematic evaluation of the reproducibility of a multi-batch DIMS metabolomics study of cardiac tissue extracts. It comprises of twenty biological samples (cow vs. sheep) that were analysed repeatedly, in 8 batches across 7 days, together with a concurrent set of quality control (QC) samples. Data are presented from each step of the workflow and are available in MetaboLights. The strength of the dataset is that intra- and inter-batch variation can be corrected using QC spectra and the quality of this correction assessed independently using the repeatedly-measured biological samples. Originally designed to test the efficacy of a batch-correction algorithm, it will enable others to evaluate novel data processing algorithms. Furthermore, this dataset serves as a benchmark for DIMS metabolomics, derived using best-practice workflows and rigorous quality assessment. PMID:25977770

  6. Natural isotope correction of MS/MS measurements for metabolomics and (13)C fluxomics.

    Science.gov (United States)

    Niedenführ, Sebastian; ten Pierick, Angela; van Dam, Patricia T N; Suarez-Mendez, Camilo A; Nöh, Katharina; Wahl, S Aljoscha

    2016-05-01

    Fluxomics and metabolomics are crucial tools for metabolic engineering and biomedical analysis to determine the in vivo cellular state. Especially, the application of (13)C isotopes allows comprehensive insights into the functional operation of cellular metabolism. Compared to single MS, tandem mass spectrometry (MS/MS) provides more detailed and accurate measurements of the metabolite enrichment patterns (tandem mass isotopomers), increasing the accuracy of metabolite concentration measurements and metabolic flux estimation. MS-type data from isotope labeling experiments is biased by naturally occurring stable isotopes (C, H, N, O, etc.). In particular, GC-MS(/MS) requires derivatization for the usually non-volatile intracellular metabolites introducing additional natural isotopes leading to measurements that do not directly represent the carbon labeling distribution. To make full use of LC- and GC-MS/MS mass isotopomer measurements, the influence of natural isotopes has to be eliminated (corrected). Our correction approach is analyzed for the two most common applications; (13)C fluxomics and isotope dilution mass spectrometry (IDMS) based metabolomics. Natural isotopes can have an impact on the calculated flux distribution which strongly depends on the substrate labeling and the actual flux distribution. Second, we show that in IDMS based metabolomics natural isotopes lead to underestimated concentrations that can and should be corrected with a nonlinear calibration. Our simulations indicate that the correction for natural abundance in isotope based fluxomics and quantitative metabolomics is essential for correct data interpretation. © 2015 Wiley Periodicals, Inc.

  7. Establishment of quantitative severity evaluation model for spinal cord injury by metabolomic fingerprinting.

    Directory of Open Access Journals (Sweden)

    Jin Peng

    Full Text Available Spinal cord injury (SCI is a devastating event with a limited hope for recovery and represents an enormous public health issue. It is crucial to understand the disturbances in the metabolic network after SCI to identify injury mechanisms and opportunities for treatment intervention. Through plasma 1H-nuclear magnetic resonance (NMR screening, we identified 15 metabolites that made up an "Eigen-metabolome" capable of distinguishing rats with severe SCI from healthy control rats. Forty enzymes regulated these 15 metabolites in the metabolic network. We also found that 16 metabolites regulated by 130 enzymes in the metabolic network impacted neurobehavioral recovery. Using the Eigen-metabolome, we established a linear discrimination model to cluster rats with severe and mild SCI and control rats into separate groups and identify the interactive relationships between metabolic biomarkers in the global metabolic network. We identified 10 clusters in the global metabolic network and defined them as distinct metabolic disturbance domains of SCI. Metabolic paths such as retinal, glycerophospholipid, arachidonic acid metabolism; NAD-NADPH conversion process, tyrosine metabolism, and cadaverine and putrescine metabolism were included. In summary, we presented a novel interdisciplinary method that integrates metabolomics and global metabolic network analysis to visualize metabolic network disturbances after SCI. Our study demonstrated the systems biological study paradigm that integration of 1H-NMR, metabolomics, and global metabolic network analysis is useful to visualize complex metabolic disturbances after severe SCI. Furthermore, our findings may provide a new quantitative injury severity evaluation model for clinical use.

  8. Metabolome Profiling of Partial and Fully Reprogrammed Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Park, Soon-Jung; Lee, Sang A; Prasain, Nutan; Bae, Daekyeong; Kang, Hyunsu; Ha, Taewon; Kim, Jong Soo; Hong, Ki-Sung; Mantel, Charlie; Moon, Sung-Hwan; Broxmeyer, Hal E; Lee, Man Ryul

    2017-05-15

    Acquisition of proper metabolomic fate is required to convert somatic cells toward fully reprogrammed pluripotent stem cells. The majority of induced pluripotent stem cells (iPSCs) are partially reprogrammed and have a transcriptome different from that of the pluripotent stem cells. The metabolomic profile and mitochondrial metabolic functions required to achieve full reprogramming of somatic cells to iPSC status have not yet been elucidated. Clarification of the metabolites underlying reprogramming mechanisms should enable further optimization to enhance the efficiency of obtaining fully reprogrammed iPSCs. In this study, we characterized the metabolites of human fully reprogrammed iPSCs, partially reprogrammed iPSCs, and embryonic stem cells (ESCs). Using capillary electrophoresis time-of-flight mass spectrometry-based metabolomics, we found that 89% of analyzed metabolites were similarly expressed in fully reprogrammed iPSCs and human ESCs (hESCs), whereas partially reprogrammed iPSCs shared only 74% similarly expressed metabolites with hESCs. Metabolomic profiling analysis suggested that converting mitochondrial respiration to glycolytic flux is critical for reprogramming of somatic cells into fully reprogrammed iPSCs. This characterization of metabolic reprogramming in iPSCs may enable the development of new reprogramming parameters for enhancing the generation of fully reprogrammed human iPSCs.

  9. Metabolic Mechanism for l-Leucine-Induced Metabolome To Eliminate Streptococcus iniae.

    Science.gov (United States)

    Du, Chao-Chao; Yang, Man-Jun; Li, Min-Yi; Yang, Jun; Peng, Bo; Li, Hui; Peng, Xuan-Xian

    2017-05-05

    Crucial metabolites that modulate hosts' metabolome to eliminate bacterial pathogens have been documented, but the metabolic mechanisms are largely unknown. The present study explores the metabolic mechanism for l-leucine-induced metabolome to eliminate Streptococcus iniae in tilapia. GC-MS-based metabolomics was used to investigate the tilapia liver metabolic profile in the presence of exogenous l-leucine. Thirty-seven metabolites of differential abundance were determined, and 11 metabolic pathways were enriched. Pattern recognition analysis identified serine and proline as crucial metabolites, which are the two metabolites identified in survived tilapias during S. iniae infection, suggesting that the two metabolites play crucial roles in l-leucine-induced elimination of the pathogen by the host. Exogenous l-serine reduces the mortality of tilapias infected by S. iniae, providing a robust proof supporting the conclusion. Furthermore, exogenous l-serine elevates expression of genes IL-1β and IL-8 in tilapia spleen, but not TNFα, CXCR4 and Mx, suggesting that the metabolite promotes a phagocytosis role of macrophages, which is consistent with the finding that l-leucine promotes macrophages to kill both Gram-positive and Gram-negative bacterial pathogens. Therefore, the ability of phagocytosis enhanced by exogenous l-leucine is partly attributed to elevation of l-serine. These results demonstrate a metabolic mechanism by which exogenous l-leucine modulates tilapias' metabolome to enhance innate immunity and eliminate pathogens.

  10. Metabolomics investigation to shed light on cheese as a possible piece in the French paradox puzzle

    DEFF Research Database (Denmark)

    Zheng, Hong; Yde, Christian C; Clausen, Morten R

    2015-01-01

    An NMR-based metabolomics approach was used to investigate the differentiation between subjects consuming cheese or milk and to elucidate the potential link to an effect on the blood cholesterol level. Fifteen healthy young men participated in a full cross-over study where they consumed three iso...

  11. A functional genomics approach using metabolomics and in silico pathway analysis

    DEFF Research Database (Denmark)

    Förster, Jochen; Gombert, Andreas Karoly; Nielsen, Jens

    2002-01-01

    analysis techniques and changes in the genotype will in many cases lead to different metabolite profiles. Here, a theoretical framework that may be applied to identify the function of orphan genes is presented. The approach is based on a combination of metabolome analysis combined with in silico pathway...

  12. An R package for the integrated analysis of metabolomics and spectral data.

    Science.gov (United States)

    Costa, Christopher; Maraschin, Marcelo; Rocha, Miguel

    2016-06-01

    Recently, there has been a growing interest in the field of metabolomics, materialized by a remarkable growth in experimental techniques, available data and related biological applications. Indeed, techniques as nuclear magnetic resonance, gas or liquid chromatography, mass spectrometry, infrared and UV-visible spectroscopies have provided extensive datasets that can help in tasks as biological and biomedical discovery, biotechnology and drug development. However, as it happens with other omics data, the analysis of metabolomics datasets provides multiple challenges, both in terms of methodologies and in the development of appropriate computational tools. Indeed, from the available software tools, none addresses the multiplicity of existing techniques and data analysis tasks. In this work, we make available a novel R package, named specmine, which provides a set of methods for metabolomics data analysis, including data loading in different formats, pre-processing, metabolite identification, univariate and multivariate data analysis, machine learning, and feature selection. Importantly, the implemented methods provide adequate support for the analysis of data from diverse experimental techniques, integrating a large set of functions from several R packages in a powerful, yet simple to use environment. The package, already available in CRAN, is accompanied by a web site where users can deposit datasets, scripts and analysis reports to be shared with the community, promoting the efficient sharing of metabolomics data analysis pipelines. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Comprehensive untargeted metabolomics of Lychnnophorinae subtribe (Asteraceae: Vernonieae) in a phylogenetic context.

    Science.gov (United States)

    Martucci, Maria Elvira Poleti; Loeuille, Benoit; Pirani, José Rubens; Gobbo-Neto, Leonardo

    2018-01-01

    Members of the subtribe Lychnophorinae occur mostly within the Cerrado domain of the Brazilian Central Plateau. The relationships between its 11 genera, as well as between Lychnophorinae and other subtribes belonging to the tribe Vernonieae, have recently been investigated upon a phylogeny based on molecular and morphological data. We report the use of a comprehensive untargeted metabolomics approach, combining HPLC-MS and GC-MS data, followed by multivariate analyses aiming to assess the congruence between metabolomics data and the phylogenetic hypothesis, as well as its potential as a chemotaxonomic tool. We analyzed 78 species by UHPLC-MS and GC-MS in both positive and negative ionization modes. The metabolic profiles obtained for these species were treated in MetAlign and in MSClust and the matrices generated were used in SIMCA for hierarchical cluster analyses, principal component analyses and orthogonal partial least square discriminant analysis. The results showed that metabolomic analyses are mostly congruent with the phylogenetic hypothesis especially at lower taxonomic levels (Lychnophora or Eremanthus). Our results confirm that data generated using metabolomics provide evidence for chemotaxonomical studies, especially for phylogenetic inference of the Lychnophorinae subtribe and insight into the evolution of the secondary metabolites of this group.

  14. Highlights of the 2012 research workshop: Using nutrigenomics and metabolomics in clinical nutrition research

    Science.gov (United States)

    The American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.) Research Workshop, "Using Nutrigenomics and Metabolomics in Clinical Nutrition Research," was held on January 21, 2012, in Orlando, Florida. The conference brought together experts in human nutrition who use nutrigenomic and meta...

  15. The effects of liraglutide in mice with diet-induced obesity studied by metabolomics

    Czech Academy of Sciences Publication Activity Database

    Bugáňová, M.; Pelantová, H.; Holubová, M.; Šedivá, B.; Maletínská, L.; Železná, B.; Kuneš, Jaroslav; Kačer, P.; Kuzma, M.; Haluzík, M.

    2017-01-01

    Roč. 233, č. 1 (2017), s. 93-104 ISSN 0022-0795 Institutional support: RVO:67985823 Keywords : NMR metabolomics * obesity type 2 * diabetes mellitus * liraglutide * mouse urine Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition OBOR OECD: Endocrinology and metabolism (including diabetes , hormones) Impact factor: 4.706, year: 2016

  16. A metabolomic profile is associated with the risk of incident coronary heart disease

    NARCIS (Netherlands)

    Vaarhorst, A.A.M.; Verhoeven, A.; Weller, C.M.; Böhringer, S.; Göraler, S.; Meissner, A.; Deelder, A.M.; Henneman, P.; Gorgels, A.P.M.; van den Brandt, P.A.; Schouten, L.J.; van Greevenbroek, M.M.; Merry, A.H.H.; Verschuren, W.M.M.; van den Maagdenberg, A.M.J.M.; Willems van Dijk, K.; Isaacs, A.; Boomsma, D.I.; Oostra, B.A.; van Duijn, C.M.; Jukema, J.W.; Boer, J.M.A.; Feskens, E.; Heijmans, B.T.; Slagboom, P.E.

    2014-01-01

    Background Metabolomics, defined as the comprehensive identification and quantification of low-molecular-weight metabolites to be found in a biological sample, has been put forward as a potential tool for classifying individuals according to their risk of coronary heart disease (CHD). Here, we

  17. The Uses and Future Prospects of Metabolomics and Targeted Metabolite Profiling in Cell Factory Development

    DEFF Research Database (Denmark)

    Harrison, Scott James; Herrgard, Markus

    2013-01-01

    , these broader measurements of the cellular metabolic state are now becoming part of the toolbox used to characterize cell factories. In this review we briefly summarize the benefits and challenges of global metabolomics and targeted metabolite profiling methods and discuss the application of these methods...

  18. Comprehensive untargeted metabolomics of Lychnnophorinae subtribe (Asteraceae: Vernonieae in a phylogenetic context.

    Directory of Open Access Journals (Sweden)

    Maria Elvira Poleti Martucci

    Full Text Available Members of the subtribe Lychnophorinae occur mostly within the Cerrado domain of the Brazilian Central Plateau. The relationships between its 11 genera, as well as between Lychnophorinae and other subtribes belonging to the tribe Vernonieae, have recently been investigated upon a phylogeny based on molecular and morphological data. We report the use of a comprehensive untargeted metabolomics approach, combining HPLC-MS and GC-MS data, followed by multivariate analyses aiming to assess the congruence between metabolomics data and the phylogenetic hypothesis, as well as its potential as a chemotaxonomic tool. We analyzed 78 species by UHPLC-MS and GC-MS in both positive and negative ionization modes. The metabolic profiles obtained for these species were treated in MetAlign and in MSClust and the matrices generated were used in SIMCA for hierarchical cluster analyses, principal component analyses and orthogonal partial least square discriminant analysis. The results showed that metabolomic analyses are mostly congruent with the phylogenetic hypothesis especially at lower taxonomic levels (Lychnophora or Eremanthus. Our results confirm that data generated using metabolomics provide evidence for chemotaxonomical studies, especially for phylogenetic inference of the Lychnophorinae subtribe and insight into the evolution of the secondary metabolites of this group.

  19. Canonical correlation analysis of multiple sensory directed metabolomics data blocks reveals corresponding parts between data blocks.

    NARCIS (Netherlands)

    Doeswijk, T. G.; Hageman, J.A.; Westerhuis, J.A.; Tikunov, Y.; Bovy, A.; van Eeuwijk, F.A.

    2011-01-01

    Multiple analytical platforms are frequently used in metabolomics studies. The resulting multiple data blocks contain, in general, similar parts of information which can be disclosed by chemometric methods. The metabolites of interest, however, are usually just a minor part of the complete data

  20. Effect of masticatory stimulation on the quantity and quality of saliva and the salivary metabolomic profile.

    Directory of Open Access Journals (Sweden)

    Nobuyuki Okuma

    Full Text Available This study characterized the changes in quality and quantity of saliva, and changes in the salivary metabolomic profile, to understand the effects of masticatory stimulation.Stimulated and unstimulated saliva samples were collected from 55 subjects and salivary hydrophilic metabolites were comprehensively quantified using capillary electrophoresis-time-of-flight mass spectrometry.In total, 137 metabolites were identified and quantified. The concentrations of 44 metabolites in stimulated saliva were significantly higher than those in unstimulated saliva. Pathway analysis identified the upregulation of the urea cycle and synthesis and degradation pathways of glycine, serine, cysteine and threonine in stimulated saliva. A principal component analysis revealed that the effect of masticatory stimulation on salivary metabolomic profiles was less dependent on sample population sex, age, and smoking. The concentrations of only 1 metabolite in unstimulated saliva, and of 3 metabolites stimulated saliva, showed significant correlation with salivary secretion volume, indicating that the salivary metabolomic profile and salivary secretion volume were independent factors.Masticatory stimulation affected not only salivary secretion volume, but also metabolite concentration patterns. A low correlation between the secretion volume and these patterns supports the conclusion that the salivary metabolomic profile may be a new indicator to characterize masticatory stimulation.

  1. Exceptional evolutionary divergence of human muscle and brain metabolomes parallels human cognitive and physical uniqueness

    DEFF Research Database (Denmark)

    Bozek, Katarzyna; Wei, Yuning; Yan, Zheng

    2014-01-01

    Metabolite concentrations reflect the physiological states of tissues and cells. However, the role of metabolic changes in species evolution is currently unknown. Here, we present a study of metabolome evolution conducted in three brain regions and two non-neural tissues from humans, chimpanzees,...

  2. Metabolomic unveiling of a diverse range of green tea (Camellia sinensis) metabolites dependent on geography.

    Science.gov (United States)

    Lee, Jang-Eun; Lee, Bum-Jin; Chung, Jin-Oh; Kim, Hak-Nam; Kim, Eun-Hee; Jung, Sungheuk; Lee, Hyosang; Lee, Sang-Jun; Hong, Young-Shick

    2015-05-01

    Numerous factors such as geographical origin, cultivar, climate, cultural practices, and manufacturing processes influence the chemical compositions of tea, in the same way as growing conditions and grape variety affect wine quality. However, the relationships between these factors and tea chemical compositions are not well understood. In this study, a new approach for non-targeted or global analysis, i.e., metabolomics, which is highly reproducible and statistically effective in analysing a diverse range of compounds, was used to better understand the metabolome of Camellia sinensis and determine the influence of environmental factors, including geography, climate, and cultural practices, on tea-making. We found a strong correlation between environmental factors and the metabolome of green, white, and oolong teas from China, Japan, and South Korea. In particular, multivariate statistical analysis revealed strong inter-country and inter-city relationships in the levels of theanine and catechin derivatives found in green and white teas. This information might be useful for assessing tea quality or producing distinct tea products across different locations, and highlights simultaneous identification of diverse tea metabolites through an NMR-based metabolomics approach. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Cerebrospinal Fluid Metabolomics After Natural Product Treatment in an Experimental Model of Cerebral Ischemia.

    Science.gov (United States)

    Huan, Tao; Xian, Jia Wen; Leung, Wing Nang; Li, Liang; Chan, Chun Wai

    2016-11-01

    Cerebrospinal fluid (CSF) is an important biofluid for diagnosis of and research on neurological diseases. However, in-depth metabolomic profiling of CSF remains an analytical challenge due to the small volume of samples, particularly in small animal models. In this work, we report the application of a high-performance chemical isotope labeling (CIL) liquid chromatography-mass spectrometry (LC-MS) workflow for CSF metabolomics in Gastrodia elata and Uncaria rhynchophylla water extract (GUW)-treated experimental cerebral ischemia model of rat. The GUW is a commonly used Traditional Chinese Medicine (TCM) for hypertension and brain disease. This study investigated the amine- and phenol-containing biomarkers in the CSF metabolome. After GUW treatment for 7 days, the neurological deficit score was significantly improved with infarct volume reduction, while the integrity of brain histological structure was preserved. Over 1957 metabolites were quantified in CSF by dansylation LC-MS. The analysis of this comprehensive list of metabolites suggests that metabolites associated with oxidative stress, inflammatory response, and excitotoxicity change during GUW-induced alleviation of ischemic injury. This work is significant in that (1) it shows CIL LC-MS can be used for in-depth profiling of the CSF metabolome in experimental ischemic stroke and (2) identifies several potential molecular targets (that might mediate the central nervous system) and associate with pharmacodynamic effects of some frequently used TCMs.

  4. Mechanism of cisplatin proximal tubule toxicity revealed by integrating transcriptomics, proteomics, metabolomics and biokinetics

    NARCIS (Netherlands)

    Wilmes, Anja; Bielow, Chris; Ranninger, Christina; Bellwon, Patricia; Aschauer, Lydia; Limonciel, Alice; Chassaigne, Hubert; Kristl, Theresa; Aiche, Stephan; Huber, Christian G; Guillou, Claude; Hewitt, Philipp; Leonard, Martin O; Dekant, Wolfgang; Bois, Frederic Y; Jennings, Paul

    2015-01-01

    Cisplatin is one of the most widely used chemotherapeutic agents for the treatment of solid tumours. The major dose-limiting factor is nephrotoxicity, in particular in the proximal tubule. Here, we use an integrated omics approach, including transcriptomics, proteomics and metabolomics coupled to

  5. Metabolomic assessment reveals a stimulatory effect of calcium treatment on glucosinolates contents in broccoli microgreen

    Science.gov (United States)

    Preharvest calcium application has been shown to increase broccoli microgreen yield and extend shelf life. Here we investigated the effect of calcium application on its metabolome using ultra high-performance liquid chromatography (UHPLC) tandem with mass spectrometry (HRMS). The data collected were...

  6. Blood Metabolic Signatures of Body Mass Index: A Targeted Metabolomics Study in the EPIC Cohort.

    NARCIS (Netherlands)

    Carayol, Marion; Leitzmann, Michael F; Ferrari, Pietro; Zamora-Ros, Raul; Achaintre, David; Stepien, Magdalena; Schmidt, Julie A; Travis, Ruth C; Overvad, Kim; Tjønneland, Anne; Hansen, Louise; Kaaks, Rudolf; Kühn, Tilman; Boeing, Heiner; Bachlechner, Ursula; Trichopoulou, Antonia; Bamia, Christina; Palli, Domenico; Agnoli, Claudia; Tumino, Rosario; Vineis, Paolo; Panico, Salvatore; Quirós, J Ramón; Sánchez-Cantalejo, Emilio; Huerta, José María; Ardanaz, Eva; Arriola, Larraitz; Agudo, Antonio; Nilsson, Jan; Melander, Olle; Bueno-de-Mesquita, Bas; Peeters, Petra H; Wareham, Nick; Khaw, Kay-Tee; Jenab, Mazda; Key, Timothy J; Scalbert, Augustin; Rinaldi, Sabina

    2017-01-01

    Metabolomics is now widely used to characterize metabolic phenotypes associated with lifestyle risk factors such as obesity. The objective of the present study was to explore the associations of body mass index (BMI) with 145 metabolites measured in blood samples in the European Prospective

  7. Comparative transcriptomic and metabolomic analysis of fenofibrate and fish oil treatments in mice

    NARCIS (Netherlands)

    Lu, Y.; Boekschoten, M.V.; Wopereis, S.; Muller, M.R.; Kersten, A.H.

    2011-01-01

    Elevated circulating triglycerides, which are considered a risk factor for cardiovascular disease, can be targeted by treatment with fenofibrate or fish oil. To gain insight into underlying mechanisms, we carried out a comparative transcriptomics and metabolomics analysis of the effect of 2 wk

  8. Comparative transcriptomics and metabolomic analysis of fenofibrate and fish oil treatments in mice

    NARCIS (Netherlands)

    Lu Yingchang (Kevin), Y.; Boekschoten, Mark; Wopereis, Suzan; Muller, Michael; Kersten, Sander

    2011-01-01

    Elevated circulating triglycerides, which are considered a risk factor for cardiovascular disease, can be targeted by treatment with fenofibrate or fish oil. To gain insight into underlying mechanisms, we carried out a comparative transcriptomics and metabolomics analysis of the effect of 2 week

  9. Alteration of metabolomic markers of amino-acid metabolism in piglets with in-feed antibiotics.

    Science.gov (United States)

    Mu, Chunlong; Yang, Yuxiang; Yu, Kaifan; Yu, Miao; Zhang, Chuanjian; Su, Yong; Zhu, Weiyun

    2017-04-01

    In-feed antibiotics have been used to promote growth in piglets, but its impact on metabolomics profiles associated with host metabolism is largely unknown. In this study, to test the hypothesis that antibiotic treatment may affect metabolite composition both in the gut and host biofluids, metabolomics profiles were analyzed in antibiotic-treated piglets. Piglets were fed a corn-soy basal diet with or without in-feed antibiotics from postnatal day 7 to day 42. The serum biochemical parameters, metabolomics profiles of the serum, urine, and jejunal digesta, and indicators of microbial metabolism (short-chain fatty acids and biogenic amines) were analyzed. Compared to the control group, antibiotics treatment did not have significant effects on serum biochemical parameters except that it increased (P Antibiotics treatment increased the relative concentrations of metabolites involved in amino-acid metabolism in the serum, while decreased the relative concentrations of most amino acids in the jejunal content. Antibiotics reduced urinary 2-ketoisocaproate and hippurate. Furthermore, antibiotics decreased (P Antibiotics significantly affected the concentrations of biogenic amines, which are derived from microbial amino-acid metabolism. The three major amines, putrescine, cadaverine, and spermidine, were all increased (P antibiotics-treated piglets. These results identified the phenomena that in-feed antibiotics may have significant impact on the metabolomic markers of amino-acid metabolism in piglets.

  10. Comprehensive metabolomics to evaluate the impact of industrial processing on the phytochemical composition of vegetable purees

    NARCIS (Netherlands)

    Lopez-Sanchez, P.; Vos, de R.C.H.; Jonker, H.H.; Mumm, R.; Hall, R.D.; Bialek, L.; Leenman, R.; Strassburg, K.; Vreeken, R.; Hankemeier, T.; Schumm, S.; Duynhoven, van J.P.M.

    2015-01-01

    The effects of conventional industrial processing steps on global phytochemical composition of broccoli, tomato and carrot purees were investigated by using a range of complementary targeted and untargeted metabolomics approaches including LC–PDA for vitamins, 1H NMR for polar metabolites, accurate

  11. Use of NMR metabolomic plasma profiling methodologies to identify illicit growth-promoting administrations

    NARCIS (Netherlands)

    Graham, S.F.; Ruiz Aracama, A.; Lommen, A.; Cannizzo, F.T.; Biolatti, B.; Elliott, C.T.; Mooney, M.H.

    2012-01-01

    Detection of growth-promoter use in animal production systems still proves to be an analytical challenge despite years of activity in the field. This study reports on the capability of NMR metabolomic profiling techniques to discriminate between plasma samples obtained from cattle treated with

  12. A Metabolome-Wide Study of Dry Eye Disease Reveals Serum Androgens as Biomarkers.

    Science.gov (United States)

    Vehof, Jelle; Hysi, Pirro G; Hammond, Christopher J

    2017-04-01

    To test the association between serum metabolites and dry eye disease (DED) using a hypothesis-free metabolomics approach. Cross-sectional association study. A total of 2819 subjects from the population-representative TwinsUK cohort in the United Kingdom, with a mean age of 57 years (range, 17-82 years). We tested associations between 222 known serum metabolites and DED. All subjects underwent nontargeted metabolomic analysis of plasma samples using gas and liquid chromatography in combination with mass spectrometry (Metabolon Inc., Durham, NC). Dry eye disease was defined from the validated Short Questionnaire for Dry Eye Syndrome (SQDES) as a previous diagnosis of DED by a clinician or "often" or "constant" symptoms of dryness and irritation. Analyses were performed with linear mixed effect models that included age, BMI, and sex as covariates, corrected for multiple testing. Primary outcome was DED as defined by the SQDES, and secondary outcomes were symptom score of DED and a clinical diagnosis of DED. Prevalence of DED as defined by the SQDES was 15.5% (n = 436). A strong and metabolome-wide significant association with DED was found with decreased levels of the metabolites androsterone sulfate (P = 0.00030) and epiandrosterone sulfate (P = 0.00036). Three other metabolites involved in androgen metabolism, 4-androsten-3beta,17beta-diol disulfate 1 and 2, and dehydroepiandrosterone sulfate, were the next most strongly associated of the 222 metabolites, but did not reach metabolome-wide significance. Dryness and irritation symptoms, as opposed to a clinical diagnosis, were particularly strongly associated with decreased androgen steroid metabolites, with all reaching metabolome-wide significance (androsterone sulfate, P = 0.000000029; epiandrosterone sulfate, P = 0.0000040; 4-androsten-3beta,17beta-diol disulfate 1, P = 0.000016; 4-androsten-3beta,17beta-diol disulfate 2, P = 0.000064; and dehydroepiandrosterone sulfate, P = 0.00011). Of these 5

  13. Non-invasive metabolomic analysis using a commercial NIR instrument for embryo selection

    Directory of Open Access Journals (Sweden)

    Ioannis A Sfontouris

    2013-01-01

    Full Text Available Context: Metabolomics was introduced in human in vitro fertilization (IVF for noninvasive identification of viable embryos with the highest developmental competence. Aims: To determine whether embryo selection using a commercial version of metabolomic analysis leads to increased implantation rates (IRs with fetal cardiac activity (FCA compared with morphology evaluation alone. Setting and Design: Randomized controlled trial from April to December 2010 at a private IVF unit. The study was terminated prematurely due to the market withdrawal of the instrument. Materials and Methods: IVF patients ≥18 and ≤43 years with ≥4 × 2PN were randomly allocated to metabolomic analysis combined with embryo morphology (ViaMetrics-E; metabolomics + morphology group or embryo morphology alone (morphology group. Cycles with frozen embryos, oocyte donations, or testicular biopsy were excluded. Statistical Analysis: Categorical and continuous data were analyzed for statistical significance using 2-tailed Fisher′s exact test and t-test, respectively. Statistical significance was accepted when P < 0.05. Results: A total of 125 patients were included in the study; 39 patients were allocated to metabolomics + morphology group and 86 patients to morphology group. Patients were stratified according to the day of embryo transfer (Days 2, 3, or 5. IRs with FCA were similar for Days 2 and 3 transfers in both groups. For Day 5 transfers, IRs with FCA were significantly higher in the metabolomics + morphology group (46.8% vs. 28.9%; P = 0.041; 95% confidence intervalp [CI]: 1.09-34.18. Pregnancy and live births rates were similar for Days 2, 3, and 5 in both groups. The study was terminated early following the voluntary market withdrawal of ViaMetrics-E in December 2010. Conclusions: Metabolomic analysis using the commercial near-infrared (NIR instrument does not appear to have a beneficial effect on pregnancy and live births, with improvement in IR with FCA for Day 5

  14. NMR-based metabolomics in human disease diagnosis: Applications, limitations, and recommendations

    KAUST Repository

    Emwas, Abdul-Hamid M.

    2013-04-03

    Metabolomics is a dynamic and emerging research field, similar to proteomics, transcriptomics and genomics in affording global understanding of biological systems. It is particularly useful in functional genomic studies in which metabolism is thought to be perturbed. Metabolomics provides a snapshot of the metabolic dynamics that reflect the response of living systems to both pathophysiological stimuli and/or genetic modification. Because this approach makes possible the examination of interactions between an organism and its diet or environment, it is particularly useful for identifying biomarkers of disease processes that involve the environment. For example, the interaction of a high fat diet with cardiovascular disease can be studied via such a metabolomics approach by modeling the interaction between genes and diet. The high reproducibility of NMR-based techniques gives this method a number of advantages over other analytical techniques in large-scale and long-term metabolomic studies, such as epidemiological studies. This approach has been used to study a wide range of diseases, through the examination of biofluids, including blood plasma/serum, urine, blister fluid, saliva and semen, as well as tissue extracts and intact tissue biopsies. However, complicating the use of NMR spectroscopy in biomarker discovery is the fact that numerous variables can effect metabolic composition including, fasting, stress, drug administration, diet, gender, age, physical activity, life style and the subject\\'s health condition. To minimize the influence of these variations in the datasets, all experimental conditions including sample collection, storage, preparation as well as NMR spectroscopic parameters and data analysis should be optimized carefully and conducted in an identical manner as described by the local standard operating protocol. This review highlights the potential applications of NMR-based metabolomics studies and gives some recommendations to improve sample

  15. A Disease-Associated Microbial and Metabolomics State in Relatives of Pediatric Inflammatory Bowel Disease Patients.

    Science.gov (United States)

    Jacobs, Jonathan P; Goudarzi, Maryam; Singh, Namita; Tong, Maomeng; McHardy, Ian H; Ruegger, Paul; Asadourian, Miro; Moon, Bo-Hyun; Ayson, Allyson; Borneman, James; McGovern, Dermot P B; Fornace, Albert J; Braun, Jonathan; Dubinsky, Marla

    2016-11-01

    Microbes may increase susceptibility to inflammatory bowel disease (IBD) by producing bioactive metabolites that affect immune activity and epithelial function. We undertook a family based study to identify microbial and metabolic features of IBD that may represent a predisease risk state when found in healthy first-degree relatives. Twenty-one families with pediatric IBD were recruited, comprising 26 Crohn's disease patients in clinical remission, 10 ulcerative colitis patients in clinical remission, and 54 healthy siblings/parents. Fecal samples were collected for 16S ribosomal RNA gene sequencing, untargeted liquid chromatography-mass spectrometry metabolomics, and calprotectin measurement. Individuals were grouped into microbial and metabolomics states using Dirichlet multinomial models. Multivariate models were used to identify microbes and metabolites associated with these states. Individuals were classified into 2 microbial community types. One was associated with IBD but irrespective of disease status, had lower microbial diversity, and characteristic shifts in microbial composition including increased Enterobacteriaceae, consistent with dysbiosis. This microbial community type was associated similarly with IBD and reduced microbial diversity in an independent pediatric cohort. Individuals also clustered bioinformatically into 2 subsets with shared fecal metabolomics signatures. One metabotype was associated with IBD and was characterized by increased bile acids, taurine, and tryptophan. The IBD-associated microbial and metabolomics states were highly correlated, suggesting that they represented an integrated ecosystem. Healthy relatives with the IBD-associated microbial community type had an increased incidence of elevated fecal calprotectin. Healthy first-degree relatives can have dysbiosis associated with an altered intestinal metabolome that may signify a predisease microbial susceptibility state or subclinical inflammation. Longitudinal prospective

  16. E-Cigarette Affects the Metabolome of Primary Normal Human Bronchial Epithelial Cells.

    Science.gov (United States)

    Aug, Argo; Altraja, Siiri; Kilk, Kalle; Porosk, Rando; Soomets, Ursel; Altraja, Alan

    2015-01-01

    E-cigarettes are widely believed to be safer than conventional cigarettes and have been even suggested as aids for smoking cessation. However, while reasonable with some regards, this judgment is not yet supported by adequate biomedical research data. Since bronchial epithelial cells are the immediate target of inhaled toxicants, we hypothesized that exposure to e-cigarettes may affect the metabolome of human bronchial epithelial cells (HBEC) and that the changes are, at least in part, induced by oxidant-driven mechanisms. Therefore, we evaluated the effect of e-cigarette liquid (ECL) on the metabolome of HBEC and examined the potency of antioxidants to protect the cells. We assessed the changes of the intracellular metabolome upon treatment with ECL in comparison of the effect of cigarette smoke condensate (CSC) with mass spectrometry and principal component analysis on air-liquid interface model of normal HBEC. Thereafter, we evaluated the capability of the novel antioxidant tetrapeptide O-methyl-l-tyrosinyl-γ-l-glutamyl-l-cysteinylglycine (UPF1) to attenuate the effect of ECL. ECL caused a significant shift in the metabolome that gradually gained its maximum by the 5th hour and receded by the 7th hour. A second alteration followed at the 13th hour. Treatment with CSC caused a significant initial shift already by the 1st hour. ECL, but not CSC, significantly increased the concentrations of arginine, histidine, and xanthine. ECL, in parallel with CSC, increased the content of adenosine diphosphate and decreased that of three lipid species from the phosphatidylcholine family. UPF1 partially counteracted the ECL-induced deviations, UPF1's maximum effect occurred at the 5th hour. The data support our hypothesis that ECL profoundly alters the metabolome of HBEC in a manner, which is comparable and partially overlapping with the effect of CSC. Hence, our results do not support the concept of harmlessness of e-cigarettes.

  17. Infrared biospectroscopy for a fast qualitative evaluation of sample preparation in metabolomics.

    Science.gov (United States)

    Kuligowski, Julia; Pérez-Guaita, David; Escobar, Javier; Lliso, Isabel; de la Guardia, Miguel; Lendl, Bernhard; Vento, Máximo; Quintás, Guillermo

    2014-09-01

    Liquid chromatography-mass spectrometry (LC-MS) has been increasingly used in biomedicine to study the dynamic metabolomic responses of biological systems under different physiological or pathological conditions. To obtain an integrated snapshot of the system, metabolomic methods in biomedicine typically analyze biofluids (e.g. plasma) that require clean-up before being injected into LC-MS systems. However, high resolution LC-MS is costly in terms of resources required for sample and data analysis and care must be taken to prevent chemical (e.g. ion suppression) or statistical artifacts. Because of that, the effect of sample preparation on the metabolomic profile during metabolomic method development is often overlooked. This work combines an Attenuated Total Reflectance-Fourier transform infrared (ATR-FTIR) and a multivariate exploratory data analysis for a cost-effective qualitative evaluation of major changes in sample composition during sample preparation. ATR-FTIR and LC-time of flight mass spectrometry (TOFMS) data from the analysis of a set of plasma samples precipitated using acetonitrile, methanol and acetone performed in parallel were used as a model example. Biochemical information obtained from the analysis of the ATR-FTIR and LC-TOFMS data was thoroughly compared to evaluate the strengths and shortcomings of FTIR biospectroscopy for assessing sample preparation in metabolomics studies. Results obtained show the feasibility of ATR-FTIR for the evaluation of major trends in the plasma composition changes among different sample pretreatments, providing information in terms of e.g., amino acids, proteins, lipids and carbohydrates overall contents comparable to those found by LC-TOFMS. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Genomic and Metabolomic Profile Associated to Clustering of Cardio-Metabolic Risk Factors.

    Science.gov (United States)

    Marrachelli, Vannina G; Rentero, Pilar; Mansego, María L; Morales, Jose Manuel; Galan, Inma; Pardo-Tendero, Mercedes; Martinez, Fernando; Martin-Escudero, Juan Carlos; Briongos, Laisa; Chaves, Felipe Javier; Redon, Josep; Monleon, Daniel

    2016-01-01

    To identify metabolomic and genomic markers associated with the presence of clustering of cardiometabolic risk factors (CMRFs) from a general population. One thousand five hundred and two subjects, Caucasian, > 18 years, representative of the general population, were included. Blood pressure measurement, anthropometric parameters and metabolic markers were measured. Subjects were grouped according the number of CMRFs (Group 1: profile was assessed by 1H NMR spectra using a Brucker Advance DRX 600 spectrometer. From the total population, 1217 (mean age 54±19, 50.6% men) with high genotyping call rate were analysed. A differential metabolomic profile, which included products from mitochondrial metabolism, extra mitochondrial metabolism, branched amino acids and fatty acid signals were observed among the three groups. The comparison of metabolomic patterns between subjects of Groups 1 to 3 for each of the genotypes associated to those subjects with three or more CMRFs revealed two SNPs, the rs174577_AA of FADS2 gene and the rs3803_TT of GATA2 transcription factor gene, with minimal or no statistically significant differences. Subjects with and without three or more CMRFs who shared the same genotype and metabolomic profile differed in the pattern of CMRFS cluster. Subjects of Group 3 and the AA genotype of the rs174577 had a lower prevalence of hypertension compared to the CC and CT genotype. In contrast, subjects of Group 3 and the TT genotype of the rs3803 polymorphism had a lower prevalence of T2DM, although they were predominantly males and had higher values of plasma creatinine. The results of the present study add information to the metabolomics profile and to the potential impact of genetic factors on the variants of clustering of cardiometabolic risk factors.

  19. E-Cigarette Affects the Metabolome of Primary Normal Human Bronchial Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Argo Aug

    Full Text Available E-cigarettes are widely believed to be safer than conventional cigarettes and have been even suggested as aids for smoking cessation. However, while reasonable with some regards, this judgment is not yet supported by adequate biomedical research data. Since bronchial epithelial cells are the immediate target of inhaled toxicants, we hypothesized that exposure to e-cigarettes may affect the metabolome of human bronchial epithelial cells (HBEC and that the changes are, at least in part, induced by oxidant-driven mechanisms. Therefore, we evaluated the effect of e-cigarette liquid (ECL on the metabolome of HBEC and examined the potency of antioxidants to protect the cells. We assessed the changes of the intracellular metabolome upon treatment with ECL in comparison of the effect of cigarette smoke condensate (CSC with mass spectrometry and principal component analysis on air-liquid interface model of normal HBEC. Thereafter, we evaluated the capability of the novel antioxidant tetrapeptide O-methyl-l-tyrosinyl-γ-l-glutamyl-l-cysteinylglycine (UPF1 to attenuate the effect of ECL. ECL caused a significant shift in the metabolome that gradually gained its maximum by the 5th hour and receded by the 7th hour. A second alteration followed at the 13th hour. Treatment with CSC caused a significant initial shift already by the 1st hour. ECL, but not CSC, significantly increased the concentrations of arginine, histidine, and xanthine. ECL, in parallel with CSC, increased the content of adenosine diphosphate and decreased that of three lipid species from the phosphatidylcholine family. UPF1 partially counteracted the ECL-induced deviations, UPF1's maximum effect occurred at the 5th hour. The data support our hypothesis that ECL profoundly alters the metabolome of HBEC in a manner, which is comparable and partially overlapping with the effect of CSC. Hence, our results do not support the concept of harmlessness of e-cigarettes.

  20. Metabolomic approach: postharvest storage stability of red radish (raphanus sativus l.)

    International Nuclear Information System (INIS)

    Jahangir, M.; Farid, J.B.A.

    2014-01-01

    Post harvest storage of vegetables at different temperature for consumption is commonly practiced that need standardization. Among vegetables, red radish (Raphanus sativus L.) is a well known and commonly consumed vegetable all over the world. Its bioactive or nutritional constituents include a wide range of metabolites including, glucosinolates, phenolics, amino acids, organic acids, and sugars. However, many of these metabolites are not stable and can easily be degraded or modified during storage. In order to investigate the metabolomic changes during post harvest storage, radish samples (intact roots and aerial parts) were subjected to four different storage temperatures above and below 0 degree C (20 degree C, 4 degree C, -20 degree C, and -80 degree C), for a maximum of 28 days. 1H-NMR and two-dimensional NMR spectra data resulting from the analysis of the different samples were subjected to principal component analysis (PCA) to investigate any possible metabolomic changes. A profound chemical alteration was observed in primary and secondary metabolites. Glucosinolates, phenylpropanoids, organic acids, amino acids, and sugars were found to be the discriminating metabolites for the storage effect. Initially, an increase in secondary metabolites (phenolics and glucosinolates) was observed, but levels of these compounds decreased in later stages, probably due to the breakdown of these products. Whereas late storage samples contained high amounts of amino acids (alanine, valine, threonine, (gama-amino-butyric acid / GABA)) and some glucosinolates (glucobrassicin, neoglucobrassicin). This phenomenon was pronounced at room temperature as compared to other storage temperatures. Interestingly even at lower and freezing temperatures metabolomic changes in these biological samples were observed. The least metabolomic changes were observed at samples stored at -80 degree C. While studying temperature dependent metabolomic changes, high levels of glucose, adenine, alanine

  1. Metabolomics of Oxidative Stress in Recent Studies of Endogenous and Exogenously Administered Intermediate Metabolites

    Directory of Open Access Journals (Sweden)

    Jeffrey G. Pelton

    2011-09-01

    Full Text Available Aerobic metabolism occurs in a background of oxygen radicals and reactive oxygen species (ROS that originate from the incomplete reduction of molecular oxygen in electron transfer reactions. The essential role of aerobic metabolism, the generation and consumption of ATP and other high energy phosphates, sustains a balance of approximately 3000 essential human metabolites that serve not only as nutrients, but also as antioxidants, neurotransmitters, osmolytes, and participants in ligand-based and other cellular signaling. In hypoxia, ischemia, and oxidative stress, where pathological circumstances cause oxygen radicals to form at a rate greater than is possible for their consumption, changes in the composition of metabolite ensembles, or metabolomes, can be associated with physiological changes. Metabolomics and metabonomics are a scientific disciplines that focuse on quantifying dynamic metabolome responses, using multivariate analytical approaches derived from methods within genomics, a discipline that consolidated innovative analysis techniques for situations where the number of biomarkers (metabolites in our case greatly exceeds the number of subjects. This review focuses on the behavior of cytosolic, mitochondrial, and redox metabolites in ameliorating or exacerbating oxidative stress. After reviewing work regarding a small number of metabolites—pyruvate, ethyl pyruvate, and fructose-1,6-bisphosphate—whose exogenous administration was found to ameliorate oxidative stress, a subsequent section reviews basic multivariate statistical methods common in metabolomics research, and their application in human and preclinical studies emphasizing oxidative stress. Particular attention is paid to new NMR spectroscopy methods in metabolomics and metabonomics. Because complex relationships connect oxidative stress to so many physiological processes, studies from different disciplines were reviewed. All, however, shared the common goal of ultimately

  2. Metabolomics of Oxidative Stress in Recent Studies of Endogenous and Exogenously Administered Intermediate Metabolites

    Science.gov (United States)

    Liu, Jia; Litt, Lawrence; Segal, Mark R.; Kelly, Mark J. S.; Pelton, Jeffrey G.; Kim, Myungwon

    2011-01-01

    Aerobic metabolism occurs in a background of oxygen radicals and reactive oxygen species (ROS) that originate from the incomplete reduction of molecular oxygen in electron transfer reactions. The essential role of aerobic metabolism, the generation and consumption of ATP and other high energy phosphates, sustains a balance of approximately 3000 essential human metabolites that serve not only as nutrients, but also as antioxidants, neurotransmitters, osmolytes, and participants in ligand-based and other cellular signaling. In hypoxia, ischemia, and oxidative stress, where pathological circumstances cause oxygen radicals to form at a rate greater than is possible for their consumption, changes in the composition of metabolite ensembles, or metabolomes, can be associated with physiological changes. Metabolomics and metabonomics are a scientific disciplines that focuse on quantifying dynamic metabolome responses, using multivariate analytical approaches derived from methods within genomics, a discipline that consolidated innovative analysis techniques for situations where the number of biomarkers (metabolites in our case) greatly exceeds the number of subjects. This review focuses on the behavior of cytosolic, mitochondrial, and redox metabolites in ameliorating or exacerbating oxidative stress. After reviewing work regarding a small number of metabolites—pyruvate, ethyl pyruvate, and fructose-1,6-bisphosphate—whose exogenous administration was found to ameliorate oxidative stress, a subsequent section reviews basic multivariate statistical methods common in metabolomics research, and their application in human and preclinical studies emphasizing oxidative stress. Particular attention is paid to new NMR spectroscopy methods in metabolomics and metabonomics. Because complex relationships connect oxidative stress to so many physiological processes, studies from different disciplines were reviewed. All, however, shared the common goal of ultimately developing

  3. Analysis of metabolomic data: tools, current strategies and future challenges for omics data integration.

    Science.gov (United States)

    Cambiaghi, Alice; Ferrario, Manuela; Masseroli, Marco

    2017-05-01

    Metabolomics is a rapidly growing field consisting of the analysis of a large number of metabolites at a system scale. The two major goals of metabolomics are the identification of the metabolites characterizing each organism state and the measurement of their dynamics under different situations (e.g. pathological conditions, environmental factors). Knowledge about metabolites is crucial for the understanding of most cellular phenomena, but this information alone is not sufficient to gain a comprehensive view of all the biological processes involved. Integrated approaches combining metabolomics with transcriptomics and proteomics are thus required to obtain much deeper insights than any of these techniques alone. Although this information is available, multilevel integration of different 'omics' data is still a challenge. The handling, processing, analysis and integration of these data require specialized mathematical, statistical and bioinformatics tools, and several technical problems hampering a rapid progress in the field exist. Here, we review four main tools for number of users or provided features (MetaCoreTM, MetaboAnalyst, InCroMAP and 3Omics) out of the several available for metabolomic data analysis and integration with other 'omics' data, highlighting their strong and weak aspects; a number of related issues affecting data analysis and integration are also identified and discussed. Overall, we provide an objective description of how some of the main currently available software packages work, which may help the experimental practitioner in the choice of a robust pipeline for metabolomic data analysis and integration. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Metabolic footprint of diabetes: a multiplatform metabolomics study in an epidemiological setting.

    Directory of Open Access Journals (Sweden)

    Karsten Suhre

    Full Text Available BACKGROUND: Metabolomics is the rapidly evolving field of the comprehensive measurement of ideally all endogenous metabolites in a biological fluid. However, no single analytic technique covers the entire spectrum of the human metabolome. Here we present results from a multiplatform study, in which we investigate what kind of results can presently be obtained in the field of diabetes research when combining metabolomics data collected on a complementary set of analytical platforms in the framework of an epidemiological study. METHODOLOGY/PRINCIPAL FINDINGS: 40 individuals with self-reported diabetes and 60 controls (male, over 54 years were randomly selected from the participants of the population-based KORA (Cooperative Health Research in the Region of Augsburg study, representing an extensively phenotyped sample of the general German population. Concentrations of over 420 unique small molecules were determined in overnight-fasting blood using three different techniques, covering nuclear magnetic resonance and tandem mass spectrometry. Known biomarkers of diabetes could be replicated by this multiple metabolomic platform approach, including sugar metabolites (1,5-anhydroglucoitol, ketone bodies (3-hydroxybutyrate, and branched chain amino acids. In some cases, diabetes-related medication can be detected (pioglitazone, salicylic acid. CONCLUSIONS/SIGNIFICANCE: Our study depicts the promising potential of metabolomics in diabetes research by identification of a series of known and also novel, deregulated metabolites that associate with diabetes. Key observations include perturbations of metabolic pathways linked to kidney dysfunction (3-indoxyl sulfate, lipid metabolism (glycerophospholipids, free fatty acids, and interaction with the gut microflora (bile acids. Our study suggests that metabolic markers hold the potential to detect diabetes-related complications already under sub-clinical conditions in the general population.

  5. A metabolomic approach to animal vitreous humor topographical composition: a pilot study.

    Directory of Open Access Journals (Sweden)

    Emanuela Locci

    Full Text Available The purpose of this study was to evaluate the feasibility of a (1H-NMR-based metabolomic approach to explore the metabolomic signature of different topographical areas of vitreous humor (VH in an animal model. Five ocular globes were enucleated from five goats and immediately frozen at -80 °C. Once frozen, three of them were sectioned, and four samples corresponding to four different VH areas were collected: the cortical, core, and basal, which was further divided into a superior and an inferior fraction. An additional two samples were collected that were representative of the whole vitreous body. (1H-NMR spectra were acquired for twenty-three goat vitreous samples with the aim of characterizing the metabolomic signature of this biofluid and identifying whether any site-specific patterns were present. Multivariate statistical analysis (MVA of the spectral data were carried out, including Principal Component Analysis (PCA, Hierarchical Cluster Analysis (HCA, and Partial Least Squares Discriminant Analysis (PLS-DA. A unique metabolomic signature belonging to each area was observed. The cortical area was characterized by lactate, glutamine, choline, and its derivatives, N-acetyl groups, creatine, and glycerol; the core area was characterized by glucose, acetate, and scyllo-inositol; and the basal area was characterized by branched-chain amino acids (BCAA, betaine, alanine, ascorbate, lysine, and myo-inositol. We propose a speculative approach on the topographic role of these molecules that are mainly responsible for metabolic differences among the as-identified areas. (1H-NMR-based metabolomic analysis has shown to be an important tool for investigating the VH. In particular, this approach was able to assess in the samples here analyzed the presence of different functional areas on the basis of a different metabolite distribution.

  6. Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production

    Science.gov (United States)

    Wu, Gary D; Compher, Charlene; Chen, Eric Z; Smith, Sarah A; Shah, Rachana D; Bittinger, Kyle; Chehoud, Christel; Albenberg, Lindsey G; Nessel, Lisa; Gilroy, Erin; Star, Julie; Weljie, Aalim M; Flint, Harry J; Metz, David C; Bennett, Michael J; Li, Hongzhe; Bushman, Frederic D; Lewis, James D

    2015-01-01

    Objective The consumption of an agrarian diet is associated with a reduced risk for many diseases associated with a ‘Westernised’ lifestyle. Studies suggest that diet affects the gut microbiota, which subsequently influences the metabolome, thereby connecting diet, microbiota and health. However, the degree to which diet influences the composition of the gut microbiota is controversial. Murine models and studies comparing the gut microbiota in humans residing in agrarian versus Western societies suggest that the influence is large. To separate global environmental influences from dietary influences, we characterised the gut microbiota and the host metabolome of individuals consuming an agrarian diet in Western society. Design and results Using 16S rRNA-tagged sequencing as well as plasma and urinary metabolomic platforms, we compared measures of dietary intake, gut microbiota composition and the plasma metabolome between healthy human vegans and omnivores, sampled in an urban USA environment. Plasma metabolome of vegans differed markedly from omnivores but the gut microbiota was surprisingly similar. Unlike prior studies of individuals living in agrarian societies, higher consumption of fermentable substrate in vegans was not associated with higher levels of faecal short chain fatty acids, a finding confirmed in a 10-day controlled feeding experiment. Similarly, the proportion of vegans capable of producing equol, a soy-based gut microbiota metabolite, was less than that was reported in Asian societies despite the high consumption of soy-based products. Conclusions Evidently, residence in globally distinct societies helps determine the composition of the gut microbiota that, in turn, influences the production of diet-dependent gut microbial metabolites. PMID:25431456

  7. Impact of Soil Warming on the Plant Metabolome of Icelandic Grasslands

    Science.gov (United States)

    Gargallo-Garriga, Albert; Ayala-Roque, Marta; Granda, Victor; Sigurdsson, Bjarni D.; Leblans, Niki I. W.; Oravec, Michal; Urban, Otmar; Janssens, Ivan A.

    2017-01-01

    Climate change is stronger at high than at temperate and tropical latitudes. The natural geothermal conditions in southern Iceland provide an opportunity to study the impact of warming on plants, because of the geothermal bedrock channels that induce stable gradients of soil temperature. We studied two valleys, one where such gradients have been present for centuries (long-term treatment), and another where new gradients were created in 2008 after a shallow crustal earthquake (short-term treatment). We studied the impact of soil warming (0 to +15 °C) on the foliar metabolomes of two common plant species of high northern latitudes: Agrostis capillaris, a monocotyledon grass; and Ranunculus acris, a dicotyledonous herb, and evaluated the dependence of shifts in their metabolomes on the length of the warming treatment. The two species responded differently to warming, depending on the length of exposure. The grass metabolome clearly shifted at the site of long-term warming, but the herb metabolome did not. The main up-regulated compounds at the highest temperatures at the long-term site were saccharides and amino acids, both involved in heat-shock metabolic pathways. Moreover, some secondary metabolites, such as phenolic acids and terpenes, associated with a wide array of stresses, were also up-regulated. Most current climatic models predict an increase in annual average temperature between 2–8 °C over land masses in the Arctic towards the end of this century. The metabolomes of A. capillaris and R. acris shifted abruptly and nonlinearly to soil warming >5 °C above the control temperature for the coming decades. These results thus suggest that a slight warming increase may not imply substantial changes in plant function, but if the temperature rises more than 5 °C, warming may end up triggering metabolic pathways associated with heat stress in some plant species currently dominant in this region. PMID:28832555

  8. Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production.

    Science.gov (United States)

    Wu, Gary D; Compher, Charlene; Chen, Eric Z; Smith, Sarah A; Shah, Rachana D; Bittinger, Kyle; Chehoud, Christel; Albenberg, Lindsey G; Nessel, Lisa; Gilroy, Erin; Star, Julie; Weljie, Aalim M; Flint, Harry J; Metz, David C; Bennett, Michael J; Li, Hongzhe; Bushman, Frederic D; Lewis, James D

    2016-01-01

    The consumption of an agrarian diet is associated with a reduced risk for many diseases associated with a 'Westernised' lifestyle. Studies suggest that diet affects the gut microbiota, which subsequently influences the metabolome, thereby connecting diet, microbiota and health. However, the degree to which diet influences the composition of the gut microbiota is controversial. Murine models and studies comparing the gut microbiota in humans residing in agrarian versus Western societies suggest that the influence is large. To separate global environmental influences from dietary influences, we characterised the gut microbiota and the host metabolome of individuals consuming an agrarian diet in Western society. Using 16S rRNA-tagged sequencing as well as plasma and urinary metabolomic platforms, we compared measures of dietary intake, gut microbiota composition and the plasma metabolome between healthy human vegans and omnivores, sampled in an urban USA environment. Plasma metabolome of vegans differed markedly from omnivores but the gut microbiota was surprisingly similar. Unlike prior studies of individuals living in agrarian societies, higher consumption of fermentable substrate in vegans was not associated with higher levels of faecal short chain fatty acids, a finding confirmed in a 10-day controlled feeding experiment. Similarly, the proportion of vegans capable of producing equol, a soy-based gut microbiota metabolite, was less than that was reported in Asian societies despite the high consumption of soy-based products. Evidently, residence in globally distinct societies helps determine the composition of the gut microbiota that, in turn, influences the production of diet-dependent gut microbial metabolites. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  9. MeMo: a hybrid SQL/XML approach to metabolomic data management for functional genomics

    Directory of Open Access Journals (Sweden)

    Hardy Nigel

    2006-06-01

    Full Text Available Abstract Background The genome sequencing projects have shown our limited knowledge regarding gene function, e.g. S. cerevisiae has 5–6,000 genes of which nearly 1,000 have an uncertain function. Their gross influence on the behaviour of the cell can be observed using large-scale metabolomic studies. The metabolomic data produced need to be structured and annotated in a machine-usable form to facilitate the exploration of the hidden links between the genes and their functions. Description MeMo is a formal model for representing metabolomic data and the associated metadata. Two predominant platforms (SQL and XML are used to encode the model. MeMo has been implemented as a relational database using a hybrid approach combining the advantages of the two technologies. It represents a practical solution for handling the sheer volume and complexity of the metabolomic data effectively and efficiently. The MeMo model and the associated software are available at http://dbkgroup.org/memo/. Conclusion The maturity of relational database technology is used to support efficient data processing. The scalability and self-descriptiveness of XML are used to simplify the relational schema and facilitate the extensibility of the model necessitated by the creation of new experimental techniques. Special consideration is given to data integration issues as part of the systems biology agenda. MeMo has been physically integrated and cross-linked to related metabolomic and genomic databases. Semantic integration with other relevant databases has been supported through ontological annotation. Compatibility with other data formats is supported by automatic conversion.

  10. The metabolomic profile of umbilical cord blood in neonatal hypoxic ischaemic encephalopathy.

    Directory of Open Access Journals (Sweden)

    Brian H Walsh

    Full Text Available Hypoxic ischaemic encephalopathy (HIE in newborns can cause significant long-term neurological disability. The insult is a complex injury characterised by energy failure and disruption of cellular homeostasis, leading to mitochondrial damage. The importance of individual metabolic pathways, and their interaction in the disease process is not fully understood. The aim of this study was to describe and quantify the metabolomic profile of umbilical cord blood samples in a carefully defined population of full-term infants with HIE.The injury severity was defined using both the modified Sarnat score and continuous multichannel electroencephalogram. Using these classification systems, our population was divided into those with confirmed HIE (n = 31, asphyxiated infants without encephalopathy (n = 40 and matched controls (n = 71. All had umbilical cord blood drawn and biobanked at -80 °C within 3 hours of delivery. A combined direct injection and LC-MS/MS assay (AbsolutIDQ p180 kit, Biocrates Life Sciences AG, Innsbruck, Austria was used for the metabolomic analyses of the samples. Targeted metabolomic analysis showed a significant alteration between study groups in 29 metabolites from 3 distinct classes (Amino Acids, Acylcarnitines, and Glycerophospholipids. 9 of these metabolites were only significantly altered between neonates with Hypoxic ischaemic encephalopathy and matched controls, while 14 were significantly altered in both study groups. Multivariate Discriminant Analysis models developed showed clear multifactorial metabolite associations with both asphyxia and HIE. A logistic regression model using 5 metabolites clearly delineates severity of asphyxia and classifies HIE infants with AUC = 0.92. These data describe wide-spread disruption to not only energy pathways, but also nitrogen and lipid metabolism in both asphyxia and HIE.This study shows that a multi-platform targeted approach to metabolomic analyses using accurately phenotyped and

  11. Linking diet to acne metabolomics, inflammation, and comedogenesis: an update

    Science.gov (United States)

    Melnik, Bodo C

    2015-01-01

    -induced metabolomic alterations promote the visible sebofollicular inflammasomopathy acne vulgaris. Nutrition therapy of acne has to increase FoxO1 and to attenuate mTORC1/SREBP-1c signaling. Patients should balance total calorie uptake and restrict refined carbohydrates, milk, dairy protein supplements, saturated fats, and trans-fats. A paleolithic-like diet enriched in vegetables and fish is recommended. Plant-derived mTORC1 inhibitors and ω-3-PUFAs are promising dietary supplements supporting nutrition therapy of acne vulgaris. PMID:26203267

  12. Interspecies interactions stimulate diversification of the Streptomyces coelicolor secreted metabolome.

    Science.gov (United States)

    Traxler, Matthew F; Watrous, Jeramie D; Alexandrov, Theodore; Dorrestein, Pieter C; Kolter, Roberto

    2013-08-20

    Soils host diverse microbial communities that include filamentous actinobacteria (actinomycetes). These bacteria have been a rich source of useful metabolites, including antimicrobials, antifungals, anticancer agents, siderophores, and immunosuppressants. While humans have long exploited these compounds for therapeutic purposes, the role these natural products may play in mediating interactions between actinomycetes has been difficult to ascertain. As an initial step toward understanding these chemical interactions at a systems level, we employed the emerging techniques of nanospray desorption electrospray ionization (NanoDESI) and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) imaging mass spectrometry to gain a global chemical view of the model bacterium Streptomyces coelicolor interacting with five other actinomycetes. In each interaction, the majority of secreted compounds associated with S. coelicolor colonies were unique, suggesting an idiosyncratic response from S. coelicolor. Spectral networking revealed a family of unknown compounds produced by S. coelicolor during several interactions. These compounds constitute an extended suite of at least 12 different desferrioxamines with acyl side chains of various lengths; their production was triggered by siderophores made by neighboring strains. Taken together, these results illustrate that chemical interactions between actinomycete bacteria exhibit high complexity and specificity and can drive differential secondary metabolite production. Actinomycetes, filamentous actinobacteria from the soil, are the deepest natural source of useful medicinal compounds, including antibiotics, antifungals, and anticancer agents. There is great interest in developing new strategies that increase the diversity of metabolites secreted by actinomycetes in the laboratory. Here we used several metabolomic approaches to examine the chemicals made by these bacteria when grown in pairwise coculture. We found that

  13. Noninvasive metabolomic profiling as an adjunct to morphology for noninvasive embryo assessment in women undergoing single embryo transfer

    NARCIS (Netherlands)

    Seli, E.; Vergouw, C.G.; Morita, H.; Botros, L.; Roos, P.; Lambalk, C.B.; Yamashita, N.; Kato, O.; Sakkas, D.

    2010-01-01

    Objective: To determine whether metabolomic profiling of spent embryo culture media correlates with reproductive potential of human embryos. Design: Retrospective study. Setting: Academic and a private assisted reproductive technology (ART) programs. Patient(s): Women undergoing single embryo

  14. (1)H-NMR-based metabolomic analysis of the effect of moderate wine consumption on subjects with cardiovascular risk factors

    OpenAIRE

    Vázquez Fresno, Rosa; Llorach, Rafael; Alcaro, Francesca; Rodríguez Martínez, Miguel Ángel; Vinaixa Crevillent, Maria; Chiva Blanch, Gemma; Estruch Riba, Ramon; Correig Blanchar, Xavier; Andrés Lacueva, Ma. Cristina

    2012-01-01

    Moderate wine consumption is associated with health-promoting activities. An H-NMR-based metabolomic approach was used to identify urinary metabolomic differences of moderate wine intake in the setting of a prospective, randomized, crossover, and controlled trial. Sixty-one male volunteers with high cardiovascular risk factors followed three dietary interventions (28 days): dealcoholized red wine (RWD) (272mL/day, polyphenol control), alcoholized red wine (RWA) (272mL/day) and gin (GIN) (100m...

  15. The yeast metabolome addressed by electrospray ionization mass spectrometry: Initiation of a mass spectral library and its applications for metabolic footprinting by direct infusion mass spectrometry

    DEFF Research Database (Denmark)

    Højer-Pedersen, Jesper Juul; Smedsgaard, Jørn; Nielsen, Jens

    2008-01-01

    Mass spectrometry (MS) has been a major driver for metabolomics, and gas chromatography (GC)-MS has been one of the primary techniques used for microbial metabolomics. The use of liquid chromatography (LC)-MS has however been limited, but electrospray ionization (ESI) is very well suited...... for ionization of microbial metabolites without any previous derivatization needed. To address the capabilities of ESI-MS in detecting the metabolome of Saccharomyces cerevisiae, the in silico metabolome of this organism was used as a template to present a theoretical metabolome. This showed that in combination......, which could be assigned using the in silico metabolome. By this approach metabolic footprinting can advance from a classification method that is used to derive biological information based on guilt-by-association, to a tool for extraction of metabolic differences, which can guide new targeted biological...

  16. The human plasma-metabolome: Reference values in 800 French healthy volunteers; impact of cholesterol, gender and age.

    Science.gov (United States)

    Trabado, Séverine; Al-Salameh, Abdallah; Croixmarie, Vincent; Masson, Perrine; Corruble, Emmanuelle; Fève, Bruno; Colle, Romain; Ripoll, Laurent; Walther, Bernard; Boursier-Neyret, Claire; Werner, Erwan; Becquemont, Laurent; Chanson, Philippe

    2017-01-01

    Metabolomic approaches are increasingly used to identify new disease biomarkers, yet normal values of many plasma metabolites remain poorly defined. The aim of this study was to define the "normal" metabolome in healthy volunteers. We included 800 French volunteers aged between 18 and 86, equally distributed according to sex, free of any medication and considered healthy on the basis of their medical history, clinical examination and standard laboratory tests. We quantified 185 plasma metabolites, including amino acids, biogenic amines, acylcarnitines, phosphatidylcholines, sphingomyelins and hexose, using tandem mass spectrometry with the Biocrates AbsoluteIDQ p180 kit. Principal components analysis was applied to identify the main factors responsible for metabolome variability and orthogonal projection to latent structures analysis was employed to confirm the observed patterns and identify pattern-related metabolites. We established a plasma metabolite reference dataset for 144/185 metabolites. Total blood cholesterol, gender and age were identified as the principal factors explaining metabolome variability. High total blood cholesterol levels were associated with higher plasma sphingomyelins and phosphatidylcholines concentrations. Compared to women, men had higher concentrations of creatinine, branched-chain amino acids and lysophosphatidylcholines, and lower concentrations of sphingomyelins and phosphatidylcholines. Elderly healthy subjects had higher sphingomyelins and phosphatidylcholines plasma levels than young subjects. We established reference human metabolome values in a large and well-defined population of French healthy volunteers. This study provides an essential baseline for defining the "normal" metabolome and its main sources of variation.

  17. Fecal Microbiota and Metabolome in a Mouse Model of Spontaneous Chronic Colitis: Relevance to Human Inflammatory Bowel Disease.

    Science.gov (United States)

    Robinson, Ainsley M; Gondalia, Shakuntla V; Karpe, Avinash V; Eri, Rajaraman; Beale, David J; Morrison, Paul D; Palombo, Enzo A; Nurgali, Kulmira

    2016-12-01

    Dysbiosis of the gut microbiota may be involved in the pathogenesis of inflammatory bowel disease (IBD). However, the mechanisms underlying the role of the intestinal microbiome and metabolome in IBD onset and its alteration during active treatment and recovery remain unknown. Animal models of chronic intestinal inflammation with similar microbial and metabolomic profiles would enable investigation of these mechanisms and development of more effective treatments. Recently, the Winnie mouse model of colitis closely representing the clinical symptoms and characteristics of human IBD has been developed. In this study, we have analyzed fecal microbial and metabolomic profiles in Winnie mice and discussed their relevance to human IBD. The 16S rRNA gene was sequenced from fecal DNA of Winnie and C57BL/6 mice to define operational taxonomic units at ≥97% similarity threshold. Metabolomic profiling of the same fecal samples was performed by gas chromatography-mass spectrometry. Composition of the dominant microbiota was disturbed, and prominent differences were evident at all levels of the intestinal microbiome in fecal samples from Winnie mice, similar to observations in patients with IBD. Metabolomic profiling revealed that chronic colitis in Winnie mice upregulated production of metabolites and altered several metabolic pathways, mostly affecting amino acid synthesis and breakdown of monosaccharides to short chain fatty acids. Significant dysbiosis in the Winnie mouse gut replicates many changes observed in patients with IBD. These results provide justification for the suitability of this model to investigate mechanisms underlying the role of intestinal microbiota and metabolome in the pathophysiology of IBD.

  18. Serial Metabolome Changes in a Prospective Cohort of Subjects with Influenza Viral Infection and Comparison with Dengue Fever.

    Science.gov (United States)

    Cui, Liang; Fang, Jinling; Ooi, Eng Eong; Lee, Yie Hou

    2017-07-07

    Influenza virus infection (IVI) and dengue virus infection (DVI) are major public health threats. Between IVI and DVI, clinical symptoms can be overlapping yet infection-specific, but host metabolome changes are not well-described. Untargeted metabolomics and targeted oxylipinomic analyses were performed on sera serially collected at three phases of infection from a prospective cohort study of adult subjects with either H3N2 influenza infection or dengue fever. Untargeted metabolomics identified 26 differential metabolites, and major perturbed pathways included purine metabolism, fatty acid biosynthesis and β-oxidation, tryptophan metabolism, phospholipid catabolism, and steroid hormone pathway. Alterations in eight oxylipins were associated with the early symptomatic phase of H3N2 flu infection, were mostly arachidonic acid-derived, and were enriched in the lipoxygenase pathway. There was significant overlap in metabolome profiles in both infections. However, differences specific to IVI and DVI were observed. DVI specifically attenuated metabolites including serotonin, bile acids and biliverdin. Additionally, metabolome changes were more persistent in IVI in which metabolites such as hypoxanthine, inosine, and xanthine of the purine metabolism pathway remained significantly elevated at 21-27 days after fever onset. This study revealed the dynamic metabolome changes in IVI subjects and provided biochemical insights on host physiological similarities and differences between IVI and DVI.

  19. Impact of a cafeteria diet and daily physical training on the rat serum metabolome.

    Science.gov (United States)

    Suárez-García, Susana; Del Bas, Josep M; Caimari, Antoni; Escorihuela, Rosa M; Arola, Lluís; Suárez, Manuel

    2017-01-01

    Regular physical activity and healthy dietary patterns are commonly recommended for the prevention and treatment of metabolic syndrome (MetS), which is diagnosed at an alarmingly increasing rate, especially among adolescents. Nevertheless, little is known regarding the relevance of physical exercise on the modulation of the metabolome in healthy people and those with MetS. We have previously shown that treadmill exercise ameliorated different symptoms of MetS. The aim of this study was to investigate the impact of a MetS-inducing diet and different intensities of aerobic training on the overall serum metabolome of adolescent rats. For 8 weeks, young rats were fed either standard chow (ST) or cafeteria diet (CAF) and were subjected to a daily program of training on a treadmill at different speeds. Non-targeted metabolomics was used to identify changes in circulating metabolites, and a combination of multivariate analysis techniques was implemented to achieve a holistic understanding of the metabolome. Among all the identified circulating metabolites influenced by CAF, lysophosphatidylcholines were the most represented family. Serum sphingolipids, bile acids, acylcarnitines, unsaturated fatty acids and vitamin E and A derivatives also changed significantly in CAF-fed rats. These findings suggest that an enduring systemic inflammatory state is induced by CAF. The impact of physical training on the metabolome was less striking than the impact of diet and mainly altered circulating bile acids and glycerophospholipids. Furthermore, the serum levels of monocyte chemoattractant protein-1 were increased in CAF-fed rats, and C-reactive protein was decreased in trained groups. The leptin/adiponectin ratio, a useful marker of MetS, was increased in CAF groups, but decreased in proportion to training intensity. Multivariate analysis revealed that ST-fed animals were more susceptible to exercise-induced changes in metabolites than animals with MetS, in which moderate

  20. Impact of a cafeteria diet and daily physical training on the rat serum metabolome.

    Directory of Open Access Journals (Sweden)

    Susana Suárez-García

    Full Text Available Regular physical activity and healthy dietary patterns are commonly recommended for the prevention and treatment of metabolic syndrome (MetS, which is diagnosed at an alarmingly increasing rate, especially among adolescents. Nevertheless, little is known regarding the relevance of physical exercise on the modulation of the metabolome in healthy people and those with MetS. We have previously shown that treadmill exercise ameliorated different symptoms of MetS. The aim of this study was to investigate the impact of a MetS-inducing diet and different intensities of aerobic training on the overall serum metabolome of adolescent rats. For 8 weeks, young rats were fed either standard chow (ST or cafeteria diet (CAF and were subjected to a daily program of training on a treadmill at different speeds. Non-targeted metabolomics was used to identify changes in circulating metabolites, and a combination of multivariate analysis techniques was implemented to achieve a holistic understanding of the metabolome. Among all the identified circulating metabolites influenced by CAF, lysophosphatidylcholines were the most represented family. Serum sphingolipids, bile acids, acylcarnitines, unsaturated fatty acids and vitamin E and A derivatives also changed significantly in CAF-fed rats. These findings suggest that an enduring systemic inflammatory state is induced by CAF. The impact of physical training on the metabolome was less striking than the impact of diet and mainly altered circulating bile acids and glycerophospholipids. Furthermore, the serum levels of monocyte chemoattractant protein-1 were increased in CAF-fed rats, and C-reactive protein was decreased in trained groups. The leptin/adiponectin ratio, a useful marker of MetS, was increased in CAF groups, but decreased in proportion to training intensity. Multivariate analysis revealed that ST-fed animals were more susceptible to exercise-induced changes in metabolites than animals with MetS, in which