WorldWideScience

Sample records for metabolites increases tumor

  1. In vivo metabolite-specific imaging in tumor

    International Nuclear Information System (INIS)

    Hurd, R.E.; Freeman, D.M.

    1988-01-01

    The authors have developed a practical method using proton MR imaging to map the level and distribution of metabolites in vivo. Of particular interest to the biochemist and the clinician is the presence of excess lactic acid in tissues, indicating hypoxia such as is found in certain solid tumors, or in ischemia that would occur during cardiac infarct or stroke. A two-dimensional double quantum coherence technique has been optimized to greatly reduce signal intensity from biologic water and to provide unambiguous editing of the lactic acid resonance from interfering lipid resonances. The method was tested using a General Electric 2.0-T CSI instrument fitted with actively shielded gradients. Two-dimensional double quantum coherence lactic acid edited images were obtained from an implanted RIF-1 tumor in C3H mice, showing heterogeneous distribution of lactic acid within the tumor. Very little lipid signal with respect to the lactic acid methyl resonance was observed. The lactic acid concentration of the tumor was determined to be 10 μmol/g wet by enzymatic assay. Metabolite-specific imaging using double quantum coherence transfer promises to yield noninvasive information about lactic acid levels and distribution in vivo at low field, relatively quickly, with low radio frequency power disposition and without the need for complex presaturation pulses

  2. Non-invasive quantitation of phosphorus metabolites in human brain and brain tumors by magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Naruse, Shoji; Higuchi, Toshihiro; Horikawa, Yoshiharu; Tanaka, Chuzo; Roth, K.; Hubesch, B.; Meyerhoff, D.J.; Weiner, M.W.

    1989-01-01

    In obtaining localized magnetic resonance spectra in the clinical setting, the exact determination of volume of interest (VOI), the relative sensitivity of detection within the VOI, the inhomogeneity of B 1 field, the Q factor of the coil, and saturation factors should be considered. Taking these items into account, a quantitative method for calculating the absolute amount of phosphorus metabolites was developed. Using this method, phosphorus metabolites in the brain were determined in 15 patients with brain tumors - meningioma (8) and astrocytoma (7), and 10 normal volunteers. The integrals for metabolite signals were determined by using the curve-fitting software. The concentrations for ATP, PCr, PDE, inorganic orthophosphate (Pi), and phosphomonosters (PME) were 2.5, 4.9, 11.3, 1.9 and 3.9 mM, respectively, in the normal brain. For the brain tumors, phosphorus metabolites were decreased, except for Pi and PME. These results encourage the clinical use of this method in the quantitative analysis of metabolites of the diseased brain. (Namekawa, K)

  3. ω-3 Polyunsaturated fatty acids and their cytochrome P450-derived metabolites suppress colorectal tumor development in mice.

    Science.gov (United States)

    Wang, Weicang; Yang, Jun; Nimiya, Yoshiki; Lee, Kin Sing Stephen; Sanidad, Katherine; Qi, Weipeng; Sukamtoh, Elvira; Park, Yeonhwa; Liu, Zhenhua; Zhang, Guodong

    2017-10-01

    Many studies have shown that dietary intake of ω-3 polyunsaturated fatty acids (PUFAs) reduces the risks of colorectal cancer; however, the underlying mechanisms are not well understood. Here we used a LC-MS/MS-based lipidomics to explore the role of eicosanoid signaling in the anti-colorectal cancer effects of ω-3 PUFAs. Our results showed that dietary feeding of ω-3 PUFAs-rich diets suppressed growth of MC38 colorectal tumor, and modulated profiles of fatty acids and eicosanoid metabolites in C57BL/6 mice. Notably, we found that dietary feeding of ω-3 PUFAs significantly increased levels of epoxydocosapentaenoic acids (EDPs, metabolites of ω-3 PUFA produced by cytochrome P450 enzymes) in plasma and tumor tissue of the treated mice. We further showed that systematic treatment with EDPs (dose=0.5 mg/kg per day) suppressed MC38 tumor growth in mice, with reduced expressions of pro-oncogenic genes such as C-myc, Axin2, and C-jun in tumor tissues. Together, these results support that formation of EDPs might contribute to the anti-colorectal cancer effects of ω-3 PUFAs. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. The utility of fecal corticosterone metabolites and animal welfare assessment protocols as predictive parameters of tumor development and animal welfare in a murine xenograft model

    DEFF Research Database (Denmark)

    Jacobsen, Kirsten Rosenmaj; Jørgensen, Pernille Schønning; Pipper, Christian Bressen

    2013-01-01

    consumption, and an animal welfare assessment (AWA) protocol revealed marked differences between control and cancer lines as the size of the tumor increased. However, only the AWA protocol was effective in predicting the tumor size and the level of fecal corticosterone metabolites (FCM). FCM levels were...

  5. 2-methoxyestradiol-mediated anti-tumor effect increases osteoprotegerin expression in osteosarcoma cells.

    Science.gov (United States)

    Benedikt, Michaela B; Mahlum, Eric W; Shogren, Kristen L; Subramaniam, Malayannan; Spelsberg, Thomas C; Yaszemski, Michael J; Maran, Avudaiappan

    2010-04-01

    Osteosarcoma is a bone tumor that frequently develops during adolescence. 2-Methoxyestradiol (2-ME), a naturally occurring metabolite of 17beta-estradiol, induces cell cycle arrest and cell death in human osteosarcoma cells. To investigate whether the osteoprotegrin (OPG) protein plays a role in 2-ME actions, we studied the effect of 2-ME treatment on OPG gene expression in human osteosarcoma cells. 2-ME treatment induced OPG gene promoter activity and mRNA levels. Also, Western blot analysis showed that 2-ME treatment increased OPG protein levels in MG63, KHOS, 143B and LM7 osteosarcoma cells by 3-, 1.9-, 2.8-, and 2.5-fold, respectively, but did not affect OPG expression in normal bone cells. In addition, increases in OPG protein levels were observed in osteosarcoma cell culture media after 3 days of 2-ME treatment. The effect of 2-ME on osteosarcoma cells was ligand-specific as parent estrogen, 17beta-estradiol and a tumorigenic estrogen metabolite, 16alpha-hydroxyestradiol, which do not affect osteosarcoma cell cycle and cell death, had no effect on OPG protein expression. Furthermore, co-treating osteosarcoma cells with OPG protein did not further enhance 2-ME-mediated anti-tumor effects. OPG-released in 2-ME-treated cultures led to an increase in osteoblastic activity and a decrease in osteoclast number, respectively. These findings suggest that OPG is not directly involved in 2-ME-mediated anti-proliferative effects in osteosarcoma cells, but rather participates in anti-resorptive functions of 2-ME in bone tumor environment. Copyright 2010 Wiley-Liss, Inc.

  6. A modular modulation method for achieving increases in metabolite production.

    Science.gov (United States)

    Acerenza, Luis; Monzon, Pablo; Ortega, Fernando

    2015-01-01

    Increasing the production of overproducing strains represents a great challenge. Here, we develop a modular modulation method to determine the key steps for genetic manipulation to increase metabolite production. The method consists of three steps: (i) modularization of the metabolic network into two modules connected by linking metabolites, (ii) change in the activity of the modules using auxiliary rates producing or consuming the linking metabolites in appropriate proportions and (iii) determination of the key modules and steps to increase production. The mathematical formulation of the method in matrix form shows that it may be applied to metabolic networks of any structure and size, with reactions showing any kind of rate laws. The results are valid for any type of conservation relationships in the metabolite concentrations or interactions between modules. The activity of the module may, in principle, be changed by any large factor. The method may be applied recursively or combined with other methods devised to perform fine searches in smaller regions. In practice, it is implemented by integrating to the producer strain heterologous reactions or synthetic pathways producing or consuming the linking metabolites. The new procedure may contribute to develop metabolic engineering into a more systematic practice. © 2015 American Institute of Chemical Engineers.

  7. iNOS expression and biosynthesis of nitric oxide metabolites in the course of tumor growth of different histogenesis

    Directory of Open Access Journals (Sweden)

    V. P. Deryagina

    2016-01-01

    Full Text Available The dynamics of the production of nitric oxide (NO metabolites: nitrites, nitrates, volatile nitrosamines and iNOS expression was studied in mice with subcutaneous transplanted, spontaneous and chemical- induced tumors. Tumor growth was accompanied by increased production of nitrites + nitrates in tumors or their release with urine that not dependent on tumor histotype. The total concentration of nitrites and nitrates in tumors reached micromolar levels characteristic of nitrosative stress. The ability of peritoneal macrophages + monocytes to generates nitrites was suppressed at the stage of intensive growth of the Lewis lung carcinoma, which may indicate a decrease in the cytotoxic properties of immune cells. The possibility of formation in the Erlich carcinoma of volative N-nitrosodimethylamine and N-nitrosodiethylamine compounds with pronounced carcinogenic properties was demonstrated. A positive expression of iNOS was revealed in some areas of lung carcinoma at all investigated time points using the immunohistochemical method. The lungs metastases were not stain or weakly stained. This may indicate selection of the cells with a low activity of iNOS migrating in the lungs.

  8. Programming adaptive control to evolve increased metabolite production.

    Science.gov (United States)

    Chou, Howard H; Keasling, Jay D

    2013-01-01

    The complexity inherent in biological systems challenges efforts to rationally engineer novel phenotypes, especially those not amenable to high-throughput screens and selections. In nature, increased mutation rates generate diversity in a population that can lead to the evolution of new phenotypes. Here we construct an adaptive control system that increases the mutation rate in order to generate diversity in the population, and decreases the mutation rate as the concentration of a target metabolite increases. This system is called feedback-regulated evolution of phenotype (FREP), and is implemented with a sensor to gauge the concentration of a metabolite and an actuator to alter the mutation rate. To evolve certain novel traits that have no known natural sensors, we develop a framework to assemble synthetic transcription factors using metabolic enzymes and construct four different sensors that recognize isopentenyl diphosphate in bacteria and yeast. We verify FREP by evolving increased tyrosine and isoprenoid production.

  9. The influence of arachidonic acid metabolites on cell division in the intestinal epithelium and in colonic tumors.

    Science.gov (United States)

    Petry, F M; Tutton, P J; Barkla, D H

    1984-09-01

    Various metabolites of arachidonic acid are now known to influence cell division. In this paper the effects on cell proliferation of arachidonic acid, some inhibitors of arachidonic acid metabolism and some analogs of arachidonic acid metabolites is described. The epithelial cell proliferation rate in the jejunum, in the descending colon and in dimethylhydrazine-induced tumors of rat colon was measured using a stathmokinetic technique. Administration of arachidonic acid resulted in retardation of cell proliferation in each of the tissues examined. A cyclooxygenase inhibitor (Flurbiprofen) prevented this effect of arachidonic acid in the jejunal crypts and in colonic tumors, but not in colonic crypts. In contrast, inhibitors of both cyclooxygenase and lipoxygenase (Benoxaprofen and BW755c) prevented the effect of arachidonic acid in the colonic crypts and reduced its effect on colonic tumours but did not alter its effect on the jejunum. An inhibitor of thromoboxane A2 synthetase (U51,605) was also able to prevent the inhibitory effect of arachidonic acid on colonic tumors. Treatment with 16,16-dimethyl PGE2 inhibited cell proliferation in jejunal crypts and in colonic tumors, as did a thromboxane A2 mimicking agent, U46619. Nafazatrom, an agent that stimulates prostacyclin synthesis and inhibits lypoxygenase, promoted cell proliferation in the jejunal crypts and colonic crypts, but inhibited cell proliferation in colonic tumours.

  10. Targeted Serum Metabolite Profiling Identifies Metabolic Signatures in Patients with Alzheimer's Disease, Normal Pressure Hydrocephalus and Brain Tumor

    Directory of Open Access Journals (Sweden)

    Matej Orešič

    2018-01-01

    Full Text Available Progression to AD is preceded by elevated levels of 2,4-dihydroxybutanoic acid (2,4-DHB, implicating hypoxia in early pathogenesis. Since hypoxia may play a role in multiple CNS disorders, we investigated serum metabolite profiles across three disorders, AD, Normal Pressure Hydrocephalus (NPH and brain tumors (BT. Blood samples were collected from 27 NPH and 20 BT patients. The profiles of 21 metabolites were examined. Additionally, data from 37 AD patients and 46 controls from a previous study were analyzed together with the newly acquired data. No differences in 2,4-DHB were found across AD, NPH and BT samples. In the BT group, the fatty acids were increased as compared to HC and NPH groups, while the ketone body 3-hydroxybutyrate was increased as compared to AD. Glutamic acid was increased in AD as compared to the HC group. In the AD group, 3-hydroxybutyrate tended to be decreased with respect to all other groups (mean values −30% or more, but the differences were not statistically significant. Serine was increased in NPH as compared to BT. In conclusion, AD, NPH and BT have different metabolic profiles. This preliminary study may help in identifying the blood based markers that are specific to these three CNS diseases.

  11. Oral JS-38, a metabolite from Xenorhabdus sp., has both anti-tumor activity and the ability to elevate peripheral neutrophils.

    Science.gov (United States)

    Liu, Min-Yu; Xiao, Lin; Chen, Geng-Hui; Wang, Yong-Xiang; Xiong, Wei-Xia; Li, Fei; Liu, Ying; Huang, Xiao-Ling; Deng, Yi-Fang; Zhang, Zhen; Sun, Hai-Yan; Liu, Quan-Hai; Yin, Ming

    2014-10-01

    JS-38 (mitothiolore), a synthetic version of a metabolite isolated from Xenorhabdus sp., was evaluated for its anti-tumor and white blood cell (WBC) elevating activities. These anti-proliferative activities were assessed in vitro using a panel of ten cell lines. The anti-tumor activities were tested in vivo using B16 allograft mouse models and xenograft models of A549 human lung carcinoma and QGY human hepatoma in nude mice. The anti-tumor interactions of JS-38 and cyclophosphamide (CTX) or 5-fluorouracil (5-Fu) were studied in a S180 sarcoma model in ICR mice. Specific stimulatory effects were determined on peripheral neutrophils in normal and CTX- and 5-Fu-induced neutropenic mice. The IC50 values ranged from 0.1 to 2.0 μmol·L(-1). JS-38 (1 μmol·L(-1)) caused an increase in A549 tumor cell apoptosis. Multi-daily gavage of JS-38 (15, 30, and 60 mg·kg(-1)·d(-1)) inhibited in vivo tumor progression without a significant effect on body weight. JS-38 additively enhanced the in vivo anti-tumor effects of CTX or 5-Fu. JS-38 increased peripheral neutrophil counts and neutrophil rates in normal BALB/c mice almost as effectively as granulocyte colony-stimulating factor (G-CSF). In mice with neutropenia induced by CTX or 5-Fu, JS-38 rapidly restored neutrophil counts. These results suggest that JS-38 has anti-tumor activity, and also has the ability to increase peripheral blood neutrophils. Copyright © 2014 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  12. Preliminary 19F-MRS Study of Tumor Cell Proliferation with 3′-deoxy-3′-fluorothymidine and Its Metabolite (FLT-MP

    Directory of Open Access Journals (Sweden)

    In Ok Ko

    2017-01-01

    Full Text Available The thymidine analogue 3′-deoxy-3′-[18F]fluorothymidine, or [18F]fluorothymidine ([18F]FLT, is used to measure tumor cell proliferation with positron emission tomography (PET imaging technology in nuclear medicine. FLT is phosphorylated by thymidine kinase 1 (TK1 and then trapped inside cells; it is not incorporated into DNA. Imaging with 18F-radiolabeled FLT is a noninvasive technique to visualize cellular proliferation in tumors. However, it is difficult to distinguish between [18F]FLT and its metabolites by PET imaging, and quantification has not been attempted using current imaging methods. In this study, we successfully acquired in vivo F19 spectra of natural or nonradioactive 3′-deoxy-3′-fluorothymidine ([19F]FLT and its monophosphate metabolite (FLT-MP in a tumor xenograft mouse model using 9.4T magnetic resonance imaging (MRI. This preliminary result demonstrates that 19F magnetic resonance spectroscopy (MRS with FLT is suitable for the in vivo assessment of tumor aggressiveness and for early prediction of treatment response.

  13. Porritoxins, metabolites of Alternaria porri, as anti-tumor-promoting active compounds.

    Science.gov (United States)

    Horiuchi, Masayuki; Tokuda, Harukuni; Ohnishi, Keiichiro; Yamashita, Masakazu; Nishino, Hoyoku; Maoka, Takashi

    2006-02-01

    To search for possible cancer chemopreventive agents from natural sources, we performed primary screening of metabolites of Alternaria porri by examining their possible inhibitory effects on Epstein-Barr virus early antigen (EBV-EA) activation induced by 12-O-tetradecanoylphorbol-13-acetate (TPA) in Raji cells. The ethyl acetate extract of A. porri showed the inhibitory effect on EBV-EA activation. Three porritoxins (1-3) were obtained as inhibitory active compounds for EBV-EA from ethyl acetate extract. 6-(3',3'-Dimethylallyloxy)-4-methoxy-5-methylphthalide (2) showed the strongest activity among them. Inhibitory effect of porritoxin (1) and (2) was superior to that of beta-carotene, a well-known anti-tumor promoter. Furthermore, the structure-activity correlation of porritoxins and their related compounds were discussed.

  14. Novel biomarker identification using metabolomic profiling to differentiate radiation necrosis and recurrent tumor following Gamma Knife radiosurgery.

    Science.gov (United States)

    Lu, Alex Y; Turban, Jack L; Damisah, Eyiyemisi C; Li, Jie; Alomari, Ahmed K; Eid, Tore; Vortmeyer, Alexander O; Chiang, Veronica L

    2017-08-01

    OBJECTIVE Following an initial response of brain metastases to Gamma Knife radiosurgery, regrowth of the enhancing lesion as detected on MRI may represent either radiation necrosis (a treatment-related inflammatory change) or recurrent tumor. Differentiation of radiation necrosis from tumor is vital for management decision making but remains difficult by imaging alone. In this study, gas chromatography with time-of-flight mass spectrometry (GC-TOF) was used to identify differential metabolite profiles of the 2 tissue types obtained by surgical biopsy to find potential targets for noninvasive imaging. METHODS Specimens of pure radiation necrosis and pure tumor obtained from patient brain biopsies were flash-frozen and validated histologically. These formalin-free tissue samples were then analyzed using GC-TOF. The metabolite profiles of radiation necrosis and tumor samples were compared using multivariate and univariate statistical analysis. Statistical significance was defined as p ≤ 0.05. RESULTS For the metabolic profiling, GC-TOF was performed on 7 samples of radiation necrosis and 7 samples of tumor. Of the 141 metabolites identified, 17 (12.1%) were found to be statistically significantly different between comparison groups. Of these metabolites, 6 were increased in tumor, and 11 were increased in radiation necrosis. An unsupervised hierarchical clustering analysis found that tumor had elevated levels of metabolites associated with energy metabolism, whereas radiation necrosis had elevated levels of metabolites that were fatty acids and antioxidants/cofactors. CONCLUSIONS To the authors' knowledge, this is the first tissue-based metabolomics study of radiation necrosis and tumor. Radiation necrosis and recurrent tumor following Gamma Knife radiosurgery for brain metastases have unique metabolite profiles that may be targeted in the future to develop noninvasive metabolic imaging techniques.

  15. Flavonoid metabolites reduce tumor necrosis factor‐α secretion to a greater extent than their precursor compounds in human THP‐1 monocytes

    Science.gov (United States)

    di Gesso, Jessica L.; Kerr, Jason S.; Zhang, Qingzhi; Raheem, Saki; Yalamanchili, Sai Krishna; O'Hagan, David; Kay, Colin D.; O'Connell, Maria A.

    2015-01-01

    1 Scope Flavonoids are generally studied in vitro, in isolation, and as unmetabolized precursor structures. However, in the habitual diet, multiple flavonoids are consumed together and found present in the circulation as complex mixtures of metabolites. Using a unique study design, we investigated the potential for singular or additive anti‐inflammatory effects of flavonoid metabolites relative to their precursor structures. 2 Methods and results Six flavonoids, 14 flavonoid metabolites, and 29 combinations of flavonoids and their metabolites (0.1–10 μM) were screened for their ability to reduce LPS‐induced tumor necrosis factor‐α (TNF‐α) secretion in THP‐1 monocytes. One micromolar peonidin‐3‐glucoside, cyanidin‐3‐glucoside, and the metabolites isovanillic acid (IVA), IVA‐glucuronide, vanillic acid‐glucuronide, protocatechuic acid‐3‐sulfate, and benzoic acid‐sulfate significantly reduced TNF‐α secretion when in isolation, while there was no effect on TNF‐α mRNA expression. Four combinations of metabolites that included 4‐hydroxybenzoic acid (4HBA) and/or protocatechuic acid also significantly reduced TNF‐α secretion to a greater extent than the precursors or metabolites alone. The effects on LPS‐induced IL‐1β and IL‐10 secretion and mRNA expression were also examined. 4HBA significantly reduced IL‐1β secretion but none of the flavonoids or metabolites significantly modified IL‐10 secretion. 3 Conclusion This study provides novel evidence suggesting flavonoid bioactivity results from cumulative or additive effects of circulating metabolites. PMID:25801720

  16. Captopril improves tumor nanomedicine delivery by increasing tumor blood perfusion and enlarging endothelial gaps in tumor blood vessels.

    Science.gov (United States)

    Zhang, Bo; Jiang, Ting; Tuo, Yanyan; Jin, Kai; Luo, Zimiao; Shi, Wei; Mei, Heng; Hu, Yu; Pang, Zhiqing; Jiang, Xinguo

    2017-12-01

    Poor tumor perfusion and unfavorable vessel permeability compromise nanomedicine drug delivery to tumors. Captopril dilates blood vessels, reducing blood pressure clinically and bradykinin, as the downstream signaling moiety of captopril, is capable of dilating blood vessels and effectively increasing vessel permeability. The hypothesis behind this study was that captopril can dilate tumor blood vessels, improving tumor perfusion and simultaneously enlarge the endothelial gaps of tumor vessels, therefore enhancing nanomedicine drug delivery for tumor therapy. Using the U87 tumor xenograft with abundant blood vessels as the tumor model, tumor perfusion experiments were carried out using laser Doppler imaging and lectin-labeling experiments. A single treatment of captopril at a dose of 100 mg/kg significantly increased the percentage of functional vessels in tumor tissues and improved tumor blood perfusion. Scanning electron microscopy of tumor vessels also indicated that the endothelial gaps of tumor vessels were enlarged after captopril treatment. Immunofluorescence-staining of tumor slices demonstrated that captopril significantly increased bradykinin expression, possibly explaining tumor perfusion improvements and endothelial gap enlargement. Additionally, imaging in vivo, imaging ex vivo and nanoparticle distribution in tumor slices indicated that after a single treatment with captopril, the accumulation of 115-nm nanoparticles in tumors had increased 2.81-fold with a more homogeneous distribution pattern in comparison to non-captopril treated controls. Finally, pharmacodynamics experiments demonstrated that captopril combined with paclitaxel-loaded nanoparticles resulted in the greatest tumor shrinkage and the most extensive necrosis in tumor tissues among all treatment groups. Taken together, the data from the present study suggest a novel strategy for improving tumor perfusion and enlarging blood vessel permeability simultaneously in order to improve

  17. Flavonoid metabolites reduce tumor necrosis factor-α secretion to a greater extent than their precursor compounds in human THP-1 monocytes.

    Science.gov (United States)

    di Gesso, Jessica L; Kerr, Jason S; Zhang, Qingzhi; Raheem, Saki; Yalamanchili, Sai Krishna; O'Hagan, David; Kay, Colin D; O'Connell, Maria A

    2015-06-01

    Flavonoids are generally studied in vitro, in isolation, and as unmetabolized precursor structures. However, in the habitual diet, multiple flavonoids are consumed together and found present in the circulation as complex mixtures of metabolites. Using a unique study design, we investigated the potential for singular or additive anti-inflammatory effects of flavonoid metabolites relative to their precursor structures. Six flavonoids, 14 flavonoid metabolites, and 29 combinations of flavonoids and their metabolites (0.1-10 μM) were screened for their ability to reduce LPS-induced tumor necrosis factor-α (TNF-α) secretion in THP-1 monocytes. One micromolar peonidin-3-glucoside, cyanidin-3-glucoside, and the metabolites isovanillic acid (IVA), IVA-glucuronide, vanillic acid-glucuronide, protocatechuic acid-3-sulfate, and benzoic acid-sulfate significantly reduced TNF-α secretion when in isolation, while there was no effect on TNF-α mRNA expression. Four combinations of metabolites that included 4-hydroxybenzoic acid (4HBA) and/or protocatechuic acid also significantly reduced TNF-α secretion to a greater extent than the precursors or metabolites alone. The effects on LPS-induced IL-1β and IL-10 secretion and mRNA expression were also examined. 4HBA significantly reduced IL-1β secretion but none of the flavonoids or metabolites significantly modified IL-10 secretion. This study provides novel evidence suggesting flavonoid bioactivity results from cumulative or additive effects of circulating metabolites. © 2015 The Authors. Molecular Nutrition & Food Research published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Isotope inequilibrium of glucose metabolites in intact cells and particlefree supernatants of Ehrlich ascites tumor

    International Nuclear Information System (INIS)

    Daehnfeldt, J.L.; Winge, P.

    1975-01-01

    With an enzyme degradative technique, isotope inequilibrium of glucose metabolites was demonstrated in intact cells and particle-free supernatants of Ehrlich ascites tumor using I- 14 C-glucose as tracer. Inequilibrium was found between glucose and glucose-6-phosphate, glucose and fructose-6-phosphate, glucose and 6-phosphogluconate, while glucose-6-phosphate and fructose-6-phosphate were found to be in near equilibrium within the incubation time investigated. Glucose and lactate were found to be in near equilibrium after 8 min in intact cells. Calculations based on the equilibrium levels found, showed that these inequilibria could not be explained by the effects of the pentose cycle. (U.S.)

  19. Tumoral tracers

    International Nuclear Information System (INIS)

    Camargo, E.E.

    1979-01-01

    Direct tumor tracers are subdivided in the following categories:metabolite tracers, antitumoral tracers, radioactive proteins and cations. Use of 67 Ga-citrate as a clinically important tumoral tracer is emphasized and gallium-67 whole-body scintigraphy is discussed in detail. (M.A.) [pt

  20. CYP2F2-generated metabolites, not styrene oxide, are a key event mediating the mode of action of styrene-induced mouse lung tumors.

    Science.gov (United States)

    Cruzan, G; Bus, J; Hotchkiss, J; Harkema, J; Banton, M; Sarang, S

    2012-02-01

    Styrene induces lung tumors in mice but not in rats. Although metabolism of styrene to 7,8-styrene oxide (SO) by CYP2E1 has been suggested as a mediator of styrene toxicity, lung toxicity is not attenuated in CYP2E1 knockout mice. However, styrene and/or SO metabolism by mouse lung Clara cell-localized CYP2F2 to ring-oxidized cytotoxic metabolite(s) has been postulated as a key metabolic gateway responsible for both lung toxicity and possible tumorigenicity. To test this hypothesis, the lung toxicity of styrene and SO was evaluated in C57BL/6 (WT) and CYP2F2⁻/⁻ knockout mice treated with styrene (400 mg/kg/day, gavage, or 200 or 400 mg/kg/day, ip) or S- or R-SO (200 mg/kg/day, ip) for 5 days. Styrene treated WT mice displayed significant necrosis and exfoliation of Clara cells, and cumulative BrdU-labeling index of S-phase cells was markedly increased in terminal bronchioles of WT mice exposed to styrene or S- or RSO. In contrast, Clara and terminal bronchiole cell toxicity was not observed in CYP2F2⁻/⁻ mice exposed to either styrene or SO. This study clearly demonstrates that the mouse lung toxicity of both styrene and SO is critically dependent on metabolism by CYP2F2. Importantly, the human isoform of CYP2F, CYP2F1, is expressed at much lower levels and likely does not catalyze significant styrene metabolism, supporting the hypothesis that styrene-induced mouse lung tumors may not quantitatively, or possibly qualitatively, predict lung tumor potential in humans. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Phosphorus MRS study in bone and soft-tissue tumors

    International Nuclear Information System (INIS)

    Du Xiangke; Jiang Baoguo

    2000-01-01

    Objective: To study the metabolite changes in bone and soft-tissue tumors using phosphorus MRS for better understanding of the phospholipid metabolite and energy metabolite of tumors, which will provide more information for clinical diagnosis and therapy. Methods: Phosphorus MRS and MRI were performed in 14 bone and soft-tissue tumor patients (benign 6, malignant 8) and 19 healthy volunteers at 2.0 T. The areas under the peak of various metabolite in spectra were measured. The ratios of the other metabolite related to β-ATP, ATP, and Pcr were calculated. Intracellular pH was calculated according to the chemical shift change of Pi relative to Pcr. Results: The ratio of PME/β-ATP, PME/ATP, Pcr/PME in both benign and malignant group, intracellular pH in malignant group and LEP/Pcr in benign group were higher than that of the normal group significantly (P < 0.01). the ratios of Pi/Pcr in benign and malignant group, PDE/ATP, PDE/β-ATP, LET/Pcr, Pi/β-ATP in malignant group and LET/β-ATP in benign group were significantly different from that of the normal group (P < 0.05). Between benign and malignant tumors group, the ratios of Pcr/PME and Intracellular pH were different significantly (P < 0.05). Conclusion: The in vivo phosphorus MRS can non-invasively find abnormal phospholipid metabolite, energy metabolite and pH changes in bone and soft tissue tumors

  2. Blood Outgrowth Endothelial Cells Increase Tumor Growth Rates and Modify Tumor Physiology: Relevance for Therapeutic Targeting

    Energy Technology Data Exchange (ETDEWEB)

    Pagan, Jonathan, E-mail: jdpagan@uams.edu; Przybyla, Beata; Jamshidi-Parsian, Azemat [Department of Radiation Oncology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205 (United States); Gupta, Kalpna [Vascular Biology Center and Division of Hematology-Oncology Transplantation, Department of Medicine, University of Minnesota Medical School, MN 72223 (United States); Griffin, Robert J. [Department of Radiation Oncology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205 (United States)

    2013-02-18

    Endothelial cell precursors from human peripheral blood have been shown to home to areas of neovascularization and may assist tumor growth by increasing or fortifying blood vessel growth. In the present study, the influence of these cells on tumor growth and physiology was investigated and the role of these cells as a therapeutic target or in determining treatment sensitivity was tested. After isolation from human blood and expansion in vitro, actively growing cells with verified endothelial phenotype (Blood Outgrowth Endothelial Cell, BOEC) were injected i.v. into tumor bearing mice for three consecutive days. The growth rate was significantly enhanced in relatively small RERF human lung tumors (i.e., less than 150 mm{sup 3}) grown in immunocompromised mice by an average of 1.5-fold while it had no effect when injections were given to animals bearing larger tumors. There were no signs of toxicity or unwanted systemic effects. We also observed evidence of increased perfusion, vessel number, response to 15 Gy radiation and oxygenation in RERF tumors of animals injected with BOECs compared to control tumors. In addition, FSaII murine fibrosarcoma tumors were found to grow faster upon injection of BOECs. When FSaII tumors were subjected to a partial thermal ablation treatment using high intensity focused ultrasound (HIFU) there was consistently elevated detection of fluorescently labeled and i.v. injected endothelial precursors in the tumor when analyzed with optical imaging and/or histological preparations. Importantly, we also observed that BOECs treated with the novel anti-angiogenic peptide anginex in-vitro, show decreased proliferation and increased sensitivity to radiation. In vivo, the normal increase in FSaII tumor growth induced by injected BOECs was blunted by the addition of anginex treatment. It appears that endothelial precursors may significantly contribute to tumor vessel growth, tumor progression and/or repair of tumor damage and may improve the

  3. Blood Outgrowth Endothelial Cells Increase Tumor Growth Rates and Modify Tumor Physiology: Relevance for Therapeutic Targeting

    International Nuclear Information System (INIS)

    Pagan, Jonathan; Przybyla, Beata; Jamshidi-Parsian, Azemat; Gupta, Kalpna; Griffin, Robert J.

    2013-01-01

    Endothelial cell precursors from human peripheral blood have been shown to home to areas of neovascularization and may assist tumor growth by increasing or fortifying blood vessel growth. In the present study, the influence of these cells on tumor growth and physiology was investigated and the role of these cells as a therapeutic target or in determining treatment sensitivity was tested. After isolation from human blood and expansion in vitro, actively growing cells with verified endothelial phenotype (Blood Outgrowth Endothelial Cell, BOEC) were injected i.v. into tumor bearing mice for three consecutive days. The growth rate was significantly enhanced in relatively small RERF human lung tumors (i.e., less than 150 mm 3 ) grown in immunocompromised mice by an average of 1.5-fold while it had no effect when injections were given to animals bearing larger tumors. There were no signs of toxicity or unwanted systemic effects. We also observed evidence of increased perfusion, vessel number, response to 15 Gy radiation and oxygenation in RERF tumors of animals injected with BOECs compared to control tumors. In addition, FSaII murine fibrosarcoma tumors were found to grow faster upon injection of BOECs. When FSaII tumors were subjected to a partial thermal ablation treatment using high intensity focused ultrasound (HIFU) there was consistently elevated detection of fluorescently labeled and i.v. injected endothelial precursors in the tumor when analyzed with optical imaging and/or histological preparations. Importantly, we also observed that BOECs treated with the novel anti-angiogenic peptide anginex in-vitro, show decreased proliferation and increased sensitivity to radiation. In vivo, the normal increase in FSaII tumor growth induced by injected BOECs was blunted by the addition of anginex treatment. It appears that endothelial precursors may significantly contribute to tumor vessel growth, tumor progression and/or repair of tumor damage and may improve the

  4. Immunoregulation of antitumor response; differential secretion of arachidonic acid metabolites by macrophages during stimulation ''in vitro'' with BCG and ''Corynebacterium parvum''

    International Nuclear Information System (INIS)

    Tomecki, Jaroslaw; Sukiennik, Jadwiga; Kordowiak, Anna

    1993-01-01

    The level of arachidonic acid (AA) metabolites in the supernatants of cultures peritoneal exudate cells (PEC) were studied under various conditions using BCG and ''Corynebacterium parvum'' as stimulators. The metabolite levels were analyzed by thin layer chromatography (TLC). The degree of macrophage cytotoxic/cytostatic activity was dependent on the dose and character of stimulators used and the source of macrophages. The application of micro cytotoxicity assay for the evaluation of tumor cell lysis (lung sarcoma SaL-1) ''in vitro'' revealed that peritoneal macrophages from healthy and tumor bearing BALB/c mice may affect the degree of antitumor response. In the supernatants of cultured PEC from tumor bearing mice AA level increased (by 10-fold) in comparison with PEC from healthy mice. Stimulation with BCG induced over a double level of AA in PEC isolated from tumor bearing mice non-stimulated or stimulated with ''C.parvum''. A lower level of prostaglandins (PGs) was found in the supernatants of cultured PEC isolated from healthy mice (stimulated and non-stimulated), but the highest level of PGs was observed in the supernatants of cultured PEC isolated from tumor bearing mice stimulated with BCG. The unique metabolite of AA was found only in the supernatants form non-stimulated PEC from tumor bearing mice. PEC from tumor bearing mice produced metabolites of AA which were not detected in control group. These results suggest that macrophages also play a regulatory role by secretion of AA. This process can be modified by bacterial antigens. (author). 21 refs, 7 figs

  5. Bilateral Testicular Tumors Resulting in Recurrent Cushing Disease After Bilateral Adrenalectomy.

    Science.gov (United States)

    Puar, Troy; Engels, Manon; van Herwaarden, Antonius E; Sweep, Fred C G J; Hulsbergen-van de Kaa, Christina; Kamphuis-van Ulzen, Karin; Chortis, Vasileios; Arlt, Wiebke; Stikkelbroeck, Nike; Claahsen-van der Grinten, Hedi L; Hermus, Ad R M M

    2017-02-01

    Recurrence of hypercortisolism in patients after bilateral adrenalectomy for Cushing disease is extremely rare. We present a 27-year-old man who previously underwent bilateral adrenalectomy for Cushing disease with complete clinical resolution. Cushingoid features recurred 12 years later, with bilateral testicular enlargement. Hormonal tests confirmed adrenocorticotropic hormone (ACTH)-dependent Cushing disease. Surgical resection of the testicular tumors led to clinical and biochemical remission. Gene expression analysis of the tumor tissue by quantitative polymerase chain reaction showed high expression of all key steroidogenic enzymes. Adrenocortical-specific genes were 5.1 × 105 (CYP11B1), 1.8 × 102 (CYP11B2), and 6.3 × 104 (MC2R) times higher than nonsteroidogenic fibroblast control. This correlated with urine steroid metabolome profiling showing 2 fivefold increases in the excretion of the metabolites of 11-deoxycortisol, 21-deoxycortisol, and total glucocorticoids. Leydig-specific genes were 4.3 × 101 (LHCGR) and 9.3 × 100 (HSD17B3) times higher than control, and urinary steroid profiling showed twofold increased excretion of the major androgen metabolites androsterone and etiocholanolone. These distinctly increased steroid metabolites were suppressed by dexamethasone but unresponsive to human chorionic gonadotropin stimulation, supporting the role of ACTH, but not luteinizing hormone, in regulating tumor-specific steroid excess. We report bilateral testicular tumors occurring in a patient with recurrent Cushing disease 12 years after bilateral adrenalectomy. Using mRNA expression analysis and steroid metabolome profiling, the tumors demonstrated both adrenocortical and gonadal steroidogenic properties, similar to testicular adrenal rest tumors found in patients with congenital adrenal hyperplasia, suggesting the presence of pluripotent cells even in patients without congenital adrenal hyperplasia. Copyright © 2017 by the Endocrine Society

  6. Comparison of 1.5T and 3T 1H MR Spectroscopy for Human Brain Tumors

    International Nuclear Information System (INIS)

    Kim, Ji hoon; Chang, Kee Hyun; Na, Dong Gyu; Song, In Chan; Kim, Seung Ja; Kwon, Bae Ju; Han, Moon Hee

    2006-01-01

    We wanted to estimate the practical improvements of 3T proton MR spectroscopy (1H MRS) as compared with 1.5T 1H MRS for the evaluation of human brain tumors. Single voxel 1H MRS was performed at both 1.5T and 3T in 13 patients suffering with brain tumors. Using the same data acquisition parameters at both field strengths, the 1H MRS spectra were obtained with a short echo time (TE) (35 msec) and an intermediate TE (144 msec) with the voxel size ranging from 2.0 cm 3 to 8.7 cm 3 . The signal to noise ratios (SNRs) of the metabolites (myoinositol [MI], choline compounds [Cho], creatine /phosphocreatine [Cr], N-acetyl-aspartate [NAA], lipid and lactate [LL]) and the metabolite ratios of MI/Cr, Cho/Cr, Cho/NAA and LL/Cr were compared at both TEs between the two field strengths in each brain tumor. The degrees 70f spectral resolution between the Cho and Cr peaks were qualitatively compared between the two field strengths in each brain tumor. The SNRs of the metabolites at 3T demonstrated 49-73% increase at a short TE (p 0.05) compared with those of 1.5T. The SNR of inverted lactate at an intermediate TE decreased down to 49% with poorer inversion at 3T (p 1 H MRS demonstrated 49-73% SNR increase in the cerebral metabolites and slightly superior spectral resolution only at a short TE, but little at an intermediate TE, in the brain tumors. There was no significant difference in the metabolite ratios between the two field strengths

  7. Increasing carbon availability stimulates growth and secondary metabolites via modulation of phytohormones in winter wheat

    Science.gov (United States)

    Reichelt, Michael; Chowdhury, Somak; Hammerbacher, Almuth; Hartmann, Henrik

    2017-01-01

    Abstract Phytohormones play important roles in plant acclimation to changes in environmental conditions. However, their role in whole-plant regulation of growth and secondary metabolite production under increasing atmospheric CO2 concentrations ([CO2]) is uncertain but crucially important for understanding plant responses to abiotic stresses. We grew winter wheat (Triticum aestivum) under three [CO2] (170, 390, and 680 ppm) over 10 weeks, and measured gas exchange, relative growth rate (RGR), soluble sugars, secondary metabolites, and phytohormones including abscisic acid (ABA), auxin (IAA), jasmonic acid (JA), and salicylic acid (SA) at the whole-plant level. Our results show that, at the whole-plant level, RGR positively correlated with IAA but not ABA, and secondary metabolites positively correlated with JA and JA-Ile but not SA. Moreover, soluble sugars positively correlated with IAA and JA but not ABA and SA. We conclude that increasing carbon availability stimulates growth and production of secondary metabolites via up-regulation of auxin and jasmonate levels, probably in response to sugar-mediated signalling. Future low [CO2] studies should address the role of reactive oxygen species (ROS) in leaf ABA and SA biosynthesis, and at the transcriptional level should focus on biosynthetic and, in particular, on responsive genes involved in [CO2]-induced hormonal signalling pathways. PMID:28159987

  8. Persistent enhancement of bacterial motility increases tumor penetration.

    Science.gov (United States)

    Thornlow, Dana N; Brackett, Emily L; Gigas, Jonathan M; Van Dessel, Nele; Forbes, Neil S

    2015-11-01

    Motile bacteria can overcome the transport limitations that hinder many cancer therapies. Active bacteria can penetrate through tissue to deliver treatment to resistant tumor regions. Bacterial therapy has had limited success, however, because this motility is heterogeneous, and within a population many individuals are non-motile. In human trials, heterogeneity led to poor dispersion and incomplete tumor colonization. To address these problems, a swarm-plate selection method was developed to increase swimming velocity. Video microscopy was used to measure the velocity distribution of selected bacteria and a microfluidic tumor-on-a-chip device was used to measure penetration through tumor cell masses. Selection on swarm plates increased average velocity fourfold, from 4.9 to 18.7 μm/s (P < 0.05) and decreased the number of non-motile individuals from 51% to 3% (P < 0.05). The selected phenotype was both robust and stable. Repeating the selection process consistently increased velocity and eliminated non-motile individuals. When selected strains were cryopreserved and subcultured for 30.1 doublings, the high-motility phenotype was preserved. In the microfluidic device, selected Salmonella penetrated deeper into cell masses than unselected controls. By 10 h after inoculation, control bacteria accumulated in the front 30% of cell masses, closest to the flow channel. In contrast, selected Salmonella accumulated in the back 30% of cell masses, farthest from the channel. Selection increased the average penetration distance from 150 to 400 μm (P < 0.05). This technique provides a simple and rapid method to generate high-motility Salmonella that has increased penetration and potential for greater tumor dispersion and clinical efficacy. © 2015 Wiley Periodicals, Inc.

  9. Metabolite Damage and Metabolite Damage Control in Plants

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Andrew D. [Horticultural Sciences Department and; Henry, Christopher S. [Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois 60439, email:; Computation Institute, University of Chicago, Chicago, Illinois 60637; Fiehn, Oliver [Genome Center, University of California, Davis, California 95616, email:; de Crécy-Lagard, Valérie [Microbiology and Cell Science Department, University of Florida, Gainesville, Florida 32611, email: ,

    2016-04-29

    It is increasingly clear that (a) many metabolites undergo spontaneous or enzyme-catalyzed side reactions in vivo, (b) the damaged metabolites formed by these reactions can be harmful, and (c) organisms have biochemical systems that limit the buildup of damaged metabolites. These damage-control systems either return a damaged molecule to its pristine state (metabolite repair) or convert harmful molecules to harmless ones (damage preemption). Because all organisms share a core set of metabolites that suffer the same chemical and enzymatic damage reactions, certain damage-control systems are widely conserved across the kingdoms of life. Relatively few damage reactions and damage-control systems are well known. Uncovering new damage reactions and identifying the corresponding damaged metabolites, damage-control genes, and enzymes demands a coordinated mix of chemistry, metabolomics, cheminformatics, biochemistry, and comparative genomics. This review illustrates the above points using examples from plants, which are at least as prone to metabolite damage as other organisms.

  10. Kinetic Analysis of 2-[11C]Thymidine PET Imaging Studies of Malignant Brain Tumors: Compartmental Model Investigation and Mathematical Analysis

    Directory of Open Access Journals (Sweden)

    Joanne M. Wells

    2002-07-01

    Full Text Available 2-[11C]Thymidine (TdR, a PET tracer for cellular proliferation, may be advantageous for monitoring brain tumor progression and response to therapy. We previously described and validated a five-compartment model for thymidine incorporation into DNA in somatic tissues, but the effect of the blood–brain barrier on the transport of TdR and its metabolites necessitated further validation before it could be applied to brain tumors. Methods: We investigated the behavior of the model under conditions experienced in the normal brain and brain tumors, performed sensitivity and identifiability analysis to determine the ability of the model to estimate the model parameters, and conducted simulations to determine whether it can distinguish between thymidine transport and retention. Results: Sensitivity and identifiability analysis suggested that the non-CO2 metabolite parameters could be fixed without significantly affecting thymidine parameter estimation. Simulations showed that K1t and KTdR could be estimated accurately (r = .97 and .98 for estimated vs. true parameters with standard errors < 15%. The model was able to separate increased transport from increased retention associated with tumor proliferation. Conclusion: Our model adequately describes normal brain and brain tumor kinetics for thymidine and its metabolites, and it can provide an estimate of the rate of cellular proliferation in brain tumors.

  11. Profiling of plasma metabolites in canine oral melanoma using gas chromatography-mass spectrometry.

    Science.gov (United States)

    Kawabe, Mifumi; Baba, Yuta; Tamai, Reo; Yamamoto, Ryohei; Komori, Masayuki; Mori, Takashi; Takenaka, Shigeo

    2015-08-01

    Malignant melanoma is one of the most common and aggressive tumors in the oral cavity of dog. The tumor has a poor prognosis, and methods for diagnosis and prediction of prognosis after treatment are required. Here, we examined metabolite profiling using gas chromatography-mass spectrometry (GC-MS) for development of a discriminant model for evaluation of prognosis. Metabolite profiles were evaluated in healthy and melanoma plasma samples using orthogonal projection to latent structure using discriminant analysis (OPLS-DA). Cases that were predicted to be healthy using the OPLS discriminant model had no advanced lesions after radiation therapy. These results indicate that metabolite profiling may be useful in diagnosis and prediction of prognosis of canine malignant melanoma.

  12. Increased Tumor Oxygenation and Drug Uptake During Anti-Angiogenic Weekly Low Dose Cyclophosphamide Enhances the Anti-Tumor Effect of Weekly Tirapazamine

    Science.gov (United States)

    Doloff, J.C.; Khan, N.; Ma, J.; Demidenko, E.; Swartz, H.M.; Jounaidi, Y.

    2010-01-01

    Metronomic cyclophosphamide treatment is associated with anti-angiogenic activity and is anticipated to generate exploitable hypoxia using hypoxia-activated prodrugs. Weekly administration of tirapazamine (TPZ; 5 mg/kg body weight i.p.) failed to inhibit the growth of 9L gliosarcoma tumors grown s.c. in scid mice. However, the anti-tumor effect of weekly cyclophosphamide (CPA) treatment (140 mg/kg BW i.p.) was substantially enhanced by weekly TPZ administration. An extended tumor free period and increased frequency of tumor eradication without overt toxicity were observed when TPZ was given 3, 4 or 5 days after each weekly CPA treatment. Following the 2nd CPA injection, Electron Paramagnetic Resonance (EPR) Oximetry indicated significant increases in tumor pO2, starting at 48 hr, which further increased after the 3rd CPA injection. pO2 levels were, however, stable in growing untreated tumors. A strong negative correlation (−0.81) between tumor pO2 and tumor volume during 21 days of weekly CPA chemotherapy was observed, indicating increasing tumor pO2 with decreasing tumor volume. Furthermore, CPA treatment resulted in increased tumor uptake of activated CPA. CPA induced increases in VEGF RNA, which reached a maximum on day 1, and in PLGF RNA which was sustained throughout the treatment, while anti-angiogenic host thrombospondin-1 increased dramatically through day 7 post-CPA treatment. Weekly cyclophosphamide treatment was anticipated to generate exploitable hypoxia. However, our findings suggest that weekly CPA treatment induces a functional improvement of tumor vasculature, which is characterized by increased tumor oxygenation and drug uptake in tumors, thus counter-intuitively, benefiting intratumoral activation of TPZ and perhaps other bioreductive drugs. PMID:19754361

  13. Prognostic Metabolite Biomarkers for Soft Tissue Sarcomas Discovered by Mass Spectrometry Imaging

    Science.gov (United States)

    Lou, Sha; Balluff, Benjamin; Cleven, Arjen H. G.; Bovée, Judith V. M. G.; McDonnell, Liam A.

    2017-02-01

    Metabolites can be an important read-out of disease. The identification and validation of biomarkers in the cancer metabolome that can stratify high-risk patients is one of the main current research aspects. Mass spectrometry has become the technique of choice for metabolomics studies, and mass spectrometry imaging (MSI) enables their visualization in patient tissues. In this study, we used MSI to identify prognostic metabolite biomarkers in high grade sarcomas; 33 high grade sarcoma patients, comprising osteosarcoma, leiomyosarcoma, myxofibrosarcoma, and undifferentiated pleomorphic sarcoma were analyzed. Metabolite MSI data were obtained from sections of fresh frozen tissue specimens with matrix-assisted laser/desorption ionization (MALDI) MSI in negative polarity using 9-aminoarcridine as matrix. Subsequent annotation of tumor regions by expert pathologists resulted in tumor-specific metabolite signatures, which were then tested for association with patient survival. Metabolite signals with significant clinical value were further validated and identified by high mass resolution Fourier transform ion cyclotron resonance (FTICR) MSI. Three metabolite signals were found to correlate with overall survival ( m/z 180.9436 and 241.0118) and metastasis-free survival ( m/z 160.8417). FTICR-MSI identified m/z 241.0118 as inositol cyclic phosphate and m/z 160.8417 as carnitine.

  14. Pharmacologic activity and pharmacokinetics of metabolites of regorafenib in preclinical models

    OpenAIRE

    Zopf, Dieter; Fichtner, Iduna; Bhargava, Ajay; Steinke, Wolfram; Thierauch, Karl?Heinz; Diefenbach, Konstanze; Wilhelm, Scott; Hafner, Frank?Thorsten; Gerisch, Michael

    2016-01-01

    Abstract Regorafenib is an orally administered inhibitor of protein kinases involved in tumor angiogenesis, oncogenesis, and maintenance of the tumor microenvironment. Phase III studies showed that regorafenib has efficacy in patients with advanced gastrointestinal stromal tumors or treatment?refractory metastatic colorectal cancer. In clinical studies, steady?state exposure to the M?2 and M?5 metabolites of regorafenib was similar to that of the parent drug; however, the contribution of thes...

  15. Magnetic resonance spectroscopy of brain tumors; MR-Spektroskopie bei Hirntumoren

    Energy Technology Data Exchange (ETDEWEB)

    Ditter, P.; Hattingen, E. [Universitaetsklinikum Bonn, FE Neuroradiologie, Radiologische Klinik, Bonn (Germany)

    2017-06-15

    Conventional magnetic resonance imaging (MRI) under consideration of clinical information enables the correct diagnosis and therapy for the majority of cerebral space-occupying lesions. Some important differential diagnoses, e. g. low vs. high-grade tumors, require additional MRI methods. This article critically discusses the importance of magnetic resonance spectroscopy ({sup 1}H-MRS) in brain tumors. The concentration of normal and pathological brain metabolites can be non-invasively measured by {sup 1}H-MRS. It is based on the principle that chemical proton compounds of certain brain metabolites focally attenuate the external magnetic field and change the proton resonance frequency according to typical patterns. In addition, parameter maps of MRS imaging (MRSI) can show the tumor heterogeneity as well as changes in the surrounding brain tissue. In this context, the patterns of N-acetylaspartate, total choline (tCho) and creatine are relatively robust, whereas the patterns of other metabolites, such as myoinositol, glutamate, lactate or lipids greatly depend on the external field strength and echo time. The signal intensity of tCho in vital tumor tissue increases with the WHO grade of the brain tumor, i.e. increases with the level of malignancy. The use of MRSI facilitates the WHO grading of gliomas by determining target points in biopsies. Different distribution patterns and specific metabolite signals enable a better differentiation between abscesses, metastases, central nervous system (CNS) lymphomas and gliomas. The use of {sup 1}H-MRS provides valuable information on the differential diagnosis and graduation of brain tumors; however, so far artefacts, signal strength, parameter selection and a lack of standardization impede the establishment of {sup 1}H-MRS for use in clinical routine diagnostics. (orig.) [German] Die konventionelle MRT ermoeglicht unter Beruecksichtigung klinischer Information bei einem Grossteil zerebraler Raumforderungen die richtige

  16. Functional Imaging of Proteolysis: Stromal and Inflammatory Cells Increase Tumor Proteolysis

    Directory of Open Access Journals (Sweden)

    Mansoureh Sameni

    2003-07-01

    Full Text Available The underlying basement membrane is degraded during progression of breast and colon carcinoma. Thus, we imaged degradation of a quenched fluorescent derivative of basement membrane type IV collagen (DQ-collagen IV by living human breast and colon tumor spheroids. Proteolysis of DQ-collagen IV by HCT 116 and HKh-2 human colon tumor spheroids was both intracellular and pericellular. In contrast, proteolysis of DQ-collagen IV by BT20 human breast tumor spheroids was pericellular. As stromal elements can contribute to proteolytic activities associated with tumors, we also examined degradation of DQ-collagen IV by human monocytes/macrophages and colon and breast fibroblasts. Fibroblasts themselves exhibited a modest amount of pericellular degradation. Degradation was increased 4–17-fold in cocultures of fibroblasts and tumor cells as compared to either cell type alone. Inhibitors of matrix metalloproteinases, plasmin, and the cysteine protease, cathepsin B, all reduced degradation in the cocultures. Monocytes did not degrade DQ-collagen IV; however, macrophages degraded DQ-collagen IV intracellularly. In coculture of tumor cells, fibroblasts, and macrophages, degradation of DQ-collagen IV was further increased. Imaging of living tumor and stromal cells has, thus, allowed us to establish that tumor proteolysis occurs pericellularly and intracellularly and that tumor, stromal, and inflammatory cells all contribute to degradative processes.

  17. BRAF inhibition is associated with increased clonality in tumor-infiltrating lymphocytes

    Science.gov (United States)

    Cooper, Zachary A; Frederick, Dennie T; Juneja, Vikram R; Sullivan, Ryan J; Lawrence, Donald P; Piris, Adriano; Sharpe, Arlene H; Fisher, David E; Flaherty, Keith T; Wargo, Jennifer A

    2013-01-01

    There have been significant advances with regard to BRAF-targeted therapies against metastatic melanoma. However, the majority of patients receiving BRAF inhibitors (BRAFi) manifest disease progression within a year. We have recently shown that melanoma patients treated with BRAFi exhibit an increase in melanoma-associated antigens and in CD8+ tumor-infiltrating lymphocytes in response to therapy. To characterize such a T-cell infiltrate, we analyzed the complementarity-determining region 3 (CDR3) of rearranged T-cell receptor (TCR) β chain-coding genes in tumor biopsies obtained before the initiation of BRAFi and 10–14 d later. We observed an increase in the clonality of tumor-infiltrating lymphocytes in 7 of 8 patients receiving BRAFi, with a statistically significant 21% aggregate increase in clonality. Over 80% of individual T-cell clones detected after initiation of BRAFi treatment were new clones. Interestingly, the comparison of tumor infiltrates with clinical responses revealed that patients who had a high proportion of pre-existing dominant clones after the administration of BRAFi responded better to therapy than patients who had a low proportion of such pre-existing dominant clones following BRAFi. These data suggest that although the inhibition of BRAF in melanoma patients results in tumor infiltration by new lymphocytes, the response to treatment appears to be related to the presence of a pre-existing population of tumor-infiltrating T-cell clones. PMID:24251082

  18. Increase in tumor oxygen tension and radiosensitivity after administration of pentoxifylline

    International Nuclear Information System (INIS)

    Hasegawa, Takeo; Gu, Yeun Hwa; Nagao, Takashi; Miyata, Katsuyuki; Song, Chang W.; Tanake, Yoshimasa; Hasegawa, Takashi

    1999-01-01

    The effects of pentoxifylline (PTX) on the pO2 and radioresponse in SCK tumors of A/J mice were investigated. When the mice were injected intraperitoneally with 5 mg/kg of PTX, the tumor pO2 increased slowly, peaked 20-50 min postinjection, and returned to its original level in 70-90 min. The magnitude of the changes in tumor pO2 after on ip injection of 25 or 50 mg/kg PTX was similar to that caused by 5 mg/kg PTX. When the A/J mice bearing SCK tumors in the legs were injected ip with 50 mg/kg PTX and the tumors were X ray irradiated 20 min later, the tumor growth delay was greater than that of radiation alone

  19. Tumor cell-macrophage interactions increase angiogenesis through secretion of EMMPRIN

    Directory of Open Access Journals (Sweden)

    Bat-Chen eAmit-Cohen

    2013-07-01

    Full Text Available Tumor macrophages are generally considered to be alternatively/M2 activated to induce secretion of pro-angiogenic factors such as VEGF and MMPs. EMMPRIN (CD147, basigin is overexpressed in many tumor types, and has been shown to induce fibroblasts and endothelial cell expression of MMPs and VEGF. We first show that tumor cell interactions with macrophages resulted in increased expression of EMMPRIN and induction of MMP-9 and VEGF. Human A498 renal carcinoma or MCF-7 breast carcinoma cell lines were co-cultured with the U937 monocytic-like cell line in the presence of TNFalpha (1 ng/ml. Membranal EMMPRIN expression was increased in the co-cultures (by 3-4 folds, p<0.01, as was the secretion of MMP-9 and VEGF (by 2-5 folds for both MMP-9 and VEGF, p<0.01, relative to the single cultures with TNFalpha. Investigating the regulatory mechanisms, we show that EMMPRIN was post-translationally regulated by miR-146a, as no change was observed in the tumoral expression of EMMPRIN mRNA during co-culture, expression of miR-146a was increased and its neutralization by its antagomir inhibited EMMPRIN expression. The secretion of EMMPRIN was also enhanced (by 2-3 folds, p<0.05, only in the A498 co-culture via shedding off of the membranal protein by a serine protease that is yet to be identified, as demonstrated by the use of wide range protease inhibitors. Finally, soluble EMMPRIN enhanced monocytic secretion of MMP-9 and VEGF, as inhibition of its expression levels by neutralizing anti-EMMPRIN or siRNA in the tumor cells lead to subsequent decreased induction of these two pro-angiogenic proteins. These results reveal a mechanism whereby tumor cell-macrophage interactions promote angiogenesis via an EMMPRIN-mediated pathway.

  20. Bioanalysis of a panel of neurotransmitters and their metabolites in plasma samples obtained from pediatric patients with neuroblastoma and Wilms' tumor.

    Science.gov (United States)

    Konieczna, Lucyna; Roszkowska, Anna; Stachowicz-Stencel, Teresa; Synakiewicz, Anna; Bączek, Tomasz

    2018-02-01

    This paper details the quantitative analysis of neurotransmitters, including dopamine (DA), norepinephrine (NE), epinephrine (E), and serotonin (5-HT), along with their respective precursors and metabolites in children with solid tumors: Wilms' tumor (WT) and neuroblastoma (NB). A panel of neurotransmitters was determined with the use of dispersive liquid-liquid microextraction (DLLME) technique combined with liquid-chromatography mass spectrometry (LC-MS/MS) in plasma samples obtained from a group of pediatric subjects with solid tumors and a control group of healthy children. Next, statistical univariate analysis (t-test) and multivariate analysis (Principal Component Analysis) were performed using chromatographic data. The levels of tyrosine (Tyr) and tryptophan (Trp) (the precursors of analyzed neurotransmitters) as well as 3,4-dihydroxyphenylacetic acid (DOPAC) (a product of metabolism of DA) were significantly higher in the plasma samples obtained from pediatric patients with WT than in the samples taken from the control group. Moreover, statistically significant differences were observed between the levels of 5-HT and homovanillic acid (HVA) in the plasma samples from pediatric patients with solid tumors and the control group. However, elevated levels of these analytes did not facilitate a clear distinction between pediatric patients with WT and those with NB. Nonetheless, the application of advanced statistical tools allowed the healthy controls to be differentiated from the pediatric oncological patients. The identification and quantification of a panel of neurotransmitters as potential prognostic factors in selected childhood malignancies may provide clinically relevant information about ongoing metabolic alterations, and it could potentially serve as an adjunctive strategy in the effective diagnosis and treatment of solid tumors in children. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Krebs cycle metabolite profiling for identification and stratification of pheochromocytomas/paragangliomas due to succinate dehydrogenase deficiency.

    Science.gov (United States)

    Richter, Susan; Peitzsch, Mirko; Rapizzi, Elena; Lenders, Jacques W; Qin, Nan; de Cubas, Aguirre A; Schiavi, Francesca; Rao, Jyotsna U; Beuschlein, Felix; Quinkler, Marcus; Timmers, Henri J; Opocher, Giuseppe; Mannelli, Massimo; Pacak, Karel; Robledo, Mercedes; Eisenhofer, Graeme

    2014-10-01

    Mutations of succinate dehydrogenase A/B/C/D genes (SDHx) increase susceptibility to development of pheochromocytomas and paragangliomas (PPGLs), with particularly high rates of malignancy associated with SDHB mutations. We assessed whether altered succinate dehydrogenase product-precursor relationships, manifested by differences in tumor ratios of succinate to fumarate or other metabolites, might aid in identifying and stratifying patients with SDHx mutations. PPGL tumor specimens from 233 patients, including 45 with SDHx mutations, were provided from eight tertiary referral centers for mass spectrometric analyses of Krebs cycle metabolites. Diagnostic performance of the succinate:fumarate ratio for identification of pathogenic SDHx mutations. SDH-deficient PPGLs were characterized by 25-fold higher succinate and 80% lower fumarate, cis-aconitate, and isocitrate tissue levels than PPGLs without SDHx mutations. Receiver-operating characteristic curves for use of ratios of succinate to fumarate or to cis-aconitate and isocitrate to identify SDHx mutations indicated areas under curves of 0.94 to 0.96; an optimal cut-off of 97.7 for the succinate:fumarate ratio provided a diagnostic sensitivity of 93% at a specificity of 97% to identify SDHX-mutated PPGLs. Succinate:fumarate ratios were higher in both SDHB-mutated and metastatic tumors than in those due to SDHD/C mutations or without metastases. Mass spectrometric-based measurements of ratios of succinate:fumarate and other metabolites in PPGLs offer a useful method to identify patients for testing of SDHx mutations, with additional utility to quantitatively assess functionality of mutations and metabolic factors responsible for malignant risk.

  2. Mechanical disruption of tumors by iron particles and magnetic field application results in increased anti-tumor immune responses.

    Directory of Open Access Journals (Sweden)

    Myriam N Bouchlaka

    Full Text Available The primary tumor represents a potential source of antigens for priming immune responses for disseminated disease. Current means of debulking tumors involves the use of cytoreductive conditioning that impairs immune cells or removal by surgery. We hypothesized that activation of the immune system could occur through the localized release of tumor antigens and induction of tumor death due to physical disruption of tumor architecture and destruction of the primary tumor in situ. This was accomplished by intratumor injection of magneto-rheological fluid (MRF consisting of iron microparticles, in Balb/c mice bearing orthotopic 4T1 breast cancer, followed by local application of a magnetic field resulting in immediate coalescence of the particles, tumor cell death, slower growth of primary tumors as well as decreased tumor progression in distant sites and metastatic spread. This treatment was associated with increased activation of DCs in the draining lymph nodes and recruitment of both DCs and CD8(+T cells to the tumor. The particles remained within the tumor and no toxicities were observed. The immune induction observed was significantly greater compared to cryoablation. Further anti-tumor effects were observed when MRF/magnet therapy was combined with systemic low dose immunotherapy. Thus, mechanical disruption of the primary tumor with MRF/magnetic field application represents a novel means to induce systemic immune activation in cancer.

  3. Ascorbate availability affects tumor implantation-take rate and increases tumor rejection in Gulo–/– mice

    Directory of Open Access Journals (Sweden)

    Campbell EJ

    2016-04-01

    Full Text Available Elizabeth J Campbell,1 Margreet CM Vissers,2 Gabi U Dachs1 1Mackenzie Cancer Research Group, 2Centre for Free Radical Research, Department of Pathology, University of Otago, Christchurch, New Zealand Abstract: In solid tumors, HIF1 upregulates the expression of hundreds of genes involved in cell survival, tumor growth, and adaptation to the hypoxic microenvironment. HIF1 stabilization and activity are suppressed by prolyl and asparagine hydroxylases, which require oxygen as a substrate and ascorbate as a cofactor. This has led us to hypothesize that intracellular ascorbate availability could modify the hypoxic HIF1 response and influence tumor growth. In this study, we investigated the effect of variable intracellular ascorbate levels on HIF1 induction in cancer cells in vitro, and on tumor-take rate and growth in the Gulo–/– mouse. These mice depend on dietary ascorbate, and were supplemented with 3,300 mg/L, 330 mg/L, or 33 mg/L ascorbate in their drinking water, resulting in saturating, medium, or low plasma and tissue ascorbate levels, respectively. In Lewis lung carcinoma cells (LL/2 in culture, optimal ascorbate supplementation reduced HIF1 accumulation under physiological but not pathological hypoxia. LL/2, B16-F10 melanoma, or CMT-93 colorectal cancer cells were implanted subcutaneously into Gulo–/– mice at a range of cell inocula. Establishment of B16-F10 tumors in mice supplemented with 3,300 mg/L ascorbate required an increased number of cancer cells to initiate tumor growth compared with the number of cells required in mice on suboptimal ascorbate intake. Elevated ascorbate intake was also associated with decreased tumor ascorbate levels and a reduction in HIF1α expression and transcriptional activity. Following initial growth, all CMT-93 tumors regressed spontaneously, but mice supplemented with 33 mg/L ascorbate had lower plasma ascorbate levels and grew larger tumors than optimally supplemented mice. The data from this

  4. Valine-based biphenylsulphonamide matrix metalloproteinase inhibitors as tumor imaging agents

    Energy Technology Data Exchange (ETDEWEB)

    Oltenfreiter, Ruth [Faculty of Pharmaceutical Sciences, Department of Radiopharmacy, Ghent University, Harelbekestraat 72, 9000 Ghent (Belgium)]. E-mail: ruth.oltenfreiter@ugent.be; Staelens, Ludovicus [Faculty of Pharmaceutical Sciences, Department of Radiopharmacy, Ghent University, Harelbekestraat 72, 9000 Ghent (Belgium); Kersemans, Veerle [Faculty of Pharmaceutical Sciences, Department of Radiopharmacy, Ghent University, Harelbekestraat 72, 9000 Ghent (Belgium); Cornelissen, Bart [Faculty of Pharmaceutical Sciences, Department of Radiopharmacy, Ghent University, Harelbekestraat 72, 9000 Ghent (Belgium); Frankenne, Francis [Laboratory of Tumor and Developmental Biology, University of Liege, Sart-Tilman, Liege (Belgium); Foidart, Jean-Michel [Laboratory of Tumor and Developmental Biology, University of Liege, Sart-Tilman, Liege (Belgium); Wiele, Christophe van de [Division of Nuclear Medicine, Gent University Hospital, De Pintelaan 185, 9000 Gent (Belgium); Slegers, Guido [Faculty of Pharmaceutical Sciences, Department of Radiopharmacy, Ghent University, Harelbekestraat 72, 9000 Ghent (Belgium)

    2006-06-15

    Among matrix metalloproteinases (MMPs), the subfamily of gelatinases (MMP-2, MMP-9) is of particular interest due to their ability to degrade type IV collagen and other non-fibrillar collagen domains and proteins such as fibronectin and laminin. Whilst malignant cells often over-express various MMPs, the gelatinases have been most consistently detected in malignant tissues and associated with tumor growth, metastatic potential and angiogenesis. Radiosynthesis of carboxylic (1') and hydroxamic (2') MMPIs resulted in radiochemical yields of 70+/-5% (n=6) and 60+/-5% (n=4), respectively. Evaluation in A549-inoculated athymic mice showed a tumor uptake of 2.0+/-0.7%ID/g (3h p.i.), a tumor/blood ratio of 0.5 and a tumor/muscle ratio of 4.6 at 48hp.i. for 1'. For compound 2' a tumor uptake of 0.7+/-0.2%ID/g (3hp.i.), a tumor/blood ratio of 1.2 and a tumor/muscle ratio of 1.8 at 24hp.i. were observed. HPLC analysis of the blood (plasma) showed no dehalogenation or other metabolites of 1' 2hp.i. For compound 2', 65.4% of intact compound was found in the blood (plasma) and one polar metabolite (31%) was detected whereas in the tumor 91.8% of the accumulated activity was caused by intact compound and only 8.1% by the metabolite. Planar imaging, using a Toshiba GCA-9300A/hg SPECT camera, showed that tumor tissue could be visualized and that image quality improved by decreasing specific activity resulting in lower liver uptake, indicating some degree of saturable binding in the liver. In vivo evaluation of these radioiodinated carboxylic and hydroxamic MMP inhibitor tracers revealed that MMP inhibitors could have potential as tumor imaging agents, but that further research is necessary.

  5. Valine-based biphenylsulphonamide matrix metalloproteinase inhibitors as tumor imaging agents

    International Nuclear Information System (INIS)

    Oltenfreiter, Ruth; Staelens, Ludovicus; Kersemans, Veerle; Cornelissen, Bart; Frankenne, Francis; Foidart, Jean-Michel; Wiele, Christophe van de; Slegers, Guido

    2006-01-01

    Among matrix metalloproteinases (MMPs), the subfamily of gelatinases (MMP-2, MMP-9) is of particular interest due to their ability to degrade type IV collagen and other non-fibrillar collagen domains and proteins such as fibronectin and laminin. Whilst malignant cells often over-express various MMPs, the gelatinases have been most consistently detected in malignant tissues and associated with tumor growth, metastatic potential and angiogenesis. Radiosynthesis of carboxylic (1') and hydroxamic (2') MMPIs resulted in radiochemical yields of 70+/-5% (n=6) and 60+/-5% (n=4), respectively. Evaluation in A549-inoculated athymic mice showed a tumor uptake of 2.0+/-0.7%ID/g (3h p.i.), a tumor/blood ratio of 0.5 and a tumor/muscle ratio of 4.6 at 48hp.i. for 1'. For compound 2' a tumor uptake of 0.7+/-0.2%ID/g (3hp.i.), a tumor/blood ratio of 1.2 and a tumor/muscle ratio of 1.8 at 24hp.i. were observed. HPLC analysis of the blood (plasma) showed no dehalogenation or other metabolites of 1' 2hp.i. For compound 2', 65.4% of intact compound was found in the blood (plasma) and one polar metabolite (31%) was detected whereas in the tumor 91.8% of the accumulated activity was caused by intact compound and only 8.1% by the metabolite. Planar imaging, using a Toshiba GCA-9300A/hg SPECT camera, showed that tumor tissue could be visualized and that image quality improved by decreasing specific activity resulting in lower liver uptake, indicating some degree of saturable binding in the liver. In vivo evaluation of these radioiodinated carboxylic and hydroxamic MMP inhibitor tracers revealed that MMP inhibitors could have potential as tumor imaging agents, but that further research is necessary

  6. Hyperoxia increases the uptake of 5-fluorouracil in mammary tumors independently of changes in interstitial fluid pressure and tumor stroma

    Directory of Open Access Journals (Sweden)

    Salvesen Gerd S

    2009-12-01

    Full Text Available Abstract Background Hypoxia is associated with increased resistance to chemo- and radiation-therapy. Hyperoxic treatment (hyperbaric oxygen has previously been shown to potentiate the effect of some forms of chemotherapy, and this has been ascribed to enhanced cytotoxicity or neovascularisation. The aim of this study was to elucidate whether hyperoxia also enhances any actual uptake of 5FU (5-fluorouracil into the tumor tissue and if this can be explained by changes in the interstitium and extracellular matrix. Methods One group of tumor bearing rats was exposed to repeated hyperbaric oxygen (HBO treatment (2 bar, pO2 = 2 bar, 4 exposures à 90 min, whereas one group was exposed to one single identical HBO treatment. Animals housed under normal atmosphere (1 bar, pO2 = 0.2 bar served as controls. Three doses of 5FU were tested for dose response. Uptake of [3H]-5FU in the tumor was assessed, with special reference to factors that might have contributed, such as interstitial fluid pressure (Pif, collagen content, oxygen stress (measured as malondialdehyd levels, lymphatics and transcapillary transport in the tumors. Results The uptake of the cytostatic agent increases immediately after a single HBO treatment (more than 50%, but not 24 hours after the last repeated HBO treatment. Thus, the uptake is most likely related to the transient increase in oxygenation in the tumor tissue. Factors like tumor Pif and collagen content, which decreased significantly in the tumor interstitium after repeated HBO treatment, was without effect on the drug uptake. Conclusion We showed that hyperoxia increases the uptake of [3H]-5FU in DMBA-induced mammary tumors per se, independently of changes in Pif, oxygen stress, collagen fibril density, or transendothelial transport alone. The mechanism by which such an uptake occur is still not elucidated, but it is clearly stimulated by elevated pO2.

  7. Targeting Mitochondrial Function to Treat Quiescent Tumor Cells in Solid Tumors

    Directory of Open Access Journals (Sweden)

    Xiaonan Zhang

    2015-11-01

    Full Text Available The disorganized nature of tumor vasculature results in the generation of microenvironments characterized by nutrient starvation, hypoxia and accumulation of acidic metabolites. Tumor cell populations in such areas are often slowly proliferating and thus refractory to chemotherapeutical drugs that are dependent on an active cell cycle. There is an urgent need for alternative therapeutic interventions that circumvent growth dependency. The screening of drug libraries using multicellular tumor spheroids (MCTS or glucose-starved tumor cells has led to the identification of several compounds with promising therapeutic potential and that display activity on quiescent tumor cells. Interestingly, a common theme of these drug screens is the recurrent identification of agents that affect mitochondrial function. Such data suggest that, contrary to the classical Warburg view, tumor cells in nutritionally-compromised microenvironments are dependent on mitochondrial function for energy metabolism and survival. These findings suggest that mitochondria may represent an “Achilles heel” for the survival of slowly-proliferating tumor cells and suggest strategies for the development of therapy to target these cell populations.

  8. Increased plasma concentrations of vitamin D metabolites and vitamin D binding protein in women using hormonal contraceptives: a cross-sectional study

    DEFF Research Database (Denmark)

    Liendgaard, Ulla Kristine Møller; við Streym, Susanna; Jensen, Lars Thorbjørn

    2013-01-01

    UNLABELLED: Use of hormonal contraceptives (HC) may influence total plasma concentrations of vitamin D metabolites. A likely cause is an increased synthesis of vitamin D binding protein (VDBP). Discrepant results are reported on whether the use of HC affects free concentrations of vitamin D...... metabolites. AIM: In a cross-sectional study, plasma concentrations of vitamin D metabolites, VDBP, and the calculated free vitamin D index in users and non-users of HC were compared and markers of calcium and bone metabolism investigated. RESULTS: 75 Caucasian women aged 25-35 years were included during......, parathyroid hormone, and calcitonin, p > 0.21) or bone metabolism (plasma bone specific alkaline phosphatase, osteocalcin, and urinary NTX/creatinine ratio) between groups. IN CONCLUSION: Use of HC is associated with 13%-25% higher concentrations of total vitamin D metabolites and VDBP. This however...

  9. Cytotoxic Cytochalasins and Other Metabolites from Xylariaceae sp. FL0390, a Fungal Endophyte of Spanish Moss.

    Science.gov (United States)

    Xu, Ya-Ming; Bashyal, Bharat P; Liu, Mangping X; Espinosa-Artiles, Patricia; U'Ren, Jana M; Arnold, A Elizabeth; Gunatilaka, A A Leslie

    2015-10-01

    Two new metabolites, 6-oxo-12-norcytochalasin D (1) and 4,5-di-isobutyl-2(1H)-pyrimidinone (2), together with seven known metabolites, cytochalasins D (3), Q (4), and N (5), 12-hydroxyzygosporin G (6), heptelidic acid chlorohydrin (7), (+)-heptelidic acid (8), and trichoderonic acid A (9), were isolated from Xylariaceae sp. FL0390, a fungal endophyte inhabiting Spanish moss, Tillandsia usneoides. Metabolite 1 is the first example of a 12-norcytochalasin. All metabolites, except 2 and 9, showed cytotoxic activity in a panel of five human tumor cell lines with IC50S of 0.2-5.0 μM.

  10. Increased seroreactivity to glioma-expressed antigen 2 in brain tumor patients under radiation.

    Directory of Open Access Journals (Sweden)

    Sabrina M Heisel

    Full Text Available BACKGROUND: Surgery and radiation are the mainstays of therapy for human gliomas that are the most common primary brain tumors. Most recently, cell culture and animal studies provided the first convincing evidence that radiation not only eliminates tumor cells, but also modulates the immune response and likely improves anti-tumor immunotherapy. METHODOLOGY/PRINCIPAL FINDINGS: We present an in vivo study that analyzes the effects of radiation on the immune response in tumor patients. As readout system, we utilized the reactivity of glioma patients' sera against antigen GLEA2 as the most frequent antigen immunogenic in glioblastoma patients. We established an ELISA assay to analyze reactivity of 24 glioblastoma patients over a period of several months. As control we used 30 sera from healthy donors as well as 30 sera from lung cancer patients. We compared the course of GLEA2 seroreactivity at different times prior, during and after radiation. The GLEA2 seroreactivity was increased by the time of surgery, decreased after surgery, increased again under radiation, and slightly decreased after radiation. CONCLUSIONS/SIGNIFICANCE: Our results provide in vivo evidence for an increased antibody response against tumor antigens under radiation. Antigens that become immunogenic with an increased antibody response as result of radiation can serve as ideal targets for immunotherapy of human tumors.

  11. Tumor-Induced Osteomalacia: Increased Level of FGF-23 in a Patient with a Phosphaturic Mesenchymal Tumor at the Tibia Expressing Periostin

    Directory of Open Access Journals (Sweden)

    Anke H. Hautmann

    2014-01-01

    Full Text Available In our case, a 45-year-old male patient had multiple fractures accompanied by hypophosphatemia. FGF-23 levels were significantly increased, and total body magnetic resonance imaging (MRI revealed a tumor mass located at the distal tibia leading to the diagnosis of tumor-induced osteomalacia (TIO. After resection of the tumor, hypophosphatemia and the increased levels of FGF-23 normalized within a few days. Subsequent microscopic examination and immunohistochemical analysis revealed a phosphaturic mesenchymal tumor mixed connective tissue variant (PMTMCT showing a positive expression of somatostatin receptor 2A (SSTR2A, CD68, and Periostin. Electron microscopy demonstrated a poorly differentiated mesenchymal tumor with a multifocal giant cell component and evidence of neurosecretory-granules. However, the resected margins showed no tumor-free tissue, and therefore a subsequent postoperative radiotherapy was performed. The patient is still in complete remission after 34 months. Tumor resection of PMTMCTs is the therapy of choice. Subsequent radiotherapy in case of incompletely resected tumors can be an important option to avoid recurrence or metastasis even though this occurs rarely. The prognostic value of expression of Periostin has to be evaluated more precisely in a larger series of patients with TIO.

  12. Omega 3 fatty acids increase spontaneous release of cytosolic components from tumor cells

    International Nuclear Information System (INIS)

    Jenski, L.J.; Sturdevant, L.K.; Ehringer, W.D.; Stillwell, W.

    1991-01-01

    Mice fed menhaden (fish) oil or coconut oil-rich diets were inoculated intraperitoneally with a rapidly growing leukemia, T27A. After one week, the tumor cells were harvested, and 51Cr was used to label intracellular molecules. Spontaneous release of 51Cr was used as a measure of plasma membrane permeability. Compared to cells from mice fed coconut oil (rich in saturated fatty acids), tumor cells from mice fed menhaden oil (rich in long chain polyunsaturated omega 3 fatty acids) showed an increased level of spontaneous 51Cr release, which was exacerbated by increased temperature and reduced by extracellular protein. At physiological salt concentrations, the released 51Cr was detected in particles of approximately 2700 daltons. Enhanced permeability correlated with the incorporation of dietary (fish oil) omega 3 polyunsaturated fatty acids docosahexaenoic and eicosapentaenoic acid into the tumor cells. The results demonstrate that omega 3 fatty acids are incorporated into cellular constituents of tumor cells and change properties associated with the plasma membrane. This result suggests that dietary manipulation may be used to enhance tumor cell permeability and contribute to tumor eradication

  13. MR spectroscopy in brain tumors; MR-Spektroskopie bei Hirntumoren

    Energy Technology Data Exchange (ETDEWEB)

    Papanagiotou, P.; Backens, M.; Grunwald, I.Q.; Farmakis, G.; Politi, M.; Roth, C.; Reith, W. [Universitaetsklinikum Saarland, Homburg (Germany). Klinik fuer Diagnostische und Interventionelle Neuroradiologie

    2007-06-15

    MRT allows the anatomical visualization of intracerebral space-occupying lesions, and when magnetic resonance spectroscopy (MRS) is used in routine clinical practice it can give more information and be helpful in the diagnosis of such lesions. In MRS with long echo times for nerve tissue there are five metabolites that are particularly significant: N-acetyl aspartate (NAA), creatine, choline, lactate, and lipids. NAA levels are lowered in the presence of intracerebral tumors. Creatine is lowered in situations of hypermetabolic metabolism and elevated in hypometabolic conditions, but remains constant in many pathologic states and can be used as a reliable reference value. With malignant tumors there are usually elevated choline concentrations, reflecting increased membrane synthesis and a higher cell turnover. The lactate level rises following a switch in metabolism from aerobic to anaerobic glycolysis, and this is frequently observed in the presence of malignant tumors. The occurrence of lipid peaks in a tumor spectrum suggests the presence of tissue necroses or metastases. There are typical constellations that are seen on MRS for individual tumors, which are discussed in detail in the present paper. (orig.)

  14. Increased tumor uptake of 67Ga citrate following a course of picibanil (NSC-B116209)

    International Nuclear Information System (INIS)

    Okuyama, Shinichi; Matsuzawa, Taiju; Mishina, Hitoshi.

    1979-01-01

    Exposure to exponential dose schedules of OK-432, penicillin-inactivated preparation of streptococcus hemolyticus (NSC-B116209), resulted in an increased retention of 67 Ga citrate. Its uptake in footpad tumors of AH 109A was also increased. The results may suggest that pretreatment with OK-432 would increase tumor uptake of 67 Ga citrate and help scintigraphic delineation of malignancies in man. It may probably augment tumor concentration of anticancer chemotherapeutics, too. Thus, the tumor affinitive property of OK-432 can be taken advantage of in anticancer strategy as well as cancer detection by 67 Ga scanning. (author)

  15. Engineering Microbial Metabolite Dynamics and Heterogeneity.

    Science.gov (United States)

    Schmitz, Alexander C; Hartline, Christopher J; Zhang, Fuzhong

    2017-10-01

    As yields for biological chemical production in microorganisms approach their theoretical maximum, metabolic engineering requires new tools, and approaches for improvements beyond what traditional strategies can achieve. Engineering metabolite dynamics and metabolite heterogeneity is necessary to achieve further improvements in product titers, productivities, and yields. Metabolite dynamics, the ensemble change in metabolite concentration over time, arise from the need for microbes to adapt their metabolism in response to the extracellular environment and are important for controlling growth and productivity in industrial fermentations. Metabolite heterogeneity, the cell-to-cell variation in a metabolite concentration in an isoclonal population, has a significant impact on ensemble productivity. Recent advances in single cell analysis enable a more complete understanding of the processes driving metabolite heterogeneity and reveal metabolic engineering targets. The authors present an overview of the mechanistic origins of metabolite dynamics and heterogeneity, why they are important, their potential effects in chemical production processes, and tools and strategies for engineering metabolite dynamics and heterogeneity. The authors emphasize that the ability to control metabolite dynamics and heterogeneity will bring new avenues of engineering to increase productivity of microbial strains. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Increased Plasma Colloid Osmotic Pressure Facilitates the Uptake of Therapeutic Macromolecules in a Xenograft Tumor Model

    Directory of Open Access Journals (Sweden)

    Matthias Hofmann

    2009-08-01

    Full Text Available Elevated tumor interstitial fluid pressure (TIFP is a characteristic of most solid tumors. Clinically, TIFP may hamper the uptake of chemotherapeutic drugs into the tumor tissue reducing their therapeutic efficacy. In this study, a means of modulating TIFP to increase the flux of macromolecules into tumor tissue is presented, which is based on the rationale that elevated plasma colloid osmotic pressure (COP pulls water from tumor interstitium lowering the TIFP. Concentrated human serum albumin: (20% HSA, used as an agent to enhance COP, reduced the TIFP time-dependently from 8 to 2 mm Hg in human tumor xenograft models bearing A431 epidermoid vulva carcinomas. To evaluate whether this reduction facilitates the uptake of macromolecules, the intratumoral distribution of fluorescently conjugated dextrans (2.5 mg/ml and cetuximab (2.0 mg/ml was probed using novel time domain nearinfrared fluorescence imaging. This method permitted discrimination and semiquantification of tumor-accumulated conjugate from background and unspecific probe fluorescence. The coadministration of 20% HSA together with either dextrans or cetuximab was found to lower the TIFP significantly and increase the concentration of the substances within the tumor tissue in comparison to control tumors. Furthermore, combined administration of 20%HSA plus cetuximab reduced the tumor growth significantly in comparison to standard cetuximab treatment. These data demonstrate that increased COP lowers the TIFP within hours and increases the uptake of therapeutic macromolecules into the tumor interstitium leading to reduced tumor growth. This model represents a novel approach to facilitate the delivery of therapeutics into tumor tissue, particularly monoclonal antibodies.

  17. Intermittent hypoxia increases kidney tumor vascularization in a murine model of sleep apnea.

    Science.gov (United States)

    Vilaseca, Antoni; Campillo, Noelia; Torres, Marta; Musquera, Mireia; Gozal, David; Montserrat, Josep M; Alcaraz, Antonio; Touijer, Karim A; Farré, Ramon; Almendros, Isaac

    2017-01-01

    We investigate the effects of intermittent hypoxia (IH), a characteristic feature of obstructive sleep apnea (OSA), on renal cancer progression in an animal and cell model. An in vivo mouse model (Balb/c, n = 50) of kidney cancer was used to assess the effect of IH on tumor growth, metastatic capacity, angiogenesis and tumor immune response. An in vitro model tested the effect of IH on RENCA cells, macrophages and endothelial cells. Tumor growth, metastatic capacity, circulating vascular endothelial growth factor (VEGF) and content of endothelial cells, tumor associated macrophages and their phenotype were assessed in the tumor. In vitro, VEGF cell expression was quantified.Although IH did not boost tumor growth, it significantly increased endothelial cells (p = 0.001) and circulating VEGF (p<0.001) in the in vivo model. Macrophages exposed to IH in vitro increased VEGF expression, whereas RENCA cells and endothelial cells did not. These findings are in keeping with previous clinical data suggesting that OSA has no effect on kidney cancer size and that the association observed between OSA and higher Fuhrman grade of renal cell carcinoma may be mediated though a proangiogenic process, with a key role of macrophages.

  18. Intermittent hypoxia increases kidney tumor vascularization in a murine model of sleep apnea.

    Directory of Open Access Journals (Sweden)

    Antoni Vilaseca

    Full Text Available We investigate the effects of intermittent hypoxia (IH, a characteristic feature of obstructive sleep apnea (OSA, on renal cancer progression in an animal and cell model. An in vivo mouse model (Balb/c, n = 50 of kidney cancer was used to assess the effect of IH on tumor growth, metastatic capacity, angiogenesis and tumor immune response. An in vitro model tested the effect of IH on RENCA cells, macrophages and endothelial cells. Tumor growth, metastatic capacity, circulating vascular endothelial growth factor (VEGF and content of endothelial cells, tumor associated macrophages and their phenotype were assessed in the tumor. In vitro, VEGF cell expression was quantified.Although IH did not boost tumor growth, it significantly increased endothelial cells (p = 0.001 and circulating VEGF (p<0.001 in the in vivo model. Macrophages exposed to IH in vitro increased VEGF expression, whereas RENCA cells and endothelial cells did not. These findings are in keeping with previous clinical data suggesting that OSA has no effect on kidney cancer size and that the association observed between OSA and higher Fuhrman grade of renal cell carcinoma may be mediated though a proangiogenic process, with a key role of macrophages.

  19. Increase of tumor oxygen tension and potentiation of radiation effects using pentoxifylline, vinpocetine and ticlopidine hydrochloride

    International Nuclear Information System (INIS)

    Amano, Morikazu; Monzen, Hajime; Suzuki, Takatoshi; Hasegawa, Takeo

    2004-01-01

    The effects of pentoxifylline (PTX), vinpocetine (VPT) and ticlopidine hydrochloride (TCD), each drug commonly used for vascular disorders in humans, on the pO 2 in SCC-7 (squamous cell carcinoma) tumors of C3H/HeJ mice on the radioresponse of SCC-7 tumors were investigated. When the SCC-7 implanted in the leg of C3H/HeJ mice grew about 100 mm 3 , the effects of PTX, VPT and TCD on the increase oxygen tension in the tumor was determined with polarography. The mice were injected intraperitoneally (ip) with 5 ml/kg PTX, 5 ml/kg VPT, or 10 ml/kg TCD, the tumor pO 2 increased slowly, peaked about 20-50 min postinjection, and returned to its original level in 60-80 min. When the C3H/HeJ mice bearing SCC-7 tumors in the legs were injected ip with 5 ml/kg PTX, 5 ml/kg VPT or 10 ml/kg TCD and tumors were X-irradiated 30 min later, the radiation induced growth delay of the tumor was greater than that caused by X-irradiation alone. The results in the present study, PTX, VPT and TCD increase the tumor pO 2 in rodent tumors strongly suggest that each drug may be useful for increasing the radiosensitivity of human tumor. (author)

  20. The role of body imaging in hereditary disorders with increased liability to tumor

    International Nuclear Information System (INIS)

    Landing, B.H.

    1985-01-01

    Recent developments in imaging techniques, described and discussed in other sections of this book, have greatly expanded the ability to monitor persons at risk of developing tumors. These developments will help identify tumors at an earlier stage, as well as enhance the ability to detect many pretumoral conditions at early or subsymptomatic stages in relatives or other persons at risk. The subsequent discussion presents many pretumoral conditions, both genetic and nongenetic, with emphasis on those often recognized in children. For the majority of such disorders, the knowledge of the type of tumor(s) in a given condition for which risk is increased adequately implies the type(s) of imaging techniques appropriate for evaluation but may not adequately specify those techniques most useful for screening others at risk of having the pretumoral state. In other words, for most pretumoral conditions the ''sign'' of the pretumoral state involves the locus (e.g., radiated thyroid) where tumor may develop, but for others (e.g., hemihypertrophy) may not, and for some (e.g., aniridia) does not at all involve the locus at risk for tumor. In planning and recommending monitoring or screening procedures, considerations must be given both to the properties of the pretumoral disorder and to the locus and type of tumor for which risk is increased by each such condition

  1. Increased metastatic potential of tumor cells in von Willebrand factor-deficient mice.

    Science.gov (United States)

    Terraube, V; Pendu, R; Baruch, D; Gebbink, M F B G; Meyer, D; Lenting, P J; Denis, C V

    2006-03-01

    The key role played by von Willebrand factor (VWF) in platelet adhesion suggests a potential implication in various pathologies, where this process is involved. In cancer metastasis development, tumor cells interact with platelets and the vessel wall to extravasate from the circulation. As a potential mediator of platelet-tumor cell interactions, VWF could influence this early step of tumor spread and therefore play a role in cancer metastasis. To investigate whether VWF is involved in metastasis development. In a first step, we characterized the interaction between murine melanoma cells B16-BL6 and VWF in vitro. In a second step, an experimental metastasis model was used to compare the formation of pulmonary metastatic foci in C57BL/6 wild-type and VWF-null mice following the injection of B16-BL6 cells or Lewis lung carcinoma cells. In vitro adhesion assays revealed that VWF is able to promote a dose-dependent adhesion of B16-BL6 cells via its Arg-Gly-Asp (RGD) sequence. In the experimental metastasis model, we found a significant increase in the number of pulmonary metastatic foci in VWF-null mice compared with the wild-type mice, a phenotype that could be corrected by restoring VWF plasma levels. We also showed that increased survival of the tumor cells in the lungs during the first 24 h in the absence of VWF was the cause of this increased metastasis. These findings suggest that VWF plays a protective role against tumor cell dissemination in vivo. Underlying mechanisms remain to be investigated.

  2. Increased Serotonin Signaling Contributes to the Warburg Effect in Pancreatic Tumor Cells Under Metabolic Stress and Promotes Growth of Pancreatic Tumors in Mice.

    Science.gov (United States)

    Jiang, Shu-Heng; Li, Jun; Dong, Fang-Yuan; Yang, Jian-Yu; Liu, De-Jun; Yang, Xiao-Mei; Wang, Ya-Hui; Yang, Min-Wei; Fu, Xue-Liang; Zhang, Xiao-Xin; Li, Qing; Pang, Xiu-Feng; Huo, Yan-Miao; Li, Jiao; Zhang, Jun-Feng; Lee, Ho-Young; Lee, Su-Jae; Qin, Wen-Xin; Gu, Jian-Ren; Sun, Yong-Wei; Zhang, Zhi-Gang

    2017-07-01

    Desmoplasia and poor vascularity cause severe metabolic stress in pancreatic ductal adenocarcinomas (PDACs). Serotonin (5-HT) is a neuromodulator with neurotransmitter and neuroendocrine functions that contributes to tumorigenesis. We investigated the role of 5-HT signaling in the growth of pancreatic tumors. We measured the levels of proteins that regulate 5-HT synthesis, packaging, and degradation in pancreata from Kras G12D/+ /Trp53 R172H/+ /Pdx1-Cre (KPC) mice, which develop pancreatic tumors, as well as in PDAC cell lines and a tissue microarray containing 81 human PDAC samples. We also analyzed expression levels of proteins involved in 5-HT synthesis and degradation by immunohistochemical analysis of a tissue microarray containing 311 PDAC specimens, and associated expression levels with patient survival times. 5-HT level in 14 matched PDAC tumor and non-tumor tissues were analyzed by ELISA. PDAC cell lines were incubated with 5-HT and cell survival and apoptosis were measured. We analyzed expression of the 5-HT receptor HTR2B in PDAC cells and effects of receptor agonists and antagonists, as well as HTR2B knockdown with small hairpin RNAs. We determined the effects of 5-HT stimulation on gene expression profiles of BxPC-3 cells. Regulation of glycolysis by 5-HT signaling via HTR2B was assessed by immunofluorescence and immunoprecipitation analyses, as well as by determination of the extracellular acid ratio, glucose consumption, and lactate production. Primary PDACs, with or without exposure to SB204741 (a selective antagonist of HTR2B), were grown as xenograft tumors in mice, and SB204741 was administered to tumor-bearing KPC mice; tumor growth and metabolism were measured by imaging analyses. In immunohistochemical analysis of a tissue microarray of PDAC specimens, increased levels of TPH1 and decreased level of MAOA, which regulate 5-HT synthesis and degradation, correlated with stage and size of PDACs and shorter patient survival time. We found levels

  3. Podoplanin expression in primary brain tumors induces platelet aggregation and increases risk of venous thromboembolism.

    Science.gov (United States)

    Riedl, Julia; Preusser, Matthias; Nazari, Pegah Mir Seyed; Posch, Florian; Panzer, Simon; Marosi, Christine; Birner, Peter; Thaler, Johannes; Brostjan, Christine; Lötsch, Daniela; Berger, Walter; Hainfellner, Johannes A; Pabinger, Ingrid; Ay, Cihan

    2017-03-30

    Venous thromboembolism (VTE) is common in patients with brain tumors, and underlying mechanisms are unclear. We hypothesized that podoplanin, a sialomucin-like glycoprotein, increases the risk of VTE in primary brain tumors via its ability to induce platelet aggregation. Immunohistochemical staining against podoplanin and intratumoral platelet aggregates was performed in brain tumor specimens of 213 patients (mostly high-grade gliomas [89%]) included in the Vienna Cancer and Thrombosis Study, a prospective observational cohort study of patients with newly diagnosed cancer or progressive disease aimed at identifying patients at risk of VTE. Platelet aggregation in response to primary human glioblastoma cells was investigated in vitro. During 2-year follow-up, 29 (13.6%) patients developed VTE. One-hundred fifty-one tumor specimens stained positive for podoplanin (33 high expression, 47 medium expression, 71 low expression). Patients with podoplanin-positive tumors had lower peripheral blood platelet counts ( P < .001) and higher D-dimer levels ( P < .001). Podoplanin staining intensity was associated with increasing levels of intravascular platelet aggregates in tumor specimens ( P < .001). High podoplanin expression was associated with an increased risk of VTE (hazard ratio for high vs no podoplanin expression: 5.71; 95% confidence interval, 1.52-21.26; P = 010), independent of age, sex, and tumor type. Podoplanin-positive primary glioblastoma cells induced aggregation of human platelets in vitro, which could be abrogated by an antipodoplanin antibody. In conclusion, high podoplanin expression in primary brain tumors induces platelet aggregation, correlates with hypercoagulability, and is associated with increased risk of VTE. Our data indicate novel insights into the pathogenesis of VTE in primary brain tumors. © 2017 by The American Society of Hematology.

  4. Increased expression of aquaporin-4 in human traumatic brain injury and brain tumors

    Institute of Scientific and Technical Information of China (English)

    HU Hua; YAO Hong-tian; ZHANG Wei-ping; ZHANG LEI; DING Wei; ZHANG Shi-hong; CHEN Zhong; WEI Er-qing

    2005-01-01

    Objective: To characterize the expression of aquaporin-4 (AQP4), one of the aquaporins (AQPs), in human brain specimens from patients with traumatic brain injury or brain tumors. Methods: Nineteen human brain specimens were obtained from the patients with traumatic brain injury, brain tumors, benign meningioma or early stage hemorrhagic stroke. MRI or CT imaging was used to assess brain edema. Hematoxylin and eosin staining were used to evaluate cell damage. Immunohistochemistry was used to detect the AQP4 expression. Results: AQP4 expression was increased from 15h to at least 8 d after injury. AQP4immunoreactivity was strong around astrocytomas, ganglioglioma and metastatic adenocarcinoma. However, AQP4 immunoreactivity was only found in the centers of astrocytomas and ganglioglioma, but not in metastatic adenocarcinoma derived from lung.Conclusion: AQP4 expression increases in human brains after traumatic brain injury, within brain-derived tumors, and around brain tumors.

  5. Targeted Serum Metabolite Profiling Identifies Metabolic Signatures in Patients with Alzheimer's Disease, Normal Pressure Hydrocephalus and Brain Tumor

    DEFF Research Database (Denmark)

    Orešič, Matej; Anderson, Gabriella; Mattila, Ismo

    2018-01-01

    , NPH and BT samples. In the BT group, the fatty acids were increased as compared to HC and NPH groups, while the ketone body 3-hydroxybutyrate was increased as compared to AD. Glutamic acid was increased in AD as compared to the HC group. In the AD group, 3-hydroxybutyrate tended to be decreased......Progression to AD is preceded by elevated levels of 2,4-dihydroxybutanoic acid (2,4-DHB), implicating hypoxia in early pathogenesis. Since hypoxia may play a role in multiple CNS disorders, we investigated serum metabolite profiles across three disorders, AD, Normal Pressure Hydrocephalus (NPH...

  6. Conflicting Roles of Connexin43 in Tumor Invasion and Growth in the Central Nervous System

    Directory of Open Access Journals (Sweden)

    Miaki Uzu

    2018-04-01

    Full Text Available The tumor microenvironment is known to have increased levels of cytokines and metabolites, such as glutamate, due to their release from the surrounding cells. A normal cell around the tumor that responds to the inflammatory environment is likely to be subsequently altered. We discuss how these abnormalities will support tumor survival via the actions of gap junctions (GJs and hemichannels (HCs which are composed of hexamer of connexin43 (Cx43 protein. In particular, we discuss how GJ intercellular communication (GJIC in glioma cells, the primary brain tumor, is a regulatory factor and its attenuation leads to tumor invasion. In contrast, the astrocytes, which are normal cells around the glioma, are “hijacked” by tumor cells, either by receiving the transmission of malignant substances from the cancer cells via GJIC, or perhaps via astrocytic HC activity through the paracrine signaling which enable the delivery of these substances to the distal astrocytes. This astrocytic signaling would promote tumor expansion in the brain. In addition, brain metastasis from peripheral tissues has also been known to be facilitated by GJs formed between cerebral vascular endothelial cells and cancer cells. Astrocytes and microglia are generally thought to eliminate cancer cells at the blood–brain barrier. In contrast, some reports suggest they facilitate tumor progression as tumor cells take advantage of the normal functions of astrocytes that support the survival of the neurons by exchanging nutrients and metabolites. In summary, GJIC is essential for the normal physiological function of growth and allowing the diffusion of physiological substances. Therefore, whether GJIC is cancer promoting or suppressing may be dependent on what permeates through GJs, when it is active, and to which cells. The nature of GJs, which has been ambiguous in brain tumor progression, needs to be revisited and understood together with new findings on Cx proteins and HC

  7. Application of 31P MR spectroscopy to the brain tumors

    International Nuclear Information System (INIS)

    Ha, Dong Ho; Choi, Sun Seob; Oh, Jong Young; Yoon, Seong Kuk; Kang, Myong Jin; Kim, Ki Uk

    2013-01-01

    To evaluate the clinical feasibility and obtain useful parameters of 3 1P magnetic resonance spectroscopy (MRS) study for making the differential diagnosis of brain tumors. Twenty-eight patients with brain tumorous lesions (22 cases of brain tumor and 6 cases of abscess) and 11 normal volunteers were included. The patients were classified into the astrocytoma group, lymphoma group, metastasis group and the abscess group. We obtained the intracellular pH and the metabolite ratios of phosphomonoesters/phosophodiesters (PME/PDE), PME/inorganic phosphate (Pi), PDE/Pi, PME/adenosine triphosphate (ATP), PDE/ATP, PME/phosphocreatine (PCr), PDE/PCr, PCr/ATP, PCr/Pi, and ATP/Pi, and evaluated the statistical significances. The brain tumors had a tendency of alkalization (pH = 7.28 ± 0.27, p = 0.090), especially the pH of the lymphoma was significantly increased (pH = 7.45 ± 0.32, p = 0.013). The brain tumor group showed increased PME/PDE ratio compared with that in the normal control group (p 0.012). The ratios of PME/PDE, PDE/Pi, PME/PCr and PDE/PCr showed statistically significant differences between each brain lesion groups (p 1 'P MRS, and the pH, PME/PDE, PDE/Pi, PME/PCr, and PDE/PCr ratios are helpful for differentiating among the different types of brain tumors.

  8. [Utility of Multiple Increased Lung Cancer Tumor Markers in Treatment of Patients with Advanced Lung Adenocarcinoma].

    Science.gov (United States)

    Peng, Yan; Wang, Yan; Hao, Xuezhi; Li, Junling; Liu, Yutao; Wang, Hongyu

    2017-10-20

    Among frequently-used tumor markers in lung cancer, carcinoembryonic antigen (CEA) and carbohydrate antigen 125 (CA125), cytokeratin 19 (CYFRA21-1) and squamous carcinoma antigen (SCC), neuron specific enolase (NSE) and pro-gastrin-releasing peptide (ProGRP) are respectively expressed highly in lung adenocarcinoma, lung squamous carcinoma and small cell lung cancer. By comparing patients with multiple increased tumor markers (group A) and patients with increase of CEA and/or CA125 (group B), this study aims to investigate the utility of multiple increased tumor markers in therapeutic evaluation and prediction of disease relapsing in patients with advanced lung adenocarcinoma. Patients with stage IV lung adenocarcinoma who receiving the first line chemotherapy in Cancer Hospital, Chinese Academy of Medical Sciences were enrolled and retrospectively analyzed. Clinical characteristic, serum tumor markers before chemotherapy, efficacy evaluation, progression-free survival (PFS) were analyzed. Except CEA and CA125, the highest ratio of increased tumor markersin group A was CYFRA21-1 (93%), then was NSE (36%), SCC (13%) and ProGRP (12%). Patients with multiple increased tumor markers tend to have more distant metastasis (Ptumor markers have high risk of relapse, and maintenance therapy can reduce relapse risk.

  9. Increase in tumor oxygenation and potentiation of radiation effects using pentoxifylline, vinpocetine and ticlopidine hydrochloride

    International Nuclear Information System (INIS)

    Amano, Morikazu; Monzen, Hajime; Suzuki, Minoru; Terai, Kaoru; Andoh, Satoshi; Tsumuraya, Akio; Hasegawa, Takeo

    2005-01-01

    The purpose of the present study was to investigate the effects of Pentoxifylline (PTX), Vinpocetine (VPT) and Ticlopidine Hydrochloride (TCD), used commonly for vascular disorders in humans, on the pO 2 in SCCVII tumors of C3H/HeJ mice and on the radioresponse of SCCVII tumors. The pO 2 in the SCCVII tumors, which were measured 30 min after intraperioneal (i.p.) injection of PTX (5 mg/kg), VPT (5 mg/kg), or TCD (10 mg/kg) using polarography, was compared to that in saline-treated control tumors. All the three drugs, PTX, VPT and TCD, yielded significant increase of the pO 2 in the SCCVII tumors from 25.6 to 26.9 mmHg, from 18.6 to 22.9 mmHg, and from 22.6 to 25.9 mmHg, respectively. Frequency histogram of the pO 2 distribution in the saline-treated SCCVII tumors did not show hypoxic fraction of less than 10 mmHg. The radioresponses of the drugs were investigated by tumor growth delay assay. In the drug-treated groups, the SCCVII tumors were irradiated with a single dose of 15 Gy 30 min after injection of the drugs at the same doses as those used in the experiments for intratumoral pO 2 measurement. Compared with the irradiation alone group, significant tumor growth delays were observed in all the drug-treated groups. The time required to reach a four-fold increase in the initial tumor volume were 4 days in the saline-treated control group, 22 days in the irradiation (IR) alone group, 28 days in the PTX+IR group, 29 days in the VPT+IR group, and 32 days in TCD+IR group. In conclusion, VPT and TCD are potentially promising drugs for increasing the intratumoral pO 2 although the mechanism for radiopotentiation observed in the present study is unknown due to small hypoxic fraction in the SCCVII tumors. Further studies on other mechanisms for radiopotentiation of PTX, VPT or TCD, besides of increasing the pO 2 in the tumor, are needed. (author)

  10. In Vivo Imaging Reveals Significant Tumor Vascular Dysfunction and Increased Tumor Hypoxia-Inducible Factor-1α Expression Induced by High Single-Dose Irradiation in a Pancreatic Tumor Model

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, Azusa [Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario (Canada); Chen, Yonghong; Bu, Jiachuan; Mujcic, Hilda [Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Wouters, Bradly G. [Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); DaCosta, Ralph S., E-mail: rdacosta@uhnres.utoronto.ca [Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario (Canada); Techna Institute, University Health Network, Toronto, Ontario (Canada)

    2017-01-01

    Purpose: To investigate the effect of high-dose irradiation on pancreatic tumor vasculature and microenvironment using in vivo imaging techniques. Methods and Materials: A BxPC3 pancreatic tumor xenograft was established in a dorsal skinfold window chamber model and a subcutaneous hind leg model. Tumors were irradiated with a single dose of 4, 12, or 24 Gy. The dorsal skinfold window chamber model was used to assess tumor response, vascular function and permeability, platelet and leukocyte adhesion to the vascular endothelium, and tumor hypoxia for up to 14 days after 24-Gy irradiation. The hind leg model was used to monitor tumor size, hypoxia, and vascularity for up to 65 days after 24-Gy irradiation. Tumors were assessed histologically to validate in vivo observations. Results: In vivo fluorescence imaging revealed temporary vascular dysfunction in tumors irradiated with a single dose of 4 to 24 Gy, but most significantly with a single dose of 24 Gy. Vascular functional recovery was observed by 14 days after irradiation in a dose-dependent manner. Furthermore, irradiation with 24 Gy caused platelet and leukocyte adhesion to the vascular endothelium within hours to days after irradiation. Vascular permeability was significantly higher in irradiated tumors compared with nonirradiated controls 14 days after irradiation. This observation corresponded with increased expression of hypoxia-inducible factor-1α in irradiated tumors. In the hind leg model, irradiation with a single dose of 24 Gy led to tumor growth delay, followed by tumor regrowth. Conclusions: Irradiation of the BxPC3 tumors with a single dose of 24 Gy caused transient vascular dysfunction and increased expression of hypoxia-inducible factor-1α. Such biological changes may impact tumor response to high single-dose and hypofractionated irradiation, and further investigations are needed to better understand the clinical outcomes of stereotactic body radiation therapy.

  11. Analysis of blood clearance and labeled metabolites for the estrogen receptor tracer [F-18]-16α-fluorestradiol (FES)

    International Nuclear Information System (INIS)

    Mankoff, David A.; Tewson, Timothy J.; Eary, Janet F.

    1997-01-01

    [F-18] 16α-Fluoroestradiol (FES) has been shown to be a tracer of estrogen receptor content in breast tumors; however, quantitative analysis of FES images is complicated by the rapid metabolism of the tracer in vivo. To optimize FES PET imaging studies and to provide an input function for the quantitative analysis of the tracer FES uptake in breast tumors, we studied the clearance and metabolism of FES in 15 breast cancer patients. FES clearance, protein binding, and metabolite production and limited assays to determine the identity of labeled metabolites were performed. These studies show that FES was rapidly cleared from the blood and metabolized; at 20 min only 20% of the circulating radioactivity was unmetabolized FES, and much of this was protein bound. The detectable metabolites in either blood or urine are conjugation products, largely the glucuronide and the sulfate of FES, and these are excreted through the kidneys at a rate comparable to their introduction into the circulation. After 20 min postinjection the blood levels of radioactivity remain fairly constant. Our results, the first report on human metabolites, are in close agreement with previous animal studies of FES metabolism. These studies show that because FES clearance is rapid and metabolite background is nearly constant, imaging starting at 20 to 30 min after injection may provide good visualization of estrogen-containing tissues. Labeled metabolites need to be accounted for in quantifying FES uptake

  12. Increased PADI4 expression in blood and tissues of patients with malignant tumors

    Directory of Open Access Journals (Sweden)

    Zhao Yan

    2009-01-01

    Full Text Available Abstract Background Peptidylarginine deiminase type 4 (PAD4/PADI4 post-translationally converts peptidylarginine to citrulline. Recent studies suggest that PADI4 represses expression of p53-regulated genes via citrullination of histones at gene promoters. Methods Expression of PADI4 was investigated in various tumors and non-tumor tissues (n = 1673 as well as in A549, SKOV3 and U937 tumor cell lines by immunohistochemistry, real-time PCR, and western blot. Levels of PADI4 and citrullinated antithrombin (cAT were investigated in the blood of patients with various tumors by ELISA (n = 1121. Results Immunohistochemistry detected significant PADI4 expression in various malignancies including breast carcinomas, lung adenocarcinomas, hepatocellular carcinomas, esophageal squamous cancer cells, colorectal adenocarcinomas, renal cancer cells, ovarian adenocarcinomas, endometrial carcinomas, uterine adenocarcinomas, bladder carcinomas, chondromas, as well as other metastatic carcinomas. However, PADI4 expression was not observed in benign leiomyomas of stomach, uterine myomas, endometrial hyperplasias, cervical polyps, teratomas, hydatidiform moles, trophoblastic cell hyperplasias, hyroid adenomas, hemangiomas, lymph hyperplasias, schwannomas, neurofibromas, lipomas, and cavernous hemangiomas of the liver. Additionally, PADI4 expression was not detected in non-tumor tissues including cholecystitis, cervicitis and synovitis of osteoarthritis, except in certain acutely inflamed tissues such as in gastritis and appendicitis. Quantitative PCR and western blot analysis showed higher PADI4 expression in gastric adenocarcinomas, lung adenocarcinomas, hepatocellular carcinomas, esophageal squamous cell cancers and breast cancers (n = 5 for each disease than in the surrounding healthy tissues. Furthermore, western blot analysis detected PADI4 expression in cultured tumor cell lines. ELISA detected increased PADI4 and cAT levels in the blood of patients with

  13. Increased PADI4 expression in blood and tissues of patients with malignant tumors

    International Nuclear Information System (INIS)

    Chang, Xiaotian; Han, Jinxiang; Pang, Li; Zhao, Yan; Yang, Yi; Shen, Zhonglin

    2009-01-01

    Peptidylarginine deiminase type 4 (PAD4/PADI4) post-translationally converts peptidylarginine to citrulline. Recent studies suggest that PADI4 represses expression of p53-regulated genes via citrullination of histones at gene promoters. Expression of PADI4 was investigated in various tumors and non-tumor tissues (n = 1673) as well as in A549, SKOV3 and U937 tumor cell lines by immunohistochemistry, real-time PCR, and western blot. Levels of PADI4 and citrullinated antithrombin (cAT) were investigated in the blood of patients with various tumors by ELISA (n = 1121). Immunohistochemistry detected significant PADI4 expression in various malignancies including breast carcinomas, lung adenocarcinomas, hepatocellular carcinomas, esophageal squamous cancer cells, colorectal adenocarcinomas, renal cancer cells, ovarian adenocarcinomas, endometrial carcinomas, uterine adenocarcinomas, bladder carcinomas, chondromas, as well as other metastatic carcinomas. However, PADI4 expression was not observed in benign leiomyomas of stomach, uterine myomas, endometrial hyperplasias, cervical polyps, teratomas, hydatidiform moles, trophoblastic cell hyperplasias, hyroid adenomas, hemangiomas, lymph hyperplasias, schwannomas, neurofibromas, lipomas, and cavernous hemangiomas of the liver. Additionally, PADI4 expression was not detected in non-tumor tissues including cholecystitis, cervicitis and synovitis of osteoarthritis, except in certain acutely inflamed tissues such as in gastritis and appendicitis. Quantitative PCR and western blot analysis showed higher PADI4 expression in gastric adenocarcinomas, lung adenocarcinomas, hepatocellular carcinomas, esophageal squamous cell cancers and breast cancers (n = 5 for each disease) than in the surrounding healthy tissues. Furthermore, western blot analysis detected PADI4 expression in cultured tumor cell lines. ELISA detected increased PADI4 and cAT levels in the blood of patients with various malignant tumors compared to those in patients

  14. ¹H MRS characterization of neurochemical profiles in orthotopic mouse models of human brain tumors.

    Science.gov (United States)

    Hulsey, Keith M; Mashimo, Tomoyuki; Banerjee, Abhishek; Soesbe, Todd C; Spence, Jeffrey S; Vemireddy, Vamsidhara; Maher, Elizabeth A; Bachoo, Robert M; Choi, Changho

    2015-01-01

    Glioblastoma (GBM), the most common primary brain tumor, is resistant to currently available treatments. The development of mouse models of human GBM has provided a tool for studying mechanisms involved in tumor initiation and growth as well as a platform for preclinical investigation of new drugs. In this study we used (1) H MR spectroscopy to study the neurochemical profile of a human orthotopic tumor (HOT) mouse model of human GBM. The goal of this study was to evaluate differences in metabolite concentrations in the GBM HOT mice when compared with normal mouse brain in order to determine if MRS could reliably differentiate tumor from normal brain. A TE =19 ms PRESS sequence at 9.4 T was used for measuring metabolite levels in 12 GBM mice and 8 healthy mice. Levels for 12 metabolites and for lipids/macromolecules at 0.9 ppm and at 1.3 ppm were reliably detected in all mouse spectra. The tumors had significantly lower concentrations of total creatine, GABA, glutamate, total N-acetylaspartate, aspartate, lipids/macromolecules at 0.9 ppm, and lipids/macromolecules at 1.3 ppm than did the brains of normal mice. The concentrations of glycine and lactate, however, were significantly higher in tumors than in normal brain. Copyright © 2014 John Wiley & Sons, Ltd.

  15. Tumor cell adhesion to endothelial cells is increased by endotoxin via an upregulation of beta-1 integrin expression.

    LENUS (Irish Health Repository)

    Andrews, E J

    2012-02-03

    BACKGROUND: Recent studies have demonstrated that metastatic disease develops from tumor cells that adhere to endothelial cells and proliferate intravascularly. The beta-1 integrin family and its ligand laminin have been shown to be important in tumor-to-endothelial cell adhesion. Lipopolysaccharide (LPS) has been implicated in the increased metastatic tumor growth that is seen postoperatively. We postulated that LPS increases tumor cell expression of beta-1 integrins and that this leads to increased adhesion. METHODS: The human metastatic colon cancer cell line LS174T was labeled with an enhanced green fluorescent protein (eGFP) using retroviral transfection. Cell cultures were treated with LPS for 1, 2, and 4 h (n = 6 each) and were subsequently cocultured for 30 or 120 min with confluent human umbilical vein endothelial cells (HUVECs), to allow adherence. Adherent tumor cells were counted using fluorescence microscopy. These experiments were carried out in the presence or absence of a functional blocking beta-1 integrin monoclonal antibody (4B4). Expression of beta-1 integrin and laminin on tumor and HUVECs was assessed using flow cytometric analysis. Tumor cell NF-kappaB activation after incubation with LPS was measured. RESULTS: Tumor cell and HUVEC beta-1 integrin expression and HUVEC expression of laminin were significantly (P < 0.05) enhanced after incubation with LPS. Tumor cell adhesion to HUVECs was significantly increased. Addition of the beta-1 integrin blocking antibody reduced tumor cell adhesion to control levels. LPS increased tumor cell NF-kappaB activation. CONCLUSIONS: Exposure to LPS increases tumor cell adhesion to the endothelium through a beta-1 integrin-mediated pathway that is NF-kappaB dependent. This may provide a target for immunotherapy directed at reducing postoperative metastatic tumor growth.

  16. Paradoxical expression of INK4c in proliferative multiple myeloma tumors: bi-allelic deletion vs increased expression

    Directory of Open Access Journals (Sweden)

    Hanamura Ichiro

    2006-10-01

    Full Text Available Abstract Background A high proliferative capacity of tumor cells usually is associated with shortened patient survival. Disruption of the RB pathway, which is critically involved in regulating the G1 to S cell cycle transition, is a frequent target of oncogenic events that are thought to contribute to increased proliferation during tumor progression. Previously, we determined that p18INK4c, an essential gene for normal plasma cell differentiation, was bi-allelically deleted in five of sixteen multiple myeloma (MM cell lines. The present study was undertaken to investigate a possible role of p18INK4c in increased proliferation of myeloma tumors as they progress. Results Thirteen of 40 (33% human myeloma cell lines do not express normal p18INK4c, with bi-allelic deletion of p18 in twelve, and expression of a mutated p18 fragment in one. Bi-allelic deletion of p18, which appears to be a late progression event, has a prevalence of about 2% in 261 multiple myeloma (MM tumors, but the prevalence is 6 to10% in the 50 tumors with a high expression-based proliferation index. Paradoxically, 24 of 40 (60% MM cell lines, and 30 of 50 (60% MM tumors with a high proliferation index express an increased level of p18 RNA compared to normal bone marrow plasma cells, whereas this occurs in only five of the 151 (3% MM tumors with a low proliferation index. Tumor progression is often accompanied by increased p18 expression and an increased proliferation index. Retroviral-mediated expression of exogenous p18 results in marked growth inhibition in three MM cell lines that express little or no endogenous p18, but has no effect in another MM cell line that already expresses a high level of p18. Conclusion Paradoxically, although loss of p18 appears to contribute to increased proliferation of nearly 10% of MM tumors, most MM cell lines and proliferative MM tumors have increased expression of p18. Apart from a small fraction of cell lines and tumors that have inactivated

  17. Rat Tumor Response to the Vascular-Disrupting Agent 5,6-Dimethylxanthenone-4-Acetic Acid as Measured by Dynamic Contrast-Enhanced Magnetic Resonance Imaging, Plasma 5-Hydroxyindoleacetic Acid Levels, and Tumor Necrosis

    Directory of Open Access Journals (Sweden)

    Lesley D. McPhail

    2006-03-01

    Full Text Available The dose-dependent effects of 5,6-dimethylxanthenone-4-acetic acid (DMXAA on rat GH3 prolactinomas were investigated in vivo. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI was used to assess tumor blood flow/permeability pretreatment and 24 hours posttreatment with 0, 100, 200, or 350 mg/kg DMXAA. DCE-MRI data were analyzed using Ktrans and the integrated area under the gadolinium time curve (IAUGC as response biomarkers. Highperformance liquid chromatography (HPLC was used to determine the plasma concentration of the serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA following treatment to provide an index of increased vessel permeability and vascular damage. Finally, tumor necrosis was assessed by grading hematoxylin and eosin-stained sections cut from the same tumors investigated by MRI. Both tumor Ktrans and IAUGC were significantly reduced 24 hours posttreatment with 350 mg/kg DMXAA only, with no evidence of dose response. HPLC demonstrated a significant increase in plasma 5-HIAA 24 hours posttreatment with 200 and 350 mg/kg DMXAA. Histologic analysis revealed some evidence of tumor necrosis following treatment with 100 or 200 mg/kg DMXAA, reaching significance with 350 mg/kg DMXAA. The absence of any reduction in Ktrans or IAUGC following treatment with 200 mg/kg, despite a significant increase in 5-HIAA, raises concerns about the utility of established DCE-MRI biomarkers to assess tumor response to DMXAA.

  18. Preliminary study for differential diagnosis of intracranial tumors using in vivo quantitative proton MR spectroscopy with correction for T2 relaxation time

    International Nuclear Information System (INIS)

    Isobe, Tomonori; Yamamoto, Tetsuya; Akutsu, Hiroyoshi; Shiigai, Masanari; Shibata, Yasushi; Takada, Kenta; Masumoto, Tomohiko; Anno, Izumi; Matsumura, Akira

    2015-01-01

    Introduction: The intent of this study was to differentiate intracranial tumors using the metabolite concentrations obtained by quantification with correction for T2 relaxation time, and to analyze whether the spectrum peak was generated by the existence of metabolites in proton magnetic resonance spectroscopy (MRS). Methods: All proton MRS studies were performed on a clinical 1.5T MR system. 7 normal volunteers and 57 patients (gliomas, metastases, meningiomas, acoustic neuromas, and pituitary adenomas) underwent single voxel proton MRS with different echo times (TE: 68, 136, 272 ms) for T2 correction of signal derived from metabolites and tissue water. With tissue water employed as an internal reference, the concentrations of metabolite (i.e. N-acetylaspartate (NAA), total creatine (t-Cr) and choline-containing compounds (Cho)) were calculated. Moreover, proton MRS data of previously published typical literatures were critically reviewed and compared with our data. Results: Extramedullary tumors were characterized by absence of NAA compared with intramedullary tumors. High-grade glioma differed from low-grade glioma by lower t-Cr concentrations. Metastasis differed from cystic glioblastoma by higher Cho concentrations, lower t-Cr concentrations, an absence of NAA, and a prominent Lipids peak. Based on these results and review of previous reports, we suggest a clinical pathway for the differentiation of intracranial tumors. Conclusion: The metabolite concentrations obtained by quantification with correction for T2 relaxation time, and to analyze whether the spectrum peak was generated by the existence of metabolites in proton MRS is useful for the diagnosis of the intracranial tumors

  19. Metabolomics of the tumor microenvironment in pediatric acute lymphoblastic leukemia.

    Directory of Open Access Journals (Sweden)

    Stefano Tiziani

    Full Text Available The tumor microenvironment is emerging as an important therapeutic target. Most studies, however, are focused on the protein components, and relatively little is known of how the microenvironmental metabolome might influence tumor survival. In this study, we examined the metabolic profiles of paired bone marrow (BM and peripheral blood (PB samples from 10 children with acute lymphoblastic leukemia (ALL. BM and PB samples from the same patient were collected at the time of diagnosis and after 29 days of induction therapy, at which point all patients were in remission. We employed two analytical platforms, high-resolution magnetic resonance spectroscopy and gas chromatography-mass spectrometry, to identify and quantify 102 metabolites in the BM and PB. Standard ALL therapy, which includes l-asparaginase, completely removed circulating asparagine, but not glutamine. Statistical analyses of metabolite correlations and network reconstructions showed that the untreated BM microenvironment was characterized by a significant network-level signature: a cluster of highly correlated lipids and metabolites involved in lipid metabolism (p<0.006. In contrast, the strongest correlations in the BM upon remission were observed among amino acid metabolites and derivatives (p<9.2 × 10(-10. This study provides evidence that metabolic characterization of the cancer niche could generate new hypotheses for the development of cancer therapies.

  20. Haploidentical hematopoietic SCT increases graft-versus-tumor effect against renal cell carcinoma.

    Science.gov (United States)

    Budak-Alpdogan, T; Sauter, C T; Bailey, C P; Biswas, C S; Panis, M M; Civriz, S; Flomenberg, N; Alpdogan, O

    2013-08-01

    Allogeneic hematopoietic SCT (HSCT) has been shown to be an effective treatment option for advanced renal cell cancer (RCC). However, tumor resistance/relapse remains as the main post transplant issue. Therefore, enhancing graft-versus-tumor (GVT) activity without increasing GVHD is critical for improving the outcome of HSCT. We explored the GVT effect of haploidentical-SCT (haplo-SCT) against RCC in murine models. Lethally irradiated CB6F1 (H2K(b/d)) recipients were transplanted with T-cell-depleted BM cells from B6CBAF1 (H2K(b/k)) mice. Haplo-SCT combined with a low-dose haploidentical (HI) T-cell infusion (1 × 10(5)) successfully provided GVT activity without incurring GVHD. This effect elicited murine RCC growth control and consequently displayed a comparative survival advantage of haplo-SCT recipients when compared with MHC-matched (B6D2F1CB6F1) and parent-F1 (B6CB6F1) transplant recipients. Recipients of haplo-SCT had an increase in donor-derived splenic T-cell numbers, T-cell proliferation and IFN-γ-secreting donor-derived T-cells, a critical aspect for anti-tumor activity. The splenocytes from B6CBAF1 mice had a higher cytotoxicity against RENCA cells than the splenocytes from B6 and B6D2F1 donors after tumor challenge. These findings suggest that haplo-SCT might be an innovative immunotherapeutic platform for solid tumors, particularly for renal cell carcinoma.

  1. Influence of the Tumor Microenvironment on Cancer Cells Metabolic Reprogramming

    Directory of Open Access Journals (Sweden)

    Victoire Gouirand

    2018-04-01

    Full Text Available As with castles, tumor cells are fortified by surrounding non-malignant cells, such as cancer-associated fibroblasts, immune cells, but also nerve fibers and extracellular matrix. In most cancers, this fortification creates a considerable solid pressure which limits oxygen and nutrient delivery to the tumor cells and causes a hypoxic and nutritional stress. Consequently, tumor cells have to adapt their metabolism to survive and proliferate in this harsh microenvironment. To satisfy their need in energy and biomass, tumor cells develop new capacities to benefit from metabolites of the microenvironment, either by their uptake through the macropinocytosis process or through metabolite transporters, or by a cross-talk with stromal cells and capture of extracellular vesicles that are released by the neighboring cells. However, the microenvironments of primary tumor and metastatic niches differ tremendously in their cellular/acellular components and available nutrients. Therefore, cancer cells must develop a metabolic flexibility conferring on them the ability to satisfy their biomass and energetic demands at both primary and metastasis sites. In this review, we propose a brief overview of how proliferating cancer cells take advantage of their surrounding microenvironment to satisfy their high metabolic demand at both primary and metastasis sites.

  2. Phosphodiesterase type 5 inhibitors increase Herceptin transport and treatment efficacy in mouse metastatic brain tumor models.

    Directory of Open Access Journals (Sweden)

    Jinwei Hu

    2010-04-01

    Full Text Available Chemotherapeutic drugs and newly developed therapeutic monoclonal antibodies are adequately delivered to most solid and systemic tumors. However, drug delivery into primary brain tumors and metastases is impeded by the blood-brain tumor barrier (BTB, significantly limiting drug use in brain cancer treatment.We examined the effect of phosphodiesterase 5 (PDE5 inhibitors in nude mice on drug delivery to intracranially implanted human lung and breast tumors as the most common primary tumors forming brain metastases, and studied underlying mechanisms of drug transport. In vitro assays demonstrated that PDE5 inhibitors enhanced the uptake of [(14C]dextran and trastuzumab (Herceptin, a humanized monoclonal antibody against HER2/neu by cultured mouse brain endothelial cells (MBEC. The mechanism of drug delivery was examined using inhibitors for caveolae-mediated endocytosis, macropinocytosis and coated pit/clathrin endocytosis. Inhibitor analysis strongly implicated caveolae and macropinocytosis endocytic pathways involvement in the PDE5 inhibitor-enhanced Herceptin uptake by MBEC. Oral administration of PDE5 inhibitor, vardenafil, to mice with HER2-positive intracranial lung tumors led to an increased tumor permeability to high molecular weight [(14C]dextran (2.6-fold increase and to Herceptin (2-fold increase. Survival time of intracranial lung cancer-bearing mice treated with Herceptin in combination with vardenafil was significantly increased as compared to the untreated, vardenafil- or Herceptin-treated mice (p0.05.These findings suggest that PDE5 inhibitors may effectively modulate BTB permeability, and enhance delivery and therapeutic efficacy of monoclonal antibodies in hard-to-treat brain metastases from different primary tumors that had metastasized to the brain.

  3. Plasma methoxytyramine: A novel biomarker of metastatic pheochromocytoma and paraganglioma in relation to established risk factors of tumor size, location and SDHB mutation status

    Science.gov (United States)

    Eisenhofer, Graeme; Lenders, Jacques W.M.; Siegert, Gabriele; Bornstein, Stefan R.; Friberg, Peter; Milosevic, Dragana; Mannelli, Massimo; Linehan, W. Marston; Adams, Karen; Timmers, Henri J.; Pacak, Karel

    2012-01-01

    Summary Background There are currently no reliable biomarkers for malignant pheochromocytomas and paragangliomas (PPGLs). This study examined whether measurements of catecholamines and their metabolites might offer utility for this purpose. Methods Subjects included 365 patients with PPGLs, including 105 with metastases, and a reference population of 846 without the tumor. Eighteen catecholamine-related analytes were examined in relation to tumor location, size and mutations of succinate dehydrogenase subunit B (SDHB). Results Receiver-operating characteristic curves indicated that plasma methoxytyramine, the O-methylated metabolite of dopamine, provided the most accurate biomarker for discriminating patients with and without metastases. Plasma methoxytyramine was 4.7-fold higher in patients with than without metastases, a difference independent of tumor burden and the associated 1.6- to 1.8-fold higher concentrations of norepinephrine and normetanephrine. Increased plasma methoxytyramine was associated with SDHB mutations and extra-adrenal disease, but was also present in patients without SDHB mutations and metastases or those with metastases secondary to adrenal tumors. High risk of malignancy associated with SDHB mutations reflected large size and extra-adrenal locations of tumors, both independent predictors of metastatic disease. A plasma methoxytyramine above 0.2 nmol/L or a tumor diameter above 5 cm indicated increased likelihood of metastatic spread, particularly when associated with an extra-adrenal location. Interpretation Plasma methoxytyramine is a novel biomarker for metastatic PPGLs that together with SDHB mutation status, tumor size and location provide useful information to assess the likelihood of malignancy and manage affected patients. PMID:22036874

  4. Targeting Potassium Channels for Increasing Delivery of Imaging Agents and Therapeutics to Brain Tumors

    Directory of Open Access Journals (Sweden)

    Nagendra Sanyasihally Ningaraj

    2013-05-01

    Full Text Available Every year in the US, 20,000 new primary and nearly 200,000 metastatic brain tumor cases are reported. The cerebral microvessels/ capillaries that form the blood–brain barrier (BBB not only protect the brain from toxic agents in the blood but also pose a significant hindrance to the delivery of small and large therapeutic molecules. Different strategies have been employed to circumvent the physiological barrier posed by blood-brain tumor barrier (BTB. Studies in our laboratory have identified significant differences in the expression levels of certain genes and proteins between normal and brain tumor capillary endothelial cells. In this study, we validated the non-invasive and clinically relevant Dynamic Contrast Enhancing-Magnetic Resonance Imaging (DCE-MRI method with invasive, clinically irrelevant but highly accurate Quantitative Autoradiography (QAR method using rat glioma model. We also showed that DCE-MRI metric of tissue vessel perfusion-permeability is sensitive to changes in blood vessel permeability following administration of calcium-activated potassium (BKCa channel activator NS-1619. Our results show that human gliomas and brain tumor endothelial cells that overexpress BKCa channels can be targeted for increased BTB permeability for MRI enhancing agents to brain tumors. We conclude that monitoring the outcome of increased MRI enhancing agents’ delivery to microsatellites and leading tumor edges in glioma patients would lead to beneficial clinical outcome.

  5. The vascular disrupting agent ZD6126 shows increased antitumor efficacy and enhanced radiation response in large, advanced tumors

    International Nuclear Information System (INIS)

    Siemann, Dietmar W.; Rojiani, Amyn M.

    2005-01-01

    Purpose: ZD6126 is a vascular-targeting agent that induces selective effects on the morphology of proliferating and immature endothelial cells by disrupting the tubulin cytoskeleton. The efficacy of ZD6126 was investigated in large vs. small tumors in a variety of animal models. Methods and Materials: Three rodent tumor models (KHT, SCCVII, RIF-1) and three human tumor xenografts (Caki-1, KSY-1, SKBR3) were used. Mice bearing leg tumors ranging in size from 0.1-2.0 g were injected intraperitoneally with a single 150 mg/kg dose of ZD6126. The response was assessed by morphologic and morphometric means as well as an in vivo to in vitro clonogenic cell survival assay. To examine the impact of tumor size on the extent of enhancement of radiation efficacy by ZD6126, KHT sarcomas of three different sizes were irradiated locally with a range of radiation doses, and cell survival was determined. Results: All rodent tumors and human tumor xenografts evaluated showed a strong correlation between increasing tumor size and treatment effect as determined by clonogenic cell survival. Detailed evaluation of KHT sarcomas treated with ZD6126 showed a reduction in patent tumor blood vessels that was ∼20% in small ( 90% in large (>1.0 g) tumors. Histologic assessment revealed that the extent of tumor necrosis after ZD6126 treatment, although minimal in small KHT sarcomas, became more extensive with increasing tumor size. Clonogenic cell survival after ZD6126 exposure showed a decrease in tumor surviving fraction from approximately 3 x 10 -1 to 1 x 10 -4 with increasing tumor size. When combined with radiotherapy, ZD6126 treatment resulted in little enhancement of the antitumor effect of radiation in small (<0.3 g) tumors but marked increases in cell kill in tumors larger than 1.0 g. Conclusions: Because bulky neoplastic disease is typically the most difficult to manage, the present findings provide further support for the continued development of vascular disrupting agents such as

  6. Short-echo 3D H-1 Magnetic Resonance Spectroscopic Imaging of patients with glioma at 7T for characterization of differences in metabolite levels

    Science.gov (United States)

    Li, Yan; Larson, Peder; Chen, Albert P.; Lupo, Janine M.; Ozhinsky, Eugene; Kelley, Douglas; Chang, Susan M.; Nelson, Sarah J.

    2014-01-01

    Purpose The purpose of this study was to evaluate the feasibility of using a short echo time, 3D H-1 magnetic resonance spectroscopic imaging (MRSI) sequence at 7T to assess the metabolic signature of lesions for patients with glioma. Materials and Methods 29 patients with glioma were studied. MRSI data were obtained using CHESS water suppression, spectrally-selective adiabatic inversion-recovery pulses and automatically prescribed outer-volume-suppression for lipid suppression, and spin echo slice selection (TE=30ms). An interleaved flyback echo-planar trajectory was applied to shorten the total acquisition time (~10min). Relative metabolite ratios were estimated in tumor and in normal-appearing white and gray matter (NAWM, GM). Results Levels of glutamine, myo-inositol, glycine and glutathione relative to total creatine (tCr) were significantly increased in the T2 lesions for all tumor grades compared to those in the NAWM (p < 0.05), while N-acetyl aspartate to tCr were significantly decreased (p < 0.05). In grade 2 gliomas, level of total choline-containing-compounds to tCr was significantly increased (p = 0.0137), while glutamate to tCr was significantly reduced (p = 0.0012). Conclusion The improved sensitivity of MRSI and the increased number of metabolites that can be evaluated using 7T MR scanners is of interest for evaluating patients with glioma. This study has successfully demonstrated the application of a short-echo spin-echo MRSI sequence to detect characteristic differences in regions of tumor versus normal appearing brain. PMID:24935758

  7. Yeast synthetic biology for high-value metabolites.

    Science.gov (United States)

    Dai, Zhubo; Liu, Yi; Guo, Juan; Huang, Luqi; Zhang, Xueli

    2015-02-01

    Traditionally, high-value metabolites have been produced through direct extraction from natural biological sources which are inefficient, given the low abundance of these compounds. On the other hand, these high-value metabolites are usually difficult to be synthesized chemically, due to their complex structures. In the last few years, the discovery of genes involved in the synthetic pathways of these metabolites, combined with advances in synthetic biology tools, has allowed the construction of increasing numbers of yeast cell factories for production of these metabolites from renewable biomass. This review summarizes recent advances in synthetic biology in terms of the use of yeasts as microbial hosts for the identification of the pathways involved in the synthesis, as well as for the production of high-value metabolites. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  8. Metabolomics by proton nuclear magnetic resonance spectroscopy of the response to chloroethylnitrosourea reveals drug efficacy and tumor adaptive metabolic pathways.

    Science.gov (United States)

    Morvan, Daniel; Demidem, Aicha

    2007-03-01

    Metabolomics of tumors may allow discovery of tumor biomarkers and metabolic therapeutic targets. Metabolomics by two-dimensional proton high-resolution magic angle spinning nuclear magnetic resonance spectroscopy was applied to investigate metabolite disorders following treatment by chloroethylnitrosourea of murine B16 melanoma (n = 33) and 3LL pulmonary carcinoma (n = 31) in vivo. Treated tumors of both types resumed growth after a delay. Nitrosoureas provoke DNA damage but the metabolic consequences of genotoxic stress are little known yet. Although some differences were observed in the metabolite profile of untreated tumor types, the prominent metabolic features of the response to nitrosourea were common to both. During the growth inhibition phase, there was an accumulation of glucose (more than x10; P < 0.05), glutamine (x3 to 4; P < 0.01), and aspartate (x2 to 5; P < 0.01). This response testified to nucleoside de novo synthesis down-regulation and drug efficacy. However, this phase also involved the increase in alanine (P < 0.001 in B16 melanoma), the decrease in succinate (P < 0.001), and the accumulation of serine-derived metabolites (glycine, phosphoethanolamine, and formate; P < 0.01). This response witnessed the activation of pathways implicated in energy production and resumption of nucleotide de novo synthesis, thus metabolic pathways of DNA repair and adaptation to treatment. During the growth recovery phase, it remained polyunsaturated fatty acid accumulation (x1.5 to 2; P < 0.05) and reduced utilization of glucose compared with glutamine (P < 0.05), a metabolic fingerprint of adaptation. Thus, this study provides the proof of principle that metabolomics of tumor response to an anticancer agent may help discover metabolic pathways of drug efficacy and adaptation to treatment.

  9. Reduced blood flow increases the in vivo ammonium ion concentration in the RIF-1 tumor

    International Nuclear Information System (INIS)

    Constantinidis, Ioannis; Gamcsik, Michael P.

    1995-01-01

    Purpose: Previous studies from our laboratory have suggested that pooling of ammonium in tumor tissues may be caused by its inefficient removal due to the poor vasculature commonly found in tumors. The purpose of these experiments was to validate the relationship between tumor ammonium ion concentration and tumor blood flow, and to determine whether large concentrations of ammonium ion detected by Nuclear Magnetic Resonance (NMR) spectroscopy are either produced within the tumor or simply imported into the tumor through the blood stream. Methods and Materials: To test this hypothesis, we reduced blood flow in subcutaneously grown Radiation Induced Fibrosarcoma-1 (RIF-1) tumors, either by creating partial ischemia with a bolus injection of hydralazine or by occlusion with surgical sutures. 14 N and 31 P NMR spectroscopy were used to detect the presence of ammonium, and to assess the bioenergetic status of the tumors, respectively. Results: A correlation between ammonium ion concentration and (PCr(P i )) ratio was established for untreated tumors. An increase in the in vivo tumor ammonium ion concentration was observed for every tumor that experienced a reduction in blood flow caused by either hydralazine injection or suture ligation. Changes in ammonium ion concentration paralleled changes in the bioenergetics of hydralazine-treated tumors. Conclusion: Our results support the hypothesis that a reduction in tumor blood flow is responsible for the accumulation of ammonium in tumors, and that detected ammonium originated from within the tumor

  10. A Decade in the MIST: Learnings from Investigations of Drug Metabolites in Drug Development under the "Metabolites in Safety Testing" Regulatory Guidance.

    Science.gov (United States)

    Schadt, Simone; Bister, Bojan; Chowdhury, Swapan K; Funk, Christoph; Hop, Cornelis E C A; Humphreys, W Griffith; Igarashi, Fumihiko; James, Alexander D; Kagan, Mark; Khojasteh, S Cyrus; Nedderman, Angus N R; Prakash, Chandra; Runge, Frank; Scheible, Holger; Spracklin, Douglas K; Swart, Piet; Tse, Susanna; Yuan, Josh; Obach, R Scott

    2018-06-01

    Since the introduction of metabolites in safety testing (MIST) guidance by the Food and Drug Administration in 2008, major changes have occurred in the experimental methods for the identification and quantification of metabolites, ways to evaluate coverage of metabolites, and the timing of critical clinical and nonclinical studies to generate this information. In this cross-industry review, we discuss how the increased focus on human drug metabolites and their potential contribution to safety and drug-drug interactions has influenced the approaches taken by industry for the identification and quantitation of human drug metabolites. Before the MIST guidance was issued, the method of choice for generating comprehensive metabolite profile was radio chromatography. The MIST guidance increased the focus on human drug metabolites and their potential contribution to safety and drug-drug interactions and led to changes in the practices of drug metabolism scientists. In addition, the guidance suggested that human metabolism studies should also be accelerated, which has led to more frequent determination of human metabolite profiles from multiple ascending-dose clinical studies. Generating a comprehensive and quantitative profile of human metabolites has become a more urgent task. Together with technological advances, these events have led to a general shift of focus toward earlier human metabolism studies using high-resolution mass spectrometry and to a reduction in animal radiolabel absorption/distribution/metabolism/excretion studies. The changes induced by the MIST guidance are highlighted by six case studies included herein, reflecting different stages of implementation of the MIST guidance within the pharmaceutical industry. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  11. Role of arachidonic acid metabolism in transcriptional induction of tumor necrosis factor gene expression by phorbol ester

    Energy Technology Data Exchange (ETDEWEB)

    Horiguchi, J.; Spriggs, D.; Imamura, K.; Stone, R.; Luebbers, R.; Kufe, D.

    1989-01-01

    The treatment of human HL-60 promyelocytic leukemia cells with 12-0 tetradecanoylphorbol-13-acetate (TPA) is associated with induction of tumor necrosis factor (TNF) transcripts. The study reported here has examined TPA-induced signaling mechanisms responsible for the regulation of TNF gene expression in these cells. Run-on assays demonstrated that TPA increases TNS mRNA levels by transcriptional activation of this gene. The induction of TNF transcripts by TPA was inhibited by the isoquinolinesulfonamide derivative H7 but not by HA1004, suggesting that this effect of TPA is mediated by activation of protein kinase C. TPA treatment also resulted in increased arachidonic acid release. Moreover, inhibitors of phospholipase, A/sub 2/ blocked both the increase in arachidonic acid release and the induction of TNF transcripts. These findings suggest that TPA induces TNF gene expression through the formation of arachidonic acid metabolites. Although indomethacin had no detectable effect on this induction of TNF transcripts, ketoconazole, an inhibitor of 5-lipoxygenase, blocked TPA-induced increases in TNF mRNA levels. Moreover, TNF mRNA levels were increased by the 5-lipoxygenase metabolite leukotriene B/sub 4/. In contrast, the cyclooxygenase metabolite prostaglandin E/sub 2/ inhibited the induction of TNF transcripts by TPA. Taken together, these results suggest that TPA induces TNF gene expression through the arachidonic acid cascade and that the level of TNF transcripts is regulated by metabolites of the pathway, leukotriene B/sub 4/ and prostaglandin E/sub 2/.

  12. Pyrrolizidine Alkaloids: Metabolic Activation Pathways Leading to Liver Tumor Initiation.

    Science.gov (United States)

    Fu, Peter P

    2017-01-17

    Pyrrolizidine alkaloids (PAs) and PA N-oxides are a class of phytochemical carcinogens contained in over 6000 plant species spread around the world. It has been estimated that approximately half of the 660 PAs and PA N-oxides that have been characterized are cytotoxic, genotoxic, and tumorigenic. It was recently determined that a genotoxic mechanism of liver tumor initiation mediated by PA-derived DNA adducts is a common metabolic activation pathway of a number of PAs. We proposed this set of PA-derived DNA adducts could be a common biological biomarker of PA exposure and a potential biomarker of PA-induced liver tumor formation. We have also found that several reactive secondary pyrrolic metabolites can dissociate and interconvert to other secondary pyrrolic metabolites, resulting in the formation of the same exogenous DNA adducts. This present perspective reports the current progress on these new findings and proposes future research needed for obtaining a greater understanding of the role of this activation pathway and validating the use of this set of PA-derived DNA adducts as a biological biomarker of PA-induced liver tumor initiation.

  13. Increased plasma concentrations of vasopressin, oxytocin, cortisol and the prostaglandin F2alpha metabolite during labour in the dog.

    Science.gov (United States)

    Olsson, K; Bergström, A; Kindahl, H; Lagerstedt, A-S

    2003-11-01

    This study investigated if the plasma vasopressin concentration increases during labour in the dog and whether the change in vasopressin correlates with that of oxytocin, 15-ketodihydro-PGF2alpha and cortisol. Five beagle dogs each delivered three to seven puppies. Blood samples were taken from a catheter inserted into the cephalic vein during labour and by venepuncture during the other periods. Vasopressin concentration increased from 2 +/- 0 pmol L-1 (anoestrus) to 26 +/- 11 pmol L-1 at the birth of the first puppy, remained high at the birth of the second puppy and then decreased. Oxytocin increased from 63 +/- 5 pmol L-1 (anoestrus) to 166 +/- 19 pmol L-1 at the birth of the first puppy and remained elevated throughout labour. The PGF2alpha metabolite concentration increased from 0.2 +/- 0.0 nmol L-1 (anoestrus) to 66 +/- 17 nmol L-1 at the birth of the first puppy and remained elevated 1 h after the completion of parturition. The cortisol concentration increased from 49 +/- 9 nmol L-1 (anoestrus) to 242 +/- 35 nmol L-1 at the birth of the first puppy, remained high during the birth of the second puppy and then declined. The plasma level of vasopressin was strongly correlated with that of cortisol but less with that of the PGF2alpha metabolite, and not significantly with the concentration of oxytocin. This indicates that the four hormones play different roles during labour in the dog.

  14. Effects of aspartame metabolites on astrocytes and neurons.

    Science.gov (United States)

    Rycerz, Karol; Jaworska-Adamu, Jadwiga Elżbieta

    2013-01-01

    Aspartame, a widespread sweetener used in many food products, is considered as a highly hazardous compound. Aspartame was discovered in 1965 and raises a lot of controversy up to date. Astrocytes are glial cells, the presence and functions of which are closely connected with the central nervous system (CNS). The aim of this article is to demonstrate the direct and indirect role of astrocytes participating in the harmful effects of aspartame metabolites on neurons. The artificial sweetener is broken down into phenylalanine (50%), aspartic acid (40%) and methanol (10%) during metabolism in the body. The excess of phenylalanine blocks the transport of important amino acids to the brain contributing to reduced levels of dopamine and serotonin. Astrocytes directly affect the transport of this amino acid and also indirectly by modulation of carriers in the endothelium. Aspartic acid at high concentrations is a toxin that causes hyperexcitability of neurons and is also a precursor of other excitatory amino acid - glutamates. Their excess in quantity and lack of astrocytic uptake induces excitotoxicity and leads to the degeneration of astrocytes and neurons. The methanol metabolites cause CNS depression, vision disorders and other symptoms leading ultimately to metabolic acidosis and coma. Astrocytes do not play a significant role in methanol poisoning due to a permanent consumption of large amounts of aspartame. Despite intense speculations about the carcinogenicity of aspartame, the latest studies show that its metabolite - diketopiperazine - is cancirogenic in the CNS. It contributes to the formation of tumors in the CNS such as gliomas, medulloblastomas and meningiomas. Glial cells are the main source of tumors, which can be caused inter alia by the sweetener in the brain. On the one hand the action of astrocytes during aspartame poisoning may be advantageous for neuro-protection while on the other it may intensify the destruction of neurons. The role of the glia in

  15. Prospective study of blood metabolites associated with colorectal cancer risk.

    Science.gov (United States)

    Shu, Xiang; Xiang, Yong-Bing; Rothman, Nathaniel; Yu, Danxia; Li, Hong-Lan; Yang, Gong; Cai, Hui; Ma, Xiao; Lan, Qing; Gao, Yu-Tang; Jia, Wei; Shu, Xiao-Ou; Zheng, Wei

    2018-02-26

    Few prospective studies, and none in Asians, have systematically evaluated the relationship between blood metabolites and colorectal cancer risk. We conducted a nested case-control study to search for risk-associated metabolite biomarkers for colorectal cancer in an Asian population using blood samples collected prior to cancer diagnosis. Conditional logistic regression was performed to assess associations of metabolites with cancer risk. In this study, we included 250 incident cases with colorectal cancer and individually matched controls nested within two prospective Shanghai cohorts. We found 35 metabolites associated with risk of colorectal cancer after adjusting for multiple comparisons. Among them, 12 metabolites were glycerophospholipids including nine associated with reduced risk of colorectal cancer and three with increased risk [odds ratios per standard deviation increase of transformed metabolites: 0.31-1.98; p values: 0.002-1.25 × 10 -10 ]. The other 23 metabolites associated with colorectal cancer risk included nine lipids other than glycerophospholipid, seven aromatic compounds, five organic acids and four other organic compounds. After mutual adjustment, nine metabolites remained statistically significant for colorectal cancer. Together, these independently associated metabolites can separate cancer cases from controls with an area under the curve of 0.76 for colorectal cancer. We have identified that dysregulation of glycerophospholipids may contribute to risk of colorectal cancer. © 2018 UICC.

  16. Detection of driver metabolites in the human liver metabolic network using structural controllability analysis

    Science.gov (United States)

    2014-01-01

    Background Abnormal states in human liver metabolism are major causes of human liver diseases ranging from hepatitis to hepatic tumor. The accumulation in relevant data makes it feasible to derive a large-scale human liver metabolic network (HLMN) and to discover important biological principles or drug-targets based on network analysis. Some studies have shown that interesting biological phenomenon and drug-targets could be discovered by applying structural controllability analysis (which is a newly prevailed concept in networks) to biological networks. The exploration on the connections between structural controllability theory and the HLMN could be used to uncover valuable information on the human liver metabolism from a fresh perspective. Results We applied structural controllability analysis to the HLMN and detected driver metabolites. The driver metabolites tend to have strong ability to influence the states of other metabolites and weak susceptibility to be influenced by the states of others. In addition, the metabolites were classified into three classes: critical, high-frequency and low-frequency driver metabolites. Among the identified 36 critical driver metabolites, 27 metabolites were found to be essential; the high-frequency driver metabolites tend to participate in different metabolic pathways, which are important in regulating the whole metabolic systems. Moreover, we explored some other possible connections between the structural controllability theory and the HLMN, and find that transport reactions and the environment play important roles in the human liver metabolism. Conclusion There are interesting connections between the structural controllability theory and the human liver metabolism: driver metabolites have essential biological functions; the crucial role of extracellular metabolites and transport reactions in controlling the HLMN highlights the importance of the environment in the health of human liver metabolism. PMID:24885538

  17. The selenium metabolite methylselenol regulates the expression of ligands that trigger immune activation through the lymphocyte receptor NKG2D

    DEFF Research Database (Denmark)

    Hagemann-Jensen, Michael Henrik; Uhlenbrock, Franziska Katharina; Kehlet, Stephanie

    2014-01-01

    For decades Selenium (Se) research has been focused on the identification of active metabolites, which are crucial for Se chemoprevention of cancer. In this context, the metabolite methylselenol (CH3SeH) is known for its action to selectively kill transformed cells through mechanisms that include...... ligands. A balanced cell-surface expression of NKG2D ligands is considered as an innate barrier against tumor development. Our work therefore indicates that the application of selenium compounds, which are metabolized to CH3SeH, could improve NKG2D-based immune therapy.......: Increased formation of reactive oxygen species (ROS), induction of DNA damage, triggering of apoptosis and the inhibition of angiogenesis. Here, we revealed that CH3SeH modulates cell surface expression of NKG2D ligands. The expression of NKG2D ligands is induced by stress-associated pathways, which occur...

  18. Metabolite quantitation in breast cancer by in vivo MR spectroscopy

    International Nuclear Information System (INIS)

    Jagananthan, Naranamangalam R.

    2014-01-01

    A large number of biochemical and imaging investigations are available for the diagnosis of cancer but detection is still a challenging task. Various magnetic resonance imaging (MRI) methods are used for the detection of tumors that gives morphological and functional details. On the other hand, magnetic resonance spectroscopy (MRS) provides metabolites or biochemicals at the molecular level. With technological advancement in MR, it is possible to detect in vivo metabolites from normal and pathological tissues that are present in millimolar concentrations and there are several localization methods available for the same. The commonest cancer in women is the breast cancer and is a leading cause of death among the female population worldwide. The in vivo localized proton MR spectroscopy of normal breast tissues is dominated by a huge lipid with little contribution from water while malignant breast tissues contain high water content. By suppressing the water and fat contribution, it is possible to detect choline containing compounds (tCho) in malignant breast tissues. The parameters obtained from in vivo proton MRS of breast tissues are water-to-fat (W-F) ratio and detection of tCho. tCho has been documented by many workers as a potential marker of breast malignancy. Recently, quantitative assessment of tCho concentration has been reported. There are two methods that are used for quantification of tCho: (a) semi-quantitative method that calculates the signal-to-noise ratio (SNR) of the choline signal; and (b) determination of the absolute concentration of tCho using water as an internal and external reference. Both W-F ratio and tCho concentration have been evaluated as markers for assessment of tumor response to therapy. This talk would cover various MRS methods used for the diagnosis of breast cancer together with the details of the determination of the absolute and relative concentrations of metabolites. (author)

  19. Oral administration of an estrogen metabolite-induced potentiation of radiation antitumor effects in presence of wild-type p53 in non-small-cell lung cancer

    International Nuclear Information System (INIS)

    Huober, Jens B.; Nakamura, Seiichi; Meyn, Ray; Roth, Jack A.; Mukhopadhyay, Tapas

    2000-01-01

    Purpose: The purpose of this study was to investigate the efficacy of 2-methoxyestradiol as an antitumor and radiosensitizing agent for the treatment of human malignancy. Methods and Materials: Two cancer cell lines with wild-type p53 status were exposed first to irradiation and then to an oral formulation of the nontoxic metabolite 2-methoxyestradiol (2ME) to stabilize p53 levels. Results: Cell growth was inhibited via G1 growth and apoptosis. Subsequent in vitro growth and Tunel assays indicated that this combination was superior to radiation alone at inducing p53 protein accumulation, stabilizing p53 protein levels, and substantially reducing long-term tumor cell growth (∼80%) and colony formation (∼95%) in vitro, and inducing apoptosis. However, harboring mutated p53, H322 cell line, was relatively insensitive to such a treatment regimen. Western blot analysis revealed that growth inhibition was associated with increased levels of p53 and p21 protein accumulation. Experiments with subcutaneous tumor in a nu/nu mouse showed the combination treatment to be superior to radiation alone at reducing tumor growth (∼50% reduction as compared to radiation alone) in vivo. Conclusion: Thus, our studies confirmed a unique strategy whereby oral administration of a nontoxic estrogen metabolite, 2ME, significantly enhanced the radiation effect on a subcutaneous tumor without any toxicity and suggesting that this strategy may be clinically useful as an adjuvant therapy

  20. In vivo 31P MR spectroscopy of breast tumors: preliminary results

    International Nuclear Information System (INIS)

    Choe, Bo Young; Kim, Hak Hee; Suh, Tae Suk; Shinn, Kyung Sub; Jung, Sang Seol

    1995-01-01

    To evaluate the various phosphorus metabolism of breast tumors with use of in vivo phosphorus-31 ( 31 P) MR spectroscopy (MRS). Five patients with breast tumor (benign in two, malignant in three) and three normal healthy volunteers participated in this study. All in vivo 31 P MRS examinations were performed on 1.5T whole-body MRI/MRS system by using a Free Induction Decay (FID) pulse sequence. T1-weighted MR images were used for localization of tumors. Peak areas for each phosphorus metabolite were measured using a Marquart algorithm. Breast carcinoma had a substantially larger phosphomonoester (PME) and a smaller phosphocreatine (PCr) peak intensity than normal breast tissue. This was reflected in the relatively higher PME/PCr ratio of breast carcinomas as well as phosphodiester (PDE)/PCr, inorganic phosphate (Pi)/PCr, and adenosine triphosphate (ATP)/PCr ratios, compared with normal controls. The mean pH value of breast tumor demonstrating the alkaline nature was higher than that of normal controls. Spectral patterns between benign breast disease and normal breast tissue were quite similar, and differentiation was not established. Our preliminary study suggests that in vivo 31 P MRS is a noninvasive examination which may be useful in the early differentiation of malignant breast tumors from normal and benign conditions. However, normal control and benign conditions could not be characterized on the basis of the phosphorus metabolite ratios

  1. Radiation-induced changes in human brain metabolites as studied by 1H nuclear magnetic resonance spectroscopy in vivo

    International Nuclear Information System (INIS)

    Usenius, Taina; Usenius, Jussi-Pekka; Tenhunen, Mikko; Vainio, Pauli; Johansson, Risto; Soimakallio, Seppo; Kauppinen, Risto

    1995-01-01

    Purpose: External radiation therapy for brain tumors exposes healthy areas of brain to considerable doses of radiation. This may cause cognitive and psychological impairment, which indicate neuronal dysfunction. 1 H-magnetic resonance spectroscopy (MRS) was used to study brain metabolites in the adjacent regions 0.5-13 years after exposure to therapeutic irradiation. Methods and Materials: Eight patients with irradiated brain tumors were examined by means of in vivo 1 H-MRS using a point-resolved spectroscopy (PRESS) sequence with echo times of 60 or 270 ms. The metabolites were quantified by using brain water concentration as internal reference. The volume of interest (VOI) was positioned in irradiated brain areas excluding, however, scar and recurrent tumor. The respective radiation doses were measured based on radiation therapy plans, simulator films, and localization MR images. Results: The concentration of the neuron-specific metabolite N-acetyl-l-aspartate (NAA) was 13.2 ± 1.4 mmol/l in controls, whereas it was reduced in the brains of treated patients to 8.6 ± 0.9 mmol/l (total radiation dose 59-62 Gy). Concentrations of creatine and choline-containing compounds were unchanged. The T2 of water was longer in irradiated than in unexposed brain areas. Conclusion: Therapeutic brain irradiation causes neuronal damage, which is reflected by reduction of N-acetyl-l-aspartate (NAA) concentrations. 1 H-MRS could serve clinically as a means of evaluating adverse effects in the central nervous system, enabling intervention and rehabilitation

  2. Overexpression of the duffy antigen receptor for chemokines (DARC) by NSCLC tumor cells results in increased tumor necrosis

    International Nuclear Information System (INIS)

    Addison, Christina L; Belperio, John A; Burdick, Marie D; Strieter, Robert M

    2004-01-01

    The Duffy antigen receptor for chemokines (DARC) is known to be a promiscuous chemokine receptor that binds a variety of CXC and CC chemokines in the absence of any detectable signal transduction events. Within the CXC group of chemokines, DARC binds the angiogenic CXC chemokines including IL-8 (CXCL8), GROα (CXCL1) and ENA-78 (CXCL5), all of which have previously been shown to be important in non-small cell lung carcinoma (NSCLC) tumor growth. We hypothesized that overexpression of DARC by a NSCLC tumor cell line would result in the binding of the angiogenic ELR+ CXC chemokines by the tumor cells themselves, and thus interfere with the stimulation of endothelial cells and induction of angiogenesis by the tumor cell-derived angiogenic chemokines. NSCLC tumor cells that constitutively expressed DARC were generated and their growth characteristics were compared to control transfected cells in vitro and in vivo in SCID animals. We found that tumors derived from DARC-expressing cells were significantly larger in size than tumors derived from control-transfected cells. However, upon histological examination we found that DARC-expressing tumors had significantly more necrosis and decreased tumor cellularity, as compared to control tumors. Expression of DARC by NSCLC cells was also associated with a decrease in tumor-associated vasculature and a reduction in metastatic potential. The expression of DARC in the context of NSCLC tumors may act as a chemokine decoy receptor and interferes with normal tumor growth and chemokine-induced tumor neovascularization

  3. Identification of berberrubine metabolites in rats by using ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Wang, Kun; Qiao, Miao; Chai, Liwei; Cao, Shijie; Feng, Xinchi; Ding, Liqin; Qiu, Feng

    2018-01-01

    Berberrubine, an isoquinoline alkaloid isolated from many medicinal plants, possesses diverse pharmacological activities, including glucose-lowering, lipid-lowering, anti-inflammatory, and anti-tumor effects. This study aimed to investigate the metabolic profile of berberrubine in vivo. Therefore, a rapid and reliable method using the ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and metabolynx™ software with mass defect filter (MDF) technique was developed. Plasma, bile, urine and feces samples were collected from rats after oral administration of berberrubine with a dose of 30.0mg/kg and analyzed to characterize the metabolites of berberrubine in vivo for the first time. A total of 57 metabolites were identified, including 54 metabolites in urine, 39 metabolites in plasma, 28 metabolites in bile and 18 metabolites in feces. The results indicated that demethylenation, reduction, hydroxylation, demethylation, glucuronidation, and sulfation were the major metabolic pathways of berberrubine in vivo. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Measurements of diagnostic examination performance using quantitative apparent diffusion coefficient and proton MR spectroscopic imaging in the preoperative evaluation of tumor grade in cerebral gliomas

    International Nuclear Information System (INIS)

    Server, Andres; Kulle, Bettina; Gadmar, Oystein B.; Josefsen, Roger; Kumar, Theresa; Nakstad, Per H.

    2011-01-01

    . Results: Statistical analysis demonstrated a threshold minimum ADC tumor value of 1.07 to provide sensitivity, specificity, PPV, and NPV of 79.7%, 60.0%, 88.7%, and 42.9% respectively, in determining high-grade gliomas. Threshold values of 1.35 and 1.78 for peritumoral Cho/Cr and Cho/NAA metabolite ratios resulted in sensitivity, specificity, PPV, and NPV of 83.3%, 85.1%, 41.7%, 97.6%, and 100%, 57.4%, 23.1% and 100% respectively for determining high-grade gliomas. Significant differences were noted in the ADC tumor values and ratios, peritumoral Cho/Cr and Cho/NAA metabolite ratios, and tumoral Cho/NAA ratio between low- and high-grade gliomas. The combination of mean ADC tumor value, maximum ADC tumor ratio, peritumoral Cho/Cr and Cho/NAA metabolite ratios resulted in sensitivity, specificity, PPV, and NPV of 91.5%, 100%, 100% and 60% respectively. Conclusion: Combining DWI and MRSI increases the accuracy of preoperative imaging in the determination of glioma grade. MRSI had superior diagnostic performance in predicting glioma grade compared with DWI alone. The predictive values are helpful in the clinical decision-making process to evaluate the histologic grade of tumors, and provide a means of guiding treatment.

  5. Increased formic acid excretion and the development of kidney toxicity in rats following chronic dosing with trichloroethanol, a major metabolite of trichloroethylene

    International Nuclear Information System (INIS)

    Green, Trevor; Dow, Jacky; Foster, John

    2003-01-01

    The chronic toxicity of trichloroethanol, a major metabolite of trichloroethylene, has been assessed in male Fischer rats (60 per group) given trichloroethanol in drinking water at concentrations of 0, 0.5 and 1.0 g/l for 52 weeks. The rats excreted large amounts of formic acid in urine reaching a maximum after 12 weeks (∼65 mg/24 h at 1 g/l) and thereafter declining to reach an apparent steady state at 40 weeks (15-20 mg/24 h). Urine from treated rats was more acidic throughout the study and urinary methylmalonic acid and plasma N-methyltetrahydrofolate concentrations were increased, indicating an acidosis, vitamin B12 deficiency and impaired folate metabolism, respectively. The rats treated with trichloroethanol developed kidney damage over the duration of the study which was characterised by increased urinary NAG activity, protein excretion (from 4 weeks), increased basophilia, protein accumulation and tubular damage (from 12 to 40 weeks), increased cell replication (at week 28) and evidence in some rats of focal proliferation of abnormal tubules at 52 weeks. It was concluded that trichloroethanol, the major metabolite of trichloroethylene, induced nephrotoxicity in rats as a result of formic acid excretion and acidosis

  6. A new paradigm for known metabolite identification in metabonomics/metabolomics: metabolite identification efficiency.

    Science.gov (United States)

    Everett, Jeremy R

    2015-01-01

    A new paradigm is proposed for assessing confidence in the identification of known metabolites in metabonomics studies using NMR spectroscopy approaches. This new paradigm is based upon the analysis of the amount of metabolite identification information retrieved from NMR spectra relative to the molecular size of the metabolite. Several new indices are proposed including: metabolite identification efficiency (MIE) and metabolite identification carbon efficiency (MICE), both of which can be easily calculated. These indices, together with some guidelines, can be used to provide a better indication of known metabolite identification confidence in metabonomics studies than existing methods. Since known metabolite identification in untargeted metabonomics studies is one of the key bottlenecks facing the science currently, it is hoped that these concepts based on molecular spectroscopic informatics, will find utility in the field.

  7. A New Paradigm for Known Metabolite Identification in Metabonomics/Metabolomics: Metabolite Identification Efficiency

    Directory of Open Access Journals (Sweden)

    Jeremy R. Everett

    2015-01-01

    Full Text Available A new paradigm is proposed for assessing confidence in the identification of known metabolites in metabonomics studies using NMR spectroscopy approaches. This new paradigm is based upon the analysis of the amount of metabolite identification information retrieved from NMR spectra relative to the molecular size of the metabolite. Several new indices are proposed including: metabolite identification efficiency (MIE and metabolite identification carbon efficiency (MICE, both of which can be easily calculated. These indices, together with some guidelines, can be used to provide a better indication of known metabolite identification confidence in metabonomics studies than existing methods. Since known metabolite identification in untargeted metabonomics studies is one of the key bottlenecks facing the science currently, it is hoped that these concepts based on molecular spectroscopic informatics, will find utility in the field.

  8. Tumor trapping of 5-fluorouracil: In vivo 19F NMR spectroscopic pharmacokinetics in tumor-bearing humans and rabbits

    International Nuclear Information System (INIS)

    Wolf, W.; Servis, K.L.; El-Tahtawy, A.; Singh, M.; Ray, M.; Shani, J.; Presant, C.A.; King, M.; Wiseman, C.; Blayney, D.; Albright, M.J.; Atkinson, D.; Ong, R.; Barker, P.B.; Ring, R. III

    1990-01-01

    The pharmacokinetics of 5-fluorouracil (5FU) were studied in vivo in patients with discrete tumors and in rabbits bearing VX2 tumors by using 19 F NMR spectroscopy. Free 5FU was detected in the tumors of four of the six patients and in all VX2 tumors but not in normal rabbit tissues. No other metabolites were seen in these tumors, contrary to the extensive catabolism previously documented using 19 F NMR spectroscopy in both human and animal livers. The tumor pool of free 5FU in those human tumors that trapped 5FU was determined to have a half-life of 0.4-2.1 hr, much longer than expected and significantly longer than the half-life of 5FU in blood (5-15 min), whereas the half-life of trapped 5FU in the VX2 tumors ranged from 1.05 to 1.22 hr. These studies document that NMR spectroscopy is clinically feasible in vivo, allows noninvasive pharmacokinetic analyses at a drug-target tissue in real time, and may produce therapeutically important information at the time of drug administration. Demonstration of the trapping of 5FU in tumors provides both a model for studying metabolic modulation in experimental tumors (in animals) and a method for testing modulation strategies clinically (in patients)

  9. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism.

    Science.gov (United States)

    Zhao, Hongyun; Yang, Lifeng; Baddour, Joelle; Achreja, Abhinav; Bernard, Vincent; Moss, Tyler; Marini, Juan C; Tudawe, Thavisha; Seviour, Elena G; San Lucas, F Anthony; Alvarez, Hector; Gupta, Sonal; Maiti, Sourindra N; Cooper, Laurence; Peehl, Donna; Ram, Prahlad T; Maitra, Anirban; Nagrath, Deepak

    2016-02-27

    Cancer-associated fibroblasts (CAFs) are a major cellular component of tumor microenvironment in most solid cancers. Altered cellular metabolism is a hallmark of cancer, and much of the published literature has focused on neoplastic cell-autonomous processes for these adaptations. We demonstrate that exosomes secreted by patient-derived CAFs can strikingly reprogram the metabolic machinery following their uptake by cancer cells. We find that CAF-derived exosomes (CDEs) inhibit mitochondrial oxidative phosphorylation, thereby increasing glycolysis and glutamine-dependent reductive carboxylation in cancer cells. Through 13C-labeled isotope labeling experiments we elucidate that exosomes supply amino acids to nutrient-deprived cancer cells in a mechanism similar to macropinocytosis, albeit without the previously described dependence on oncogenic-Kras signaling. Using intra-exosomal metabolomics, we provide compelling evidence that CDEs contain intact metabolites, including amino acids, lipids, and TCA-cycle intermediates that are avidly utilized by cancer cells for central carbon metabolism and promoting tumor growth under nutrient deprivation or nutrient stressed conditions.

  10. Rare incidence of tumor lysis syndrome in metastatic prostate cancer following treatment with docetaxel.

    Science.gov (United States)

    Bhardwaj, Sharonlin; Varma, Seema

    2018-03-01

    Tumor lysis syndrome is a serious and sometimes lethal complication of cancer treatment that is comprised of a set of metabolic disturbances along with clinical manifestations. Initiating chemotherapy in bulky, rapidly proliferating tumors causes rapid cell turnover that in turn releases metabolites into circulation that give rise to metabolic derangements that can be dangerous. This syndrome is usually seen in high-grade hematological malignancies. Less commonly, tumor lysis syndrome can present in solid tumors and even rarely in genitourinary tumors. In this report, the authors describe a specific case of tumor lysis syndrome in a patient with metastatic prostate cancer following treatment with docetaxel.

  11. SPHINGOSINE-1 PHOSPHATE: A NEW MODULATOR OF IMMUNE PLASTICITY IN THE TUMOR MICROENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Yamila I Rodriguez

    2016-10-01

    Full Text Available In the last 15 years, increasing evidences demonstrate a strong link between sphingosine-1-phosphate (S1P in both normal physiology and progression of different diseases, including cancer and inflammation. Indeed, numerous studies show that tissue levels of this sphingolipid metabolite are augmented in many cancers, affecting survival, proliferation, angiogenesis and metastatic spread. Recent insights into the possible role of S1P as a therapeutic target has attracted enormous attention and opened new opportunities in this evolving field. In this review we will focus on the role of S1P in cancer with particular emphasis in new developments that highlight the many functions of this sphingolipid in the tumor microenvironment. We will discuss how S1P modulates phenotypic plasticity of macrophages and mast cells, tumor-induced immune evasion, differentiation and survival of immune cells in the tumor milieu, interaction between cancer and stromal cells and hypoxic response.

  12. Radiation-induced changes in human brain metabolites as studied by {sup 1}H nuclear magnetic resonance spectroscopy in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Usenius, Taina; Usenius, Jussi-Pekka; Tenhunen, Mikko; Vainio, Pauli; Johansson, Risto; Soimakallio, Seppo; Kauppinen, Risto

    1995-10-15

    Purpose: External radiation therapy for brain tumors exposes healthy areas of brain to considerable doses of radiation. This may cause cognitive and psychological impairment, which indicate neuronal dysfunction. {sup 1}H-magnetic resonance spectroscopy (MRS) was used to study brain metabolites in the adjacent regions 0.5-13 years after exposure to therapeutic irradiation. Methods and Materials: Eight patients with irradiated brain tumors were examined by means of in vivo{sup 1}H-MRS using a point-resolved spectroscopy (PRESS) sequence with echo times of 60 or 270 ms. The metabolites were quantified by using brain water concentration as internal reference. The volume of interest (VOI) was positioned in irradiated brain areas excluding, however, scar and recurrent tumor. The respective radiation doses were measured based on radiation therapy plans, simulator films, and localization MR images. Results: The concentration of the neuron-specific metabolite N-acetyl-l-aspartate (NAA) was 13.2 {+-} 1.4 mmol/l in controls, whereas it was reduced in the brains of treated patients to 8.6 {+-} 0.9 mmol/l (total radiation dose 59-62 Gy). Concentrations of creatine and choline-containing compounds were unchanged. The T2 of water was longer in irradiated than in unexposed brain areas. Conclusion: Therapeutic brain irradiation causes neuronal damage, which is reflected by reduction of N-acetyl-l-aspartate (NAA) concentrations. {sup 1}H-MRS could serve clinically as a means of evaluating adverse effects in the central nervous system, enabling intervention and rehabilitation.

  13. Suppression of Peroxiredoxin 4 in Glioblastoma Cells Increases Apoptosis and Reduces Tumor Growth

    Science.gov (United States)

    Kim, Tae Hyong; Song, Jieun; Alcantara Llaguno, Sheila R.; Murnan, Eric; Liyanarachchi, Sandya; Palanichamy, Kamalakannan; Yi, Ji-Yeun; Viapiano, Mariano Sebastian; Nakano, Ichiro; Yoon, Sung Ok; Wu, Hong; Parada, Luis F.; Kwon, Chang-Hyuk

    2012-01-01

    Glioblastoma multiforme (GBM), the most common and aggressive primary brain malignancy, is incurable despite the best combination of current cancer therapies. For the development of more effective therapies, discovery of novel candidate tumor drivers is urgently needed. Here, we report that peroxiredoxin 4 (PRDX4) is a putative tumor driver. PRDX4 levels were highly increased in a majority of human GBMs as well as in a mouse model of GBM. Reducing PRDX4 expression significantly decreased GBM cell growth and radiation resistance in vitro with increased levels of ROS, DNA damage, and apoptosis. In a syngenic orthotopic transplantation model, Prdx4 knockdown limited GBM infiltration and significantly prolonged mouse survival. These data suggest that PRDX4 can be a novel target for GBM therapies in the future. PMID:22916164

  14. Suppression of peroxiredoxin 4 in glioblastoma cells increases apoptosis and reduces tumor growth.

    Directory of Open Access Journals (Sweden)

    Tae Hyong Kim

    Full Text Available Glioblastoma multiforme (GBM, the most common and aggressive primary brain malignancy, is incurable despite the best combination of current cancer therapies. For the development of more effective therapies, discovery of novel candidate tumor drivers is urgently needed. Here, we report that peroxiredoxin 4 (PRDX4 is a putative tumor driver. PRDX4 levels were highly increased in a majority of human GBMs as well as in a mouse model of GBM. Reducing PRDX4 expression significantly decreased GBM cell growth and radiation resistance in vitro with increased levels of ROS, DNA damage, and apoptosis. In a syngenic orthotopic transplantation model, Prdx4 knockdown limited GBM infiltration and significantly prolonged mouse survival. These data suggest that PRDX4 can be a novel target for GBM therapies in the future.

  15. High Birth Weight Increases the Risk for Bone Tumor: A Systematic Review and Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Songfeng Chen

    2015-09-01

    Full Text Available There have been several epidemiologic studies on the relationship between high birth weight and the risk for bone tumor in the past decades. However, due to the rarity of bone tumors, the sample size of individual studies was generally too small for reliable conclusions. Therefore, we have performed a meta-analysis to pool all published data on electronic databases with the purpose to clarify the potential relationship. According to the inclusion and exclusion criteria, 18 independent studies with more than 2796 cases were included. As a result, high birth weight was found to increase the risk for bone tumor with an Odds Ratio (OR of 1.13, with the 95% confidence interval (95% CI ranging from 1.01 to 1.27. The OR of bone tumor for an increase of 500 gram of birth weight was 1.01 (95% CI 1.00–1.02; p = 0.048 for linear trend. Interestingly, individuals with high birth weight had a greater risk for osteosarcoma (OR = 1.22, 95% CI 1.06–1.40, p = 0.006 than those with normal birth weight. In addition, in the subgroup analysis by geographical region, elevated risk was detected among Europeans (OR = 1.14, 95% CI 1.00–1.29, p = 0.049. The present meta-analysis supported a positive association between high birth weight and bone tumor risk.

  16. Intact penetratin metabolite permeates across Caco-2 monolayers

    DEFF Research Database (Denmark)

    Birch, Ditlev; Christensen, Malene Vinther; Stærk, Dan

    . Previous studies have demonstrated that cell-penetrating peptides (CPPs) may be used as carriers in order to improve the bioavailability of a therapeutic cargo like insulin after oral administration. Penetratin, a commonly used CPP, has been shown to increase the uptake of insulin across Caco-2 cell......-2 cells cultured on permeable filter inserts and in cell lysates, respectively. The epithelial permeation of penetratin and the formed metabolites was assessed by using Caco-2 monolayers cultured on permeable filter inserts. Results Preliminary data revealed that at least one specific metabolite...... is formed upon both intracellular and extracellular degradation of penetratin (figure 1A). Following incubation with epithelium for 4 hours, the metabolite permeated the Caco-2 monolayer and the concentration increased approximately 10-fold when compared to a sample collected following 15 minutes...

  17. Synthesis and Bioactivity of Secondary Metabolites from Marine Sponges Containing Dibrominated Indolic Systems

    Directory of Open Access Journals (Sweden)

    Azzurra Stefanucci

    2012-05-01

    Full Text Available Marine sponges. (e.g., Hyrtios sp., Dragmacidin sp., Aglophenia pleuma, Aplidium cyaneum, Aplidium meridianum. produce bioactive secondary metabolites involved in their defence mechanisms. Recently it was demonstrated that several of those compounds show a large variety of biological activities against different human diseases with possible applications in medicinal chemistry and in pharmaceutical fields, especially related to the new drug development process. Researchers have focused their attention principally on secondary metabolites with anti-cancer and cytotoxic activities. A common target for these molecules is the cytoskeleton, which has a central role in cellular proliferation, motility, and profusion involved in the metastatic process associate with tumors. In particular, many substances containing brominated indolic rings such as 5,6-dibromotryptamine, 5,6-dibromo-N-methyltryptamine, 5,6-dibromo-N-methyltryptophan (dibromoabrine, 5,6-dibromo-N,N-dimethyltryptamine and 5,6-dibromo-L-hypaphorine isolated from different marine sources, have shown anti-cancer activity, as well as antibiotic and anti-inflammatory properties. Considering the structural correlation between endogenous monoamine serotonin with marine indolic alkaloids 5,6-dibromoabrine and 5,6-dibromotryptamine, a potential use of some dibrominated indolic metabolites in the treatment of depression-related pathologies has also been hypothesized. Due to the potential applications in the treatment of various diseases and the increasing demand of these compounds for biological assays and the difficult of their isolation from marine sources, we report in this review a series of recent syntheses of marine dibrominated indole-containing products.

  18. Revisiting the TCA cycle: signaling to tumor formation.

    Science.gov (United States)

    Raimundo, Nuno; Baysal, Bora E; Shadel, Gerald S

    2011-11-01

    A role for mitochondria in tumor formation is suggested by mutations in enzymes of the TCA cycle: isocitrate dehydrogenase (IDH), succinate dehydrogenase (SDH) and fumarate hydratase (FH). Although they are all components of the TCA cycle, the resulting clinical presentations do not overlap. Activation of the hypoxia pathway can explain SDH phenotypes, but recent data suggest that FH and IDH mutations lead to tumor formation by repressing cellular differentiation. In this review, we discuss recent findings in the context of both mitochondrial and cytoplasmic components of the TCA cycle, and we propose that extrametabolic roles of TCA cycle metabolites result in reduced cellular differentiation. Furthermore, activation of the pseudohypoxia pathway likely promotes the growth of these neoplasias into tumors. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Choline Phospholipid Metabolites of Human Vascular Endothelial Cells Altered by Cyclooxygenase Inhibition, Growth Factor Depletion, and Paracrine Factors Secreted by Cancer Cells

    Directory of Open Access Journals (Sweden)

    Noriko Mori

    2003-04-01

    Full Text Available Magnetic resonance studies have previously shown that solid tumors and cancer cells in culture typically exhibit high phosphocholine and total choline. Treatment of cancer cells with the anti-inflammatory agent, indomethacin (INDO, reverted the phenotype of choline phospholipid metabolites in cancer cells towards a less malignant phenotype. Since endothelial cells form a key component of tumor vasculature, in this study, we used MR spectroscopy to characterize the phenotype of choline phospholipid metabolites in human umbilical vein endothelial cells (HUVECs. We determined the effect of growth factors, the anti-inflammatory agent INDO, and conditioned media obtained from a malignant cell line, on choline phospholipid metabolites. Growth factor depletion or treatment with INDO induced similar changes in the choline phospholipid metabolites of HUVECs. Treatment with conditioned medium obtained from MDA-MB-231 cancer cells induced changes similar to the presence of growth factor supplements. These results suggest that cancer cells secrete growth factors and/or other molecules that influence the choline phospholipid metabolism of HUVECs. The ability of INDO to alter choline phospholipid metabolism in the presence of growth factor supplements suggests that the inflammatory response pathways of HUVECs may play a role in cancer cell-HUVEC interaction and in the response of HUVECs to growth factors.

  20. Hypoxia-inducible factor 1–mediated characteristic features of cancer cells for tumor radioresistance

    International Nuclear Information System (INIS)

    Harada, Hiroshi

    2016-01-01

    Tumor hypoxia has been attracting increasing attention in the fields of radiation biology and oncology since Thomlinson and Gray detected hypoxic cells in malignant solid tumors and showed that they exert a negative impact on the outcome of radiation therapy. This unfavorable influence has, at least partly, been attributed to cancer cells acquiring a radioresistant phenotype through the activation of the transcription factor, hypoxia-inducible factor 1 (HIF-1). On the other hand, accumulating evidence has recently revealed that, even though HIF-1 is recognized as an important regulator of cellular adaptive responses to hypoxia, it may not become active and induce tumor radioresistance under hypoxic conditions only. The mechanisms by which HIF-1 is activated in cancer cells not only under hypoxic conditions, but also under normoxic conditions, through cancer-specific genetic alterations and the resultant imbalance in intermediate metabolites have been summarized herein. The relevance of the HIF-1–mediated characteristic features of cancer cells, such as the production of antioxidants through reprogramming of the glucose metabolic pathway and cell cycle regulation, for tumor radioresistance has also been reviewed

  1. Hydrophobicity and charge shape cellular metabolite concentrations.

    Directory of Open Access Journals (Sweden)

    Arren Bar-Even

    2011-10-01

    Full Text Available What governs the concentrations of metabolites within living cells? Beyond specific metabolic and enzymatic considerations, are there global trends that affect their values? We hypothesize that the physico-chemical properties of metabolites considerably affect their in-vivo concentrations. The recently achieved experimental capability to measure the concentrations of many metabolites simultaneously has made the testing of this hypothesis possible. Here, we analyze such recently available data sets of metabolite concentrations within E. coli, S. cerevisiae, B. subtilis and human. Overall, these data sets encompass more than twenty conditions, each containing dozens (28-108 of simultaneously measured metabolites. We test for correlations with various physico-chemical properties and find that the number of charged atoms, non-polar surface area, lipophilicity and solubility consistently correlate with concentration. In most data sets, a change in one of these properties elicits a ~100 fold increase in metabolite concentrations. We find that the non-polar surface area and number of charged atoms account for almost half of the variation in concentrations in the most reliable and comprehensive data set. Analyzing specific groups of metabolites, such as amino-acids or phosphorylated nucleotides, reveals even a higher dependence of concentration on hydrophobicity. We suggest that these findings can be explained by evolutionary constraints imposed on metabolite concentrations and discuss possible selective pressures that can account for them. These include the reduction of solute leakage through the lipid membrane, avoidance of deleterious aggregates and reduction of non-specific hydrophobic binding. By highlighting the global constraints imposed on metabolic pathways, future research could shed light onto aspects of biochemical evolution and the chemical constraints that bound metabolic engineering efforts.

  2. Toxicity of acrylamide and its metabolite – Glicydamide

    Directory of Open Access Journals (Sweden)

    Daria Pingot

    2013-04-01

    Full Text Available Acrylamide is a synthetic chemical compound commonly used in many branches of industry. It is mainly used in the synthesis of polyacrylamides, which are widely employed in plastics, paints, varnishes, adhesives and mortars production. Acrylamide is also applied in the cellulose-paper and cosmetic industries to produce toiletries and cosmetics. The interest in acrylamide increased in 2002, when Swedish scientists showed that a considerable amount of this substance is formed during frying and baking of various foods. Studies concerning toxicity of acrylamide and its metabolite - glicydamide showed their neurotoxic, genotoxic and carcinogenic effects. Neverthless, in humans only neurotoxic effect of acrylamide has been clearly evidenced. Genotoxic nature of acetylamide manifests itself mainly in its metabolic conversion to the epoxide derivative glicydamide. Carcinogenic effects of acrylamide have been shown in animal studies. Epidemiological studies have not provided explicit evidence that acrylamide supplied with the diet can initiate the formation of tumors in humans. Acrylamide exposure is assessed by measuring specific compounds (adducts formed during the reaction of acrylamide with hemoglobin and DNA. Med Pr 2013;64(2:259–271

  3. Increased frontal functional networks in adult survivors of childhood brain tumors

    Directory of Open Access Journals (Sweden)

    Hongbo Chen

    2016-01-01

    Full Text Available Childhood brain tumors and associated treatment have been shown to affect brain development and cognitive outcomes. Understanding the functional connectivity of brain many years after diagnosis and treatment may inform the development of interventions to improve the long-term outcomes of adult survivors of childhood brain tumors. This work investigated the frontal region functional connectivity of 16 adult survivors of childhood cerebellar tumors after an average of 14.9 years from diagnosis and 16 demographically-matched controls using resting state functional MRI (rs-fMRI. Independent component analysis (ICA was applied to identify the resting state activity from rs-fMRI data and to select the specific regions associated with executive functions, followed by the secondary analysis of the functional networks connecting these regions. It was found that survivors exhibited differences in the functional connectivity in executive control network (ECN, default mode network (DMN and salience network (SN compared to demographically-matched controls. More specifically, the number of functional connectivity observed in the survivors is higher than that in the controls, and with increased strength, or stronger correlation coefficient between paired seeds, in survivors compared to the controls. Observed hyperconnectivity in the selected frontal functional network thus is consistent with findings in patients with other neurological injuries and diseases.

  4. Gamma irradiation of medicinally important plants and the enhancement of secondary metabolite production.

    Science.gov (United States)

    Vardhan, P Vivek; Shukla, Lata I

    2017-09-01

    The profitable production of some important plant-based secondary metabolites (ginsenosides, saponins, camptothecin, shikonins etc.) in vitro by gamma irradiation is a current area of interest. We reviewed different types of secondary metabolites, their mode of synthesis and effect of γ-radiation on their yield for different plants, organs and in vitro cultures (callus, suspension, hairy root). Special effort has been made to review the biochemical mechanisms underlying the increase in secondary metabolites. A comparison of yield improvement with biotic and abiotic stresses was made. Phenolic compounds increase with γ-irradiation in whole plants/plant parts; psoralen content in the common herb babchi (Psoralea corylifolia) was increased as high as 32-fold with γ-irradiation of seeds at 20 kGy. The capsaicinoids, a phenolic compound increased about 10% with 10 kGy in paprika (Capsicum annum L.). The in vitro studies show all the three types of secondary metabolites are reported to increase with γ-irradiation. Stevioside, total phenolic and flavonoids content were slightly increased in 15 Gy-treated callus cultures of stevia (Stevia rebaudiana Bert.). In terpenoids, total saponin and ginsenosides content were increased 1.4- and 1.8-fold, respectively, with 100 Gy for wild ginseng (Panax ginseng Meyer) hairy root cultures. In alkaloids, camptothecin yield increased as high as 20-fold with 20 Gy in callus cultures of ghanera (Nothapodytes foetida). Shikonins increased up to 4-fold with 16 Gy in suspension cultures of purple gromwell (Lithospermum erythrorhizon S.). The enzymes associated with secondary metabolite production were increased with γ-irradiation of 20 Gy; namely, phenylalanine ammonia-lyase (PAL) for phenolics, chalcone synthase (CHS) for flavonoids, squalene synthase (SS), squalene epoxidase (SE) and oxidosqualene cyclases (OSC) for ginsenosides and PHB (p-hydroxylbenzoic acid) geranyl transferase for shikonins. An increase in secondary

  5. Increased growth rate of vestibular schwannoma after resection of contralateral tumor in neurofibromatosis type 2

    Science.gov (United States)

    Peyre, Matthieu; Goutagny, Stephane; Imbeaud, Sandrine; Bozorg-Grayeli, Alexis; Felce, Michele; Sterkers, Olivier; Kalamarides, Michel

    2011-01-01

    Surgical management of bilateral vestibular schwannomas (VS) in neurofibromatosis type 2 (NF2) is often difficult, especially when both tumors threaten the brainstem. When the largest tumor has been removed, the management of the contralateral VS may become puzzling. To give new insights into the growth pattern of these tumors and to determine the best time point for treatment (surgery or medical treatment), we studied radiological growth in 11 VS (11 patients with NF2) over a long period (mean duration, 7.6 years), before and after removal of the contralateral tumor while both were threatening the brainstem. We used a quantitative approach of the radiological velocity of diametric expansion (VDE) on consecutive magnetic resonance images. Before first surgery, growth patterns of both tumors were similar in 9 of 11 cases. After the first surgery, VDE of the remaining VS was significantly elevated, compared with the preoperative period (2.5 ± 2.2 vs 4.4 ± 3.4 mm/year; P = .01, by Wilcoxon test). Decrease in hearing function was associated with increased postoperative growth in 3 cases. Growth pattern of coexisting intracranial meningiomas was not modified by VS surgery on the first side. In conclusion, removal of a large VS in a patient with NF2 might induce an increase in the growth rate of the contralateral medium or large VS. This possibility should be integrated in NF2 patient management to adequately treat the second VS. PMID:21798887

  6. Lactic Acid Bacteria from Kefir Increase Cytotoxicity of Natural Killer Cells to Tumor Cells.

    Science.gov (United States)

    Yamane, Takuya; Sakamoto, Tatsuji; Nakagaki, Takenori; Nakano, Yoshihisa

    2018-03-27

    The Japanese fermented beverage, homemade kefir, contains six lactic acid bacteria: Lactococcus. lactis subsp. Lactis , Lactococcus . lactis subsp. Cremoris , Lactococcus. Lactis subsp. Lactis biovar diacetylactis , Lactobacillus plantarum , Leuconostoc meseuteroides subsp. Cremoris and Lactobacillus casei . In this study, we found that a mixture of the six lactic acid bacteria from kefir increased the cytotoxicity of human natural killer KHYG-1 cells to human chronic myelogenous leukemia K562 cells and colorectal tumor HCT116 cells. Furthermore, levels of mRNA expression and secretion of IFN-γ (interferon gamma) increased in KHYG-1 cells that had been treated with the six lactic acid bacteria mixture from kefir. The results suggest that the six lactic acid bacteria mixture from kefir has strong effects on natural immunity and tumor cell cytotoxicity.

  7. ADAM12 redistributes and activates MMP-14, resulting in gelatin degradation, reduced apoptosis and increased tumor growth

    DEFF Research Database (Denmark)

    Albrechtsen, Reidar; Kveiborg, Marie; Hansen, Dorte Stautz

    2013-01-01

    that there is a positive correlation between MMP-14 and ADAM12 expression in human breast cancer. We demonstrated that in 293-VnR and human breast cancer cells expressing ADAM12 at the cell surface, endogenous MMP-14 was recruited to the cell surface, resulting in its activation. Subsequent to this activation, gelatin......Matrix metalloproteinases (MMPs), in particular MMP-2, MMP-9 and MMP-14, play a key role in various aspects of cancer pathology. Likewise, ADAMs (a disintegrin and metalloproteinases), including ADAM12, are upregulated in malignant tumors and contribute to the pathology of cancers. Here, we show....... Furthermore, orthotopic implantation of ADAM12-expressing MCF7 cells in nude mice produced tumors with increased levels of activated MMP-14 and confirmed that ADAM12 protects tumor cells against apoptosis, leading to increased tumor progression. In conclusion, our data suggest that a ternary protein complex...

  8. Complicating factors in safety testing of drug metabolites: Kinetic differences between generated and preformed metabolites

    International Nuclear Information System (INIS)

    Prueksaritanont, Thomayant; Lin, Jiunn H.; Baillie, Thomas A.

    2006-01-01

    This paper aims to provide a scientifically based perspective on issues surrounding the proposed toxicology testing of synthetic drug metabolites as a means of ensuring adequate nonclinical safety evaluation of drug candidates that generate metabolites considered either to be unique to humans or are present at much higher levels in humans than in preclinical species. We put forward a number of theoretical considerations and present several specific examples where the kinetic behavior of a preformed metabolite given to animals or humans differs from that of the corresponding metabolite generated endogenously from its parent. The potential ramifications of this phenomenon are that the results of toxicity testing of the preformed metabolite may be misleading and fail to characterize the true toxicological contribution of the metabolite when formed from the parent. It is anticipated that such complications would be evident in situations where (a) differences exist in the accumulation of the preformed versus generated metabolites in specific tissues, and (b) the metabolite undergoes sequential metabolism to a downstream product that is toxic, leading to differences in tissue-specific toxicity. Owing to the complex nature of this subject, there is a need to treat drug metabolite issues in safety assessment on a case-by-case basis, in which a knowledge of metabolite kinetics is employed to validate experimental paradigms that entail administration of preformed metabolites to animal models

  9. Sensitivity and proportionality assessment of metabolites from microdose to high dose in rats using LC-MS/MS.

    Science.gov (United States)

    Ni, Jinsong; Ouyang, Hui; Seto, Carmai; Sakuma, Takeo; Ellis, Robert; Rowe, Josh; Acheampong, Andrew; Welty, Devin; Szekely-Klepser, Gabriella

    2010-03-01

    The objective of this study was to evaluate the sensitivity requirement for LC-MS/MS as an analytical tool to characterize metabolites in plasma and urine at microdoses in rats and to investigate proportionality of metabolite exposure from a microdose of 1.67 µg/kg to a high dose of 5000 µg/kg for atorvastatin, ofloxacin, omeprazole and tamoxifen. Only the glucuronide metabolite of ofloxacin, the hydroxylation metabolite of omeprazole and the hydration metabolite of tamoxifen were characterized in rat plasma at microdose by LC-MS/MS. The exposure of detected metabolites of omeprazole and tamoxifen appeared to increase in a nonproportional manner with increasing doses. Exposure of ortho- and para-hydroxyatorvastatin, but not atorvastatin and lactone, increased proportionally with increasing doses. LC-MS/MS has demonstrated its usefulness for detecting and characterizing the major metabolites in plasma and urine at microdosing levels in rats. The exposure of metabolites at microdose could not simply be used to predict their exposure at higher doses.

  10. Metabolome analysis - mass spectrometry and microbial primary metabolites

    DEFF Research Database (Denmark)

    Højer-Pedersen, Jesper Juul

    2008-01-01

    , and therefore sample preparation is critical for metabolome analysis. The three major steps in sample preparation for metabolite analysis are sampling, extraction and concentration. These three steps were evaluated for the yeast Saccharomyces cerevisiae with primary focus on analysis of a large number...... of metabolites by one method. The results highlighted that there were discrepancies between different methods. To increase the throughput of cultivation, S. cerevisiae was grown in microtitier plates (MTPs), and the growth was found to be comparable with cultivations in shake flasks. The carbon source was either...... a theoretical metabolome. This showed that in combination with the specificity of MS up to 84% of the metabolites can be identified in a high-accuracy ESI-spectrum. A total of 66 metabolites were systematically analyzed by positive and negative ESI-MS/MS with the aim of initiating a spectral library for ESI...

  11. Antibody directed against human YKL-40 increases tumor volume in a human melanoma xenograft model in scid mice

    DEFF Research Database (Denmark)

    Salamon, Johannes; Hoffmann, Tatjana; Elies, Eva

    2014-01-01

    were treated with intraperitoneal injections of anti-YKL-40, isoptype control or PBS. Non-YKL-40 expressing human pancreatic carcinoma cell line PaCa 5061 served as additional control. MR imaging was used for evaluation of tumor growth. Two days after the first injections of anti-YKL-40, tumor volume...... had increased significantly compared with controls, whereas no effects were observed for control tumors from PaCa 5061 cells lacking YKL-40 expression. After 18 days, mean tumor size of the mice receiving repeated anti-YKL-40 injections was 1.82 g, >4 times higher than mean tumor size of the controls...

  12. Responses to water stress of gas exchange and metabolites in Eucalyptus and Acacia spp.

    Science.gov (United States)

    Warren, Charles R; Aranda, Ismael; Cano, F Javier

    2011-10-01

    Studies of water stress commonly examine either gas exchange or leaf metabolites, and many fail to quantify the concentration of CO₂ in the chloroplasts (C(c)). We redress these limitations by quantifying C(c) from discrimination against ¹³CO₂ and using gas chromatography-mass spectrometry (GC-MS) for leaf metabolite profiling. Five Eucalyptus and two Acacia species from semi-arid to mesic habitats were subjected to a 2 month water stress treatment (Ψ(pre-dawn) = -1.7 to -2.3 MPa). Carbohydrates dominated the leaf metabolite profiles of species from dry areas, whereas organic acids dominated the metabolite profiles of species from wet areas. Water stress caused large decreases in photosynthesis and C(c), increases in 17-33 metabolites and decreases in 0-9 metabolites. In most species, fructose, glucose and sucrose made major contributions to osmotic adjustment. In Acacia, significant osmotic adjustment was also caused by increases in pinitol, pipecolic acid and trans-4-hydroxypipecolic acid. There were also increases in low-abundance metabolites (e.g. proline and erythritol), and metabolites that are indicative of stress-induced changes in metabolism [e.g. γ-aminobutyric acid (GABA) shunt, photorespiration, phenylpropanoid pathway]. The response of gas exchange to water stress and rewatering is rather consistent among species originating from mesic to semi-arid habitats, and the general response of metabolites to water stress is rather similar, although the specific metabolites involved may vary. © 2011 Blackwell Publishing Ltd.

  13. Endocrine tumors other than thyroid tumors

    International Nuclear Information System (INIS)

    Takeichi, Norio; Dohi, Kiyohiko

    1992-01-01

    This paper discusses the tendency for the occurrence of tumors in the endocrine glands, other than the thyroid gland, in A-bomb survivors using both autopsy and clinical data. ABCC-RERF sample data using 4136 autopsy cases (1961-1977) revealed parathyroid tumors in 13 A-bomb survivors, including 3 with the associated hyperparathyroidism, with the suggestion of dose-dependent increase in the occurrence of tumors. Based on clinical data from Hiroshima University, 7 (46.7%) of 15 parathyroid tumors cases were A-bomb survivors. Data (1974-1987) from the Tumor Registry Committee (TRC) in Hiroshima Prefecture revealed that a relative risk of parathyroid tumors was 5.6 times higher in the entire group of A-bomb survivors and 16.2 times higher in the group of heavily exposed A-bomb survivors, suggesting the dose-dependent increase in their occurrence. Adrenal tumors were detected in 47 of 123 cases from the TRC data, and 15 (31.5%) of these 47 were A-bomb survivors. Particularly, 11 cases of adrenal tumors associated with Cushing syndrome included 6 A-bomb survivors (54.5%). The incidence of multiple endocrine gonadial tumors (MEGT) tended to be higher with increasing exposure doses; and the 1-9 rad group, the 10-99 rad group, and the 100 or more rad group had a risk of developing MEGT of 4.1, 5.7, and 7.1, respectively, relative to both the not-in the city group and the 0 rad group. These findings suggested that there is a correlation between A-bomb radiation and the occurrence of parathyroid tumors (including hyperparathyroidism), adrenal tumors associated with Cushing syndrome and MEGT (especially, the combined thyroid and ovarian tumors and the combined thyroid and parathyroid tumors). (N.K.)

  14. Relationship between measurements of blood oxidative metabolites and skin reaction in irradiated rats

    International Nuclear Information System (INIS)

    Kaneko, Takashi; Goto, Jun; Nomiya, Takuma; Nemoto, Kenji

    2011-01-01

    Recently, oxidative metabolites have been able to be measured by simple small device. It has been reported that the value of oxidative metabolites increases under several conditions such as hypertension, smoking, diabetes mellitus, etc. Radiation used in radiotherapy also causes free radicals and oxidative metabolites, and irradiation causes dermatitis and sometimes causes skin ulcer in the irradiated site. We analyzed the relationships between the value of oxidative metabolites and skin reactions. A certain doses of radiation were irradiated to the right thigh of rats, and oxidative metabolites of rat's blood from caudal vein were measured by d-reactive oxygen metabolites (ROMs) test using an exclusive device. Skin reactions were evaluated according to a skin-reaction grading system from the day before irradiation to day 38 after irradiation. As a results, a significant correlation was shown between irradiation dose and skin grade. And a significant correlation was also shown between the value of oxidative metabolites and irradiation dose. The increase in oxidative metabolites was seen in the Day 16 after irradiation, and that corresponded with the appearance of skin reaction. It was suggested that the value of oxidative metabolites seems to be useful for estimating degree of skin reaction and time to appear skin reaction after irradiation. (author)

  15. Sesquiterpene-derived metabolites from the deep water marine sponge Poecillastra sollasi.

    Science.gov (United States)

    Killday, K B; Longley, R; McCarthy, P J; Pomponi, S A; Wright, A E; Neale, R F; Sills, M A

    1993-04-01

    Six sesquiterpene-derived compounds, 1-6, which we call sollasins a-f, have been isolated from a deep water specimen of the sponge Poecillastra sollasi. The structures were elucidated by comparison of spectral data to related metabolites and confirmed using spectroscopic methods. The compounds inhibit the growth of the pathogenic fungi Candida albicans and Cryptococcus neoformans and the P-388 and A-549 tumor cell lines. Compounds 3 and 4 show weak inhibition of binding of [125I] angiotensin II to rat aorta smooth muscle cell membranes.

  16. Increased expression of CYP4Z1 promotes tumor angiogenesis and growth in human breast cancer

    International Nuclear Information System (INIS)

    Yu, Wei; Chai, Hongyan; Li, Ying; Zhao, Haixia; Xie, Xianfei; Zheng, Hao; Wang, Chenlong; Wang, Xue; Yang, Guifang; Cai, Xiaojun; Falck, John R.; Yang, Jing

    2012-01-01

    Cytochrome P450 (CYP) 4Z1, a novel CYP4 family member, is over-expressed in human mammary carcinoma and associated with high-grade tumors and poor prognosis. However, the precise role of CYP4Z1 in tumor progression is unknown. Here, we demonstrate that CYP4Z1 overexpression promotes tumor angiogenesis and growth in breast cancer. Stable expression of CYP4Z1 in T47D and BT-474 human breast cancer cells significantly increased mRNA expression and production of vascular endothelial growth factor (VEGF)-A, and decreased mRNA levels and secretion of tissue inhibitor of metalloproteinase-2 (TIMP-2), without affecting cell proliferation and anchorage-independent cell growth in vitro. Notably, the conditioned medium from CYP4Z1-expressing cells enhanced proliferation, migration and tube formation of human umbilical vein endothelial cells, and promoted angiogenesis in the zebrafish embryo and chorioallantoic membrane of the chick embryo. In addition, there were lower levels of myristic acid and lauric acid, and higher contents of 20-hydroxyeicosatetraenoic acid (20-HETE) in CYP4Z1-expressing T47D cells compared with vector control. CYP4Z1 overexpression significantly increased tumor weight and microvessel density by 2.6-fold and 1.9-fold in human tumor xenograft models, respectively. Moreover, CYP4Z1 transfection increased the phosphorylation of ERK1/2 and PI3K/Akt, while PI3K or ERK inhibitors and siRNA silencing reversed CYP4Z1-mediated changes in VEGF-A and TIMP-2 expression. Conversely, HET0016, an inhibitor of the CYP4 family, potently inhibited the tumor-induced angiogenesis with associated changes in the intracellular levels of myristic acid, lauric acid and 20-HETE. Collectively, these data suggest that increased CYP4Z1 expression promotes tumor angiogenesis and growth in breast cancer partly via PI3K/Akt and ERK1/2 activation. -- Highlights: ► CYP4Z1 overexpression promotes human breast cancer growth and angiogenesis. ► The pro-angiogenic effects of CYP4Z1 have

  17. Increased expression of CYP4Z1 promotes tumor angiogenesis and growth in human breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Wei [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Chai, Hongyan [Center for Gene Diagnosis, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Li, Ying; Zhao, Haixia; Xie, Xianfei; Zheng, Hao; Wang, Chenlong; Wang, Xue [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Yang, Guifang [Department of Pathology, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Cai, Xiaojun [Department of Ophthalmology, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Falck, John R. [Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390 (United States); Yang, Jing, E-mail: yangjingliu@yahoo.com.cn [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China)

    2012-10-01

    Cytochrome P450 (CYP) 4Z1, a novel CYP4 family member, is over-expressed in human mammary carcinoma and associated with high-grade tumors and poor prognosis. However, the precise role of CYP4Z1 in tumor progression is unknown. Here, we demonstrate that CYP4Z1 overexpression promotes tumor angiogenesis and growth in breast cancer. Stable expression of CYP4Z1 in T47D and BT-474 human breast cancer cells significantly increased mRNA expression and production of vascular endothelial growth factor (VEGF)-A, and decreased mRNA levels and secretion of tissue inhibitor of metalloproteinase-2 (TIMP-2), without affecting cell proliferation and anchorage-independent cell growth in vitro. Notably, the conditioned medium from CYP4Z1-expressing cells enhanced proliferation, migration and tube formation of human umbilical vein endothelial cells, and promoted angiogenesis in the zebrafish embryo and chorioallantoic membrane of the chick embryo. In addition, there were lower levels of myristic acid and lauric acid, and higher contents of 20-hydroxyeicosatetraenoic acid (20-HETE) in CYP4Z1-expressing T47D cells compared with vector control. CYP4Z1 overexpression significantly increased tumor weight and microvessel density by 2.6-fold and 1.9-fold in human tumor xenograft models, respectively. Moreover, CYP4Z1 transfection increased the phosphorylation of ERK1/2 and PI3K/Akt, while PI3K or ERK inhibitors and siRNA silencing reversed CYP4Z1-mediated changes in VEGF-A and TIMP-2 expression. Conversely, HET0016, an inhibitor of the CYP4 family, potently inhibited the tumor-induced angiogenesis with associated changes in the intracellular levels of myristic acid, lauric acid and 20-HETE. Collectively, these data suggest that increased CYP4Z1 expression promotes tumor angiogenesis and growth in breast cancer partly via PI3K/Akt and ERK1/2 activation. -- Highlights: ► CYP4Z1 overexpression promotes human breast cancer growth and angiogenesis. ► The pro-angiogenic effects of CYP4Z1 have

  18. Lactic Acid Bacteria from Kefir Increase Cytotoxicity of Natural Killer Cells to Tumor Cells

    Directory of Open Access Journals (Sweden)

    Takuya Yamane

    2018-03-01

    Full Text Available The Japanese fermented beverage, homemade kefir, contains six lactic acid bacteria: Lactococcus. lactis subsp. Lactis, Lactococcus. lactis subsp. Cremoris, Lactococcus. Lactis subsp. Lactis biovar diacetylactis, Lactobacillus plantarum, Leuconostoc meseuteroides subsp. Cremoris and Lactobacillus casei. In this study, we found that a mixture of the six lactic acid bacteria from kefir increased the cytotoxicity of human natural killer KHYG-1 cells to human chronic myelogenous leukemia K562 cells and colorectal tumor HCT116 cells. Furthermore, levels of mRNA expression and secretion of IFN-γ (interferon gamma increased in KHYG-1 cells that had been treated with the six lactic acid bacteria mixture from kefir. The results suggest that the six lactic acid bacteria mixture from kefir has strong effects on natural immunity and tumor cell cytotoxicity.

  19. Mutagenic azide metabolite is azidoalanine

    International Nuclear Information System (INIS)

    Owais, W.M.; Rosichan, J.L.; Ronald, R.C.; Kleinhofs, A.; Nilan, R.A.

    1981-01-01

    Sodium axide produces high mutation rates in a number of species. Azide mutagenicity is mediated through a metabolite in barley and bacteria. Many studies showed that azide affects the L-cysteine biosynthesis pathway. Cell-free extracts of Salmonella typhimurium convert azide and O-acetylserine to the mutagenic metabolite. O-acetylserine sulfhydrylase was identified as the enzyme responsible for the metabolite biosynthesis. To confirm the conclusion that the azide metabolite is formed through the β-substitution pathway of L-cysteine, we radioactively labeled the azide metabolite using 14 C-labeled precursors. Moreover, the mutagenic azide metabolite was purified and identified as azidoalanine based on mass spectroscopy and elemental analysis. 26 refs., 3 figs., 1 tab

  20. 12/15 Lipoxygenase regulation of colorectal tumorigenesis is determined by the relative tumor levels of its metabolite 12-HETE and 13-HODE in animal models.

    Science.gov (United States)

    Chang, Jian; Jiang, Li; Wang, Yinqiu; Yao, Bing; Yang, Shilin; Zhang, Bixiang; Zhang, Ming-Zhi

    2015-02-20

    Colorectal cancer (CRC) continues to be a major cause of morbidity and mortality. The arachidonic acid (AA) pathway and linoleic acid (LA) pathway have been implicated as important contributors to CRC development and growth. Human 15-lipoxygenase 1 (15-LOX-1) converts LA to anti-tumor 13-S-hydroxyoctadecadienoic acid (13-HODE)and 15-LOX-2 converts AA to 15-hydroxyeicosatetraenoic acid (15-HETE). In addition, human 12-LOX metabolizes AA to pro-tumor 12-HETE. In rodents, the function of 12-LOX and 15-LOX-1 and 15-LOX-2 is carried out by a single enzyme, 12/15-LOX. As a result, conflicting conclusions concerning the role of 12-LOX and 15-LOX have been obtained in animal studies. In the present studies, we determined that PD146176, a selective 15-LOX-1 inhibitor, markedly suppressed 13-HODE generation in human colon cancer HCA-7 cells and HCA-7 tumors, in association with increased tumor growth. In contrast, PD146176 treatment led to decreases in 12-HETE generation in mouse colon cancer MC38 cells and MC38 tumors, in association with tumor inhibition. Surprisingly, deletion of host 12/15-LOX alone led to increased MC38 tumor growth, in association with decreased tumor 13-HODE levels, possibly due to inhibition of 12/15-LOX activity in stroma. Therefore, the effect of 12/15-LOX on colorectal tumorigenesis in mouse models could be affected by tumor cell type (human or mouse), relative 12/15 LOX activity in tumor cells and stroma as well as the relative tumor 13-HODE and 12-HETE levels.

  1. MALDI Mass Spectrometry Imaging for Evaluation of Therapeutics in Colorectal Tumor Organoids

    Science.gov (United States)

    Liu, Xin; Flinders, Colin; Mumenthaler, Shannon M.; Hummon, Amanda B.

    2018-03-01

    Patient-derived colorectal tumor organoids (CTOs) closely recapitulate the complex morphological, phenotypic, and genetic features observed in in vivo tumors. Therefore, evaluation of drug distribution and metabolism in this model system can provide valuable information to predict the clinical outcome of a therapeutic response in individual patients. In this report, we applied matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) to examine the spatial distribution of the drug irinotecan and its metabolites in CTOs from two patients. Irinotecan is a prodrug and is often prescribed as part of therapeutic regimes for patients with advanced colorectal cancer. Irinotecan shows a time-dependent and concentration-dependent permeability and metabolism in the CTOs. More interestingly, the active metabolite SN-38 does not co-localize well with the parent drug irinotecan and the inactive metabolite SN-38G. The phenotypic effect of irinotecan metabolism was also confirmed by a viability study showing significantly reduced proliferation in the drug treated CTOs. MALDI-MSI can be used to investigate various pharmaceutical compounds in CTOs derived from different patients. By analyzing multiple CTOs from a patient, this method could be used to predict patient-specific drug responses and help to improve personalized dosing regimens. [Figure not available: see fulltext.

  2. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism

    Science.gov (United States)

    Zhao, Hongyun; Yang, Lifeng; Baddour, Joelle; Achreja, Abhinav; Bernard, Vincent; Moss, Tyler; Marini, Juan C; Tudawe, Thavisha; Seviour, Elena G; San Lucas, F Anthony; Alvarez, Hector; Gupta, Sonal; Maiti, Sourindra N; Cooper, Laurence; Peehl, Donna; Ram, Prahlad T; Maitra, Anirban; Nagrath, Deepak

    2016-01-01

    Cancer-associated fibroblasts (CAFs) are a major cellular component of tumor microenvironment in most solid cancers. Altered cellular metabolism is a hallmark of cancer, and much of the published literature has focused on neoplastic cell-autonomous processes for these adaptations. We demonstrate that exosomes secreted by patient-derived CAFs can strikingly reprogram the metabolic machinery following their uptake by cancer cells. We find that CAF-derived exosomes (CDEs) inhibit mitochondrial oxidative phosphorylation, thereby increasing glycolysis and glutamine-dependent reductive carboxylation in cancer cells. Through 13C-labeled isotope labeling experiments we elucidate that exosomes supply amino acids to nutrient-deprived cancer cells in a mechanism similar to macropinocytosis, albeit without the previously described dependence on oncogenic-Kras signaling. Using intra-exosomal metabolomics, we provide compelling evidence that CDEs contain intact metabolites, including amino acids, lipids, and TCA-cycle intermediates that are avidly utilized by cancer cells for central carbon metabolism and promoting tumor growth under nutrient deprivation or nutrient stressed conditions. DOI: http://dx.doi.org/10.7554/eLife.10250.001 PMID:26920219

  3. Consumption of both low and high (-)-epicatechin apple puree attenuates platelet reactivity and increases plasma concentrations of nitric oxide metabolites: A randomized controlled trial

    NARCIS (Netherlands)

    Gasper, A.; Hollands, W.; Casgrain, A.; Saha, S.; Teucher, B.; Dainty, J.R.; Venema, D.P.; Hollman, P.C.H.

    2014-01-01

    We hypothesised that consumption of flavanol-containing apple puree would modulate platelet activity and increase nitric oxide metabolite status, and that high flavanol apple puree would exert a greater effect than low flavanol apple puree. 25 subjects consumed 230 g of apple puree containing 25 and

  4. Measurement of P-31 MR relaxation times and concentrations in human brain and brain tumors

    International Nuclear Information System (INIS)

    Roth, K.; Naruse, S.; Hubesch, B.; Gober, I.; Lawry, T.; Boska, M.; Matson, G.B.; Weiner, M.W.

    1987-01-01

    Measurements of high-energy phosphates and pH were made in human brain and brain tumors using P-31 MR imaging. Using a Philips Gyroscan 1.5-T MRMRS, MR images were used to select a cuboidal volume of interest and P-31 MR spectra were obtained from that volume using the ISIS technique. An external quantitation standard was used. T 1 s were measured by inversion recovery. Quantitative values for metabolites were calculated using B 1 field plot of the head coil. The results for normal brain phosphates are as follows; adenosine triphosphate, 2.2 mM; phosphocreatin, 5.3 mM; inorganic phosphate, 1.6 mM. Preliminary studies with human brain tumors show a decrease of all phosphate compounds. These experiments are the first to quantitate metabolites in human brain

  5. Immune regulation by microbiome metabolites.

    Science.gov (United States)

    Kim, Chang H

    2018-03-22

    Commensal microbes and the host immune system have been co-evolved for mutual regulation. Microbes regulate the host immune system, in part, by producing metabolites. A mounting body of evidence indicates that diverse microbial metabolites profoundly regulate the immune system via host receptors and other target molecules. Immune cells express metabolite-specific receptors such as P2X 7 , GPR41, GPR43, GPR109A, aryl hydrocarbon receptor precursor (AhR), pregnane X receptor (PXR), farnesoid X receptor (FXR), TGR5 and other molecular targets. Microbial metabolites and their receptors form an extensive array of signals to respond to changes in nutrition, health and immunological status. As a consequence, microbial metabolite signals contribute to nutrient harvest from diet, and regulate host metabolism and the immune system. Importantly, microbial metabolites bidirectionally function to promote both tolerance and immunity to effectively fight infection without developing inflammatory diseases. In pathogenic conditions, adverse effects of microbial metabolites have been observed as well. Key immune-regulatory functions of the metabolites, generated from carbohydrates, proteins and bile acids, are reviewed in this article. © 2018 John Wiley & Sons Ltd.

  6. Misonidazole in patients receiving radical radiotherapy: pharmacokinetic effects of phenytoin tumor response and neurotoxicity

    International Nuclear Information System (INIS)

    Moore, J.L.; Biol, F.I.; Patterson, I.C.M.; Dawes, P.J.D.K.; Henk, J.M.

    1982-01-01

    In 1978, a pilot study began of 29 patients with advanced tumors of the head and neck. The study showed an initial peripheral neuropathy rate of 55%, despite a dose limitation of 12 g/m 2 of misonidazole. Tumor response at 9 months was most encouraging. We are now able to examine tumor response and persistence of neuropathy in these patients 2 1/2 years after radical radiotherapy. The results are comparable with those obtained with hyperbaric oxygen in a clinical trial at this center during the 1970's. Neuropathy was a serious side effect but the drug phenytoin has been shown to shorten the half-life of misonidazole. We have examined the effect of phenytoin on the pharmacokinetics of misonidazole in 13 patients who received radical radiotherapy for advanced head and neck tumors or oesophageal tumors. Misonidazole was given in multiple doses, i.e. daily or weekly as it would be used in conventional therapy. Phenytoin was given either daily throughout treatment, or it was withdrawn during treatment. There were dramatic changes in the half-life of misonidazole, but the concentration at the time of irradiation was little affected. The significant changes in the half-life of misonidazole and the increased concentration of the metabolite desmethylmisonidazole are discussed

  7. New Methodology for Known Metabolite Identification in Metabonomics/Metabolomics: Topological Metabolite Identification Carbon Efficiency (tMICE).

    Science.gov (United States)

    Sanchon-Lopez, Beatriz; Everett, Jeremy R

    2016-09-02

    A new, simple-to-implement and quantitative approach to assessing the confidence in NMR-based identification of known metabolites is introduced. The approach is based on a topological analysis of metabolite identification information available from NMR spectroscopy studies and is a development of the metabolite identification carbon efficiency (MICE) method. New topological metabolite identification indices are introduced, analyzed, and proposed for general use, including topological metabolite identification carbon efficiency (tMICE). Because known metabolite identification is one of the key bottlenecks in either NMR-spectroscopy- or mass spectrometry-based metabonomics/metabolomics studies, and given the fact that there is no current consensus on how to assess metabolite identification confidence, it is hoped that these new approaches and the topological indices will find utility.

  8. Increased metabolite levels of glycolysis and pentose phosphate pathway in rabbit atherosclerotic arteries and hypoxic macrophage.

    Directory of Open Access Journals (Sweden)

    Atsushi Yamashita

    Full Text Available AIMS: Inflammation and possibly hypoxia largely affect glucose utilization in atherosclerotic arteries, which could alter many metabolic systems. However, metabolic changes in atherosclerotic plaques remain unknown. The present study aims to identify changes in metabolic systems relative to glucose uptake and hypoxia in rabbit atherosclerotic arteries and cultured macrophages. METHODS: Macrophage-rich or smooth muscle cell (SMC-rich neointima was created by balloon injury in the iliac-femoral arteries of rabbits fed with a 0.5% cholesterol diet or a conventional diet. THP-1 macrophages stimulated with lipopolysaccharides (LPS and interferon-γ (INFγ were cultured under normoxic and hypoxic conditions. We evaluated comprehensive arterial and macrophage metabolism by performing metabolomic analyses using capillary electrophoresis-time of flight mass spectrometry. We evaluated glucose uptake and its relationship to vascular hypoxia using (18F-fluorodeoxyglucose ((18F-FDG and pimonidazole, a marker of hypoxia. RESULTS: The levels of many metabolites increased in the iliac-femoral arteries with macrophage-rich neointima, compared with those that were not injured and those with SMC-rich neointima (glycolysis, 4 of 9; pentose phosphate pathway, 4 of 6; tricarboxylic acid cycle, 4 of 6; nucleotides, 10 of 20. The uptake of (18F-FDG in arterial walls measured by autoradiography positively correlated with macrophage- and pimonidazole-immunopositive areas (r = 0.76, and r = 0.59 respectively; n = 69 for both; p<0.0001. Pimonidazole immunoreactivity was closely localized with the nuclear translocation of hypoxia inducible factor-1α and hexokinase II expression in macrophage-rich neointima. The levels of glycolytic (8 of 8 and pentose phosphate pathway (4 of 6 metabolites increased in LPS and INFγ stimulated macrophages under hypoxic but not normoxic condition. Plasminogen activator inhibitor-1 protein levels in the supernatant were closely

  9. Analysis of renal cell transformation following exposure to trichloroethene in vivo and its metabolite S-(dichlorovinyl)-L-cysteine in vitro

    International Nuclear Information System (INIS)

    Mally, Angela; Walker, Cheryl L.; Everitt, Jeffrey I.; Dekant, Wolfgang; Vamvakas, Spiros

    2006-01-01

    Trichloroethene (TCE) is classified as a potential human carcinogen although there is a significant debate regarding the mechanism of TCE induced renal tumor formation. This controversy stems in part from the extremely high doses of TCE required to induce renal tumors and the potential contribution of the associated nephrotoxicity to tumorigenesis. We have used Eker rats, which are uniquely susceptible to renal carcinogens, to determine if exposures to TCE in vivo or exposure to its metabolite S-(dichlorovinyl)-L-cysteine (DCVC) in vitro can transform kidney epithelial cells in the absence of cytotoxicity. Treatment with TCE (0, 100, 250, 500, 1000 mg/kg bw by gavage, 5 days a week) for 13 weeks resulted in a significant increase in cell proliferation in kidney tubule cells, but did not enhance formation of preneoplastic lesions or tumor incidence in Eker rat kidneys as compared to controls. In vitro, concentrations of DCVC, which reduced cell survival to 50%, were able to transform rat kidney epithelial cells. However, no carcinogen-specific mutations were identified in the VHL or Tsc-2 tumor suppressor genes in the transformants. Taken together, the inability of TCE to enhance formation of preneoplastic changes or neoplasia and the absence of carcinogen-specific alteration of genes accepted to be critical for renal tumor development suggest that TCE mediated carcinogenicity may occur secondary to continuous toxic injury and sustained regenerative cell proliferation

  10. Progesterone-induced stimulation of mammary tumorigenesis is due to the progesterone metabolite, 5α-dihydroprogesterone (5αP) and can be suppressed by the 5α-reductase inhibitor, finasteride.

    Science.gov (United States)

    Wiebe, John P; Rivas, Martin A; Mercogliano, Maria F; Elizalde, Patricia V; Schillaci, Roxana

    2015-05-01

    Progesterone has long been linked to breast cancer but its actual role as a cancer promoter has remained in dispute. Previous in vitro studies have shown that progesterone is converted to 5α-dihydroprogesterone (5αP) in breast tissue and human breast cell lines by the action of 5α-reductase, and that 5αP acts as a cancer-promoter hormone. Also studies with human breast cell lines in which the conversion of progesterone to 5αP is blocked by a 5α-reductase inhibitor, have shown that the in vitro stimulation in cell proliferation with progesterone treatments are not due to progesterone itself but to the metabolite 5αP. No similar in vivo study has been previously reported. The objective of the current studies was to determine in an in vivo mouse model if the presumptive progesterone-induced mammary tumorigenesis is due to the progesterone metabolite, 5αP. BALB/c mice were challenged with C4HD murine mammary cells, which have been shown to form tumors when treated with progesterone or the progestin, medroxyprogesterone acetate. Cells and mice were treated with various doses and combinations of progesterone, 5αP and/or the 5α-reductase inhibitor, finasteride, and the effects on cell proliferation and induction and growth of tumors were monitored. Hormone levels in serum and tumors were measured by specific RIA and ELISA tests. Proliferation of C4HD cells and induction and growth of tumors was stimulated by treatment with either progesterone or 5αP. The progesterone-induced stimulation was blocked by finasteride and reinstated by concomitant treatment with 5αP. The 5αP-induced tumors expressed high levels of ER, PR and ErbB-2. Hormone measurements showed significantly higher levels of 5αP in serum from mice with tumors than from mice without tumors, regardless of treatments, and 5αP levels were significantly higher (about 4-fold) in tumors than in respective sera, while progesterone levels did not differ between the compartments. The results indicate that

  11. Adipose progenitor cells increase fibronectin matrix strain and unfolding in breast tumors

    Science.gov (United States)

    Chandler, E. M.; Saunders, M. P.; Yoon, C. J.; Gourdon, D.; Fischbach, C.

    2011-02-01

    Increased stiffness represents a hallmark of breast cancer that has been attributed to the altered physicochemical properties of the extracellular matrix (ECM). However, the role of fibronectin (Fn) in modulating the composition and mechanical properties of the tumor-associated ECM remains unclear. We have utilized a combination of biochemical and physical science tools to evaluate whether paracrine signaling between breast cancer cells and adipose progenitor cells regulates Fn matrix assembly and stiffness enhancement in the tumor stroma. In particular, we utilized fluorescence resonance energy transfer imaging to map the molecular conformation and stiffness of Fn that has been assembled by 3T3-L1 preadipocytes in response to conditioned media from MDA-MB231 breast cancer cells. Our results reveal that soluble factors secreted by tumor cells promote Fn expression, unfolding, and stiffening by adipose progenitor cells and that transforming growth factor-β serves as a soluble cue underlying these changes. In vivo experiments using orthotopic co-transplantation of primary human adipose-derived stem cells and MDA-MB231 into SCID mice support the pathological relevance of our results. Insights gained by these studies advance our understanding of the role of Fn in mammary tumorigenesis and may ultimately lead to improved anti-cancer therapies.

  12. Adipose progenitor cells increase fibronectin matrix strain and unfolding in breast tumors

    International Nuclear Information System (INIS)

    Chandler, E M; Saunders, M P; Yoon, C J; Fischbach, C; Gourdon, D

    2011-01-01

    Increased stiffness represents a hallmark of breast cancer that has been attributed to the altered physicochemical properties of the extracellular matrix (ECM). However, the role of fibronectin (Fn) in modulating the composition and mechanical properties of the tumor-associated ECM remains unclear. We have utilized a combination of biochemical and physical science tools to evaluate whether paracrine signaling between breast cancer cells and adipose progenitor cells regulates Fn matrix assembly and stiffness enhancement in the tumor stroma. In particular, we utilized fluorescence resonance energy transfer imaging to map the molecular conformation and stiffness of Fn that has been assembled by 3T3-L1 preadipocytes in response to conditioned media from MDA-MB231 breast cancer cells. Our results reveal that soluble factors secreted by tumor cells promote Fn expression, unfolding, and stiffening by adipose progenitor cells and that transforming growth factor-β serves as a soluble cue underlying these changes. In vivo experiments using orthotopic co-transplantation of primary human adipose-derived stem cells and MDA-MB231 into SCID mice support the pathological relevance of our results. Insights gained by these studies advance our understanding of the role of Fn in mammary tumorigenesis and may ultimately lead to improved anti-cancer therapies

  13. Metabolite coupling in genome-scale metabolic networks

    Directory of Open Access Journals (Sweden)

    Palsson Bernhard Ø

    2006-03-01

    Full Text Available Abstract Background Biochemically detailed stoichiometric matrices have now been reconstructed for various bacteria, yeast, and for the human cardiac mitochondrion based on genomic and proteomic data. These networks have been manually curated based on legacy data and elementally and charge balanced. Comparative analysis of these well curated networks is now possible. Pairs of metabolites often appear together in several network reactions, linking them topologically. This co-occurrence of pairs of metabolites in metabolic reactions is termed herein "metabolite coupling." These metabolite pairs can be directly computed from the stoichiometric matrix, S. Metabolite coupling is derived from the matrix ŜŜT, whose off-diagonal elements indicate the number of reactions in which any two metabolites participate together, where Ŝ is the binary form of S. Results Metabolite coupling in the studied networks was found to be dominated by a relatively small group of highly interacting pairs of metabolites. As would be expected, metabolites with high individual metabolite connectivity also tended to be those with the highest metabolite coupling, as the most connected metabolites couple more often. For metabolite pairs that are not highly coupled, we show that the number of reactions a pair of metabolites shares across a metabolic network closely approximates a line on a log-log scale. We also show that the preferential coupling of two metabolites with each other is spread across the spectrum of metabolites and is not unique to the most connected metabolites. We provide a measure for determining which metabolite pairs couple more often than would be expected based on their individual connectivity in the network and show that these metabolites often derive their principal biological functions from existing in pairs. Thus, analysis of metabolite coupling provides information beyond that which is found from studying the individual connectivity of individual

  14. Secondary Metabolites from Higher Fungi: Discovery, Bioactivity, and Bioproduction

    Science.gov (United States)

    Zhong, Jian-Jiang; Xiao, Jian-Hui

    Medicinal higher fungi such as Cordyceps sinensis and Ganoderma lucidum have been used as an alternative medicine remedy to promote health and longevity for people in China and other regions of the world since ancient times. Nowadays there is an increasing public interest in the secondary metabolites of those higher fungi for discovering new drugs or lead compounds. Current research in drug discovery from medicinal higher fungi involves a multifaceted approach combining mycological, biochemical, pharmacological, metabolic, biosynthetic and molecular techniques. In recent years, many new secondary metabolites from higher fungi have been isolated and are more likely to provide lead compounds for new drug discovery, which may include chemopreventive agents possessing the bioactivity of immunomodulatory, anticancer, etc. However, numerous challenges of secondary metabolites from higher fungi are encountered including bioseparation, identification, biosynthetic metabolism, and screening model issues, etc. Commercial production of secondary metabolites from medicinal mushrooms is still limited mainly due to less information about secondary metabolism and its regulation. Strategies for enhancing secondary metabolite production by medicinal mushroom fermentation include two-stage cultivation combining liquid fermentation and static culture, two-stage dissolved oxygen control, etc. Purification of bioactive secondary metabolites, such as ganoderic acids from G. lucidum, is also very important to pharmacological study and future pharmaceutical application. This review outlines typical examples of the discovery, bioactivity, and bioproduction of secondary metabolites of higher fungi origin.

  15. Pharmaceutically active secondary metabolites of marine actinobacteria.

    Science.gov (United States)

    Manivasagan, Panchanathan; Venkatesan, Jayachandran; Sivakumar, Kannan; Kim, Se-Kwon

    2014-04-01

    Marine actinobacteria are one of the most efficient groups of secondary metabolite producers and are very important from an industrial point of view. Many representatives of the order Actinomycetales are prolific producers of thousands of biologically active secondary metabolites. Actinobacteria from terrestrial sources have been studied and screened since the 1950s, for many important antibiotics, anticancer, antitumor and immunosuppressive agents. However, frequent rediscovery of the same compounds from the terrestrial actinobacteria has made them less attractive for screening programs in the recent years. At the same time, actinobacteria isolated from the marine environment have currently received considerable attention due to the structural diversity and unique biological activities of their secondary metabolites. They are efficient producers of new secondary metabolites that show a range of biological activities including antibacterial, antifungal, anticancer, antitumor, cytotoxic, cytostatic, anti-inflammatory, anti-parasitic, anti-malaria, antiviral, antioxidant, anti-angiogenesis, etc. In this review, an evaluation is made on the current status of research on marine actinobacteria yielding pharmaceutically active secondary metabolites. Bioactive compounds from marine actinobacteria possess distinct chemical structures that may form the basis for synthesis of new drugs that could be used to combat resistant pathogens. With the increasing advancement in science and technology, there would be a greater demand for new bioactive compounds synthesized by actinobacteria from various marine sources in future. Copyright © 2013 Elsevier GmbH. All rights reserved.

  16. IGF-II transgenic mice display increased aberrant colon crypt multiplicity and tumor volume after 1,2-dimethylhydrazine treatment

    Directory of Open Access Journals (Sweden)

    Oesterle Doris

    2006-01-01

    Full Text Available Abstract In colorectal cancer insulin-like growth factor II (IGF-II is frequently overexpressed. To evaluate, whether IGF-II affects different stages of tumorigenesis, we induced neoplastic alterations in the colon of wild-type and IGF-II transgenic mice using 1,2-dimethylhydrazine (DMH. Aberrant crypt foci (ACF served as markers of early lesions in the colonic mucosa, whereas adenomas and carcinomas characterized the endpoints of tumor development. DMH-treatment led initially to significantly more ACF in IGF-II transgenic than in wild-type mice. This increase in ACF was especially prominent for those consisting of ≥three aberrant crypts (AC. Nevertheless, adenomas and adenocarcinomas of the colon, present after 34 weeks in both genetic groups, were not found at different frequency. Tumor volumes, however, were significantly higher in IGF-II transgenic mice and correlated with serum IGF-II levels. Immunohistochemical staining for markers of proliferation and apoptosis revealed increased cell proliferation rates in tumors of IGF-II transgenic mice without significant affection of apoptosis. Increased proliferation was accompanied by elevated localization of β-catenin in the cytosol and cell nuclei and reduced appearance at the inner plasma membrane. In conclusion, we provide evidence that IGF-II, via activation of the β-catenin signaling cascade, promotes growth of ACF and tumors without affecting tumor numbers.

  17. Overexpression of vascular endothelial growth factor C increases growth and alters the metastatic pattern of orthotopic PC-3 prostate tumors

    International Nuclear Information System (INIS)

    Tuomela, Johanna; Valta, Maija; Seppänen, Jani; Tarkkonen, Kati; Väänänen, H Kalervo; Härkönen, Pirkko

    2009-01-01

    Prostate cancer metastasizes to regional lymph nodes and distant sites but the roles of lymphatic and hematogenous pathways in metastasis are not fully understood. We studied the roles of VEGF-C and VEGFR3 in prostate cancer metastasis by blocking VEGFR3 using intravenous adenovirus-delivered VEGFR3-Ig fusion protein (VEGFR3-Ig) and by ectopic expression of VEGF-C in PC-3 prostate tumors in nude mice. VEGFR3-Ig decreased the density of lymphatic capillaries in orthotopic PC-3 tumors (p < 0.05) and inhibited metastasis to iliac and sacral lymph nodes. In addition, tumor volumes were smaller in the VEGFR3-Ig-treated group compared with the control group (p < 0.05). Transfection of PC-3 cells with the VEGF-C gene led to a high level of 29/31 kD VEGF-C expression in PC-3 cells. The size of orthotopic and subcutaneous PC-3/VEGF-C tumors was significantly greater than that of PC-3/mock tumors (both p < 0.001). Interestingly, while most orthotopic PC-3 and PC-3/mock tumors grown for 4 weeks metastasized to prostate-draining lymph nodes, orthotopic PC-3/VEGF-C tumors primarily metastasized to the lungs. PC-3/VEGF-C tumors showed highly angiogenic morphology with an increased density of blood capillaries compared with PC-3/mock tumors (p < 0.001). The data suggest that even though VEGF-C/VEGFR3 pathway is primarily required for lymphangiogenesis and lymphatic metastasis, an increased level of VEGF-C can also stimulate angiogenesis, which is associated with growth of orthotopic prostate tumors and a switch from a primary pattern of lymph node metastasis to an increased proportion of metastases at distant sites

  18. 3D modeling of effects of increased oxygenation and activity concentration in tumors treated with radionuclides and antiangiogenic drugs

    Energy Technology Data Exchange (ETDEWEB)

    Lagerloef, Jakob H.; Kindblom, Jon; Bernhardt, Peter [Department of Radiation Physics, Goeteborg University, Goeteborg 41345 (Sweden); Department of Oncology, Sahlgrenska University Hospital, Goeteborg 41345 (Sweden); Department of Radiation Physics, Goeteborg University, Goeteborg, Sweden and Department of Nuclear Medicine, Sahlgrenska University Hospital, Goeteborg 41345 (Sweden)

    2011-08-15

    Purpose: Formation of new blood vessels (angiogenesis) in response to hypoxia is a fundamental event in the process of tumor growth and metastatic dissemination. However, abnormalities in tumor neovasculature often induce increased interstitial pressure (IP) and further reduce oxygenation (pO{sub 2}) of tumor cells. In radiotherapy, well-oxygenated tumors favor treatment. Antiangiogenic drugs may lower IP in the tumor, improving perfusion, pO{sub 2} and drug uptake, by reducing the number of malfunctioning vessels in the tissue. This study aims to create a model for quantifying the effects of altered pO{sub 2}-distribution due to antiangiogenic treatment in combination with radionuclide therapy. Methods: Based on experimental data, describing the effects of antiangiogenic agents on oxygenation of GlioblastomaMultiforme (GBM), a single cell based 3D model, including 10{sup 10} tumor cells, was developed, showing how radionuclide therapy response improves as tumor oxygenation approaches normal tissue levels. The nuclides studied were {sup 90}Y, {sup 131}I, {sup 177}Lu, and {sup 211}At. The absorbed dose levels required for a tumor control probability (TCP) of 0.990 are compared for three different log-normal pO{sub 2}-distributions: {mu}{sub 1} = 2.483, {sigma}{sub 1} = 0.711; {mu}{sub 2} = 2.946, {sigma}{sub 2} = 0.689; {mu}{sub 3} = 3.689, and {sigma}{sub 3} = 0.330. The normal tissue absorbed doses will, in turn, depend on this. These distributions were chosen to represent the expected oxygen levels in an untreated hypoxic tumor, a hypoxic tumor treated with an anti-VEGF agent, and in normal, fully-oxygenated tissue, respectively. The former two are fitted to experimental data. The geometric oxygen distributions are simulated using two different patterns: one Monte Carlo based and one radially increasing, while keeping the log-normal volumetric distributions intact. Oxygen and activity are distributed, according to the same pattern. Results: As tumor pO{sub 2

  19. Tumor necrosis factor-alpha increases myocardial microvascular transport in vivo

    DEFF Research Database (Denmark)

    Hansen, P R; Svendsen, Jesper Hastrup; Høyer, S

    1994-01-01

    Tumor necrosis factor-alpha (TNF-alpha) is a primary mediator in the pathogenesis of tissue injury, and high circulating levels of TNF-alpha are found in a variety of pathological conditions. In open-chest anesthetized dogs, the effects of intracoronary recombinant human TNF-alpha (rTNF-alpha; 100...... in cardiac output and was associated with the appearance of areas with myocardial necrosis in the regional left ventricular wall. The myocardial plasma flow rate and maximum plasma flow rate in response to a 30-s coronary occlusion were not influenced by rTNF-alpha, although a decrease in the myocardial...... ng/kg for 60 min) on myocardial microvascular transport of a small hydrophilic indicator was examined by the single-injection, residue-detection method. Intracoronary infusion of rTNF-alpha increased myocardial microvascular transport after 120 min. This increase was preceded by a sustained decline...

  20. H-1 chemical shift imaging characterization of human brain tumor and edema

    NARCIS (Netherlands)

    Sijens, PE; Oudkerk, M

    Longitudinal (T1) and transverse (T2) relaxation times of metabolites in human brain tumor, peritumoral edema, and unaffected brain tissue were assessed from point resolved spectroscopy (PRESS) H-1 chemical shift imaging results at different repetition times (TR = 1500 and 5000 ms; T1: n = 19) and

  1. Multiparametric MR assessment of pediatric brain tumors

    International Nuclear Information System (INIS)

    Tzika, A.A.; Astrakas, L.G.; Zarifi, M.K.; Petridou, N.; Young-Poussaint, T.; Goumnerova, L.; Black, P.McL.; Zurakowski, D.; Anthony, D.C.

    2003-01-01

    MR assessment of pediatric brain tumors has expanded to include physiologic information related to cellular metabolites, hemodynamic and diffusion parameters. The purpose of this study was to investigate the relationship between MR and proton MR spectroscopic imaging in children with primary brain tumors. Twenty-one patients (mean age 9 years) with histologically verified brain tumors underwent conventional MR imaging, hemodynamic MR imaging (HMRI) and proton MR spectroscopic imaging (MRSI). Fourteen patients also had diffusion-weighted MR imaging (DWMRI). Metabolic indices including choline-containing compounds (Cho), total creatine (tCr) and lipids/lactate (L) were derived by proton MRSI, relative cerebral blood volume (rCBV) by HMRI, and apparent tissue water diffusion coefficients (ADC) by DWMRI. Variables were examined by linear regression and correlation as well as by ANOVA. Cho (suggestive of tumor cellularity and proliferative activity) correlated positively with rCBV, while the relationship between Cho and ADC (suggestive of cellular density) was inverse (P<0.001). The relationship between rCBV and ADC was also inverse (P=0.004). Cho and lipids (suggestive of necrosis and/or apoptosis) were not significantly correlated (P=0.51). A positive relationship was found between lipids and ADC (P=0.002). The relationships between Cho, rCBV, ADC and lipids signify that tumor physiology is influenced by the tumor's physical and chemical environment. Normalized Cho and lipids distinguished high-grade from low-grade tumors (P<0.05). Multiparametric MR imaging using MRSI, HMRI and DWMRI enhances assessment of brain tumors in children and improves our understanding of tumor physiology while promising to distinguish higher- from lower-malignancy tumors, a distinction that is particularly clinically important among inoperable tumors. (orig.)

  2. Involvement of a volatile metabolite during phosphoramide mustard-induced ovotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Madden, Jill A. [Department of Animal Science, Iowa State University, Ames, IA 50011 (United States); Hoyer, Patricia B. [Department of Physiology, University of Arizona, Tucson, AZ 85724 (United States); Devine, Patrick J. [INRS—Institut Armand-Frappier Research Centre, University of Quebec, Laval, QC H7V 1B7 (Canada); Keating, Aileen F., E-mail: akeating@iastate.edu [Department of Animal Science, Iowa State University, Ames, IA 50011 (United States); Department of Physiology, University of Arizona, Tucson, AZ 85724 (United States)

    2014-05-15

    The finite ovarian follicle reserve can be negatively impacted by exposure to chemicals including the anti-neoplastic agent, cyclophosphamide (CPA). CPA requires bioactivation to phosphoramide mustard (PM) to elicit its therapeutic effects however; in addition to being the tumor-targeting metabolite, PM is also ovotoxic. In addition, PM can break down to a cytotoxic, volatile metabolite, chloroethylaziridine (CEZ). The aim of this study was initially to characterize PM-induced ovotoxicity in growing follicles. Using PND4 Fisher 344 rats, ovaries were cultured for 4 days before being exposed once to PM (10 or 30 μM). Following eight additional days in culture, relative to control (1% DMSO), PM had no impact on primordial, small primary or large primary follicle number, but both PM concentrations induced secondary follicle depletion (P < 0.05). Interestingly, a reduction in follicle number in the control-treated ovaries was observed. Thus, the involvement of a volatile, cytotoxic PM metabolite (VC) in PM-induced ovotoxicity was explored in cultured rat ovaries, with control ovaries physically separated from PM-treated ovaries during culture. Direct PM (60 μM) exposure destroyed all stage follicles after 4 days (P < 0.05). VC from nearby wells depleted primordial follicles after 4 days (P < 0.05), temporarily reduced secondary follicle number after 2 days, and did not impact other stage follicles at any other time point. VC was determined to spontaneously liberate from PM, which could contribute to degradation of PM during storage. Taken together, this study demonstrates that PM and VC are ovotoxicants, with different follicular targets, and that the VC may be a major player during PM-induced ovotoxicity observed in cancer survivors. - Highlights: • PM depletes all stage ovarian follicles in a temporal pattern. • A volatile ovotoxic compound is liberated from PM. • The volatile metabolite depletes primordial follicles.

  3. Methodological considerations for measuring glucocorticoid metabolites in feathers

    Science.gov (United States)

    Berk, Sara A.; McGettrick, Julie R.; Hansen, Warren K.; Breuner, Creagh W.

    2016-01-01

    In recent years, researchers have begun to use corticosteroid metabolites in feathers (fCORT) as a metric of stress physiology in birds. However, there remain substantial questions about how to measure fCORT most accurately. Notably, small samples contain artificially high amounts of fCORT per millimetre of feather (the small sample artefact). Furthermore, it appears that fCORT is correlated with circulating plasma corticosterone only when levels are artificially elevated by the use of corticosterone implants. Here, we used several approaches to address current methodological issues with the measurement of fCORT. First, we verified that the small sample artefact exists across species and feather types. Second, we attempted to correct for this effect by increasing the amount of methanol relative to the amount of feather during extraction. We consistently detected more fCORT per millimetre or per milligram of feather in small samples than in large samples even when we adjusted methanol:feather concentrations. We also used high-performance liquid chromatography to identify hormone metabolites present in feathers and measured the reactivity of these metabolites against the most commonly used antibody for measuring fCORT. We verified that our antibody is mainly identifying corticosterone (CORT) in feathers, but other metabolites have significant cross-reactivity. Lastly, we measured faecal glucocorticoid metabolites in house sparrows and correlated these measurements with corticosteroid metabolites deposited in concurrently grown feathers; we found no correlation between faecal glucocorticoid metabolites and fCORT. We suggest that researchers should be cautious in their interpretation of fCORT in wild birds and should seek alternative validation methods to examine species-specific relationships between environmental challenges and fCORT. PMID:27335650

  4. Dietary fat modulation of mammary tumor growth and metabolism demonstrated by 31P-nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Erickson, K.L.; Buckman, D.K.; Hubbard, N.E.; Ross, B.

    1986-01-01

    The relationship of dietary fat concentration and saturation on the growth and metabolic activity of line 168 was studied using syngeneic mice fed 6 experimental diets before and during tumor growth. Tumor latency was significantly greater for mice fed a diet containing the minimum of essential fatty acids (EFA, 0.5% corn oil) or 8% coconut oil (SF) than for mice fed 8 or 20% safflower oil (PUF) or 20% SF. Changes in dietary fat resulted in alterations of tumor cell and serum fatty acid composition but not the number of inflammatory cells infiltrating the tumor. 31 P-surface coil NMR was used to measure possible changes in tumor metabolism in vivo. Although pH decreased from 7.2 to 6.6 as the tumor volume increased, there was no difference in pH among dietary groups. There was an inverse relationship between both sugar phosphate (SP)/Pi and ATP/Pi ratios and tumor volume; those ratios for mice fed an EFA deficient or minimal EFA diet decreased at a different rate than ratios for mice fed diets with additional fat. Tumors of mice fed diets containing no or a low level (0.3%) of 18:2 had higher SP/ATP ratios than mice fed diets containing a moderate level (∼ 4%) of 18:2. Thus, high levels of dietary fat had a significant effect on promotion of mammary tumors during early stages of tumor growth. Differences in tumor volume associated with dietary fat may be related to changes in the levels of high energy phosphate metabolites

  5. Stromal matrix metalloprotease-13 knockout alters Collagen I structure at the tumor-host interface and increases lung metastasis of C57BL/6 syngeneic E0771 mammary tumor cells

    International Nuclear Information System (INIS)

    Perry, Seth W; Schueckler, Jill M; Burke, Kathleen; Arcuri, Giuseppe L; Brown, Edward B

    2013-01-01

    Matrix metalloproteases and collagen are key participants in breast cancer, but their precise roles in cancer etiology and progression remain unclear. MMP13 helps regulate collagen structure and has been ascribed largely harmful roles in cancer, but some studies demonstrate that MMP13 may also protect against tumor pathology. Other studies indicate that collagen’s organizational patterns at the breast tumor-host interface influence metastatic potential. Therefore we investigated how MMP13 modulates collagen I, a principal collagen subtype in breast tissue, and affects tumor pathology and metastasis in a mouse model of breast cancer. Tumors were implanted into murine mammary tissues, and their growth analyzed in Wildtype and MMP13 KO mice. Following extraction, tumors were analyzed for collagen I levels and collagen I macro- and micro-structural properties at the tumor-host boundary using immunocytochemistry and two-photon and second harmonic generation microscopy. Lungs were analyzed for metastases counts, to correlate collagen I changes with a clinically significant functional parameter. Statistical analyses were performed by t-test, analysis of variance, or Wilcoxon-Mann–Whitney tests as appropriate. We found that genetic ablation of host stromal MMP13 led to: 1. Increased mammary tumor collagen I content, 2. Marked changes in collagen I spatial organization, and 3. Altered collagen I microstructure at the tumor-host boundary, as well as 4. Increased metastasis from the primary mammary tumor to lungs. These results implicate host MMP13 as a key regulator of collagen I structure and metastasis in mammary tumors, thus making it an attractive potential therapeutic target by which we might alter metastatic potential, one of the chief determinants of clinical outcome in breast cancer. In addition to identifying stromal MMP13 is an important regulator of the tumor microenvironment and metastasis, these results also suggest that stromal MMP13 may protect against

  6. Stromal matrix metalloprotease-13 knockout alters Collagen I structure at the tumor-host interface and increases lung metastasis of C57BL/6 syngeneic E0771 mammary tumor cells.

    Science.gov (United States)

    Perry, Seth W; Schueckler, Jill M; Burke, Kathleen; Arcuri, Giuseppe L; Brown, Edward B

    2013-09-05

    Matrix metalloproteases and collagen are key participants in breast cancer, but their precise roles in cancer etiology and progression remain unclear. MMP13 helps regulate collagen structure and has been ascribed largely harmful roles in cancer, but some studies demonstrate that MMP13 may also protect against tumor pathology. Other studies indicate that collagen's organizational patterns at the breast tumor-host interface influence metastatic potential. Therefore we investigated how MMP13 modulates collagen I, a principal collagen subtype in breast tissue, and affects tumor pathology and metastasis in a mouse model of breast cancer. Tumors were implanted into murine mammary tissues, and their growth analyzed in Wildtype and MMP13 KO mice. Following extraction, tumors were analyzed for collagen I levels and collagen I macro- and micro-structural properties at the tumor-host boundary using immunocytochemistry and two-photon and second harmonic generation microscopy. Lungs were analyzed for metastases counts, to correlate collagen I changes with a clinically significant functional parameter. Statistical analyses were performed by t-test, analysis of variance, or Wilcoxon-Mann-Whitney tests as appropriate. We found that genetic ablation of host stromal MMP13 led to: 1. Increased mammary tumor collagen I content, 2. Marked changes in collagen I spatial organization, and 3. Altered collagen I microstructure at the tumor-host boundary, as well as 4. Increased metastasis from the primary mammary tumor to lungs. These results implicate host MMP13 as a key regulator of collagen I structure and metastasis in mammary tumors, thus making it an attractive potential therapeutic target by which we might alter metastatic potential, one of the chief determinants of clinical outcome in breast cancer. In addition to identifying stromal MMP13 is an important regulator of the tumor microenvironment and metastasis, these results also suggest that stromal MMP13 may protect against breast

  7. Increased antioxidant activity and polyphenol metabolites in methyl jasmonate treated mung bean (Vigna radiata sprouts

    Directory of Open Access Journals (Sweden)

    Li LI

    Full Text Available Abstract Mung bean sprouts are a popular health food both in China and worldwide. We determined the optimal concentration of exogenous methyl jasmonate (MeJA for the promotion of the sprouting in mung beans (Vigna radiata. The 1,1-diphenyl-2- picrylhydrazyl radical (DPPH scavenging test showed that MeJA application resulted in significantly improved antioxidant capacity in the sprouts 72 h later. Measurement of total polyphenols in MeJA-treated beans from 0 to 168 h, using Folin–Ciocalteu colorimetry, showed that the polyphenols changing was significantly correlated with antioxidant activity. The main polyphenols isovitexin, kaempferol-3-O-rutinoside, daidzein, genistein, isoquercitrin, p-coumaric acid, and caffeic acid were quantified using high-performance liquid chromatography (HPLC/QqQ MS and partial least squares discriminant analysis (PLS-DA. MeJA promoted the production of polyphenols, metabolites, and antioxidants in the sprouts; therefore, its use may allow sprouts to be prepared more quickly or increase their nutritional value.

  8. Evaluation of o-[11C]methyl-L-tyrosine and o-[18F]fluoromethyl-L-tyrosine as tumor imaging tracers by PET

    International Nuclear Information System (INIS)

    Ishiwata, Kiichi; Kawamura, Kazunori; Wang Weifang; Furumoto, Shozo; Kubota, Kazuo; Pascali, Claudio; Bogni, Anna; Iwata, Ren

    2004-01-01

    We investigated the potential of O-[ 11 C]methyl-L-tyrosine and O-[ 18 F]fluoromethyl-L-tyrosine as positron-emitting tracers for tumor imaging. The two tracers had similar distribution patterns in rats bearing AH109A hepatoma, with pancreas and, on a lesser extent, AH109A showing the highest uptake. Uptake of both tracers in the AH109A and uptake ratios of AH109A-to-tissues (with the exception of AH109A-to-bone) gradually increased for 60 min. O-[ 11 C]methyl-L-tyrosine was metabolically stable, whereas a negligible low amount of metabolites was observed for O-[ 18 F]fluoromethyl-L-tyrosine. Both tracers showed the potential for tumor imaging

  9. 7-Glutathione-pyrrole and 7-cysteine-pyrrole are potential carcinogenic metabolites of pyrrolizidine alkaloids.

    Science.gov (United States)

    He, Xiaobo; Xia, Qingsu; Fu, Peter P

    2017-04-03

    Many pyrrolizidine alkaloids (PAs) are hepatotoxic, genotoxic, and carcinogenic phytochemicals. Metabolism of PAs in vivo generates four (±)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP)-DNA adducts that have been proposed to be responsible for PA-induced liver tumor formation in rats. In this present study, we determined that the same set of DHP-DNA adducts was formed upon the incubation of 7-glutathione-DHP and 7-cysteine-DHP with cultured human hepatocarcinoma HepG2 cells. These results suggest that 7-glutathione-DHP and 7-cysteine-DHP are reactive metabolites of PAs that can bind to cellular DNA to form DHP-DNA adducts in HepG2 cells, and can potentially initiate liver tumor formation.

  10. Rationalization and prediction of in vivo metabolite exposures: The role of metabolite kinetics, clearance predictions and in vitro parameters

    Science.gov (United States)

    Lutz, Justin D.; Fujioka, Yasushi; Isoherranen, Nina

    2010-01-01

    Importance of the field Due to growing concerns over toxic or active metabolites, significant efforts have been focused on qualitative identification of potential in vivo metabolites from in vitro data. However, limited tools are available to quantitatively predict their human exposures. Areas covered in this review Theory of clearance predictions and metabolite kinetics is reviewed together with supporting experimental data. In vitro and in vivo data of known circulating metabolites and their parent drugs was collected and the predictions of in vivo exposures of the metabolites were evaluated. What the reader will gain The theory and data reviewed will be useful in early identification of human metabolites that will circulate at significant levels in vivo and help in designing in vivo studies that focus on characterization of metabolites. It will also assist in rationalization of metabolite-to-parent ratios used as markers of specific enzyme activity. Take home message The relative importance of a metabolite in comparison to the parent compound as well as other metabolites in vivo can only be predicted using the metabolites in vitro formation and elimination clearances, and the in vivo disposition of a metabolite can only be rationalized when the elimination pathways of that metabolite are known. PMID:20557268

  11. Identification of Unique Metabolites of the Designer Opioid Furanyl Fentanyl.

    Science.gov (United States)

    Goggin, Melissa M; Nguyen, An; Janis, Gregory C

    2017-06-01

    The illicit drug market has seen an increase in designer opioids, including fentanyl and methadone analogs, and other structurally unrelated opioid agonists. The designer opioid, furanyl fentanyl, is one of many fentanyl analogs clandestinely synthesized for recreational use and contributing to the fentanyl and opioid crisis. A method has been developed and validated for the analysis of furanyl fentanyl and furanyl norfentanyl in urine specimens from pain management programs. Approximately 10% of samples from a set of 500 presumptive heroin-positive urine specimens were found to contain furanyl fentanyl, with an average concentration of 33.8 ng/mL, and ranging from 0.26 to 390 ng/mL. Little to no furanyl norfentanyl was observed; therefore, the furanyl fentanyl specimens were further analyzed by untargeted high-resolution mass spectrometry to identify other metabolites. Multiple metabolites, including a dihydrodiol metabolite, 4-anilino-N-phenethyl-piperidine (4-ANPP) and a sulfate metabolite were identified. The aim of the presented study was to identify the major metabolite(s) of furanyl fentanyl and estimate their concentrations for the purpose of toxicological monitoring. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Metabolite Profiling of Red Sea Corals

    KAUST Repository

    Ortega, Jovhana Alejandra

    2016-12-01

    Looking at the metabolite profile of an organism provides insights into the metabolomic state of a cell and hence also into pathways employed. Little is known about the metabolites produced by corals and their algal symbionts. In particular, corals from the central Red Sea are understudied, but interesting study objects, as they live in one of the warmest and most saline environments and can provide clues as to the adjustment of corals to environmental change. In this study, we applied gas chromatography – mass spectrometry (GC–MS) metabolite profiling to analyze the metabolic profile of four coral species and their associated symbionts: Fungia granulosa, Acropora hemprichii, Porites lutea, and Pocillopora verrucosa. We identified and quantified 102 compounds among primary and secondary metabolites across all samples. F. granulosa and its symbiont showed a total of 59 metabolites which were similar to the 51 displayed by P. verrucosa. P. lutea and A. hemprichii both harbored 40 compounds in conjunction with their respective isolated algae. Comparing across species, 28 metabolites were exclusively present in algae, while 38 were exclusive to corals. A principal component and cluster analyses revealed that metabolite profiles clustered between corals and algae, but each species harbored a distinct catalog of metabolites. The major classes of compounds were carbohydrates and amino acids. Taken together, this study provides a first description of metabolites of Red Sea corals and their associated symbionts. As expected, the metabolites of coral hosts differ from their algal symbionts, but each host and algal species harbor a unique set of metabolites. This corroborates that host-symbiont species pairs display a fine-tuned complementary metabolism that provide insights into the specific nature of the symbiosis. Our analysis also revealed aquatic pollutants, which suggests that metabolite profiling might be used for monitoring pollution levels and assessing

  13. Cyclophosphamide Enhances Human Tumor Growth in Nude Rat Xenografted Tumor Models

    Directory of Open Access Journals (Sweden)

    Yingjen Jeffrey Wu

    2009-02-01

    Full Text Available The effect of the immunomodulatory chemotherapeutic agent cyclophosphamide (CTX on tumor growth was investigated in primary and metastatic intracerebral and subcutaneous rat xenograft models. Nude rats were treated with CTX (100 mg/kg, intraperitoneally 24 hours before human ovarian carcinoma (SKOV3, small cell lung carcinoma (LX-1 SCLC, and glioma (UW28, U87MG, and U251 tumor cells were inoculated subcutaneously, intraperitoneally, or in the right cerebral hemisphere or were infused into the right internal carotid artery. Tumor development was monitored and recorded. Potential mechanisms were further investigated. Only animals that received both CTX and Matrigel showed consistent growth of subcutaneous tumors. Cyclophosphamide pretreatment increased the percentage (83.3% vs 0% of animals showing intraperitoneal tumors. In intracerebral implantation tumor models, CTX pretreatment increased the tumor volume and the percentage of animals showing tumors. Cyclophosphamide increased lung carcinoma bone and facial metastases after intra-arterial injection, and 20% of animals showed brain metastases. Cyclophosphamide transiently decreased nude rat white blood cell counts and glutathione concentration, whereas serum vascular endothelial growth factor was significantly elevated. Cyclophosphamide also increased CD31 reactivity, a marker of vascular endothelium, and macrophage (CD68-positive infiltration into glioma cell-inoculated rat brains. Cyclophosphamide may enhance primary and metastatic tumor growth through multiple mechanisms, including immune modulation, decreased response to oxidative stress, increased tumor vascularization, and increased macrophage infiltration. These findings may be clinically relevant because chemotherapy may predispose human cancer subjects to tumor growth in the brain or other tissues.

  14. Proton magnetic resonance spectroscopy in the distinction of high-grade cerebral gliomas from single metastatic brain tumors

    International Nuclear Information System (INIS)

    Server, Andres; Schellhorn, Till; Haakonsen, Monika; Nakstad, Per H.; Josefsen, Roger; Kulle, Bettina; Maehlen, Jan; Kumar, Theresa; Gadmar, Oeystein; Langberg, Carl W.

    2010-01-01

    Background: Brain metastases and primary high-grade gliomas, including glioblastomas multiforme (GBM) and anaplastic astrocytomas (AA), may be indistinguishable by conventional magnetic resonance (MR) imaging. Identification of these tumors may have therapeutic consequences. Purpose: To assess the value of MR spectroscopy (MRS) using short and intermediate echo time (TE) in differentiating solitary brain metastases and high-grade gliomas on the basis of differences in metabolite ratios in the intratumoral and peritumoral region. Material and Methods: We performed MR imaging and MRS in 73 patients with histologically verified intraaxial brain tumors: 53 patients with high-grade gliomas (34 GBM and 19 AA) and 20 patients with metastatic brain tumors. The metabolite ratios of Cho/Cr, Cho/NAA, and NAA/Cr at intermediate TE and the presence of lipids at short TE were assessed from spectral maps in the tumoral core, peritumoral edema, and contralateral normal-appearing white matter. The differences in the metabolite ratios between high-grade gliomas/GBM/AA and metastases were analyzed statistically. Cutoff values of Cho/Cr, Cho/NAA, and NAA/Cr ratios in the peritumoral edema, as well as Cho/Cr and NAA/Cr ratios in the tumoral core for distinguishing high-grade gliomas/GBM/AA from metastases were determined by receiver operating characteristic (ROC) curve analysis. Results: Significant differences were noted in the peritumoral Cho/Cr, Cho/NAA, and NAA/ Cr ratios between high-grade gliomas/GBM/AA and metastases. ROC analysis demonstrated a cutoff value of 1.24 for peritumoral Cho/Cr ratio to provide sensitivity, specificity, positive (PPV), and negative predictive values (NPV) of 100%, 88.9%, 80.0%, and 100%, respectively, for discrimination between high-grade gliomas and metastases. By using a cutoff value of 1.11 for peritumoral Cho/NAA ratio, the sensitivity was 100%, the specificity was 91.1%, the PPV was 83.3%, and the NPV was 100%. Conclusion: The results of this

  15. Clinical value of proton magnetic resonance spectroscopy for differentiating recurrent or residual brain tumor from delayed cerebral necrosis

    International Nuclear Information System (INIS)

    Taylor, June S.; Langston, James W.; Reddick, Wilburn E.; Kingsley, Peter B.; Ogg, Robert J.; Pui, Margaret H.; Kun, Larry E.; Jenkins, Jesse J.; Gang, Chen; Ochs, Judith J.; Sanford, Robert A.; Heideman, Richard L.

    1996-01-01

    Purpose: Delayed cerebral necrosis (DN) is a significant risk for brain tumor patients treated with high-dose irradiation. Although differentiating DN from tumor progression is an important clinical question, the distinction cannot be made reliably by conventional imaging techniques. We undertook a pilot study to assess the ability of proton magnetic resonance spectroscopy ( 1 H MRS) to differentiate prospectively between DN or recurrent/residual tumor in a series of children treated for primary brain tumors with high-dose irradiation. Methods and Materials: Twelve children (ages 3-16 years), who had clinical and MR imaging (MRI) changes that suggested a diagnosis of either DN or progressive/recurrent brain tumor, underwent localized 1 H MRS prior to planned biopsy, resection, or other confirmatory histological procedure. Prospective 1 H MRS interpretations were based on comparison of spectral peak patterns and quantitative peak area values from normalized spectra: a marked depression of the intracellular metabolite peaks from choline, creatine, and N-acetyl compounds was hypothesized to indicate DN, and median-to-high choline with easily visible creatine metabolite peaks was labeled progressive/recurrent tumor. Subsequent histological studies identified the brain lesion as DN or recurrent/residual tumor. Results: The patient series included five cases of DN and seven recurrent/residual tumor cases, based on histology. The MRS criteria prospectively identified five out of seven patients with active tumor, and four out of five patients with histologically proven DN correctly. Discriminant analysis suggested that the primary diagnostic information for differentiating DN from tumor lay in the normalized MRS peak areas for choline and creatine compounds. Conclusions: Magnetic resonance spectroscopy shows promising sensitivity and selectivity for differentiating DN from recurrent/progressive brain tumor. A novel diagnostic index based on peak areas for choline and

  16. Bioactivity of Turmeric-Derived Curcuminoids and Related Metabolites in Breast Cancer

    Science.gov (United States)

    Wright, Laura E.; Frye, Jen B.; Gorti, Bhavana; Timmermann, Barbara N.; Funk, Janet L.

    2013-01-01

    While the chemotherapeutic effect of curcumin, one of three major curcuminoids derived from turmeric, has been reported, largely unexplored are the effects of complex turmeric extracts more analogous to traditional medicinal preparations, as well as the relative importance of the three curcuminoids and their metabolites as anti-cancer agents. These studies document the pharmacodynamic effects of chemically-complex turmeric extracts relative to curcuminoids on human breast cancer cell growth and tumor cell secretion of parathyroid hormone-related protein (PTHrP), an important driver of cancer bone metastasis. Finally, relative effects of structurally-related metabolites of curcuminoids were assessed on the same endpoints. We report that 3 curcuminoid-containing turmeric extracts differing with respect to the inclusion of additional naturally occurring chemicals (essential oils and/or polar compounds) were equipotent in inhibiting human breast cancer MDA-MB-231 cell growth (IC50=10–16μg/mL) and secretion of osteolytic PTHrP (IC50=2–3μg/mL) when concentrations were normalized to curcuminoid content. Moreover, these effects were curcuminoid-specific, as botanically-related gingerol containing extracts had no effect. While curcumin and bis-demethoxycurcumin were equipotent to each other and to the naturally occurring curcuminoid mixture (IC50=58 μM), demethoxycurcumin was without effect on cell growth. However, each of the individual curcuminoids inhibited PTHrP secretion (IC50=22–31μM) to the same degree as the curcuminoid mixture (IC50=16 μM). Degradative curcuminoid metabolites (vanillin and ferulic acid) did not inhibit cell growth or PTHrP, while reduced metabolites (tetrahydrocurcuminoids) had inhibitory effects on cell growth and PTHrP secretion but only at concentrations ≥10-fold higher than the curcuminoids. These studies emphasize the structural and biological importance of curcuminoids in the anti-breast cancer effects of turmeric and contradict

  17. Biomimetic carriers mimicking leukocyte plasma membrane to increase tumor vasculature permeability

    Science.gov (United States)

    Palomba, R.; Parodi, A.; Evangelopoulos, M.; Acciardo, S.; Corbo, C.; De Rosa, E.; Yazdi, I. K.; Scaria, S.; Molinaro, R.; Furman, N. E. Toledano; You, J.; Ferrari, M.; Salvatore, F.; Tasciotti, E.

    2016-10-01

    Recent advances in the field of nanomedicine have demonstrated that biomimicry can further improve targeting properties of current nanotechnologies while simultaneously enable carriers with a biological identity to better interact with the biological environment. Immune cells for example employ membrane proteins to target inflamed vasculature, locally increase vascular permeability, and extravasate across inflamed endothelium. Inspired by the physiology of immune cells, we recently developed a procedure to transfer leukocyte membranes onto nanoporous silicon particles (NPS), yielding Leukolike Vectors (LLV). LLV are composed of a surface coating containing multiple receptors that are critical in the cross-talk with the endothelium, mediating cellular accumulation in the tumor microenvironment while decreasing vascular barrier function. We previously demonstrated that lymphocyte function-associated antigen (LFA-1) transferred onto LLV was able to trigger the clustering of intercellular adhesion molecule 1 (ICAM-1) on endothelial cells. Herein, we provide a more comprehensive analysis of the working mechanism of LLV in vitro in activating this pathway and in vivo in enhancing vascular permeability. Our results suggest the biological activity of the leukocyte membrane can be retained upon transplant onto NPS and is critical in providing the particles with complex biological functions towards tumor vasculature.

  18. Phenotypic Screening Identifies Protein Synthesis Inhibitors as H-Ras-Nanocluster-Increasing Tumor Growth Inducers.

    Science.gov (United States)

    Najumudeen, Arafath K; Posada, Itziar M D; Lectez, Benoit; Zhou, Yong; Landor, Sebastian K-J; Fallarero, Adyary; Vuorela, Pia; Hancock, John; Abankwa, Daniel

    2015-12-15

    Ras isoforms H-, N-, and K-ras are each mutated in specific cancer types at varying frequencies and have different activities in cell fate control. On the plasma membrane, Ras proteins are laterally segregated into isoform-specific nanoscale signaling hubs, termed nanoclusters. As Ras nanoclusters are required for Ras signaling, chemical modulators of nanoclusters represent ideal candidates for the specific modulation of Ras activity in cancer drug development. We therefore conducted a chemical screen with commercial and in-house natural product libraries using a cell-based H-ras-nanoclustering FRET assay. Next to established Ras inhibitors, such as a statin and farnesyl-transferase inhibitor, we surprisingly identified five protein synthesis inhibitors as positive regulators. Using commonly employed cycloheximide as a representative compound, we show that protein synthesis inhibition increased nanoclustering and effector recruitment specifically of active H-ras but not of K-ras. Consistent with these data, cycloheximide treatment activated both Erk and Akt kinases and specifically promoted H-rasG12V-induced, but not K-rasG12V-induced, PC12 cell differentiation. Intriguingly, cycloheximide increased the number of mammospheres, which are enriched for cancer stem cells. Depletion of H-ras in combination with cycloheximide significantly reduced mammosphere formation, suggesting an exquisite synthetic lethality. The potential of cycloheximide to promote tumor cell growth was also reflected in its ability to increase breast cancer cell tumors grown in ovo. These results illustrate the possibility of identifying Ras-isoform-specific modulators using nanocluster-directed screening. They also suggest an unexpected feedback from protein synthesis inhibition to Ras signaling, which might present a vulnerability in certain tumor cell types.

  19. Secondary metabolites from marine microorganisms.

    Science.gov (United States)

    Kelecom, Alphonse

    2002-03-01

    After 40 years of intensive research, chemistry of marine natural products has become a mature field. Since 1995, there are signals of decreased interest in the search of new metabolites from traditional sources such as macroalgae and octocorals, and the number of annual reports on marine sponges stabilized. On the contrary, metabolites from microorganisms is a rapidly growing field, due, at least in part, to the suspicion that a number of metabolites obtained from algae and invertebrates may be produced by associated microorganisms. Studies are concerned with bacteria and fungi, isolated from seawater, sediments, algae, fish and mainly from marine invertebrates such as sponges, mollusks, tunicates, coelenterates and crustaceans. Although it is still to early to define tendencies, it may be stated that the metabolites from microorganisms are in most cases quite different from those produced by the invertebrate hosts. Nitrogenated metabolites predominate over acetate derivatives, and terpenes are uncommon. Among the latter, sesquiterpenes, diterpenes and carotenes have been isolated; among nitrogenated metabolites, amides, cyclic peptides and indole alkaloids predominate.

  20. Secondary metabolites from marine microorganisms

    Directory of Open Access Journals (Sweden)

    KELECOM ALPHONSE

    2002-01-01

    Full Text Available After 40 years of intensive research, chemistry of marine natural products has become a mature field. Since 1995, there are signals of decreased interest in the search of new metabolites from traditional sources such as macroalgae and octocorals, and the number of annual reports on marine sponges stabilized. On the contrary, metabolites from microorganisms is a rapidly growing field, due, at least in part, to the suspicion that a number of metabolites obtained from algae and invertebrates may be produced by associated microorganisms. Studies are concerned with bacteria and fungi, isolated from seawater, sediments, algae, fish and mainly from marine invertebrates such as sponges, mollusks, tunicates, coelenterates and crustaceans. Although it is still to early to define tendencies, it may be stated that the metabolites from microorganisms are in most cases quite different from those produced by the invertebrate hosts. Nitrogenated metabolites predominate over acetate derivatives, and terpenes are uncommon. Among the latter, sesquiterpenes, diterpenes and carotenes have been isolated; among nitrogenated metabolites, amides, cyclic peptides and indole alkaloids predominate.

  1. Oxidative defense metabolites induced by salinity stress in roots of Salicornia herbacea.

    Science.gov (United States)

    Lee, Seung Jae; Jeong, Eun-Mi; Ki, Ah Young; Oh, Kyung-Seo; Kwon, Joseph; Jeong, Jae-Hyuk; Chung, Nam-Jin

    2016-11-01

    High salinity is a major abiotic stress that affects the growth and development of plants. This type of stress can influence flowering, the production of crops, defense mechanisms and other physiological processes. Previous studies have attempted to elucidate salt-tolerance mechanisms to improve plant growth and productivity in the presence of sodium chloride. One such plant that has been studied in detail is Salicornia, a well-known halophyte, which has adapted to grow in the presence of high salt. To further the understanding of how Salicornia grows and develops under high saline conditions, Salicornia herbacea (S. herbacea) was grown under varying saline concentrations (0, 50, 100, 200, 300, and 400mM), and the resulting phenotype, ion levels, and metabolites were investigated. The optimal condition for the growth of S. herbacea was determined to be 100mM NaCl, and increased salt concentrations directly decreased the internal concentrations of other inorganic ions including Ca 2+ , K + , and Mg 2+ . Metabolomics were performed on the roots of the plant as a systematic metabolomics study has not yet been reported for Salicornia roots. Using ethylacetate and methanol extraction followed by high resolution ultra-performance liquid chromatography coupled with mass spectrometry (UPLC-MS), 1793 metabolites were identified at different NaCl levels. Structural and functional analyses demonstrated that the concentration of 53 metabolites increased as the concentration of NaCl increased. These metabolites have been linked to stress responses, primarily oxidative stress responses, which increase under saline stress. Most metabolites can be classified as polyols, alkaloids, and steroids. Functional studies of these metabolites show that shikimic acid, vitamin K1, and indole-3-carboxylic acid are generated as a result of defense mechanisms, including the shikimate pathway, to protect against reactive oxygen species (ROS) generated by salt stress. This metabolite profiling

  2. Identification of metabolites in the normal ovary and their transformation in primary and metastatic ovarian cancer.

    Science.gov (United States)

    Fong, Miranda Y; McDunn, Jonathan; Kakar, Sham S

    2011-01-01

    In this study, we characterized the metabolome of the human ovary and identified metabolic alternations that coincide with primary epithelial ovarian cancer (EOC) and metastatic tumors resulting from primary ovarian cancer (MOC) using three analytical platforms: gas chromatography mass spectrometry (GC/MS) and liquid chromatography tandem mass spectrometry (LC/MS/MS) using buffer systems and instrument settings to catalog positive or negative ions. The human ovarian metabolome was found to contain 364 biochemicals and upon transformation of the ovary caused changes in energy utilization, altering metabolites associated with glycolysis and β-oxidation of fatty acids--such as carnitine (1.79 fold in EOC, pcancer also displayed an enhanced oxidative stress response as indicated by increases in 2-aminobutyrate in EOC (1.46 fold, p = 0.0316) and in MOC (2.25 fold, povary, specifically N-acetylasparate and N-acetyl-aspartyl-glutamate, whose role in ovarian physiology has yet to be determined. These data enhance our understanding of the diverse biochemistry of the human ovary and demonstrate metabolic alterations upon transformation. Furthermore, metabolites with significant changes between groups provide insight into biochemical consequences of transformation and are candidate biomarkers of ovarian oncogenesis. Validation studies are warranted to determine whether these compounds have clinical utility in the diagnosis or clinical management of ovarian cancer patients.

  3. Herpes simplex virus thymidine kinase imaging in mice with (1-(2'-deoxy-2'-[{sup 18}F]fluoro-1-{beta}-D-arabinofuranosyl)-5-iodouracil) and metabolite (1-(2'-deoxy-2'-[{sup 18}F]fluoro-1-{beta}-D-arabinofuranosyl)-5-uracil)

    Energy Technology Data Exchange (ETDEWEB)

    Nimmagadda, Sridhar; Lawhorn-Crews, Jawana M.; Shields, Anthony F. [Wayne State University, Karmanos Cancer Institute, Detroit, MI (United States); Wayne State University, Department of Medicine, Detroit, MI (United States); Mangner, Thomas J. [Wayne State University, Karmanos Cancer Institute, Detroit, MI (United States); Wayne State University, Department of Radiology, Detroit, MI (United States); Haberkorn, Uwe [University of Heidelberg, Department of Nuclear Medicine, Heidelberg (Germany)

    2009-12-15

    FIAU, (1-(2{sup '}-deoxy-2{sup '}-fluoro-1-{beta}-D-arabinofuranosyl)-5-iodouracil) has been used as a substrate for herpes simplex virus thymidine kinases (HSV-TK and HSV-tk, for protein and gene expression, respectively) and other bacterial and viral thymidine kinases for noninvasive imaging applications. Previous studies have reported the formation of a de-iodinated metabolite of {sup 18}F-FIAU. This study reports the dynamic tumor uptake, biodistribution, and metabolite contribution to the activity of {sup 18}F-FIAU seen in HSV-tk gene expressing tumors and compares the distribution properties with its de-iodinated metabolite {sup 18}F-FAU. CD-1 nu/nu mice with subcutaneous MH3924A and MH3924A-stb-tk+ xenografts on opposite flanks were used for the biodistribution and imaging studies. Mice were injected IV with either {sup 18}F-FIAU or {sup 18}F-FAU. Mice underwent dynamic imaging with each tracer for 65 min followed by additional static imaging up to 150 min post-injection for some animals. Animals were sacrificed at 60 or 150 min post-injection. Samples of blood and tissue were collected for biodistribution and metabolite analysis. Regions of interest were drawn over the images obtained from both tumors to calculate the time-activity curves. Biodistribution and imaging studies showed the highest uptake of {sup 18}F-FIAU in the MH3924A-stb-tk+ tumors. Dynamic imaging studies revealed a continuous accumulation of {sup 18}F-FIAU in HSV-TK expressing tumors over 60 min. The mean biodistribution values (SUV {+-} SE) for MH3924A-stb-tk+ were 2.07 {+-} 0.40 and 6.15 {+-} 1.58 and that of MH3924A tumors were 0.19 {+-} 0.07 and 0.47 {+-} 0.06 at 60 and 150 min, respectively. In {sup 18}F-FIAU injected mice, at 60 min nearly 63% of blood activity was present as its metabolite {sup 18}F-FAU. Imaging and biodistribution studies with {sup 18}F-FAU demonstrated no specific accumulation in MH3924A-stb-tk+ tumors and SUVs for both the tumors were similar to those

  4. Risk of borderline ovarian tumors among women with benign ovarian tumors

    DEFF Research Database (Denmark)

    Guleria, Sonia; Jensen, Allan; Kjær, Susanne K

    2018-01-01

    tumors among women with a benign ovarian tumor. METHODS: This nationwide cohort study included all Danish women diagnosed with a benign ovarian tumor (n=139,466) during 1978-2012. The cohort was linked to the Danish Pathology Data Bank and standardized incidence ratios (SIR) with 95% confidence intervals...... (CI) were calculated. RESULTS: Women with benign ovarian tumors had increased risks for subsequent borderline ovarian tumors (SIR 1.62, 95% CI 1.43-1.82), and this applied to both serous (SIR 1.69, 95% CI 1.39-2.03) and mucinous (SIR 1.75, 95% CI 1.45-2.10) histotypes of borderline ovarian tumors....... The risk for borderline ovarian tumors was primarily increased for women diagnosed with a benign ovarian tumor before 40years of age. The risk remained increased up to 9years after a benign ovarian tumor diagnosis. Finally, the associations did not change markedly when analyzed for the different histotypes...

  5. Metabolism of indole alkaloid tumor promoter, (-)-indolactam V, which has the fundamental structure of teleocidins, by rat liver microsomes

    Energy Technology Data Exchange (ETDEWEB)

    Hagiwara, N.; Irie, K.; Tokuda, H.; Koshimizu, K.

    1987-07-01

    Metabolic activation and/or deactivation of indole alkaloid tumor promoter, (-)-indolactam V (ILV), was examined using rat liver microsomes. Reaction of ILV with the microsomes supplemented with NADPH and MgCl/sub 2/ gave three major metabolites, which were identified as (-)-N13-desmethylindolactam V and two diastereomers of (-)-2-oxyindolactam V at C-3. The tumor-promoting activities of these metabolites were evaluated by induction of Epstein-Barr virus early antigen and inhibition of specific binding of (/sup 3/H)-12-O-tetradecanoylphorbol-13-acetate to a mouse epidermal particulate fraction, and proved to be conspicuously lower than that of ILV. These results demonstrate that the metabolism of ILV results in detoxification, and that it itself is the tumor-promoting entity. Studies on the enzymes concerned with this metabolism suggested the involvement of cytochrome P-450-containing mixed-function oxidases. Similar deactivation seems to be possible by skin, where the mixed-function oxidases are known to exist.

  6. Effect of Arrabidaea chica extracts on the Ehrlich solid tumor development

    Directory of Open Access Journals (Sweden)

    Ana Flávia C. Ribeiro

    2012-04-01

    Full Text Available The aim of this study was to investigate the effect of Arrabidaea chica (Humb. & Bonpl. B. Verl., Bignoniaceae, extracts on Ehrlich solid tumor development in Swiss mice. Leaves of A. chica were extracted with two distinct solvents, ethanol and water. The phytochemical analysis of the extracts indicated different classes of secondary metabolites like as anthocyanidins, flavonoids, tannins and saponins. Ethanol (EE and aqueous (AE extracts at 30 mg/kg reduced the development of Ehrlich solid tumor after ten days of oral treatment. The EE group presented increase in neutrophil count, α1 and β globulin values, and decrease of α2 globulin values. Furthermore, EE reduced the percentage of CD4+ T cells in blood but did not alter the percentage of inflammatory mononuclear cells associated with tumor suggesting a direct action of EE on tumor cells. Reduced tumor development observed in AE group was accompanied by a lower percentage of CD4+ T lymphocytes in blood. At the tumor microenvironment, this treatment decreased the percentage of CD3+ T cells, especially due to a reduction of CD8+ T subpopulation and NK cells. The antitumor activity presented by the AE is possibly related to an anti-inflammatory activity. None of the extracts produced toxic effects in animals. In conclusion, the ethanol and aqueous extracts of A. chica have immunomodulatory and antitumor activities attributed to the presence of flavonoids, such as kaempferol. These effects appear to be related to different mechanisms of action for each extract. This study demonstrates the potential of A. chica as an antitumor agent confirming its use in traditional popular medicine.

  7. Extraction and applications of cyanotoxins and other cyanobacterial secondary metabolites.

    Science.gov (United States)

    Haque, Fatima; Banayan, Sara; Yee, Josephine; Chiang, Yi Wai

    2017-09-01

    The rapid proliferation of cyanobacteria in bodies of water has caused cyanobacterial blooms, which have become an increasing cause of concern, largely due to the presence of toxic secondary metabolites (or cyanotoxins). Cyanotoxins are the toxins produced by cyanobacteria that may be harmful to surrounding wildlife. They include hepatotoxins, neurotoxins and dermatotoxins, and are classified based on the organs they affect. There are also non-toxic secondary metabolites that include chelators and UV-absorbing compounds. This paper summarizes the optimal techniques for secondary metabolite extraction and the possible useful products that can be obtained from cyanobacteria, with additional focus given to products derived from secondary metabolites. It becomes evident that the potential for their use as biocides, chelators, biofuels, biofertilizers, pharmaceuticals, food and feed, and cosmetics has not yet been comprehensively studied or extensively implemented. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Agentes antineoplásicos biorredutíveis: uma nova alternativa para o tratamento de tumores sólidos

    Directory of Open Access Journals (Sweden)

    Oliveira Renata Barbosa de

    2002-01-01

    Full Text Available A problem often encountered in cancer therapy is the presence of tumor cell subpopulation that are resistant to treatment. Solid tumors frequently contain hypoxic cells that are resistant to killing by ionizing radiation and also by many chemotherapeutic agents. However, these hypoxic cells can be exploited for therapy by non-toxic hypoxic-activated prodrugs. Bioreductive drugs require metabolic reduction to generate cytotoxic metabolites. This process is facilitated by appropriate reductases and the lower oxygen conditions present in solid tumors. The unique presence of hypoxic cells in human tumors provides an important target for selective cancer therapy.

  9. Multivoxel 1H-MR spectroscopy in evaluating perienhancement region of brain tumors

    International Nuclear Information System (INIS)

    Xu Maosheng; Pan Zhiyong; Cao Zhijian; Wang Wei; Zheng Meijun; Ni Guibao

    2003-01-01

    Objective: To investigate the predictive value of multivoxel proton magnetic resonance spectroscopy (MRS) in evaluating the metabolic changes in perienhancement area of brain tumors. Methods: Fifty-one intracranial tumor patients were recruited in this study with 24 astrocytomas [grade II(8), III(7), IV(9)], 15 metastases, and 12 meningiomas. Multivoxel proton MRS was performed on a 1.5 TMR scanner using point-resolved spectroscopy (PRESS) sequence with TE of 144 ms and TR of 1000 ms. Spectra of three voxels were taken from A) enhanced, solid part of the tumor, B) perienhancement region (PER, with T 2 hyperintense areas), and C) corresponding contralateral normal appearing white matter, and those regions were evaluated in every patients. Fitted areas in the spectrum for N-acetylaspartate (NAA), choline (Cho), creatine (Cr), lipid/ lactate, and myo-Inositol (mI) metabolite peaks were measured and NAA/Cho, NAA/Cr, Cho/Cho (normal), Cho/Cr (n) ratios were calculated for each voxel (0.562 cm 3 in size). One way ANOVA (SPSS 11.0 for windows, Chicago, Ill.) was used for statistical analysis in metabolic ratio's difference among the brain tumors. Results: In voxel A (MRS from the solid enhanced part of the lesion), the ratios of NAA/Cho and Cho/Cho (n) changed significantly by comparing with that of normal control brain tissues, but there was no significant difference among gliomas, metastases, and meningiomas (P>0.05). On the contrary, in voxel B of MRS from perienhancement region, NAA/Cho, Cho/Cho (n), and Cho/Cr (n) ratios revealed strong correlations between metabolite concentrations and tumor types, allowing the differentiation of glial tumors from both metastases and meningiomas (P<0.05). The mean values of PER for glial tumor, metastasis, and meningiomas were 0.89, 1.31, and 1.32 for NAA/Cho; 1.54, 1.78, and 1.87 for NAA/Cr; 1.47, 1.01, and 0.96 for Cho/Cho (n); and 1.75, 1.13 and, 1.21 for Cho/Cr (n), respectively. Conclusion: Evaluation of brain tumors and

  10. Removal of uremic retention products by hemodialysis is coupled with indiscriminate loss of vital metabolites.

    Science.gov (United States)

    Zhang, Zhi-Hao; Mao, Jia-Rong; Chen, Hua; Su, Wei; Zhang, Yuan; Zhang, Li; Chen, Dan-Qian; Zhao, Ying-Yong; Vaziri, Nosratola D

    2017-12-01

    Although dialysis ameliorates uremia and fluid and electrolytes disorders, annual mortality rate remains high in dialysis population reflecting its shortcoming in replacing renal function. Unlike the normal kidney, dialysis causes dramatic shifts in volume and composition of body fluids and indiscriminate removal of vital solutes. Present study was undertaken to determine the impact of hemodialysis on plasma metabolites in end-stage renal disease (ESRD) patients. 80 hemodialysis patients and 80 age/gender-matched healthy controls were enrolled in the study. Using ultra performance liquid chromatography-high-definition mass spectrometry, we measured plasma metabolites before, during, and after hemodialysis procedure and in blood entering and leaving the dialysis filter. Principal component analysis revealed significant difference in concentration of 214 metabolites between healthy control and ESRD patients' pre-dialysis plasma (126 increased and 88 reduced in ESRD group). Comparison of post-dialysis with pre-dialysis data revealed significant changes in the 362 metabolites. Among ESI + metabolites 195 decreased and 55 increased and among ESI - metabolites 82 decreased and 30 increased following hemodialysis. Single blood passage through the dialyzer caused significant changes in 323 metabolites. Comparison of ESRD patients' post-hemodialysis with healthy subjects' data revealed marked differences in metabolic profiles. We identified 55 of the 362 differential metabolites including well known uremic toxins, waste products and vital biological compounds. In addition to uremic toxins and waste products hemodialysis removes large number of identified and as-yet un-identified metabolites. Depletion of vital biological compounds by dialysis may contribute to the high morbidity and annual mortality rate in this population. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  11. Biological responses of progestogen metabolites in normal and cancerous human breast.

    Science.gov (United States)

    Pasqualini, Jorge R; Chetrite, Gérard S

    2010-12-01

    At present, more than 200 progestogen molecules are available, but their biological response is a function of various factors: affinity to progesterone or other receptors, their structure, the target tissues considered, biological response, experimental conditions, dose, method of administration and metabolic transformations. Metabolic transformation is of huge importance because in various biological processes the metabolic product(s) not only control the activity of the maternal hormone but also have an important activity of its own. In this regard, it was observed that the 20-dihydro derivative of the progestogen dydrogesterone (Duphaston®) is significantly more active than the parent compound in inhibiting sulfatase and 17β-hydroxysteroid dehydrogenase in human breast cancer cells. Estrone sulfatase activity is also inhibited by norelgestromin, a norgestimate metabolite. Interesting information was obtained with a similar progestogen, tibolone, which is rapidly metabolized into the active 3α/3β-hydroxy and 4-ene metabolites. All these metabolites can inhibit sulfatase and 17β-hydroxysteroid dehydrogenase and stimulate sulfotransferase in human breast cancer cells. Another attractive aspect is the metabolic transformation of progesterone itself in human breast tissues. In the normal breast progesterone is mainly converted to 4-ene derivatives, whereas in the tumor tissue it is converted mostly to 5α-pregnane derivatives. 20α-Dihydroprogesterone is found mainly in normal breast tissue and possesses antiproliferative properties as well as the ability to act as an anti-aromatase agent. Consequently, this progesterone metabolite could be involved in the control of estradiol production in the normal breast and therefore implicated in one of the multifactorial mechanisms of the breast carcinogenesis process. In conclusion, a better understanding of both natural and synthetic hormone metabolic transformations and their control could potentially provide

  12. Population pharmacokinetics of imatinib mesylate and its metabolite in children and young adults.

    Science.gov (United States)

    Menon-Andersen, Divya; Mondick, John T; Jayaraman, Bhuvana; Thompson, Patrick A; Blaney, Susan M; Bernstein, Mark; Bond, Mason; Champagne, Martin; Fossler, Michael J; Barrett, Jeffrey S

    2009-01-01

    Imatinib mesylate (Gleevec) is a small molecule tyrosine kinase inhibitor approved for use in the management of chronic myeloid leukemia in adults and children and in gastrointestinal stromal tumors in adults. Population pharmacokinetic (PPK) studies evaluating the effect of population covariates on the pharmacokinetics of imatinib and its active metabolite have been developed in adults with chronic myeloid leukemia (CML) and gastrointestinal stromal tumor (GIST). However, this still remains to be described in children. The objectives of the analysis were to develop a PPK model of imatinib and its active metabolite, CGP74588, to describe exposure in children and young adults and to identify covariates that are predictors of variability in disposition. Plasma concentrations from 26 subjects with Philadelphia (Ph+) leukemia (Phase I study) and 15 subjects with refractory solid tumors (Phase II study), who received oral imatinib at doses ranging from 260 to 570 mg/m(2), were available for the PPK analysis in NONMEM. Blood samples were drawn prior to dosing and over 24-48 h on days 1 and 8 of the studies. Covariates studied included weight, age, albumin, alanine aminotransferase and the study population. The pharmacokinetics of imatinib and CGP 74588 were well described by one and two compartment models, respectively. Total body weight was the only covariate found to significantly affect Cl/F and V/F. The final imatinib-CGP 74588 model is summarized as follows: CL/F (imatinib) (L/h) = 10.8 x (WT/70)(0.75), V/F (imatinib) (L) = 284 x (WT/70) and D1(duration of zero order absorption,imatinib) (h) = 1.67 and CL/F (CGP 74588) (L/h) = 9.65 x (WT/70)(0.75), V1/F (CGP 74588) (L) = 11.6 x (WT/70), Q (CGP 74588) (L/h) = 2.9 x (WT/70)(0.75) and V2/F (CGP 74588) (L) = 256*(WT/70). Model evaluation indicated that the final model was robust and satisfactory. Current imatinib dosing guidelines in pediatrics is based on the achievement of exposures consistent with doses known to be

  13. Differences in metabolite profiles caused by pre-analytical blood processing procedures.

    Science.gov (United States)

    Nishiumi, Shin; Suzuki, Makoto; Kobayashi, Takashi; Yoshida, Masaru

    2018-05-01

    Recently, the use of metabolomic analysis of human serum and plasma for biomarker discovery and disease diagnosis in clinical studies has been increasing. The feasibility of using a metabolite biomarker for disease diagnosis is strongly dependent on the metabolite's stability during pre-analytical blood processing procedures, such as serum or plasma sampling and sample storage prior to centrifugation. However, the influence of blood processing procedures on the stability of metabolites has not been fully characterized. In the present study, we compared the levels of metabolites in matched human serum and plasma samples using gas chromatography coupled with mass spectrometry and liquid chromatography coupled with mass spectrometry. In addition, we evaluated the changes in plasma metabolite levels induced by storage at room temperature or at a cold temperature prior to centrifugation. As a result, it was found that 76 metabolites exhibited significant differences between their serum and plasma levels. Furthermore, the pre-centrifugation storage conditions significantly affected the plasma levels of 45 metabolites. These results highlight the importance of blood processing procedures during metabolome analysis, which should be considered during biomarker discovery and the subsequent use of biomarkers for disease diagnosis. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Increased tumor localization and reduced immune response to adenoviral vector formulated with the liposome DDAB/DOPE.

    Science.gov (United States)

    Steel, Jason C; Cavanagh, Heather M A; Burton, Mark A; Abu-Asab, Mones S; Tsokos, Maria; Morris, John C; Kalle, Wouter H J

    2007-04-01

    We aimed to increase the efficiency of adenoviral vectors by limiting adenoviral spread from the target site and reducing unwanted host immune responses to the vector. We complexed adenoviral vectors with DDAB-DOPE liposomes to form adenovirus-liposomal (AL) complexes. AL complexes were delivered by intratumoral injection in an immunocompetent subcutaneous rat tumor model and the immunogenicity of the AL complexes and the expression efficiency in the tumor and other organs was examined. Animals treated with the AL complexes had significantly lower levels of beta-galactosidase expression in systemic tissues compared to animals treated with the naked adenovirus (NA) (P<0.05). The tumor to non-tumor ratio of beta-galactosidase marker expression was significantly higher for the AL complex treated animals. NA induced significantly higher titers of adenoviral-specific antibodies compared to the AL complexes (P<0.05). The AL complexes provided protection (immunoshielding) to the adenovirus from neutralizing antibody. Forty-seven percent more beta-galactosidase expression was detected following intratumoral injection with AL complexes compared to the NA in animals pre-immunized with adenovirus. Complexing of adenovirus with liposomes provides a simple method to enhance tumor localization of the vector, decrease the immunogenicity of adenovirus, and provide protection of the virus from pre-existing neutralizing antibodies.

  15. Transportable hyperpolarized metabolites

    Science.gov (United States)

    Ji, Xiao; Bornet, Aurélien; Vuichoud, Basile; Milani, Jonas; Gajan, David; Rossini, Aaron J.; Emsley, Lyndon; Bodenhausen, Geoffrey; Jannin, Sami

    2017-01-01

    Nuclear spin hyperpolarization of 13C-labelled metabolites by dissolution dynamic nuclear polarization can enhance the NMR signals of metabolites by several orders of magnitude, which has enabled in vivo metabolic imaging by MRI. However, because of the short lifetime of the hyperpolarized magnetization (typically <1 min), the polarization process must be carried out close to the point of use. Here we introduce a concept that markedly extends hyperpolarization lifetimes and enables the transportation of hyperpolarized metabolites. The hyperpolarized sample can thus be removed from the polarizer and stored or transported for use at remote MRI or NMR sites. We show that hyperpolarization in alanine and glycine survives 16 h storage and transport, maintaining overall polarization enhancements of up to three orders of magnitude. PMID:28072398

  16. Increased hypoxia-inducible factor-1α in striated muscle of tumor-bearing mice.

    Science.gov (United States)

    Devine, Raymond D; Bicer, Sabahattin; Reiser, Peter J; Wold, Loren E

    2017-06-01

    Cancer cachexia is a progressive wasting disease resulting in significant effects on the quality of life and high mortality. Most studies on cancer cachexia have focused on skeletal muscle; however, the heart is now recognized as a major site of cachexia-related effects. To elucidate possible mechanisms, a proteomic study was performed on the left ventricles of colon-26 (C26) adenocarcinoma tumor-bearing mice. The results revealed several changes in proteins involved in metabolism. An integrated pathway analysis of the results revealed a common mediator in hypoxia-inducible factor-1α (HIF-1α). Work by other laboratories has shown that extensive metabolic restructuring in the C26 mouse model causes changes in gene expression that may be affected directly by HIF-1α, such as glucose metabolic genes. M-mode echocardiography showed progressive decline in heart function by day 19 , exhibited by significantly decreased ejection fraction and fractional shortening, along with posterior wall thickness. Using Western blot analysis, we confirmed that HIF-1α is significantly upregulated in the heart, whereas there were no changes in its regulatory proteins, prolyl hydroxylase domain-containing protein 2 (PHD2) and von Hippel-Lindau protein (VHL). PHD2 requires both oxygen and iron as cofactors for the hydroxylation of HIF-1α, marking it for ubiquination via VHL and subsequent destruction by the proteasome complex. We examined venous blood gas values in the tumor-bearing mice and found significantly lower oxygen concentration compared with control animals in the third week after tumor inoculation. We also examined select skeletal muscles to determine whether they are similarly affected. In the diaphragm, extensor digitorum longus, and soleus, we found significantly increased HIF-1α in tumor-bearing mice, indicating a hypoxic response, not only in the heart, but also in skeletal muscle. These results indicate that HIF-1α may contribute, in part, to the metabolic changes

  17. Microsomal metabolism of trenbolone acetate metabolites ...

    Science.gov (United States)

    Trenbolone acetate (TBA) is a synthetic growth promoter widely used in animal agriculture, and its metabolites are suspected endocrine disrupting compounds in agriculturally impacted receiving waters. However, beyond the three widely recognized TBA metabolites (17-trenbolone, 17-trenbolone and trendione), little is known about other metabolites formed in vivo and subsequently discharged into the environment, with some evidence suggesting these unknown metabolites comprise a majority of the TBA mass dosed to the animal. Here, we explored the metabolism of the three known TBA metabolites using rat liver microsome studies. All TBA metabolites are transformed into a complex mixture of monohydroxylated products. Based on product characterization, the majority are more polar than the parent metabolites but maintain their characteristic trienone backbone. A minor degree of interconversion between known metabolites was also observed, as were higher order hydroxylated products with a greater extent of reaction. Notably, the distribution and yield of products were generally comparable across a series of variably induced rat liver microsomes, as well as during additional studies with human and bovine liver microsomes. Bioassays conducted with mixtures of these transformation products suggest that androgen receptor (AR) binding activity is diminished as a result of the microsomal treatment, suggesting that the transformation products are generally less potent than

  18. Electrosynthesis methods and approaches for the preparative production of metabolites from parent drugs

    NARCIS (Netherlands)

    Gül, Turan; Bischoff, Rainer; Permentier, Hjalmar

    2015-01-01

    Identification of potentially toxic metabolites is important for drug discovery and development. Synthesis of drug metabolites is typically performed by organic synthesis or enzymatic methods, but is not always straightforward. Electrochemical (EC) methods are increasingly used to study drug

  19. The Dynamics of Developmental and Tumor Angiogenesis—A Comparison

    International Nuclear Information System (INIS)

    Jin, Yi; Jakobsson, Lars

    2012-01-01

    The blood vasculature in cancers has been the subject of intense interest during the past four decades. Since the original ideas of targeting angiogenesis to treat cancer were proposed in the 1970s, it has become evident that more knowledge about the role of vessels in tumor biology is needed to fully take advantage of such strategies. The vasculature serves the surrounding tissue in a multitude of ways that all must be taken into consideration in therapeutic manipulation. Aspects of delivery of conventional cytostatic drugs, induction of hypoxia affecting treatment by radiotherapy, changes in tumor cell metabolism, vascular leak and trafficking of leukocytes are affected by interventions on vascular function. Many tumors constitute a highly interchangeable milieu undergoing proliferation, apoptosis, and necrosis with abundance of growth factors, enzymes and metabolites. These aspects are reflected by the abnormal tortuous, leaky vascular bed with detached mural cells (pericytes). The vascular bed of tumors is known to be unstable and undergoing remodeling, but it is not until recently that this has been dynamically demonstrated at high resolution, facilitated by technical advances in intravital microscopy. In this review we discuss developmental genetic loss-of-function experiments in the light of tumor angiogenesis. We find this a valid comparison since many studies phenocopy the vasculature in development and tumors

  20. The Dynamics of Developmental and Tumor Angiogenesis—A Comparison

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Yi; Jakobsson, Lars, E-mail: Lars.jakobsson@ki.se [Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-17177 (Sweden)

    2012-04-11

    The blood vasculature in cancers has been the subject of intense interest during the past four decades. Since the original ideas of targeting angiogenesis to treat cancer were proposed in the 1970s, it has become evident that more knowledge about the role of vessels in tumor biology is needed to fully take advantage of such strategies. The vasculature serves the surrounding tissue in a multitude of ways that all must be taken into consideration in therapeutic manipulation. Aspects of delivery of conventional cytostatic drugs, induction of hypoxia affecting treatment by radiotherapy, changes in tumor cell metabolism, vascular leak and trafficking of leukocytes are affected by interventions on vascular function. Many tumors constitute a highly interchangeable milieu undergoing proliferation, apoptosis, and necrosis with abundance of growth factors, enzymes and metabolites. These aspects are reflected by the abnormal tortuous, leaky vascular bed with detached mural cells (pericytes). The vascular bed of tumors is known to be unstable and undergoing remodeling, but it is not until recently that this has been dynamically demonstrated at high resolution, facilitated by technical advances in intravital microscopy. In this review we discuss developmental genetic loss-of-function experiments in the light of tumor angiogenesis. We find this a valid comparison since many studies phenocopy the vasculature in development and tumors.

  1. Metabolic engineering with systems biology tools to optimize production of prokaryotic secondary metabolites

    DEFF Research Database (Denmark)

    Kim, Hyun Uk; Charusanti, Pep; Lee, Sang Yup

    2016-01-01

    Metabolic engineering using systems biology tools is increasingly applied to overproduce secondary metabolites for their potential industrial production. In this Highlight, recent relevant metabolic engineering studies are analyzed with emphasis on host selection and engineering approaches...... for the optimal production of various prokaryotic secondary metabolites: native versus heterologous hosts (e.g., Escherichia coli) and rational versus random approaches. This comparative analysis is followed by discussions on systems biology tools deployed in optimizing the production of secondary metabolites....... The potential contributions of additional systems biology tools are also discussed in the context of current challenges encountered during optimization of secondary metabolite production....

  2. Identifying diseases-related metabolites using random walk.

    Science.gov (United States)

    Hu, Yang; Zhao, Tianyi; Zhang, Ningyi; Zang, Tianyi; Zhang, Jun; Cheng, Liang

    2018-04-11

    Metabolites disrupted by abnormal state of human body are deemed as the effect of diseases. In comparison with the cause of diseases like genes, these markers are easier to be captured for the prevention and diagnosis of metabolic diseases. Currently, a large number of metabolic markers of diseases need to be explored, which drive us to do this work. The existing metabolite-disease associations were extracted from Human Metabolome Database (HMDB) using a text mining tool NCBO annotator as priori knowledge. Next we calculated the similarity of a pair-wise metabolites based on the similarity of disease sets of them. Then, all the similarities of metabolite pairs were utilized for constructing a weighted metabolite association network (WMAN). Subsequently, the network was utilized for predicting novel metabolic markers of diseases using random walk. Totally, 604 metabolites and 228 diseases were extracted from HMDB. From 604 metabolites, 453 metabolites are selected to construct the WMAN, where each metabolite is deemed as a node, and the similarity of two metabolites as the weight of the edge linking them. The performance of the network is validated using the leave one out method. As a result, the high area under the receiver operating characteristic curve (AUC) (0.7048) is achieved. The further case studies for identifying novel metabolites of diabetes mellitus were validated in the recent studies. In this paper, we presented a novel method for prioritizing metabolite-disease pairs. The superior performance validates its reliability for exploring novel metabolic markers of diseases.

  3. Isolated tumoral pyruvate dehydrogenase can synthesize acetoin which inhibits pyruvate oxidation as well as other aldehydes.

    Science.gov (United States)

    Baggetto, L G; Lehninger, A L

    1987-05-29

    Oxidation of 1 mM pyruvate by Ehrlich and AS30-D tumor mitochondria is inhibited by acetoin, an unusual and important metabolite of pyruvate utilization by cancer cells, by acetaldehyde, methylglyoxal and excess pyruvate. The respiratory inhibition is reversed by other substrates added to pyruvate and also by 0.5 mM ATP. Kinetic properties of pyruvate dehydrogenase complex isolated from these tumor mitochondria have been studied. This complex appears to be able to synthesize acetoin from acetaldehyde plus pyruvate and is competitively inhibited by acetoin. The role of a new regulatory pattern for tumoral pyruvate dehydrogenase is presented.

  4. Radiation-induced nitric oxide mitigates tumor hypoxia and radioresistance in a murine SCCVII tumor model

    International Nuclear Information System (INIS)

    Nagane, Masaki; Yasui, Hironobu; Yamamori, Tohru; Zhao, Songji; Kuge, Yuji; Tamaki, Nagara; Kameya, Hiromi; Nakamura, Hideo; Fujii, Hirotada; Inanami, Osamu

    2013-01-01

    Highlights: •IR-induced NO increased tissue perfusion and pO 2 . •IR increased NO production in tumors without changes in the mRNA and protein levels of NOS isoforms. •NOS activity assay showed that IR upregulated eNOS activity in tumors. •IR-induced NO decreased tumor hypoxia and altered tumor radiosensitivity. -- Abstract: Tumor hypoxia, which occurs mainly as a result of inadequate tissue perfusion in solid tumors, is a well-known challenge for successful radiotherapy. Recent evidence suggests that ionizing radiation (IR) upregulates nitric oxide (NO) production and that IR-induced NO has the potential to increase intratumoral circulation. However, the kinetics of NO production and the responsible isoforms for NO synthase in tumors exposed to IR remain unclear. In this study, we aimed to elucidate the mechanism by which IR stimulates NO production in tumors and the effect of IR-induced NO on tumor radiosensitivity. Hoechst33342 perfusion assay and electron spin resonance oxymetry showed that IR increased tissue perfusion and pO 2 in tumor tissue. Immunohistochemical analysis using two different hypoxic probes showed that IR decreased hypoxic regions in tumors; treatment with a nitric oxide synthase (NOS) inhibitor, L-NAME, abrogated the effects of IR. Moreover, IR increased endothelial NOS (eNOS) activity without affecting its mRNA or protein expression levels in SCCVII-transplanted tumors. Tumor growth delay assay showed that L-NAME decreased the anti-tumor effect of fractionated radiation (10 Gy × 2). These results suggested that IR increased eNOS activity and subsequent tissue perfusion in tumors. Increases in intratumoral circulation simultaneously decreased tumor hypoxia. As a result, IR-induced NO increased tumor radiosensitivity. Our study provides a new insight into the NO-dependent mechanism for efficient fractionated radiotherapy

  5. Pregnancy-Induced Changes in the Pharmacokinetics of Caffeine and Its Metabolites

    Science.gov (United States)

    Yu, Tian; Campbell, Sarah C.; Stockmann, Chris; Tak, Casey; Schoen, Katherine; Clark, Erin A. S.; Varner, Michael W.; Spigarelli, Michael G.; Sherwin, Catherine M. T.

    2017-01-01

    This study sought to assess the pharmacokinetic (PK) changes of caffeine and its CYP1A2 metabolites across the 3 trimesters of pregnancy. A prospective, multicenter PK study was conducted among 59 pregnant women (93.2% white) who were studied once during a trimester. One beverage with 30–95 mg caffeine was consumed, and a blood/urine sample was collected within 1 hour postingestion. Concentrations of caffeine and its primary metabolites were quantified from serum and urine by LC-MS/MS. There was a significant increase in dose-normalized caffeine serum and urine concentrations between the first and third trimesters (Ptheobromine concentrations. This study identified decreased caffeine metabolism and an increase in the active metabolite theophylline concentrations during pregnancy, especially in the third trimester, revealing evidence of the large role that pregnancy plays in influencing caffeine metabolism. PMID:26358647

  6. Metabolite profiling of Alzheimer's disease cerebrospinal fluid.

    Directory of Open Access Journals (Sweden)

    Christian Czech

    Full Text Available Alzheimer's disease (AD is a neurodegenerative disorder characterized by progressive loss of cognitive functions. Today the diagnosis of AD relies on clinical evaluations and is only late in the disease. Biomarkers for early detection of the underlying neuropathological changes are still lacking and the biochemical pathways leading to the disease are still not completely understood. The aim of this study was to identify the metabolic changes resulting from the disease phenotype by a thorough and systematic metabolite profiling approach. For this purpose CSF samples from 79 AD patients and 51 healthy controls were analyzed by gas and liquid chromatography-tandem mass spectrometry (GC-MS and LC-MS/MS in conjunction with univariate and multivariate statistical analyses. In total 343 different analytes have been identified. Significant changes in the metabolite profile of AD patients compared to healthy controls have been identified. Increased cortisol levels seemed to be related to the progression of AD and have been detected in more severe forms of AD. Increased cysteine associated with decreased uridine was the best paired combination to identify light AD (MMSE>22 with specificity and sensitivity above 75%. In this group of patients, sensitivity and specificity above 80% were obtained for several combinations of three to five metabolites, including cortisol and various amino acids, in addition to cysteine and uridine.

  7. Prioritizing Candidate Disease Metabolites Based on Global Functional Relationships between Metabolites in the Context of Metabolic Pathways

    Science.gov (United States)

    Yang, Haixiu; Xu, Yanjun; Han, Junwei; Li, Jing; Su, Fei; Zhang, Yunpeng; Zhang, Chunlong; Li, Dongguo; Li, Xia

    2014-01-01

    Identification of key metabolites for complex diseases is a challenging task in today's medicine and biology. A special disease is usually caused by the alteration of a series of functional related metabolites having a global influence on the metabolic network. Moreover, the metabolites in the same metabolic pathway are often associated with the same or similar disease. Based on these functional relationships between metabolites in the context of metabolic pathways, we here presented a pathway-based random walk method called PROFANCY for prioritization of candidate disease metabolites. Our strategy not only takes advantage of the global functional relationships between metabolites but also sufficiently exploits the functionally modular nature of metabolic networks. Our approach proved successful in prioritizing known metabolites for 71 diseases with an AUC value of 0.895. We also assessed the performance of PROFANCY on 16 disease classes and found that 4 classes achieved an AUC value over 0.95. To investigate the robustness of the PROFANCY, we repeated all the analyses in two metabolic networks and obtained similar results. Then we applied our approach to Alzheimer's disease (AD) and found that a top ranked candidate was potentially related to AD but had not been reported previously. Furthermore, our method was applicable to prioritize the metabolites from metabolomic profiles of prostate cancer. The PROFANCY could identify prostate cancer related-metabolites that are supported by literatures but not considered to be significantly differential by traditional differential analysis. We also developed a freely accessible web-based and R-based tool at http://bioinfo.hrbmu.edu.cn/PROFANCY. PMID:25153931

  8. Metabolite variation in hybrid corn grain from a large-scale multisite study

    Directory of Open Access Journals (Sweden)

    Mingjie Chen

    2016-06-01

    Full Text Available Metabolite composition is strongly affected by genotype, environment, and interactions between genotype and environment, although the extent of variation caused by these factors may depend upon the type of metabolite. To characterize the complexity of genotype, environment, and their interaction in hybrid seeds, 50 genetically diverse non-genetically modified (GM maize hybrids were grown in six geographically diverse locations in North America. Polar metabolites from 553 harvested corn grain samples were isolated and analyzed by gas chromatography–mass spectrometry and 45 metabolites detected in all samples were used to generate a data matrix for statistical analysis. There was moderate variation among biological replicates and across genotypes and test sites. The genotype effects were detected by univariate and Hierarchical clustering analyses (HCA when environmental effects were excluded. Overall, environment exerted larger effects than genotype, and polar metabolite accumulation showed a geographic effect. We conclude that it is possible to increase seed polar metabolite content in hybrid corn by selection of appropriate inbred lines and growing regions.

  9. Thyroid Hormone and Blood Metabolites Concentration of Gilts Superovulated Prior to Mating

    Directory of Open Access Journals (Sweden)

    RA Mege

    2009-05-01

    Full Text Available An experiment was conducted to study injection of pregnant mare serum gonadotrophin (PMSG and human chorionic gonadotrophin (hCG as superovulation agent in gilts to improve thyroid hormone and blood metabolites concentraton. In this experiment, 48 gilts were assigned into four groups of twelve gilts injected with PMSG dan hCG dose levels of 0, 600, 1200 and 1800 IU/gilt. Injections were conducted three days before estrus. During gestation, gilts were placed in colony pigpen. On days 15, 35, and 70 of gestation blood collected to determine triiodothyronine, tetraiodothyronine, tryglicerides, glucose, protein and bood nitrogen urea concentration. The resuts showed that superovulation dose levels of 600 to 1200 IU/gilt increased concentration of thyroid hormone (triiodothyronine and tetraiodothyronine/thyroxin and blood metabolite (triglycerides, glucose, and protein, but decreased blood urea nitrogen in gestation ages 15, 35, and 70 days. It is concluded that superovulation with dose of 600 to 1200 IU can improve of gilts metabolite hormone and blood metabolites. (Animal Production 11(2: 88-95 (2009Key Words: gilts, superovulation, metabolite hormone, blood metabolites

  10. Tumor markers in clinical oncology

    International Nuclear Information System (INIS)

    Novakovic, S.

    2004-01-01

    The subtle differences between normal and tumor cells are exploited in the detection and treatment of cancer. These differences are designated as tumor markers and can be either qualitative or quantitative in their nature. That means that both the structures that are produced by tumor cells as well as the structures that are produced in excessive amounts by host tissues under the influence of tumor cells can function as tumor markers. Speaking in general, the tumor markers are the specific molecules appearing in the blood or tissues and the occurrence of which is associated with cancer. According to their application, tumor markers can be roughly divided as markers in clinical oncology and markers in pathology. In this review, only tumor markers in clinical oncology are going to be discussed. Current tumor markers in clinical oncology include (i) oncofetal antigens, (ii) placental proteins, (iii) hormones, (iv) enzymes, (v) tumor-associated antigens, (vi) special serum proteins, (vii) catecholamine metabolites, and (viii) miscellaneous markers. As to the literature, an ideal tumor marker should fulfil certain criteria - when using it as a test for detection of cancer disease: (1) positive results should occur in the early stages of the disease, (2) positive results should occur only in the patients with a specific type of malignancy, (3) positive results should occur in all patients with the same malignancy, (4) the measured values should correlate with the stage of the disease, (5) the measured values should correlate to the response to treatment, (6) the marker should be easy to measure. Most tumor markers available today meet several, but not all criteria. As a consequence of that, some criteria were chosen for the validation and proper selection of the most appropriate marker in a particular malignancy, and these are: (1) markers' sensitivity, (2) specificity, and (3) predictive values. Sensitivity expresses the mean probability of determining an elevated tumor

  11. Sequential enzymatic derivatization coupled with online microdialysis sampling for simultaneous profiling of mouse tumor extracellular hydrogen peroxide, lactate, and glucose.

    Science.gov (United States)

    Su, Cheng-Kuan; Tseng, Po-Jen; Chiu, Hsien-Ting; Del Vall, Andrea; Huang, Yu-Fen; Sun, Yuh-Chang

    2017-03-01

    Probing tumor extracellular metabolites is a vitally important issue in current cancer biology. In this study an analytical system was constructed for the in vivo monitoring of mouse tumor extracellular hydrogen peroxide (H 2 O 2 ), lactate, and glucose by means of microdialysis (MD) sampling and fluorescence determination in conjunction with a smart sequential enzymatic derivatization scheme-involving a loading sequence of fluorogenic reagent/horseradish peroxidase, microdialysate, lactate oxidase, pyruvate, and glucose oxidase-for step-by-step determination of sampled H 2 O 2 , lactate, and glucose in mouse tumor microdialysate. After optimization of the overall experimental parameters, the system's detection limit reached as low as 0.002 mM for H 2 O 2 , 0.058 mM for lactate, and 0.055 mM for glucose, based on 3 μL of microdialysate, suggesting great potential for determining tumor extracellular concentrations of lactate and glucose. Spike analyses of offline-collected mouse tumor microdialysate and monitoring of the basal concentrations of mouse tumor extracellular H 2 O 2 , lactate, and glucose, as well as those after imparting metabolic disturbance through intra-tumor administration of a glucose solution through a prior-implanted cannula, were conducted to demonstrate the system's applicability. Our results evidently indicate that hyphenation of an MD sampling device with an optimized sequential enzymatic derivatization scheme and a fluorescence spectrometer can be used successfully for multi-analyte monitoring of tumor extracellular metabolites in living animals. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Common Phenolic Metabolites of Flavonoids, but Not Their Unmetabolized Precursors, Reduce the Secretion of Vascular Cellular Adhesion Molecules by Human Endothelial Cells.

    Science.gov (United States)

    Warner, Emily F; Zhang, Qingzhi; Raheem, K Saki; O'Hagan, David; O'Connell, Maria A; Kay, Colin D

    2016-03-01

    Flavonoids have been implicated in the prevention of cardiovascular disease; however, their mechanisms of action have yet to be elucidated, possibly because most previous in vitro studies have used supraphysiological concentrations of unmetabolized flavonoids, overlooking their more bioavailable phenolic metabolites. We aimed to explore the effects of phenolic metabolites and their precursor flavonoids at physiologically achievable concentrations, in isolation and combination, on soluble vascular cellular adhesion molecule-1 (sVCAM-1). Fourteen phenolic acid metabolites and 6 flavonoids were screened at 1 μM for their relative effects on sVCAM-1 secretion by human umbilical vein endothelial cells stimulated with tumor necrosis factor alpha (TNF-α). The active metabolites were further studied for their response at different concentrations (0.01 μM-100 μM), structure-activity relationships, and effect on vascular cellular adhesion molecule (VCAM)-1 mRNA expression. In addition, the additive activity of the metabolites and flavonoids was investigated by screening 25 unique mixtures at cumulative equimolar concentrations of 1 μM. Of the 20 compounds screened at 1 μM, inhibition of sVCAM-1 secretion was elicited by 4 phenolic metabolites, of which protocatechuic acid (PCA) was the most active (-17.2%, P = 0.05). Investigations into their responses at different concentrations showed that PCA significantly reduced sVCAM-1 15.2-36.5% between 1 and 100 μM, protocatechuic acid-3-sulfate and isovanillic acid reduced sVCAM-1 levels 12.2-54.7% between 10 and 100 μM, and protocatechuic acid-4-sulfate and isovanillic acid-3-glucuronide reduced sVCAM-1 secretion 27.6% and 42.8%, respectively, only at 100 μM. PCA demonstrated the strongest protein response and was therefore explored for its effect on VCAM-1 mRNA, where 78.4% inhibition was observed only after treatment with 100 μM PCA. Mixtures of the metabolites showed no activity toward sVCAM-1, suggesting no additive

  13. Thermodynamics-based Metabolite Sensitivity Analysis in metabolic networks.

    Science.gov (United States)

    Kiparissides, A; Hatzimanikatis, V

    2017-01-01

    The increasing availability of large metabolomics datasets enhances the need for computational methodologies that can organize the data in a way that can lead to the inference of meaningful relationships. Knowledge of the metabolic state of a cell and how it responds to various stimuli and extracellular conditions can offer significant insight in the regulatory functions and how to manipulate them. Constraint based methods, such as Flux Balance Analysis (FBA) and Thermodynamics-based flux analysis (TFA), are commonly used to estimate the flow of metabolites through genome-wide metabolic networks, making it possible to identify the ranges of flux values that are consistent with the studied physiological and thermodynamic conditions. However, unless key intracellular fluxes and metabolite concentrations are known, constraint-based models lead to underdetermined problem formulations. This lack of information propagates as uncertainty in the estimation of fluxes and basic reaction properties such as the determination of reaction directionalities. Therefore, knowledge of which metabolites, if measured, would contribute the most to reducing this uncertainty can significantly improve our ability to define the internal state of the cell. In the present work we combine constraint based modeling, Design of Experiments (DoE) and Global Sensitivity Analysis (GSA) into the Thermodynamics-based Metabolite Sensitivity Analysis (TMSA) method. TMSA ranks metabolites comprising a metabolic network based on their ability to constrain the gamut of possible solutions to a limited, thermodynamically consistent set of internal states. TMSA is modular and can be applied to a single reaction, a metabolic pathway or an entire metabolic network. This is, to our knowledge, the first attempt to use metabolic modeling in order to provide a significance ranking of metabolites to guide experimental measurements. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier

  14. Growth regulator induced mobilization of 14C-metabolites into sunflower heads

    International Nuclear Information System (INIS)

    Prasad, T.G.; Udaykumar, M.; Rama Rao, S.; Krishna Sastry, K.S.

    1977-01-01

    Effect of exogenous application of mixtures of NAA, Ga and BA to the head in sunflower, after pollination and fertilization, on the mobilization of 14 C-metabolites was studied. Application of such mixtures increased mobilization and altered the pattern of translocation. TIBA applied to the head when the ray florets only had commenced opening also caused an increase in mobilization of 14 C-metabolites. Percent activity in relation to the activity fixed by the leaf increased from 36.8 in control to 63 in TIBA treated head. Field experiments conducted for 2 seasons also confirmed effectiveness of TIBA application in increasing percent seed filling and also 1000 grain weight. In sunflower it was possible to increase the sink capacity by application of growth regulators. (author)

  15. New trends in increase of efficacy of preoperative irradiation of malignant tumors

    Energy Technology Data Exchange (ETDEWEB)

    Berdov, B A; Dunchik, V N; Firsova, P P; Sidorchenkov, V O [Akademiya Meditsinskikh Nauk SSSR, Obninsk. Nauchno-Issledovatel' skij Inst. Meditsinskoj Radiologii

    1982-09-01

    It was shown the use of preoperative irradiation as a means altering the biologic nature of the tumor before the operation. The main attention is paid to development of methods for preoperative irradiation of malignant tumors, i.e. macrofractionated long-distance irradiation, intracavitary, combined irradiation, as well as to study of the effect of synchronization of tumor cells with 5-fluorouracil, of local heating of the tumor, and of electron-acceptor compounds application in the preoperative period. The results of combined treatment of 1007 patients with cancer of various localization: 121 patients with laryngeal carcinoma, 397 with mammary carcinoma, 100 with pulmonary carcinoma, 258 with gastric carcinoma, 131 with rectal carcinoma, and 114 with carcinoma of the urinary bladder were analyzed.

  16. New trends in increase of efficacy of preoperative irradiation of malignant tumors

    International Nuclear Information System (INIS)

    Berdov, B.A.; Dunchik, V.N.; Firsova, P.P.; Sidorchenkov, V.O.

    1982-01-01

    It was shown the use of preoperative irradiation as a means altering the biologic nature of the tumor before the operation. The main attention is paid to development of methods for preoperative irradiation of malignant tumors, i. e. macrofractionated long-distance irradiation, intracavitary, combined irradiation, as well as to study of the effect of synchronization of tumor cells with 5-fluorouracil, of local heating of the tumor, and of electron-acceptor compounds application in the preoperative period. The results of combined treatment of 1007 patients with cancer of various localization: 121 patients with laryngeal carcinoma, 397 with mammary carcinoma, 100 with pulmonary carcinoma, 258 with gastric carcinoma, 131 with rectal carcinoma, and 114 with carcinoma of the urinary bladder were analyzed

  17. Retention and effective diffusion of model metabolites on porous graphitic carbon.

    Science.gov (United States)

    Lunn, Daniel B; Yun, Young J; Jorgenson, James W

    2017-12-29

    The study of metabolites in biological samples is of high interest for a wide range of biological and pharmaceutical applications. Reversed phase liquid chromatography is a common technique used for the separation of metabolites, but it provides little retention for polar metabolites. An alternative to C18 bonded phases, porous graphitic carbon has the ability to provide significant retention for both non-polar and polar analytes. The goal of this work is to study the retention and effective diffusion properties of porous graphitic carbon, to see if it is suitable for the wide injection bands and long run times associated with long, packed capillary-scale separations. The retention of a set of standard metabolites was studied for both stationary phases over a wide range of mobile phase conditions. This data showed that porous graphitic carbon benefits from significantly increased retention (often >100 fold) under initial gradient conditions for these metabolites, suggesting much improved ability to focus a wide injection band at the column inlet. The effective diffusion properties of these columns were studied using peak-parking experiments with the standard metabolites under a wide range of retention conditions. Under the high retention conditions, which can be associated with retention after injection loading for gradient separations, D eff /D m ∼0.1 for both the C18-bonded and porous graphitic carbon columns. As C18 bonded particles are widely, and successfully utilized for long gradient separations without issue of increasing peak width from longitudinal diffusion, this suggests that porous graphitic carbon should be amenable for long runtime gradient separations as well. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Effects of 3,4-methylenedioxymethamphetamine (MDMA) and its main metabolites on cardiovascular function in conscious rats.

    Science.gov (United States)

    Schindler, Charles W; Thorndike, Eric B; Blough, Bruce E; Tella, Srihari R; Goldberg, Steven R; Baumann, Michael H

    2014-01-01

    The cardiovascular effects produced by 3,4-methylenedioxymethamphetamine (MDMA; 'Ecstasy') contribute to its acute toxicity, but the potential role of its metabolites in these cardiovascular effects is not known. Here we examined the effects of MDMA metabolites on cardiovascular function in rats. Radiotelemetry was employed to evaluate the effects of s.c. administration of racemic MDMA and its phase I metabolites on BP, heart rate (HR) and locomotor activity in conscious male rats. MDMA (1-20 mg·kg(-1)) produced dose-related increases in BP, HR and activity. The peak effects on HR occurred at a lower dose than peak effects on BP or activity. The N-demethylated metabolite, 3,4-methylenedioxyamphetamine (MDA), produced effects that mimicked those of MDMA. The metabolite 3,4-dihydroxymethamphetamine (HHMA; 1-10 mg·kg(-1)) increased HR more potently and to a greater extent than MDMA, whereas 3,4-dihydroxyamphetamine (HHA) increased HR, but to a lesser extent than HHMA. Neither dihydroxy metabolite altered motor activity. The metabolites 4-hydroxy-3-methoxymethamphetamine (HMMA) and 4-hydroxy-3-methoxyamphetamine (HMA) did not affect any of the parameters measured. The tachycardia produced by MDMA and HHMA was blocked by the β-adrenoceptor antagonist propranolol. Our results demonstrate that HHMA may contribute significantly to the cardiovascular effects of MDMA in vivo. As such, determining the molecular mechanism of action of HHMA and the other hydroxyl metabolites of MDMA warrants further study. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  19. Root jasmonic acid synthesis and perception regulate folivore-induced shoot metabolites and increase Nicotiana attenuata resistance.

    Science.gov (United States)

    Fragoso, Variluska; Rothe, Eva; Baldwin, Ian T; Kim, Sang-Gyu

    2014-06-01

    While jasmonic acid (JA) signaling is widely accepted as mediating plant resistance to herbivores, and the importance of the roots in plant defenses is recently being recognized, the role of root JA in the defense of above-ground parts remains unstudied. To restrict JA impairment to the roots, we micrografted wildtype Nicotiana attenuata shoots to the roots of transgenic plants impaired in JA signaling and evaluated ecologically relevant traits in the glasshouse and in nature. Root JA synthesis and perception are involved in regulating nicotine production in roots. Strikingly, systemic root JA regulated local leaf JA and abscisic acid (ABA) concentrations, which were associated with differences in nicotine transport from roots to leaves via the transpiration stream. Root JA signaling also regulated the accumulation of other shoot metabolites; together these account for differences in resistance against a generalist, Spodoptera littoralis, and a specialist herbivore, Manduca sexta. In N. attenuata's native habitat, silencing root JA synthesis increased the shoot damage inflicted by Empoasca leafhoppers, which are able to select natural jasmonate mutants. Silencing JA perception in roots also increased damage by Tupiocoris notatus. We conclude that attack from above-ground herbivores recruits root JA signaling to launch the full complement of plant defense responses. © 2014 Max Planck Society. New Phytologist © 2014 New Phytologist Trust.

  20. Metabolite Profiles of Diabetes Risk

    OpenAIRE

    Gerszten, Robert E.

    2013-01-01

    Metabolic diseases present particular difficulty for clinicians because they are often present for years before becoming clinically apparent. We investigated whether metabolite profiles can predict the development of diabetes in the Framingham Heart Study. Five branched-chain and aromatic amino acids had highly-significant associations with future diabetes, while a combination of three amino acids strongly predicted future diabetes by up to 12 years (>5-fold increased risk for individuals in ...

  1. Differential metabonomic profiles of primary hepatocellular carcinoma tumors from alcoholic liver disease, HBV-infected, and HCV-infected cirrhotic patients

    OpenAIRE

    Cao, Ding; Cai, Can; Ye, Mingxin; Gong, Junhua; Wang, Menghao; Li, Jinzheng; Gong, Jianping

    2017-01-01

    Our objective was to comparatively profile the metabolite composition of primary hepatocellular carcinoma (HCC) tumors from alcoholic liver disease (ALD), hepatitis B virus (HBV)-infected, and hepatitis C virus (HCV)-infected cirrhotic patients. Primary HCC tumors were collected from ALD, HBV-infected, and HCV-infected cirrhotic patients (n=20 each). High-resolution magic-angle spinning proton nuclear magnetic resonance spectroscopy and metabonomic data analysis were performed to compare HCC ...

  2. Synthesis of Linezolid Metabolites PNU-142300 and PNU-142586 toward the Exploration of Metabolite-Related Events.

    Science.gov (United States)

    Hanaya, Kengo; Matsumoto, Kazuaki; Yokoyama, Yuta; Kizu, Junko; Shoji, Mitsuru; Sugai, Takeshi

    2017-01-01

    Linezolid (1) is an oxazolidinone antibiotic that is partially metabolized in vivo via ring cleavage of its morpholine moiety to mainly form two metabolites, PNU-142300 (2) and PNU-142586 (3). It is supposed that accumulation of 2 and 3 in patients with renal insufficiency may cause thrombocytopenia, one of the adverse effects of linezolid. However, the poor availability of 2 and 3 has hindered further investigation of the clinical significance of the accumulation of these metabolites. In this paper, we synthesized metabolites 2 and 3 via a common synthetic intermediate, 4; this will encourage further exploration of events related to these metabolites and lead to improved clinical use of linezolid.

  3. Thermogenic effects of sibutramine and its metabolites

    Science.gov (United States)

    Connoley, Ian P; Liu, Yong-Ling; Frost, Ian; Reckless, Ian P; Heal, David J; Stock, Michael J

    1999-01-01

    The thermogenic activity of the serotonin and noradrenaline reuptake inhibitor sibutramine (BTS 54524; Reductil) was investigated by measuring oxygen consumption (VO2) in rats treated with sibutramine or its two pharmacologically-active metabolites. Sibutramine caused a dose-dependent rise in VO2, with a dose of 10 mg kg−1 of sibutramine or its metabolites producing increases of up to 30% that were sustained for at least 6 h, and accompanied by significant increases (0.5–1.0°C) in body temperature. Based on the accumulation in vivo of radiolabelled 2-deoxy-[3H]-glucose, sibutramine had little or no effect on glucose utilization in most tissues, but caused an 18 fold increase in brown adipose tissue (BAT). Combined high, non-selective doses (20 mg kg−1) of the β-adrenoceptor antagonists, atenolol and ICI 118551, inhibited completely the VO2 response to sibutramine, but the response was unaffected by low, β1-adrenoceptor-selective (atenolol) or β2-adrenoceptor-selective (ICI 118551) doses (1 mg kg−1). The ganglionic blocking agent, chlorisondamine (15 mg kg−1), inhibited completely the VO2 response to the metabolites of sibutramine, but had no effect on the thermogenic response to the β3-adrenoceptor-selective agonist BRL 35135. Similar thermogenic responses were produced by simultaneous injection of nisoxetine and fluoxetine at doses (30 mg kg−1) that had no effect on VO2 when injected individually. It is concluded that stimulation of thermogenesis by sibutramine requires central reuptake inhibition of both serotonin and noradrenaline, resulting in increased efferent sympathetic activation of BAT thermogenesis via β3-adrenoceptor, and that this contributes to the compound's activity as an anti-obesity agent. PMID:10217544

  4. Duodenal L cell density correlates with features of metabolic syndrome and plasma metabolites

    Directory of Open Access Journals (Sweden)

    Annieke C G van Baar

    2018-05-01

    Full Text Available Background: Enteroendocrine cells are essential for the regulation of glucose metabolism, but it is unknown whether they are associated with clinical features of metabolic syndrome (MetS and fasting plasma metabolites. Objective: We aimed to identify fasting plasma metabolites that associate with duodenal L cell, K cell and delta cell densities in subjects with MetS with ranging levels of insulin resistance. Research design and methods: In this cross-sectional study, we evaluated L, K and delta cell density in duodenal biopsies from treatment-naïve males with MetS using machine-learning methodology. Results: We identified specific clinical biomarkers and plasma metabolites associated with L cell and delta cell density. L cell density was associated with increased plasma metabolite levels including symmetrical dimethylarginine, 3-aminoisobutyric acid, kynurenine and glycine. In turn, these L cell-linked fasting plasma metabolites correlated with clinical features of MetS. Conclusions: Our results indicate a link between duodenal L cells, plasma metabolites and clinical characteristics of MetS. We conclude that duodenal L cells associate with plasma metabolites that have been implicated in human glucose metabolism homeostasis. Disentangling the causal relation between L cells and these metabolites might help to improve the (small intestinal-driven pathophysiology behind insulin resistance in human obesity.

  5. Proton magnetic spectroscopic imaging of the child's brain: the response of tumors to treatment

    International Nuclear Information System (INIS)

    Tzika, A.A.; Young Poussaint, T.; Astrakas, L.G.; Barnes, P.D.; Goumnerova, L.; Scott, R.M.; Black, P.McL.; Anthony, D.C.; Billett, A.L.; Tarbell, N.J.

    2001-01-01

    Our aim was to determine and/or predict response to treatment of brain tumors in children using proton magnetic resonance spectroscopic imaging (MRSI). We studied 24 patients aged 10 months to 24 years, using MRI and point-resolved spectroscopy (PRESS; TR 2000 TE 65 ms) with volume preselection and phase-encoding in two dimensions on a 1.5 T imager. Multiple logistic regression was used to establish independent predictors of active tumor growth. Biologically vital cell metabolites, such as N-acetyl aspartate and choline-containing compounds (Cho), were significantly different between tumor and control tissues (P<0.001). The eight brain tumors which responded to radiation or chemotherapy, exhibited lower Cho (P=0.05), higher total creatine (tCr) (P=0.02) and lower lactate and lipid (L) (P=0.04) than16 tumors which were not treated (except by surgery) or did not respond to treatment. The only significant independent predictor of active tumor growth was tCr (P<0.01). We suggest that tCr is useful in assessing response of brain tumors to treatment. (orig.)

  6. Tumor prevalence and biomarkers of genotoxicity in brown bullhead (Ameiurus nebulosus) in Chesapeake Bay tributaries

    Energy Technology Data Exchange (ETDEWEB)

    Pinkney, Alfred E., E-mail: Fred_Pinkney@fws.gov [U.S. Fish and Wildlife Service, Chesapeake Bay Field Office, 177 Admiral Cochrane Drive, Annapolis, MD 21401 (United States); Harshbarger, John C., E-mail: jcharshbarger@verizon.net [Department of Pathology, George Washington University Medical Center, 2300 I Street, NW, Washington, DC 20037 (United States); Karouna-Renier, Natalie K., E-mail: nkarouna@usgs.gov [U.S. Geological Survey, Patuxent Wildlife Research Center, BARC, Bldg. 308, Beltsville, MD 20705 (United States); Jenko, Kathryn [U.S. Geological Survey, Patuxent Wildlife Research Center, BARC, Bldg. 308, Beltsville, MD 20705 (United States); Balk, Lennart, E-mail: lennart.balk@itm.su.se [Department of Applied Environmental Science (ITM), Stockholm University SE-106 91, Stockholm (Sweden); Skarphe Latin-Small-Letter-Eth insdottir, Halldora; Liewenborg, Birgitta [Department of Applied Environmental Science (ITM), Stockholm University SE-106 91, Stockholm (Sweden); Rutter, Michael A., E-mail: mar36@psu.edu [Department of Mathematics, Penn State Erie, The Behrend College, 5091 Station Road, Erie, PA 16563 (United States)

    2011-12-01

    We surveyed four Chesapeake Bay tributaries for skin and liver tumors in brown bullhead (Ameiurus nebulosus). We focused on the South River, where the highest skin tumor prevalence (53%) in the Bay watershed had been reported. The objectives were to 1) compare tumor prevalence with nearby rivers (Severn and Rhode) and a more remote river (Choptank); 2) investigate associations between tumor prevalence and polynuclear aromatic hydrocarbons (PAHs) and alkylating agents; and 3) statistically analyze Chesapeake Bay bullhead tumor data from 1992 through 2008. All four South River collections exhibited high skin tumor prevalence (19% to 58%), whereas skin tumor prevalence was 2%, 10%, and 52% in the three Severn collections; 0% and 2% in the Choptank collections; and 5.6% in the Rhode collection. Liver tumor prevalence was 0% to 6% in all but one South River collection (20%) and 0% to 6% in the three other rivers. In a subset of samples, PAH-like biliary metabolites and {sup 32}P-DNA adducts were used as biomarkers of exposure and response to polycyclic aromatic compounds (PACs). Adducts from alkylating agents were detected as O6-methyl-2 Prime -deoxyguanosine (O6Me-dG) and O6-ethyl-2 Prime -deoxyguanosine (O6Et-dG) modified DNA. Bullheads from the contaminated Anacostia River were used as a positive control for DNA adducts. {sup 32}P-DNA adduct concentrations were significantly higher in Anacostia bullhead livers compared with the other rivers. We identified alkyl DNA adducts in bullhead livers from the South and Anacostia, but not the Choptank. Neither the PAH-like bile metabolite data, sediment PAH data, nor the DNA adduct data suggest an association between liver or skin tumor prevalence and exposure to PACs or alkylating agents in the South, Choptank, Severn, or Rhode rivers. Logistic regression analysis of the Chesapeake Bay database revealed that sex and length were significant covariates for liver tumors and length was a significant covariate for skin tumors

  7. Tumor prevalence and biomarkers of genotoxicity in brown bullhead (Ameiurus nebulosus) in Chesapeake Bay tributaries

    International Nuclear Information System (INIS)

    Pinkney, Alfred E.; Harshbarger, John C.; Karouna-Renier, Natalie K.; Jenko, Kathryn; Balk, Lennart; Skarphéðinsdóttir, Halldóra; Liewenborg, Birgitta; Rutter, Michael A.

    2011-01-01

    We surveyed four Chesapeake Bay tributaries for skin and liver tumors in brown bullhead (Ameiurus nebulosus). We focused on the South River, where the highest skin tumor prevalence (53%) in the Bay watershed had been reported. The objectives were to 1) compare tumor prevalence with nearby rivers (Severn and Rhode) and a more remote river (Choptank); 2) investigate associations between tumor prevalence and polynuclear aromatic hydrocarbons (PAHs) and alkylating agents; and 3) statistically analyze Chesapeake Bay bullhead tumor data from 1992 through 2008. All four South River collections exhibited high skin tumor prevalence (19% to 58%), whereas skin tumor prevalence was 2%, 10%, and 52% in the three Severn collections; 0% and 2% in the Choptank collections; and 5.6% in the Rhode collection. Liver tumor prevalence was 0% to 6% in all but one South River collection (20%) and 0% to 6% in the three other rivers. In a subset of samples, PAH-like biliary metabolites and 32 P-DNA adducts were used as biomarkers of exposure and response to polycyclic aromatic compounds (PACs). Adducts from alkylating agents were detected as O6-methyl-2′-deoxyguanosine (O6Me-dG) and O6-ethyl-2′-deoxyguanosine (O6Et-dG) modified DNA. Bullheads from the contaminated Anacostia River were used as a positive control for DNA adducts. 32 P-DNA adduct concentrations were significantly higher in Anacostia bullhead livers compared with the other rivers. We identified alkyl DNA adducts in bullhead livers from the South and Anacostia, but not the Choptank. Neither the PAH-like bile metabolite data, sediment PAH data, nor the DNA adduct data suggest an association between liver or skin tumor prevalence and exposure to PACs or alkylating agents in the South, Choptank, Severn, or Rhode rivers. Logistic regression analysis of the Chesapeake Bay database revealed that sex and length were significant covariates for liver tumors and length was a significant covariate for skin tumors. - Highlights: ► We

  8. Radiotherapy, especially at young age, increases the risk for de novo brain tumors in patients treated for pituitary tumors

    NARCIS (Netherlands)

    Burman, Pia; Van Beek, André P.; Biller, Beverly M.K.; Camacho-Hubner, Cecilia; Mattsson, Anders F.

    Background: Excess mortality due to de novo malignant brain tumors was recently found in a national study of patients with hypopituitarism following treatment of pituitary tumors. Here, we examined a larger multi-national cohort to corroborate and extend this observation. Objective: To investigate

  9. Identification of drug metabolites in human plasma or serum integrating metabolite prediction, LC-HRMS and untargeted data processing

    NARCIS (Netherlands)

    Jacobs, P.L.; Ridder, L.; Ruijken, M.; Rosing, H.; Jager, N.G.L.; Beijnen, J.H.; Bas, R.R.; Dongen, W.D. van

    2013-01-01

    Background: Comprehensive identification of human drug metabolites in first-in-man studies is crucial to avoid delays in later stages of drug development. We developed an efficient workflow for systematic identification of human metabolites in plasma or serum that combines metabolite prediction,

  10. Metabolically stable bradykinin B2 receptor agonists enhance transvascular drug delivery into malignant brain tumors by increasing drug half-life

    Directory of Open Access Journals (Sweden)

    Glen Daniel

    2009-05-01

    Full Text Available Abstract Background The intravenous co-infusion of labradimil, a metabolically stable bradykinin B2 receptor agonist, has been shown to temporarily enhance the transvascular delivery of small chemotherapy drugs, such as carboplatin, across the blood-brain tumor barrier. It has been thought that the primary mechanism by which labradimil does so is by acting selectively on tumor microvasculature to increase the local transvascular flow rate across the blood-brain tumor barrier. This mechanism of action does not explain why, in the clinical setting, carboplatin dosing based on patient renal function over-estimates the carboplatin dose required for target carboplatin exposure. In this study we investigated the systemic actions of labradimil, as well as other bradykinin B2 receptor agonists with a range of metabolic stabilities, in context of the local actions of the respective B2 receptor agonists on the blood-brain tumor barrier of rodent malignant gliomas. Methods Using dynamic contrast-enhanced MRI, the pharmacokinetics of gadolinium-diethyltriaminepentaacetic acid (Gd-DTPA, a small MRI contrast agent, were imaged in rodents bearing orthotopic RG-2 malignant gliomas. Baseline blood and brain tumor tissue pharmacokinetics were imaged with the 1st bolus of Gd-DTPA over the first hour, and then re-imaged with a 2nd bolus of Gd-DTPA over the second hour, during which normal saline or a bradykinin B2 receptor agonist was infused intravenously for 15 minutes. Changes in mean arterial blood pressure were recorded. Imaging data was analyzed using both qualitative and quantitative methods. Results The decrease in systemic blood pressure correlated with the known metabolic stability of the bradykinin B2 receptor agonist infused. Metabolically stable bradykinin B2 agonists, methionine-lysine-bradykinin and labradimil, had differential effects on the transvascular flow rate of Gd-DTPA across the blood-brain tumor barrier. Both methionine

  11. Association of plasma IL-6 and Hsp70 with HRV at different levels of PAHs metabolites.

    Directory of Open Access Journals (Sweden)

    Jian Ye

    Full Text Available Exposure to polycyclic aromatic hydrocarbons (PAHs is associated with reduced heart rate variability (HRV, a strong predictor of cardiovascular diseases, but the mechanism is not well understood.We hypothesized that PAHs might induce systemic inflammation and stress response, contributing to altered cardiac autonomic function.HRV indices were measured using a 3-channel digital Holter monitor in 800 coke oven workers. Plasma levels of interleukin-6 (IL-6 and heat shock protein 70 (Hsp70 were determined using ELISA. Twelve urinary PAHs metabolites (OH-PAHs were measured by gas chromatography-mass spectrometry.We found that significant dose-dependent relationships between four urinary OH-PAHs and IL-6 (all Ptrend<0.05; and an increase in quartiles of IL-6 was significantly associated with a decrease in total power (TP and low frequency (LF (Ptrend = 0.014 and 0.006, respectively. In particular, elevated IL-6 was associated in a dose-dependent manner with decreased TP and LF in the high-PAHs metabolites groups (all Ptrend<0.05, but not in the low-PAHs metabolites groups. No significant association between Hsp70 and HRV in total population was found after multivariate adjustment. However, increased Hsp70 was significantly associated with elevated standard deviation of NN intervals (SDNN, TP and LF in the low-PAHs metabolites groups (all Ptrend<0.05. We also observed that both IL-6 and Hsp70 significantly interacted with multiple PAHs metabolites in relation to HRV.In coke oven workers, increased IL-6 was associated with a dose-response decreased HRV in the high-PAHs metabolites groups, whereas increase of Hsp70 can result in significant dose-related increase in HRV in the low-PAHs metabolites groups.

  12. Steady-state metabolite concentrations reflect a balance between maximizing enzyme efficiency and minimizing total metabolite load.

    Directory of Open Access Journals (Sweden)

    Naama Tepper

    Full Text Available Steady-state metabolite concentrations in a microorganism typically span several orders of magnitude. The underlying principles governing these concentrations remain poorly understood. Here, we hypothesize that observed variation can be explained in terms of a compromise between factors that favor minimizing metabolite pool sizes (e.g. limited solvent capacity and the need to effectively utilize existing enzymes. The latter requires adequate thermodynamic driving force in metabolic reactions so that forward flux substantially exceeds reverse flux. To test this hypothesis, we developed a method, metabolic tug-of-war (mTOW, which computes steady-state metabolite concentrations in microorganisms on a genome-scale. mTOW is shown to explain up to 55% of the observed variation in measured metabolite concentrations in E. coli and C. acetobutylicum across various growth media. Our approach, based strictly on first thermodynamic principles, is the first method that successfully predicts high-throughput metabolite concentration data in bacteria across conditions.

  13. Novel Sulfur Metabolites of Garlic Attenuate Cardiac Hypertrophy and Remodeling through Induction of Na+/K+-ATPase Expression.

    Science.gov (United States)

    Khatua, Tarak N; Borkar, Roshan M; Mohammed, Soheb A; Dinda, Amit K; Srinivas, R; Banerjee, Sanjay K

    2017-01-01

    Epidemiologic studies show an inverse correlation between garlic consumption and progression of cardiovascular disease. However, the molecular basis for the beneficial effect of garlic on the heart is not known. Therefore, the objective of the present study was to (1) investigate the effect of raw garlic on isoproterenol (Iso) induced cardiac hypertrophy (2) find the active metabolites of garlic responsible for the beneficial effect. Cardiac hypertrophy was induced in rats by subcutaneous single injection of Iso 5 mg kg -1 day -1 for 15 days and the effect of garlic (250 mg/kg/day orally) was evaluated. Garlic metabolites in in vivo were identified by LC/MS study. The effect of garlic and its metabolites were evaluated against hypertrophy in H9C2 cells. Garlic normalized cardiac oxidative stress after Iso administration. Cardiac pathology and mitochondrial enzyme activities were improved in hypertrophy heart after garlic administration. Decreased Na + /K + -ATPase protein level that observed in hypertrophy heart was increased after garlic administration. We identified three garlic metabolites in rat serum. To confirm the role of garlic metabolites on cardiac hypertrophy, Na + /K + -ATPase expression and intracellular calcium levels were measured after treating H9C2 cells with raw garlic and two of its active metabolites, allyl methyl sulfide and allyl methyl sulfoxide. Raw garlic and both metabolites increased Na + /K + -ATPase protein level and decreased intracellular calcium levels and cell size in Iso treated H9C2 cells. This antihypertrophic effect of garlic and its sulfur metabolites were lost in H9C2 cells in presence of Na + /K + -ATPase inhibitor. In conclusion, garlic and its active metabolites increased Na + /K + -ATPase in rat heart, and attenuated cardiac hypertrophy and associated remodeling. Our data suggest that identified new garlic metabolites may be useful for therapeutic intervention against cardiac hypertrophy.

  14. Prostate Tumor Growth Can Be Modulated by Dietarily Targeting the 15-Lipoxygenase-1 and Cyclooxygenase-2 Enzymes

    Directory of Open Access Journals (Sweden)

    Uddhav P. Kelavkar

    2009-07-01

    Full Text Available The main objectives of our study were to determine the bioavailability of omega-3 (ω-3 to the tumor, to understand its mechanisms, and to determine the feasibility of targeting the ω-6 polyunsaturated fatty acids (PUFAs metabolizing 15-lipoxygenase-1 (15-LO-1 and cyclooxygenase-2 (COX-2 pathways. Nude mice injected subcutaneously with LAPC-4 prostate cancer cells were randomly divided into three different isocaloric (and same percent [%] of total fat diet groups: high ω-6 linoleic acid (LA, high ω-3 stearidonic acid (SDA PUFAs, and normal (control diets. Tumor growth and apoptosis were examined as end points after administration of short-term (5 weeks ω-3 and ω-6 fatty acid diets. Tumor tissue membranes were examined for growth, lipids, enzyme activities, apoptosis, and proliferation. Tumors from the LA diet-fed mice exhibited the most rapid growth compared with tumors from the control and SDA diet-fed mice. Moreover, a diet switch from LA to SDA caused a dramatic decrease in the growth of tumors in 5 weeks, whereas tumors grew more aggressively when mice were switched from an SDA to an LA diet. Evaluating tumor proliferation (Ki-67 and apoptosis (caspase-3 in mice fed the LA and SDA diets suggested increased percentage proliferation index from the ω-6 diet-fed mice compared with the tumors from the ω-3 SDA-fed mice. Further, increased apoptosis was observed in tumors from ω-3 SDA diet-fed mice versus tumors from ω-6 diet-fed mice. Levels of membrane phospholipids of red blood cells reflected dietary changes and correlated with the levels observed in tumors. Linoleic or arachidonic acid and metabolites (eicosanoid/prostaglandins were analyzed for 15-LO-1 and COX-2 activities by high-performance liquid chromatography. We also examined the percent unsaturated or saturated fatty acids in the total phospholipids, PUFA ω-6/ω-3 ratios, and other major enzymes (elongase, Delta [Δ]-5-desaturase, and Δ-6-desaturase of ω-6 catabolic

  15. Dietary quercetin exacerbates the development of estrogen-induced breast tumors in female ACI rats

    International Nuclear Information System (INIS)

    Singh, Bhupendra; Mense, Sarah M.; Bhat, Nimee K.; Putty, Sandeep; Guthiel, William A.; Remotti, Fabrizio; Bhat, Hari K.

    2010-01-01

    Phytoestrogens are plant compounds that structurally mimic the endogenous estrogen 17β-estradiol (E 2 ). Despite intense investigation, the net effect of phytoestrogen exposure on the breast remains unclear. The objective of the current study was to examine the effects of quercetin on E 2 -induced breast cancer in vivo. Female ACI rats were given quercetin (2.5 g/kg food) for 8 months. Animals were monitored weekly for palpable tumors, and at the end of the experiment, rats were euthanized, breast tumor and different tissues excised so that they could be examined for histopathologic changes, estrogen metabolic activity and oxidant stress. Quercetin alone did not induce mammary tumors in female ACI rats. However, in rats implanted with E 2 pellets, co-exposure to quercetin did not protect rats from E 2 -induced breast tumor development with 100% of the animals developing breast tumors within 8 months of treatment. No changes in serum quercetin levels were observed in quercetin and quercetin + E 2 -treated groups at the end of the experiment. Tumor latency was significantly decreased among rats from the quercetin + E 2 group relative to those in the E 2 group. Catechol-O-methyltransferase (COMT) activity was significantly downregulated in quercetin-exposed mammary tissue. Analysis of 8-isoprostane F 2α (8-iso-PGF 2α ) levels as a marker of oxidant stress showed that quercetin did not decrease E 2 -induced oxidant stress. These results indicate that quercetin (2.5 g/kg food) does not confer protection against breast cancer, does not inhibit E 2 -induced oxidant stress and may exacerbate breast carcinogenesis in E 2 -treated ACI rats. Inhibition of COMT activity by quercetin may expose breast cells chronically to E 2 and catechol estrogens. This would permit longer exposure times to the carcinogenic metabolites of E 2 and chronic exposure to oxidant stress as a result of metabolic redox cycling to estrogen metabolites, and thus quercetin may exacerbate E 2 -induced

  16. Functional metabolite assemblies—a review

    Science.gov (United States)

    Aizen, Ruth; Tao, Kai; Rencus-Lazar, Sigal; Gazit, Ehud

    2018-05-01

    Metabolites are essential for the normal operation of cells and fulfill various physiological functions. It was recently found that in several metabolic disorders, the associated metabolites could self-assemble to generate amyloid-like structures, similar to canonical protein amyloids that have a role in neurodegenerative disorders. Yet, assemblies with typical amyloid characteristics are also known to have physiological function. In addition, many non-natural proteins and peptides presenting amyloidal properties have been used for the fabrication of functional nanomaterials. Similarly, functional metabolite assemblies are also found in nature, demonstrating various physiological roles. A notable example is the structural color formed by guanine crystals or fluorescent crystals in feline eyes responsible for enhanced night vision. Moreover, some metabolites have been used for the in vitro fabrication of functional materials, such as glycine crystals presenting remarkable piezoelectric properties or indigo films used to assemble organic semi-conductive electronic devices. Therefore, we believe that the study of metabolite assemblies is not only important in order to understand their role in normal physiology and in pathology, but also paves a new route in exploring the fabrication of organic, bio-compatible materials.

  17. Tailored imaging of islet cell tumors of the pancreas amidst increasing options

    NARCIS (Netherlands)

    Fiebrich, Helle-Brit; van Asselt, Sophie J.; Brouwers, Adrienne H.; van Dullemen, Hendrik M.; Pijl, Milan E. J.; Elsinga, Philip H.; Links, Thera P.; de Vries, Elisabeth G. E.

    Pancreatic islet cell tumors are neuroendocrine tumors, which can produce hormones and can arise as part of multiple endocrine neoplasia type 1 or von-Hippel-Lindau-disease, two genetically well-defined hereditary cancer syndromes. Currently, technical innovation improves conventional and specific

  18. Steroid metabolism and steroid receptors in dimethylbenz(a)anthracene-induced rat mammary tumors

    International Nuclear Information System (INIS)

    Eechaute, W.; de Thibault de Boesinghe, L.; Lacroix, E.

    1983-01-01

    Mammary tumors were induced in rats by treatment with dimethylbenz(a)anthracene. Cytosol receptors for 17 beta-estradiol and progesterone were estimated by means of sucrose density gradient centrifugation, and the metabolism of [ 14 C]progesterone, [ 14 C]testosterone, and 17 beta-[ 14 C]estradiol by minced tumor tissue was studied. The estradiol receptor (ER) and progesterone receptor (PR) levels of the tumors varied considerably from less than 5 to 48 fmol/mg protein for ER and to 243 fmol/mg protein for PR. Considering a receptor level lower than 5 fmol/mg protein to be negative, four groups of tumors were found: ER-negative and PR-negative; ER-positive and PR-negative; ER-negative and PR-positive; ER-positive and PR-positive. In dimethylbenz(a)anthracene-induced tumor tissue, high 5 alpha-reductase and 20 alpha-hydroxysteroid dehydrogenase activities and somewhat lower 3 alpha-hydroxysteroid dehydrogenase and 6 alpha-hydroxylase activities were found. No aromatization was detectable. Steroids, especially estradiol, were also metabolized in a high degree to unextractable metabolites. It was concluded that steroid metabolism of dimethylbenz(a)anthracene-induced rat mammary tumors was not related to the ER and/or PR concentration of tumor tissue

  19. Metabolite damage and repair in metabolic engineering design

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jiayi; Jeffryes, James G.; Henry, Christopher S.; Bruner, Steven D.; Hanson, Andrew D.

    2017-11-01

    The necessarily sharp focus of metabolic engineering and metabolic synthetic biology on pathways and their fluxes has tended to divert attention from the damaging enzymatic and chemical side-reactions that pathway metabolites can undergo. Although historically overlooked and underappreciated, such metabolite damage reactions are now known to occur throughout metabolism and to generate (formerly enigmatic) peaks detected in metabolomics datasets. It is also now known that metabolite damage is often countered by dedicated repair enzymes that undo or prevent it. Metabolite damage and repair are highly relevant to engineered pathway design: metabolite damage reactions can reduce flux rates and product yields, and repair enzymes can provide robust, host-independent solutions. Herein, after introducing the core principles of metabolite damage and repair, we use case histories to document how damage and repair processes affect efficient operation of engineered pathways - particularly those that are heterologous, non-natural, or cell-free. We then review how metabolite damage reactions can be predicted, how repair reactions can be prospected, and how metabolite damage and repair can be built into genome-scale metabolic models. Lastly, we propose a versatile 'plug and play' set of well-characterized metabolite repair enzymes to solve metabolite damage problems known or likely to occur in metabolic engineering and synthetic biology projects.

  20. Flagella-Driven Flows Circumvent Diffusive Bottlenecks that Inhibit Metabolite Exchange

    Science.gov (United States)

    Short, Martin; Solari, Cristian; Ganguly, Sujoy; Kessler, John; Goldstein, Raymond; Powers, Thomas

    2006-03-01

    The evolution of single cells to large and multicellular organisms requires matching the organisms' needs to the rate of exchange of metabolites with the environment. This logistic problem can be a severe constraint on development. For organisms with a body plan that approximates a spherical shell, such as colonies of the volvocine green algae, the required current of metabolites grows quadratically with colony radius whereas the rate at which diffusion can exchange metabolites grows only linearly with radius. Hence, there is a bottleneck radius beyond which the diffusive current cannot keep up with metabolic demands. Using Volvox carteri as a model organism, we examine experimentally and theoretically the role that advection of fluid by surface-mounted flagella plays in enhancing nutrient uptake. We show that fluid flow driven by the coordinated beating of flagella produces a convective boundary layer in the concentration of a diffusing solute which in turn renders the metabolite exchange rate quadratic in the colony radius. This enhanced transport circumvents the diffusive bottleneck, allowing increase in size and thus evolutionary transitions to multicellularity in the Volvocales.

  1. Fate of cyanobacteria and their metabolites during water treatment sludge management processes

    International Nuclear Information System (INIS)

    Ho, Lionel; Dreyfus, Jennifer; Boyer, Justine; Lowe, Todd; Bustamante, Heriberto; Duker, Phil; Meli, Tass; Newcombe, Gayle

    2012-01-01

    Cyanobacteria and their metabolites are an issue for water authorities; however, little is known as to the fate of coagulated cyanobacterial-laden sludge during waste management processes in water treatment plants (WTPs). This paper provides information on the cell integrity of Anabaena circinalis and Cylindrospermopsis raciborskii during: laboratory-scale coagulation/sedimentation processes; direct filtration and backwashing procedures; and cyanobacterial-laden sludge management practices. In addition, the metabolites produced by A. circinalis (geosmin and saxitoxins) and C. raciborskii (cylindrospermopsin) were investigated with respect to their release (and possible degradation) during each of the studied processes. Where sedimentation was used, coagulation effectively removed cyanobacteria (and intracellular metabolites) without any considerable exertion on coagulant demand. During direct filtration experiments, cyanobacteria released intracellular metabolites through a stagnation period, suggesting that more frequent backwashing of filters may be required to prevent floc build-up and metabolite release. Cyanobacteria appeared to be protected within the flocs, with minimal damage during backwashing of the filters. Within coagulant sludge, cyanobacteria released intracellular metabolites into the supernatant after 3 d, even though cells remained viable up to 7 d. This work has improved the understanding of cyanobacterial metabolite risks associated with management of backwash water and sludge and is likely to facilitate improvements at WTPs, including increased monitoring and the application of treatment strategies and operational practices, with respect to cyanobacterial-laden sludge and/or supernatant recycle management. - Highlights: ► Coagulation removed cyanobacteria without an additional exertion on coagulant demand. ► During a stagnation period in direct filtration intracellular metabolites were released. ► Cyanobacterial cells were not damaged

  2. In vivo 1H-spectroscopy of human intracranial tumors at 1.5 tesla. Preliminary experience at a clinical installation

    DEFF Research Database (Denmark)

    Henriksen, O; Wieslander, S; Gjerris, F

    1991-01-01

    Magnetic resonance spectroscopy (MRS) may contribute to the characterization of intracranial tumors in vivo. Volume selective water suppressed proton spectroscopy offers the possibility to study a number of metabolites in the brain including choline (CHO), creatinine/phosphocreatinine (CR/PCR), N...

  3. Estrogenic activities of diuron metabolites in female Nile tilapia (Oreochromis niloticus).

    Science.gov (United States)

    Pereira, Thiago Scremin Boscolo; Boscolo, Camila Nomura Pereira; Felício, Andreia Arantes; Batlouni, Sergio Ricardo; Schlenk, Daniel; de Almeida, Eduardo Alves

    2016-03-01

    Some endocrine disrupting chemicals (EDCs) can alter the estrogenic activities of the organism by directly interacting with estrogen receptors (ER) or indirectly through the hypothalamus-pituitary-gonadal axis. Recent studies in male Nile tilapia (Oreochromis niloticus) indicated that diuron may have anti-androgenic activity augmented by biotransformation. In this study, the effects of diuron and three of its metabolites were evaluated in female tilapia. Sexually mature female fish were exposed for 25 days to diuron, as well as to its metabolites 3,4-dichloroaniline (DCA), 3,4-dichlorophenylurea (DCPU) and 3,4-dichlorophenyl-N-methylurea (DCPMU), at concentrations of 100 ng/L. Diuron metabolites caused increases in E2 plasma levels, gonadosomatic indices and in the percentage of final vitellogenic oocytes. Moreover, diuron and its metabolites caused a decrease in germinative cells. Significant differences in plasma concentrations of the estrogen precursor and gonadal regulator17α-hydroxyprogesterone (17α-OHP) were not observed. These results show that diuron metabolites had estrogenic effects potentially mediated through enhanced estradiol biosynthesis and accelerated the ovarian development of O. niloticus females. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Urinary excretion of androgen metabolites, comparison with excretion of radioactive metabolites after injection of [4-14C]testosterone

    International Nuclear Information System (INIS)

    Deslypere, J.P.; Sayed, A.; Vermeulen, A.; Wiers, P.W.

    1981-01-01

    The influence of age on the metabolic pattern of [4- 14 C]testosterone was studied in 20 young and 8 elderly males and compared to the metabolic pattern of endogenous androgens; the latter was also studied in 16 young and 8 elderly women. In both young and elderly males, androsterone and aetiocholanolone glucuronide represent 65% of [4- 14 C]testosterone metabolites: together with their suephoconjugates as well as with 5α- and 5β-androstane-3α, 17β-diol they represent even more than 75% of total urinary metabolites. The 5α/5β ratio of metabolites of [4- 14 C]testosterone was significantly (P 14 C]testosterone metabolites was generally higher than the ratio of metabolites of endogenous androgens, suggesting that the transformation of T to ring A saturated metabolites occurs at least partially in another compartment than the transformation of DHEA to these metabolites. For both [4- 14 C]testosterone and endogenous androgen metabolites we observed a statistically significant reduction of the 5α/5β ratio with age, a general phenomenon in both males and females. This reduction concern also 11-OH-androst-4-ene-3.17-dione metabolism. Neither sex hormone levels, nor specific binding seems to determine this age dependent shift; neither is there convincing evidence for latent hypothyroisism or liver dysfunction in the elderly. An age associated primary decrease of the 5α-reductase activity seems the most likely explanation. (author)

  5. Simultaneous determination of ethanol's four types of non-oxidative metabolites in human whole blood by liquid chromatography tandem mass spectrometry

    DEFF Research Database (Denmark)

    Zhang, Xinyu; Zheng, Feng; Lin, Zebin

    2017-01-01

    The importance of ethanol non-oxidative metabolites as the specific biomarkers of alcohol consumption in clinical and forensic settings is increasingly acknowledged. Simultaneous determination of these metabolites can provide a wealth of information like drinking habit and history, but it was dif......The importance of ethanol non-oxidative metabolites as the specific biomarkers of alcohol consumption in clinical and forensic settings is increasingly acknowledged. Simultaneous determination of these metabolites can provide a wealth of information like drinking habit and history...

  6. Secondary metabolites in fungus-plant interactions

    Science.gov (United States)

    Pusztahelyi, Tünde; Holb, Imre J.; Pócsi, István

    2015-01-01

    Fungi and plants are rich sources of thousands of secondary metabolites. The genetically coded possibilities for secondary metabolite production, the stimuli of the production, and the special phytotoxins basically determine the microscopic fungi-host plant interactions and the pathogenic lifestyle of fungi. The review introduces plant secondary metabolites usually with antifungal effect as well as the importance of signaling molecules in induced systemic resistance and systemic acquired resistance processes. The review also concerns the mimicking of plant effector molecules like auxins, gibberellins and abscisic acid by fungal secondary metabolites that modulate plant growth or even can subvert the plant defense responses such as programmed cell death to gain nutrients for fungal growth and colonization. It also looks through the special secondary metabolite production and host selective toxins of some significant fungal pathogens and the plant response in form of phytoalexin production. New results coming from genome and transcriptional analyses in context of selected fungal pathogens and their hosts are also discussed. PMID:26300892

  7. Increased suppression of oncolytic adenovirus carrying mutant k5 on colorectal tumor

    International Nuclear Information System (INIS)

    Fan Junkai; Xiao Tian; Gu Jinfa; Wei Na; He Lingfeng; Ding Miao; Liu Xinyuan

    2008-01-01

    Angiogenesis plays a key role in the development of a wide variety of malignant tumors. The approach of targeting antiangiogenesis has become an important field of cancer gene therapy. In this study, the antiangiogenesis protein K5 (the kringle 5 of human plasminogen) has been mutated by changing leucine71 to arginine to form mK5. Then the ZD55-mK5, which is an oncolytic adenovirus expressing mK5, was constructed. It showed stronger inhibition on proliferation of human umbilical vein endothelial cell. Moreover, in tube formation and embryonic chorioallantoic membrane assay, ZD55-mK5 exhibited more effective antiangiogenesis than ZD55-K5. In addition, ZD55-mK5 generated obvious suppression on the growth of colorectal tumor xenografts and prolonged the life span of nude mice. These results indicate that ZD55-mK5 is a potent agent for inhibiting the tumor angiogenesis and tumor growth

  8. Acute toxicity and mutagenesis of three metabolites mixture of nitrobenzene in mice.

    Science.gov (United States)

    Wang, Guixia; Zhang, Xiuying; Yao, Chunzhu; Tian, Meizhan

    2011-03-01

    Nitrobenzene is a synthetic compound, more than 95% of which is used in the production of aniline. Nitrobenzene has been demonstrated to be substantially metabolized to p-Nitrophenol, p-Aminophenol and p-Nitroaniline in food animals (e.g., bovines, fowls). There have been no studies on the acute toxicity and the mutagenesis of the mixture of the three metabolites mentioned above. The aim of the present study is to testify the acute toxicity and the mutagenesis of the three metabolites mixture. Seventy Kunming mice (half male, half female) received an intragastric administration exposure to metabolites-containing suspension of 750, 638, 542, 461, 392, 333 mg kg(-1) body weight and 0.5% sodium carboxymethyl cellulose (control), followed by a 14-day observation. The medial lethal dose (LD(50)) concentration for nitrobenzene metabolites mixture in this study was 499.92 mg/kg. Their mutagenic toxicology was studied through micronucleus and sperm abnormality test. Kunming mice were twice intragastrically exposed to 1/5 LD(50), 1/10 LD(50), 1/20 LD(50) mg kg(-1) nitrobenzene metabolites-containing suspension spaced 24-h apart. Cyclophosphamide, pure water and sodium carboxymethyl cellulose served as doses of the positive group, the negative group and the solvent control group, respectively. The incidence of micronucleus and sperm abnormality increased significantly in the 1/5 LD(50) and 1/10 LD(50) group compared with the negative and solvent control group. A dose-related increase in the incidence of micronucleus and sperm abnormality was noted. In conclusion, the three metabolites mixture of nitrobenzene was secondary toxicity and mutagenic substances in mice.

  9. SPE-NMR metabolite sub-profiling of urine

    NARCIS (Netherlands)

    Jacobs, D.M.; Spiesser, L.; Garnier, M.; Roo, de N.; Dorsten, van F.; Hollebrands, B.; Velzen, van E.; Draijer, R.; Duynhoven, van J.P.M.

    2012-01-01

    NMR-based metabolite profiling of urine is a fast and reproducible method for detection of numerous metabolites with diverse chemical properties. However, signal overlap in the (1)H NMR profiles of human urine may hamper quantification and identification of metabolites. Therefore, a new method has

  10. Metabolite damage and repair in metabolic engineering design.

    Science.gov (United States)

    Sun, Jiayi; Jeffryes, James G; Henry, Christopher S; Bruner, Steven D; Hanson, Andrew D

    2017-11-01

    The necessarily sharp focus of metabolic engineering and metabolic synthetic biology on pathways and their fluxes has tended to divert attention from the damaging enzymatic and chemical side-reactions that pathway metabolites can undergo. Although historically overlooked and underappreciated, such metabolite damage reactions are now known to occur throughout metabolism and to generate (formerly enigmatic) peaks detected in metabolomics datasets. It is also now known that metabolite damage is often countered by dedicated repair enzymes that undo or prevent it. Metabolite damage and repair are highly relevant to engineered pathway design: metabolite damage reactions can reduce flux rates and product yields, and repair enzymes can provide robust, host-independent solutions. Herein, after introducing the core principles of metabolite damage and repair, we use case histories to document how damage and repair processes affect efficient operation of engineered pathways - particularly those that are heterologous, non-natural, or cell-free. We then review how metabolite damage reactions can be predicted, how repair reactions can be prospected, and how metabolite damage and repair can be built into genome-scale metabolic models. Lastly, we propose a versatile 'plug and play' set of well-characterized metabolite repair enzymes to solve metabolite damage problems known or likely to occur in metabolic engineering and synthetic biology projects. Copyright © 2017 International Metabolic Engineering Society. All rights reserved.

  11. Trophic transfer of pyrene metabolites between aquatic invertebrates

    International Nuclear Information System (INIS)

    Carrasco Navarro, V.; Leppänen, M.T.; Kukkonen, J.V.K.; Godoy Olmos, S.

    2013-01-01

    The trophic transfer of pyrene metabolites was studied using Gammarus setosus as a predator and the invertebrates Lumbriculus variegatus and Chironomus riparius as prey. The results obtained by liquid scintillation counting confirmed that the pyrene metabolites produced by the aquatic invertebrates L. variegatus and C. riparius were transferred to G. setosus through the diet. More detailed analyses by liquid chromatography discovered that two of the metabolites produced by C. riparius appeared in the chromatograms of G. setosus tissue extracts, proving their trophic transfer. These metabolites were not present in chromatograms of G. setosus exclusively exposed to pyrene. The present study supports the trophic transfer of PAH metabolites between benthic macroinvertebrates and common species of an arctic amphipod. As some PAH metabolites are more toxic than the parent compounds, the present study raises concerns about the consequences of their trophic transfer and the fate and effects of PAHs in natural environments. - Highlights: ► The trophic transfer of pyrene metabolites between invertebrates was evaluated. ► Biotransformation of pyrene by L. variegatus and C. riparius is different. ► Metabolites produced by L. variegatus and C. riparius are transferred to G. setosus. ► Specifically, two metabolites produced by C. riparius were transferred. - Some of the pyrene metabolites produced by the model invertebrates L. variegatus and C. riparius are transferred to G. setosus through the diet, proving their trophic transfer.

  12. Pharmacologically active plant metabolites as survival strategy products.

    Science.gov (United States)

    Attardo, C; Sartori, F

    2003-01-01

    The fact that plant organisms produce chemical substances that are able to positively or negatively interfere with the processes which regulate human life has been common knowledge since ancient times. One of the numerous possible examples in the infusion of Conium maculatum, better known as Hemlock, a plant belonging to the family umbelliferae, used by the ancient Egyptians to cure skin diseases. The current official pharmacopoeia includes various chemical substances produced by secondary plant metabolisms. For example, the immunosuppressive drugs used to prevent organ transplant rejection and the majority of antibiotics are metabolites produced by fungal organisms, pilocarpin, digitalis, strophantus, salicylic acid and curare are examples of plant organism metabolites. For this reason, there has been an increase in research into plants, based on information on their medicinal use in the areas where they grow. The study of plants in relation to local culture and traditions is known as "ethnobotany". Careful study of the behaviour of sick animals has also led to the discovery of medicinal plants. The study of this subject is known as "zoopharmacognosy". The aim of this article is to discuss the fact that "ad hoc" production of such chemical substances, defined as "secondary metabolites", is one of the modes in which plant organisms respond to unfavourable environmental stimuli, such as an attack by predatory phytophagous animals or an excessive number of plant individuals, even of the same species, in a terrain. In the latter case, the plant organisms produce toxic substances, called "allelopathic" which limit the growth of other individuals. "Secondary metabolites" are produced by metabolic systems that are shunts of the primary systems which, when required, may be activated from the beginning, or increased to the detriment of others. The study of the manner in which such substances are produced is the subject of a new branch of learning called "ecological

  13. Determination of urine metabolites containing radioactivatable elements by molecular neutron activation analysis

    International Nuclear Information System (INIS)

    Blotcky, A.J.; Rack, E.P.

    1986-01-01

    As urine is a final stage for the metabolic pathways of essential trace elements or chemical toxins, it is becoming increasingly important to not only report levels of trace elements but to determine the molecular or ionic identity of these trace elements. For a biological system such as urine, a molecular neutron activation analysis (MONAA) approach must involve a deproteinization step, where necessary, to ensure that metabolites such as amino acids, bases, r nucleosides are not protein bound prior to chemical separation. This can involve the simple application of ammonia or acid hydrolysis. All separations for the metabolites containing the radioactivatable element must be performed prior to neutron irradiation and subsequent radioassay for the metabolite. Separation procedures can include high-pressure liquid chromotography (HPLC), ion-exchange chromatography, size exclusion chromatography, solvent extraction, and/or gas chromatography. After separation, the separated metabolite is neutron irradiated and and radioassayed for the radioactivity in the metabolite. A review of previous work involving the determination of hormonal iodine, iodoamino acids, chlorinated pesticides, trimethyl-selenonium, and selenoamino acids in urine is discussed

  14. Sorafenib Increases Tumor Hypoxia in Cervical Cancer Patients Treated With Radiation Therapy: Results of a Phase 1 Clinical Study

    Energy Technology Data Exchange (ETDEWEB)

    Milosevic, Michael F., E-mail: mike.milosevic@rmp.uhn.ca [Radiation Medicine Program, Princess Margaret Cancer Center, University Health Network, Toronto (Canada); Department of Radiation Oncology, University of Toronto, Toronto (Canada); Townsley, Carol A. [Department of Medical Oncology, Princess Margaret Cancer Center, University Health Network, Toronto (Canada); Chaudary, Naz [Department of Advanced Molecular Oncology, Princess Margaret Cancer Center, University Health Network, Toronto (Canada); Clarke, Blaise [Department of Pathology, Princess Margaret Cancer Center, University Health Network, Toronto (Canada); Department of Laboratory Medicine and Pathology, University of Toronto, Toronto (Canada); Pintilie, Melania [Department of Clinical Study Coordination and Biostatistics, Princess Margaret Cancer Center, University Health Network, Toronto (Canada); Fan, Stacy; Glicksman, Rachel [Radiation Medicine Program, Princess Margaret Cancer Center, University Health Network, Toronto (Canada); Haider, Masoom [Department of Medical Imaging, Sunnybrook Health Sciences Centre, Toronto (Canada); Department of Medical Imaging, University of Toronto, Toronto (Canada); Kim, Sunmo [Radiation Medicine Program, Princess Margaret Cancer Center, University Health Network, Toronto (Canada); MacKay, Helen [Department of Medical Oncology, Princess Margaret Cancer Center, University Health Network, Toronto (Canada); Department of Medicine, University of Toronto, Toronto (Canada); Yeung, Ivan [Radiation Medicine Program, Princess Margaret Cancer Center, University Health Network, Toronto (Canada); Department of Radiation Oncology, University of Toronto, Toronto (Canada); Hill, Richard P. [Department of Radiation Oncology, University of Toronto, Toronto (Canada); Department of Advanced Molecular Oncology, Princess Margaret Cancer Center, University Health Network, Toronto (Canada); Department of Medical Biophysics, University of Toronto, Toronto (Canada); and others

    2016-01-01

    Purpose: Preclinical studies have shown that angiogenesis inhibition can improve response to radiation therapy (RT). The purpose of this phase 1 study was to examine the angiogenesis inhibitor sorafenib in patients with cervical cancer receiving radical RT and concurrent cisplatin (RTCT). Methods and Materials: Thirteen patients with stage IB to IIIB cervical cancer participated. Sorafenib was administered daily for 7 days before the start of standard RTCT in patients with early-stage, low-risk disease and also during RTCT in patients with high-risk disease. Biomarkers of tumor vascularity, perfusion, and hypoxia were measured at baseline and again after 7 days of sorafenib alone before the start of RTCT. The median follow-up time was 4.5 years. Results: Initial complete response was seen in 12 patients. One patient died without achieving disease control, and 4 experienced recurrent disease. One patient with an extensive, infiltrative tumor experienced pelvic fistulas during treatment. The 4-year actuarial survival was 85%. Late grade 3 gastrointestinal toxicity developed in 4 patients. Sorafenib alone produced a reduction in tumor perfusion/permeability and an increase in hypoxia, which resulted in early closure of the study. Conclusions: Sorafenib increased tumor hypoxia, raising concern that it might impair rather than improve disease control when added to RTCT.

  15. Optimization of the tumor microenvironment and nanomedicine properties simultaneously to improve tumor therapy.

    Science.gov (United States)

    Zhang, Bo; Shi, Wei; Jiang, Ting; Wang, Lanting; Mei, Heng; Lu, Heng; Hu, Yu; Pang, Zhiqing

    2016-09-20

    Effective delivery of nanomedicines to tumor tissues depends on both the tumor microenvironment and nanomedicine properties. Accordingly, tumor microenvironment modification or advanced design of nanomedicine was emerging to improve nanomedicine delivery to tumors. However, few studies have emphasized the necessity to optimize the tumor microenvironment and nanomedicine properties simultaneously to improve tumor treatment. In the present study, imatinib mesylate (IMA) was used to normalize the tumor microenvironment including platelet-derived growth factor receptor-β expression inhibition, tumor vessel normalization, and tumor perfusion improvement as demonstrated by immunofluorescence staining. In addition, the effect of tumor microenvironment normalization on tumor delivery of nanomedicines with different sizes was carefully investigated. It was shown that IMA treatment significantly reduced the accumulation of nanoparticles (NPs) around 110 nm but enhanced the accumulation of micelles around 23 nm by in vivo fluorescence imaging experiment. Furthermore, IMA treatment limited the distribution of NPs inside tumors but increased that of micelles with a more homogeneous pattern. Finally, the anti-tumor efficacy study displayed that IMA pretreatment could significantly increase the therapeutic effects of paclitaxel-loaded micelles. All-together, a new strategy to improve nanomedicine delivery to tumor was provided by optimizing both nanomedicine size and the tumor microenvironment simultaneously, and it will have great potential in clinics for tumor treatment.

  16. Decompression of keratocystic odontogenic tumors leading to increased fibrosis, but without any change in epithelial proliferation.

    Science.gov (United States)

    Awni, Sarah; Conn, Brendan

    2017-06-01

    The aim of this study was to investigate whether decompression treatment induces changes in the histology or biologic behavior of keratocystic odontogenic tumor (KCOT). Seventeen patients with KCOT underwent decompression treatment with or without enucleation. Histologic evaluation and immunohistochemical expression of p53, Ki-67, and Bcl-2 were analyzed by using conventional microscopy. KCOT showed significantly increased fibrosis (P = .01) and a subjective reduction in mitotic activity (P = .03) after decompression. There were no statistically significant changes in the expression of proliferation markers. An increase in daughter-cysts or epithelial rests was seen after decompression (P = .04). Recurrence was noted in four of 16 cases, and expression of p53 was strongly correlated with prolonged duration of treatment (P = .01) and intense inflammatory changes (P = .02). Structural changes in the KCOT epithelium or capsule following decompression facilitate surgical removal of the tumor. There was no statistical evidence that decompression influences expression of proliferation markers in the lining, indicating that the potential for recurrence may not be restricted to the cellular level. The statistically significant increase of p53 expression with increased duration of treatment and increase of inflammation may also indicate the possibility of higher rates of recurrence with prolonged treatment and significant inflammatory changes. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  17. LC-MS Untargeted Metabolomics To Explain the Signal Metabolites Inducing Browning in Fresh-Cut Lettuce.

    Science.gov (United States)

    García, Carlos J; García-Villalba, Rocío; Gil, María I; Tomas-Barberan, Francisco A

    2017-06-07

    Enzymatic browning is one of the main causes of quality loss in lettuce as a prepared and ready-to-eat cut salad. An untargeted metabolomics approach using UPLC-ESI-QTOF-MS was performed to explain the wound response of lettuce after cutting and to identify the metabolites responsible of browning. Two cultivars of Romaine lettuce with different browning susceptibilities were studied at short time intervals after cutting. From the total 5975 entities obtained from the raw data after alignment, filtration reduced the number of features to 2959, and the statistical analysis found that only 1132 entities were significantly different. Principal component analysis (PCA) clearly showed that these samples grouped according to cultivar and time after cutting. From those, only 15 metabolites belonging to lysophospholipids, oxylipin/jasmonate metabolites, and phenolic compounds were able to explain the browning process. These selected metabolites showed different trends after cutting; some decreased rapidly, others increased but decreased thereafter, whereas others increased during the whole period of storage. In general, the fast-browning cultivar showed a faster wound response and a higher raw intensity of some key metabolites than the slow-browning one. Just after cutting, the fast-browning cultivar contained 11 of the 15 browning-associated metabolites, whereas the slow-browning cultivar only had 5 of them. These metabolites could be used as biomarkers in breeding programs for the selection of lettuce cultivars with lower browning potential for fresh-cut applications.

  18. Pharmacokinetic studies of 131 I-stevioside and his metabolites

    International Nuclear Information System (INIS)

    Cardoso, V.N.

    1993-01-01

    Stevia rebaudiana is a shrub widely in Paraguay and Brazil, belonging to the compositae family. The leaves of this plant contain large amounts of stevioside. Since the use of stevioside as sugar substitute continues to increase, the purpose of this study is to investigate the biological distribution, excretion and the possibility of stevioside to be degraded to steviol 'in vitro'. 131 -I-stevioside (1,10 MBq) was i.v. injected in Wistar male rats its distribution in the body and metabolism were studied. The highest concentration of radioactivity was observed in the liver and the small intestine after 10 and 120 minutes respectively. RP-HPLC analysis of the bile showed that steviol appeared as a major metabolite, representing 47,3% of the radioactivity while stevioside represented 37,3% and the remaining 15,4% was due to an unidentified metabolite. The results showed that stevioside was partially degraded 'in vivo' to steviol and other metabolite, and that part of the radioactivity was absorbed from the small intestine. (author)

  19. Fate of cyanobacteria and their metabolites during water treatment sludge management processes

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Lionel, E-mail: lionel.ho@sawater.com.au [Australian Water Quality Centre, SA Water Corporation, 250 Victoria Square, Adelaide, SA 5000 (Australia); Centre for Water Management and Reuse, University of South Australia, Mawson Lakes, SA 5095 (Australia); Dreyfus, Jennifer; Boyer, Justine; Lowe, Todd [Australian Water Quality Centre, SA Water Corporation, 250 Victoria Square, Adelaide, SA 5000 (Australia); Bustamante, Heriberto; Duker, Phil [Sydney Water, PO Box 399, Parramatta, NSW 2124 (Australia); Meli, Tass [TRILITY Pty Ltd, PO Box 86, Appin, NSW 2560 (Australia); Newcombe, Gayle [Australian Water Quality Centre, SA Water Corporation, 250 Victoria Square, Adelaide, SA 5000 (Australia); Centre for Water Management and Reuse, University of South Australia, Mawson Lakes, SA 5095 (Australia)

    2012-05-01

    Cyanobacteria and their metabolites are an issue for water authorities; however, little is known as to the fate of coagulated cyanobacterial-laden sludge during waste management processes in water treatment plants (WTPs). This paper provides information on the cell integrity of Anabaena circinalis and Cylindrospermopsis raciborskii during: laboratory-scale coagulation/sedimentation processes; direct filtration and backwashing procedures; and cyanobacterial-laden sludge management practices. In addition, the metabolites produced by A. circinalis (geosmin and saxitoxins) and C. raciborskii (cylindrospermopsin) were investigated with respect to their release (and possible degradation) during each of the studied processes. Where sedimentation was used, coagulation effectively removed cyanobacteria (and intracellular metabolites) without any considerable exertion on coagulant demand. During direct filtration experiments, cyanobacteria released intracellular metabolites through a stagnation period, suggesting that more frequent backwashing of filters may be required to prevent floc build-up and metabolite release. Cyanobacteria appeared to be protected within the flocs, with minimal damage during backwashing of the filters. Within coagulant sludge, cyanobacteria released intracellular metabolites into the supernatant after 3 d, even though cells remained viable up to 7 d. This work has improved the understanding of cyanobacterial metabolite risks associated with management of backwash water and sludge and is likely to facilitate improvements at WTPs, including increased monitoring and the application of treatment strategies and operational practices, with respect to cyanobacterial-laden sludge and/or supernatant recycle management. - Highlights: Black-Right-Pointing-Pointer Coagulation removed cyanobacteria without an additional exertion on coagulant demand. Black-Right-Pointing-Pointer During a stagnation period in direct filtration intracellular metabolites were

  20. 67Cu-labelled antibody fragments for RIT: strategies to prevent kidney accumulation of 67Cu-labelled metabolites

    International Nuclear Information System (INIS)

    Rutherford, R.A.D.; Zimmermann, K.; Waibel, R.; Ruch, C.; Pasquale, C. de; Novak-Hofer, I.

    1997-01-01

    Two different approaches to reduce accumulation of radiocopper labelled metabolites in the kidney were pursued. The first strategy consisted of pharmacological blockade of reuptake of metabolites by predosing with basic amino acids. The second approach is chemical modification of the DOTA chelator in an attempt to increase clearance of metabolites from the kidneys. (author) 1 fig., 1 ref

  1. Production of Secondary Metabolites in Extreme Environments: Food- and Airborne Wallemia spp. Produce Toxic Metabolites at Hypersaline Conditions

    DEFF Research Database (Denmark)

    Jančič, Sašo; Frisvad, Jens Christian; Kocev, Dragi

    2016-01-01

    the genome data analysis of W. mellicola (previously W. sebi sensu lato) and W. ichthyophaga revealed a low number of secondary metabolites clusters, a substantial number of secondary metabolites were detected at different conditions. Machine learning analysis of the obtained dataset showed that NaCl has...... of salt or sugar. In relation to food safety, the effect of high salt and sugar concentrations on the production of secondary metabolites by this toxigenic fungus was investigated. The secondary metabolite profiles of 30 strains of the listed species were examined using general growth media, known...... to support the production of secondary metabolites, supplemented with different concentrations of NaCl, glucose and MgCl2. In more than two hundred extracts approximately one hundred different compounds were detected using high-performance liquid chromatography-diode array detection (HPLC-DAD). Although...

  2. Secondary metabolites from Ganoderma.

    Science.gov (United States)

    Baby, Sabulal; Johnson, Anil John; Govindan, Balaji

    2015-06-01

    Ganoderma is a genus of medicinal mushrooms. This review deals with secondary metabolites isolated from Ganoderma and their biological significance. Phytochemical studies over the last 40years led to the isolation of 431 secondary metabolites from various Ganoderma species. The major secondary compounds isolated are (a) C30 lanostanes (ganoderic acids), (b) C30 lanostanes (aldehydes, alcohols, esters, glycosides, lactones, ketones), (c) C27 lanostanes (lucidenic acids), (d) C27 lanostanes (alcohols, lactones, esters), (e) C24, C25 lanostanes (f) C30 pentacyclic triterpenes, (g) meroterpenoids, (h) farnesyl hydroquinones (meroterpenoids), (i) C15 sesquiterpenoids, (j) steroids, (k) alkaloids, (l) prenyl hydroquinone (m) benzofurans, (n) benzopyran-4-one derivatives and (o) benzenoid derivatives. Ganoderma lucidum is the species extensively studied for its secondary metabolites and biological activities. Ganoderma applanatum, Ganoderma colossum, Ganoderma sinense, Ganoderma cochlear, Ganoderma tsugae, Ganoderma amboinense, Ganoderma orbiforme, Ganoderma resinaceum, Ganoderma hainanense, Ganoderma concinna, Ganoderma pfeifferi, Ganoderma neo-japonicum, Ganoderma tropicum, Ganoderma australe, Ganoderma carnosum, Ganoderma fornicatum, Ganoderma lipsiense (synonym G. applanatum), Ganoderma mastoporum, Ganoderma theaecolum, Ganoderma boninense, Ganoderma capense and Ganoderma annulare are the other Ganoderma species subjected to phytochemical studies. Further phytochemical studies on Ganoderma could lead to the discovery of hitherto unknown biologically active secondary metabolites. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Cryospectrophotometric determination of tumor intravascular oxyhemoglobin saturations: dependence on vascular geometry and tumor growth.

    Science.gov (United States)

    Fenton, B M; Rofstad, E K; Degner, F L; Sutherland, R M

    1988-12-21

    To delineate the complex relationships between overall tumor oxygenation and vascular configuration, intravascular oxyhemoglobin (HbO2) saturation distributions were measured with cryospectrophotometric techniques. Four factors related to vascular morphometry and tumor growth were evaluated: a) vessel diameter, b) distance of vessel from the tumor surface, c) tumor volume, and d) vascular density. To measure intertumor heterogeneity, two murine sarcomas (RIF-1 and KHT) and two human ovarian carcinoma xenografts (OWI and MLS) were utilized. In contrast to skeletal muscle, a preponderance of very low HbO2 saturations was observed for both large and small tumors of all lines. Saturations up to about 90% were also generally present, however, even in very large tumors. Variations in vascular configuration were predominantly tumor-line dependent rather than due to inherent characteristics of the host vasculature, and widely disparate HbO2 distributions were found for alternate lines implanted in identical host mice. Although peripheral saturations remained fairly constant with tumor growth, HbO2 values were markedly lower for vessels nearer the tumor center and further decreased with increasing tumor volume. HbO2 saturations did not change substantially with increasing vascular density (except for KHT tumors), although density did decrease with increasing distance from tumor surface. Combined effects of vessel diameter, tumor volume, and vessel location on HbO2 saturations were complex and varied markedly with both tumor line and vessel class. For specific classes, HbO2 distributions correlated closely with radiobiological hypoxic fractions, i.e., for tumor lines in which hypoxic fraction increased substantially with tumor volume, corresponding HbO2 values decreased, while for lines in which hypoxic fraction remained constant, HbO2 values also were unchanged. Although these trends may also be a function of differing oxygen consumption rates between tumor lines

  4. Induction of phenolic metabolites and physiological changes in chamomile plants in relation to nitrogen nutrition.

    Science.gov (United States)

    Kováčik, Jozef; Klejdus, Bořivoj

    2014-01-01

    Alternative tools, such as the manipulation of mineral nutrition, may affect secondary metabolite production and thus the nutritional value of food/medicinal plants. We studied the impact of nitrogen (N) nutrition (nitrate/NO3(-) or ammonium/NH4(+) nitrogen) and subsequent nitrogen deficit on phenolic metabolites and physiology in Matricaria chamomilla plants. NH4(+)-fed plants revealed a strong induction of selected phenolic metabolites but, at the same time, growth, Fv/Fm, tissue water content and soluble protein depletion occurred in comparison with NO3(-)-fed ones. On the other hand, NO3(-)-deficient plants also revealed an increase in phenolic metabolites but growth depression was not observed after the given exposure period. Free amino acids were more accumulated in NH4(+)-fed shoots (strong increase in arginine and proline mainly), while the pattern of roots' accumulation was independent of N form. Among phenolic acids, NH4(+) strongly elevated mainly the accumulation of chlorogenic acid. Within flavonoids, flavonols decreased while flavones strongly increased in response to N deficiency. Coumarin-related metabolites revealed a similar increase in herniarin glucosidic precursor in response to N deficiency, while herniarin was more accumulated in NO3(-)- and umbelliferone in NH4(+)-cultured plants. These data indicate a negative impact of NH4(+) as the only source of N on physiology, but also a higher stimulation of some valuable phenols. Nitrogen-induced changes in comparison with other food/crop plants are discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Tumor radiation responses and tumor oxygenation in aging mice

    International Nuclear Information System (INIS)

    Rockwell, S.

    1989-01-01

    EMT6 mouse mammary tumors transplanted into aging mice are less sensitive to radiation than tumors growing in young adult animals. The experiments reported here compare the radiation dose-response curves defining the survivals of tumor cells in aging mice and in young adult mice. Cell survival curves were assessed in normal air-breathing mice and in mice asphyxiated with N 2 to produce uniform hypoxia throughout the tumors. Analyses of survival curves revealed that 41% of viable malignant cells were severely hypoxic in tumors in aging mice, while only 19% of the tumor cells in young adult animals were radiobiologically hypoxic. This did not appear to reflect anaemia in the old animals. Treatment of aging animals with a perfluorochemical emulsion plus carbogen (95% O 2 /5% CO 2 ) increased radiation response of the tumors, apparently by improving tumor oxygenation and decreasing the number of severely hypoxic, radiation resistant cells in the tumors. (author)

  6. Fate of cyanobacteria and their metabolites during water treatment sludge management processes.

    Science.gov (United States)

    Ho, Lionel; Dreyfus, Jennifer; Boyer, Justine; Lowe, Todd; Bustamante, Heriberto; Duker, Phil; Meli, Tass; Newcombe, Gayle

    2012-05-01

    Cyanobacteria and their metabolites are an issue for water authorities; however, little is known as to the fate of coagulated cyanobacterial-laden sludge during waste management processes in water treatment plants (WTPs). This paper provides information on the cell integrity of Anabaena circinalis and Cylindrospermopsis raciborskii during: laboratory-scale coagulation/sedimentation processes; direct filtration and backwashing procedures; and cyanobacterial-laden sludge management practices. In addition, the metabolites produced by A. circinalis (geosmin and saxitoxins) and C. raciborskii (cylindrospermopsin) were investigated with respect to their release (and possible degradation) during each of the studied processes. Where sedimentation was used, coagulation effectively removed cyanobacteria (and intracellular metabolites) without any considerable exertion on coagulant demand. During direct filtration experiments, cyanobacteria released intracellular metabolites through a stagnation period, suggesting that more frequent backwashing of filters may be required to prevent floc build-up and metabolite release. Cyanobacteria appeared to be protected within the flocs, with minimal damage during backwashing of the filters. Within coagulant sludge, cyanobacteria released intracellular metabolites into the supernatant after 3d, even though cells remained viable up to 7d. This work has improved the understanding of cyanobacterial metabolite risks associated with management of backwash water and sludge and is likely to facilitate improvements at WTPs, including increased monitoring and the application of treatment strategies and operational practices, with respect to cyanobacterial-laden sludge and/or supernatant recycle management. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Supratentorial Neurometabolic Alterations in Pediatric Survivors of Posterior Fossa Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Rueckriegel, Stefan M., E-mail: rueckriegel.s@nch.uni-wuerzburg.de [Pediatric Neurooncology Program, Department of Pediatric Oncology and Hematology, Charite-Universitaetsmedizin Berlin, Berlin (Germany); Driever, Pablo Hernaiz [Pediatric Neurooncology Program, Department of Pediatric Oncology and Hematology, Charite-Universitaetsmedizin Berlin, Berlin (Germany); Bruhn, Harald [Department of Radiology, Charite-Universitaetsmedizin Berlin, Berlin (Germany); Department of Radiology, Klinikum der Friedrich-Schiller-Universitaet, Erlanger (Germany)

    2012-03-01

    Purpose: Therapy and tumor-related effects such as hypoperfusion, internal hydrocephalus, chemotherapy, and irradiation lead to significant motor and cognitive sequelae in pediatric posterior fossa tumor survivors. A distinct proportion of those factors related to the resulting late effects is hitherto poorly understood. This study aimed at separating the effects of neurotoxic factors on central nervous system metabolism by using H-1 MR spectroscopy to quantify cerebral metabolite concentrations in these patients in comparison to those in age-matched healthy peers. Methods and Materials: Fifteen patients with World Health Organization (WHO) I pilocytic astrocytoma (PA) treated by resection only, 24 patients with WHO IV medulloblastoma (MB), who additionally received chemotherapy and craniospinal irradiation, and 43 healthy peers were investigated using single-volume H-1 MR spectroscopy of parietal white matter and gray matter. Results: Concentrations of N-acetylaspartate (NAA) were significantly decreased in white matter (p < 0.0001) and gray matter (p < 0.0001) of MB patients and in gray matter (p = 0.005) of PA patients, compared to healthy peers. Decreased creatine concentrations in parietal gray matter correlated significantly with older age at diagnosis in both patient groups (MB patients, p = 0.009, r = 0.52; PA patients, p = 0.006, r = 0.7). Longer time periods since diagnosis were associated with lower NAA levels in white matter of PA patients (p = 0.008, r = 0.66). Conclusions: Differently decreased NAA concentrations were observed in both PA and MB groups of posterior fossa tumor patients. We conclude that this reflects a disturbance of the neurometabolic steady state of normal-appearing brain tissue due to the tumor itself and to the impact of surgery in both patient groups. Further incremental decreases of metabolite concentrations in MB patients may point to additional harm caused by irradiation and chemotherapy. The stronger decrease of NAA in MB

  8. Hepatic Intra-arterial Delivery of a "Trojan-horses" Gene Therapy: A Pilot Study on Rabbit VX2 Hepatic Tumor Model.

    Science.gov (United States)

    Pellerin, Olivier; Amara, Ikram; Sapoval, Marc; Méachi, Tchao; Déan, Carole; Beaune, Philippe; de Waziers, Isabelle

    2018-01-01

    Gene-directed enzyme prodrug therapy (GDEPT) is a "Trojan-horses" suicide gene therapy that consists of tumor-targeted gene delivery (vectorized by mesenchymal stem cells MSCs) encoding an enzyme that converts a harmless prodrug into cytotoxic metabolites in situ. Then, cytotoxic metabolites passively diffuse in the neighboring tumor cells and kill them (bystander effect). The goal of our study was to assess the feasibility and efficacy of intra-arterial administration of MSCs transduced with an optimized gene (MSC-CYP2B6TM-RED) followed by intravenous administration of cyclophosphamide (CPA) into the VX2 rabbit liver tumor. Nine rabbits with a VX2 liver tumor were randomly assigned into three groups: Control group A (one rabbit) free of any treatment; Control group B (two rabbits) receiving intravenous injection of cyclophosphamide at day 3 and CPA at day 14; and Group C (six rabbits) receiving the GDEPT treatment, consisting of successive intra-arterial injection of transduced-MSCs at days 0 (n = 6) and 11 (n = 3), followed by injection of CPA at days 3 (n = 6) and 14 (n = 3). The tumor response was assessed by ultrasound scan every 7 days and histopathological analysis at sacrifice (D25). There was a significant difference in the tumor volume between control groups (A + B) and group C at D7: 38/19 cm 3 (p = 0.024); D11: 51/20 cm 3 (p = 0.024), and D25: 121/37 cm 3 (p = 0.048). Tumor necrosis was significantly greater and metastatic spread was lower for rabbits who received GDEPT (78% of total tumor surface) than for control animals (A + B) (22% of total tumor surface (p = 0.006). Intra-arterial delivery of transduced-MSCs is feasible and, after CPA injection, resulted in 78% tumor necrosis (p = 0.006) and less metastasis in a VX2 liver tumor model.

  9. Kynurenine pathway metabolites are associated with hippocampal activity during autobiographical memory recall in patients with depression.

    Science.gov (United States)

    Young, Kymberly D; Drevets, Wayne C; Dantzer, Robert; Teague, T Kent; Bodurka, Jerzy; Savitz, Jonathan

    2016-08-01

    Inflammation-related changes in the concentrations of inflammatory mediators such as c-reactive protein (CRP), interleukin 1β (IL-1), and IL-6 as well as kynurenine metabolites are associated with major depressive disorder (MDD) and affect depressive behavior, cognition, and hippocampal plasticity in animal models. We previously reported that the ratios of kynurenic acid (KynA) to the neurotoxic metabolites, 3-hydroxykynurenine (3HK) and quinolinic acid (QA), were positively correlated with hippocampal volume in depression. The hippocampus is critical for autobiographical memory (AM) recall which is impaired in MDD. Here we tested whether the ratios, KynA/3HK and KynA/QA were associated with AM recall performance as well as hippocampal activity during AM recall. Thirty-five unmedicated depressed participants and 25 healthy controls (HCs) underwent fMRI scanning while recalling emotionally-valenced AMs and provided serum samples for the quantification of kynurenine metabolites, CRP, and cytokines (IL-1 receptor antagonist - IL-1RA; IL-6, tumor necrosis factor alpha - TNF, interferon gamma -IFN-γ, IL-10). KynA/3HK and KynA/QA were lower in the MDD group relative to the HCs. The concentrations of the CRP and the cytokines did not differ significantly between the HCs and the MDD group. Depressed individuals recalled fewer specific AMs and displayed increased left hippocampal activity during the recall of positive and negative memories. KynA/3HK was inversely associated with left hippocampal activity during specific AM recall in the MDD group. Further, KynA/QA was positively correlated with percent negative specific memories recalled in the MDD group and showed a non-significant trend toward a positive correlation with percent positive specific memories recalled in HCs. In contrast, neither CRP nor the cytokines were significantly associated with AM recall or activity of the hippocampus during AM recall. Conceivably, an imbalance in levels of KynA versus QA

  10. Racial and ethnic variations in phthalate metabolite concentration changes across full-term pregnancies.

    Science.gov (United States)

    James-Todd, Tamarra M; Meeker, John D; Huang, Tianyi; Hauser, Russ; Seely, Ellen W; Ferguson, Kelly K; Rich-Edwards, Janet W; McElrath, Thomas F

    2017-03-01

    Higher concentrations of certain phthalate metabolites are associated with adverse reproductive and pregnancy outcomes, as well as poor infant/child health outcomes. In non-pregnant populations, phthalate metabolite concentrations vary by race/ethnicity. Few studies have documented racial/ethnic differences between phthalate metabolite concentrations at multiple time points across the full-course of pregnancy. The objective of the study was to characterize the change in phthalate metabolite concentrations by race/ethnicity across multiple pregnancy time points. Women were participants in a prospectively collected pregnancy cohort who delivered at term (≥37 weeks) and had available urinary phthalate metabolite concentrations for ≥3 time points across full-term pregnancies (n=350 women). We assessed urinary concentrations of eight phthalate metabolites that were log-transformed and specific gravity-adjusted. We evaluated the potential racial/ethnic differences in phthalate metabolite concentrations at baseline (median 10 weeks gestation) using ANOVA and across pregnancy using linear mixed models to calculate the percent change and 95% confidence intervals adjusted for sociodemographic and lifestyle factors. Almost 30% of the population were non-Hispanic black or Hispanic. With the exception of mono-(3-carboxypropyl) (MCPP) and di-ethylhexyl phthalate (DEHP) metabolites, baseline levels of phthalate metabolites were significantly higher in non-whites (Pethnicity, mono-ethyl phthalate (MEP) and MCPP had significant percent changes across pregnancy. MEP was higher in Hispanics at baseline and decreased in mid-pregnancy but increased in late pregnancy for non-Hispanic blacks. MCPP was substantially higher in non-Hispanic blacks at baseline but decreased later in pregnancy. Across pregnancy, non-Hispanic black and Hispanic women had higher concentrations of certain phthalate metabolites. These differences may have implications for racial/ethnic differences in adverse

  11. Urinary estrogen metabolites and breast cancer

    DEFF Research Database (Denmark)

    Dallal, Cher M; Stone, Roslyn A; Cauley, Jane A

    2013-01-01

    Background: Circulating estrogens are associated with increased breast cancer risk, yet the role of estrogen metabolites in breast carcinogenesis remains unclear. This combined analysis of 5 published studies evaluates urinary 2-hydroxyestrone (2-OHE1), 16a-hydroxyestrone (16a-OHE1......), and their ratio (2:16a-OHE1) in relation to breast cancer risk. ¿Methods: Primary data on 726 premenopausal women (183 invasive breast cancer cases and 543 controls) and 1,108 postmenopausal women (385 invasive breast cancer cases and 723 controls) were analyzed. Urinary estrogen metabolites were measured using...... premenopausal 2:16a-OHE1 was suggestive of reduced breast cancer risk overall (study-adjusted ORIIIvsI=0.80; 95% CI: 0.49-1.32) and for estrogen receptor negative (ER-) subtype (ORIIIvsI=0.33; 95% CI: 0.13-0.84). Among postmenopausal women, 2:16a-OHE1 was unrelated to breast cancer risk (study-adjusted ORIIIvs...

  12. Evaluation of the Role of Peroxisome Proliferator-Activated Receptor α (PPARα) in Mouse Liver Tumor Induction by Trichloroethylene and Metabolites

    Science.gov (United States)

    Trichloroethylene (TCE) is an industrial solvent and a widespread environmental contaminant. Induction of liver cancer in mice by TCE is thought to be mediated by two metabolites, dichloroacetate (DCA) and trichloroacetate (TCA), both of which are themselves mouse liver carcinoge...

  13. Lipofection indirectly increases expression of endogenous major histocompatibility complex class I molecules on tumor cells.

    Science.gov (United States)

    Fox, B A; Drury, M; Hu, H M; Cao, Z; Huntzicker, E G; Qie, W; Urba, W J

    1998-01-01

    Direct intratumoral injection of a lipid/DNA complex encoding an allogeneic major histocompatibility complex (MHC) class I molecule leads to regression of both an immunogenic murine tumor and also melanoma lesions in some patients. We have sought to understand the mechanism(s) for this augmentation of antitumor activity. While optimizing parameters for in vitro gene transfer into the D5 subclone of B16BL6, it was noted that lipofected tumors not only expressed the new alloantigen but also exhibited increased expression of endogenous MHC class I, both H-2 Kb and H-2 Db. This increase in expression was not restricted to the small percentage of cells that expressed the transfected gene, but appeared to affect the majority of cells in culture. Class I expression was not increased by lipopolysaccharide, DNA alone, lipid, or lipid/lipopolysaccharide mixtures. Enhanced class I expression required a DNA/lipid complex and was greatest when parameters optimized for gene transfer of the alloantigen were used. All DNA plasmids tested had this effect, including one plasmid whose DNA was not transcribed because it lacked an expression cassette. Because of the critical role that MHC class I antigens play in immune recognition, we propose that lipid complex-mediated gene transfer may provide immunological advantages beyond those that are attributable to expression of the specific gene transferred.

  14. Favorable prognosis of operable non-small cell lung cancer (NSCLC) patients harboring an increased expression of tumor endothelial markers (TEMs).

    Science.gov (United States)

    Pircher, Andreas; Fiegl, Michael; Untergasser, Gerold; Heidegger, Isabel; Medinger, Michael; Kern, Johann; Hilbe, Wolfgang

    2013-08-01

    Genome analyses of endothelial cells identified genes specifically expressed by tumor endothelial cells, called tumor endothelial markers (TEMs). Currently there are no data available concerning the role of TEMs in non-small cell lung cancer (NSCLC). Therefore, the aim of this study was to investigate the role of TEMs in NSCLC in vitro and in vivo. First we evaluated the expression of various TEMs (Robo4, Clec14 and ECSCR) by qRT-PCR and Western blot analyses in three NSCLC cell lines (A549, Calu1, Colo699) and compared them to human umbilical vein endothelial cells (HUVECs), endothelial colony forming cells (ECFCs) and human bronchial epithelial cells (HBEpCs). Next the expression of TEMs was measured in resected tumor tissue of NSCLC patients (n = 63) by qRT-PCR and compared to adjacent non-cancerous lung tissue (n = 52). Further, immunohistochemical analysis of Robo4 expression in tumor tissue (n = 33) and adjacent non-cancerous tissue (n = 27) was performed. We found that NSCLC cell lines and HBEpC did not express TEMs on the mRNA level compared to HUVECs (p = 0.001). In the contrary, a significant up-regulation of Robo4 and Clec14 was found in tumor samples (Robo4 p = 0.03, Clec14 p = 0.002). Both facts clearly indicate that these proteins are allocated to the tumor stromal department. Correlation with clinical data showed that increased TEM expression correlated with prolonged overall survival of operated NSCLC patients (Robo4 high 120.5 vs. Robo4 low 47.6 months, Clec14 high 108.1 vs. Clec14 low 54.5 months and ECSCR high 120.5 vs. ECSCR low 42.2 months). In summary, we found that TEMs are overexpressed in NSCLC stromal tissue and that an increased TEM expression correlated with an increased overall survival in early stage NSCLC. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. Synchronized Regulation of Different Zwitterionic Metabolites in the Osmoadaption of Phytoplankton

    Directory of Open Access Journals (Sweden)

    Georg Pohnert

    2013-06-01

    Full Text Available The ability to adapt to different seawater salinities is essential for cosmopolitan marine phytoplankton living in very diverse habitats. In this study, we examined the role of small zwitterionic metabolites in the osmoadaption of two common microalgae species Emiliania huxleyi and Prorocentrum minimum. By cultivation of the algae under salinities between 16‰ and 38‰ and subsequent analysis of dimethylsulfoniopropionate (DMSP, glycine betaine (GBT, gonyol, homarine, trigonelline, dimethylsulfonioacetate, trimethylammonium propionate, and trimethylammonium butyrate using HPLC-MS, we could reveal two fundamentally different osmoadaption mechanisms. While E. huxleyi responded with cell size reduction and a nearly constant ratio between the major metabolites DMSP, GBT and homarine to increasing salinity, osmolyte composition of P. minimum changed dramatically. In this alga DMSP concentration remained nearly constant at 18.6 mM between 20‰ and 32‰ but the amount of GBT and dimethylsulfonioacetate increased from 4% to 30% of total investigated osmolytes. Direct quantification of zwitterionic metabolites via LC-MS is a powerful tool to unravel the complex osmoadaption and regulation mechanisms of marine phytoplankton.

  16. Metabolite modifications in Solanum lycopersicum roots and leaves ...

    African Journals Online (AJOL)

    During the treatment, Cd accumulated significantly in the roots compared to stems and leaves. Plant growth (root, stem and leaf) decreased when Cd concentration increased. The analysis of 1H-NMR spectra of polar extracts showed clear differences between metabolites amounts (soluble sugars, organic and amino acids) ...

  17. Age related changes in tumor vascularity

    International Nuclear Information System (INIS)

    Loerelius, L.E.; Stridbeck, H.

    1984-01-01

    VX 2 tumors in the rabbit hind leg were investigated at one, two and three weeks of age. Angiograms were compared with vascular casts. The tumors grew rapidly the first two weeks of age. Large variations in vascularity were noted between tumors of different ages. With increasing age arteriovenous shunts at the tumor periphery and areas of avascularity of necrosis in the tumor center increased in size. Possible reasons for tumor necrosis are increased tissue pressure, anoxia caused by arteriovenous shunts and elevation in venous pressure. The natural history of the VX 2 tumor must be considered in every experimental study of the effect of any treatment. (orig.)

  18. Increased metabolite production by deletion of an HDA1-type histone deacetylase in the phytopathogenic fungi, Magnaporthe oryzae (Pyricularia oryzae) and Fusarium asiaticum.

    Science.gov (United States)

    Maeda, K; Izawa, M; Nakajima, Y; Jin, Q; Hirose, T; Nakamura, T; Koshino, H; Kanamaru, K; Ohsato, S; Kamakura, T; Kobayashi, T; Yoshida, M; Kimura, M

    2017-11-01

    Histone deacetylases (HDACs) play an important role in the regulation of chromatin structure and gene expression. We found that dark pigmentation of Magnaporthe oryzae (anamorph Pyricularia oryzae) ΔMohda1, a mutant strain in which an orthologue of the yeast HDA1 was disrupted by double cross-over homologous recombination, was significantly stimulated in liquid culture. Analysis of metabolites in a ΔMohda1 mutant culture revealed that the accumulation of shunt products of the 1,8-dihydroxynaphthalene melanin and ergosterol pathways were significantly enhanced compared to the wild-type strain. Northern blot analysis of the ΔMohda1 mutant revealed transcriptional activation of three melanin genes that are dispersed throughout the genome of M. oryzae. The effect of deletion of the yeast HDA1 orthologue was also observed in Fusarium asiaticum from the Fusarium graminearum species complex; the HDF2 deletion mutant produced increased levels of nivalenol-type trichothecenes. These results suggest that histone modification via HDA1-type HDAC regulates the production of natural products in filamentous fungi. Natural products of fungi have significant impacts on human welfare, in both detrimental and beneficial ways. Although HDA1-type histone deacetylase is not essential for vegetative growth, deletion of the gene affects the expression of clustered secondary metabolite genes in some fungi. Here, we report that such phenomena are also observed in physically unlinked genes required for melanin biosynthesis in the rice blast fungus. In addition, production of Fusarium trichothecenes, previously reported to be unaffected by HDA1 deletion, was significantly upregulated in another Fusarium species. Thus, the HDA1-inactivation strategy may be regarded as a general approach for overproduction and/or discovery of fungal metabolites. © 2017 The Society for Applied Microbiology.

  19. Alterations of tumor suppressor genes (Rb, p16, p27 and p53) and an increased FDG uptake in lung cancer

    International Nuclear Information System (INIS)

    Sasaki, Masayuki; Sugio, Kenji; Kuwabara, Yasuo

    2003-01-01

    The FDG uptake in lung cancer is considered to reflect the degree of malignancy, while alterations of some tumor suppressor genes are considered to be related to the malignant biological behavior of tumors. The aim of this study is to examine the relationship between FDG-PET and alterations in the tumor suppression genes of lung cancer. We examined 28 patients with primary lung cancer who underwent FDG-PET before surgery consisting of 17 patients with adenocarcinoma, 10 with squamous cell carcinoma and 1 with large cell carcinoma. The FDG-PET findings were evaluated based on the standardized uptake value (SUV). Alterations in the tumor suppressor genes, Rb, p16, p27 and p53, were evaluated immunohistochemically. The FDG uptake in lung cancer with alteration in each tumor suppressor gene tended to be higher than in those genes without alterations, although the differences were not significant. In 15 tumors with alterations in either tumor suppressor genes, the FDG uptake was 6.83±3.21. On the other hand, the mean FDG uptake was 1.95 in 2 tumors without alterations in any genes. The difference in the FDG uptake between the 2 groups was statistically significant (p<0.001). In conclusion, the presence of abnormalities in the tumor suppressor genes, which results in an accelerated cell proliferation, is thus considered to increase the FDG uptake in lung cancer. (author)

  20. Epithelial-mesenchymal transition increases tumor sensitivity to COX-2 inhibition by apricoxib.

    Science.gov (United States)

    Kirane, Amanda; Toombs, Jason E; Larsen, Jill E; Ostapoff, Katherine T; Meshaw, Kathryn R; Zaknoen, Sara; Brekken, Rolf A; Burrows, Francis J

    2012-09-01

    Although cyclooxygenase-2 (COX-2) inhibitors, such as the late stage development drug apricoxib, exhibit antitumor activity, their mechanisms of action have not been fully defined. In this study, we characterized the mechanisms of action of apricoxib in HT29 colorectal carcinoma. Apricoxib was weakly cytotoxic toward naive HT29 cells in vitro but inhibited tumor growth markedly in vivo. Pharmacokinetic analyses revealed that in vivo drug levels peaked at 2-4 µM and remained sufficient to completely inhibit prostaglandin E(2) production, but failed to reach concentrations cytotoxic for HT29 cells in monolayer culture. Despite this, apricoxib significantly inhibited tumor cell proliferation and induced apoptosis without affecting blood vessel density, although it did promote vascular normalization. Strikingly, apricoxib treatment induced a dose-dependent reversal of epithelial-mesenchymal transition (EMT), as shown by robust upregulation of E-cadherin and the virtual disappearance of vimentin and ZEB1 protein expression. In vitro, either anchorage-independent growth conditions or forced EMT sensitized HT29 and non-small cell lung cancer cells to apricoxib by 50-fold, suggesting that the occurrence of EMT may actually increase the dependence of colon and lung carcinoma cells on COX-2. Taken together, these data suggest that acquisition of mesenchymal characteristics sensitizes carcinoma cells to apricoxib resulting in significant single-agent antitumor activity.

  1. Effect of high pressure treatment on metabolite profile of marinated meat in soy sauce.

    Science.gov (United States)

    Yang, Yang; Ye, Yangfang; Wang, Ying; Sun, Yangying; Pan, Daodong; Cao, Jinxuan

    2018-02-01

    Marinated meat in soy sauce was produced using hind leg by washing, rubbing salt, marinating with soy sauce and spices, and air dry-ripening for 15d. The effect of high pressure (HP) (150 and 300MPa for 15min) on the metabolite profiles of products was characterized using 1 H NMR and multivariate data analysis. The results showed that the metabonome was dominated by 26 metabolites, including amino acids, sugars, organic acids, nucleic aides and their derivatives. PC1 and PC2 explained a total of 75.4 and 11.9% of variables, respectively. HP treatments increased most of the metabolites, especially PC1, glutamate, sugars, nucleotides, anserine, lactate and creatine compared to the control. The increase of metabolites under HP was not dependent on pressure level except for alanine, lactate, acetate, formate, fumarate, glucose and 5'-IMP. These findings demonstrated that HP treatment at 150MPa was economical to improve the taste of marinated meat in soy sauce. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Mathematical models of tumor growth: translating absorbed dose to tumor control probability

    International Nuclear Information System (INIS)

    Sgouros, G.

    1996-01-01

    Full text: The dose-rate in internal emitter therapy is low and time-dependent as compared to external beam radiotherapy. Once the total absorbed dose delivered to a target tissue is calculated, however, most dosimetric analyses of radiopharmaceuticals are considered complete. To translate absorbed dose estimates obtained for internal emitter therapy to biologic effect, the growth characteristics, repair capacity, and radiosensitivity of the tumor must be considered. Tumor growth may be represented by the Gompertz equation in which tumor cells increase at an exponential growth rate that is itself decreasing at an exponential rate; as the tumor increases in size, the growth rate diminishes. The empirical Gompertz expression for tumor growth may be derived from a mechanistic model in which growth is represented by a balance between tumor-cell birth and loss. The birth rate is assumed to be fixed, while the cell loss rate is time-dependent and increases with tumor size. The birth rate of the tumors may be related to their potential doubling time. Multiple biopsies of individual tumors have demonstrated a heterogeneity in the potential doubling time of tumors. By extending the mechanistic model described above to allow for sub-populations of tumor cells with different birth rates, the effect of kinetic heterogeneity within a tumor may be examined. Model simulations demonstrate that the cell kinetic parameters of a tumor are predicted to change over time and measurements obtained using a biopsy are unlikely to reflect the kinetics of the tumor throughout its growth history. A decrease in overall tumor mass, in which each sub-population is reduced in proportion to its cell number, i.e., the log-kill assumption, leads to re-growth of a tumor that has a greater proliferation rate. Therapy that is linked to the potential doubling time or to the effective proliferation rate of the tumor may lead to re-growth of a tumor that is kinetically unchanged. The simplest model of

  3. Identification of metabolites of the tryptase inhibitor CRA-9249: observation of a metabolite derived from an unexpected hydroxylation pathway.

    Science.gov (United States)

    Yu, Walter; Dener, Jeffrey M; Dickman, Daniel A; Grothaus, Paul; Ling, Yun; Liu, Liang; Havel, Chris; Malesky, Kimberly; Mahajan, Tania; O'Brian, Colin; Shelton, Emma J; Sperandio, David; Tong, Zhiwei; Yee, Robert; Mordenti, Joyce J

    2006-08-01

    The metabolites of the tryptase inhibitor CRA-9249 were identified after exposure to liver microsomes. CRA-9249 was found to be degraded rapidly in liver microsomes from rabbit, dog, cynomolgus monkey, and human, and less rapidly in microsomes from rat. The key metabolites included cleavage of an aryl ether, in addition to an unexpected hydroxylation of the amide side chain adjacent to the amide nitrogen. The chemical structures of both metabolites were confirmed by synthesis and comparison to material isolated from the liver microsomes. Several suspected hydroxylated metabolites were also synthesized and analyzed as part of the structure identification process.

  4. Tumor-Infiltrating Immune Cells Promoting Tumor Invasion and Metastasis: Existing Theories

    Directory of Open Access Journals (Sweden)

    Yan-gao Man, Alexander Stojadinovic, Jeffrey Mason, Itzhak Avital, Anton Bilchik, Bjoern Bruecher, Mladjan Protic, Aviram Nissan, Mina Izadjoo, Xichen Zhang, Anahid Jewett

    2013-01-01

    Full Text Available It is a commonly held belief that infiltration of immune cells into tumor tissues and direct physical contact between tumor cells and infiltrated immune cells is associated with physical destructions of the tumor cells, reduction of the tumor burden, and improved clinical prognosis. An increasing number of studies, however, have suggested that aberrant infiltration of immune cells into tumor or normal tissues may promote tumor progression, invasion, and metastasis. Neither the primary reason for these contradictory observations, nor the mechanism for the reported diverse impact of tumor-infiltrating immune cells has been elucidated, making it difficult to judge the clinical implications of infiltration of immune cells within tumor tissues. This mini-review presents several existing hypotheses and models that favor the promoting impact of tumor-infiltrating immune cells on tumor invasion and metastasis, and also analyzes their strength and weakness.

  5. 3D high-content screening for the identification of compounds that target cells in dormant tumor spheroid regions

    Energy Technology Data Exchange (ETDEWEB)

    Wenzel, Carsten; Riefke, Björn; Gründemann, Stephan; Krebs, Alice; Christian, Sven; Prinz, Florian; Osterland, Marc; Golfier, Sven; Räse, Sebastian [Bayer Pharma AG, Global Drug Discovery, Muellerstrasse 178, 13353 Berlin (Germany); Ansari, Nariman [Physical Biology Group, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt (Germany); Esner, Milan; Bickle, Marc [Max Planck Institute of Molecular Cell Biology and Genetics, High-Throughput Technology Development Studio (TDS), Dresden (Germany); Pampaloni, Francesco; Mattheyer, Christian; Stelzer, Ernst H. [Physical Biology Group, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt (Germany); Parczyk, Karsten; Prechtl, Stefan [Bayer Pharma AG, Global Drug Discovery, Muellerstrasse 178, 13353 Berlin (Germany); Steigemann, Patrick, E-mail: Patrick.Steigemann@bayer.com [Bayer Pharma AG, Global Drug Discovery, Muellerstrasse 178, 13353 Berlin (Germany)

    2014-04-15

    Cancer cells in poorly vascularized tumor regions need to adapt to an unfavorable metabolic microenvironment. As distance from supplying blood vessels increases, oxygen and nutrient concentrations decrease and cancer cells react by stopping cell cycle progression and becoming dormant. As cytostatic drugs mainly target proliferating cells, cancer cell dormancy is considered as a major resistance mechanism to this class of anti-cancer drugs. Therefore, substances that target cancer cells in poorly vascularized tumor regions have the potential to enhance cytostatic-based chemotherapy of solid tumors. With three-dimensional growth conditions, multicellular tumor spheroids (MCTS) reproduce several parameters of the tumor microenvironment, including oxygen and nutrient gradients as well as the development of dormant tumor regions. We here report the setup of a 3D cell culture compatible high-content screening system and the identification of nine substances from two commercially available drug libraries that specifically target cells in inner MCTS core regions, while cells in outer MCTS regions or in 2D cell culture remain unaffected. We elucidated the mode of action of the identified compounds as inhibitors of the respiratory chain and show that induction of cell death in inner MCTS core regions critically depends on extracellular glucose concentrations. Finally, combinational treatment with cytostatics showed increased induction of cell death in MCTS. The data presented here shows for the first time a high-content based screening setup on 3D tumor spheroids for the identification of substances that specifically induce cell death in inner tumor spheroid core regions. This validates the approach to use 3D cell culture screening systems to identify substances that would not be detectable by 2D based screening in otherwise similar culture conditions. - Highlights: • Establishment of a novel method for 3D cell culture based high-content screening. • First reported high

  6. 3D high-content screening for the identification of compounds that target cells in dormant tumor spheroid regions

    International Nuclear Information System (INIS)

    Wenzel, Carsten; Riefke, Björn; Gründemann, Stephan; Krebs, Alice; Christian, Sven; Prinz, Florian; Osterland, Marc; Golfier, Sven; Räse, Sebastian; Ansari, Nariman; Esner, Milan; Bickle, Marc; Pampaloni, Francesco; Mattheyer, Christian; Stelzer, Ernst H.; Parczyk, Karsten; Prechtl, Stefan; Steigemann, Patrick

    2014-01-01

    Cancer cells in poorly vascularized tumor regions need to adapt to an unfavorable metabolic microenvironment. As distance from supplying blood vessels increases, oxygen and nutrient concentrations decrease and cancer cells react by stopping cell cycle progression and becoming dormant. As cytostatic drugs mainly target proliferating cells, cancer cell dormancy is considered as a major resistance mechanism to this class of anti-cancer drugs. Therefore, substances that target cancer cells in poorly vascularized tumor regions have the potential to enhance cytostatic-based chemotherapy of solid tumors. With three-dimensional growth conditions, multicellular tumor spheroids (MCTS) reproduce several parameters of the tumor microenvironment, including oxygen and nutrient gradients as well as the development of dormant tumor regions. We here report the setup of a 3D cell culture compatible high-content screening system and the identification of nine substances from two commercially available drug libraries that specifically target cells in inner MCTS core regions, while cells in outer MCTS regions or in 2D cell culture remain unaffected. We elucidated the mode of action of the identified compounds as inhibitors of the respiratory chain and show that induction of cell death in inner MCTS core regions critically depends on extracellular glucose concentrations. Finally, combinational treatment with cytostatics showed increased induction of cell death in MCTS. The data presented here shows for the first time a high-content based screening setup on 3D tumor spheroids for the identification of substances that specifically induce cell death in inner tumor spheroid core regions. This validates the approach to use 3D cell culture screening systems to identify substances that would not be detectable by 2D based screening in otherwise similar culture conditions. - Highlights: • Establishment of a novel method for 3D cell culture based high-content screening. • First reported high

  7. Epigenome targeting by probiotic metabolites

    Directory of Open Access Journals (Sweden)

    Licciardi Paul V

    2010-12-01

    Full Text Available Abstract Background The intestinal microbiota plays an important role in immune development and homeostasis. A disturbed microbiota during early infancy is associated with an increased risk of developing inflammatory and allergic diseases later in life. The mechanisms underlying these effects are poorly understood but are likely to involve alterations in microbial production of fermentation-derived metabolites, which have potent immune modulating properties and are required for maintenance of healthy mucosal immune responses. Probiotics are beneficial bacteria that have the capacity to alter the composition of bacterial species in the intestine that can in turn influence the production of fermentation-derived metabolites. Principal among these metabolites are the short-chain fatty acids butyrate and acetate that have potent anti-inflammatory activities important in regulating immune function at the intestinal mucosal surface. Therefore strategies aimed at restoring the microbiota profile may be effective in the prevention or treatment of allergic and inflammatory diseases. Presentation of the hypothesis Probiotic bacteria have diverse effects including altering microbiota composition, regulating epithelial cell barrier function and modulating of immune responses. The precise molecular mechanisms mediating these probiotic effects are not well understood. Short-chain fatty acids such as butyrate are a class of histone deacetylase inhibitors important in the epigenetic control of host cell responses. It is hypothesized that the biological function of probiotics may be a result of epigenetic modifications that may explain the wide range of effects observed. Studies delineating the effects of probiotics on short-chain fatty acid production and the epigenetic actions of short-chain fatty acids will assist in understanding the association between microbiota and allergic or autoimmune disorders. Testing the hypothesis We propose that treatment with

  8. New metabolites of hongdenafil, homosildenafil and hydroxyhomosildenafil.

    Science.gov (United States)

    Yeo, Miseon; Park, Yujin; Lee, Heesang; Choe, Sanggil; Baek, Seung-Hoon; Kim, Hye Kyung; Pyo, Jae Sung

    2018-02-05

    Recently, illegal sildenafil analogues have emerged, causing serious social issues. In spite of the importance of sildenafil analogues, their metabolic profiles or clinical effects have not been reported yet. In this study, new metabolites of illegal sildenafil analogues such as hongdenafil, homosildenafil, and hydroxyhomosildenafil were determined using liquid chromatography quadrupole-time of flight mass spectrometry (LC-Q-TOF-MS) and tandem mass spectrometry (LC-Q-TOF-MS/MS). To prepare metabolic samples, in vitro and in vivo studies were performed. For in vivo metabolites analysis, urine and feces samples of rats treated with sildenafil analogues were analyzed. For in vitro metabolites analysis, human liver microsomes incubated with sildenafil analogues were extracted and analyzed. All metabolites were characterized by LC-Q-TOF-MS and LC-Q-TOF-MS/MS. As a result, five, six, and seven metabolites were determined in hongdenafil, homosildenafil, and hydroxyhomosildenafil treated samples, respectively. These results could be applied to forensic science and other analytical fields. Moreover, these newly identified metabolites could be used as fundamental data to determine the side effect and toxicity of illegal sildenafil analogues. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Methylselenol, a selenium metabolite, modulates p53 pathway and inhibits the growth of colon cancer xenografts in Balb/c mice.

    Science.gov (United States)

    Zeng, Huawei; Cheng, Wen-Hsing; Johnson, Luann K

    2013-05-01

    It is has been hypothesized that methylselenol is a critical selenium metabolite for anticancer activity in vivo. In this study, we used a protein array which contained 112 different antibodies known to be involved in the p53 pathway to investigate the molecular targets of methylselenol in human HCT116 colon cancer cells. The array analysis indicated that methylselenol exposure changed the expression of 11 protein targets related to the regulation of cell cycle and apoptosis. Subsequently, we confirmed these proteins with the Western blotting approach, and found that methylselenol increased the expression of GADD 153 and p21 but reduced the level of c-Myc, E2F1 and Phos p38 MAP kinase. Similar to our previous report on human HCT116 colon cancer cells, methylselenol also inhibited cell growth and led to an increase in G1 and G2 fractions with a concomitant drop in S-phase in mouse colon cancer MC26 cells. When the MC26 cells were transplanted to their immune-competent Balb/c mice, methylselenol-treated MC26 cells had significantly less tumor growth potential than that of untreated MC26 cells. Taken together, our data suggest that methylselenol modulates the expression of key genes related to cell cycle and apoptosis and inhibits colon cancer cell proliferation and tumor growth. Copyright © 2013. Published by Elsevier Inc.

  10. Inhibition of aromatase activity by methyl sulfonyl PCB metabolites in primary culture of human mammary fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Berg, M. van den; Heneweer, M.; Geest, M. de; Sanderson, T. [Inst. for Risk Assessment Sciences and Utrecht Univ. (Netherlands); Jong, P. de [St. Antonius Hospital, Nieuwegein (Netherlands); Bergman, A. [Stockholm Univ., Stockholm (Sweden)

    2004-09-15

    Methyl sulfonyl PCB metabolites (MeSO2-PCBs) are persistent contaminants and are ubiquitously present in humans and the environment. Lipophilicity of MeSO2- PCB metabolites is similar to the parent compounds and they have been detected in human milk, adipose, liver and lung tissue. 4- MeSO2-PCB-149 is the most abundant PCB metabolite in human adipose tissue and milk at a level of 1.5 ng/g lipids. Human blood concentration of 4-MeSO2-PCB-149 is approximately 0.03 nM. 3- MeSO2-PCB-101 is the predominant PCB metabolite in muscle and blubber in wildlife, such as otter, mink and grey seal. In the environment, they have been linked to chronic and reproductive toxicity in exposed mink. Additionaly, some MeSO{sub 2}-PCBs have been shown to be glucocorticoid receptor (GR) antagonists. Since approximately 60% of all breast tumors are estrogen responsive, exposure to compounds that are able to alter estrogen synthesis through interference with the aromatase enzyme, can lead to changes in estrogen levels and possibly to accelerated or inhibit breast tumor growth. Therefore, it is important to identify exogenous compounds that can alter aromatase activity in addition to those compounds which have direct interaction with the estrogen receptor (ER). Aromatase (CYP19) comprises the ubiquitous flavoprotein, NADPH-cytochrome P450 reductase, and a unique cytochrome P450 that is exclusively expressed in estrogen producing cells. Previous studies have revealed that expression of the aromatase gene is regulated in a species- and tissue specific manner. In healthy breast tissue, the predominantly active aromatase promoter region I.4 is regulated by glucocorticoids and class I cytokines. Therefore, it is important to investigate possible aromatase inhibiting properties of MeSO{sub 2}-PCBs (as anti glucocorticoids?) in relevant human tissues. We used primary human mammary fibroblasts because of their role in breast cancer development. We compared the results in primary fibroblasts with

  11. Extraction of secondary metabolites from plant material: a review

    NARCIS (Netherlands)

    Starmans, D.A.J.; Nijhuis, H.H.

    1996-01-01

    This review article intends to give an overview of the developments in the extraction technology of secondary metabolites from plant material. There are three types of conventional extraction techniques. In order of increasing technological difficulty, these involve the use of solvents, steam or

  12. Pu-erh Tea Inhibits Tumor Cell Growth by Down-Regulating Mutant p53

    Science.gov (United States)

    Zhao, Lanjun; Jia, Shuting; Tang, Wenru; Sheng, Jun; Luo, Ying

    2011-01-01

    Pu-erh tea is a kind of fermented tea with the incorporation of microorganisms’ metabolites. Unlike green tea, the chemical characteristics and bioactivities of Pu-erh tea are still not well understood. Using water extracts of Pu-erh tea, we analyzed the tumor cell growth inhibition activities on several genetically engineered mouse tumor cell lines. We found that at the concentration that did not affect wild type mouse embryo fibroblasts (MEFs) growth, Pu-erh tea extracts could inhibit tumor cell growth by down-regulated S phase and cause G1 or G2 arrest. Further study showed that Pu-erh tea extracts down-regulated the expression of mutant p53 in tumor cells at the protein level as well as mRNA level. The same concentration of Pu-erh tea solution did not cause p53 stabilization or activation of its downstream pathways in wild type cells. We also found that Pu-erh tea treatment could slightly down-regulate both HSP70 and HSP90 protein levels in tumor cells. These data revealed the action of Pu-erh tea on tumor cells and provided the possible mechanism for Pu-erh tea action, which explained its selectivity in inhibiting tumor cells without affecting wild type cells. Our data sheds light on the application of Pu-erh tea as an anti-tumor agent with low side effects. PMID:22174618

  13. Liquid-chromatography mass spectrometry (LC-MS) of steroid hormone metabolites and its applications

    Science.gov (United States)

    Penning, Trevor M.; Lee, Seon-Hwa; Jin, Yi; Gutierrez, Alejandro; Blair, Ian A.

    2010-01-01

    Advances in liquid chromatography-mass spectrometry (LC-MS) can be used to measure steroid hormone metabolites in vitro and in vivo. We find that LC-Electrospray Ionization (ESI)-MS using a LCQ ion trap mass spectrometer in the negative ion mode can be used to monitor the product profile that results from 5α–dihydrotestosterone(DHT)-17β-glucuronide, DHT-17β-sulfate, and tibolone-17β-sulfate reduction catalyzed by human members of the aldo-keto reductase (AKR) 1C subfamily and assign kinetic constants to these reactions. We also developed a stable-isotope dilution LC-electron capture atmospheric pressure chemical ionization (ECAPCI)-MS method for the quantitative analysis of estrone (E1) and its metabolites as pentafluorobenzyl (PFB) derivatives in human plasma in the attomole range. The limit of detection for E1-PFB was 740 attomole on column. Separations can be performed using normal-phase LC because ionization takes place in the gas phase rather than in solution. This permits efficient separation of the regioisomeric 2- and 4-methoxy-E1. The method was validated for the simultaneous analysis of plasma E2 and its metabolites: 2-methoxy-E2, 4-methoxy-E2, 16α-hydroxy-E2, estrone (E1), 2-methoxy-E1, 4-methoxy-EI, and 16α-hydroxy-E1 from 5 pg/mL to 2,000 pg/mL. Our LC-MS methods have sufficient sensitivity to detect steroid hormone levels in prostate and breast tumors and should aid their molecular diagnosis and treatment. PMID:20083198

  14. Familial Resemblance for Serum Metabolite Concentrations

    NARCIS (Netherlands)

    Draisma, H.H.M.; Beekman, M.; Pool, R.; van Ommen, G.J.B; Vaarhorst, A.A.M.; de Craen, A.J.; Willemsen, G.; Slagboom, P.E.; Boomsma, D.I.

    2013-01-01

    Metabolomics is the comprehensive study of metabolites, which are the substrates, intermediate, and end products of cellular metabolism. The heritability of the concentrations of circulating metabolites bears relevance for evaluating their suitability as biomarkers for disease. We report aspects of

  15. Metabolite Depletion Affects Flux Profiling of Cell Lines

    DEFF Research Database (Denmark)

    Nilsson, A.; Haanstra, J. R.; Teusink, B.

    2018-01-01

    Quantifying the rate of consumption and release of metabolites (i.e., flux profiling) has become integral to the study of cancer. The fluxes as well as the growth of the cells may be affected by metabolite depletion during cultivation.......Quantifying the rate of consumption and release of metabolites (i.e., flux profiling) has become integral to the study of cancer. The fluxes as well as the growth of the cells may be affected by metabolite depletion during cultivation....

  16. Does cell phone use increase the chances of parotid gland tumor development? A systematic review and meta-analysis.

    Science.gov (United States)

    de Siqueira, Elisa Carvalho; de Souza, Fabrício Tinoco Alvim; Gomez, Ricardo Santiago; Gomes, Carolina Cavalieri; de Souza, Renan Pedra

    2017-08-01

    Prior epidemiological studies had examined the association between cell phone use and the development of tumors in the parotid glands. However, there is no consensus about the question of whether cell phone use is associated with increased risk of tumors in the parotid glands. We performed a meta-analysis to evaluate the existing literature about the mean question and to determine their statistical significance. Primary association studies. Papers that associated cell phone use and parotid gland tumors development were included, with no restrictions regarding publication date, language, and place of publication. Systematic literature search using PubMed, SciELO and Embase followed by meta-analysis. Initial screening included 37 articles, and three were included in meta-analysis. Using three independent samples including 5087 subjects from retrospective case-control studies, cell phone use seems to be associated with greater odds (1.28, 95%- confidence interval: 1.09-1.51) to develop salivary gland tumor. Results should be read with caution due to the limited number of studies available and their retrospective design. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Antitumor Effect of Selenium and Modified Pectin Nano Particles and Gamma Radiation on Ehrilch Solid Tumor in Female Mice

    International Nuclear Information System (INIS)

    Mansour, S. Z.; Anis, L.M.; EI- Batal, A.I.

    2010-01-01

    Selenium nano particle (Nano- Se) is a novel Se species with novel biological activities with low toxicity. The aim of the present work was to evaluate the antitumor activity of a novel Nano- Se compound with or without gamma irradiation of female mice. Selenium size- controlled Nano-Se was prepared by a simple method by adding modified pectin to the selenious acid and ascorbic acid. The antitumor activity of Selenium and Modified Pectin Nano Particles (Se-Mp- NPs) were evaluated against Ehrilch ascites carcinoma (In vitro) and Ehrilch solid tumor model (In vivo). The antioxidant states of the novel compound were assessed measuring parameters in blood and tumor tissue of female mice. Malonaldehydoyl (MDA) end product of lipid peroxidation was evaluated in plasma and tumor tissue. Glutathione -S- transferase (GST) and cytochrome P450 (Cyto P450) were determined in tumor tissue homogenate. Tumor necrosis factor alpha (TNF- a) concentration and interleukin 10 (IL- 10) concentrations was evaluated in plasma of female mice. The effect of tumor inoculation and different treatments on liver enzymes (ALT and AST) and kidney Function (urea and creatinine) were detected in the plasma of animals. Apoptosis was shown and estimated in tumor tissue of animals histopathological of tumor in different groups of mice were examined. Ehrilch solid tumor induced a significant increase in MDA content, GSH-Px and GST activities level and in the amount of metabolites of CYP 450. Moreover, a significant decrease was observed in GSH content, SOD activity level in the tumor tissue, INF- a concentration, IL- 10 concentration in the plasma. Also, a significant alteration in kidney and liver functions was occurred as compared to control group. The results showed a significant antitumor activity of selenium and Modified Pectin Nano Particles (Se-Mp- NPs) at the concentration 2.25 μg / ml was 70%

  18. NMR characteristics of rat mammary tumors

    International Nuclear Information System (INIS)

    Osbakken, M.; Kreider, J.; Taczanowsky, P.

    1984-01-01

    12 rats were injected intradermally with 13762A rat mammary adenocarcinoma (1 x 10/sup 6/ cells). 3 rats died before completion of the study and 2 rat had tumor regression; the first 3 were excluded from data analysis. NMR imaging with a 1.5K gauss resistive magnet at 2, 3, 4, and 5 weeks after injection demonstrated increasing tumor mass. Saturation recovery (SR), inversion recovery (IR), and spin echo (SE) pulse sequence images and T/sub 1/ calculation were done for tumor characterization. (Tumor size was too small to identify at 2 weeks.) 3 rats were sacrificed after the last 3 imaging periods for histological studies, done to distinguish solid tumor mass from necrosis. Planimetry of tumor areas showed that as tumors grew in size, the ratio of necrotic area to area of solid tumor increased (week 3 = .3 +- .11; week 4 = .45 +- .07; week 5 = .51 +- 05); simultaneous calculated T/sub 1/ values also increased (week 3 = .35 +- .15; week 4 = .45 +- .06; week 5 = .42 +- 03). Qualitative NMR image T/sub 1/ values also increased as evidenced by progression of SR and IR tumor image intensity from very bright compared to the rest of the body at week 3 to less intense than other structures at week 5. These findings indicate that change in T/sub 1/ may be secondary to the pathophysiological change in the tumor (the increasing in necrosis, associated with increased free water). Thus, the range of T/sub 1/ values obtained in tumors in this study (and in previous studies) may be due to change in tumor physiology and anatomy. Careful correlation of histological with NMR data may allow ultimate use of NMR relaxation characteristics for determination of the physiological state of tumors

  19. Exploring traditional aus-type rice for metabolites conferring drought tolerance.

    Science.gov (United States)

    Casartelli, Alberto; Riewe, David; Hubberten, Hans Michael; Altmann, Thomas; Hoefgen, Rainer; Heuer, Sigrid

    2018-01-25

    Traditional varieties and landraces belonging to the aus-type group of rice (Oryza sativa L.) are known to be highly tolerant to environmental stresses, such as drought and heat, and are therefore recognized as a valuable genetic resource for crop improvement. Using two aus-type (Dular, N22) and two drought intolerant irrigated varieties (IR64, IR74) an untargeted metabolomics analysis was conducted to identify drought-responsive metabolites associated with tolerance. The superior drought tolerance of Dular and N22 compared with the irrigated varieties was confirmed by phenotyping plants grown to maturity after imposing severe drought stress in a dry-down treatment. Dular and N22 did not show a significant reduction in grain yield compared to well-watered control plants, whereas the intolerant varieties showed a significant reduction in both, total spikelet number and grain yield. The metabolomics analysis was conducted with shoot and root samples of plants at the tillering stage at the end of the dry-down treatment. The data revealed an overall higher accumulation of N-rich metabolites (amino acids and nucleotide-related metabolites allantoin and uridine) in shoots of the tolerant varieties. In roots, the aus-type varieties were characterised by a higher reduction of metabolites representative of glycolysis and the TCA cycle, such as malate, glyceric acid and glyceric acid-3-phosphate. On the other hand, the oligosaccharide raffinose showed a higher fold increase in both, shoots and roots of the sensitive genotypes. The data further showed that, for certain drought-responsive metabolites, differences between the contrasting rice varieties were already evident under well-watered control conditions. The drought tolerance-related metabolites identified in the aus-type varieties provide a valuable set of protective compounds and an entry point for assessing genetic diversity in the underlying pathways for developing drought tolerant rice and other crops.

  20. Drinking water guideline for ethylene thiourea, a metabolite of ethylene bisdithiocarbamate fungicides

    International Nuclear Information System (INIS)

    Frakes, R.A.

    1988-01-01

    The ethylene bisdithiocarbamate fungicides are the most heavily used pesticides in Maine. Ethylene thiourea (ETU) is a metabolite and environmental decomposition product of these compounds, is highly water soluble, and has been detected in groundwater in the state. ETU is a recognized animal carcinogen and teratogen. When administered in the diet, ETU produced a significant increase in thyroid carcinomas in rats in two studies. Two strains of mice fed ETU in the diet developed an increased incidence of hepatomas and a slight increase in lymphomas. Application of the linearized multistage model resulted in virtually safe doses (10(-5) lifetime cancer risk) of 0.25 to 1.6 micrograms/kg/day. The major teratologic effect has been the development of hydrocephalus and other CNS defects postnatally, resulting in a high mortality rate among the offspring. The NOEL for this effect was 5 mg/kg in a single oral dose. Retarded parietal ossification was observed at 5 mg/kg/day. Serious nononcogenic thyroid effects, such as goiter, decreased 131I uptake, and reduced thyroxine production, have been observed. Thyroid hyperplasia was produced at doses as low as 0.3 mg/kg/day ETU ingested in the diet. Based on protection against thyroid and/or liver tumors and alteration in thyroid function, the recommended Drinking Water Guideline for ETU is determined to be 3 ppb. This will also provide protection against developmental effects, since these occur at doses that are one to two orders of magnitude higher. 37 references

  1. Dysbiosis of gut microbiota and microbial metabolites in Parkinson's Disease.

    Science.gov (United States)

    Sun, Meng-Fei; Shen, Yan-Qin

    2018-04-26

    Gut microbial dysbiosis and alteration of microbial metabolites in Parkinson's disease (PD) have been increasingly reported. Dysbiosis in the composition and abundance of gut microbiota can affect both the enteric nervous system and the central nervous system (CNS), indicating the existence of a microbiota-gut-brain axis and thereby causing CNS diseases. Disturbance of the microbiota-gut-brain axis has been linked to specific microbial products that are related to gut inflammation and neuroinflammation. Future directions should therefore focus on the exploration of specific gut microbes or microbial metabolites that contribute to the development of PD. Microbiota-targeted interventions, such as antibiotics, probiotics and fecal microbiota transplantation, have been shown to favorably affect host health. In this review, recent findings regarding alterations and the role of gut microbiota and microbial metabolites in PD are summarized, and potential molecular mechanisms and microbiota-targeted interventions in PD are discussed. Copyright © 2018. Published by Elsevier B.V.

  2. Analysis of Metabolites in Stem Parasitic Plant Interactions: Interaction of Cuscuta–Momordica versus Cassytha–Ipomoea

    Science.gov (United States)

    Furuhashi, Takeshi; Nakamura, Takemichi; Iwase, Koji

    2016-01-01

    Cuscuta and Cassytha are two well-known stem parasitic plant genera with reduced leaves and roots, inducing haustoria in their stems. Their similar appearance in the field has been recognized, but few comparative studies on their respective plant interactions are available. To compare their interactions, we conducted a metabolite analysis of both the Cassytha–Ipomoea and the Cuscuta–Momordica interaction. We investigated the energy charge of the metabolites by UFLC (ultra-high performance liquid chromatography), and conducted GC-MS (gas chromatography-mass spectrometry) analysis for polar metabolites (e.g., saccharides, polyols) and steroids. The energy charge after parasitization changed considerably in Cassytha but not in Cusucta. Cuscuta changed its steroid pattern during the plant interaction, whereas Cassytha did not. In the polar metabolite analysis, the laminaribiose increase after parasitization was conspicuous in Cuscuta, but not in Cassytha. This metabolite profile difference points to different lifestyles and parasitic strategies. PMID:27941603

  3. Analysis of Metabolites in Stem Parasitic Plant Interactions: Interaction of Cuscuta–Momordica versus Cassytha–Ipomoea

    Directory of Open Access Journals (Sweden)

    Takeshi Furuhashi

    2016-12-01

    Full Text Available Cuscuta and Cassytha are two well-known stem parasitic plant genera with reduced leaves and roots, inducing haustoria in their stems. Their similar appearance in the field has been recognized, but few comparative studies on their respective plant interactions are available. To compare their interactions, we conducted a metabolite analysis of both the Cassytha–Ipomoea and the Cuscuta–Momordica interaction. We investigated the energy charge of the metabolites by UFLC (ultra-high performance liquid chromatography, and conducted GC-MS (gas chromatography-mass spectrometry analysis for polar metabolites (e.g., saccharides, polyols and steroids. The energy charge after parasitization changed considerably in Cassytha but not in Cusucta. Cuscuta changed its steroid pattern during the plant interaction, whereas Cassytha did not. In the polar metabolite analysis, the laminaribiose increase after parasitization was conspicuous in Cuscuta, but not in Cassytha. This metabolite profile difference points to different lifestyles and parasitic strategies.

  4. Analysis of Metabolites in Stem Parasitic Plant Interactions: Interaction of Cuscuta-Momordica versus Cassytha-Ipomoea.

    Science.gov (United States)

    Furuhashi, Takeshi; Nakamura, Takemichi; Iwase, Koji

    2016-12-07

    Cuscuta and Cassytha are two well-known stem parasitic plant genera with reduced leaves and roots, inducing haustoria in their stems. Their similar appearance in the field has been recognized, but few comparative studies on their respective plant interactions are available. To compare their interactions, we conducted a metabolite analysis of both the Cassytha-Ipomoea and the Cuscuta-Momordica interaction. We investigated the energy charge of the metabolites by UFLC (ultra-high performance liquid chromatography), and conducted GC-MS (gas chromatography-mass spectrometry) analysis for polar metabolites (e.g., saccharides, polyols) and steroids. The energy charge after parasitization changed considerably in Cassytha but not in Cusucta . Cuscuta changed its steroid pattern during the plant interaction, whereas Cassytha did not. In the polar metabolite analysis, the laminaribiose increase after parasitization was conspicuous in Cuscuta , but not in Cassytha . This metabolite profile difference points to different lifestyles and parasitic strategies.

  5. Simvastatin (SV) metabolites in mouse tissues

    International Nuclear Information System (INIS)

    Duncan, C.A.; Vickers, S.

    1990-01-01

    SV, a semisynthetic analog of lovastatin, is hydrolyzed in vivo to its hydroxy acid (SVA), a potent inhibitor of HMG CoA reductase (HR). Thus SV lowers plasma cholesterol. SV is a substrate for mixed function oxidases whereas SVA undergoes lactonization and β-oxidation. Male CD-1 mice were dosed orally with a combination of ( 14 C)SV and ( 3 H)SVA at 25 mg/kg of each, bled and killed at 0.5, 2 and 4 hours. Labeled SV, SVA, 6'exomethylene SV (I), 6'CH 2 OH-SV (II), 6'COOH-SV (III) and a β-oxidized metabolite (IV) were assayed in liver, bile, kidneys, testes and plasma by RIDA. Levels of potential and active HR inhibitors in liver were 10 to 40 fold higher than in other tissues. II and III, in which the configuration at 6' is inverted, may be 2 metabolites of I. Metabolites I-III are inhibitors of HR in their hydroxy acid forms. Qualitatively ( 14 C)SV and ( 3 H)SVA were metabolized similarly (consistent with their proposed interconversion). However 3 H-SVA, I-III (including hydroxy acid forms) achieved higher concentrations than corresponding 14 C compounds (except in gall bladder bile). Major radioactive metabolites in liver were II-IV (including hydroxy acid forms). These metabolites have also been reported in rat tissues. In bile a large fraction of either label was unidentified polar metabolites. The presence of IV indicated that mice (like rats) are not good models for SV metabolism in man

  6. Neurotoxicity of "ecstasy" and its metabolites in human dopaminergic differentiated SH-SY5Y cells.

    Science.gov (United States)

    Ferreira, Patrícia Silva; Nogueira, Tiago Bernandes; Costa, Vera Marisa; Branco, Paula Sério; Ferreira, Luísa Maria; Fernandes, Eduarda; Bastos, Maria Lourdes; Meisel, Andreas; Carvalho, Félix; Capela, João Paulo

    2013-02-04

    "Ecstasy" (3,4-methylenedioxymethamphetamine or MDMA) is a widely abused recreational drug, reported to produce neurotoxic effects, both in laboratory animals and in humans. MDMA metabolites can be major contributors for MDMA neurotoxicity. This work studied the neurotoxicity of MDMA and its catechol metabolites, α-methyldopamine (α-MeDA) and N-methyl-α-methyldopamine (N-Me-α-MeDA) in human dopaminergic SH-SY5Y cells differentiated with retinoic acid and 12-O-tetradecanoyl-phorbol-13-acetate. Differentiation led to SH-SY5Y neurons with higher ability to accumulate dopamine and higher resistance towards dopamine neurotoxicity. MDMA catechol metabolites were neurotoxic to SH-SY5Y neurons, leading to caspase 3-independent cell death in a concentration- and time-dependent manner. MDMA did not show a concentration- and time-dependent death. Pre-treatment with the antioxidant and glutathione precursor, N-acetylcysteine (NAC), resulted in strong protection against the MDMA metabolites' neurotoxicity. Neither the superoxide radical scavenger, tiron, nor the inhibitor of the dopamine (DA) transporter, GBR 12909, prevented the metabolites' toxicity. Cells exposed to α-MeDA showed an increase in intracellular glutathione (GSH) levels, which, at the 48 h time-point, was not dependent in the activity increase of γ-glutamylcysteine synthetase (γ-GCS), revealing a possible transient effect. Importantly, pre-treatment with buthionine sulfoximine (BSO), an inhibitor of γ-GCS, prevented α-MeDA induced increase in GSH levels, but did not augment this metabolite cytotoxicity. Even so, BSO pre-treatment abolished NAC protective effects against α-MeDA neurotoxicity, which were, at least partially, due to GSH de novo synthesis. Inversely, pre-treatment of cells with BSO augmented N-Me-α-MeDA-induced neurotoxicity, but only slightly affected NAC neuroprotection. In conclusion, MDMA catechol metabolites promote differential toxic effects to differentiated dopaminergic human SH

  7. Drug repositioning for enzyme modulator based on human metabolite-likeness.

    Science.gov (United States)

    Lee, Yoon Hyeok; Choi, Hojae; Park, Seongyong; Lee, Boah; Yi, Gwan-Su

    2017-05-31

    Recently, the metabolite-likeness of the drug space has emerged and has opened a new possibility for exploring human metabolite-like candidates in drug discovery. However, the applicability of metabolite-likeness in drug discovery has been largely unexplored. Moreover, there are no reports on its applications for the repositioning of drugs to possible enzyme modulators, although enzyme-drug relations could be directly inferred from the similarity relationships between enzyme's metabolites and drugs. We constructed a drug-metabolite structural similarity matrix, which contains 1,861 FDA-approved drugs and 1,110 human intermediary metabolites scored with the Tanimoto similarity. To verify the metabolite-likeness measure for drug repositioning, we analyzed 17 known antimetabolite drugs that resemble the innate metabolites of their eleven target enzymes as the gold standard positives. Highly scored drugs were selected as possible modulators of enzymes for their corresponding metabolites. Then, we assessed the performance of metabolite-likeness with a receiver operating characteristic analysis and compared it with other drug-target prediction methods. We set the similarity threshold for drug repositioning candidates of new enzyme modulators based on maximization of the Youden's index. We also carried out literature surveys for supporting the drug repositioning results based on the metabolite-likeness. In this paper, we applied metabolite-likeness to repurpose FDA-approved drugs to disease-associated enzyme modulators that resemble human innate metabolites. All antimetabolite drugs were mapped with their known 11 target enzymes with statistically significant similarity values to the corresponding metabolites. The comparison with other drug-target prediction methods showed the higher performance of metabolite-likeness for predicting enzyme modulators. After that, the drugs scored higher than similarity score of 0.654 were selected as possible modulators of enzymes for

  8. Radiation-Induced Growth Retardation and Microstructural and Metabolite Abnormalities in the Hippocampus.

    Science.gov (United States)

    Rodgers, Shaefali P; Zawaski, Janice A; Sahnoune, Iman; Leasure, J Leigh; Gaber, M Waleed

    2016-01-01

    Cranial radiotherapy (CRT) increases survival in pediatric brain-tumor patients but can cause deleterious effects. This study evaluates the acute and long-term impact of CRT delivered during childhood/adolescence on the brain and body using a rodent model. Rats received CRT, either 4 Gy fractions × 5 d (fractionated) or a cumulative dose of 20 Gy (single dose) at 28 d of age. Animals were euthanized 1 d, 5 d, or 3.5 mo after CRT. The 3.5 mo group was imaged prior to euthanasia. At 3.5 mo, we observed significant growth retardation in irradiated animals, versus controls, and the effects of single dose on brain and body weights were more severe than fractionated. Acutely single dose significantly reduced body weight but increased brain weight, whereas fractionation significantly reduced brain but not body weights, versus controls. CRT suppressed cell proliferation in the hippocampal subgranular zone acutely. Fractional anisotropy (FA) in the fimbria was significantly lower in the single dose versus controls. Hippocampal metabolite levels were significantly altered in the single dose animals, reflecting a heightened state of inflammation that was absent in the fractionated. Our findings indicate that despite the differences in severity between the doses they both demonstrated an effect on cell proliferation and growth retardation, important factors in pediatric CRT.

  9. Solid-pseudo papillary tumor of the pancreas: Frantz's tumor

    International Nuclear Information System (INIS)

    Oliveira, Bruno Righi Rodrigues de; Moreira, Reni Cecilia Lopes; Campos, Marcelo Esteves Chaves

    2010-01-01

    The pseudo papillary solid tumor of the pancreas, also known as Frantz's tumor, is a rare disease, taking place in approximately 0.17% to 2.7% of non-endocrine tumors of the pancreas. Recently, the increase of its incidence has been noted with more than two-thirds of the total cases described in the last 10 years. A possible explanation is a greater knowledge of the disease and a greater uniformity of conceptualization in the last years. Generally, it affects young adult females. In most of the series, the tumor principally attacks the body and tail of the pancreas. The objective of the present report is to present the diagnostic and therapeutic option used in this rare pancreatic tumor of low-grade malignancy. (author)

  10. N-acetylphytosphingosine enhances the radiosensitivity of tumor cells by increasing apoptosis

    International Nuclear Information System (INIS)

    Han, Y.; Kim, Y.; Yun, Y.; Jeon, S.; Kim, K.; Song, J.; Hong, S.H.; Park, C.

    2005-01-01

    Ceramides are well-known second messengers which mediate apoptosis, proliferation, differentiation in mammalian cells, but the physiological roles of phytosphingosines are poorly understood. We hypothesized that one of the phytosphingosine derivatives, N-acetylphytosphingosine (NAPS) can induce apoptosis in human leukemia Jurkat cell line and increase apoptosis in irradiated MDA-MB-231 cells. We first examined the effect of NAPS on apoptosis of Jurkat cells. NAPS had a more rapid and stronger apoptotic effect than C 2 -ceramide in Jurkat cells and significant increase of apoptosis was observed at 3 h after treatment. In contrast, the apoptosis induced by C2-ceramide was observed only after 16 h of treatment. NAPS induced apoptosis was mediated by caspase 3 and 8 activation and inhibited by z-VAD-fmk. Ceramide plays a pivotal role in radiation induced apoptosis. We postulated that exogenous treatment of NAPS sensitizes tumor cells to ionizing radiation, since NAPS might be used as a more effective alternative to C2-ceramide. As expected, NAPS decreased clonogenic survival of irradiated MDA-MB-231 cells dose dependently, and apoptosis of irradiated cells in the presence of NAPS was increased through the caspase activation. Taken together, NAPS is an effective apoptosis-inducing agent, which can be readily synthesized from yeast sources, and is a potent alternative to ceramide for the further study of ceramide associated signaling and the development of radiosensitizing agent. (orig.)

  11. Regional brain volumes, diffusivity, and metabolite changes after electroconvulsive therapy for severe depression

    DEFF Research Database (Denmark)

    Jørgensen, A.; Magnusson, P.; Hanson, Lars G.

    2016-01-01

    , and metabolite changes in 19 patients receiving ECT for severe depression. Other regions of interest included the amygdala, dorsolateral prefrontal cortex (DLPFC), orbitofrontal cortex, and hypothalamus. Patients received a 3T MR scan before ECT (TP1), 1 week (TP2), and 4 weeks (TP3) after ECT. Results......: Hippocampal and amygdala volume increased significantly at TP2 and continued to be increased at TP3. DLPFC exhibited a transient volume reduction at TP2. DTI revealed a reduced anisotropy and diffusivity of the hippocampus at TP2. We found no significant post-ECT changes in brain metabolite concentrations...

  12. Metabolites of cannabidiol identified in human urine.

    Science.gov (United States)

    Harvey, D J; Mechoulam, R

    1990-03-01

    1. Urine from a dystonic patient treated with cannabidiol (CBD) was examined by g.l.c.-mass spectrometry for CBD metabolites. Metabolites were identified as their trimethylsilyl (TMS), [2H9]TMS, and methyl ester/TMS derivatives and as the TMS derivatives of the product of lithium aluminium deuteride reduction. 2. Thirty-three metabolites were identified in addition to unmetabolized CBD, and a further four metabolites were partially characterized. 3. The major metabolic route was hydroxylation and oxidation at C-7 followed by further hydroxylation in the pentyl and propenyl groups to give 1"-, 2"-, 3"-, 4"- and 10-hydroxy derivatives of CBD-7-oic acid. Other metabolites, mainly acids, were formed by beta-oxidation and related biotransformations from the pentyl side-chain and these were also hydroxylated at C-6 or C-7. The major oxidized metabolite was CBD-7-oic acid containing a hydroxyethyl side-chain. 4. Two 8,9-dihydroxy compounds, presumably derived from the corresponding epoxide were identified. 5. Also present were several cyclized cannabinoids including delta-6- and delta-1-tetrahydrocannabinol and cannabinol. 6. This is the first metabolic study of CBD in humans; most observed metabolic routes were typical of those found for CBD and related cannabinoids in other species.

  13. Morphine metabolites

    DEFF Research Database (Denmark)

    Christrup, Lona Louring

    1997-01-01

    , morphine-3-glucuronide (M3G) and morphine-6-glucuronide (M6G) are the major metabolites of morphine. The metabolism of morphine occurs not only in the liver, but may also take place in the brain and the kidneys. The glucuronides are mainly eliminated via bile and urine. Glucuronides as a rule...... are considered as highly polar metabolites unable to cross the blood-brain barrier. Although morphine glucuronidation has been demonstrated in human brain tissue, the capacity is very low compared to that of the liver, indicating that the M3G and M6G concentrations observed in the cerebrospinal fluid (CSF) after...... systemic administration reflect hepatic metabolism of morphine and that the morphine glucuronides, despite their high polarity, can penetrate into the brain. Like morphine, M6G has been shown to be relatively more selective for mu-receptors than for delta- and kappa-receptors while M3G does not appear...

  14. [Study on Precursors for Synthesis of Anthraquinone Metabolites from Rheum tanguticum].

    Science.gov (United States)

    Hasi, Qi-mei-ge; Lj, Hai-ling; Cheng, Yan; Menggen, Qi-qi-ge; Zhang, Yang

    2015-01-01

    To explore the potential precursors of the anthraquinone metabolites from Rheum tanguticum and preliminanly identify the synthesis pathway thereof. Sterile seedlings sprouted from the seeds of Rheum tanguticum were chosen as materials for inducing callus. The effects of different precursors and feeding duration on the callus of Rheum tanguticum and the anthraquinone yield in adult rheum were studied. The greatest improvement of anthraquinone yield was achieved by acetic acid, increasing 43. 9% for the callus and 45. 8% in the adult rheum; the second greatest improvement was achieved by malonic acid, increasing 15. 8% for the callus and only 3. 6% in the adult rheum. The yield of anthraquinone was not influenced significantly by benzoic acid and p-benzoquinone, and in contrast, was inhibited in some degree by shikimic acid and α-ketoglutaric acid. A suitable feeding duration was 36 h, which worked well for the effects of precursors. The precursor for synthesis of anthraquinone metabolites from Rheum tan- guticum is acetic acid, which improves the yields of callus and anthraquinone in adult rheum, concluding that the anthraquinone metabolites are synthesized via polyketone pathway.

  15. Investigation of HIFU-induced anti-tumor immunity in a murine tumor model

    Directory of Open Access Journals (Sweden)

    Lyerly H Kim

    2007-07-01

    Full Text Available Abstract Background High intensity focused ultrasound (HIFU is an emerging non-invasive treatment modality for localized treatment of cancers. While current clinical strategies employ HIFU exclusively for thermal ablation of the target sites, biological responses associated with both thermal and mechanical damage from focused ultrasound have not been thoroughly investigated. In particular, endogenous danger signals from HIFU-damaged tumor cells may trigger the activation of dendritic cells. This response may play a critical role in a HIFU-elicited anti-tumor immune response which can be harnessed for more effective treatment. Methods Mice bearing MC-38 colon adenocarcinoma tumors were treated with thermal and mechanical HIFU exposure settings in order to independently observe HIFU-induced effects on the host's immunological response. In vivo dendritic cell activity was assessed along with the host's response to challenge tumor growth. Results Thermal and mechanical HIFU were found to increase CD11c+ cells 3.1-fold and 4-fold, respectively, as compared to 1.5-fold observed for DC injection alone. In addition, thermal and mechanical HIFU increased CFSE+ DC accumulation in draining lymph nodes 5-fold and 10-fold, respectively. Moreover, focused ultrasound treatments not only caused a reduction in the growth of primary tumors, with tumor volume decreasing by 85% for thermal HIFU and 43% for mechanical HIFU, but they also provided protection against subcutaneous tumor re-challenge. Further immunological assays confirmed an enhanced CTL activity and increased tumor-specific IFN-γ-secreting cells in the mice treated by focused ultrasound, with cytotoxicity induced by mechanical HIFU reaching as high as 27% at a 10:1 effector:target ratio. Conclusion These studies present initial encouraging results confirming that focused ultrasound treatment can elicit a systemic anti-tumor immune response, and they suggest that this immunity is closely related to

  16. Low-Molecular-Weight Metabolites from Diatoms: Structures, Biological Roles and Biosynthesis

    Directory of Open Access Journals (Sweden)

    Valentin Stonik

    2015-06-01

    Full Text Available Diatoms are abundant and important biological components of the marine environment that biosynthesize diverse natural products. These microalgae are rich in various lipids, carotenoids, sterols and isoprenoids, some of them containing toxins and other metabolites. Several groups of diatom natural products have attracted great interest due to their potential practical application as energy sources (biofuel, valuable food constituents, and prospective materials for nanotechnology. In addition, hydrocarbons, which are used in climate reconstruction, polyamines which participate in biomineralization, new apoptotic agents against tumor cells, attractants and deterrents that regulate the biochemical communications between marine species in seawaters have also been isolated from diatoms. However, chemical studies on these microalgae are complicated by difficulties, connected with obtaining their biomass, and the influence of nutrients and contaminators in their environment as well as by seasonal and climatic factors on the biosynthesis of the corresponding natural products. Overall, the number of chemically studied diatoms is lower than that of other algae, but further studies, particularly those connected with improvements in the isolation and structure elucidation technique as well as the genomics of diatoms, promise both to increase the number of studied species with isolated biologically active natural products and to provide a clearer perception of their biosynthesis.

  17. Radiotherapy combined with Tegafur (FT-207s) for brain tumors

    International Nuclear Information System (INIS)

    Aoki, Yoshiro

    1981-01-01

    5-Fluorouracil (5-FU) has anti-tumor effects as an anti-metabolite, but it cannot pass the Blood-Brain-Barrier (BBB). FT-207 a masked-compound of 5-FU, is easily lipid soluble and is able to pass the BBB. Twenty eight patients of primary brain tumor and 8 patients of metastatic brain tumor were treated with irradiation combined with 750 mg of FT-207 suppository. Twenty four patients of primary brain tumor were treated only with irradiation as control. The mean survival time was 20.4 +- 11.8 months for the combined therapy group and 17.6 +- 8.6 months for the control. The concentration of FT-207 and 5-FU in serum and in cerebrospinal fluid (CSF) was investigated after administration of 750 mg of FT-207 suppository per annum. The maximum concentration of FT-207 and of 5-FU in serum was 20.4 +- 11.8 mcg/ml and 0.06 +- 0.02 mcg/ml, respectively. There were observed several side effects, such as anorexia, nausea, exanthema and etc. These side effects were not so great as to interrupt the therapy at the dose level of 750 mg of FT-207. However, at the dose of 1500 mg, one case showed disturbance of consciousness, to which attention should be called. (author)

  18. Loss of metabolites from monkey striatum during PET with FDOPA

    DEFF Research Database (Denmark)

    Cumming, P; Munk, O L; Doudet, D

    2001-01-01

    constants using data recorded during 240 min of FDOPA circulation in normal monkeys and in monkeys with unilateral 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) lesions. Use of the extended models increased the magnitudes of K(D)(i) and k(D)(3) in striatum; in the case of k(D)(3), variance...... of the estimate was substantially improved upon correction for metabolite loss. The rate constants for metabolite loss were higher in MPTP-lesioned monkey striatum than in normal striatum. The high correlation between individual estimates of k(Lin)(cl) and k(DA)(9) suggests that both rate constants reveal loss...

  19. (1) H-MRS processing parameters affect metabolite quantification

    DEFF Research Database (Denmark)

    Bhogal, Alex A; Schür, Remmelt R; Houtepen, Lotte C

    2017-01-01

    investigated the influence of model parameters and spectral quantification software on fitted metabolite concentration values. Sixty spectra in 30 individuals (repeated measures) were acquired using a 7-T MRI scanner. Data were processed by four independent research groups with the freedom to choose their own...... + NAAG/Cr + PCr and Glu/Cr + PCr, respectively. Metabolite quantification using identical (1) H-MRS data was influenced by processing parameters, basis sets and software choice. Locally preferred processing choices affected metabolite quantification, even when using identical software. Our results......Proton magnetic resonance spectroscopy ((1) H-MRS) can be used to quantify in vivo metabolite levels, such as lactate, γ-aminobutyric acid (GABA) and glutamate (Glu). However, there are considerable analysis choices which can alter the accuracy or precision of (1) H-MRS metabolite quantification...

  20. Tumor Targeting via Sialic Acid: [68Ga]DOTA-en-pba as a New Tool for Molecular Imaging of Cancer with PET.

    Science.gov (United States)

    Tsoukalas, Charalambos; Geninatti-Crich, Simonetta; Gaitanis, Anastasios; Tsotakos, Theodoros; Paravatou-Petsotas, Maria; Aime, Silvio; Jiménez-Juárez, Rogelio; Anagnostopoulos, Constantinos D; Djanashvili, Kristina; Bouziotis, Penelope

    2018-02-20

    The aim of this study was to demonstrate the potential of Ga-68-labeled macrocycle (DOTA-en-pba) conjugated with phenylboronic vector for tumor recognition by positron emission tomography (PET), based on targeting of the overexpressed sialic acid (Sia). The imaging reporter DOTA-en-pba was synthesized and labeled with Ga-68 at high efficiency. Cell binding assay on Mel-C and B16-F10 melanoma cells was used to evaluate melanin production and Sia overexpression to determine the best model for demonstrating the capability of [ 68 Ga]DOTA-en-pba to recognize tumors. The in vivo PET imaging was done with B16-F10 tumor-bearing SCID mice injected with [ 68 Ga]DOTA-en-pba intravenously. Tumor, blood, and urine metabolites were assessed to evaluate the presence of a targeting agent. The affinity of [ 68 Ga]DOTA-en-pba to Sia was demonstrated on B16-F10 melanoma cells, after the production of melanin as well as Sia overexpression was proved to be up to four times higher in this cell line compared to that in Mel-C cells. Biodistribution studies in B16-F10 tumor-bearing SCID mice showed blood clearance at the time points studied, while uptake in the tumor peaked at 60 min post-injection (6.36 ± 2.41 % ID/g). The acquired PET images were in accordance with the ex vivo biodistribution results. Metabolite assessment on tumor, blood, and urine samples showed that [ 68 Ga]DOTA-en-pba remains unmetabolized up to at least 60 min post-injection. Our work is the first attempt for in vivo imaging of cancer by targeting overexpression of sialic acid on cancer cells with a radiotracer in PET.

  1. Semen quality in Peruvian pesticide applicators: association between urinary organophosphate metabolites and semen parameters

    Directory of Open Access Journals (Sweden)

    Gasco Manuel

    2008-11-01

    Full Text Available Abstract Background Organophosphates are broad class of chemicals widely used as pesticides throughout the world. We performed a cross-sectional study of associations between dialkylphosphate metabolites of organophosphates and semen quality among pesticide applicators in Majes (Arequipa, Peru. Methods Thirty-one men exposed to organophosphate (OP pesticides and 31 non-exposed were recruited (age, 20–60 years. In exposed subjects, semen and a blood sample were obtained one day after the last pesticide application. Subjects were grouped according to levels of OP metabolites in urine. Semen samples were analyzed for sperm concentration, percentage of sperm motility, percentage of normal morphology, semen leucocytes and concentrations of fructose and zinc. Exposure to OP was assessed by measuring six urinary OP metabolites (dimethyl and diethyl phosphates and thiophosphates by gas chromatography using a single flame photometric detector. Results Diethyldithiophosphate (p = 0.04 and diethylthiophosphate (p = 0.02 better reflected occupational pesticide exposure than other OP metabolites. Semen analysis revealed a significant reduction of semen volume and an increase in semen pH in men with OP metabolites. Multiple regression analysis showed that both occupational exposure to pesticides and the time of exposure to pesticides were more closely related to alterations in semen quality parameters than the single measurement of OP metabolites in urine. Conclusion The study demonstrated that occupational exposure to OP pesticides was more closely related to alterations in semen quality than a single measurement of urine OP metabolites. Current measurement of OP metabolites in urine may not reflect the full risk.

  2. Induction of selective blood-tumor barrier permeability and macromolecular transport by a biostable kinin B1 receptor agonist in a glioma rat model.

    Science.gov (United States)

    Côté, Jérôme; Bovenzi, Veronica; Savard, Martin; Dubuc, Céléna; Fortier, Audrey; Neugebauer, Witold; Tremblay, Luc; Müller-Esterl, Werner; Tsanaclis, Ana-Maria; Lepage, Martin; Fortin, David; Gobeil, Fernand

    2012-01-01

    Treatment of malignant glioma with chemotherapy is limited mostly because of delivery impediment related to the blood-brain tumor barrier (BTB). B1 receptors (B1R), inducible prototypical G-protein coupled receptors (GPCR) can regulate permeability of vessels including possibly that of brain tumors. Here, we determine the extent of BTB permeability induced by the natural and synthetic peptide B1R agonists, LysdesArg(9)BK (LDBK) and SarLys[dPhe(8)]desArg(9)BK (NG29), in syngeneic F98 glioma-implanted Fischer rats. Ten days after tumor inoculation, we detected the presence of B1R on tumor cells and associated vasculature. NG29 infusion increased brain distribution volume and uptake profiles of paramagnetic probes (Magnevist and Gadomer) at tumoral sites (T(1)-weighted imaging). These effects were blocked by B1R antagonist and non-selective cyclooxygenase inhibitors, but not by B2R antagonist and non-selective nitric oxide synthase inhibitors. Consistent with MRI data, systemic co-administration of NG29 improved brain tumor delivery of Carboplatin chemotherapy (ICP-Mass spectrometry). We also detected elevated B1R expression in clinical samples of high-grade glioma. Our results documented a novel GPCR-signaling mechanism for promoting transient BTB disruption, involving activation of B1R and ensuing production of COX metabolites. They also underlined the potential value of synthetic biostable B1R agonists as selective BTB modulators for local delivery of different sized-therapeutics at (peri)tumoral sites.

  3. Metabolites related to renal function, immune activation, and carbamylation are associated with muscle composition in older adults.

    Science.gov (United States)

    Lustgarten, Michael S; Fielding, Roger A

    2017-12-15

    Reduced skeletal muscle density in older adults is associated with insulin resistance, decreased physical function, and an increased all-cause mortality risk. To elucidate mechanisms that may underlie the maintenance of skeletal muscle density, we conducted a secondary analysis of previously published muscle composition and serum metabolomic data in 73 older adults (average age, 78y). Multivariable-adjusted linear regression was used to examine associations between 321 metabolites with muscle composition, defined as the ratio between normal density (NDM) with low density (LDM) thigh muscle cross sectional area (NDM/LDM). Sixty metabolites were significantly (p≤0.05 and qMetabolites that were significantly associated with muscle composition were then tested for their association with circulating markers of renal function (blood urea nitrogen, creatinine, uric acid), and with the immune response (neutrophils/lymphocytes) and activation (kynurenine/tryptophan). 43 significant NDM/LDM metabolites (including urea) were co-associated with at least 1 marker of renal function; 23 of these metabolites have been previously identified as uremic solutes. The neutrophil/lymphocyte ratio was significantly associated with NDM/LDM (β±SE: -0.3±0.1, p=0.01, q=0.04). 35 significant NDM/LDM metabolites were co-associated with immune activation. Carbamylation (defined as homocitrulline/lysine) was identified as a pathway that may link renal function and immune activation with muscle composition, as 29 significant NDM/LDM metabolites were co-associated with homocitrulline/lysine, with at least 2 markers of renal function, and with kynurenine/tryptophan. When considering that elevated urea and uremic metabolites have been linked with an increased systemic microbial burden, that antimicrobial defense can be reduced in the presence of carbamylation, and that adipocytes can promote host defense, we propose the novel hypothesis that the age-related increase in adipogenesis within muscle

  4. Production of human metabolites by gastrointestinal bacteria as a potential source of post-mortem alteration of antemortem drug/metabolite concentrations.

    Science.gov (United States)

    Martindale, Stephanie M; Powers, Robert H; Bell, Suzanne C

    2015-01-01

    Previous studies have demonstrated that bacterial species are capable of transforming complex chemical substances. Several of these species, native to the human gastrointestinal tract, are active in postmortem decomposition. They have potential to cause biotransformations affecting compound-to-metabolite ratios within the human body, especially after death. Investigation of postmortem effects could supply valuable information, especially concerning compound identification and confirmation. The purpose of this research was to investigate the effects of Escherichia coli, Bacteroides fragilis, and Clostridium perfringens on diazepam and flunitrazepam in Reinforced Clostridial Medium, and to compare bacterial biotransformation products to those of human metabolism. A decrease in diazepam concentration between pre- and post-incubation was observed for samples inoculated with Escherichia coli (14.7-20.2%) as well as Bacteroides fragilis (13.9-25.7%); however there was no corresponding increase in concentration for the monitored human metabolites. Flunitrazepam demonstrated a greater concentration loss when incubated with individual bacterial species as well as mixed culture (79.2-100.0%). Samples incubated with Bacteroides fragilis, Clostridium perfringens, and mixed culture resulted in nearly complete conversion of flunitrazepam. Increased 7-aminoflunitrazepam concentrations accounted for the majority of the conversion; however discrepancies in the mass balance of the reaction suggested the possibility of a minor metabolite that was not monitored in the current analysis. These experiments served as a pilot study and proof of concept that can be adapted and applied to a realm of possibilities. Ultimately, this methodology would be ideal to study compounds that are too toxic or lethal for animal and human metabolic investigations. Copyright © 2014 John Wiley & Sons, Ltd.

  5. Blood metabolites of intensively reared gravid west African dwarf ...

    African Journals Online (AJOL)

    Blood metabolites of intensively reared gravid west African dwarf goats fed pulverized biofibre wastes based diets. ... packed cell volume (PCV), haemoglobin (Hb), mean cell volume (MCV) and mean cell haemoglobin (MCH), while goats on PMC/CsP/BG had significantly increased (p<0.05) white blood cell (WBC).

  6. Detection of tamoxifen metabolites by GC-MSD.

    Science.gov (United States)

    Báez, H; Camargo, C; Osorio, H; Umpiérrez, F

    2004-01-01

    Tamoxifen is an antiestrogen used in the adjuvant endocrine therapy of early breast cancer and malignant breast disorders. It is also used in women with anovulatory infertility caused by its stimulating effect on the secretion of the pituitary gonadotrophic hormones. In males it could increase the endogenous production of androgens. Because of these properties tamoxifen may be misused in some sports to treat the androgens suppression caused by the extensive abuse of anabolic androgenic steroids. A method for identification and confirmation of tamoxifen metabolites is described. Hydroxymetoxytamoxifen is detected in urine by gas chromatography and mass spectrometry in a selective ion monitoring method followed by the routine postrun in the screening of anabolic steroids. Once the hydroxymetoxytamoxifen is detected, confirmation of reported metabolites could be performed with a 5973 mass selective detector in the scan mode after solid-phase extraction by cationic exchange. This study also reports an excretion profile for a single dose of tamoxifen equivalent to 40 mg administrated orally to two males volunteers.

  7. Developing a novel dual PI3K–mTOR inhibitor from the prodrug of a metabolite

    Directory of Open Access Journals (Sweden)

    Zhou Y

    2017-10-01

    Full Text Available Yan Zhou,1,2 Genyan Zhang,2 Feng Wang,2 Jin Wang,2 Yanwei Ding,2 Xinyu Li,2 Chongtie Shi,2 Jiakui Li,2 Chengkon Shih,2 Song You1 1The School of Life Science and Biopharmaceutical, Shenyang Pharmaceutical University, Shenyang, 2Department of Project Management, Medicinal Chemistry, Pharmacology, Drug Metabolism, and Pharmacokinetics, Toxicology, Xuanzhu Pharma, Jinan, China Abstract: This study presents a process of developing a novel PI3K–mTOR inhibitor through the prodrug of a metabolite. The lead compound (compound 1 was identified with similar efficacy as that of NVP-BEZ235 in a tumor xenograft model, but the exposure of compound 1 was much lower than that of NVP-BEZ235. After reanalysis of the blood sample, a major metabolite (compound 2 was identified. Compound 2 exerted similar in vitro activity as compound 1, which indicated that compound 2 was an active metabolite and that the in vivo efficacy in the animal model came from compound 2 instead of compound 1. However, compound 1 was metabolized into compound 2 predominantly in the liver microsomes of mouse, but not in the liver microsomes of rat, dog, or human. In order to translate the efficacy in the animal model into clinical development or predict the pharmacokinetic/pharmacodynamic parameters in the clinical study using a preclinical model, we developed the metabolite (compound 2 instead of compound 1. Due to the low bioavailability of compound 2, its prodrug (compound 3 was designed and synthesized to improve the solubility. The prodrug was quickly converted to compound 2 through both intravenous and oral administrations. Because the prodrug (compound 3 did not improve the oral exposure of compound 2, developing compound 3 as an intravenous drug was considered by our team, and the latest results will be reported in the future. Keywords: PI3K, mTOR, NVP-BEZ235, prodrug, metabolite, antitumor

  8. Pathway elucidation and metabolic engineering of specialized plant metabolites

    DEFF Research Database (Denmark)

    Salomonsen, Bo

    A worldwide need to liberate ourselves from unsustainable petrochemicals has led to numerous metabolic engineering projects, mostly carried out in microbial hosts. Using systems biology for predicting and altering the metabolism of microorganisms towards production of a desired metabolite......, these projects have increased revenues on fermentative production of several biochemicals. The use of systems biology is, however, not limited to microorganisms. Recent advances in biotechnology methods have provided a wealth of data within functional genomics, metabolomics, transcriptomics, proteomics...... and fluxomics for a considerable number of organisms. Unfortunately, transferring the wealth of data to valuable information for metabolic engineering purposes is a non-obvious task. This PhD thesis describes a palate of tools used in generation of cell factories for production of specialized plant metabolites...

  9. Patterns of fecal gonadal hormone metabolites in the maned wolf (Chrysocyon brachyurus).

    Science.gov (United States)

    Songsasen, N; Rodden, M; Brown, J L; Wildt, D E

    2006-10-01

    Ex situ populations of maned wolves are not viable due to low reproductive efficiency. The objective of this study was to increase knowledge regarding the reproductive physiology of maned wolves to improve captive management. Fecal samples were collected 3-5 d/wk from 12 females of various reproductive age classes (young, prime breeding and aged) and reproductive histories (conceived and raised pups, conceived but lost pups, pseudo-pregnant and unpaired). Ovarian steroids were extracted from feces and assessed by enzyme immunoassay. Concentrations of estrogen metabolites gradually increased, beginning 2-5 d before breeding, and declined to baseline on the day of lordosis and copulation. Fecal progestin metabolite concentrations increased steadily during the periovulatory period, when sexual receptivity was observed, and remained elevated during pregnancy and pseudo-pregnancy. During the luteal phase, young and prime breeding-age females excreted larger amounts of progestins than those of older age classes. Furthermore, progestin concentrations were higher during the luteal phase of pregnant versus pseudo-pregnant bitches. Profiles of fecal progestin metabolites for three singleton females were unchanged throughout the breeding season, suggesting ovulation is induced in this species. However, this finding could be confounded by age, as these females were either young or aged.

  10. Overview of Methods Able to Overcome Impediments to tumor Drug Delivery with Special Attention to Tumor Interstitial Fluid.

    Directory of Open Access Journals (Sweden)

    Gianfranco eBaronzio

    2015-07-01

    Full Text Available Every drug used to treat cancer (chemotherapeutics, immunologic, monoclonal antibodies, nanoparticles, radionuclides must reach the targeted cells through the tumor environment at adequate concentrations, in order to exert their cell-killing effects. For any of these agents to reach the goal cells they must overcome a number of impediments created by the tumor microenvironment, beginning with tumor interstitial fluid pressure (TIFP and a multifactorial increase in composition of the extracellular matrix (ECM. A primary modifier of tumor microenvironment is hypoxia, which increases the production of growth factors such as vascular endothelial growth factor (VEGF and platelet-derived growth factor (PDGF. These growth factors released by both tumor cells and bone marrow recruited myeloid cells (MDS, form abnormal vasculature characterized by vessels that are tortuous and more permeable. Increased leakiness combined with increased inflammatory byproducts accumulates fluid within the tumor mass [tumor interstitial fluid (TIF], ultimately creating an increased pressure (TIFP. Fibroblasts are also up-regulated by the tumor microenvironment, and deposit fibers that further augment the density of the extracellular matrix (ECM, thus, further worsening the TIFP. Increased TIFP with the ECM are the major obstacles to adequate drug delivery. By decreasing TIFP and decreasing ECM density, we can expect an associated rise in drug concentration within the tumor itself. In this overview we will describe all the methods (drugs, nutraceuticals, physical methods of treatment able to lower TIFP and to modify ECM that can be used for increasing drug concentration within the tumor tissue.

  11. Blockade of Notch Signaling in Tumor-Bearing Mice May Lead to Tumor Regression, Progression, or Metastasis, Depending on Tumor Cell Types

    Directory of Open Access Journals (Sweden)

    Xing-Bin Hu

    2009-01-01

    Full Text Available It has been reported that blocking Notch signaling in tumor-bearing mice results in abortive angiogenesis and tumor regression. However, given that Notch signaling influences numerous cellular processes in vivo, a comprehensive evaluation of the effect of Notch inactivation on tumor growth would be favorable. In this study, we inoculated four cancer cell lines in mice with the conditional inactivation of recombination signal-binding protein-Jκ (RBP-J, which mediates signaling from all four mammalian Notch receptors. We found that whereas three tumors including hepatocarcinoma, lung cancer, and osteogenic sarcoma grew slower in the RBP-J-deficient mice, at least a melanoma, B16, grew significantly faster in the RBP-J-deficient mice than in the controls, suggesting that the RBP-J-deficient hosts could provide permissive cues for tumor growth. All these tumors showed increased microvessels and up-regulated hypoxia-inducible factor 1α, suggesting that whereas defective angiogenesis resulted in hypoxia, different tumors might grow differentially in the RBP-J-deleted mice. Similarly, increased infiltration of Gr1+/Mac1+ cells were noticed in tumors grown in the RBP-J-inactivated mice. Moreover, we found that when inoculated in the RBP-J knockout hosts, the H22 hepatoma cells had a high frequency of metastasis and lethality, suggesting that at least for H22, deficiency of environmental Notch signaling favored tumor metastasis. Our findings suggested that the general blockade of Notch signaling in tumor-bearing mice could lead to defective angiogenesis in tumors, but depending on tumor cell types, general inhibition of Notch signaling might result in tumor regression, progression, or metastasis.

  12. GPCR-Mediated Signaling of Metabolites

    DEFF Research Database (Denmark)

    Husted, Anna Sofie; Trauelsen, Mette; Rudenko, Olga

    2017-01-01

    microbiota target primarily enteroendocrine, neuronal, and immune cells in the lamina propria of the gut mucosa and the liver and, through these tissues, the rest of the body. In contrast, metabolites from the intermediary metabolism act mainly as metabolic stress-induced autocrine and paracrine signals...... and obesity. The concept of key metabolites as ligands for specific GPCRs has broadened our understanding of metabolic signaling significantly and provides a number of novel potential drug targets....

  13. Walnuts lower TRAMP prostate tumor growth by altering IGF-1, energy and cholesterol metabolism and is not due to their fatty acids

    Science.gov (United States)

    Dietary changes could potentially reduce prostate cancer morbidity and mortality. Prostate tumor size, gene expression, metabolite and plasma responses to a 100 g of fat/kg diet (whole walnuts, walnut oil and other oils; balanced for macronutrients, tocopherols (a-and ' ) for 18 weeks were assessed ...

  14. Sunitinib significantly suppresses the proliferation, migration, apoptosis resistance, tumor angiogenesis and growth of triple-negative breast cancers but increases breast cancer stem cells.

    Science.gov (United States)

    Chinchar, Edmund; Makey, Kristina L; Gibson, John; Chen, Fang; Cole, Shelby A; Megason, Gail C; Vijayakumar, Srinivassan; Miele, Lucio; Gu, Jian-Wei

    2014-01-01

    The majority of triple-negative breast cancers (TNBCs) are basal-like breast cancers. However there is no reported study on anti-tumor effects of sunitinib in xenografts of basal-like TNBC (MDA-MB-468) cells. In the present study, MDA-MB-231, MDA-MB-468, MCF-7 cells were cultured using RPMI 1640 media with 10% FBS. Vascular endothelia growth factor (VEGF) protein levels were detected using ELISA (R & D Systams). MDA-MB-468 cells were exposed to sunitinib for 18 hours for measuring proliferation (3H-thymidine incorporation), migration (BD Invasion Chamber), and apoptosis (ApopTag and ApoScreen Anuexin V Kit). The effect of sunitinib on Notch-1 expression was determined by Western blot in cultured MDA-MB-468 cells. 10(6) MDA-MB-468 cells were inoculated into the left fourth mammary gland fat pad in athymic nude-foxn1 mice. When the tumor volume reached 100 mm(3), sunitinib was given by gavage at 80 mg/kg/2 days for 4 weeks. Tumor angiogenesis was determined by CD31 immunohistochemistry. Breast cancer stem cells (CSCs) isolated from the tumors were determined by flow cytometry analysis using CD44(+)/CD24(-) or low. ELISA indicated that VEGF was much more highly expressed in MDA-MB-468 cells than MDA-MB-231 and MCF-7 cells. Sunitinib significantly inhibited the proliferation, invasion, and apoptosis resistance in cultured basal like breast cancer cells. Sunitinib significantly increased the expression of Notch-1 protein in cultured MDA-MB-468 or MDA-MB-231 cells. The xenograft models showed that oral sunitinib significantly reduced the tumor volume of TNBCs in association with the inhibition of tumor angiogeneisis, but increased breast CSCs. These findings support the hypothesis that the possibility should be considered of sunitinib increasing breast CSCs though it inhibits TNBC tumor angiogenesis and growth/progression, and that effects of sunitinib on Notch expression and hypoxia may increase breast cancer stem cells. This work provides the groundwork for an

  15. Development of [18F]afatinib as new TKI-PET tracer for EGFR positive tumors

    International Nuclear Information System (INIS)

    Slobbe, Paul; Windhorst, Albert D.; Walsum, Marijke Stigter-van; Schuit, Robert C.; Smit, Egbert F.; Niessen, Heiko G.; Solca, Flavio; Stehle, Gerd; Dongen, Guus A.M.S. van; Poot, Alex J.

    2014-01-01

    Introduction: Afatinib is an irreversible ErbB family blocker that was approved for the treatment of EGFR mutated non-small cell lung cancer in 2013. Positron emission tomography (PET) with fluorine-18 labeled afatinib provides a means to obtain improved understanding of afatinib tumor disposition in vivo. PET imaging with [ 18 F]afatinib may also provide a method to select treatment responsive patients. The aim of this study was to label afatinib with fluorine-18 and evaluate its potential as TKI-PET tracer in tumor bearing mice. Methods: A radiochemically novel coupling, using peptide coupling reagent BOP, was explored and optimized to synthesize [ 18 F]afatinib, followed by a metabolite analysis and biodistribution studies in two clinically relevant lung cancer cell lines, xenografted in nude mice. Results: A reliable [ 18 F]afatinib radiosynthesis was developed and the tracer could be produced in yields of 17.0 ± 2.5% calculated from [ 18 F]F − and >98% purity. The identity of the product was confirmed by co-injection on HPLC with non-labeled afatinib. Metabolite analysis revealed a moderate rate of metabolism, with >80% intact tracer in plasma at 45 min p.i. Biodistribution studies revealed rapid tumor accumulation and good retention for a period of at least 2 hours, while background tissues showed rapid clearance of the tracer. Conclusion: We have developed a method to synthesize [ 18 F]afatinib and related fluorine-18 labeled 4-anilinoquinazolines. [ 18 F]Afatinib showed good stability in vivo, justifying further evaluation as a TKI-PET tracer

  16. Increased cFLIP expression in thymic epithelial tumors blocks autophagy via NF-κB signalling.

    Science.gov (United States)

    Belharazem, Djeda; Grass, Albert; Paul, Cornelia; Vitacolonna, Mario; Schalke, Berthold; Rieker, Ralf J; Körner, Daniel; Jungebluth, Philipp; Simon-Keller, Katja; Hohenberger, Peter; Roessner, Eric M; Wiebe, Karsten; Gräter, Thomas; Kyriss, Thomas; Ott, German; Geserick, Peter; Leverkus, Martin; Ströbel, Philipp; Marx, Alexander

    2017-10-27

    The anti-apoptotic cellular FLICE-like inhibitory protein cFLIP plays a pivotal role in normal tissues homoeostasis and the development of many tumors, but its role in normal thymus (NT), thymomas and thymic carcinomas (TC) is largely unknown. Expression, regulation and function of cFLIP were analyzed in biopsies of NT, thymomas, thymic squamous cell carcinomas (TSCC), thymic epithelial cells (TECs) derived thereof and in the TC line 1889c by qRT-PCR, western blot, shRNA techniques, and functional assays addressing survival, senescence and autophagy. More than 90% of thymomas and TSCCs showed increased cFLIP expression compared to NT. cFLIP expression declined with age in NTs but not in thymomas. During short term culture cFLIP expression levels declined significantly slower in neoplastic than non-neoplastic primary TECs. Down-regulation of cFLIP by shRNA or NF-κB inhibition accelerated senescence and induced autophagy and cell death in neoplastic TECs. The results suggest a role of cFLIP in the involution of normal thymus and the development of thymomas and TSCC. Since increased expression of cFLIP is a known tumor escape mechanism, it may serve as tissue-based biomarker in future clinical trials, including immune checkpoint inhibitor trials in the commonly PD-L1 high thymomas and TCs.

  17. Tumor cell proliferation kinetics and tumor growth rate

    Energy Technology Data Exchange (ETDEWEB)

    Tubiana, M

    1989-01-01

    The present knowledge on the growth rate and the proliferation kinetics of human tumor is based on the measurement of the tumor doubling times (DT) in several hundred patients and on the determination of the proportion of proliferating cells with radioactive thymidine or by flow cytometry in large numbers of patients. The results show that the DT of human tumor varies widely, from less than one week to over one year with a median value of approximately 2 months. The DTs are significantly correlated with the histological type. They depend upon (1) the duration of the cell cycle whose mean duration is 2 days with small variations from tumor to tumor, (2) the proportion of proliferating cells and consequently the cell birth rate which varies widely among tumors and which is significantly correlated to the DT, (3) the cell loss factors which also vary widely and which are the greatest when proliferation is most intensive. These studies have several clinical implications: (a) they have further increased our understanding of the natural history of human tumor, (b) they have therapeutic implications since tumor responsiveness and curability by radiation and drugs are strongly influenced by the cell kinetic parameters of the tumor, (c) the proportion of proliferating cells is of great prognostic value in several types of human cancers. The investigation of the molecular defects, which are correlated with the perturbation of control of cell proliferation, should lead to significant fundamental and therapeutic advances. (orig.).

  18. Metabolomic profiling of lung and prostate tumor tissues by capillary electrophoresis time-of-flight mass spectrometry.

    Science.gov (United States)

    Kami, Kenjiro; Fujimori, Tamaki; Sato, Hajime; Sato, Mutsuko; Yamamoto, Hiroyuki; Ohashi, Yoshiaki; Sugiyama, Naoyuki; Ishihama, Yasushi; Onozuka, Hiroko; Ochiai, Atsushi; Esumi, Hiroyasu; Soga, Tomoyoshi; Tomita, Masaru

    2013-04-01

    Metabolic microenvironment of tumor cells is influenced by oncogenic signaling and tissue-specific metabolic demands, blood supply, and enzyme expression. To elucidate tumor-specific metabolism, we compared the metabolomics of normal and tumor tissues surgically resected pairwise from nine lung and seven prostate cancer patients, using capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS). Phosphorylation levels of enzymes involved in central carbon metabolism were also quantified. Metabolomic profiles of lung and prostate tissues comprised 114 and 86 metabolites, respectively, and the profiles not only well distinguished tumor from normal tissues, but also squamous cell carcinoma from the other tumor types in lung cancer and poorly differentiated tumors from moderately differentiated tumors in prostate cancer. Concentrations of most amino acids, especially branched-chain amino acids, were significantly higher in tumor tissues, independent of organ type, but of essential amino acids were particularly higher in poorly differentiated than moderately differentiated prostate cancers. Organ-dependent differences were prominent at the levels of glycolytic and tricarboxylic acid cycle intermediates and associated energy status. Significantly high lactate concentrations and elevated activating phosphorylation levels of phosphofructokinase and pyruvate kinase in lung tumors confirmed hyperactive glycolysis. We highlighted the potential of CE-TOFMS-based metabolomics combined with phosphorylated enzyme analysis for understanding tissue-specific tumor microenvironments, which may lead to the development of more effective and specific anticancer therapeutics.

  19. Neonatal Maturation of Paracetamol (Acetaminophen) Glucuronidation, Sulfation, and Oxidation Based on a Parent-Metabolite Population Pharmacokinetic Model.

    Science.gov (United States)

    Cook, Sarah F; Stockmann, Chris; Samiee-Zafarghandy, Samira; King, Amber D; Deutsch, Nina; Williams, Elaine F; Wilkins, Diana G; Sherwin, Catherine M T; van den Anker, John N

    2016-11-01

    This study aimed to model the population pharmacokinetics of intravenous paracetamol and its major metabolites in neonates and to identify influential patient characteristics, especially those affecting the formation clearance (CL formation ) of oxidative pathway metabolites. Neonates with a clinical indication for intravenous analgesia received five 15-mg/kg doses of paracetamol at 12-h intervals (paracetamol, paracetamol-glucuronide, paracetamol-sulfate, and the combined oxidative pathway metabolites (paracetamol-cysteine and paracetamol-N-acetylcysteine) were simultaneously modeled in NONMEM 7.2. The model incorporated 259 plasma and 350 urine samples from 35 neonates with a mean gestational age of 33.6 weeks (standard deviation 6.6). CL formation for all metabolites increased with weight; CL formation for glucuronidation and oxidation also increased with postnatal age. At the mean weight (2.3 kg) and postnatal age (7.5 days), CL formation estimates (bootstrap 95% confidence interval; between-subject variability) were 0.049 L/h (0.038-0.062; 62 %) for glucuronidation, 0.21 L/h (0.17-0.24; 33 %) for sulfation, and 0.058 L/h (0.044-0.078; 72 %) for oxidation. Expression of individual oxidation CL formation as a fraction of total individual paracetamol clearance showed that, on average, fractional oxidation CL formation increased paracetamol and its metabolites in neonates. Maturational changes in the fraction of paracetamol undergoing oxidation were small relative to between-subject variability.

  20. Plasma concentrations of cortisol and PGF2α metabolite in Danish sows during mating, and intrauterine and conventional insemination

    Directory of Open Access Journals (Sweden)

    Kindahl Hans

    2007-12-01

    Full Text Available Abstract Background The aims of the present work was to study whether there are any relationships between cortisol and PG-metabolite in mated sows or inseminated with the intrauterine technique and compare these to changes occurring in conventionally inseminated sow. Methods Thirty three crossbred sows (Danish Landrace × Danish Large White were fitted with jugular vein catheters through vena auricularis from one of the ears. The sows were randomly divided into three groups (Boar-, IUI- and AI-group and blood samples were collected before, during and after service. In a final evaluation only 25 sows that became pregnant and farrowed piglets at full term were used. Results Cortisol concentrations increased in all groups but Boar-group (n = 8 had a significantly higher cortisol during 10 to 20 min after service than sows in AI-group (n = 8. In mated sows cortisol concentrations peaked at 15 minutes after service. The Boar-group (n = 8 showed no ascending PG-metabolite levels during the whole experiment, while both IUI- and AI-groups (n = 9 and n = 8, respectively had a 2.5-fold increase in PG-metabolite 15 minutes after service. Conclusion In conclusion, mating of sows by a boar results in a greater increase of cortisol than AI and without an elevation of PG-metabolite levels, which was seen in both the inseminated groups. It was also demonstrated that IUI-group had an earlier significant increase of PG-metabolite levels than sows inseminated conventionally. Further investigation using different semen extenders or even different type of insemination catheters might be helpful in understanding the reason for an immediate increase of PG-metabolite after insemination but not after mating.

  1. Plasma concentrations of cortisol and PGF2α metabolite in Danish sows during mating, and intrauterine and conventional insemination

    Science.gov (United States)

    Norrby, Mattias; Madsen, Mads T; Alexandersen, Charlotte Borg; Kindahl, Hans; Madej, Andrzej

    2007-01-01

    Background The aims of the present work was to study whether there are any relationships between cortisol and PG-metabolite in mated sows or inseminated with the intrauterine technique and compare these to changes occurring in conventionally inseminated sow. Methods Thirty three crossbred sows (Danish Landrace × Danish Large White) were fitted with jugular vein catheters through vena auricularis from one of the ears. The sows were randomly divided into three groups (Boar-, IUI- and AI-group) and blood samples were collected before, during and after service. In a final evaluation only 25 sows that became pregnant and farrowed piglets at full term were used. Results Cortisol concentrations increased in all groups but Boar-group (n = 8) had a significantly higher cortisol during 10 to 20 min after service than sows in AI-group (n = 8). In mated sows cortisol concentrations peaked at 15 minutes after service. The Boar-group (n = 8) showed no ascending PG-metabolite levels during the whole experiment, while both IUI- and AI-groups (n = 9 and n = 8, respectively) had a 2.5-fold increase in PG-metabolite 15 minutes after service. Conclusion In conclusion, mating of sows by a boar results in a greater increase of cortisol than AI and without an elevation of PG-metabolite levels, which was seen in both the inseminated groups. It was also demonstrated that IUI-group had an earlier significant increase of PG-metabolite levels than sows inseminated conventionally. Further investigation using different semen extenders or even different type of insemination catheters might be helpful in understanding the reason for an immediate increase of PG-metabolite after insemination but not after mating. PMID:18053237

  2. Plasma concentrations of cortisol and PGF2alpha metabolite in Danish sows during mating, and intrauterine and conventional insemination.

    Science.gov (United States)

    Norrby, Mattias; Madsen, Mads T; Alexandersen, Charlotte Borg; Kindahl, Hans; Madej, Andrzej

    2007-12-05

    The aims of the present work was to study whether there are any relationships between cortisol and PG-metabolite in mated sows or inseminated with the intrauterine technique and compare these to changes occurring in conventionally inseminated sow. Thirty three crossbred sows (Danish Landrace x Danish Large White) were fitted with jugular vein catheters through vena auricularis from one of the ears. The sows were randomly divided into three groups (Boar-, IUI- and AI-group) and blood samples were collected before, during and after service. In a final evaluation only 25 sows that became pregnant and farrowed piglets at full term were used. Cortisol concentrations increased in all groups but Boar-group (n = 8) had a significantly higher cortisol during 10 to 20 min after service than sows in AI-group (n = 8). In mated sows cortisol concentrations peaked at 15 minutes after service. The Boar-group (n = 8) showed no ascending PG-metabolite levels during the whole experiment, while both IUI- and AI-groups (n = 9 and n = 8, respectively) had a 2.5-fold increase in PG-metabolite 15 minutes after service. In conclusion, mating of sows by a boar results in a greater increase of cortisol than AI and without an elevation of PG-metabolite levels, which was seen in both the inseminated groups. It was also demonstrated that IUI-group had an earlier significant increase of PG-metabolite levels than sows inseminated conventionally. Further investigation using different semen extenders or even different type of insemination catheters might be helpful in understanding the reason for an immediate increase of PG-metabolite after insemination but not after mating.

  3. Increase of tumor necrosis factor receptor 1 expression in women with unexplained early spontaneous abortion

    Institute of Scientific and Technical Information of China (English)

    YAN Chun-fang; YU Xue-wen; JIN Hui; LI Xu

    2004-01-01

    To investigate membrane tumor necrosis factor receptor 1 protein expression level in decidua andconcentration of soluble tumor necrosis factor receptor 1 in serum in women with unexplained early spontaneous abortion,threatened abortion, and compare the levels with healthy pregnant women. Methods: Thirty-seven women with unexplainedearly spontaneous abortion, 27 women with threatened abortion, and 34 healthy pregnant women undergoing artificial abortionof pregnancy at 6 - 10 weeks of gestation were selected. Decidual samples were collected when women were undergoing arti-ficial abortion, and blood samples were collected at the same time. The level of membrane tumor necrosis factor receptor 1 indecidua was detected by flow cytometer, and the concentration of soluble tumor necrosis factor receptor 1 in sera was mea-sured with an enzyme-linked immunosorbent assay. Results: The ercentages of membrane tumor necrosis factor receptor 1positive decidual cells were 16.42 ± 7.10 Mean ± SD for women with unexplained early spontaneous abortion and 13.14 ±6.30 for healthy pregnant women ( P < 0.05). Serum oncentration of soluble tumor necrosis factor receptor 1 was signifi-cantly higher in women with unexplained early spontaneous abortion than in healthy pregnant women and in women withthreatened abortion, and no difference was found between healthy pregnant women and women with threatened abortion.Conclusion: Women with unexplained early spontaneous abortion present significantly higher expression of tumor necrosisfactor receptor 1 than healthy pregnant women, suggesting that over-expression of tumor necrosis factor receptor 1 may cont-ribute to the development of early spontaneous abortion.

  4. 21 CFR 862.3250 - Cocaine and cocaine metabolite test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cocaine and cocaine metabolite test system. 862... Test Systems § 862.3250 Cocaine and cocaine metabolite test system. (a) Identification. A cocaine and cocaine metabolite test system is a device intended to measure cocaine and a cocaine metabolite...

  5. Urinary excretion of androgen metabolites, comparison with excretion of radioactive metabolites after injection of (4-/sup 14/C)testosterone. Influence of age

    Energy Technology Data Exchange (ETDEWEB)

    Deslypere, J P; Sayed, A; Vermeulen, A [Department of Internal Medicine, Section of Endocrinology, State University Academic Hospital, De Pintelaan, 135, Ghent, Belgium; Wiers, P W [Department of Internal Medicine, Section of Pneumology, State University Academic Hospital, The Netherlands

    1981-01-01

    The influence of age on the metabolic pattern of (4-/sup 14/C)testosterone was studied in 20 young and 8 elderly males and compared to the metabolic pattern of endogenous androgens; the latter was also studied in 16 young and 8 elderly women. In both young and elderly males, androsterone and aetiocholanolone glucuronide represent 65% of (4-/sup 14/C)testosterone metabolites: together with their suephoconjugates as well as with 5..cap alpha..- and 5..beta..-androstane-3..cap alpha.., 17..beta..-diol they represent even more than 75% of total urinary metabolites. The 5..cap alpha../5..beta.. ratio of metabolites of (4-/sup 14/C)testosterone was significantly (P<0.01) correlated with the 5..cap alpha../5..beta.. ratio of the metabolites of the endogenous androgens, mainly dehydroepiandrosterone and androstenedione. The 5..cap alpha../5..beta.. ratio of (4-/sup 14/C)testosterone metabolites was generally higher than the ratio of metabolites of endogenous androgens, suggesting that the transformation of T to ring A saturated metabolites occurs at least partially in another compartment than the transformation of DHEA to these metabolites. For both (4-/sup 14/C)testosterone and endogenous androgen metabolites we observed a statistically significant reduction of the 5..cap alpha../5..beta.. ratio with age, a general phenomenon in both males and females. This reduction concern also 11-OH-androst-4-ene-3.17-dione metabolism. Neither sex hormone levels, nor specific binding seems to determine this age dependent shift; neither is there convincing evidence for latent hypothyroisism or liver dysfunction in the elderly. An age associated primary decrease of the 5..cap alpha..-reductase activity seems the most likely explanation.

  6. Cancer-associated adipocytes promotes breast tumor radioresistance

    Energy Technology Data Exchange (ETDEWEB)

    Bochet, Ludivine; Meulle, Aline [Universite de Toulouse, UPS, F-31077 Toulouse Cedex (France); CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne, BP 64182, F-31077 Toulouse Cedex (France); Institut National de la Sante et de la Recherche Medicale, INSERM U1048, 1 Avenue du Pr Jean Poulhes, BP 84225, F-31432 Toulouse Cedex (France); Imbert, Sandrine [CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne, BP 64182, F-31077 Toulouse Cedex (France); Salles, Bernard [Universite de Toulouse, UPS, F-31077 Toulouse Cedex (France); CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne, BP 64182, F-31077 Toulouse Cedex (France); Valet, Philippe [Universite de Toulouse, UPS, F-31077 Toulouse Cedex (France); Institut National de la Sante et de la Recherche Medicale, INSERM U1048, 1 Avenue du Pr Jean Poulhes, BP 84225, F-31432 Toulouse Cedex (France); Muller, Catherine, E-mail: muller@ipbs.fr [Universite de Toulouse, UPS, F-31077 Toulouse Cedex (France); CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne, BP 64182, F-31077 Toulouse Cedex (France)

    2011-07-22

    Highlights: {yields} Tumor-surrounding adipocytes contribute to breast cancer progression. {yields} Breast tumor cells previously co-cultivated with mature adipocytes exhibit radioresistance. {yields} Increased in Chk1 phosphorylation is observed in irradiated co-cultivated tumor cells. {yields} IL-6 is over-expressed in tumor cells co-cultivated with adipocytes. {yields} IL-6 exposure confers increased Chk1 phosphorylation and radioresistance in tumor cells. -- Abstract: Mature adipocytes are excellent candidates to influence tumor behavior through heterotypic signaling processes since these cells produce hormones, growth factors, cytokines and other molecules, a heterogeneous group of molecules named adipokines. Using a 2D coculture system, we demonstrate that breast tumor cells previously co-cultivated with mature adipocytes exhibit radioresistance and an earlier and higher increase in the effector kinase Chk1, a phenotype that was associated with decreased cell death as compared to tumor cells grown alone. Interestingly, the adipocytes-induced tumor changes taking place during the coculture time preceding the exposure to IR were sufficient to confer the radioresistant effect. Notorious among the changes brought by adipocytes was the significant increase of IL-6 expression in tumor cells, whose activity may well account for the observed tumor cell protection from IR toxicity. Indeed, our data confirmed the protective role of this cytokine as tumor cells incubated after irradiation with recombinant IL-6 exhibit an increased in Chk1 phosphorylation and a radioresistant phenotype, thus far recapitulating the effects observed in the presence of adipocytes. Our current study sheds light on a new role of tumor-surrounding adipocytes in fostering a radioresistant phenotype in breast tumors, a finding that might have important clinical implications in obese patients that frequently exhibit aggressive diseases.

  7. Increased apoptotic potential and dose-enhancing effect of gold nanoparticles in combination with single-dose clinical electron beams on tumor-bearing mice

    International Nuclear Information System (INIS)

    Chang Mengya; Chen Yuhung; Chang Chihjui; Chen Helen H-W; Wu Chaoliang; Shiau Aili

    2008-01-01

    High atomic number material, such as gold, may be used in conjunction with radiation to provide dose enhancement in tumors. In the current study, we investigated the dose-enhancing effect and apoptotic potential of gold nanoparticles in combination with single-dose clinical electron beams on B16F10 melanoma tumor-bearing mice. We revealed that the accumulation of gold nanoparticles was detected inside B16F10 culture cells after 18 h of incubation, and moreover, the gold nanoparticles were shown to be colocalized with endoplasmic reticulum and Golgi apparatus in cells. Furthermore, gold nanoparticles radiosensitized melanoma cells in the colony formation assay (P=0.02). Using a B16F10 tumor-bearing mouse model, we further demonstrated that gold nanoparticles in conjunction with ionizing radiation significantly retarded tumor growth and prolonged survival compared to the radiation alone controls (P<0.05). Importantly, an increase of apoptotic signals was detected inside tumors in the combined treatment group (P<0.05). Knowing that radiation-induced apoptosis has been considered a determinant of tumor responses to radiation therapy, and the length of tumor regrowth delay correlated with the extent of apoptosis after single-dose radiotherapy, these results may suggest the clinical potential of gold nanoparticles in improving the outcome of melanoma radiotherapy. (author)

  8. Posterior paralimbic and frontal metabolite impairments in asymptomatic hypertension with different treatment outcomes

    International Nuclear Information System (INIS)

    Garcia Santos, J.M.; Fuentes, L.J.; Vidal, J.B.

    2010-01-01

    Hypertension is associated with cognitive decline in elderly persons. We studied asymptomatic hypertensive subjects using brain magnetic resonance (MR) spectroscopy to evaluate metabolite impairments before the appearance of symptoms in patients with different treatment outcomes. In all, 14 healthy controls and 37 asymptomatic hypertensive patients (17 controlled and 20 resistant) underwent brain structural MR and MR spectroscopy of the posterior paralimbic (PPL) area and left frontal white matter. Ischemic burden (IB), global cortical atrophy and microbleeds were analyzed with visual scales. Metabolite ratios involving N-acetyl-aspartate (NAA), creatine (Cr), choline (Cho) and myoinositol (ml) were computed. Ultrasound measurements, including intima-media thickness, plaques and hemodynamic ratios, were obtained. Intergroup differences in IB, atrophy and metabolite ratios, and the atrophy and IB relationship were assessed with parametric and nonparametric statistical tests. In addition, the impacts of demographic, analytic and clinical factors, ischemia and atrophy, and ultrasound measurements on metabolite ratios were assessed. The significance level was set at P≤0.05. Higher atrophy scores presented with higher total or frontal IB (P<0.05). However, there was no intergroup difference in atrophy and IB. PPL ml/Cr was increased in resistant hypertension (P<0.021), whereas frontal NAA/Cr (P<0.007) showed opposite trends between controlled (increased ratios) and resistant (decreased ratios) hypertension. Unlike PPL ml/Cr, frontal NAA/Cr showed significant correlations with the lipid profile and ultrasound measurements. PPL ml/Cr increases in resistant hypertension, and frontal NAA/Cr diverges between controlled and resistant hypertension before physical and neuropsychological symptoms appear. (author)

  9. Differential metabolite profiles during fruit development in high-yielding oil palm mesocarp.

    Directory of Open Access Journals (Sweden)

    Huey Fang Teh

    Full Text Available To better understand lipid biosynthesis in oil palm mesocarp, in particular the differences in gene regulation leading to and including de novo fatty acid biosynthesis, a multi-platform metabolomics technology was used to profile mesocarp metabolites during six critical stages of fruit development in comparatively high- and low-yielding oil palm populations. Significantly higher amino acid levels preceding lipid biosynthesis and nucleosides during lipid biosynthesis were observed in a higher yielding commercial palm population. Levels of metabolites involved in glycolysis revealed interesting divergence of flux towards glycerol-3-phosphate, while carbon utilization differences in the TCA cycle were proven by an increase in malic acid/citric acid ratio. Apart from insights into the regulation of enhanced lipid production in oil palm, these results provide potentially useful metabolite yield markers and genes of interest for use in breeding programmes.

  10. SECONDARY METABOLITES FROM MARINE PENICILLIUM BREVICOMPACTUM

    OpenAIRE

    ROVIROSA, JUANA; DIAZ-MARRERO, ANA; DARIAS, JOSE; PAINEMAL, KARIN; SAN MARTIN, AURELIO

    2006-01-01

    In a screening of Basidiomycete cultures isolated from marine invertebrates collected along the Chilean coastline for the production of antibiotics we identified a Penicillium brevicompactum strain as a producer of metabolites inhibiting the growth of bacteria and fungi. Bioactivity guided purification resulted in the isolation of four known metabolites. Their structures were elucidated by spectroscopic methods.

  11. Determinants of Organophosphorus Pesticide Urinary Metabolite Levels in Young Children Living in an Agricultural Community

    Directory of Open Access Journals (Sweden)

    Brenda Eskenazi

    2011-04-01

    Full Text Available Organophosphorus (OP pesticides are used in agriculture and several are registered for home use. As young children age they may experience different pesticide exposures due to varying diet, behavior, and other factors. We measured six OP dialkylphosphate (DAP metabolites (three dimethyl alkylphosphates (DMAP and three diethyl alkylphosphates (DEAP in urine samples collected from ~400 children living in an agricultural community when they were 6, 12, and 24 months old. We examined bivariate associations between DAP metabolite levels and determinants such as age, diet, season, and parent occupation. To evaluate independent impacts, we then used generalized linear mixed multivariable models including interaction terms with age. The final models indicated that DMAP metabolite levels increased with age. DMAP levels were also positively associated with daily servings of produce at 6- and 24-months. Among the 6-month olds, DMAP metabolite levels were higher when samples were collected during the summer/spring versus the winter/fall months. Among the 12-month olds, DMAP and DEAP metabolites were higher when children lived ≤60 meters from an agricultural field. Among the 24-month-olds, DEAP metabolite levels were higher during the summer/spring months. Our findings suggest that there are multiple determinants of OP pesticide exposures, notably dietary intake and temporal and spatial proximity to agricultural use. The impact of these determinants varied by age and class of DAP metabolite.

  12. Plant metabolites and nutritional quality of vegetables.

    Science.gov (United States)

    Hounsome, N; Hounsome, B; Tomos, D; Edwards-Jones, G

    2008-05-01

    Vegetables are an important part of the human diet and a major source of biologically active substances such as vitamins, dietary fiber, antioxidants, and cholesterol-lowering compounds. Despite a large amount of information on this topic, the nutritional quality of vegetables has not been defined. Historically, the value of many plant nutrients and health-promoting compounds was discovered by trial and error. By the turn of the century, the application of chromatography, mass spectrometry, infrared spectrometry, and nuclear magnetic resonance allowed quantitative and qualitative measurements of a large number of plant metabolites. Approximately 50000 metabolites have been elucidated in plants, and it is predicted that the final number will exceed 200000. Most of them have unknown function. Metabolites such as carbohydrates, organic and amino acids, vitamins, hormones, flavonoids, phenolics, and glucosinolates are essential for plant growth, development, stress adaptation, and defense. Besides the importance for the plant itself, such metabolites determine the nutritional quality of food, color, taste, smell, antioxidative, anticarcinogenic, antihypertension, anti-inflammatory, antimicrobial, immunostimulating, and cholesterol-lowering properties. This review is focused on major plant metabolites that characterize the nutritional quality of vegetables, and methods of their analysis.

  13. β-Orcinol Metabolites from the Lichen Hypotrachyna revoluta

    Directory of Open Access Journals (Sweden)

    Panagiota Papadopoulou

    2007-05-01

    Full Text Available Four new β-orcinol metabolites, hypotrachynic acid (1, deoxystictic acid (2, cryptostictinolide (3 and 8 ́-methylconstictic acid (4 along with the metabolites 8 ́-methylstictic acid (5, 8 ́-methylmenegazziaic acid (6, stictic acid (7, 8 ́-ethylstictic acid (8 and atranorin (9, that have been previously described, were isolated for the first time from the tissue extracts of the lichen Hypotrachyna revoluta (Flörke Hale. The structures of the new metabolites were elucidated on the basis of extensive spectroscopic analyses. Radical scavenging activity (RSA of the metabolites isolated in adequate amounts, was evaluated using luminol chemiluminescence and comparison with Trolox®.

  14. Analysis of Intracellular Metabolites from Microorganisms: Quenching and Extraction Protocols.

    Science.gov (United States)

    Pinu, Farhana R; Villas-Boas, Silas G; Aggio, Raphael

    2017-10-23

    Sample preparation is one of the most important steps in metabolome analysis. The challenges of determining microbial metabolome have been well discussed within the research community and many improvements have already been achieved in last decade. The analysis of intracellular metabolites is particularly challenging. Environmental perturbations may considerably affect microbial metabolism, which results in intracellular metabolites being rapidly degraded or metabolized by enzymatic reactions. Therefore, quenching or the complete stop of cell metabolism is a pre-requisite for accurate intracellular metabolite analysis. After quenching, metabolites need to be extracted from the intracellular compartment. The choice of the most suitable metabolite extraction method/s is another crucial step. The literature indicates that specific classes of metabolites are better extracted by different extraction protocols. In this review, we discuss the technical aspects and advancements of quenching and extraction of intracellular metabolite analysis from microbial cells.

  15. Recapitulation of tumor heterogeneity and molecular signatures in a 3D brain cancer model with decreased sensitivity to histone deacetylase inhibition.

    Directory of Open Access Journals (Sweden)

    Stuart J Smith

    Full Text Available INTRODUCTION: Physiologically relevant pre-clinical ex vivo models recapitulating CNS tumor micro-environmental complexity will aid development of biologically-targeted agents. We present comprehensive characterization of tumor aggregates generated using the 3D Rotary Cell Culture System (RCCS. METHODS: CNS cancer cell lines were grown in conventional 2D cultures and the RCCS and comparison with a cohort of 53 pediatric high grade gliomas conducted by genome wide gene expression and microRNA arrays, coupled with immunohistochemistry, ex vivo magnetic resonance spectroscopy and drug sensitivity evaluation using the histone deacetylase inhibitor, Vorinostat. RESULTS: Macroscopic RCCS aggregates recapitulated the heterogeneous morphology of brain tumors with a distinct proliferating rim, necrotic core and oxygen tension gradient. Gene expression and microRNA analyses revealed significant differences with 3D expression intermediate to 2D cultures and primary brain tumors. Metabolic profiling revealed differential profiles, with an increase in tumor specific metabolites in 3D. To evaluate the potential of the RCCS as a drug testing tool, we determined the efficacy of Vorinostat against aggregates of U87 and KNS42 glioblastoma cells. Both lines demonstrated markedly reduced sensitivity when assaying in 3D culture conditions compared to classical 2D drug screen approaches. CONCLUSIONS: Our comprehensive characterization demonstrates that 3D RCCS culture of high grade brain tumor cells has profound effects on the genetic, epigenetic and metabolic profiles of cultured cells, with these cells residing as an intermediate phenotype between that of 2D cultures and primary tumors. There is a discrepancy between 2D culture and tumor molecular profiles, and RCCS partially re-capitulates tissue specific features, allowing drug testing in a more relevant ex vivo system.

  16. Detecting beer intake by unique metabolite patterns

    DEFF Research Database (Denmark)

    Gürdeniz, Gözde; Jensen, Morten Georg; Meier, Sebastian

    2016-01-01

    Evaluation of health related effects of beer intake is hampered by the lack of accurate tools for assessing intakes (biomarkers). Therefore, we identified plasma and urine metabolites associated with recent beer intake by untargeted metabolomics and established a characteristic metabolite pattern...... representing raw materials and beer production as a qualitative biomarker of beer intake. In a randomized, crossover, single-blinded meal study (MSt1) 18 participants were given one at a time four different test beverages: strong, regular and non-alcoholic beers and a soft drink. Four participants were...... assigned to have two additional beers (MSt2). In addition to plasma and urine samples, test beverages, wort and hops extract were analyzed by UPLC-QTOF. A unique metabolite pattern reflecting beer metabolome, including metabolites derived from beer raw material (i.e. N-methyl tyramine sulfate and the sum...

  17. Pericytes limit tumor cell metastasis

    DEFF Research Database (Denmark)

    Xian, Xiaojie; Håkansson, Joakim; Ståhlberg, Anders

    2006-01-01

    Previously we observed that neural cell adhesion molecule (NCAM) deficiency in beta tumor cells facilitates metastasis into distant organs and local lymph nodes. Here, we show that NCAM-deficient beta cell tumors grew leaky blood vessels with perturbed pericyte-endothelial cell-cell interactions...... the microvessel wall. To directly address whether pericyte dysfunction increases the metastatic potential of solid tumors, we studied beta cell tumorigenesis in primary pericyte-deficient Pdgfb(ret/ret) mice. This resulted in beta tumor cell metastases in distant organs and local lymph nodes, demonstrating a role...... and deficient perivascular deposition of ECM components. Conversely, tumor cell expression of NCAM in a fibrosarcoma model (T241) improved pericyte recruitment and increased perivascular deposition of ECM molecules. Together, these findings suggest that NCAM may limit tumor cell metastasis by stabilizing...

  18. MetRxn: a knowledgebase of metabolites and reactions spanning metabolic models and databases

    Directory of Open Access Journals (Sweden)

    Kumar Akhil

    2012-01-01

    Full Text Available Abstract Background Increasingly, metabolite and reaction information is organized in the form of genome-scale metabolic reconstructions that describe the reaction stoichiometry, directionality, and gene to protein to reaction associations. A key bottleneck in the pace of reconstruction of new, high-quality metabolic models is the inability to directly make use of metabolite/reaction information from biological databases or other models due to incompatibilities in content representation (i.e., metabolites with multiple names across databases and models, stoichiometric errors such as elemental or charge imbalances, and incomplete atomistic detail (e.g., use of generic R-group or non-explicit specification of stereo-specificity. Description MetRxn is a knowledgebase that includes standardized metabolite and reaction descriptions by integrating information from BRENDA, KEGG, MetaCyc, Reactome.org and 44 metabolic models into a single unified data set. All metabolite entries have matched synonyms, resolved protonation states, and are linked to unique structures. All reaction entries are elementally and charge balanced. This is accomplished through the use of a workflow of lexicographic, phonetic, and structural comparison algorithms. MetRxn allows for the download of standardized versions of existing genome-scale metabolic models and the use of metabolic information for the rapid reconstruction of new ones. Conclusions The standardization in description allows for the direct comparison of the metabolite and reaction content between metabolic models and databases and the exhaustive prospecting of pathways for biotechnological production. This ever-growing dataset currently consists of over 76,000 metabolites participating in more than 72,000 reactions (including unresolved entries. MetRxn is hosted on a web-based platform that uses relational database models (MySQL.

  19. Quantitative multiparametric MRI in uveal melanoma: increased tumor permeability may predict monosomy 3

    Energy Technology Data Exchange (ETDEWEB)

    Kamrava, Mitchell; Wang, Pin-Chieh; Roberts, Kristofer; Demanes, D.J. [University of California Los Angeles, Department of Radiation Oncology, Los Angeles, CA (United States); Sepahdari, Ali R.; Leu, Kevin; Ellingson, Benjamin M. [University of California Los Angeles, Department of Radiological Sciences, Los Angeles, CA (United States); McCannel, Tara [University of California Los Angeles, Department of Ophthalmology, Los Angeles, CA (United States)

    2015-08-15

    Uveal melanoma is a rare intraocular tumor with heterogeneous biological behavior, and additional noninvasive markers that may predict outcome are needed. Diffusion- and perfusion-weighted imaging may prove useful but have previously been limited in their ability to evaluate ocular tumors. Our purpose was to show the feasibility and potential value of a multiparametric (mp-) MRI protocol employing state of the art diffusion- and perfusion-weighted imaging techniques. Sixteen patients with uveal melanoma were imaged with mp-MRI. Multishot readout-segmented echoplanar diffusion-weighted imaging, quantitative dynamic contrast-enhanced (DCE) MR perfusion imaging, and anatomic sequences were obtained. Regions of interest (ROIs) were drawn around tumors for calculation of apparent diffusion coefficient (ADC) and perfusion metrics (K{sup trans}, v{sub e}, k{sub ep}, and v{sub p}). A generalized linear fit model was used to compare various MRI values with the American Joint Commission on Cancer (AJCC) tumor group and monosomy 3 status with significance set at P < 0.05. mp-MRI was performed successfully in all cases. MRI tumor height (mean [standard deviation]) was 6.5 mm (3.0). ROI volume was 278 mm{sup 3} (222). ADC was 1.07 (0.27) x 10-3 mm{sup 2}/s. DCE metrics were K{sup trans} 0.085/min (0.063), v{sub e} 0.060 (0.052), k{sub ep} 1.20/min (0.32), and v{sub p} 1.48 % (0.82). Patients with >33 % monosomy 3 had higher K{sup trans} and higher v{sub e} values than those with disomy 3 or ≤33 % monosomy (P < 0.01). There were no significant differences between ADC (P = 0.07), k{sub ep} (P = 0.37), and v{sub p} with respect to monosomy 3. mp-MRI for ocular tumor imaging using multishot EPI DWI and quantitative DCE perfusion is technically feasible. mp-MRI may help predict monosomy 3 in uveal melanoma. (orig.)

  20. Marine metabolites: The sterols of soft coral

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, N.S.; Krishna, M.S.; Pasha, Sk.G.; Rao, T.S.P.; Venkateswarlu, Y.; Parameswaran, P.S.

    Sterols constitute a major group of secondary metabolites of soft corals. Several of these compounds have the 'usual' 3 beta-hydroxy, delta sup(5) (or delta sup(0)) cholestane skeleton, a large number of these metabolites are polar sterols...

  1. MIDAS: a database-searching algorithm for metabolite identification in metabolomics.

    Science.gov (United States)

    Wang, Yingfeng; Kora, Guruprasad; Bowen, Benjamin P; Pan, Chongle

    2014-10-07

    A database searching approach can be used for metabolite identification in metabolomics by matching measured tandem mass spectra (MS/MS) against the predicted fragments of metabolites in a database. Here, we present the open-source MIDAS algorithm (Metabolite Identification via Database Searching). To evaluate a metabolite-spectrum match (MSM), MIDAS first enumerates possible fragments from a metabolite by systematic bond dissociation, then calculates the plausibility of the fragments based on their fragmentation pathways, and finally scores the MSM to assess how well the experimental MS/MS spectrum from collision-induced dissociation (CID) is explained by the metabolite's predicted CID MS/MS spectrum. MIDAS was designed to search high-resolution tandem mass spectra acquired on time-of-flight or Orbitrap mass spectrometer against a metabolite database in an automated and high-throughput manner. The accuracy of metabolite identification by MIDAS was benchmarked using four sets of standard tandem mass spectra from MassBank. On average, for 77% of original spectra and 84% of composite spectra, MIDAS correctly ranked the true compounds as the first MSMs out of all MetaCyc metabolites as decoys. MIDAS correctly identified 46% more original spectra and 59% more composite spectra at the first MSMs than an existing database-searching algorithm, MetFrag. MIDAS was showcased by searching a published real-world measurement of a metabolome from Synechococcus sp. PCC 7002 against the MetaCyc metabolite database. MIDAS identified many metabolites missed in the previous study. MIDAS identifications should be considered only as candidate metabolites, which need to be confirmed using standard compounds. To facilitate manual validation, MIDAS provides annotated spectra for MSMs and labels observed mass spectral peaks with predicted fragments. The database searching and manual validation can be performed online at http://midas.omicsbio.org.

  2. Photothermal Therapy Using Gold Nanorods and Near-Infrared Light in a Murine Melanoma Model Increases Survival and Decreases Tumor Volume

    Directory of Open Access Journals (Sweden)

    Mary K. Popp

    2014-01-01

    Full Text Available Photothermal therapy (PTT treatments have shown strong potential in treating tumors through their ability to target destructive heat preferentially to tumor regions. In this paper we demonstrate that PTT in a murine melanoma model using gold nanorods (GNRs and near-infrared (NIR light decreases tumor volume and increases animal survival to an extent that is comparable to the current generation of melanoma drugs. GNRs, in particular, have shown a strong ability to reach ablative temperatures quickly in tumors when exposed to NIR light. The current research tests the efficacy of GNRs PTT in a difficult and fast growing murine melanoma model using a NIR light-emitting diode (LED light source. LED light sources in the NIR spectrum could provide a safer and more practical approach to photothermal therapy than lasers. We also show that the LED light source can effectively and quickly heat in vitro and in vivo models to ablative temperatures when combined with GNRs. We anticipate that this approach could have significant implications for human cancer therapy.

  3. Ecosystem, location, and climate effects on foliar secondary metabolites of lodgepole pine populations from central British Columbia.

    Science.gov (United States)

    Wallis, Christopher M; Huber, Dezene P W; Lewis, Kathy J

    2011-06-01

    Lodgepole pines, Pinus contorta Douglas ex Louden var. latifolia Engelm. ex S. Watson, are encountering increased abiotic stress and pest activity due to recent increases in temperature and changes in precipitation throughout their range. This tree species counters these threats by producing secondary metabolites, including phenolics and terpenoids. We examined foliar levels of lignin, soluble phenolics, monoterpenoids, sesquiterpenoids, and diterpenoids in 12 stands in British Columbia, Canada. We used these data to assess associations among foliar secondary metabolite levels and ecosystem, geographic, and climatic variables. Regressions were also performed to observe which combinations of variables best explained secondary metabolite variance. Stands of P. c. latifolia in the Coastal Western Hemlock and Interior Cedar/Hemlock biogeoclimatic zones had consistently greater foliar levels of almost all measured secondary metabolites than did other stands. Lignin was present in greater amounts in Boreal White/Black Spruce ecosystem (i.e., northern) stands than in southern stands, suggesting a role for this metabolite in pine survival in the boreal forest. Attempts to develop regression models with geographic and climatic variables to explain foliar secondary metabolite levels resulted in multiple models with similar predictive capability. Since foliar secondary metabolite levels appeared to vary most between stand ecosystem types and not as much due to geographic and climatic variables, metabolic profiles appeared best matched to the stress levels within local environments. It is unknown if differences in secondary metabolite levels are the result of genetic adaptation or phenotypic plasticity, but results from this and other studies suggest that both are important. These results are interpreted in light of ongoing efforts to assist in the migration of certain populations of P. c. latifolia northward in an effort to counter predicted effects of climate change.

  4. The occurrence of recruitment supported from the finding of an increase in radiosensitivity of quiescent cells in solid tumors after fractionated irradiation with X-rays

    International Nuclear Information System (INIS)

    Masunaga, Shinichiro; Ono, Koji; Kinashi, Yuko; Suzuki, Minoru; Akaboshi, Mitsuhiko

    1998-01-01

    We examined the behavior of quiescent cells in solid tumors irradiated twice at various intervals with X-rays, using our recently developed method for selectively detecting the response of quiescent cells in solid tumors. To determine the labeling indices of tumors at the second irradiation, each mouse group included mice that were continuously administered BrdU until just before the second irradiation using mini-osmotic pumps which had been implanted before the first irradiation. Radiosensitivity of total tumor cells at the second irradiation decreased in proportion to the increase in interval time. However, radiosensitivity of quiescent cells was raised with increase in the interval time. In addition, the labeling index at the second irradiation was higher than that at the first irradiation. These findings supported the occurrence of recruitment from quiescent to proliferating state during fractionated irradiation. (author)

  5. A unique automation platform for measuring low level radioactivity in metabolite identification studies.

    Directory of Open Access Journals (Sweden)

    Joel Krauser

    Full Text Available Generation and interpretation of biotransformation data on drugs, i.e. identification of physiologically relevant metabolites, defining metabolic pathways and elucidation of metabolite structures, have become increasingly important to the drug development process. Profiling using (14C or (3H radiolabel is defined as the chromatographic separation and quantification of drug-related material in a given biological sample derived from an in vitro, preclinical in vivo or clinical study. Metabolite profiling is a very time intensive activity, particularly for preclinical in vivo or clinical studies which have defined limitations on radiation burden and exposure levels. A clear gap exists for certain studies which do not require specialized high volume automation technologies, yet these studies would still clearly benefit from automation. Use of radiolabeled compounds in preclinical and clinical ADME studies, specifically for metabolite profiling and identification are a very good example. The current lack of automation for measuring low level radioactivity in metabolite profiling requires substantial capacity, personal attention and resources from laboratory scientists. To help address these challenges and improve efficiency, we have innovated, developed and implemented a novel and flexible automation platform that integrates a robotic plate handling platform, HPLC or UPLC system, mass spectrometer and an automated fraction collector.

  6. A Unique Automation Platform for Measuring Low Level Radioactivity in Metabolite Identification Studies

    Science.gov (United States)

    Krauser, Joel; Walles, Markus; Wolf, Thierry; Graf, Daniel; Swart, Piet

    2012-01-01

    Generation and interpretation of biotransformation data on drugs, i.e. identification of physiologically relevant metabolites, defining metabolic pathways and elucidation of metabolite structures, have become increasingly important to the drug development process. Profiling using 14C or 3H radiolabel is defined as the chromatographic separation and quantification of drug-related material in a given biological sample derived from an in vitro, preclinical in vivo or clinical study. Metabolite profiling is a very time intensive activity, particularly for preclinical in vivo or clinical studies which have defined limitations on radiation burden and exposure levels. A clear gap exists for certain studies which do not require specialized high volume automation technologies, yet these studies would still clearly benefit from automation. Use of radiolabeled compounds in preclinical and clinical ADME studies, specifically for metabolite profiling and identification are a very good example. The current lack of automation for measuring low level radioactivity in metabolite profiling requires substantial capacity, personal attention and resources from laboratory scientists. To help address these challenges and improve efficiency, we have innovated, developed and implemented a novel and flexible automation platform that integrates a robotic plate handling platform, HPLC or UPLC system, mass spectrometer and an automated fraction collector. PMID:22723932

  7. Role of intestinal flora in colorectal cancer from the metabolite perspective: a systematic review

    Science.gov (United States)

    Han, Shuwen; Gao, Jianlan; Zhou, Qing; Liu, Shanshan; Wen, Caixia

    2018-01-01

    Colorectal cancer is one of the most common human malignant tumors. Recent research has shown that colorectal cancer is a dysbacteriosis-induced disease; however, the role of intestinal bacteria in colorectal cancer is unclear. This review explores the role of intestinal flora in colorectal cancer. In total, 57 articles were included after identification and screening. The pertinent literature on floral metabolites in colorectal cancer from three metabolic perspectives – including carbohydrate, lipid, and amino acid metabolism – was analyzed. An association network regarding the role of intestinal flora from a metabolic perspective was constructed by analyzing the previous literature to provide direction and insight for further research on intestinal flora in colorectal cancer. PMID:29440929

  8. TumorBoost: Normalization of allele-specific tumor copy numbers from a single pair of tumor-normal genotyping microarrays

    Directory of Open Access Journals (Sweden)

    Neuvial Pierre

    2010-05-01

    Full Text Available Abstract Background High-throughput genotyping microarrays assess both total DNA copy number and allelic composition, which makes them a tool of choice for copy number studies in cancer, including total copy number and loss of heterozygosity (LOH analyses. Even after state of the art preprocessing methods, allelic signal estimates from genotyping arrays still suffer from systematic effects that make them difficult to use effectively for such downstream analyses. Results We propose a method, TumorBoost, for normalizing allelic estimates of one tumor sample based on estimates from a single matched normal. The method applies to any paired tumor-normal estimates from any microarray-based technology, combined with any preprocessing method. We demonstrate that it increases the signal-to-noise ratio of allelic signals, making it significantly easier to detect allelic imbalances. Conclusions TumorBoost increases the power to detect somatic copy-number events (including copy-neutral LOH in the tumor from allelic signals of Affymetrix or Illumina origin. We also conclude that high-precision allelic estimates can be obtained from a single pair of tumor-normal hybridizations, if TumorBoost is combined with single-array preprocessing methods such as (allele-specific CRMA v2 for Affymetrix or BeadStudio's (proprietary XY-normalization method for Illumina. A bounded-memory implementation is available in the open-source and cross-platform R package aroma.cn, which is part of the Aroma Project (http://www.aroma-project.org/.

  9. Effects of 3-monochloropropane-1,2-diol (3-MCPD) and its metabolites on DNA damage and repair under in vitro conditions.

    Science.gov (United States)

    Ozcagli, Eren; Alpertunga, Buket; Fenga, Concettina; Berktas, Mehmet; Tsitsimpikou, Christina; Wilks, Martin F; Tsatsakis, Αristidis M

    2016-03-01

    3-monochloropropane-1,2-diol (3-MCPD) is a food contaminant that occurs during industrial production processes and can be found mainly in fat and salt containing products. 3-MCPD has exhibited mutagenic activity in vitro but not in vivo, however, a genotoxic mechanism for the occurrence of kidney tumors has not so far been excluded. The main pathway of mammalian 3-MCPD metabolism is via the formation of β--chlorolactatic acid and formation of glycidol has been demonstrated in bacterial metabolism. The aim of this study was to investigate genotoxic and oxidative DNA damaging effects of 3-MCPD and its metabolites, and to provide a better understanding of their roles in DNA repair processes. DNA damage was assessed by alkaline comet assay in target rat kidney epithelial cell lines (NRK-52E) and human embryonic kidney cells (HEK-293). Purine and pyrimidine base damage, H2O2 sensitivity and DNA repair capacity were assessed via modified comet assay. The results revealed in vitro evidence for increased genotoxicity and H2O2 sensitivity. No association was found between oxidative DNA damage and DNA repair capacity with the exception of glycidol treatment at 20 μg/mL. These findings provide further insights into the mechanisms underlying the in vitro genotoxic potential of 3-MCPD and metabolites. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. 40 CFR 159.179 - Metabolites, degradates, contaminants, and impurities.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Metabolites, degradates, contaminants.../Benefit Information § 159.179 Metabolites, degradates, contaminants, and impurities. (a) Metabolites and... degradation of less than 10 percent in a 30-day period. (b) Contaminants and impurities. The presence in any...

  11. Analysis of Intracellular Metabolites from Microorganisms: Quenching and Extraction Protocols

    Directory of Open Access Journals (Sweden)

    Farhana R. Pinu

    2017-10-01

    Full Text Available Sample preparation is one of the most important steps in metabolome analysis. The challenges of determining microbial metabolome have been well discussed within the research community and many improvements have already been achieved in last decade. The analysis of intracellular metabolites is particularly challenging. Environmental perturbations may considerably affect microbial metabolism, which results in intracellular metabolites being rapidly degraded or metabolized by enzymatic reactions. Therefore, quenching or the complete stop of cell metabolism is a pre-requisite for accurate intracellular metabolite analysis. After quenching, metabolites need to be extracted from the intracellular compartment. The choice of the most suitable metabolite extraction method/s is another crucial step. The literature indicates that specific classes of metabolites are better extracted by different extraction protocols. In this review, we discuss the technical aspects and advancements of quenching and extraction of intracellular metabolite analysis from microbial cells.

  12. Dietary rice bran component γ-oryzanol inhibits tumor growth in tumor-bearing mice.

    Science.gov (United States)

    Kim, Sung Phil; Kang, Mi Young; Nam, Seok Hyun; Friedman, Mendel

    2012-06-01

    We investigated the effects of rice bran and components on tumor growth in mice. Mice fed standard diets supplemented with rice bran, γ-oryzanol, Ricetrienol®, ferulic acid, or phytic acid for 2 weeks were inoculated with CT-26 colon cancer cells and fed the same diet for two additional weeks. Tumor mass was significantly lower in the γ-oryzanol and less so in the phytic acid group. Tumor inhibition was associated with the following biomarkers: increases in cytolytic activity of splenic natural killer (NK) cells; partial restoration of nitric oxide production and phagocytosis in peritoneal macrophages increases in released the pro-inflammatory cytokines tumor necrosis factor-α, IL-1β, and IL-6 from macrophages; and reductions in the number of blood vessels inside the tumor. Pro-angiogenic biomarkers vascular endothelial growth factor (VEGF), cyclooxygenase-2 (COX-2), and 5-lipoxygenase-5 (5-LOX) were also significantly reduced in mRNA and protein expression by tumor genes. ELISA of tumor cells confirmed reduced expression of COX-2 and 5-LOX up to 30%. Reduced COX-2 and 5-LOX expression downregulated VEGF and inhibited neoangiogenesis inside the tumors. Induction of NK activity, activation of macrophages, and inhibition of angiogenesis seem to contribute to the inhibitory mechanism of tumor regression by γ-oryzanol. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Increased projection of MHC and tumor antigens in murine B16-BL6 melanoma induced by hydrostatic pressure and chemical crosslinking.

    Science.gov (United States)

    Ramakrishna, V; Eisenthal, A; Skornick, Y; Shinitzky, M

    1993-05-01

    The B16-BL6 melanoma, like most spontaneously arising tumors, is poorly immunogenic and expresses low levels of major histocompatibility complex (MHC) antigens. Treatment of cells of this tumor in vitro by hydrostatic pressure in the presence of adenosine 2',3'-dialdehyde (oxAdo), a membrane-impermeant crosslinker, caused elevated projection of MHC and a specific tumor antigen as demonstrated by flow-cytometric analysis. Maximum projection of both the MHC and the tumor antigens could be reached by application of 1200 atm for 15 min in the presence of 20 mM oxAdo. It is not yet clear whether this passive increase in availability of antigens on the cell surface originated from a dormant pool of antigens in the plasma membrane or from pressure-induced fusion of antigen-rich intracellular organelles (e.g. the endoplasmic reticulum). The immunogenic properties of the antigen-enriched B16-BL6 cells are described in the following paper.

  14. 7-cysteine-pyrrole conjugate: A new potential DNA reactive metabolite of pyrrolizidine alkaloids.

    Science.gov (United States)

    He, Xiaobo; Xia, Qingsu; Ma, Liang; Fu, Peter P

    2016-01-01

    Pyrrolizidine alkaloids (PAs) require metabolic activation to exert cytotoxicity, genotoxicity, and tumorigenicity. We previously reported that (±)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP)-derived DNA adducts are responsible for PA-induced liver tumor formation in rats. In this study, we determined that metabolism of riddelliine and monocrotaline by human or rat liver microsomes produced 7-cysteine-DHP and DHP. The metabolism of 7-glutathionyl-DHP by human and rat liver microsomes also generated 7-cysteine-DHP. Further, reaction of 7-cysteine-DHP with calf thymus DNA in aqueous solution yielded the described DHP-derived DNA adducts. This study represents the first report that 7-cysteine-DHP is a new PA metabolite that can lead to DNA adduct formation.

  15. The redox protein thioredoxin-1 (Trx-1) increases hypoxia-inducible factor 1alpha protein expression: Trx-1 overexpression results in increased vascular endothelial growth factor production and enhanced tumor angiogenesis.

    Science.gov (United States)

    Welsh, Sarah J; Bellamy, William T; Briehl, Margaret M; Powis, Garth

    2002-09-01

    Hypoxia-inducible factor 1 (HIF-1), a heterodimer of HIF-1alpha and HIF-1beta subunits, is a transcriptional activator central to the cellular response to low oxygen that includes metabolic adaptation, angiogenesis, metastasis, and inhibited apoptosis. Thioredoxin-1 (Trx-1) is a small redox protein overexpressed in a number of human primary tumors. We have examined the effects of Trx-1 on HIF activity and the activation of downstream genes. Stable transfection of human breast carcinoma MCF-7 cells with human Trx-1 caused a significant increase in HIF-1alpha protein levels under both normoxic (20% oxygen) and hypoxic (1% oxygen) conditions. Trx-1 increased hypoxia-induced HIF-1 transactivation activity measured using a luciferase reporter under the control of the hypoxia response element. Changes in HIF-1alpha mRNA levels did not account for the changes observed at the protein level, and HIF-1beta protein levels did not change. Trx-1 transfection also caused a significant increase in the protein products of hypoxia-responsive genes, including vascular endothelial growth factor (VEGF) and nitric oxide synthase 2 in a number of different cell lines (MCF-7 human breast and HT29 human colon carcinomas and WEHI7.2 mouse lymphoma cells) under both normoxic and hypoxic conditions. The pattern of expression of the different isoforms of VEGF was not changed by Trx-1. Transfection of a redox-inactive Trx-1 (C32S/C35S) markedly decreased levels of HIF-1alpha protein, HIF-1 transactivating activity, and VEGF protein in MCF-7 cells compared with empty vector controls. In vivo studies using WEHI7.2 cells transfected with Trx-1 showed significantly increased tumor VEGF and angiogenesis. The results suggest that Trx-1 increases HIF-1alpha protein levels in cancer cells and increases VEGF production and tumor angiogenesis.

  16. LC-MS metabolomic analysis of environmental stressor impacts on the metabolite diversity in Nephthea spp.

    Directory of Open Access Journals (Sweden)

    Hedi Indra Januar

    2012-01-01

    Full Text Available Context: The soft coral Nephthea spp. is a source of terpenoid class that potentially has pharmaceutical properties. However, metabolite diversity and cytotoxic activity of this species are varied among coral reefs from various sites. Aim: To analyze the water quality in Nephthea spp. environment as a possible factor causing a difference in its metabolite diversity. Settings and Design: Nephthea spp. from seven sites were taken in October 2010 at the Alor District of Marine Protected Area, Indonesia. Materials and Methods: Water quality assessment was analyzed in situ and indexed by Canadian Council of Ministry Environment-Water Quality Index (CCME-WQI method. Meanwhile, metabolite diversity was analyzed by a LC-MS metabolomic method, using C18 reversed phase and gradient water-acetonitrile system. Statistical Analysis Used: Spearman′s rho and regression analysis were applied to correlate the water quality index to ecological index (richness, diversity, and evenness from LC-MS results. Results: The water quality index had a significant positive correlation and strong linear regression determinant to the total metabolite (R 2 = 0.704, particularly to semipolar metabolite richness (R 2 = 0.809, the area of terpenoid class in the organism. Conclusion: It can be concluded that water quality may serve as a major factor that affects the amount of richness in Nephthea spp. metabolites. When the water quality is lower, as environment stresses increases, it may affect the metabolite richness within direct disrupt of metabolite biosynthesis or indirect ecological means. Terpenoids are known as a soft coral antipredator (coral fishes, the amount of which depends on the water quality.

  17. Investigation of metabolites for estimating blood deposition time.

    Science.gov (United States)

    Lech, Karolina; Liu, Fan; Davies, Sarah K; Ackermann, Katrin; Ang, Joo Ern; Middleton, Benita; Revell, Victoria L; Raynaud, Florence J; Hoveijn, Igor; Hut, Roelof A; Skene, Debra J; Kayser, Manfred

    2018-01-01

    Trace deposition timing reflects a novel concept in forensic molecular biology involving the use of rhythmic biomarkers for estimating the time within a 24-h day/night cycle a human biological sample was left at the crime scene, which in principle allows verifying a sample donor's alibi. Previously, we introduced two circadian hormones for trace deposition timing and recently demonstrated that messenger RNA (mRNA) biomarkers significantly improve time prediction accuracy. Here, we investigate the suitability of metabolites measured using a targeted metabolomics approach, for trace deposition timing. Analysis of 171 plasma metabolites collected around the clock at 2-h intervals for 36 h from 12 male participants under controlled laboratory conditions identified 56 metabolites showing statistically significant oscillations, with peak times falling into three day/night time categories: morning/noon, afternoon/evening and night/early morning. Time prediction modelling identified 10 independently contributing metabolite biomarkers, which together achieved prediction accuracies expressed as AUC of 0.81, 0.86 and 0.90 for these three time categories respectively. Combining metabolites with previously established hormone and mRNA biomarkers in time prediction modelling resulted in an improved prediction accuracy reaching AUCs of 0.85, 0.89 and 0.96 respectively. The additional impact of metabolite biomarkers, however, was rather minor as the previously established model with melatonin, cortisol and three mRNA biomarkers achieved AUC values of 0.88, 0.88 and 0.95 for the same three time categories respectively. Nevertheless, the selected metabolites could become practically useful in scenarios where RNA marker information is unavailable such as due to RNA degradation. This is the first metabolomics study investigating circulating metabolites for trace deposition timing, and more work is needed to fully establish their usefulness for this forensic purpose.

  18. Intestinal tumor suppression in ApcMin/+ mice by prostaglandin D2 receptor PTGDR

    International Nuclear Information System (INIS)

    Tippin, Brigette L; Kwong, Alan M; Inadomi, Michael J; Lee, Oliver J; Park, Jae Man; Materi, Alicia M; Buslon, Virgilio S; Lin, Amy M; Kudo, Lili C; Karsten, Stanislav L; French, Samuel W; Narumiya, Shuh; Urade, Yoshihiro; Salido, Eduardo; Lin, Henry J

    2014-01-01

    Our earlier work showed that knockout of hematopoietic prostaglandin D synthase (HPGDS, an enzyme that produces prostaglandin D 2 ) caused more adenomas in Apc Min/+ mice. Conversely, highly expressed transgenic HPGDS allowed fewer tumors. Prostaglandin D 2 (PGD 2 ) binds to the prostaglandin D 2 receptor known as PTGDR (or DP1). PGD 2 metabolites bind to peroxisome proliferator-activated receptor γ (PPARG). We hypothesized that Ptgdr or Pparg knockouts may raise numbers of tumors, if these receptors take part in tumor suppression by PGD 2 . To assess, we produced Apc Min/+ mice with and without Ptgdr knockouts (147 mice). In separate experiments, we produced Apc Min/+ mice expressing transgenic lipocalin-type prostaglandin D synthase (PTGDS), with and without heterozygous Pparg knockouts (104 mice). Homozygous Ptgdr knockouts raised total numbers of tumors by 30–40% at 6 and 14 weeks. Colon tumors were not affected. Heterozygous Pparg knockouts alone did not affect tumor numbers in Apc Min/+ mice. As mentioned above, our Pparg knockout assessment also included mice with highly expressed PTGDS transgenes. Apc Min/+ mice with transgenic PTGDS had fewer large adenomas (63% of control) and lower levels of v-myc avian myelocytomatosis viral oncogene homolog (MYC) mRNA in the colon. Heterozygous Pparg knockouts appeared to blunt the tumor-suppressing effect of transgenic PTGDS. However, tumor suppression by PGD 2 was more clearly mediated by receptor PTGDR in our experiments. The suppression mechanism did not appear to involve changes in microvessel density or slower proliferation of tumor cells. The data support a role for PGD 2 signals acting through PTGDR in suppression of intestinal tumors

  19. The effect of dose, dose rate, route of administration, and species on tissue and blood levels of benzene metabolites

    International Nuclear Information System (INIS)

    Henderson, R.F.; Sabourin, P.J.; Bechtold, W.E.; Griffith, W.C.; Medinsky, M.A.; Birnbaum, L.S.; Lucier, G.W.

    1989-01-01

    Studies were completed in F344/N rats and B6C3F 1 mice to determine the effect of dose, dose rate, route of administration, and rodent species on formation of total and individual benzene metabolites. Oral doses of 50 mg/kg or higher saturated the capacity for benzene metabolism in both rats and mice, resulting in an increased proportion of the administered dose being exhaled as benzene. The saturating air concentration for benzene metabolism during 6-hr exposures was between 130 and 900 ppm. At the highest exposure concentration, rats exhaled approximately half of the internal dose retained at the end of the 6-hr exposure as benzene; mice exhaled only 15% as benzene. Mice were able to convert more of the inhaled benzene to metabolites than were rats. In addition, mice metabolized more of the benzene by pathways leading to the putative toxic metabolites, benzoquinone and muconaldehyde, than did rats. In both rats and mice, the effect of increasing dose, administered orally or by inhalation, was to increase the proportion of the total metabolites that were the products of detoxification pathways relative to the products of pathways leading to putative toxic metabolites. This indicates low-affinity, high-capacity pathways for detoxification and high-affinity, low-capacity pathways leading to putative toxic metabolites. If the results of rodent studied performed at high doses were used to assess the health risk at low-dose exposures to benzene, the toxicity of benzene would be underestimated

  20. Kynurenic Acid: The Janus-Faced Role of an Immunomodulatory Tryptophan Metabolite and Its Link to Pathological Conditions

    Directory of Open Access Journals (Sweden)

    Elisa Wirthgen

    2018-01-01

    Full Text Available Tryptophan metabolites are known to participate in the regulation of many cells of the immune system and are involved in various immune-mediated diseases and disorders. Kynurenic acid (KYNA is a product of one branch of the kynurenine pathway of tryptophan metabolism. The influence of KYNA on important neurophysiological and neuropathological processes has been comprehensively documented. In recent years, the link of KYNA to the immune system, inflammation, and cancer has become more apparent. Given this connection, the anti-inflammatory and immunosuppressive functions of KYNA are of particular interest. These characteristics might allow KYNA to act as a “double-edged sword.” The metabolite contributes to both the resolution of inflammation and the establishment of an immunosuppressive environment, which, for instance, allows for tumor immune escape. Our review provides a comprehensive update of the significant biological functions of KYNA and focuses on its immunomodulatory properties by signaling via G-protein-coupled receptor 35 (GPR35- and aryl hydrocarbon receptor-mediated pathways. Furthermore, we discuss the role of KYNA–GPR35 interaction and microbiota associated KYNA metabolism for gut homeostasis.

  1. Urinary Concentrations of Phthalate Metabolites and Pregnancy Loss Among Women Conceiving with Medically Assisted Reproduction.

    Science.gov (United States)

    Messerlian, Carmen; Wylie, Blair J; Mínguez-Alarcón, Lidia; Williams, Paige L; Ford, Jennifer B; Souter, Irene C; Calafat, Antonia M; Hauser, Russ

    2016-11-01

    Animal studies demonstrate that several phthalates are embryofetotoxic and are associated with increased pregnancy loss and malformations. Results from human studies on phthalates and pregnancy loss are inconsistent. We examined pregnancy loss prospectively in relation to urinary phthalate metabolite concentrations among women undergoing medically assisted reproduction. We used data from 256 women conceiving 303 pregnancies recruited between 2004 and 2012 from the Massachusetts General Hospital Fertility Center. We quantified 11 phthalate metabolite concentrations and calculated the molar sum of four di(2-ethylhexyl) phthalate (DEHP) metabolites (ΣDEHP). We estimated risk ratios (RRs) and 95% confidence intervals for biochemical loss and total pregnancy loss (assisted reproduction.

  2. Ruta graveolens Extracts and Metabolites against Spodoptera frugiperda.

    Science.gov (United States)

    Ayil-Gutiérrez, Benjamin A; Villegas-Mendoza, Jesús M; Santes-Hernndez, Zuridai; Paz-González, Alma D; Mireles-Martínez, Maribel; Rosas-García, Ninfa M; Rivera, Gildardo

    2015-11-01

    The biological activity of Ruta graveolens leaf tissue extracts obtained with different solvents (ethyl acetate, ethanol, and water) and metabolites (psoralen, 2- undecanone and rutin) against Spodoptera frugiperda was evaluated. Metabolites levels in extracts were quantified by HPLC and GC. Ethyl acetate and ethanol extracts showed 94% and 78% mortality, respectively. Additionally, psoralen metabolite showed a high mortality as cypermethrin. Metabolite quantification in extracts shows the presence of 2-undecanone (87.9 µmoles mg(-1) DW), psoralen (3.6 µmoles mg(-1) DW) and rutin (0.001 pmoles mg(-1) DW). We suggest that these concentrations of 2-undecanone and psoralen in R. graveolens leaf tissue extracts could be responsible for S. frugiperda mortality.

  3. Physical activity, sedentary behavior, and vitamin D metabolites.

    Science.gov (United States)

    Hibler, Elizabeth A; Sardo Molmenti, Christine L; Dai, Qi; Kohler, Lindsay N; Warren Anderson, Shaneda; Jurutka, Peter W; Jacobs, Elizabeth T

    2016-02-01

    Physical activity is associated with circulating 25-hydroxyvitamin D (25(OH)D). However, the influence of activity and/or sedentary behavior on the biologically active, seco-steroid hormone 1α,25-dihydroxyvitamin D (1,25(OH)2D) is unknown. We conducted a cross-sectional analysis among ursodeoxycholic acid (UDCA) randomized trial participants (n=876) to evaluate associations between physical activity, sedentary behavior, and circulating vitamin D metabolite concentrations. Continuous vitamin D metabolite measurements and clinical thresholds were evaluated using multiple linear and logistic regression models, mutually adjusted for either 1,25(OH)2D or 25(OH)D and additional confounding factors. A statistically significant linear association between 1,25(OH)2D and moderate-vigorous physical activity per week was strongest among women (β (95% CI): 3.10 (1.51-6.35)) versus men (β (95% CI): 1.35 (0.79-2.29)) in the highest tertile of activity compared to the lowest (p-interaction=0.003). Furthermore, 25(OH)D was 1.54ng/ml (95% CI 1.09-1.98) higher per hour increase in moderate-vigorous activity (p=0.001) and odds of sufficient 25(OH)D status was higher among physically active participants (p=0.001). Sedentary behavior was not significantly associated with either metabolite in linear regression models, nor was a statistically significant interaction by sex identified. The current study identified novel associations between physical activity and serum 1,25(OH)2D levels, adjusted for 25(OH)D concentrations. These results identify the biologically active form of vitamin D as a potential physiologic mechanism related to observed population-level associations between moderate-vigorous physical activity with bone health and chronic disease risk. However, future longitudinal studies are needed to further evaluate the role of physical activity and vitamin D metabolites in chronic disease prevention. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Short-term effects of air temperature on plasma metabolite concentrations in patients undergoing cardiac catheterization

    International Nuclear Information System (INIS)

    Hampel, Regina; Breitner, Susanne; Kraus, William E.; Hauser, Elizabeth; Shah, Svati; Ward-Caviness, Cavin K.; Devlin, Robert; Diaz-Sanchez, David; Neas, Lucas; Cascio, Wayne; Peters, Annette; Schneider, Alexandra

    2016-01-01

    Background: Epidemiological studies have shown associations between air temperature and cardiovascular health outcomes. Metabolic dysregulation might also play a role in the development of cardiovascular disease. Objectives: To investigate short-term temperature effects on metabolites related to cardiovascular disease. Methods: Concentrations of 45 acylcarnitines, 15 amino acids, ketone bodies and total free fatty acids were available in 2869 participants from the CATHeterization GENetics cohort recruited at the Duke University Cardiac Catheterization Clinic (Durham, NC) between 2001 and 2007. Ten metabolites were selected based on quality criteria and cluster analysis. Daily averages of meteorological variables were obtained from the North American Regional Reanalysis project. Immediate, lagged, and cumulative temperature effects on metabolite concentrations were analyzed using (piecewise) linear regression models. Results: Linear temperature effects were found for glycine, C16-OH:C14:1-DC, and aspartic acid/asparagine. A 5 °C increase in temperature was associated with a 1.8% [95%-confidence interval: 0.3%; 3.3%] increase in glycine (5-day average), a 3.2% [0.1%; 6.3%] increase in C16-OH:C14:1-DC (lag of four days), and a −1.4% [−2.4%; −0.3%] decrease in aspartic acid/asparagine (lag of two days). Non-linear temperature effects were observed for alanine and total ketone bodies with breakpoint of 4 °C and 20 °C, respectively. Both a 5 °C decrease in temperature on colder days (<4 °C)and a 5 °C increase in temperature on warmer days (≥4 °C) were associated with a four day delayed increase in alanine by 6.6% [11.7; 1.8%] and 1.9% [0.3%; 3.4%], respectively. For ketone bodies we found immediate (0-day lag) increases of 4.2% [−0.5%; 9.1%] and 12.3% [0.1%; 26.0%] associated with 5 °C decreases on colder (<20 °C) days and 5 °C increases on warmer days (≥20 °C), respectively. Conclusions: We observed multiple effects of air temperature on

  5. Short-term effects of air temperature on plasma metabolite concentrations in patients undergoing cardiac catheterization

    Energy Technology Data Exchange (ETDEWEB)

    Hampel, Regina, E-mail: regina.hampel@helmholtz-muenchen.de [Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg (Germany); Breitner, Susanne [Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg (Germany); Kraus, William E. [School of Medicine, Duke University, Durham, NC 27701 (United States); Hauser, Elizabeth [School of Medicine, Duke University, Durham, NC 27701 (United States); Duke Molecular Physiology Institute, 300 North Duke Street, Durham, NC 27701 (United States); Cooperative Studies Program Epidemiology Center-Durham, Veterans Affairs Medical Center, Durham, NC 27701 (United States); Shah, Svati [School of Medicine, Duke University, Durham, NC 27701 (United States); Ward-Caviness, Cavin K. [Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg (Germany); Devlin, Robert; Diaz-Sanchez, David; Neas, Lucas; Cascio, Wayne [National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, 109 T.W. Alexander Drive, Durham, NC 27709 (United States); Peters, Annette; Schneider, Alexandra [Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg (Germany)

    2016-11-15

    Background: Epidemiological studies have shown associations between air temperature and cardiovascular health outcomes. Metabolic dysregulation might also play a role in the development of cardiovascular disease. Objectives: To investigate short-term temperature effects on metabolites related to cardiovascular disease. Methods: Concentrations of 45 acylcarnitines, 15 amino acids, ketone bodies and total free fatty acids were available in 2869 participants from the CATHeterization GENetics cohort recruited at the Duke University Cardiac Catheterization Clinic (Durham, NC) between 2001 and 2007. Ten metabolites were selected based on quality criteria and cluster analysis. Daily averages of meteorological variables were obtained from the North American Regional Reanalysis project. Immediate, lagged, and cumulative temperature effects on metabolite concentrations were analyzed using (piecewise) linear regression models. Results: Linear temperature effects were found for glycine, C16-OH:C14:1-DC, and aspartic acid/asparagine. A 5 °C increase in temperature was associated with a 1.8% [95%-confidence interval: 0.3%; 3.3%] increase in glycine (5-day average), a 3.2% [0.1%; 6.3%] increase in C16-OH:C14:1-DC (lag of four days), and a −1.4% [−2.4%; −0.3%] decrease in aspartic acid/asparagine (lag of two days). Non-linear temperature effects were observed for alanine and total ketone bodies with breakpoint of 4 °C and 20 °C, respectively. Both a 5 °C decrease in temperature on colder days (<4 °C)and a 5 °C increase in temperature on warmer days (≥4 °C) were associated with a four day delayed increase in alanine by 6.6% [11.7; 1.8%] and 1.9% [0.3%; 3.4%], respectively. For ketone bodies we found immediate (0-day lag) increases of 4.2% [−0.5%; 9.1%] and 12.3% [0.1%; 26.0%] associated with 5 °C decreases on colder (<20 °C) days and 5 °C increases on warmer days (≥20 °C), respectively. Conclusions: We observed multiple effects of air temperature on

  6. Biochemical and secondary metabolites changes under moisture ...

    African Journals Online (AJOL)

    The study showed the importance of carbohydrate and nitrogen cycle related metabolites in mediating tolerance in cassava by affecting their phenotypic expression in the plant. Keywords: Hydrothermal stress, bio-chemicals, pigments, secondary metabolites, cassava. African Journal of Biotechnology, Vol 13(31) 3173-3186 ...

  7. Association of atmospheric concentrations of polycyclic aromatic hydrocarbons with their urinary metabolites in children and adolescents.

    Science.gov (United States)

    Poursafa, Parinaz; Amin, Mohammad Mehdi; Hajizadeh, Yaghoub; Mansourian, Marjan; Pourzamani, Hamidreza; Ebrahim, Karim; Sadeghian, Babak; Kelishadi, Roya

    2017-07-01

    This study aims to determine the atmospheric concentrations of particulate matter 2.5 (PM 2.5 )-bounded polycyclic aromatic hydrocarbons (PAHs) and their association with their urinary metabolites in children and adolescents. This study was conducted from October 2014 to March 2016 in Isfahan, Iran. We measured 16 species of PAHs bounded to PM 2.5 by gas chromatography mass spectrometry (GC/MS) from 7 parts of the city. Moreover, PAH urinary metabolites were measured in 186 children and adolescents, randomly selected from households. Urinary metabolites consisted of 1-hydroxy naphthalene (1-naphthol), 2-hydroxy naphthalene (2-naphthol), 9-hydroxy phenanthrene (9-phenanthrol), and 1-hydroxy pyrene using GC/MS. Considering the short half-lives of PAHs, we measured the metabolites twice with 4 to 6 months of time interval. We found that the ambient concentrations of PAHs were significantly associated with their urinary metabolites. 1-hydroxy naphthalene and 2-hydroxy naphthalene concentrations showed an increase of 1.049 (95% CI: 1.030, 1.069) and 1.047 (95% CI: 1.025, 1.066) for each unit increase (1 ng/m 3 ) in ambient naphthalene. Similarly, 1-hydroxy pyrene showed an increase of 1.009 (95% CI: 1.006-1.011) for each unit increase (1 ng/m 3 ) in ambient pyrene concentration after adjustment for body mass index, physical activity level, urinary creatinine, age, and sex. The association of urinary 9-hydroxyphenanthrene and ambient phenantherene was significant in the crude model; however after adjustment for the abovementioned covariates, it was no more significant. We found significant correlations between exposure to ambient PM 2.5 -bounded PAHs and their urinary excretion. Considering the adverse health effects of PAHs in the pediatric age group, biomonitoring of PAHs should be underscored; preventive measures need to be intensified.

  8. MARSI: metabolite analogues for rational strain improvement

    DEFF Research Database (Denmark)

    Cardoso, João G. R.; Zeidan, Ahmad A; Jensen, Kristian

    2018-01-01

    reactions in an organism can be used to predict effects of MAs on cellular phenotypes. Here, we present the Metabolite Analogues for Rational Strain Improvement (MARSI) framework. MARSI provides a rational approach to strain improvement by searching for metabolites as targets instead of genes or reactions...

  9. Solid-pseudo papillary tumor of the pancreas: Frantz's tumor

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Bruno Righi Rodrigues de; Moreira, Reni Cecilia Lopes; Campos, Marcelo Esteves Chaves [Instituto Mario Penna, Belo Horizonte, MG (Brazil)], e-mail: brunorighi@yahoo.com.br

    2010-07-01

    The pseudo papillary solid tumor of the pancreas, also known as Frantz's tumor, is a rare disease, taking place in approximately 0.17% to 2.7% of non-endocrine tumors of the pancreas. Recently, the increase of its incidence has been noted with more than two-thirds of the total cases described in the last 10 years. A possible explanation is a greater knowledge of the disease and a greater uniformity of conceptualization in the last years. Generally, it affects young adult females. In most of the series, the tumor principally attacks the body and tail of the pancreas. The objective of the present report is to present the diagnostic and therapeutic option used in this rare pancreatic tumor of low-grade malignancy. (author)

  10. Imaging of pancreatic tumors

    International Nuclear Information System (INIS)

    Brambs, Hans-Juergen; Juchems, Markus

    2010-01-01

    Ductal adenocarcinoma is the most frequent solid tumor of the pancreas. This tumor has distinct features including early obstruction of the pancreatic duct, diminished enhancement after administration of contrast material due to desmoplastic growth, high propensity to infiltrate adjacent structures and to metastasize into the liver and the peritoneum. Hormone active endocrine tumors cause specific clinical symptoms. Imaging is aimed at localization of these hypervascular tumors. Non hormone active tumors are most frequently malignant and demonstrate very varying features. Cystic pancreatic tumors are increasingly detected by means of cross sectional imaging. Exact classification can be achieved with knowledge of the macropathology and considering clinical presentation as well as age and gender of the patients. (orig.)

  11. Tumor metabolism, the ketogenic diet and β-hydroxybutyrate: novel approaches to adjuvant brain tumor therapy

    Directory of Open Access Journals (Sweden)

    Eric C. Woolf

    2016-11-01

    Full Text Available Malignant brain tumors are devastating despite aggressive treatments such as surgical resection, chemotherapy and radiation therapy. The average life expectancy of patients with newly diagnosed glioblastoma is approximately ~18 months. It is clear that increased survival of brain tumor patients requires the design of new therapeutic modalities, especially those that enhance currently available treatments and/or limit tumor growth. One novel therapeutic arena is the metabolic dysregulation that results in an increased need for glucose in tumor cells. This phenomenon suggests that a reduction in tumor growth could be achieved by decreasing glucose availability, which can be accomplished through pharmacological means or through the use of a high-fat, low-carbohydrate ketogenic diet (KD. The KD, as the name implies, also provides increased blood ketones to support the energy needs of normal tissues. Preclinical work from a number of laboratories has shown that the KD does indeed reduce tumor growth in vivo. In addition, the KD has been shown to reduce angiogenesis, inflammation, peri-tumoral edema, migration and invasion. Furthermore, this diet can enhance the activity of radiation and chemotherapy in a mouse model of glioma, thus increasing survival. Additional studies in vitro have indicated that increasing ketones such as β-hydroxybutyrate in the absence of glucose reduction can also inhibit cell growth and potentiate the effects of chemotherapy and radiation. Thus, while we are only beginning to understand the pluripotent mechanisms through which the KD affects tumor growth and response to conventional therapies, the emerging data provide strong support for the use of a KD in the treatment of malignant gliomas. This has led to a limited number of clinical trials investigating the use of a KD in patients with primary and recurrent glioma.

  12. Multiple fields may offer better esophagus sparing without increased probability of lung toxicity in optimized IMRT of lung tumors

    International Nuclear Information System (INIS)

    Chapet, Olivier; Fraass, Benedick A.; Haken, Randall K. ten

    2006-01-01

    Purpose: To evaluate whether increasing numbers of intensity-modulated radiation therapy (IMRT) fields enhance lung-tumor dose without additional predicted toxicity for difficult planning geometries. Methods and Materials: Data from 8 previous three dimensional conformal radiation therapy (3D-CRT) patients with tumors located in various regions of each lung, but with planning target volumes (PTVs) overlapping part of the esophagus, were used as input. Four optimized-beamlet IMRT plans (1 plan that used the 3D-CRT beam arrangement and 3 plans with 3, 5, or 7 axial, but predominantly one-sided, fields) were compared. For IMRT, the equivalent uniform dose (EUD) in the whole PTV was optimized simultaneously with that in a reduced PTV exclusive of the esophagus. Normal-tissue complication probability-based costlets were used for the esophagus, heart, and lung. Results: Overall, IMRT plans (optimized by use of EUD to judiciously allow relaxed PTV dose homogeneity) result in better minimum PTV isodose surface coverage and better average EUD values than does conformal planning; dose generally increases with the number of fields. Even 7-field plans do not significantly alter normal-lung mean-dose values or lung volumes that receive more than 13, 20, or 30 Gy. Conclusion: Optimized many-field IMRT plans can lead to escalated lung-tumor dose in the special case of esophagus overlapping PTV, without unacceptable alteration in the dose distribution to normal lung

  13. water stress mediated changes in growth, physiology and secondary metabolites of desi ajwain (trachyspermum ammi l.)

    International Nuclear Information System (INIS)

    Azhar, N.; Hussain, B.; Abbasi, K.Y.

    2011-01-01

    Biotic and abiotic stresses exert a considerable influence on the production of several secondary metabolites in plants; water stress is one of the most important abiotic stress factors. This study was carried out to elucidate the effect of drought stress on growth, physiology and secondary metabolite production in desi ajwain (Trachyspermum ammi L.). Plants were grown in pots and three drought levels (100%, 80% and 60%) of field capacity were created. The experiment was laid out in complete randomized design (CRD) with three replicates. Data on growth, physiological and biochemical parameters were recorded and analyzed statistically. Physiological parameters like transpiration rate and stomatal conductance decreased concentration increased. The photosynthetic rate showed significantly with increasing water stress levels, but internal CO/sub 2/ non-significant reduction from 100% field capacity to 80% field capacity but increased at 60% field capacity. Growth parameters including plant height, herb fresh and dry weights were reduced significantly with increasing stress levels, while total phenolic contents and chlorophyll contents increased under water stress conditions. These results suggest that cultivation of medicinal plants like desi ajwain under drought stress could enhance the production of secondary metabolites. (author)

  14. Spatial relationship between tumor perfusion and endogeneous glucose distribution

    International Nuclear Information System (INIS)

    Schroeder, T.; Larrier, N.; Viglianti, B.; Rabbani, Z.N.; Peltz, C.; Vujascovic, Z.; Dewhirst, M.W.

    2003-01-01

    Earlier studies detecting glucose in tissue and solid tumors by bioluminescence imaging suggested, that glucose distribution patterns may be spatially related to functional vascularity. The purpose of this study was to evaluate this relationship by comparing glucose distribution patterns as determined by bioluminescence imaging to perfusion patterns of endogeneous Hoechst 33342 in rats bearing mammary carcinomas. R 3230 mammary carcinoma cells have been implanted subcutaneously into 7 female Fischer 344 rats. Two months post implantation, after injection of Hoechst 33342 the tumors were removed and snap frozen to conserve metabolite levels. Concomitantly, blood was sampled from the animals for analysis of glucose concentrations using a micodialysis analyzer. Cryosections of the tumors have been prepared, and every slice has been analyzed for both, Hoechst binding by fluorescence microscopy, and for glucose distribution patterns using bioluminescence imaging. In many cases vascular structures could be retrieved by the spatial pattern of glucose distribution. In some cases however, higher glucose concentrations could be found independent from Hoechst signal. On the other hand, regions of high Hoechst signal are not necessarily correlated with high glucose concentrations. When comparing blood and tissue glucose levels, tissue glucose content as measured with bioluminescence imaging (1.9-3.5 mM) is considerably lower than blood glucose (5.6-8.0 mM), demonstrating the expected gradient from blood to tissue. This study demonstrates the feasibility of monitoring glucose gradients in relation to functional vasculature throughout the body, from blood down to tissue or tumor and further, throughout the microenvironment of the solid tumor. Glucose distribution patterns may be an important tool in perfusion studies, e. g. in detecting the direction of blood flow in ex-vivo samples or in estimating glucose consumption rates of tumor cells adjacent to or in between perfused

  15. Inhibition of IL-17A suppresses enhanced-tumor growth in low dose pre-irradiated tumor beds.

    Directory of Open Access Journals (Sweden)

    Eun-Jung Lee

    Full Text Available Ionizing radiation induces modification of the tumor microenvironment such as tumor surrounding region, which is relevant to treatment outcome after radiotherapy. In this study, the effects of pre-irradiated tumor beds on the growth of subsequently implanted tumors were investigated as well as underlying mechanism. The experimental model was set up by irradiating the right thighs of C3H/HeN mice with 5 Gy, followed by the implantation of HCa-I and MIH-2. Both implanted tumors in the pre-irradiated bed showed accelerated-growth compared to the control. Tumor-infiltrated lymphocyte (TIL levels were increased, as well as pro-tumor factors such as IL-6 and transforming growth factor-beta1 (TGF-β1 in the pre-irradiated group. In particular, the role of pro-tumor cytokine interleukin-17A (IL-17A was investigated as a possible target mechanism because IL-6 and TGF-β are key factors in Th17 cells differentiation from naïve T cells. IL-17A expression was increased not only in tumors, but also in CD4+ T cells isolated from the tumor draining lymph nodes. The effect of IL-17A on tumor growth was confirmed by treating tumors with IL-17A antibody, which abolished the acceleration of tumor growth. These results indicate that the upregulation of IL-17A seems to be a key factor for enhancing tumor growth in pre-irradiated tumor beds.

  16. Metabolite identification through multiple kernel learning on fragmentation trees.

    Science.gov (United States)

    Shen, Huibin; Dührkop, Kai; Böcker, Sebastian; Rousu, Juho

    2014-06-15

    Metabolite identification from tandem mass spectrometric data is a key task in metabolomics. Various computational methods have been proposed for the identification of metabolites from tandem mass spectra. Fragmentation tree methods explore the space of possible ways in which the metabolite can fragment, and base the metabolite identification on scoring of these fragmentation trees. Machine learning methods have been used to map mass spectra to molecular fingerprints; predicted fingerprints, in turn, can be used to score candidate molecular structures. Here, we combine fragmentation tree computations with kernel-based machine learning to predict molecular fingerprints and identify molecular structures. We introduce a family of kernels capturing the similarity of fragmentation trees, and combine these kernels using recently proposed multiple kernel learning approaches. Experiments on two large reference datasets show that the new methods significantly improve molecular fingerprint prediction accuracy. These improvements result in better metabolite identification, doubling the number of metabolites ranked at the top position of the candidates list. © The Author 2014. Published by Oxford University Press.

  17. Tumor penetrating peptides

    Directory of Open Access Journals (Sweden)

    Tambet eTeesalu

    2013-08-01

    Full Text Available Tumor-homing peptides can be used to deliver drugs into tumors. Phage library screening in live mice has recently identified homing peptides that specifically recognize the endothelium of tumor vessels, extravasate, and penetrate deep into the extravascular tumor tissue. The prototypic peptide of this class, iRGD (CRGDKGPDC, contains the integrin-binding RGD motif. RGD mediates tumor homing through binding to αv integrins, which are selectively expressed on various cells in tumors, including tumor endothelial cells. The tumor-penetrating properties of iRGD are mediated by a second sequence motif, R/KXXR/K. This C-end Rule (or CendR motif is active only when the second basic residue is exposed at the C-terminus of the peptide. Proteolytic processing of iRGD in tumors activates the cryptic CendR motif, which then binds to neuropilin-1 activating an endocytic bulk transport pathway through tumor tissue. Phage screening has also yielded tumor-penetrating peptides that function like iRGD in activating the CendR pathway, but bind to a different primary receptor. Moreover, novel tumor-homing peptides can be constructed from tumor-homing motifs, CendR elements and protease cleavage sites. Pathologies other than tumors can be targeted with tissue-penetrating peptides, and the primary receptor can also be a vascular zip code of a normal tissue. The CendR technology provides a solution to a major problem in tumor therapy, poor penetration of drugs into tumors. The tumor-penetrating peptides are capable of taking a payload deep into tumor tissue in mice, and they also penetrate into human tumors ex vivo. Targeting with these peptides specifically increases the accumulation in tumors of a variety of drugs and contrast agents, such as doxorubicin, antibodies and nanoparticle-based compounds. Remarkably the drug to be targeted does not have to be coupled to the peptide; the bulk transport system activated by the peptide sweeps along any compound that is

  18. Activity of MM-398, nanoliposomal irinotecan (nal-IRI), in Ewing's family tumor xenografts is associated with high exposure of tumor to drug and high SLFN11 expression.

    Science.gov (United States)

    Kang, Min H; Wang, Jing; Makena, Monish R; Lee, Joo-Sang; Paz, Nancy; Hall, Connor P; Song, Michael M; Calderon, Ruben I; Cruz, Riza E; Hindle, Ashly; Ko, Winford; Fitzgerald, Jonathan B; Drummond, Daryl C; Triche, Timothy J; Reynolds, C Patrick

    2015-03-01

    To determine the pharmacokinetics and the antitumor activity in pediatric cancer models of MM-398, a nanoliposomal irinotecan (nal-IRI). Mouse plasma and tissue pharmacokinetics of nal-IRI and the current clinical formulation of irinotecan were characterized. In vivo activity of irinotecan and nal-IRI was compared in xenograft models (3 each in nu/nu mice) of Ewing's sarcoma family of tumors (EFT), neuroblastoma (NB), and rhabdomyosarcoma (RMS). SLFN11 expression was assessed by Affymetrix HuEx arrays, Taqman RT-PCR, and immunoblotting. Plasma and tumor concentrations of irinotecan and SN-38 (active metabolite) were approximately 10-fold higher for nal-IRI than for irinotecan. Two doses of NAL-IRI (10 mg/kg/dose) achieved complete responses maintained for >100 days in 24 of 27 EFT-xenografted mice. Event-free survival for mice with RMS and NB was significantly shorter than for EFT. High SLFN11 expression has been reported to correlate with sensitivity to DNA damaging agents; median SLFN11 mRNA expression was >100-fold greater in both EFT cell lines and primary tumors compared with NB or RMS cell lines or primary tumors. Cytotoxicity of SN-38 inversely correlated with SLFN11 mRNA expression in 20 EFT cell lines. In pediatric solid tumor xenografts, nal-IRI demonstrated higher systemic and tumor exposures to SN-38 and improved antitumor activity compared with the current clinical formulation of irinotecan. Clinical studies of nal-IRI in pediatric solid tumors (especially EFT) and correlative studies to determine if SLFN11 expression can serve as a biomarker to predict nal-IRI clinical activity are warranted. ©2015 American Association for Cancer Research.

  19. Peculiarities in the CT findings of germ cell tumors in various tumor localizations

    International Nuclear Information System (INIS)

    Tazoe, Makoto; Miyagami, Mitsusuke; Tsubokawa, Takashi

    1991-01-01

    The CT findings of 17 germ cell tumors were studied in relation to the locations of the tumor, the pathological diagnoses, and the tumor markers (AFP and HCG). Generally, the CT findings of germ cell tumors depended on the pathological diagnoses more strongly than on the location of the tumors. On plain CT of 7 germ cell tumors in the pineal region, all of them demonstrated heterogeneous findings. Hydrocephalus was seen in 6 cases (86%) and calcification in 6 cases (86%) of the germ cell tumors in the pineal region. Calcification and hydrocephalus that appeared more often than in other regions were characteristic of germ cell tumors of the pineal region. The germ cell tumors in the basal ganglia had a slightly homogenous high density, with small cysts and calcification in most of them on plain CT. On enhanced CT, the tumors were moderately enhanced in all cases located in the basal ganglia. Four cases of germ cell tumors located in the basal ganglia revealed the dilatation of lateral ventricle due to hemispheric atrophy in the tumor side. The germ cell tumors showing an increase in the tumor markers such as AFP and HCG, which were usually malignant germ cell tumors, were strongly enhanced on enhanced CT. (author)

  20. Inhibition of gap-junctional intercellular communication and activation of mitogen-activated protein kinases by cyanobacterial extracts--indications of novel tumor-promoting cyanotoxins?

    Science.gov (United States)

    Bláha, Ludĕk; Babica, Pavel; Hilscherová, Klára; Upham, Brad L

    2010-01-01

    Toxicity and liver tumor promotion of cyanotoxins microcystins have been extensively studied. However, recent studies document that other metabolites present in the complex cyanobacterial water blooms may also have adverse health effects. In this study we used rat liver epithelial stem-like cells (WB-F344) to examine the effects of cyanobacterial extracts on two established markers of tumor promotion, inhibition of gap-junctional intercellular communication (GJIC) and activation of mitogen-activated protein kinases (MAPKs) - ERK1/2. Extracts of cyanobacteria (laboratory cultures of Microcystis aeruginosa and Aphanizomenon flos-aquae and water blooms dominated by these species) inhibited GJIC and activated MAPKs in a dose-dependent manner (effective concentrations ranging 0.5-5mgd.w./mL). Effects were independent of the microcystin content and the strongest responses were elicited by the extracts of Aphanizomenon sp. Neither pure microcystin-LR nor cylindrospermopsin inhibited GJIC or activated MAPKs. Modulations of GJIC and MAPKs appeared to be specific to cyanobacterial extracts since extracts from green alga Chlamydomonas reinhardtii, heterotrophic bacterium Klebsiella terrigena, and isolated bacterial lipopolysaccharides had no comparable effects. Our study provides the first evidence on the existence of unknown cyanobacterial toxic metabolites that affect in vitro biomarkers of tumor promotion, i.e. inhibition of GJIC and activation of MAPKs.

  1. The effects of TYB-2285 and its metabolites on eosinophil adhesion to tumor necrosis factor α-stimulated human umbilical vein endothelial cells

    Directory of Open Access Journals (Sweden)

    Takanari Tominaga

    1996-01-01

    The results of the present study demonstrate that TYB-2285 and its metabolites selectively inhibit the adhesion of eosinophils to HUVECs stimulated with TNF-α and also suggest that TYB-2285, TC-286 and TC-326 might block the VLA-4/VCAM-1 pathway selectively.

  2. Do metabolites that are produced during resistance exercise enhance muscle hypertrophy?

    Science.gov (United States)

    Dankel, Scott J; Mattocks, Kevin T; Jessee, Matthew B; Buckner, Samuel L; Mouser, J Grant; Loenneke, Jeremy P

    2017-11-01

    Many reviews conclude that metabolites play an important role with respect to muscle hypertrophy during resistance exercise, but their actual physiologic contribution remains unknown. Some have suggested that metabolites may work independently of muscle contraction, while others have suggested that metabolites may play a secondary role in their ability to augment muscle activation via inducing fatigue. Interestingly, the studies used as support for an anabolic role of metabolites use protocols that are not actually designed to test the importance of metabolites independent of muscle contraction. While there is some evidence in vitro that metabolites may induce muscle hypertrophy, the only study attempting to answer this question in humans found no added benefit of pooling metabolites within the muscle post-exercise. As load-induced muscle hypertrophy is thought to work via mechanotransduction (as opposed to being metabolically driven), it seems likely that metabolites simply augment muscle activation and cause the mechanotransduction cascade in a larger proportion of muscle fibers, thereby producing greater muscle growth. A sufficient time under tension also appears necessary, as measurable muscle growth is not observed after repeated maximal testing. Based on current evidence, it is our opinion that metabolites produced during resistance exercise do not have anabolic properties per se, but may be anabolic in their ability to augment muscle activation. Future studies are needed to compare protocols which produce similar levels of muscle activation, but differ in the magnitude of metabolites produced, or duration in which the exercised muscles are exposed to metabolites.

  3. Fecal estradiol and progesterone metabolite levels in the three-toed sloth (Bradypus variegatus

    Directory of Open Access Journals (Sweden)

    M. Mühlbauer

    2006-02-01

    Full Text Available The present study was carried out to assess the possibility of measuring fecal steroid hormone metabolites as a noninvasive technique for monitoring reproductive function in the three-toed sloth, Bradypus variegatus. Levels of the estradiol (E2 and progesterone (P4 metabolites were measured by radioimmunoassay in fecal samples collected over 12 weeks from 4 captive female B. variegatus sloths. The validation of the radioimmunoassay for evaluation of fecal steroid metabolites was carried out by collecting 10 blood samples on the same day as defecation. There was a significant direct correlation between the plasma and fecal E2 and P4 levels (P < 0.05, Pearson's test, thereby validating this noninvasive technique for the study of the estrous cycle in these animals. Ovulation was detected in two sloths (SL03 and SL04 whose E2 levels reached 2237.43 and 6713.26 pg/g wet feces weight, respectively, for over four weeks, followed by an increase in P4 metabolites reaching 33.54 and 3242.68 ng/g wet feces weight, respectively. Interestingly, SL04, which presented higher levels of E2 and P4 metabolites, later gave birth to a healthy baby sloth. The results obtained indicate that this is a reliable technique for recording gonadal steroid secretion and thereby reproduction in sloths.

  4. Evaluation for intravenous, arterial and local infusion of a hypoxic cell radiosensitizer RK28 on rabbit VX2 tumor system

    International Nuclear Information System (INIS)

    Kuramitsu, Tatsuya

    1993-01-01

    We evaluated the radiosensitizing effect of intraarterial, intravenous and local infusion of a hypoxic cell radiosensitizer RK28 on rabbit VX2 tumor system. Six rabbits were treated in each infusion group. VX2 tumor was implanted in the left hind leg. Tumor grown up to 3 cm in diameter was treated with 15 Gy of X-ray irradiation just after infusion of radiosensitizer RK28 (80 mg/kg.b.w.). Intratumoral and serum mean concentration of RK28 and its metabolites were measured. Tumor regression curve and survival time were analyzed. The following results were obtained. Mean concentration of RK28 was about 2.5 times greater in local infusion and 1.5 times in intraarterial infusion than in intravenous infusion. Significant regression of tumor was obtained in intraarterial infusion (p<0.01). There was no significant difference in survival time. These data suggest that the usefulness of intraarterial infusion of RK28 for local control using intraoperative radiation therapy and brachytherapy. (author)

  5. Analysis of I-125 IMP and its metabolites using a high performance liquid chromatography

    International Nuclear Information System (INIS)

    Satoh, Motohiro; Ishikawa, Nobuyoshi; Takeda, Tohoru; Jin, Wu; Kuramoto, Kenmei; Itai, Yuji; Yoshizawa, Takashi; Nakajima, Kotaro.

    1991-01-01

    The biodistribution of N-isopropyl-p-[I-123]iodoamphetamine (IMP) and its metabolites was examined in rabbits and Mongolian gerbils. Arterial sampling was performed at one, 5, 15, and 30 min, and one, 3, and 6 hr after bolus iv injection of IMP for the hemodynamic investigation. Similarly, the cerebral hemisphere, lung, liver, and blood samples were collected at 15 min and 3 hr for analyzing IMP metabolites. Activity count in blood was gradually increased from 15 min to 3 hr after iv injection, and thereafter decreased. Relative fraction of IMP in plasma was gradually increased to a plateau value of 80% at one hr. Octanol extraction ratio was decreased to 24.3% at 3 hr, although it was 100% immediately after iv injection. Early (15 min) and delayed (3 hr) analysis using high performance liquid chromatography (HPLC) revealed p-iodoamphetamine (PIA) and p-iodobenzoic acid (PIB) as major metabolites of IMP. Although IMP accounted for the majority on both early and delayed HPLC, the quantity of PIA in the normal hemisphere and lung was significantly increased on delayed HPLC, compared to early HPLC. For the liver, the quantities of both PIA and PIB were larger than IMP on both early and delayed HPLC. The proportion of metabolites also became greater in whole blood than IMP on delayed HPLC. Early HPLC reveald no significant difference in composition of IMP, PIA, and PIB between the normal and ischemic hemispheres. Delayed HPLC revealed a greater proportion of PIA in the ischemic than the normal hemisphere, but this was not statistically significant. (N.K.)

  6. Clozapine response and plasma catecholamines and their metabolites.

    Science.gov (United States)

    Green, A I; Alam, M Y; Sobieraj, J T; Pappalardo, K M; Waternaux, C; Salzman, C; Schatzberg, A F; Schildkraut, J J

    1993-02-01

    The atypical neuroleptic clozapine has an unusual profile of clinical effects and a distinctive spectrum of pharmacological actions. Plasma measures of catecholamines and their metabolites have been used in the past to study the action of typical neuroleptics. We obtained longitudinal assessments of plasma measures of dopamine (pDA), norepinephrine (pNE), and their metabolites, homovanillic acid (pHVA) and 3-methoxy-4-hydroxyphenylglycol (pMHPG), in eight treatment-resistant or treatment-intolerant schizophrenic patients who were treated with clozapine for 12 weeks following a prolonged drug-washout period. Our findings from the study of these eight patients suggest the following: Plasma levels of HVA and possibly NE derived from the neuroleptic-free baseline period may predict response to clozapine; plasma levels of HVA and MHPG decrease during the initial weeks of treatment in responders but not in nonresponders; and plasma levels of DA and NE increase in both responders and nonresponders to clozapine.

  7. Liquid Chromatography/Mass Spectrometry Reveals the Effect of Lactobacillus Treatment on the Faecal Metabolite Profile of Rats with Chronic Renal Failure.

    Science.gov (United States)

    Wu, Bin; Jiang, Hongli; He, Quan; Wang, Meng; Xue, Jinhong; Liu, Hua; Shi, Kehui; Wei, Meng; Liang, Shanshan; Zhang, Liwen

    2017-01-01

    Chronic kidney disease is accompanied by changes in the gut microbiome and by an increase in the number of gut pathogenic bacteria. The aim of this study was to investigate the difference of the faecal metabolic profiles in rats with uremia, and to determine whether the altered metabolites in the rats with uremia can be restored by Lactobacillus. Thirty rats were randomly divided into 3 groups: sham, uremia and uremia + probiotic (UP) groups. The rats in uremia and UP groups were prepared through surgical renal mass 5/6 ablation. The rats in the UP group received Lactobacillus LB (1 ml, 109 CFU/ml) through gavage every day for 4 weeks. The rats were fed with a standard diet. Faecal samples were analysed through ultra performance liquid chromatography/mass spectrometry. Statistical analyses were performed using MetaboAnalyst and MATLAB. A total of 99, 324 and 177 significantly different ion peaks were selected between sham and uremia groups; sham and UP groups; and uremia and UP groups, respectively. In the 3 groups, 35 significantly altered metabolites were identified; of the 35 metabolites, 27 initially increased and then decreased; by contrast, 8 metabolites initially decreased and then increased. The 35 metabolites were subjected to pathway analysis in MetaboAnalyst. Faecal metabolites were significantly altered in rats with uremia; these changes were partially reversed by Lactobacillus. © 2016 S. Karger AG, Basel.

  8. Regulation of specialised metabolites in Actinobacteria - expanding the paradigms.

    Science.gov (United States)

    Hoskisson, Paul A; Fernández-Martínez, Lorena T

    2018-06-01

    The increase in availability of actinobacterial whole genome sequences has revealed huge numbers of specialised metabolite biosynthetic gene clusters, encoding a range of bioactive molecules such as antibiotics, antifungals, immunosuppressives and anticancer agents. Yet the majority of these clusters are not expressed under standard laboratory conditions in rich media. Emerging data from studies of specialised metabolite biosynthesis suggest that the diversity of regulatory mechanisms is greater than previously thought and these act at multiple levels, through a range of signals such as nutrient limitation, intercellular signalling and competition with other organisms. Understanding the regulation and environmental cues that lead to the production of these compounds allows us to identify the role that these compounds play in their natural habitat as well as provide tools to exploit this untapped source of specialised metabolites for therapeutic uses. Here, we provide an overview of novel regulatory mechanisms that act in physiological, global and cluster-specific regulatory manners on biosynthetic pathways in Actinobacteria and consider these alongside their ecological and evolutionary implications. © 2018 The Authors. Environmental Microbiology published by Society for Applied Microbiology and JohnWiley & Sons Ltd.

  9. Beneficial Phytochemicals with Anti-Tumor Potential Revealed through Metabolic Profiling of New Red Pigmented Lettuces (Lactuca sativa L.

    Directory of Open Access Journals (Sweden)

    Xiao-Xiao Qin

    2018-04-01

    Full Text Available The present study aimed to compare polyphenols among red lettuce cultivars and identify suitable cultivars for the development and utilization of healthy vegetables. Polyphenols, mineral elements, and antioxidant activity were analyzed in the leaves of six red pigmented lettuce (Lactuca sativa L. cultivars; thereafter, we assessed the anti-tumor effects of cultivar B-2, which displayed the highest antioxidant activity. Quadrupole–Orbitrap mass spectrometry analysis revealed four classes of polyphenols in these cultivars. The composition and contents of these metabolites varied significantly among cultivars and primarily depended on leaf color. The B-2 cultivar had the highest antioxidant potential than others because it contained the highest levels of polyphenols, especially anthocyanin, flavone, and phenolic acid; furthermore, this cultivar displayed anti-tumor effects against the human lung adenocarcinoma cell line A549, human hepatoma cell line Bel7402, human cancer colorectal adenoma cell line HCT-8, and HT-29 human colon cancer cell line. Hence, the new red-leaf lettuce cultivar B-2 has a distinct metabolite profile, with high potential for development and utilization of natural phytochemical and mineral resources in lettuces and can be used as a nutrient-dense food product.

  10. Beneficial Phytochemicals with Anti-Tumor Potential Revealed through Metabolic Profiling of New Red Pigmented Lettuces (Lactuca sativa L.).

    Science.gov (United States)

    Qin, Xiao-Xiao; Zhang, Ming-Yue; Han, Ying-Yan; Hao, Jing-Hong; Liu, Chao-Jie; Fan, Shuang-Xi

    2018-04-11

    The present study aimed to compare polyphenols among red lettuce cultivars and identify suitable cultivars for the development and utilization of healthy vegetables. Polyphenols, mineral elements, and antioxidant activity were analyzed in the leaves of six red pigmented lettuce ( Lactuca sativa L.) cultivars; thereafter, we assessed the anti-tumor effects of cultivar B-2, which displayed the highest antioxidant activity. Quadrupole-Orbitrap mass spectrometry analysis revealed four classes of polyphenols in these cultivars. The composition and contents of these metabolites varied significantly among cultivars and primarily depended on leaf color. The B-2 cultivar had the highest antioxidant potential than others because it contained the highest levels of polyphenols, especially anthocyanin, flavone, and phenolic acid; furthermore, this cultivar displayed anti-tumor effects against the human lung adenocarcinoma cell line A549, human hepatoma cell line Bel7402, human cancer colorectal adenoma cell line HCT-8, and HT-29 human colon cancer cell line. Hence, the new red-leaf lettuce cultivar B-2 has a distinct metabolite profile, with high potential for development and utilization of natural phytochemical and mineral resources in lettuces and can be used as a nutrient-dense food product.

  11. Nano-Engineered Mesenchymal Stem Cells Increase Therapeutic Efficacy of Anticancer Drug Through True Active Tumor Targeting.

    Science.gov (United States)

    Layek, Buddhadev; Sadhukha, Tanmoy; Panyam, Jayanth; Prabha, Swayam

    2018-06-01

    Tumor-targeted drug delivery has the potential to improve therapeutic efficacy and mitigate non-specific toxicity of anticancer drugs. However, current drug delivery approaches rely on inefficient passive accumulation of the drug carrier in the tumor. We have developed a unique, truly active tumor-targeting strategy that relies on engineering mesenchymal stem cells (MSC) with drug-loaded nanoparticles. Our studies using the A549 orthotopic lung tumor model show that nano-engineered MSCs carrying the anticancer drug paclitaxel (PTX) home to tumors and create cellular drug depots that release the drug payload over several days. Despite significantly lower doses of PTX, nano-engineered MSCs resulted in significant inhibition of tumor growth and superior survival. Anticancer efficacy of nano-engineered MSCs was confirmed in immunocompetent C57BL/6 albino female mice bearing orthotopic Lewis Lung Carcinoma (LL/2-luc) tumors. Furthermore, at doses that resulted in equivalent therapeutic efficacy, nano-engineered MSCs had no effect on white blood cell count, whereas PTX solution and PTX nanoparticle treatments caused leukopenia. Biodistribution studies showed that nano-engineered MSCs resulted in greater than 9-fold higher AUC lung of PTX (1.5 μg.day/g) than PTX solution and nanoparticles (0.2 and 0.1 μg.day/g tissue, respectively) in the target lung tumors. Furthermore, the lung-to-liver and the lung-to-spleen ratios of PTX were several folds higher for nano-engineered MSCs relative to those for PTX solution and nanoparticle groups, suggesting that nano-engineered MSCs demonstrate significantly less off-target deposition. In summary, our results demonstrate that nano-engineered MSCs can serve as an efficient carrier for tumor-specific drug delivery and significantly improved anti-cancer efficacy of conventional chemotherapeutic drugs. Mol Cancer Ther; 17(6); 1196-206. ©2018 AACR . ©2018 American Association for Cancer Research.

  12. Solid tumor models for the assessment of different treatment modalities. XIV. The evaluation of host and tumor response to cyclophosphamide and radiation

    International Nuclear Information System (INIS)

    Looney, W.B.; Hopkins, H.A.; MacLeod, M.S.; Ritenour, E.R.

    1979-01-01

    The effect of increasing doses of cyclophosphamide (50 to 250 mg/kg) on the time of occurrence of maximal and minimal tumor growth rates, tumor volume reduction, and linear doubling times (LDT) on the solid tumor model H-4-II-E has been determined. Tumor response to cyclophosphamide was classified as class I, tumor regression; class II, pseudo-regression; and class III, slow-down. The overall treatment efficiency (OTE) has been used to assess the magnitude of tumor volume changes after treatment. The maximum OTE occurred after 150 mg/kg of cyclophosphamide. Increasing the dose to 200 and 250 mg/kg of cyclophosphamide resulted in a decrease in OTE. Similar parameters were utilized to measure the effectiveness of increasing doses of local tumor radiation (750, 1500, 2000, 2500, 3000 and 3500R). The major increase in OTE occurs when the radiation dose is increased from 750R to 2000R. Increasing the dose further to 3500R results in smaller incremental increases in the OTE. Results of the study indicate that increasing the cyclophosphamide dose beyond a certain level (i.e., 150 mg/kg) increases mortality and morbidity without concomitant therapeutic benefit. The effects of increasing the dose of local tumor radiation on life span have given results which suggest that increasing the total radiation dose beyond a certain limit is less effective in increasing life span

  13. Pyometra in Bitches Induces Elevated Plasma Endotoxin and Prostaglandin F2α Metabolite Levels

    Directory of Open Access Journals (Sweden)

    Hagman R

    2006-03-01

    Full Text Available Endotoxemia in bitches with pyometra can cause severe systemic effects directly or via the release of inflammatory mediators. Plasma endotoxin concentrations were measured in ten bitches suffering from pyometra with moderately to severely deteriorated general condition, and in nine bitches admitted to surgery for non-infectious reasons. Endotoxin samples were taken on five occasions before, during and after surgery. In addition, urine and uterine bacteriology was performed and hematological, blood biochemical parameters, prostaglandin F2α metabolite 15-ketodihydro-PGF2α (PG-metabolite, progesterone and oestradiol (E2-17β levels were analysed. The results confirm significantly increased plasma levels of endotoxin in bitches with pyometra and support previous reports of endotoxin involvement in the pathogenesis of the disease. Plasma concentrations of PG-metabolite were elevated in pyometra bitches and provide a good indicator of endotoxin release since the concentrations were significantly correlated to the endotoxin levels and many other hematological and chemistry parameters. The γ-globulin serum protein electrophoresis fraction and analysis of PG-metabolite can be valuable in the diagnosis of endotoxin involvement if a reliable, rapid and cost-effective test for PG-metabolite analysis becomes readily available in the future. Treatment inhibiting prostaglandin biosynthesis and related compounds could be beneficial for bitches suffering from pyometra.

  14. Detecting Beer Intake by Unique Metabolite Patterns.

    Science.gov (United States)

    Gürdeniz, Gözde; Jensen, Morten Georg; Meier, Sebastian; Bech, Lene; Lund, Erik; Dragsted, Lars Ove

    2016-12-02

    Evaluation of the health related effects of beer intake is hampered by the lack of accurate tools for assessing intakes (biomarkers). Therefore, we identified plasma and urine metabolites associated with recent beer intake by untargeted metabolomics and established a characteristic metabolite pattern representing raw materials and beer production as a qualitative biomarker of beer intake. In a randomized, crossover, single-blinded meal study (MSt1), 18 participants were given, one at a time, four different test beverages: strong, regular, and nonalcoholic beers and a soft drink. Four participants were assigned to have two additional beers (MSt2). In addition to plasma and urine samples, test beverages, wort, and hops extract were analyzed by UPLC-QTOF. A unique metabolite pattern reflecting beer metabolome, including metabolites derived from beer raw material (i.e., N-methyl tyramine sulfate and the sum of iso-α-acids and tricyclohumols) and the production process (i.e., pyro-glutamyl proline and 2-ethyl malate), was selected to establish a compliance biomarker model for detection of beer intake based on MSt1. The model predicted the MSt2 samples collected before and up to 12 h after beer intake correctly (AUC = 1). A biomarker model including four metabolites representing both beer raw materials and production steps provided a specific and accurate tool for measurement of beer consumption.

  15. Metabolites in vertebrate Hedgehog signaling.

    Science.gov (United States)

    Roberg-Larsen, Hanne; Strand, Martin Frank; Krauss, Stefan; Wilson, Steven Ray

    2014-04-11

    The Hedgehog (HH) signaling pathway is critical in embryonic development, stem cell biology, tissue homeostasis, chemoattraction and synapse formation. Irregular HH signaling is associated with a number of disease conditions including congenital disorders and cancer. In particular, deregulation of HH signaling has been linked to skin, brain, lung, colon and pancreatic cancers. Key mediators of the HH signaling pathway are the 12-pass membrane protein Patched (PTC), the 7-pass membrane protein Smoothened (SMO) and the GLI transcription factors. PTC shares homology with the RND family of small-molecule transporters and it has been proposed that it interferes with SMO through metabolites. Although a conclusive picture is lacking, substantial efforts are made to identify and understand natural metabolites/sterols, including cholesterol, vitamin D3, oxysterols and glucocorticoides, that may be affected by, or influence the HH signaling cascade at the level of PTC and SMO. In this review we will elaborate the role of metabolites in HH signaling with a focus on oxysterols, and discuss advancements in modern analytical approaches in the field. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Central nervous system tumors

    International Nuclear Information System (INIS)

    Gavin, P.R.; Fike, J.R.; Hoopes, P.J.

    1995-01-01

    Central nervous system (CNS) tumors are relatively common in veterinary medicine, with most diagnoses occurring in the canine and feline species. Numerous tumor types from various cells or origins have been identified with the most common tumors being meningiomas and glial cell tumors. Radiation therapy is often used as an aid to control the clinical signs associated with these neoplasms. In general, these tumors have a very low metastatic potential, such that local control offers substantial benefit. Experience in veterinary radiation oncology would indicate that many patients benefit from radiation treatment. Current practice indicates the need for computed tomography or magnetic resonance imaging studies. These highly beneficial studies are used for diagnosis, treatment planning, and to monitor treatment response. Improvements in treatment planning and radiation delivered to the tumor, while sparing the normal tissues, should improve local control and decrease potential radiation related problems to the CNS. When possible, multiple fractions of 3 Gy or less should be used. The tolerance dose to the normal tissue with this fractionation schedule is 50 to 55 Gy. The most common and serious complications of radiation for CNS tumors is delayed radiation myelopathy and necrosis. Medical management of the patient during radiation therapy requires careful attention to anesthetic protocols, and medications to reduce intracranial pressure that is often elevated in these patients. Canine brain tumors have served as an experimental model to test numerous new treatments. Increased availability of advanced imaging modalities has spawned increased detection of these neoplasms. Early detection of these tumors with appropriate aggressive therapy should prove beneficial to many patients

  17. Macrophages From Irradiated Tumors Express Higher Levels of iNOS, Arginase-I and COX-2, and Promote Tumor Growth

    International Nuclear Information System (INIS)

    Tsai, C.-S.; Chen, F.-H.; Wang, C.-C.; Huang, H.-L.; Jung, Shih-Ming; Wu, C.-J.; Lee, C.-C.; McBride, William H.; Chiang, C.-S.; Hong, J.-H.

    2007-01-01

    Purpose: To investigate the effects of single and fractionated doses of radiation on tumors and tumor-associated macrophages (TAMs), and to elucidate the potential of TAMs to influence tumor growth. Methods and Materials: A murine prostate cell line, TRAMP-C1, was grown in C57Bl/6J mice to 4-mm tumor diameter and irradiated with either 25 Gy in a single dose, or 60 Gy in 15 fractions. The tumors were removed at the indicated times and assessed for a variety of markers related to TAM content, activation status, and function. Results: In tumors receiving a single radiation dose, arginase (Arg-I), and cycloxygenase-2 (COX-2) mRNA expression increased as a small transient wave within 24 h and a larger persistent wave starting after 3 days. Inducible nitric oxide synthase (iNOS) mRNA was elevated only after 3 days and continued to increase up to 3 weeks. After fractionated irradiation, Arg-1 and COX-2 mRNA levels increased within 5 days, whereas iNOS was increased only after 10 fractions of irradiation had been given. Increased levels of Arg-I, COX-2, and, to a lesser extent, iNOS protein were found to associate with TAMs 1-2 weeks after tumor irradiation. Function of TAMs were compared by mixing them with TRAMP-C1 cells and injecting them into mice; TRAMP-C1 cells mixed with TAMs from irradiated tumors appeared earlier and grew significantly faster than those mixed with TAMs from unirradiated tumors or TRAMP-C1 alone. Conclusions: Tumor-associated macrophages in the postirradiated tumor microenvironment express higher levels of Arg-1, COX-2, and iNOS, and promote early tumor growth in vivo

  18. Secondary metabolites profiles and antioxidant activities of germinated brown and red rice

    Science.gov (United States)

    Nurnaistia, Y.; Aisyah, S.; Munawaroh, H. S. H.; Zackiyah

    2018-05-01

    The research aims to investigate the effect of germination on the secondary metabolite profiles and antioxidant activity of brown and red rice. The germination was performed by using a simple laboratory-scale machine that was designed and optimized to provide conditions that support the germination process. The germination was carried out for 2 days in dark conditions at 26°C and 99% humidity. Analysis of the secondary metabolite profile of ungerminated and germinated rice was performed using LC-MS. The antioxidant activities of ungerminated and germinated rice were done by using DPPH method. The results showed that the profiles of secondary metabolites of brown and red rice changed after germination. Some peaks were found to be induced in the germinated rice. However, some peaks were also loss during germination. The antioxidant activity of brown rice was slightly increased due to the germination, from 11.2% to 22.5%. Meanwhile the antioxidant activity of red rice was decreased after germination, from 73.8% to 60.0%.

  19. Regulation of specialised metabolites in Actinobacteria – expanding the paradigms

    Science.gov (United States)

    Hoskisson, Paul A.

    2018-01-01

    Summary The increase in availability of actinobacterial whole genome sequences has revealed huge numbers of specialised metabolite biosynthetic gene clusters, encoding a range of bioactive molecules such as antibiotics, antifungals, immunosuppressives and anticancer agents. Yet the majority of these clusters are not expressed under standard laboratory conditions in rich media. Emerging data from studies of specialised metabolite biosynthesis suggest that the diversity of regulatory mechanisms is greater than previously thought and these act at multiple levels, through a range of signals such as nutrient limitation, intercellular signalling and competition with other organisms. Understanding the regulation and environmental cues that lead to the production of these compounds allows us to identify the role that these compounds play in their natural habitat as well as provide tools to exploit this untapped source of specialised metabolites for therapeutic uses. Here, we provide an overview of novel regulatory mechanisms that act in physiological, global and cluster‐specific regulatory manners on biosynthetic pathways in Actinobacteria and consider these alongside their ecological and evolutionary implications. PMID:29457705

  20. Prototype of an intertwined secondary-metabolite supercluster

    Science.gov (United States)

    Phillipp Wiemann; Chun-Jun. Guo; Jonathan M. Palmer; Relebohile Sekonyela; Clay C.C. Wang; Nancy P. Keller

    2013-01-01

    The hallmark trait of fungal secondary-metabolite gene clusters is well established, consisting of contiguous enzymatic and often regulatory gene(s) devoted to the production of a metabolite of a specific chemical class. Unexpectedly, we have found a deviation from this motif in a subtelomeric region of Aspergillus fumigatus. This region, under the...

  1. Maximizing Tumor Immunity With Fractionated Radiation

    International Nuclear Information System (INIS)

    Schaue, Dörthe; Ratikan, Josephine A.; Iwamoto, Keisuke S.; McBride, William H.

    2012-01-01

    Purpose: Technologic advances have led to increased clinical use of higher-sized fractions of radiation dose and higher total doses. How these modify the pathways involved in tumor cell death, normal tissue response, and signaling to the immune system has been inadequately explored. Here we ask how radiation dose and fraction size affect antitumor immunity, the suppression thereof, and how this might relate to tumor control. Methods and Materials: Mice bearing B16-OVA murine melanoma were treated with up to 15 Gy radiation given in various-size fractions, and tumor growth followed. The tumor-specific immune response in the spleen was assessed by interferon-γ enzyme-linked immunospot (ELISPOT) assay with ovalbumin (OVA) as the surrogate tumor antigen and the contribution of regulatory T cells (Tregs) determined by the proportion of CD4 + CD25 hi Foxp3 + T cells. Results: After single doses, tumor control increased with the size of radiation dose, as did the number of tumor-reactive T cells. This was offset at the highest dose by an increase in Treg representation. Fractionated treatment with medium-size radiation doses of 7.5 Gy/fraction gave the best tumor control and tumor immunity while maintaining low Treg numbers. Conclusions: Radiation can be an immune adjuvant, but the response varies with the size of dose per fraction. The ultimate challenge is to optimally integrate cancer immunotherapy into radiation therapy.

  2. Cystic tumors of the pancreas

    International Nuclear Information System (INIS)

    Brambs, H.J.; Juchems, M.

    2008-01-01

    Cystic lesions of the pancreas encompass a broad spectrum of benign, premalignant, and malignant tumors which are primarily cystic or result from cystic necroses of solid neoplasms. Because of the wide use of cross-sectional imaging techniques they are increasingly being identified in asymptomatic patients as well as in patients presenting with abdominal pain, jaundice or pancreatitis. Among these lesions, intraductal papillary mucinous neoplasms, serous cystic neoplasms and mucinous cystic neoplasms represent the majority of cases. With increasing experience with these tumors, a refinement of our understanding of their morphology and of their natural course has emerged. It is important to be familiar with the CT and MR imaging features of these lesions to differentiate these tumors and to orient the diagnosis towards benign or malignant forms. Because characterization of cystic tumors of the pancreas can sometimes be difficult due to overlapping imaging features, additional criteria such as clinical symptoms, localization, age and gender have to be taken into account. If appropriately treated, these tumors can usually be cured by resection and the decreasing risk of pancreatic surgery has led to an increasing number of resections of pancreatic tumors. The management of cystic tumors of the pancreas has not yet been standardized and the correct evaluation and subsequent management of the disease in asymptomatic patients have not been fully defined. (orig.) [de

  3. Isolated and mixed effects of diuron and its metabolites on biotransformation enzymes and oxidative stress response of Nile tilapia (Oreochromis niloticus).

    Science.gov (United States)

    Felício, Andréia Arantes; Freitas, Juliane Silberschmidt; Scarin, Jéssica Bolpeti; de Souza Ondei, Luciana; Teresa, Fabrício Barreto; Schlenk, Daniel; de Almeida, Eduardo Alves

    2018-03-01

    Diuron is one of the most used herbicide in the world, and its field application has been particularly increased in Brazil due to the expansion of sugarcane crops. Diuron has often been detected in freshwater ecosystems and it can be biodegraded into three main metabolites in the environment, the 3,4-dichloroaniline (DCA), 3,4-dichlorophenylurea (DCPU) and 3,4-dichlorophenyl-N-methylurea (DCPMU). Negative effects under aquatic biota are still not well established for diuron, especially when considering its presence in mixture with its different metabolites. In this study, we evaluated the effects of diuron alone or in combination with its metabolites, DCPMU, DCPU and 3,4-DCA on biochemical stress responses and biotransformation activity of the fish Oreochromis niloticus. Results showed that diuron and its metabolites caused significant but dispersed alterations in oxidative stress markers and biotransformation enzymes, except for ethoxyresorufin-O-deethylase (EROD) activity, that presented a dose-dependent increase after exposure to either diuron or its metabolites. Glutathione S-transferase (GST) activity was significant lower in gills after exposure to diuron metabolites, but not diuron. Diuron, DCPMU and DCA also decreased the multixenobiotic resistance (MXR) activity. Lipid peroxidation levels were increased in gill after exposure to all compounds, indicating that the original compound and diuron metabolites can induce oxidative stress in fish. The integration of all biochemical responses by the Integrated Biomarker Response (IBR) model indicated that all compounds caused significant alterations in O. niloticus, but DCPMU caused the higher alterations in both liver and gill. Our findings imply that diuron and its metabolites may impair the physiological response related to biotransformation and antioxidant activity in fish at field concentrations. Such alterations could interfere with the ability of aquatic animals to adapt to environments contaminated by

  4. [Identification of saponins from Panax notoginseng in metabolites of rats].

    Science.gov (United States)

    Shen, Wen-Wen; Zhang, Yin; Qiu, Shou-Bei; Zhu, Fen-Xia; Jia, Xiao-Bin; Tang, Dao-Quan; Chen, Bin

    2017-10-01

    UPLC-QTOF-MS/MS was used to identify metabolites in rat blood, urine and feces after the administration of n-butanol extract derived from steamed notoginseng. The metabolic process of saponins came from steamed notoginseng was analyzed. The metabolites were processed by PeakView software, and identified according to the structural characteristics of prototype compounds and the accurate qualitative and quantitative changes of common metabolic pathways. Four saponins metabolites were identified based on MS/MS information of metabolites, namely ginsenoside Rh₄, Rk₃, Rk₁, Rg₅,and their 15 metabolites were verified. The metabolic pathways of the four ginsenosides in n-butanol extract included glucuronidation, desugar, sulfation, dehydromethylation, and branch loss. The metabolites of main active saponin components derived from steamed Panax notoginseng were analyzed from the perspective of qualitative analysis. And the material basis for the efficacy of steamed notoginseng was further clarified. Copyright© by the Chinese Pharmaceutical Association.

  5. Linoleic acid participates in the response to ischemic brain injury through oxidized metabolites that regulate neurotransmission.

    Science.gov (United States)

    Hennebelle, Marie; Zhang, Zhichao; Metherel, Adam H; Kitson, Alex P; Otoki, Yurika; Richardson, Christine E; Yang, Jun; Lee, Kin Sing Stephen; Hammock, Bruce D; Zhang, Liang; Bazinet, Richard P; Taha, Ameer Y

    2017-06-28

    Linoleic acid (LA; 18:2 n-6), the most abundant polyunsaturated fatty acid in the US diet, is a precursor to oxidized metabolites that have unknown roles in the brain. Here, we show that oxidized LA-derived metabolites accumulate in several rat brain regions during CO 2 -induced ischemia and that LA-derived 13-hydroxyoctadecadienoic acid, but not LA, increase somatic paired-pulse facilitation in rat hippocampus by 80%, suggesting bioactivity. This study provides new evidence that LA participates in the response to ischemia-induced brain injury through oxidized metabolites that regulate neurotransmission. Targeting this pathway may be therapeutically relevant for ischemia-related conditions such as stroke.

  6. Radiation of different human melanoma cell lines increased expression of RHOB. Level of this tumor suppressor gene in different cell lines

    International Nuclear Information System (INIS)

    Notcovich, C.; Molinari, B.; Duran, H.; Delgado González, D.; Sánchez Crespo, R.

    2013-01-01

    Previous results of our group show that a correlation exists between intrinsic radiosensitivity of human melanoma cells and cell death by apoptosis. RhoB is a small GTPase that regulates cytoskeletal organization. Besides, is related to the process of apoptosis in cells exposed to DNA damage as radiation. Also, RhoB levels decrease in a wide variety of tumors with the tumor stage, being considered a tumor suppressor gene due to its antiproliferative and proapoptotic effect. The aim of this study was to analyze the expression of RhoB in different human melanoma cell lines in relation to melanocytes, and evaluate the effect of gamma radiation on the expression of RhoB. We used the A375, SB2 and Meljcell lines, and the derived from melanocytes Pig1. It was found for all three tumor lines RhoB expression levels significantly lower than those of Pig1 (p <0.05), as assessed by semiquantitative RT-PCR . When tumor cells were irradiated to a dose of 2Gyinduction was observed at 3 hours RhoB irradiation. RhoB expression increased in all lines relative to non-irradiated control, showing a greater induction ( p< 0.05) for the more radiosensitive line SB2, consistent with apoptosis in response to radiation. The results allow for the first time in melanoma demonstrate that RhoB, as well as in other tumor types, has a lower expression in tumor cells than their normal counterparts. Moreover, induction in the expression of RhoB in irradiated cells may be associated with the process of radiation-induced apoptosis. The modulation of RhoB could be a new tool to sensitize radioresistant melanoma. (author)

  7. Differentiation-Dependent Energy Production and Metabolite Utilization: A Comparative Study on Neural Stem Cells, Neurons, and Astrocytes

    Science.gov (United States)

    Jády, Attila Gy.; Nagy, Ádám M.; Kőhidi, Tímea; Ferenczi, Szilamér; Tretter, László

    2016-01-01

    While it is evident that the metabolic machinery of stem cells should be fairly different from that of differentiated neurons, the basic energy production pathways in neural stem cells (NSCs) or in neurons are far from clear. Using the model of in vitro neuron production by NE-4C NSCs, this study focused on the metabolic changes taking place during the in vitro neuronal differentiation. O2 consumption, H+ production, and metabolic responses to single metabolites were measured in cultures of NSCs and in their neuronal derivatives, as well as in primary neuronal and astroglial cultures. In metabolite-free solutions, NSCs consumed little O2 and displayed a higher level of mitochondrial proton leak than neurons. In stem cells, glycolysis was the main source of energy for the survival of a 2.5-h period of metabolite deprivation. In contrast, stem cell-derived or primary neurons sustained a high-level oxidative phosphorylation during metabolite deprivation, indicating the consumption of own cellular material for energy production. The stem cells increased O2 consumption and mitochondrial ATP production in response to single metabolites (with the exception of glucose), showing rapid adaptation of the metabolic machinery to the available resources. In contrast, single metabolites did not increase the O2 consumption of neurons or astrocytes. In “starving” neurons, neither lactate nor pyruvate was utilized for mitochondrial ATP production. Gene expression studies also suggested that aerobic glycolysis and rapid metabolic adaptation characterize the NE-4C NSCs, while autophagy and alternative glucose utilization play important roles in the metabolism of stem cell-derived neurons. PMID:27116891

  8. Effect of Solid Biological Waste Compost on the Metabolite Profile of Brassica rapa ssp. chinensis

    Directory of Open Access Journals (Sweden)

    Susanne Neugart

    2018-03-01

    Full Text Available Large quantities of biological waste are generated at various steps within the food production chain and a great utilization potential for this solid biological waste exists apart from the current main usage for the feedstuff sector. It remains unclear how the usage of biological waste as compost modulates plant metabolites. We investigated the effect of biological waste of the processing of coffee, aronia, and hop added to soil on the plant metabolite profile by means of liquid chromatography in pak choi sprouts. Here we demonstrate that the solid biological waste composts induced specific changes in the metabolite profiles and the changes are depending on the type of the organic residues and its concentration in soil. The targeted analysis of selected plant metabolites, associated with health beneficial properties of the Brassicaceae family, revealed increased concentrations of carotenoids (up to 3.2-fold and decreased amounts of glucosinolates (up to 4.7-fold as well as phenolic compounds (up to 1.5-fold.

  9. Tumores de los anexos oculares Ocular adnexa tumors

    Directory of Open Access Journals (Sweden)

    Clara G. Gómez Cabrera

    2001-12-01

    Full Text Available Se realizó un estudio retrospectivo de 211 pacientes, operados por presentar alguna tumoración de los anexos, con confirmación histológica en el período comprendido entre enero de 1993 hasta diciembre de 1997. El 53,5 % de los pacientes fueron del sexo femenino. El 48,4 % eran mestizos. El 13,3 % de los pacientes eran menores de 20 años, el 36 % entre 20 y 49 y el 50,7 % más de 50 años. El 61,1 % de los tumores se localizaron en los párpados. Los signos clínicos que prevalecieron fueron el aumento de volumen (56,9 %, aumento de la pigmentación (23,71 %, vascularización (21,8 % y ulceración (7,1 %. El 61,6 % de los casos fueron asintomáticos. Encontramos 14 tipos histológicos de tumores en los párpados y 15 en la conjuntiva. No encontramos diferencia significativa en cuanto a sexo y tipo de tumor. La raza mestiza presentó el mayor número de casos y el grupo de mayor incidencia fue el de pacientes mayores e iguales a 50 años de edad. Los párpados constituyeron la localización anatómica principal. El signo clínico más importante fue el aumento de volumen y la mayoría de los pacientes estaban asintomáticos. Los tumores palpebrales de mayor incidencia fueron los quistes de inclusión seguido por el carcinoma basocelular y el granuloma. En la conjuntiva se destacaron los nevus, el carcinoma espinocelular y el granuloma.A retrospective study of 211 patients that were operated on for presenting some adnexa tumors with histologic confirmation from January, 1993, to December, 1997, was made. 53.5 % of the patients were females. 48.4 % were black. 13.3 % were under 20, 36 % were between 20 and 49 and 50.7 % were over 50. 61.1 % of the tumors were localized in the eyelids. The prevailing clinical signs were volume increase (56.9 %, pigmentation increase (23.71 %, vascularization (21.8 % and ulceration (7.1 %. 61.6 % of the patients were asymptomatic. We found 14 histologic types of tumors in the eyelids and 15 in the conjunctiva

  10. The antibacterial activity of syringopicroside, its metabolites and natural analogues from syringae folium

    KAUST Repository

    Zhou, Zhengyuan

    2016-02-18

    In the present study, the in vitro antibacterial activity of an effective fraction (ESF) from Syringae Folium (SF) on Methicillin-resistant Staphylococcus aureus (MRSA) was evaluated and then its in vivo activity was evaluated by using the MRSA-infected mouse peritonitis model. The ESF showed a significant in vitro and in vivo activity on decreasing the Minimum Inhibitory Concentrations (MICs) and increasing the survival rate of mouse from 42.8% to 100%. Six iridoid glucosides (IGs) of ESF were characterized by UPLC-TOF-MS method and also isolated by column chromatography. Most of them showed in vitro anti MRSA activity. Syringopicroside (Sy), the major compound of IGs, was found to increase the survival rate from 42.8% to 92.8% of the MRSA-infected mouse, which revealed Sy is also the main active components of ESF. In order to know why the effect of oral administration of SF is better than its injections in clinic and the metabolites of Sy, seven metabolites of Sy were isolated from rat urine and identified on the basis of NMR and MS spectra. Most of metabolites possessed stronger in vitro anti-MRSA activity than that of Sy, which furtherly proved the clinical result.

  11. Responses of Metabolites in Soybean Shoot Apices to Changing Atmospheric Carbon Dioxide Concentrations

    Directory of Open Access Journals (Sweden)

    Richard Sicher

    2012-01-01

    Full Text Available Soybean seedlings were grown in controlled environment chambers with CO2 partial pressures of 38 (ambient and 72 (elevated Pa. Five or six shoot apices were harvested from individual 21- to 24-day-old plants. Metabolites were analyzed by gas chromatography and, out of 21 compounds, only sucrose and fructose increased in response to CO2 enrichment. One unidentified metabolite, Unk-21.03 decreased up to 80% in soybean apices in response to elevated CO2. Levels of Unk-21.03 decreased progressively when atmospheric CO2 partial pressures were increased from 26 to 100 Pa. Reciprocal transfer experiments showed that Unk-21.03, and sucrose in soybean apices were altered slowly over several days to changes in atmospheric CO2 partial pressures. The mass spectrum of Unk-21.03 indicated that this compound likely contained both an amino and carboxyl group and was structurally related to serine and aspartate. Our findings suggested that CO2 enrichment altered a small number of specific metabolites in soybean apices. This could be an important step in understanding how plant growth and development are affected by carbon dioxide enrichment.

  12. The antibacterial activity of syringopicroside, its metabolites and natural analogues from syringae folium

    KAUST Repository

    Zhou, Zhengyuan; Han, Na; Liu, Zhihui; Song, Zehai; Wu, Peng; Shao, Jingxuan; Zhang, Jiaming; Yin, Jun

    2016-01-01

    In the present study, the in vitro antibacterial activity of an effective fraction (ESF) from Syringae Folium (SF) on Methicillin-resistant Staphylococcus aureus (MRSA) was evaluated and then its in vivo activity was evaluated by using the MRSA-infected mouse peritonitis model. The ESF showed a significant in vitro and in vivo activity on decreasing the Minimum Inhibitory Concentrations (MICs) and increasing the survival rate of mouse from 42.8% to 100%. Six iridoid glucosides (IGs) of ESF were characterized by UPLC-TOF-MS method and also isolated by column chromatography. Most of them showed in vitro anti MRSA activity. Syringopicroside (Sy), the major compound of IGs, was found to increase the survival rate from 42.8% to 92.8% of the MRSA-infected mouse, which revealed Sy is also the main active components of ESF. In order to know why the effect of oral administration of SF is better than its injections in clinic and the metabolites of Sy, seven metabolites of Sy were isolated from rat urine and identified on the basis of NMR and MS spectra. Most of metabolites possessed stronger in vitro anti-MRSA activity than that of Sy, which furtherly proved the clinical result.

  13. Benzene: a case study in parent chemical and metabolite interactions.

    Science.gov (United States)

    Medinsky, M A; Kenyon, E M; Schlosser, P M

    1995-12-28

    Benzene, an important industrial solvent, is also present in unleaded gasoline and cigarette smoke. The hematotoxic effects of benzene in humans are well documented and include aplastic anemia and pancytopenia, and acute myelogenous leukemia. A combination of metabolites (hydroquinone and phenol for example) is apparently necessary to duplicate the hematotoxic effect of benzene, perhaps due in part to the synergistic effect of phenol on myeloperoxidase-mediated oxidation of hydroquinone to the reactive metabolite benzoquinone. Since benzene and its hydroxylated metabolites (phenol, hydroquinone and catechol) are substrates for the same cytochrome P450 enzymes, competitive interactions among the metabolites are possible. In vivo data on metabolite formation by mice exposed to various benzene concentrations are consistent with competitive inhibition of phenol oxidation by benzene. In vitro studies of the metabolic oxidation of benzene, phenol and hydroquinone are consistent with the mechanism of competitive interaction among the metabolites. The dosimetry of benzene and its metabolites in the target tissue, bone marrow, depends on the balance of activation processes such as enzymatic oxidation and deactivation processes such as conjugation and excretion. Phenol, the primary benzene metabolite, can undergo both oxidation and conjugation. Thus, the potential exists for competition among various enzymes for phenol. However, zonal localization of Phase I and Phase II enzymes in various regions of the liver acinus regulates this competition. Biologically-based dosimetry models that incorporate the important determinants of benzene flux, including interactions with other chemicals, will enable prediction of target tissue doses of benzene and metabolites at low exposure concentrations relevant for humans.

  14. Tumor cell culture on collagen–chitosan scaffolds as three-dimensional tumor model: A suitable model for tumor studies

    Directory of Open Access Journals (Sweden)

    Aziz Mahmoudzadeh

    2016-07-01

    Full Text Available Tumor cells naturally live in three-dimensional (3D microenvironments, while common laboratory tests and evaluations are done in two-dimensional (2D plates. This study examined the impact of cultured 4T1 cancer cells in a 3D collagen–chitosan scaffold compared with 2D plate cultures. Collagen–chitosan scaffolds were provided and passed confirmatory tests. 4T1 tumor cells were cultured on scaffolds and then tumor cells growth rate, resistance to X-ray radiation, and cyclophosphamide as a chemotherapy drug were analyzed. Furthermore, 4T1 cells were extracted from the scaffold model and were injected into the mice. Tumor growth rate, survival rate, and systemic immune responses were evaluated. Our results showed that 4T1 cells infiltrated the scaffolds pores and constructed a 3D microenvironment. Furthermore, 3D cultured tumor cells showed a slower proliferation rate, increased levels of survival to the X-ray irradiation, and enhanced resistance to chemotherapy drugs in comparison with 2D plate cultures. Transfer of extracted cells to the mice caused enhanced tumor volume and decreased life span. This study indicated that collagen–chitosan nanoscaffolds provide a suitable model of tumor that would be appropriate for tumor studies.

  15. Tumor cell culture on collagen-chitosan scaffolds as three-dimensional tumor model: A suitable model for tumor studies.

    Science.gov (United States)

    Mahmoudzadeh, Aziz; Mohammadpour, Hemn

    2016-07-01

    Tumor cells naturally live in three-dimensional (3D) microenvironments, while common laboratory tests and evaluations are done in two-dimensional (2D) plates. This study examined the impact of cultured 4T1 cancer cells in a 3D collagen-chitosan scaffold compared with 2D plate cultures. Collagen-chitosan scaffolds were provided and passed confirmatory tests. 4T1 tumor cells were cultured on scaffolds and then tumor cells growth rate, resistance to X-ray radiation, and cyclophosphamide as a chemotherapy drug were analyzed. Furthermore, 4T1 cells were extracted from the scaffold model and were injected into the mice. Tumor growth rate, survival rate, and systemic immune responses were evaluated. Our results showed that 4T1 cells infiltrated the scaffolds pores and constructed a 3D microenvironment. Furthermore, 3D cultured tumor cells showed a slower proliferation rate, increased levels of survival to the X-ray irradiation, and enhanced resistance to chemotherapy drugs in comparison with 2D plate cultures. Transfer of extracted cells to the mice caused enhanced tumor volume and decreased life span. This study indicated that collagen-chitosan nanoscaffolds provide a suitable model of tumor that would be appropriate for tumor studies. Copyright © 2016. Published by Elsevier B.V.

  16. Secondary metabolites from Eremostachys laciniata

    DEFF Research Database (Denmark)

    Calis, Ihsan; Güvenc, Aysegül; Armagan, Metin

    2008-01-01

    ), and forsythoside B (18), and five flavone derivatives, luteolin (19), luteolin 7-O-β-D-glucopyranoside (20), luteolin 7-O-(6''-O-β-D-apiofuranosyl)-β-D-glucopyranoside (21), apigenin 7-O-β-D-glucopyranoside (22), and apigenin 7-O-(6''-O-p-coumaroyl)-β-D-glucopyranoside (23). The structures of the metabolites were...... elucidated from spectroscopic (UV, IR, 1D- and 2D-NMR) and ESI-MS evidence, as well as from their specific optical rotation. The presence of these metabolites of three different classes strongly supports the close relationship of the genera Eremostachys and Phlomis....

  17. Cyanobacteria as Cell Factories to Produce Plant Secondary Metabolites

    OpenAIRE

    Xue, Yong; He, Qingfang

    2015-01-01

    Cyanobacteria represent a promising platform for the production of plant secondary metabolites. Their capacity to express plant P450 proteins, which have essential functions in the biosynthesis of many plant secondary metabolites, makes cyanobacteria ideal for this purpose, and their photosynthetic capability allows cyanobacteria to grow with simple nutrient inputs. This review summarizes the advantages of using cyanobacteria to transgenically produce plant secondary metabolites. Some techniq...

  18. Cultivar-Specific Changes in Primary and Secondary Metabolites in Pak Choi (Brassica Rapa, Chinensis Group by Methyl Jasmonate

    Directory of Open Access Journals (Sweden)

    Moo Jung Kim

    2017-05-01

    Full Text Available Glucosinolates, their hydrolysis products and primary metabolites were analyzed in five pak choi cultivars to determine the effect of methyl jasmonate (MeJA on metabolite flux from primary metabolites to glucosinolates and their hydrolysis products. Among detected glucosinolates (total 14 glucosinolates; 9 aliphatic, 4 indole and 1 aromatic glucosinolates, indole glucosinolate concentrations (153–229% and their hydrolysis products increased with MeJA treatment. Changes in the total isothiocyanates by MeJA were associated with epithiospecifier protein activity estimated as nitrile formation. Goitrin, a goitrogenic compound, significantly decreased by MeJA treatment in all cultivars. Changes in glucosinolates, especially aliphatic, significantly differed among cultivars. Primary metabolites including amino acids, organic acids and sugars also changed with MeJA treatment in a cultivar-specific manner. A decreased sugar level suggests that they might be a carbon source for secondary metabolite biosynthesis in MeJA-treated pak choi. The result of the present study suggests that MeJA can be an effective agent to elevate indole glucosinolates and their hydrolysis products and to reduce a goitrogenic compound in pak choi. The total glucosinolate concentration was the highest in “Chinese cabbage” in the control group (32.5 µmol/g DW, but indole glucosinolates increased the greatest in “Asian” when treated with MeJA.

  19. Arachidonic acid metabolites and endothelial dysfunction of portal hypertension.

    Science.gov (United States)

    Sacerdoti, David; Pesce, Paola; Di Pascoli, Marco; Brocco, Silvia; Cecchetto, Lara; Bolognesi, Massimo

    2015-07-01

    Increased resistance to portal flow and increased portal inflow due to mesenteric vasodilatation represent the main factors causing portal hypertension in cirrhosis. Endothelial cell dysfunction, defined as an imbalance between the synthesis, release, and effect of endothelial mediators of vascular tone, inflammation, thrombosis, and angiogenesis, plays a major role in the increase of resistance in portal circulation, in the decrease in the mesenteric one, in the development of collateral circulation. Reduced response to vasodilators in liver sinusoids and increased response in the mesenteric arterioles, and, viceversa, increased response to vasoconstrictors in the portal-sinusoidal circulation and decreased response in the mesenteric arterioles are also relevant to the pathophysiology of portal hypertension. Arachidonic acid (AA) metabolites through the three pathways, cyclooxygenase (COX), lipoxygenase, and cytochrome P450 monooxygenase and epoxygenase, are involved in endothelial dysfunction of portal hypertension. Increased thromboxane-A2 production by liver sinusoidal endothelial cells (LSECs) via increased COX-1 activity/expression, increased leukotriens, increased epoxyeicosatrienoic acids (EETs) (dilators of the peripheral arterial circulation, but vasoconstrictors of the portal-sinusoidal circulation), represent a major component in the increased portal resistance, in the decreased portal response to vasodilators and in the hyper-response to vasoconstrictors. Increased prostacyclin (PGI2) via COX-1 and COX-2 overexpression, and increased EETs/heme-oxygenase-1/K channels/gap junctions (endothelial derived hyperpolarizing factor system) play a major role in mesenteric vasodilatation, hyporeactivity to vasoconstrictors, and hyper-response to vasodilators. EETs, mediators of liver regeneration after hepatectomy and of angiogenesis, may play a role in the development of regenerative nodules and collateral circulation, through stimulation of vascular endothelial

  20. An update on organohalogen metabolites produced by basidiomycetes

    NARCIS (Netherlands)

    Field, J.A.; Wijnberg, J.B.P.A.

    2003-01-01

    Basidiomycetes are an ecologically important group of higher fungi known for their widespread capacity to produce organohalogen metabolites. To date, 100 different organohalogen metabolites (mostly chlorinated) have been identified from strains in 70 genera of Basidiomycetes. This manuscript

  1. Effects of 14-day oral low dose selenium nanoparticles and selenite in rat—as determined by metabolite pattern determination

    Directory of Open Access Journals (Sweden)

    Niels Hadrup

    2016-10-01

    Full Text Available Selenium (Se is an essential element with a small difference between physiological and toxic doses. To provide more effective and safe Se dosing regimens, as compared to dosing with ionic selenium, nanoparticle formulations have been developed. However, due to the nano-formulation, unexpected toxic effects may occur. We used metabolite pattern determination in urine to investigate biological and/or toxic effects in rats administered nanoparticles and for comparison included ionic selenium at an equimolar dose in the form of sodium selenite. Low doses of 10 and 100 fold the recommended human high level were employed to study the effects at borderline toxicity. Evaluations of all significantly changed putative metabolites, showed that Se nanoparticles and sodium selenite induced similar dose dependent changes of the metabolite pattern. Putative identified metabolites included increased decenedioic acid and hydroxydecanedioic acid for both Se formulations whereas dipeptides were only increased for selenite. These effects could reflect altered fatty acid and protein metabolism, respectively.

  2. IK channel activation increases tumor growth and induces differential behavioral responses in two breast epithelial cell lines.

    Science.gov (United States)

    Thurber, Amy E; Nelson, Michaela; Frost, Crystal L; Levin, Michael; Brackenbury, William J; Kaplan, David L

    2017-06-27

    Many potassium channel families are over-expressed in cancer, but their mechanistic role in disease progression is poorly understood. Potassium channels modulate membrane potential (Vmem) and thereby influence calcium ion dynamics and other voltage-sensitive signaling mechanisms, potentially acting as transcriptional regulators. This study investigated the differential response to over-expression and activation of a cancer-associated potassium channel, the intermediate conductance calcium-activated potassium channel (IK), on aggressive behaviors in mammary epithelial and breast cancer cell lines. IK was over-expressed in the highly metastatic breast cancer cell line MDA-MB-231 and the spontaneously immortalized breast epithelial cell line MCF-10A, and the effect on cancer-associated behaviors was assessed. IK over-expression increased primary tumor growth and metastasis of MDA-MB-231 in orthotopic xenografts, demonstrating for the first time in any cancer type that increased IK is sufficient to promote cancer aggression. The primary tumors had similar vascularization as determined by CD31 staining and similar histological characteristics. Interestingly, despite the increased in vivo growth and metastasis, neither IK over-expression nor activation with agonist had a significant effect on MDA-MB-231 proliferation, invasion, or migration in vitro. In contrast, IK decreased MCF-10A proliferation and invasion through Matrigel but had no effect on migration in a scratch-wound assay. We conclude that IK activity is sufficient to promote cell aggression in vivo. Our data provide novel evidence supporting IK and downstream signaling networks as potential targets for cancer therapies.

  3. Optimization of metabolite basis sets prior to quantitation in magnetic resonance spectroscopy: an approach based on quantum mechanics

    International Nuclear Information System (INIS)

    Lazariev, A; Graveron-Demilly, D; Allouche, A-R; Aubert-Frécon, M; Fauvelle, F; Piotto, M; Elbayed, K; Namer, I-J; Van Ormondt, D

    2011-01-01

    High-resolution magic angle spinning (HRMAS) nuclear magnetic resonance (NMR) is playing an increasingly important role for diagnosis. This technique enables setting up metabolite profiles of ex vivo pathological and healthy tissue. The need to monitor diseases and pharmaceutical follow-up requires an automatic quantitation of HRMAS 1 H signals. However, for several metabolites, the values of chemical shifts of proton groups may slightly differ according to the micro-environment in the tissue or cells, in particular to its pH. This hampers the accurate estimation of the metabolite concentrations mainly when using quantitation algorithms based on a metabolite basis set: the metabolite fingerprints are not correct anymore. In this work, we propose an accurate method coupling quantum mechanical simulations and quantitation algorithms to handle basis-set changes. The proposed algorithm automatically corrects mismatches between the signals of the simulated basis set and the signal under analysis by maximizing the normalized cross-correlation between the mentioned signals. Optimized chemical shift values of the metabolites are obtained. This method, QM-QUEST, provides more robust fitting while limiting user involvement and respects the correct fingerprints of metabolites. Its efficiency is demonstrated by accurately quantitating 33 signals from tissue samples of human brains with oligodendroglioma, obtained at 11.7 tesla. The corresponding chemical shift changes of several metabolites within the series are also analyzed

  4. Optimization of metabolite basis sets prior to quantitation in magnetic resonance spectroscopy: an approach based on quantum mechanics

    Science.gov (United States)

    Lazariev, A.; Allouche, A.-R.; Aubert-Frécon, M.; Fauvelle, F.; Piotto, M.; Elbayed, K.; Namer, I.-J.; van Ormondt, D.; Graveron-Demilly, D.

    2011-11-01

    High-resolution magic angle spinning (HRMAS) nuclear magnetic resonance (NMR) is playing an increasingly important role for diagnosis. This technique enables setting up metabolite profiles of ex vivo pathological and healthy tissue. The need to monitor diseases and pharmaceutical follow-up requires an automatic quantitation of HRMAS 1H signals. However, for several metabolites, the values of chemical shifts of proton groups may slightly differ according to the micro-environment in the tissue or cells, in particular to its pH. This hampers the accurate estimation of the metabolite concentrations mainly when using quantitation algorithms based on a metabolite basis set: the metabolite fingerprints are not correct anymore. In this work, we propose an accurate method coupling quantum mechanical simulations and quantitation algorithms to handle basis-set changes. The proposed algorithm automatically corrects mismatches between the signals of the simulated basis set and the signal under analysis by maximizing the normalized cross-correlation between the mentioned signals. Optimized chemical shift values of the metabolites are obtained. This method, QM-QUEST, provides more robust fitting while limiting user involvement and respects the correct fingerprints of metabolites. Its efficiency is demonstrated by accurately quantitating 33 signals from tissue samples of human brains with oligodendroglioma, obtained at 11.7 tesla. The corresponding chemical shift changes of several metabolites within the series are also analyzed.

  5. Nitric oxide metabolites in goldfish under normoxic and hypoxic conditions

    DEFF Research Database (Denmark)

    Hansen, Marie N.; Jensen, Frank Bo

    2010-01-01

    – and it is metabolized to nitrite and nitrate. Nitrite is used as a marker for NOS activity but it is also a NO donor that can be activated by various cellular proteins under hypoxic conditions. Here, we report the first systematic study of NO metabolites (nitrite, nitrate, S-nitroso, N-nitroso and Fe-nitrosyl compounds...... to and below the critical PO2] for two days caused large decreases in plasma nitrite and nitrate, which suggests reduced NOS activity and increased nitrite/nitrate utilization or loss. Tissue NO metabolites were largely maintained at their tissue-specific values under hypoxia, pointing at nitrite transfer from...... extracellular to intracellular compartments and cellular NO generation from nitrite. The data highlights the preference of goldfish to defend intracellular NO homeostasis during hypoxia....

  6. Synthesis and evaluation of two novel 2-nitroimidazole derivatives as potential PET radioligands for tumor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zha Zhihao; Zhu Lin [Key Laboratory of Radiopharmaceuticals, Beijing Normal University, Ministry of Education, Beijing 100875 (China); Department of Radiology, University of Pennsylvania, Philadelphia, PA 19014 (United States); Liu Yajing; Du Fenghua; Gan Hongmei; Qiao Jinping [Key Laboratory of Radiopharmaceuticals, Beijing Normal University, Ministry of Education, Beijing 100875 (China); Kung, Hank F., E-mail: kunghf@gmail.co [Key Laboratory of Radiopharmaceuticals, Beijing Normal University, Ministry of Education, Beijing 100875 (China); Department of Radiology, University of Pennsylvania, Philadelphia, PA 19014 (United States)

    2011-05-15

    Introduction: Nitroimidazole (azomycin) derivatives labeled with radioisotopes have been developed as cancer imaging and radiotherapeutic agents based on the oncological hypoxic mechanism. By attaching nitroimidazole core with different functional groups, we synthesized new nitroimidazole derivatives and evaluated their potentiality as tumor imaging agents. Methods: Starting with commercially available 2-nitroimidazole, 2-fluoro-N-(2-(2-nitro-1H-imidazol-1-yl)ethyl)acetamide (NEFA, [{sup 19}F]7) and 2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethyl 2-fluoroacetate (NEFT, [{sup 19}F]8), as well as radiolabeling precursors, the bromo-substituted analogs were quickly synthesized through a three-step synthetic pathway. The precursors were radiolabeled with [{sup 18}F]F{sup -}/18-crown-6/KHCO{sub 3} in dimethyl sulfoxide at 90{sup o}C for 10 min followed by purification with an Oasis HLB cartridge. Biodistribution studies were carried out in EMT-6 tumor-bearing mice. The uptake (%ID/g) in tumors and normal tissues were measured at 30 min postinjection. Liquid chromatography-electrospray ionization mass spectrometry (LC/MS) was used to distinguish metabolites from parent drugs in urine and plasma of rat injected with 'cold' NEFA ([{sup 19}F]7) and NEFT ([{sup 19}F]8). Results: Two radiotracers, [{sup 18}F]NEFA ([{sup 18}F]7) and [{sup 18}F]NEFT ([{sup 18}F]8), were prepared with average yields of 6%-7% and 9%-10% (not decay corrected). Radiochemical purity for both tracers was >95% as determined by HPLC. Biodistribution studies in EMT-6 tumor-bearing mice indicated that the tumor to blood and tumor to liver ratios of both [{sup 18}F]7 (0.96, 0.61) and [{sup 18}F]8 (0.98, 1.10) at 30 min were higher than those observed for [{sup 18}F]FMISO (1) (0.91, 0.59), a well-investigated azomycin-type hypoxia radiotracer. Liquid chromatography-electrospray ionization mass spectrometry analysis demonstrated that fluoroacetate was the main in vivo metabolite for both NEFA ([{sup 19

  7. Nanodiamonds coupled with plant bioactive metabolites: a nanotech approach for cancer therapy.

    Science.gov (United States)

    Gismondi, Angelo; Reina, Giacomo; Orlanducci, Silvia; Mizzoni, Francesca; Gay, Stefano; Terranova, Maria L; Canini, Antonella

    2015-01-01

    Nanodiamond application in biotechnological and medical fields is nowadays in continuous progress. In fact, biocompatibility, reduced dimensions and high surface chemical interaction are specific features that make nanodiamonds perfect intracellular carriers of bioactive compounds. By confocal microscopy, we confirmed that nanodiamonds were able to penetrate in cell cytoplasm but we also demonstrated how they remained embedded in nuclear membrane just exposing some little portions into nuclear area, definitively clarifying this topic. In this work, for the first time, nanodiamonds were conjugated with plant secondary metabolites, ciproten and quercetin. Moreover, since drug-loading on nanoparticles was strongly conditioned by their chemical surface, different types of nanodiamonds (oxidized, wet chemical reduced and plasma reduced) were synthesized in this work and then functionalized with plant compounds. We found that ciproten and quercetin antiproliferative effects, on human (HeLa) and murine (B16F10) tumor cells, were improved after nanodiamond conjugation. Moreover, plant molecules highly reduced their in vitro pro-oxidant, cytotoxic and pro-apoptotic activity when associated with nanodiamond. We are led to suppose that natural drug-nanodiamond adducts would act at cellular level by different molecular mechanisms with respect to plant metabolite pure forms. Finally, our results showed that chemical and structural modifications of nanodiamond surfaces influenced the bioactivity of transported drugs. According to all these evidences, this work can be considered as a promotional research to favor the use of bioactive plant molecules associated with nanodiamonds for therapeutic purposes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Placental vitamin D metabolism and its associations with circulating vitamin D metabolites in pregnant women.

    Science.gov (United States)

    Park, Heyjun; Wood, Madeleine R; Malysheva, Olga V; Jones, Sara; Mehta, Saurabh; Brannon, Patsy M; Caudill, Marie A

    2017-12-01

    Background: Little is known about placental vitamin D metabolism and its impact on maternal circulating vitamin D concentrations in humans. Objective: This study sought to advance the current understanding of placental vitamin D metabolism and its role in modulating maternal circulating vitamin D metabolites during pregnancy. Design: Nested within a feeding study, 24 healthy pregnant women (26-29 wk of gestation) consumed a single amount of vitamin D (511 IU/d from diet and a cholecalciferol supplement) for 10 wk. Concentrations of placental and blood vitamin D metabolites and placental messenger RNA (mRNA) abundance of vitamin D metabolic pathway components were quantified. In addition, cultured human trophoblasts were incubated with 13 C-cholecalciferol to examine the intracellular generation and secretion of vitamin D metabolites along with the regulation of target genes. Results: In placental tissue, 25-hydroxyvitamin D 3 [25(OH)D 3 ] was strongly correlated ( r = 0.83, P D 3 Moreover, these placental metabolites were strongly correlated ( r ≤ 0.85, P ≤ 0.04) with their respective metabolites in maternal circulation. Positive associations ( P ≤ 0.045) were also observed between placental mRNA abundance of vitamin D metabolic components and circulating vitamin D metabolites [i.e., LDL-related protein 2 ( LRP2 , also known as megalin) with 25(OH)D 3 and the C3 epimer of 25(OH)D 3 [3-epi-25(OH)D 3 ]; cubilin ( CUBN ) with 25(OH)D 3 ; 25-hydroxylase ( CYP2R1 ) with 3-epi-25(OH)D 3 ; 24-hydroxylase ( CYP24A1 ) with 25(OH)D 3 , 3-epi-25(OH)D 3 , and 1,25-dihydroxyvitamin D 3 [1,25(OH) 2 D 3 ]; and 1α-hydroxylase [( CYP27B1 ) with 3-epi-25(OH)D 3 and 1,25(OH) 2 D 3 ]. Notably, in vitro experiments with trophoblasts showed increased production and secretion of 25(OH)D 3 and higher CYP24A1 gene transcript abundance in response to cholecalciferol treatment. Conclusions: The numerous associations of many of the placental biomarkers of vitamin D metabolism with

  9. Mechanism of brain tumor headache.

    Science.gov (United States)

    Taylor, Lynne P

    2014-04-01

    Headaches occur commonly in all patients, including those who have brain tumors. Using the search terms "headache and brain tumors," "intracranial neoplasms and headache," "facial pain and brain tumors," "brain neoplasms/pathology," and "headache/etiology," we reviewed the literature from the past 78 years on the proposed mechanisms of brain tumor headache, beginning with the work of Penfield. Most of what we know about the mechanisms of brain tumor associated headache come from neurosurgical observations from intra-operative dural and blood vessel stimulation as well as intra-operative observations and anecdotal information about resolution of headache symptoms with various tumor-directed therapies. There is an increasing overlap between the primary and secondary headaches and they may actually share a similar biological mechanism. While there can be some criticism that the experimental work with dural and arterial stimulation produced head pain and not actual headache, when considered with the clinical observations about headache type, coupled with improvement after treatment of the primary tumor, we believe that traction on these structures, coupled with increased intracranial pressure, is clearly part of the genesis of brain tumor headache and may also involve peripheral sensitization with neurogenic inflammation as well as a component of central sensitization through trigeminovascular afferents on the meninges and cranial vessels. © 2014 American Headache Society.

  10. New secondary metabolites of phenylbutyrate in humans and rats.

    Science.gov (United States)

    Kasumov, Takhar; Brunengraber, Laura L; Comte, Blandine; Puchowicz, Michelle A; Jobbins, Kathryn; Thomas, Katherine; David, France; Kinman, Renee; Wehrli, Suzanne; Dahms, William; Kerr, Douglas; Nissim, Itzhak; Brunengraber, Henri

    2004-01-01

    Phenylbutyrate is used to treat inborn errors of ureagenesis, malignancies, cystic fibrosis, and thalassemia. High-dose phenylbutyrate therapy results in toxicity, the mechanism of which is unexplained. The known metabolites of phenylbutyrate are phenylacetate, phenylacetylglutamine, and phenylbutyrylglutamine. These are excreted in urine, accounting for a variable fraction of the dose. We identified new metabolites of phenylbutyrate in urine of normal humans and in perfused rat livers. These metabolites result from interference between the metabolism of phenylbutyrate and that of carbohydrates and lipids. The new metabolites fall into two categories, glucuronides and phenylbutyrate beta-oxidation side products. Two questions are raised by these data. First, is the nitrogen-excreting potential of phenylbutyrate diminished by ingestion of carbohydrates or lipids? Second, does competition between the metabolism of phenylbutyrate, carbohydrates, and lipids alter the profile of phenylbutyrate metabolites? Finally, we synthesized glycerol esters of phenylbutyrate. These are partially bioavailable in rats and could be used to administer large doses of phenylbutyrate in a sodium-free, noncaustic form.

  11. Novel urinary metabolite of d-delta-tocopherol in rats

    International Nuclear Information System (INIS)

    Chiku, S.; Hamamura, K.; Nakamura, T.

    1984-01-01

    A novel metabolite of d-delta-tocopherol was isolated from the urine of rats given d-3,4-[ 3 H 2 ]-delta-tocopherol intravenously. The metabolite was collected from the urine of rats given d-delta-tocopherol in the same manner as that of the labeled compound. It was found that the metabolites consisted of sulfate conjugates. The portion of the major metabolite released with sulfatase was determined to be 2,8-dimethyl-2-(2'-carboxyethyl)-6-chromanol by infrared spectra, nuclear magnetic resonance spectra, and mass spectra. The proposed structure was confirmed by comparing the analytical results with those of a synthetically derived compound. As a result of the structural elucidation of this novel metabolite, a pathway for the biological transformation of delta-tocopherol is proposed which is different from that of alpha-tocopherol. A characteristic feature of the pathway is the absence of any opening of the chroman ring throughout the sequence

  12. Circulating prostacyclin metabolites in the dog

    International Nuclear Information System (INIS)

    Taylor, B.M.; Shebuski, R.J.; Sun, F.F.

    1983-01-01

    The present study was designed to determine the concentration of prostacyclin (PGI2) metabolites in the blood of the dog. After a bolus i.v. dose of [11 beta- 3 H]PGI2 (5 micrograms/kg) into each of five dogs, blood samples were withdrawn at 0.33, 0.67, 1, 3, 5, 20, 30, 60 and 120 min postdrug administration. Plasma samples were extracted and the radioactive components were analyzed by two-dimensional thin-layer chromatography with autoradiofluorography and radio-high-performance liquid chromatography. The compounds were identified by comparing their mobility with synthetic standards; only parallel responses observed in both tests constituted positive identification. Seven metabolites were identified by these two techniques: 6-keto-prostaglandin (PG)F1 alpha; 6-keto-PGE1; 2,3-dinor-6-keto-PGF 1 alpha; 2,3-dinor-13,14-dihydro-6,15-diketo-20-carboxyl PGF 1 alpha; and 2,3,18,19-tetranor-13,14-dihydro-6,15-diketo-20-carboxyl PGF 1 alpha. Several additional compounds, both polar and nonpolar in nature, which did not co-chromatograph with any of our standards were also detected. Early samples consisted predominantly of 6-keto-PGF 1 alpha and other 20-carbon metabolites. By 30 min, the predominant metabolites were the 16- and 18-carbon dicarboxylic acids. By 60 min, 85% of the radioactivity was associated with two unidentified polar compounds. The evidence suggests that 6-keto-PGF 1 alpha probably reflects only the transient levels of freshly entering PGI2 in the circulation, whereas levels of the most polar metabolites (e.g., dihydro-diketo-carboxyl tetranor-PGF 2 alpha) may be a better measure of the overall PGI2 presence due to its longer half-life in circulation

  13. The Response of RIF-1 Fibrosarcomas to the Vascular-Disrupting Agent ZD6126 Assessed by In Vivo and Ex Vivo1H Magnetic Resonance Spectroscopy

    Directory of Open Access Journals (Sweden)

    Basetti Madhu

    2006-07-01

    Full Text Available The response of radiation-induced fibrosarcoma1 (RIF-1 tumors treated with the vascular-disrupting agent (VDA ZD6126 was assessed by in vivo and ex vivo1H magnetic resonance spectroscopy (MRS methods. Tumors treated with 200 mg/kg ZD6126 showed a significant reduction in total choline (tCho in vivo 24 hours after treatment, whereas control tumors showed a significant increase in tCho. This response was investigated further within both ex vivo unprocessed tumor tissues and tumor tissue metabolite extracts. Ex vivo high-resolution magic angle spinning (HRMAS and 1H MRS of metabolite extracts revealed a significant reduction in phosphocholine and glycerophosphocholine in biopsies of ZD6126-treated tumors, confirming in vivo tCho response. ZD6126-induced reduction in choline compounds is consistent with a reduction in cell membrane turnover associated with necrosis and cell death following disruption of the tumor vasculature. In vivo tumor tissue water diffusion and lactate measurements showed no significant changes in response to ZD6126. Spin-spin relaxation times (T2 of water and metabolites also remained unchanged. Noninvasive 1H MRS measurement of tCho in vivo provides a potential biomarker of tumor response to VDAs in RIF-1 tumors.

  14. MR spectroscopy of intracranial tuberculomas: A singlet peak at 3.8 ppm as potential marker to differentiate them from malignant tumors.

    Science.gov (United States)

    Morales, Humberto; Alfaro, David; Martinot, Carlos; Fayed, Nicolas; Gaskill-Shipley, Mary

    2015-06-01

    The diagnosis of intracranial tuberculomas is often challenging. Our purpose is to describe the most common metabolic patterns of tuberculomas by MR spectroscopy (MRS) with emphasis on potential specific markers. Single-voxel MRS short echo time was performed in 13 cases of tuberculomas proven by histology and/or response to anti-mycobacterial therapy. For comparison MRS was also performed in 19 biopsy-proven malignant tumors (13 high-grade gliomas and six metastasis). Presence of metabolic peaks was assessed visually and categorical variables between groups were compared using chi-square. Metabolite ratios were compared using Mann-Whitney test and diagnostic accuracy of the metabolite ratios was compared using receiver-operating characteristic (ROC) curves analysis. Spectroscopic peaks representing lipids and glutamate/glutamine (Glx) as well as a peak at ∼3.8 ppm were well defined in 77% (10/13), 77% (10/13) and 69% (nine of 13) of tuberculomas, respectively. Lipid and Glx peaks were also present in most of the malignant lesions, 79% (15/19) and 74% (14/19) respectively. However, a peak at ∼3.8 ppm was present in only 10% (two of 19) of the tumor cases (p values between 1.7-1.9 for Cho/Cr and 0.8-0.9 for mI/Cr provided high specificity (91% for both metabolites) and adequate sensitivity (75% and 80%, respectively) for discrimination of malignant lesions. A singlet peak at ∼3.8 ppm is present in the majority of tuberculomas and absent in most malignant tumors, potentially a marker to differentiate these lesions. The assignment of the peak is difficult from our analysis; however, guanidinoacetate (Gua) is a possibility. Higher Cho/Cr and mI/Cr ratios should favor malignant lesions over tuberculomas. The presence of lipids and Glx is non-specific. © The Author(s) 2015.

  15. Does prescribed burning affect leaf secondary metabolites in pine stands?

    Science.gov (United States)

    Lavoir, A V; Ormeño, E; Pasqualini, V; Ferrat, L; Greff, S; Lecareux, C; Vila, B; Mévy, J P; Fernandez, C

    2013-03-01

    Prescribed burning (PB) is gaining popularity as a low-cost forest protection measure that efficiently reduces fuel build-up, but its effects on tree health and growth are poorly understood. Here, we evaluated the impact of PB on plant defenses in Mediterranean pine forests (Pinus halepensis and P. nigra ssp. laricio). These chemical defenses were estimated based on needle secondary metabolites (terpenes and phenolics including flavonoids) and discussed in terms of chlorophyll fluorescence and soil nutrients. Three treatments were applied: absence of burning (control plots); single burns (plots burned once); and repeated burns (plots burned twice). For single burns, we also explored changes over time. In P. laricio, PB tended to trigger only minor modifications consisting exclusively of short-lived increases (observed within 3 months after PB) in flavonoid index, possibly due to the leaf temperature increase during PB. In P. halepensis, PB had detrimental effects on physiological performance, consisting of (i) significant decreases in actual PSII efficiency (ΦPSII) in light-adapted conditions after repeated PB, and (ii) short-lived decreases in variable-to-maximum fluorescence ratio (Fv/Fm) after single PB, indicating that PB actually stressed P. halepensis trees. Repeated PB also promoted terpene-like metabolite production, which increased 2 to 3-fold compared to control trees. Correlations between terpene metabolites and soil chemistry were found. These results suggest that PB impacts needle secondary metabolism both directly (via a temperature impact) and indirectly (via soil nutrients), and that these impacts vary according to species/site location, frequency and time elapsed since last fire. Our findings are discussed with regard to the use of PB as a forest management technique and its consequences on plant investment in chemical defenses.

  16. Knock-down of hypoxia-induced carbonic anhydrases IX and XII radiosensitizes tumor cells by increasing intracellular acidosis

    Energy Technology Data Exchange (ETDEWEB)

    Doyen, Jérome [Institute for Research on Cancer and Aging of Nice, CNRS UMR 7284, University of Nice Sophia-Antipolis,, Nice (France); Department of Radiation Oncology, Centre Antoine-Lacassagne, Nice (France); Parks, Scott K. [Institute for Research on Cancer and Aging of Nice, CNRS UMR 7284, University of Nice Sophia-Antipolis,, Nice (France); Marcié, Serge [Department of Radiation Oncology, Centre Antoine-Lacassagne, Nice (France); Pouysségur, Jacques [Institute for Research on Cancer and Aging of Nice, CNRS UMR 7284, University of Nice Sophia-Antipolis,, Nice (France); Centre Scientifique de Monaco (Monaco); Chiche, Johanna, E-mail: chiche@unice.fr [Institute for Research on Cancer and Aging of Nice, CNRS UMR 7284, University of Nice Sophia-Antipolis,, Nice (France)

    2013-01-07

    The relationship between acidosis within the tumor microenvironment and radioresistance of hypoxic tumor cells remains unclear. Previously we reported that hypoxia-induced carbonic anhydrases (CA) IX and CAXII constitute a robust intracellular pH (pH{sub i})-regulating system that confers a survival advantage on hypoxic human colon carcinoma LS174Tr cells in acidic microenvironments. Here we investigate the role of acidosis, CAIX and CAXII knock-down in combination with ionizing radiation. Fibroblasts cells (-/+ CAIX) and LS174Tr cells (inducible knock-down for ca9/ca12) were analyzed for cell cycle phase distribution and survival after irradiation in extracellular pH{sub o} manipulations and hypoxia (1% O{sub 2}) exposure. Radiotherapy was used to target ca9/ca12-silenced LS174Tr tumors grown in nude mice. We found that diminishing the pH{sub i}-regulating capacity of fibroblasts through inhibition of Na{sup +}/H{sup +} exchanger 1 sensitize cells to radiation-induced cell death. Secondly, the pH{sub i}-regulating function of CAIX plays a key protective role in irradiated fibroblasts in an acidic environment as accompanied by a reduced number of cells in the radiosensitive phases of the cell cycle. Thirdly, we demonstrate that irradiation of LS174Tr spheroids, silenced for either ca9 or both ca9/ca12, showed a respective 50 and 75% increase in cell death as a result of a decrease in cell number in the radioresistant S phase and a disruption of CA-mediated pH{sub i} regulation. Finally, LS174Tr tumor progression was strongly decreased when ca9/ca12 silencing was combined with irradiation in vivo. These findings highlight the combinatory use of radiotherapy with targeting of the pH{sub i}-regulating CAs as an anti-cancer strategy.

  17. Polyphenol metabolite profile of artichoke is modulated by agronomical practices and cooking method.

    Science.gov (United States)

    Palermo, Mariantonella; Colla, Giuseppe; Barbieri, Giancarlo; Fogliano, Vincenzo

    2013-08-21

    In this paper artichoke phenolic pattern was characterized using an Orbitrap Exactive Mass Spectrometer at high mass accuracy and conventional HPLC MS/MS. Twenty four phenolic acids and 40 flavonoids were identified, many of them not previously reported in artichoke. Variations in phenolic compounds were investigated in relation to mycorrhization: results showed that inoculation with mycorrhizae greatly influences metabolite profile proving to be a good strategy to enhance the biosynthesis of secondary metabolites in this plant. This practice also caused a different distribution of the main phenolic compounds within head parts. Both steaming and microwaving cooking treatments caused an increase in antioxidant activity: the lower the initial concentration the higher the effect. A similar trend was observed looking at the phenolic compounds concentration: it increased because of cooking treatments the lower the initial content, the highest the increase. Steamed artichoke showed higher phenols content than microwaved ones.

  18. Metabolic changes in tumor cells and tumor-associated macrophages: A mutual relationship.

    Science.gov (United States)

    Netea-Maier, Romana T; Smit, Johannes W A; Netea, Mihai G

    2018-01-28

    In order to adapt to the reduced availability of nutrients and oxygen in the tumor microenvironment and the increased requirements of energy and building blocks necessary for maintaining their high proliferation rate, malignant cells undergo metabolic changes that result in an increased production of lactate, nitric oxide, reactive oxygen species, prostaglandins and other byproducts of arachidonic acid metabolism that influence both the composition of the inflammatory microenvironment and the function of the tumor-associated macrophages (TAMs). In response to cues present in the TME, among which products of altered tumor cell metabolism, TAMs are also required to reprogram their metabolism, with activation of glycolysis, fatty acid synthesis and altered nitrogen cycle metabolism. These changes result in functional reprogramming of TAMs which includes changes in the production of cytokines and angiogenetic factors, and contribute to the tumor progression and metastasis. Understanding the metabolic changes governing the intricate relationship between the tumor cells and the TAMs represents an essential step towards developing novel therapeutic approaches targeting the metabolic reprogramming of the immune cells to potentiate their tumoricidal potential and to circumvent therapy resistance. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Induction of selective blood-tumor barrier permeability and macromolecular transport by a biostable kinin B1 receptor agonist in a glioma rat model.

    Directory of Open Access Journals (Sweden)

    Jérôme Côté

    Full Text Available Treatment of malignant glioma with chemotherapy is limited mostly because of delivery impediment related to the blood-brain tumor barrier (BTB. B1 receptors (B1R, inducible prototypical G-protein coupled receptors (GPCR can regulate permeability of vessels including possibly that of brain tumors. Here, we determine the extent of BTB permeability induced by the natural and synthetic peptide B1R agonists, LysdesArg(9BK (LDBK and SarLys[dPhe(8]desArg(9BK (NG29, in syngeneic F98 glioma-implanted Fischer rats. Ten days after tumor inoculation, we detected the presence of B1R on tumor cells and associated vasculature. NG29 infusion increased brain distribution volume and uptake profiles of paramagnetic probes (Magnevist and Gadomer at tumoral sites (T(1-weighted imaging. These effects were blocked by B1R antagonist and non-selective cyclooxygenase inhibitors, but not by B2R antagonist and non-selective nitric oxide synthase inhibitors. Consistent with MRI data, systemic co-administration of NG29 improved brain tumor delivery of Carboplatin chemotherapy (ICP-Mass spectrometry. We also detected elevated B1R expression in clinical samples of high-grade glioma. Our results documented a novel GPCR-signaling mechanism for promoting transient BTB disruption, involving activation of B1R and ensuing production of COX metabolites. They also underlined the potential value of synthetic biostable B1R agonists as selective BTB modulators for local delivery of different sized-therapeutics at (peritumoral sites.

  20. Pyrethroid insecticide lambda-cyhalothrin and its metabolites induce liver injury through the activation of oxidative stress and proinflammatory gene expression in rats following acute and subchronic exposure.

    Science.gov (United States)

    Aouey, Bakhta; Derbali, Mohamed; Chtourou, Yassine; Bouchard, Michèle; Khabir, Abdelmajid; Fetoui, Hamadi

    2017-02-01

    Lambda-cyhalothrin (LTC) [α-cyano-3-phenoxybenzyl-3-(2-chloro-3,3,3-trifluoro-1-propenyl)-2,2-dimethylcyclo-propanecarboxylate] is a synthetic type II pyrethroid insecticide commonly used in residential and agricultural areas. The potential hepatotoxicity of pyrethroids remains unclear and could easily be assessed by measuring common clinical indicators of liver disease. To understand more about the potential risks for humans associated with LTC exposure, male adult rats were orally exposed to 6.2 and 31.1 mg/kg bw of LTC for 7, 30, 45, and 60 days. Histopathological changes and alterations of main parameters related to oxidative stress and inflammatory responses in the liver were evaluated. Further, lambda-cyhalothrin metabolites [3-(2-chloro-3,3,3-trifluoroprop-1-enyl)-2,2-dimethyl-cyclopropane carboxylic acid (CFMP), 4-hydroxyphenoxybenzoic acid (4-OH-3-PBA), and 3-phenoxybenzoic acid (3-PBA)] in the liver tissues were identified and quantified by ultra-high-performance liquid chromatography coupled to quadripole time-of-flight mass spectrometry (UHPLC-MS-Q-ToF). Results revealed that LTC exposure significantly increased markers of hepatic oxidative stress in a time-dependent and dose-dependent manner, and this was associated with an accumulation of CFMP and 3-PBA in the liver tissues. In addition, the levels of tumor necrosis factor-α (TNF-α) and interleukin (IL-6 and IL-1β) gene expressions were significantly increased in the liver of exposed rats compared to controls. Correlation analyses revealed that CFMP and 3-PBA metabolite levels in the liver tissues were significantly correlated with the indexes of oxidative stress, redox status, and inflammatory markers in rats exposed to lambda-cyhalothin. Overall, this study provided novel evidence that hepatic damage is likely due to increased oxidative stress and inflammation under the condition of acute and subchronic exposure to lambda-cyhalothrin and that LTC metabolites (CFMP and 3-PBA) could be used as

  1. Mangiferin Improves Hepatic Lipid Metabolism Mainly Through Its Metabolite-Norathyriol by Modulating SIRT-1/AMPK/SREBP-1c Signaling

    Directory of Open Access Journals (Sweden)

    Jian Li

    2018-03-01

    Full Text Available Objective: Mangiferin (MGF is a natural xanthone, with regulation effect on lipid metabolism. However, the molecular mechanism remains unclear. We purposed after oral administration, MGF is converted to its active metabolite(s, which contributes to the effects on lipid metabolism.Methods: KK-Ay mice were used to validate the effects of MGF on lipid metabolic disorders. Liver biochemical indices and gene expressions were determined. MGF metabolites were isolated from MGF administrated rat urine. Mechanism studies were carried out using HepG2 cells treated by MGF and its metabolite with or without inhibitors or small interfering RNA (siRNA. Western blot and immunoprecipitation methods were used to determine the lipid metabolism related gene expression. AMP/ATP ratios were measured by HPLC. AMP-activated protein kinase (AMPK activation were identified by homogeneous time resolved fluorescence (HTRF assays.Results: MGF significantly decreased liver triglyceride and free fatty acid levels, increased sirtuin-1 (SIRT-1 and AMPK phosphorylation in KK-Ay mice. HTRF studies indicated that MGF and its metabolites were not direct AMPK activators. Norathyriol, one of MGF’s metabolite, possess stronger regulating effect on hepatic lipid metabolism than MGF. The mechanism was mediated by activation of SIRT-1, liver kinase B1, and increasing the intracellular AMP level and AMP/ATP ratio, followed by AMPK phosphorylation, lead to increased phosphorylation level of sterol regulatory element-binding protein-1c.Conclusion: These results provided new insight into the molecular mechanisms of MGF in protecting against hepatic lipid metabolic disorders via regulating SIRT-1/AMPK pathway. Norathyriol showed potential therapeutic in treatment of non-alcoholic fatty liver disease.

  2. Maximizing Tumor Immunity With Fractionated Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Schaue, Doerthe, E-mail: dschaue@mednet.ucla.edu [Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); Ratikan, Josephine A.; Iwamoto, Keisuke S.; McBride, William H. [Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States)

    2012-07-15

    Purpose: Technologic advances have led to increased clinical use of higher-sized fractions of radiation dose and higher total doses. How these modify the pathways involved in tumor cell death, normal tissue response, and signaling to the immune system has been inadequately explored. Here we ask how radiation dose and fraction size affect antitumor immunity, the suppression thereof, and how this might relate to tumor control. Methods and Materials: Mice bearing B16-OVA murine melanoma were treated with up to 15 Gy radiation given in various-size fractions, and tumor growth followed. The tumor-specific immune response in the spleen was assessed by interferon-{gamma} enzyme-linked immunospot (ELISPOT) assay with ovalbumin (OVA) as the surrogate tumor antigen and the contribution of regulatory T cells (Tregs) determined by the proportion of CD4{sup +}CD25{sup hi}Foxp3{sup +} T cells. Results: After single doses, tumor control increased with the size of radiation dose, as did the number of tumor-reactive T cells. This was offset at the highest dose by an increase in Treg representation. Fractionated treatment with medium-size radiation doses of 7.5 Gy/fraction gave the best tumor control and tumor immunity while maintaining low Treg numbers. Conclusions: Radiation can be an immune adjuvant, but the response varies with the size of dose per fraction. The ultimate challenge is to optimally integrate cancer immunotherapy into radiation therapy.

  3. Serotonergic neurotoxic metabolites of ecstasy identified in rat brain.

    Science.gov (United States)

    Jones, Douglas C; Duvauchelle, Christine; Ikegami, Aiko; Olsen, Christopher M; Lau, Serrine S; de la Torre, Rafael; Monks, Terrence J

    2005-04-01

    The selective serotonergic neurotoxicity of 3,4-methylenedioxyamphetamine (MDA) and 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) depends on their systemic metabolism. We have recently shown that inhibition of brain endothelial cell gamma-glutamyl transpeptidase (gamma-GT) potentiates the neurotoxicity of both MDMA and MDA, indicating that metabolites that are substrates for this enzyme contribute to the neurotoxicity. Consistent with this view, glutathione (GSH) and N-acetylcysteine conjugates of alpha-methyl dopamine (alpha-MeDA) are selective neurotoxicants. However, neurotoxic metabolites of MDMA or MDA have yet to be identified in brain. Using in vivo microdialysis coupled to liquid chromatography-tandem mass spectroscopy and a high-performance liquid chromatography-coulometric electrode array system, we now show that GSH and N-acetylcysteine conjugates of N-methyl-alpha-MeDA are present in the striatum of rats administered MDMA by subcutaneous injection. Moreover, inhibition of gamma-GT with acivicin increases the concentration of GSH and N-acetylcysteine conjugates of N-methyl-alpha-MeDA in brain dialysate, and there is a direct correlation between the concentrations of metabolites in dialysate and the extent of neurotoxicity, measured by decreases in serotonin (5-HT) and 5-hydroxyindole acetic (5-HIAA) levels. Importantly, the effects of acivicin are independent of MDMA-induced hyperthermia, since acivicin-mediated potentiation of MDMA neurotoxicity occurs in the context of acivicin-mediated decreases in body temperature. Finally, we have synthesized 5-(N-acetylcystein-S-yl)-N-methyl-alpha-MeDA and established that it is a relatively potent serotonergic neurotoxicant. Together, the data support the contention that MDMA-mediated serotonergic neurotoxicity is mediated by the systemic formation of GSH and N-acetylcysteine conjugates of N-methyl-alpha-MeDA (and alpha-MeDA). The mechanisms by which such metabolites access the brain and produce selective

  4. Choline and Choline Metabolite Patterns and Associations in Blood and Milk during Lactation in Dairy Cows

    Science.gov (United States)

    Artegoitia, Virginia M.; Middleton, Jesse L.; Harte, Federico M.; Campagna, Shawn R.; de Veth, Michael J.

    2014-01-01

    Milk and dairy products are an important source of choline, a nutrient essential for human health. Infant formula derived from bovine milk contains a number of metabolic forms of choline, all contribute to the growth and development of the newborn. At present, little is known about the factors that influence the concentrations of choline metabolites in milk. The objectives of this study were to characterize and then evaluate associations for choline and its metabolites in blood and milk through the first 37 weeks of lactation in the dairy cow. Milk and blood samples from twelve Holstein cows were collected in early, mid and late lactation and analyzed for acetylcholine, free choline, betaine, glycerophosphocholine, lysophosphatidylcholine, phosphatidylcholine, phosphocholine and sphingomyelin using hydrophilic interaction liquid chromatography-tandem mass spectrometry, and quantified using stable isotope-labeled internal standards. Total choline concentration in plasma, which was almost entirely phosphatidylcholine, increased 10-times from early to late lactation (1305 to 13,535 µmol/L). In milk, phosphocholine was the main metabolite in early lactation (492 µmol/L), which is a similar concentration to that found in human milk, however, phosphocholine concentration decreased exponentially through lactation to 43 µmol/L in late lactation. In contrast, phosphatidylcholine was the main metabolite in mid and late lactation (188 µmol/L and 659 µmol/L, respectively), with the increase through lactation positively correlated with phosphatidylcholine in plasma (R 2 = 0.78). Unlike previously reported with human milk we found no correlation between plasma free choline concentration and milk choline metabolites. The changes in pattern of phosphocholine and phosphatidylcholine in milk through lactation observed in the bovine suggests that it is possible to manufacture infant formula that more closely matches these metabolites profile in human milk. PMID:25157578

  5. Choline and choline metabolite patterns and associations in blood and milk during lactation in dairy cows.

    Directory of Open Access Journals (Sweden)

    Virginia M Artegoitia

    Full Text Available Milk and dairy products are an important source of choline, a nutrient essential for human health. Infant formula derived from bovine milk contains a number of metabolic forms of choline, all contribute to the growth and development of the newborn. At present, little is known about the factors that influence the concentrations of choline metabolites in milk. The objectives of this study were to characterize and then evaluate associations for choline and its metabolites in blood and milk through the first 37 weeks of lactation in the dairy cow. Milk and blood samples from twelve Holstein cows were collected in early, mid and late lactation and analyzed for acetylcholine, free choline, betaine, glycerophosphocholine, lysophosphatidylcholine, phosphatidylcholine, phosphocholine and sphingomyelin using hydrophilic interaction liquid chromatography-tandem mass spectrometry, and quantified using stable isotope-labeled internal standards. Total choline concentration in plasma, which was almost entirely phosphatidylcholine, increased 10-times from early to late lactation (1305 to 13,535 µmol/L. In milk, phosphocholine was the main metabolite in early lactation (492 µmol/L, which is a similar concentration to that found in human milk, however, phosphocholine concentration decreased exponentially through lactation to 43 µmol/L in late lactation. In contrast, phosphatidylcholine was the main metabolite in mid and late lactation (188 µmol/L and 659 µmol/L, respectively, with the increase through lactation positively correlated with phosphatidylcholine in plasma (R2 = 0.78. Unlike previously reported with human milk we found no correlation between plasma free choline concentration and milk choline metabolites. The changes in pattern of phosphocholine and phosphatidylcholine in milk through lactation observed in the bovine suggests that it is possible to manufacture infant formula that more closely matches these metabolites profile in human milk.

  6. Correlation analysis of expressions of PTEN and p53 with the value obtained by magnetic resonance spectroscopy and apparent diffusion coefficient in the tumor and the tumor-adjacent area in magnetic resonance imaging for glioblastoma.

    Science.gov (United States)

    Li, Yunyun; Ji, Feng; Jiang, Yuzhi; Zhao, Ting; Xu, Chongfu

    2018-01-01

    To explore the correlation of the expression levels of phosphate and tension homology deleted on chromosome ten (PTEN) and p53 of glioblastoma multiforme (GBM) with the value obtained by magnetic resonance spectroscopy (MRS) and apparent diffusion coefficient (ADC) in the tumor and the tumor-adjacent area in magnetic resonance imaging (MRI). A total of 38 patients were operated for GBM. All the patients had received diffusion-weighted imaging (DWI) and MRS prior to surgery. ADC of water molecules and values of metabolite indexes of MRS, including n-acetyl aspartate (NAA), choline (Cho) and creatine (Cr), were recorded, and the ratios of Cho/NAA, Cho/Cr and NAA/Cr were calculated. Hematoxylin-eosin (H&E) staining was done to examine the morphology of tumor and of tumor-adjacent tissues; immunohistochemistry (IHC) was performed to examine the expressions of PTEN and p53 in the tumor and the tumor-adjacent area. Finally, the correlations of the expressions of PTEN and p53 with ADC, Cho/NAA, Cho/Cr and NAA/Cr of the tumor and the tumor-adjacent area were analyzed. H&E staining showed that GBM tissues had disordered morphology, different sizes of cells, large cell nuclei and significant cell heterogeneity. IHC indicated that the expression level of p53 protein in the tumor was significantly higher than in the tumor-adjacent tissues (pCorrelation analysis indicated that PTEN levels in the tumor and the tumor-adjacent area were positively correlated with ADC in the corresponding area, while p53 in the tumor and the tumor-adjacent area was negatively correlated with ADC in the corresponding area. Cho/NAA and Cho/Cr in the tumor were positively correlated with p53 in the tumor, but negatively correlated with PTEN in the tumor. However, NAA/Cr of the tumor was irrelevant to the levels of PTEN and p53. The test results of DWI and MRS of patients with GBM can accurately reflect the inactivation or mutation of PTEN and p53.

  7. Pharmacokinetics of ifosfamide and some metabolites in children

    NARCIS (Netherlands)

    Kaijser, G. P.; de Kraker, J.; Bult, A.; Underberg, W. J.; Beijnen, J. H.

    1998-01-01

    The pharmacokinetics of ifosfamide and some metabolites in children was investigated. The patients received various doses of ifosfamide, mostly by continuous infusion, over several days. The penetration of ifosfamide and its metabolites into the cerebrospinal fluid was also studied in four cases.

  8. Development of an updated PBPK model for trichloroethylene and metabolites in mice, and its application to discern the role of oxidative metabolism in TCE-induced hepatomegaly

    International Nuclear Information System (INIS)

    Evans, M.V.; Chiu, W.A.; Okino, M.S.; Caldwell, J.C.

    2009-01-01

    Trichloroethylene (TCE) is a lipophilic solvent rapidly absorbed and metabolized via oxidation and conjugation to a variety of metabolites that cause toxicity to several internal targets. Increases in liver weight (hepatomegaly) have been reported to occur quickly in rodents after TCE exposure, with liver tumor induction reported in mice after long-term exposure. An integrated dataset for gavage and inhalation TCE exposure and oral data for exposure to two of its oxidative metabolites (TCA and DCA) was used, in combination with an updated and more accurate physiologically-based pharmacokinetic (PBPK) model, to examine the question as to whether the presence of TCA in the liver is responsible for TCE-induced hepatomegaly in mice. The updated PBPK model was used to help discern the quantitative contribution of metabolites to this effect. The update of the model was based on a detailed evaluation of predictions from previously published models and additional preliminary analyses based on gas uptake inhalation data in mice. The parameters of the updated model were calibrated using Bayesian methods with an expanded pharmacokinetic database consisting of oral, inhalation, and iv studies of TCE administration as well as studies of TCE metabolites in mice. The dose-response relationships for hepatomegaly derived from the multi-study database showed that the proportionality of dose to response for TCE- and DCA-induced hepatomegaly is not observed for administered doses of TCA in the studied range. The updated PBPK model was used to make a quantitative comparison of internal dose of metabolized and administered TCA. While the internal dose of TCA predicted by modeling of TCE exposure (i.e., mg TCA/kg-d) showed a linear relationship with hepatomegaly, the slope of the relationship was much greater than that for directly administered TCA. Thus, the degree of hepatomegaly induced per unit of TCA produced through TCE oxidation is greater than that expected per unit of TCA

  9. Development of an updated PBPK model for trichloroethylene and metabolites in mice, and its application to discern the role of oxidative metabolism in TCE-induced hepatomegaly.

    Science.gov (United States)

    Evans, M V; Chiu, W A; Okino, M S; Caldwell, J C

    2009-05-01

    Trichloroethylene (TCE) is a lipophilic solvent rapidly absorbed and metabolized via oxidation and conjugation to a variety of metabolites that cause toxicity to several internal targets. Increases in liver weight (hepatomegaly) have been reported to occur quickly in rodents after TCE exposure, with liver tumor induction reported in mice after long-term exposure. An integrated dataset for gavage and inhalation TCE exposure and oral data for exposure to two of its oxidative metabolites (TCA and DCA) was used, in combination with an updated and more accurate physiologically-based pharmacokinetic (PBPK) model, to examine the question as to whether the presence of TCA in the liver is responsible for TCE-induced hepatomegaly in mice. The updated PBPK model was used to help discern the quantitative contribution of metabolites to this effect. The update of the model was based on a detailed evaluation of predictions from previously published models and additional preliminary analyses based on gas uptake inhalation data in mice. The parameters of the updated model were calibrated using Bayesian methods with an expanded pharmacokinetic database consisting of oral, inhalation, and iv studies of TCE administration as well as studies of TCE metabolites in mice. The dose-response relationships for hepatomegaly derived from the multi-study database showed that the proportionality of dose to response for TCE- and DCA-induced hepatomegaly is not observed for administered doses of TCA in the studied range. The updated PBPK model was used to make a quantitative comparison of internal dose of metabolized and administered TCA. While the internal dose of TCA predicted by modeling of TCE exposure (i.e., mg TCA/kg-d) showed a linear relationship with hepatomegaly, the slope of the relationship was much greater than that for directly administered TCA. Thus, the degree of hepatomegaly induced per unit of TCA produced through TCE oxidation is greater than that expected per unit of TCA

  10. Selective inhibition of CYP2C8 by fisetin and its methylated metabolite, geraldol, in human liver microsomes.

    Science.gov (United States)

    Shrestha, Riya; Kim, Ju-Hyun; Nam, Wongshik; Lee, Hye Suk; Lee, Jae-Mok; Lee, Sangkyu

    2018-04-01

    Fisetin is a flavonol compound commonly found in edible vegetables and fruits. It has anti-tumor, antioxidant, and anti-inflammatory effects. Geraldol, the O-methyl metabolite of fisetin in mice, is reported to suppress endothelial cell migration and proliferation. Although the in vivo and in vitro effects of fisetin and its metabolites are frequently reported, studies on herb-drug interactions have not yet been performed. This study was designed to investigate the inhibitory effect of fisetin and geraldol on eight isoforms of human cytochrome P450 (CYP) by using cocktail assay and LC-MS/MS analysis. The selective inhibition of CYP2C8-catalyzed paclitaxel hydroxylation by fisetin and geraldol were confirmed in pooled human liver microsomes (HLMs). In addition, an IC 50 shift assay under different pre-incubation conditions confirmed that fisetin and geraldol shows a reversible concentration-dependent, but not mechanism-based, inhibition of CYP2C8. Moreover, Michaelis-Menten, Lineweaver-burk plots, Dixon and Eadie-Hofstee showed a non-competitive inhibition mode with an equilibrium dissociation constant of 4.1 μM for fisetin and 11.5 μM for geraldol, determined from secondary plot of the Lineweaver-Burk plot. In conclusion, our results indicate that fisetin showed selective reversible and non-competitive inhibition of CYP2C8 more than its main metabolite, geraldol, in HLMs. Copyright © 2018 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  11. The relationships between pesticide metabolites and neurobehavioral test performance in the third National Health and Nutrition Examination Survey.

    Science.gov (United States)

    Krieg, Edward F

    2013-01-01

    Regression analysis was used to estimate and test for relationships between urinary pesticide metabolites and neurobehavioral test performance in adults, 20 to 59 years old, participating in the third National Health and Nutrition Examination Survey. The 12 pesticide metabolites included 2 naphthols, 8 phenols, a phenoxyacetic acid, and a pyridinol. The 3 neurobehavioral tests included in the survey were simple reaction time, symbol-digit substitution, and serial digit learning. As the 2,4-dichlorophenol, 2,5-dichlorophenol, and the pentachlorophenol concentrations increased, performance on the serial digit learning test improved. As the 2,5-dichlorophenol concentration increased, performance on the symbol-digit substitution test improved. At low concentrations, the parent compounds of these metabolites may act at acetylcholine and γ-aminobutyric acid synapses in the central nervous system to improve neurobehavioral test performance.

  12. The role of tumor cell-derived connective tissue growth factor (CTGF/CCN2) in pancreatic tumor growth.

    Science.gov (United States)

    Bennewith, Kevin L; Huang, Xin; Ham, Christine M; Graves, Edward E; Erler, Janine T; Kambham, Neeraja; Feazell, Jonathan; Yang, George P; Koong, Albert; Giaccia, Amato J

    2009-02-01

    Pancreatic cancer is highly aggressive and refractory to existing therapies. Connective tissue growth factor (CTGF/CCN2) is a fibrosis-related gene that is thought to play a role in pancreatic tumor progression. However, CCN2 can be expressed in a variety of cell types, and the contribution of CCN2 derived from either tumor cells or stromal cells as it affects the growth of pancreatic tumors is unknown. Using genetic inhibition of CCN2, we have discovered that CCN2 derived from tumor cells is a critical regulator of pancreatic tumor growth. Pancreatic tumor cells derived from CCN2 shRNA-expressing clones showed dramatically reduced growth in soft agar and when implanted s.c. We also observed a role for CCN2 in the growth of pancreatic tumors implanted orthotopically, with tumor volume measurements obtained by positron emission tomography imaging. Mechanistically, CCN2 protects cells from hypoxia-mediated apoptosis, providing an in vivo selection for tumor cells that express high levels of CCN2. We found that CCN2 expression and secretion was increased in hypoxic pancreatic tumor cells in vitro, and we observed colocalization of CCN2 and hypoxia in pancreatic tumor xenografts and clinical pancreatic adenocarcinomas. Furthermore, we found increased CCN2 staining in clinical pancreatic tumor tissue relative to stromal cells surrounding the tumor, supporting our assertion that tumor cell-derived CCN2 is important for pancreatic tumor growth. Taken together, these data improve our understanding of the mechanisms responsible for pancreatic tumor growth and progression, and also indicate that CCN2 produced by tumor cells represents a viable therapeutic target for the treatment of pancreatic cancer.

  13. Novel pyrazine metabolites found in polymyxin biosynthesis by Paenibacillus polymyxa

    DEFF Research Database (Denmark)

    Beck, Hans Christian; Hansen, Anne M; Lauritsen, Frants R

    2003-01-01

    A complex mixture of methyl-branched alkyl-substituted pyrazines was found in the growth medium of the polymyxin-producing bacterium Paenibacillus polymyxa, and of these, seven are new natural compounds. A total of 19 pyrazine metabolites were identified. The dominant metabolite was 2,5-diisoprop......A complex mixture of methyl-branched alkyl-substituted pyrazines was found in the growth medium of the polymyxin-producing bacterium Paenibacillus polymyxa, and of these, seven are new natural compounds. A total of 19 pyrazine metabolites were identified. The dominant metabolite was 2...

  14. Assessing the associations of blood metabolites with osteoporosis: a Mendelian randomization study.

    Science.gov (United States)

    Liu, Li; Wen, Yan; Zhang, Lei; Xu, Peng; Liang, Xiao; Du, Yanan; Li, Ping; He, Awen; Fan, QianRui; Hao, Jingcan; Wang, Wenyu; Guo, Xiong; Shen, Hui; Tian, Qing; Zhang, Feng; Deng, Hong-Wen

    2018-03-01

    Osteoporosis is a metabolic bone disease. The impact of blood metabolites on the development of osteoporosis remains elusive now. To explore the relationship between blood metabolites and osteoporosis. We used 2,286 unrelated Caucasian subjects as discovery samples and 3,143 unrelated Caucasian subjects from the Framingham heart study (FHS) as replication samples. Bone mineral density (BMD) were measured using dual-energy X-ray absorptiometry. Genome-wide SNP genotyping was performed using Affymetrix Human SNP Array 6.0 (for discovery samples) and Affymetrix SNP 500K and 50K array (for FHS replication samples). The SNP sets significantly associated with blood metabolites were obtained from a published whole-genome sequencing study. For each subject, the genetic risk score (GRS) of metabolite was calculated from the genotype data of metabolite associated SNP sets. Pearson correlation analysis was conducted to evaluate the potential impact of blood metabolites on the variations bone phenotypes. 10,000 permutations were conducted to calculate the empirical P value and false discovery rate (FDR). 481 blood metabolites were analyzed in this study. We identified multiple blood metabolites associated with hip BMD, such as 1,5-anhydroglucitol(1,5-AG) (Pdiscovery metabolites on the variations of BMD, and identified several candidate blood metabolites for osteoporosis.

  15. Metabolites of alectinib in human: their identification and pharmacological activity

    Directory of Open Access Journals (Sweden)

    Mika Sato-Nakai

    2017-07-01

    Full Text Available Two metabolites (M4 and M1b in plasma and four metabolites (M4, M6, M1a and M1b in faeces were detected through the human ADME study following a single oral administration of [14C]alectinib, a small-molecule anaplastic lymphoma kinase inhibitor, to healthy subjects. In the present study, M1a and M1b, which chemical structures had not been identified prior to the human ADME study, were identified as isomers of a carboxylate metabolite oxidatively cleaved at the morpholine ring. In faeces, M4 and M1b were the main metabolites, which shows that the biotransformation to M4 and M1b represents two main metabolic pathways for alectinib. In plasma, M4 was a major metabolite and M1b was a minor metabolite. The contribution to in vivo pharmacological activity of these circulating metabolites was assessed from their in vitro pharmacological activity and plasma protein binding. M4 had a similar cancer cell growth inhibitory activity and plasma protein binding to that of alectinib, suggesting its contribution to the antitumor activity of alectinib, whereas the pharmacological activity of M1b was insignificant.

  16. Metabolomics and Cheminformatics Analysis of Antifungal Function of Plant Metabolites.

    Science.gov (United States)

    Cuperlovic-Culf, Miroslava; Rajagopalan, NandhaKishore; Tulpan, Dan; Loewen, Michele C

    2016-09-30

    Fusarium head blight (FHB), primarily caused by Fusarium graminearum , is a devastating disease of wheat. Partial resistance to FHB of several wheat cultivars includes specific metabolic responses to inoculation. Previously published studies have determined major metabolic changes induced by pathogens in resistant and susceptible plants. Functionality of the majority of these metabolites in resistance remains unknown. In this work we have made a compilation of all metabolites determined as selectively accumulated following FHB inoculation in resistant plants. Characteristics, as well as possible functions and targets of these metabolites, are investigated using cheminformatics approaches with focus on the likelihood of these metabolites acting as drug-like molecules against fungal pathogens. Results of computational analyses of binding properties of several representative metabolites to homology models of fungal proteins are presented. Theoretical analysis highlights the possibility for strong inhibitory activity of several metabolites against some major proteins in Fusarium graminearum , such as carbonic anhydrases and cytochrome P450s. Activity of several of these compounds has been experimentally confirmed in fungal growth inhibition assays. Analysis of anti-fungal properties of plant metabolites can lead to the development of more resistant wheat varieties while showing novel application of cheminformatics approaches in the analysis of plant/pathogen interactions.

  17. Metabolite Profiling of Candidatus Liberibacter Infection in Hamlin Sweet Oranges.

    Science.gov (United States)

    Hung, Wei-Lun; Wang, Yu

    2018-04-18

    Huanglongbing (HLB), also known as citrus greening disease, caused by Candidatus Liberibacter asiaticus (CLas), is considered the most serious citrus disease in the world. CLas infection has been shown to greatly affect metabolite profiles in citrus fruits. However, because of uneven distribution of CLas throughout the tree and a minimum bacterial titer requirement for polymerase chain reaction (PCR) detection, the infected trees may test false negative. To prevent this, metabolites of healthy Hamlin oranges (CLas-) obtained from the citrus undercover protection systems (CUPS) were investigated. Comparison of the metabolite profile of juice obtained from CLas- and CLas+ (asymptomatic and symptomatic) trees revealed significant differences in both volatile and nonvolatile metabolites. However, no consistent pattern could be observed in alcohols, esters, sesquiterpenes, sugars, flavanones, and limonoids as compared to previous studies. These results suggest that CLas may affect metabolite profiles of citrus fruits earlier than detecting infection by PCR. Citric acid, nobiletin, malic acid, and phenylalanine were identified as the metabolic biomarkers associated with the progression of HLB. Thus, the differential metabolites found in this study may serve as the biomarkers of HLB in its early stage, and the metabolite signature of CLas infection may provide useful information for developing a potential treatment strategy.

  18. Plant Polyphenols and Oxidative Metabolites of the Herbal Alkenylbenzene Methyleugenol Suppress Histone Deacetylase Activity in Human Colon Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Isabel Anna Maria Groh

    2013-01-01

    Full Text Available Evidence has been provided that diet and environmental factors directly influence epigenetic mechanisms associated with cancer development in humans. The inhibition of histone deacetylase (HDAC activity and the disruption of the HDAC complex have been recognized as a potent strategy for cancer therapy and chemoprevention. In the present study, we investigated whether selected plant constituents affect HDAC activity or HDAC1 protein status in the human colon carcinoma cell line HT29. The polyphenols (−-epigallocatechin-3-gallate (EGCG and genistein (GEN as well as two oxidative methyleugenol (ME metabolites were shown to inhibit HDAC activity in intact HT29 cells. Concomitantly, a significant decrease of the HDAC1 protein level was observed after incubation with EGCG and GEN, whereas the investigated ME metabolites did not affect HDAC1 protein status. In conclusion, dietary compounds were found to possess promising HDAC-inhibitory properties, contributing to epigenetic alterations in colon tumor cells, which should be taken into account in further risk/benefit assessments of polyphenols and alkenylbenzenes.

  19. Metabolite Profiles of Lactic Acid Bacteria in Grass Silage▿

    OpenAIRE

    Broberg, Anders; Jacobsson, Karin; Ström, Katrin; Schnürer, Johan

    2007-01-01

    The metabolite production of lactic acid bacteria (LAB) on silage was investigated. The aim was to compare the production of antifungal metabolites in silage with the production in liquid cultures previously studied in our laboratory. The following metabolites were found to be present at elevated concentrations in silos inoculated with LAB strains: 3-hydroxydecanoic acid, 2-hydroxy-4-methylpentanoic acid, benzoic acid, catechol, hydrocinnamic acid, salicylic acid, 3-phenyllactic acid, 4-hydro...

  20. ADAM12 produced by tumor cells rather than stromal cells accelerates breast tumor progression

    DEFF Research Database (Denmark)

    Frohlich, Camilla; Nehammer, Camilla; Albrechtsen, Reidar

    2011-01-01

    that ADAM12 deficiency reduces breast tumor progression in the PyMT model. However, the catalytic activity of ADAM12 appears to be dispensable for its tumor-promoting effect. Interestingly, we demonstrate that ADAM12 endogenously expressed in tumor-associated stroma in the PyMT model does not influence......Expression of ADAM12 is low in most normal tissues, but is markedly increased in numerous human cancers, including breast carcinomas. We have previously shown that overexpression of ADAM12 accelerates tumor progression in a mouse model of breast cancer (PyMT). In the present study, we found...... hypothesized, however, that the tumor-associated stroma may stimulate ADAM12 expression in tumor cells, based on the fact that TGF-ß1 stimulates ADAM12 expression and is a well-known growth factor released from tumor-associated stroma. TGF-ß1 stimulation of ADAM12-negative Lewis lung tumor cells induced ADAM12...

  1. The use of bispecific antibodies in tumor cell and tumor vasculature directed immunotherapy

    NARCIS (Netherlands)

    Molema, G; Kroesen, BJ; Helfrich, W; Meijer, DKF; de Leij, LFMH

    2000-01-01

    To overcome dose limiting toxicities and to increase efficacy of immunotherapy of cancer, a number of strategies are under development for selectively redirecting effector cells/molecules towards tumor cells. Many of these strategies exploit the specificity of tumor associated antigen recognition by

  2. Selected anti-tumor vaccines merit a place in multimodal tumor therapies

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, Eva-Maria; Wunderlich, Roland [Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen (Germany); Ebel, Nina [Department of Process Technology and Machinery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen (Germany); Rubner, Yvonne [Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen (Germany); Schlücker, Eberhard [Department of Process Technology and Machinery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen (Germany); Meyer-Pittroff, Roland [Competence Pool Weihenstephan, Technische Universität München, Freising (Germany); Ott, Oliver J.; Fietkau, Rainer; Gaipl, Udo S.; Frey, Benjamin, E-mail: benjamin.frey@uk-erlangen.de [Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen (Germany)

    2012-10-09

    Multimodal approaches are nowadays successfully applied in cancer therapy. Primary locally acting therapies such as radiotherapy (RT) and surgery are combined with systemic administration of chemotherapeutics. Nevertheless, the therapy of cancer is still a big challenge in medicine. The treatments often fail to induce long-lasting anti-tumor responses. Tumor recurrences and metastases result. Immunotherapies are therefore ideal adjuncts to standard tumor therapies since they aim to activate the patient's immune system against malignant cells even outside the primary treatment areas (abscopal effects). Especially cancer vaccines may have the potential both to train the immune system against cancer cells and to generate an immunological memory, resulting in long-lasting anti-tumor effects. However, despite promising results in phase I and II studies, most of the concepts finally failed. There are some critical aspects in development and application of cancer vaccines that may decide on their efficiency. The time point and frequency of medication, usage of an adequate immune adjuvant, the vaccine's immunogenic potential, and the tumor burden of the patient are crucial. Whole tumor cell vaccines have advantages compared to peptide-based ones since a variety of tumor antigens (TAs) are present. The master requirements of cell-based, therapeutic tumor vaccines are the complete inactivation of the tumor cells and the increase of their immunogenicity. Since the latter is highly connected with the cell death modality, the inactivation procedure of the tumor cell material may significantly influence the vaccine's efficiency. We therefore also introduce high hydrostatic pressure (HHP) as an innovative inactivation technology for tumor cell-based vaccines and outline that HHP efficiently inactivates tumor cells by enhancing their immunogenicity. Finally studies are presented proving that anti-tumor immune responses can be triggered by combining RT with selected

  3. Aspergillus flavus secondary metabolites: more than just aflatoxins

    Science.gov (United States)

    Aspergillus flavus is best known for producing the family of potent carcinogenic secondary metabolites known as aflatoxins. However, this opportunistic plant and animal pathogen also produces numerous other secondary metabolites, many of which have also been shown to be toxic. While about forty of t...

  4. Evaluation of the process of recycling and renal parenchymal injury after eswl with metabolites excreted in the urine.

    Science.gov (United States)

    Ceylan, Cavit; Dogan, Serkan; Saydam, Gulsevim; Kocak, Mehmet Zait; Doluoglu, Omer Gokhan

    2013-01-01

    To show renal parenchymal injury depending on extracorporeal shock wave lithotripsy (ESWL). The patients with one renal stone and in whom ESWL is planned among the patients in whom renal stone was determined. Their 24-h urine samples were collected just before and after the ESWL treatment. Cit (citrate), UrA (uric acid), RBP (retinol-binding protein), NAG (N-acetyl-β-Đ-glucosaminidase), Cr (creatinine), Na (sodium), K (potassium), P (phosphor), Ca (calcium), and Cl (chlorine) metabolites excreted in urine were evaluated after urine samples were taken on the study day. Changes in the metabolites excreted; the number, frequency, and duration of ESWL shock wave; the energy; and the body mass index were recorded. The results for p ESWL were applied to a total of 20 patients. When metabolites excreted in the urine before (B1E) and after (A1E) the first session of ESWL, and before (B2E) and after (A2E) the second session of ESWL, were evaluated, no statistically significant result for Ca and Cl excretion was noted. For NAG and Cr, a significant difference was observed in terms of metabolite excretion between B1E and B2E. For other metabolites, we saw that there is no difference between B1E and B2E. While a significant metabolite change was observed for RBP, NAG, Cr, and Na as long as A1E and A2E ESWL session number increases, other metabolites were not significant. Shock waves induce significant damage to the renal and adjacent tissues as indicated by a significant increase in cell-escaped enzymes and electrolytes and the extent of damage depends on the energy and the number of shock wave exposure.

  5. Embedding filtering criteria into a wrapper marker selection method for brain tumor classification: an application on metabolic peak area ratios

    International Nuclear Information System (INIS)

    Kounelakis, M G; Zervakis, M E; Giakos, G C; Postma, G J; Buydens, L M C; Kotsiakis, X

    2011-01-01

    The purpose of this study is to identify reliable sets of metabolic markers that provide accurate classification of complex brain tumors and facilitate the process of clinical diagnosis. Several ratios of metabolites are tested alone or in combination with imaging markers. A wrapper feature selection and classification methodology is studied, employing Fisher's criterion for ranking the markers. The set of extracted markers that express statistical significance is further studied in terms of biological behavior with respect to the brain tumor type and grade. The outcome of this study indicates that the proposed method by exploiting the intrinsic properties of data can actually reveal reliable and biologically relevant sets of metabolic markers, which form an important adjunct toward a more accurate type and grade discrimination of complex brain tumors

  6. Direct detection of glucuronide metabolites of lidocaine in sheep urine.

    Science.gov (United States)

    Doran, Gregory S; Smith, Alistair K; Rothwell, Jim T; Edwards, Scott H

    2018-02-15

    The anaesthetic lidocaine is metabolised quickly to produce a series of metabolites, including several hydroxylated metabolites, which are further metabolised by addition of a glucuronic acid moiety. Analysis of these glucuronide metabolites in urine is performed indirectly by cleaving the glucuronic acid group using β-glucuronidase. However, direct analysis of intact glucuronide conjugates is a more straightforward approach as it negates the need for long hydrolysis incubations, and minimises the oxidation of sensitive hydrolysis products, while also distinguishing between the two forms of hydroxylated metabolites. A method was developed to identify three intact glucuronides of lidocaine in sheep urine using LC-MS/MS, which was further confirmed by the synthesis of glucuronide derivatives of 3OH-MEGX and 4OH-LIDO. Direct analysis of urine allowed the detection of the glucuronide metabolites of hydroxylidocaine (OH-LIDO), hydroxyl-monoethylglycinexylidide (OH-MEGX), and hydroxy-2,6-xylidine (OH-XYL). Analysis of urine before and after β-glucuronidase digestion showed that the efficiency of hydrolysis of these glucuronide metabolites may be underestimated in some studies. Analysis of urine in the current study from three different sheep with similar glucuronide metabolite concentrations resulted in different hydrolysis efficiencies, which may have been a result of different levels of substrate binding by matrix components, preventing enzyme cleavage. The use of direct analysis of intact glucuronides has the benefit of being less influenced by these matrix effects, while also allowing analysis of unstable metabolites like 4OH-XYL, which rapidly oxidises after hydrolysis. Additionally, direct analysis is less expensive and less time consuming, while providing more information about the status of hydroxylated metabolites in urine. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  7. Urinary metabolite concentrations of organophosphorous pesticides, bisphenol A, and phthalates among pregnant women in Rotterdam, The Netherlands: The generation R study

    NARCIS (Netherlands)

    Pierik, F.H.; Ye, X.; Hauser, R.; Duty, S.; Angerer, J.; Park, M.M.; Burdorf, A.; Hofman, A.; Jaddoe, V.W.V.; Mackenbach, J.P.; Steegers, E.A.P.; Tiemeier, H.; Longnecker, J.P.

    2008-01-01

    Concern about potential health impacts of low-level exposures to organophosphorus (OP) pesticides, bisphenol A (BPA), and phthalates among the general population is increasing. We measured levels of six dialkyl phosphate (DAP) metabolites of OP pesticides, a chlorpyrifos-specific metabolite

  8. Elevated expression of MMP-13 and TIMP-1 in head and neck squamous cell carcinomas may reflect increased tumor invasiveness

    International Nuclear Information System (INIS)

    Culhaci, Nil; Metin, Kubilay; Copcu, Eray; Dikicioglu, Emel

    2004-01-01

    Matrix metalloproteinases [MMPs], which degrade the extracellular matrix, play an important role in the invasion and metastasis of squamous cell carcinomas. One MMP, MMP-13, is thought to play a central role in MMP activation. The purpose of this study was to investigate MMP-13 and TIMP-1 expression in squamous cell carcinomas of the head and neck and to relate these levels of expression to histologic patterns of invasion. This study included T1 lesions obtained via biopsy from the larynx, tongue, and skin/mucosa of 78 patients with head and neck squamous cell carcinomas. The relationship between expression of MMP-13 and TIMP-1 and the mode of tumor invasion [MI] was evaluated immunohistochemically, using breast carcinoma tissue as a positive control. Increased expression was observed in highly invasive tumors, as reflected by the significant correlation between the degree of staining for MMP-13 or TIMP-1 and MI grade [p < 0.05]. There was no significant relationship between the degree of staining for MMP-13 or TIMP-1 and patient age, sex, tumor site, or tumor histologic grade. In addition, levels of staining for MMP-13 did not correlate with levels of staining for TIMP-1. The expression of MMP-13 and TIMP-1 appears to play an important role in determining the invasive capacity of squamous cell carcinomas of the head and neck. Whereas additional studies are needed to confirm these findings, evaluating expression of these MMPs in small biopsy samples may be useful in determining the invasive capacity of these tumors at an earlier stage

  9. Metabolic Networks and Metabolites Underlie Associations Between Maternal Glucose During Pregnancy and Newborn Size at Birth.

    Science.gov (United States)

    Scholtens, Denise M; Bain, James R; Reisetter, Anna C; Muehlbauer, Michael J; Nodzenski, Michael; Stevens, Robert D; Ilkayeva, Olga; Lowe, Lynn P; Metzger, Boyd E; Newgard, Christopher B; Lowe, William L

    2016-07-01

    Maternal metabolites and metabolic networks underlying associations between maternal glucose during pregnancy and newborn birth weight and adiposity demand fuller characterization. We performed targeted and nontargeted gas chromatography/mass spectrometry metabolomics on maternal serum collected at fasting and 1 h following glucose beverage consumption during an oral glucose tolerance test (OGTT) for 400 northern European mothers at ∼28 weeks' gestation in the Hyperglycemia and Adverse Pregnancy Outcome Study. Amino acids, fatty acids, acylcarnitines, and products of lipid metabolism decreased and triglycerides increased during the OGTT. Analyses of individual metabolites indicated limited maternal glucose associations at fasting, but broader associations, including amino acids, fatty acids, carbohydrates, and lipids, were found at 1 h. Network analyses modeling metabolite correlations provided context for individual metabolite associations and elucidated collective associations of multiple classes of metabolic fuels with newborn size and adiposity, including acylcarnitines, fatty acids, carbohydrates, and organic acids. Random forest analyses indicated an improved ability to predict newborn size outcomes by using maternal metabolomics data beyond traditional risk factors, including maternal glucose. Broad-scale association of fuel metabolites with maternal glucose is evident during pregnancy, with unique maternal metabolites potentially contributing specifically to newborn birth weight and adiposity. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  10. Dietary administration of scallion extract effectively inhibits colorectal tumor growth: cellular and molecular mechanisms in mice.

    Directory of Open Access Journals (Sweden)

    Palanisamy Arulselvan

    Full Text Available Colorectal cancer is a common malignancy and a leading cause of cancer death worldwide. Diet is known to play an important role in the etiology of colon cancer and dietary chemoprevention is receiving increasing attention for prevention and/or alternative treatment of colon cancers. Allium fistulosum L., commonly known as scallion, is popularly used as a spice or vegetable worldwide, and as a traditional medicine in Asian cultures for treating a variety of diseases. In this study we evaluated the possible beneficial effects of dietary scallion on chemoprevention of colon cancer using a mouse model of colon carcinoma (CT-26 cells subcutaneously inoculated into BALB/c mice. Tumor lysates were subjected to western blotting for analysis of key inflammatory markers, ELISA for analysis of cytokines, and immunohistochemistry for analysis of inflammatory markers. Metabolite profiles of scallion extracts were analyzed by LC-MS/MS. Scallion extracts, particularly hot-water extract, orally fed to mice at 50 mg (dry weight/kg body weight resulted in significant suppression of tumor growth and enhanced the survival rate of test mice. At the molecular level, scallion extracts inhibited the key inflammatory markers COX-2 and iNOS, and suppressed the expression of various cellular markers known to be involved in tumor apoptosis (apoptosis index, proliferation (cyclin D1 and c-Myc, angiogenesis (VEGF and HIF-1α, and tumor invasion (MMP-9 and ICAM-1 when compared with vehicle control-treated mice. Our findings may warrant further investigation of the use of common scallion as a chemopreventive dietary agent to lower the risk of colon cancer.

  11. Metabolite characterization in serum samples from normal healthy ...

    African Journals Online (AJOL)

    Metabolite characterization in serum samples from normal healthy human subjects by 1H and 13C NMR spectroscopy. D Misra, U Bajpai. Abstract. One and two dimensional NMR spectroscopy has been employed to characterize the various metabolites of serum control healthy samples. Two dimensional heteronuclear ...

  12. UV-guided isolation of fungal metabolites by HSCCC

    DEFF Research Database (Denmark)

    Dalsgaard, P.W.; Nielsen, K.F.; Larsen, Thomas Ostenfeld

    2005-01-01

    Analytical standardised reversed phase liquid chromatography (RPLC) data can be helpful in finding a suitable solvent combination for isolation of fungal metabolites by high-speed counter current chromatography. Analysis of the distribution coefficient (K-D) of fungal metabolites in a series...... peptides from a crude fungal extract....

  13. Effect of metabolites produced by Trichoderma species against ...

    African Journals Online (AJOL)

    Metabolites released from Trichoderma viride, T. polysporum, T. hamatum and T. aureoviride were tested in culture medium against Ceratocystis paradoxa, which causes black seed rot in oil palm sprouted seeds. The Trichoderma metabolites had similar fungistatic effects on the growth of C. paradoxa except those from T.

  14. Structure-activity relationships for the fluorescence of ochratoxin A: Insight for detection of ochratoxin A metabolites

    Energy Technology Data Exchange (ETDEWEB)

    Frenette, Christine; Paugh, Robert J. [Departments of Chemistry and Toxicology, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada); Tozlovanu, Mariana; Juzio, Maud [ENSAT, UMR CNRS 5503, 1 Avenue Agrobiopole 31326 Auzeville-Tolosane (France); Pfohl-Leszkowicz, Annie [ENSAT, UMR CNRS 5503, 1 Avenue Agrobiopole 31326 Auzeville-Tolosane (France)], E-mail: leszkowicz@ensat.fr; Manderville, Richard A. [Departments of Chemistry and Toxicology, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada)], E-mail: rmanderv@uoguelph.ca

    2008-06-09

    Ochratoxin A (OTA) is a mycotoxin produced by Aspergillus and Penicillium that is widely found as a contaminant of food products. The toxin is a renal carcinogen in male rats, the cause of mycotoxicoses in pigs and has been associated with chronic human kidney diseases. Bioactivation has been implicated in OTA-mediated toxicity, although inconsistent results have been reported, due, in part, to the difficulty in detecting OTA metabolites in vivo. Liquid chromatography (LC) coupled with fluorescence detection (FLD) is the most widely used analytical detection method for OTA. Under acidic conditions the toxin generates blue fluorescence (465 nm) that is due to an excited state intramolecular proton transfer (ESIPT) process that generates an emissive keto tautomer. Disruption of this ESIPT process quenches fluorescence intensity and causes a blue shift in emission maxima. The aim of the present study was to determine the impact of the C5-chlorine atom, the lactone moiety and the amide bond on OTA fluorescence and derive optical parameters for OTA metabolites that have been detected in vitro. Our results highlight the limitations of LC/FLD for OTA metabolites that do not undergo ESIPT. For emissive derivatives, our absorption and emission data improves the sensitivity of LC/FLD (3-4-fold increase in the limit of detection (LOD)) for OTA analogues bearing a C5-OH group, such as the hydroquinone (OTHQ) metabolite and the glutathione conjugate of OTA (OTA-GSH). This increased sensitivity may facilitate the detection of OTA metabolites bearing a C5-OH group in biological fluids and enhance our understanding of OTA-mediated toxicity.

  15. Tumor scintigram, 2

    International Nuclear Information System (INIS)

    Nakano, Shunichi; Hasegawa, Yoshihisa; Shimura, Kazuo; Ifuka, Keijiro

    1975-01-01

    In various cases of malignant tumors, especially those of lung cancer and liver cancer, scans were made with 57 Co-bleomycin(BLM), and its diagnostic significance was evaluated. Tumors were visualized with 57 Co-BLM in 22 of the 26 cases of lung cancer (84.6%). Concentrations of the RI were noted in all of the cases of squamous epithelium cancer, adenoid cancer and cellule-type undifferentiated cancer. The smallest tumor that could be detected was a 2 x 2 cm adenoid cancer. Tumors were imaged in 19 of the 27 cases of liver cancer (70.4%). This detection rate was increased by a combination of 57 Co-BLM and 198 Au-colloid scanning. The authors believe that 57 Co-BLM will help to establish the diagnosis of lung cancer or liver cancer. Tumors were also imaged in 6 of the 15 cases of breast cancer, but no distinct concentration was noted in the 7 cases of thyroid cancer. (Ueda, J.)

  16. NMR analysis of male fathead minnow urinary metabolites: A potential approach for studying impacts of chemical exposures

    Energy Technology Data Exchange (ETDEWEB)

    Ekman, D.R. [Ecosystems Research Division, U.S. EPA, 960 College Station Road, Athens, GA 30605 (United States)], E-mail: ekman.drew@epa.gov; Teng, Q. [Ecosystems Research Division, U.S. EPA, 960 College Station Road, Athens, GA 30605 (United States); Jensen, K.M.; Martinovic, D.; Villeneuve, D.L.; Ankley, G.T. [Mid-Continent Ecology Division, U.S. EPA, 6201 Congdon Boulevard, Duluth, MN 55804 (United States); Collette, T.W. [Ecosystems Research Division, U.S. EPA, 960 College Station Road, Athens, GA 30605 (United States)

    2007-11-30

    The potential for profiling metabolites in urine from male fathead minnows (Pimephales promelas) to assess chemical exposures was explored using nuclear magnetic resonance (NMR) spectroscopy. Both one-dimensional (1D) and two-dimensional (2D) NMR spectroscopy was used for the assignment of metabolites in urine from unexposed fish. Because fathead minnow urine is dilute, we lyophilized these samples prior to analysis. Furthermore, 1D {sup 1}H NMR spectra of unlyophilized urine from unexposed male fathead minnow and Sprague-Dawley rat were acquired to qualitatively compare rat and fish metabolite profiles and to provide an estimate of the total urinary metabolite pool concentration difference. As a small proof-of-concept study, lyophilized urine samples from male fathead minnows exposed to three different concentrations of the antiandrogen vinclozolin were analyzed by 1D {sup 1}H NMR to assess exposure-induced changes. Through a combination of principal components analysis (PCA) and measurements of {sup 1}H NMR peak intensities, several metabolites were identified as changing with statistical significance in response to exposure. Among those changes occurring in response to exposure to the highest concentration (450 {mu}g/L) of vinclozolin were large increases in taurine, lactate, acetate, and formate. These increases coincided with a marked decrease in hippurate, a combination potentially indicative of hepatotoxicity. The results of these investigations clearly demonstrate the potential utility of an NMR-based approach for assessing chemical exposures in male fathead minnow, using urine collected from individual fish.

  17. NMR analysis of male fathead minnow urinary metabolites: A potential approach for studying impacts of chemical exposures

    International Nuclear Information System (INIS)

    Ekman, D.R.; Teng, Q.; Jensen, K.M.; Martinovic, D.; Villeneuve, D.L.; Ankley, G.T.; Collette, T.W.

    2007-01-01

    The potential for profiling metabolites in urine from male fathead minnows (Pimephales promelas) to assess chemical exposures was explored using nuclear magnetic resonance (NMR) spectroscopy. Both one-dimensional (1D) and two-dimensional (2D) NMR spectroscopy was used for the assignment of metabolites in urine from unexposed fish. Because fathead minnow urine is dilute, we lyophilized these samples prior to analysis. Furthermore, 1D 1 H NMR spectra of unlyophilized urine from unexposed male fathead minnow and Sprague-Dawley rat were acquired to qualitatively compare rat and fish metabolite profiles and to provide an estimate of the total urinary metabolite pool concentration difference. As a small proof-of-concept study, lyophilized urine samples from male fathead minnows exposed to three different concentrations of the antiandrogen vinclozolin were analyzed by 1D 1 H NMR to assess exposure-induced changes. Through a combination of principal components analysis (PCA) and measurements of 1 H NMR peak intensities, several metabolites were identified as changing with statistical significance in response to exposure. Among those changes occurring in response to exposure to the highest concentration (450 μg/L) of vinclozolin were large increases in taurine, lactate, acetate, and formate. These increases coincided with a marked decrease in hippurate, a combination potentially indicative of hepatotoxicity. The results of these investigations clearly demonstrate the potential utility of an NMR-based approach for assessing chemical exposures in male fathead minnow, using urine collected from individual fish

  18. Enhanced photo(geno)toxicity of demethylated chlorpromazine metabolites

    Energy Technology Data Exchange (ETDEWEB)

    Palumbo, Fabrizio [Instituto de Tecnología Química UPV-CSIC/Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia (Spain); Garcia-Lainez, Guillermo [Instituto de Investigación Sanitaria (IIS) La Fe, Hospital Universitari i Politècnic La Fe, Avenida de Fernando Abril Martorell 106, 46026 Valencia (Spain); Limones-Herrero, Daniel [Instituto de Tecnología Química UPV-CSIC/Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia (Spain); Coloma, M. Dolores; Escobar, Javier [Instituto de Investigación Sanitaria (IIS) La Fe, Hospital Universitari i Politècnic La Fe, Avenida de Fernando Abril Martorell 106, 46026 Valencia (Spain); Jiménez, M. Consuelo [Instituto de Tecnología Química UPV-CSIC/Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia (Spain); Miranda, Miguel A., E-mail: mmiranda@qim.upv.es [Instituto de Tecnología Química UPV-CSIC/Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia (Spain); and others

    2016-12-15

    Chlorpromazine (CPZ) is an anti-psychotic drug widely used to treat disorders such as schizophrenia or manic-depression. Unfortunately, CPZ exhibits undesirable side effects such as phototoxic and photoallergic reactions in humans. In general, the influence of drug metabolism on this type of reactions has not been previously considered in photosafety testing. Thus, the present work aims to investigate the possible photo(geno)toxic potential of drug metabolites, using CPZ as an established reference compound. In this case, the metabolites selected for the study are demethylchlorpromazine (DMCPZ), didemethylchlorpromazine (DDMCPZ) and chlorpromazine sulfoxide (CPZSO). The demethylated CPZ metabolites DMCPZ and DDMCPZ maintain identical chromophore to the parent drug. In this work, it has been found that the nature of the aminoalkyl side chain modulates the hydrophobicity and the photochemical properties (for instance, the excited state lifetimes), but it does not change the photoreactivity pattern, which is characterized by reductive photodehalogenation, triggered by homolytic carbon-chlorine bond cleavage with formation of highly reactive aryl radical intermediates. Accordingly, these metabolites are phototoxic to cells, as revealed by the 3T3 NRU assay; their photo-irritation factors are even higher than that of CPZ. The same trend is observed in photogenotoxicity studies, both with isolated and with cellular DNA, where DMCPZ and DDMCPZ are more active than CPZ itself. In summary, side-chain demethylation of CPZ, as a consequence of Phase I biotransformation, does not result a photodetoxification. Instead, it leads to metabolites that exhibit in an even enhanced photo(geno)toxicity. - Highlights: • Demethylated CPZ metabolites are phototoxic to cells, as revealed by the NRU assay. • Single cell electrophoresis (Comet Assay) confirms the photodamage to cellular DNA. • DNA single strand breaks formation is observed on agarose gel electrophoresis.

  19. Enhanced photo(geno)toxicity of demethylated chlorpromazine metabolites

    International Nuclear Information System (INIS)

    Palumbo, Fabrizio; Garcia-Lainez, Guillermo; Limones-Herrero, Daniel; Coloma, M. Dolores; Escobar, Javier; Jiménez, M. Consuelo; Miranda, Miguel A.

    2016-01-01

    Chlorpromazine (CPZ) is an anti-psychotic drug widely used to treat disorders such as schizophrenia or manic-depression. Unfortunately, CPZ exhibits undesirable side effects such as phototoxic and photoallergic reactions in humans. In general, the influence of drug metabolism on this type of reactions has not been previously considered in photosafety testing. Thus, the present work aims to investigate the possible photo(geno)toxic potential of drug metabolites, using CPZ as an established reference compound. In this case, the metabolites selected for the study are demethylchlorpromazine (DMCPZ), didemethylchlorpromazine (DDMCPZ) and chlorpromazine sulfoxide (CPZSO). The demethylated CPZ metabolites DMCPZ and DDMCPZ maintain identical chromophore to the parent drug. In this work, it has been found that the nature of the aminoalkyl side chain modulates the hydrophobicity and the photochemical properties (for instance, the excited state lifetimes), but it does not change the photoreactivity pattern, which is characterized by reductive photodehalogenation, triggered by homolytic carbon-chlorine bond cleavage with formation of highly reactive aryl radical intermediates. Accordingly, these metabolites are phototoxic to cells, as revealed by the 3T3 NRU assay; their photo-irritation factors are even higher than that of CPZ. The same trend is observed in photogenotoxicity studies, both with isolated and with cellular DNA, where DMCPZ and DDMCPZ are more active than CPZ itself. In summary, side-chain demethylation of CPZ, as a consequence of Phase I biotransformation, does not result a photodetoxification. Instead, it leads to metabolites that exhibit in an even enhanced photo(geno)toxicity. - Highlights: • Demethylated CPZ metabolites are phototoxic to cells, as revealed by the NRU assay. • Single cell electrophoresis (Comet Assay) confirms the photodamage to cellular DNA. • DNA single strand breaks formation is observed on agarose gel electrophoresis.

  20. Reparation and Immunomodulating Properties of Bacillus sp. Metabolites from Permafrost.

    Science.gov (United States)

    Kalenova, L F; Melnikov, V P; Besedin, I M; Bazhin, A S; Gabdulin, M A; Kolyvanova, S S

    2017-09-01

    An ointment containing metabolites of Bacillus sp. microorganisms isolated from permafrost samples was applied onto the skin wound of BALB/c mice. Metabolites isolated during culturing of Bacillus sp. at 37°C produced a potent therapeutic effect and promoted wound epithelialization by 30% in comparison with the control (ointment base) and by 20% in comparison with Solcoseryl. Treatment with Bacillus sp. metabolites stimulated predominantly humoral immunity, reduced the time of wound contraction and the volume of scar tissue, and promoted complete hair recovery. These metabolites can be considered as modulators of the wound process with predominance of regeneration mechanisms.