WorldWideScience

Sample records for metabolites increases tumor

  1. In vivo metabolite-specific imaging in tumor

    Hurd, R.E.; Freeman, D.M.

    1988-01-01

    The authors have developed a practical method using proton MR imaging to map the level and distribution of metabolites in vivo. Of particular interest to the biochemist and the clinician is the presence of excess lactic acid in tissues, indicating hypoxia such as is found in certain solid tumors, or in ischemia that would occur during cardiac infarct or stroke. A two-dimensional double quantum coherence technique has been optimized to greatly reduce signal intensity from biologic water and to provide unambiguous editing of the lactic acid resonance from interfering lipid resonances. The method was tested using a General Electric 2.0-T CSI instrument fitted with actively shielded gradients. Two-dimensional double quantum coherence lactic acid edited images were obtained from an implanted RIF-1 tumor in C3H mice, showing heterogeneous distribution of lactic acid within the tumor. Very little lipid signal with respect to the lactic acid methyl resonance was observed. The lactic acid concentration of the tumor was determined to be 10 μmol/g wet by enzymatic assay. Metabolite-specific imaging using double quantum coherence transfer promises to yield noninvasive information about lactic acid levels and distribution in vivo at low field, relatively quickly, with low radio frequency power disposition and without the need for complex presaturation pulses

  2. A modular modulation method for achieving increases in metabolite production.

    Acerenza, Luis; Monzon, Pablo; Ortega, Fernando

    2015-01-01

    Increasing the production of overproducing strains represents a great challenge. Here, we develop a modular modulation method to determine the key steps for genetic manipulation to increase metabolite production. The method consists of three steps: (i) modularization of the metabolic network into two modules connected by linking metabolites, (ii) change in the activity of the modules using auxiliary rates producing or consuming the linking metabolites in appropriate proportions and (iii) determination of the key modules and steps to increase production. The mathematical formulation of the method in matrix form shows that it may be applied to metabolic networks of any structure and size, with reactions showing any kind of rate laws. The results are valid for any type of conservation relationships in the metabolite concentrations or interactions between modules. The activity of the module may, in principle, be changed by any large factor. The method may be applied recursively or combined with other methods devised to perform fine searches in smaller regions. In practice, it is implemented by integrating to the producer strain heterologous reactions or synthetic pathways producing or consuming the linking metabolites. The new procedure may contribute to develop metabolic engineering into a more systematic practice. © 2015 American Institute of Chemical Engineers.

  3. Programming adaptive control to evolve increased metabolite production.

    Chou, Howard H; Keasling, Jay D

    2013-01-01

    The complexity inherent in biological systems challenges efforts to rationally engineer novel phenotypes, especially those not amenable to high-throughput screens and selections. In nature, increased mutation rates generate diversity in a population that can lead to the evolution of new phenotypes. Here we construct an adaptive control system that increases the mutation rate in order to generate diversity in the population, and decreases the mutation rate as the concentration of a target metabolite increases. This system is called feedback-regulated evolution of phenotype (FREP), and is implemented with a sensor to gauge the concentration of a metabolite and an actuator to alter the mutation rate. To evolve certain novel traits that have no known natural sensors, we develop a framework to assemble synthetic transcription factors using metabolic enzymes and construct four different sensors that recognize isopentenyl diphosphate in bacteria and yeast. We verify FREP by evolving increased tyrosine and isoprenoid production.

  4. The utility of fecal corticosterone metabolites and animal welfare assessment protocols as predictive parameters of tumor development and animal welfare in a murine xenograft model

    Jacobsen, Kirsten Rosenmaj; Jørgensen, Pernille Schønning; Pipper, Christian Bressen

    2013-01-01

    consumption, and an animal welfare assessment (AWA) protocol revealed marked differences between control and cancer lines as the size of the tumor increased. However, only the AWA protocol was effective in predicting the tumor size and the level of fecal corticosterone metabolites (FCM). FCM levels were...

  5. ω-3 Polyunsaturated fatty acids and their cytochrome P450-derived metabolites suppress colorectal tumor development in mice.

    Wang, Weicang; Yang, Jun; Nimiya, Yoshiki; Lee, Kin Sing Stephen; Sanidad, Katherine; Qi, Weipeng; Sukamtoh, Elvira; Park, Yeonhwa; Liu, Zhenhua; Zhang, Guodong

    2017-10-01

    Many studies have shown that dietary intake of ω-3 polyunsaturated fatty acids (PUFAs) reduces the risks of colorectal cancer; however, the underlying mechanisms are not well understood. Here we used a LC-MS/MS-based lipidomics to explore the role of eicosanoid signaling in the anti-colorectal cancer effects of ω-3 PUFAs. Our results showed that dietary feeding of ω-3 PUFAs-rich diets suppressed growth of MC38 colorectal tumor, and modulated profiles of fatty acids and eicosanoid metabolites in C57BL/6 mice. Notably, we found that dietary feeding of ω-3 PUFAs significantly increased levels of epoxydocosapentaenoic acids (EDPs, metabolites of ω-3 PUFA produced by cytochrome P450 enzymes) in plasma and tumor tissue of the treated mice. We further showed that systematic treatment with EDPs (dose=0.5 mg/kg per day) suppressed MC38 tumor growth in mice, with reduced expressions of pro-oncogenic genes such as C-myc, Axin2, and C-jun in tumor tissues. Together, these results support that formation of EDPs might contribute to the anti-colorectal cancer effects of ω-3 PUFAs. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. iNOS expression and biosynthesis of nitric oxide metabolites in the course of tumor growth of different histogenesis

    V. P. Deryagina

    2016-01-01

    Full Text Available The dynamics of the production of nitric oxide (NO metabolites: nitrites, nitrates, volatile nitrosamines and iNOS expression was studied in mice with subcutaneous transplanted, spontaneous and chemical- induced tumors. Tumor growth was accompanied by increased production of nitrites + nitrates in tumors or their release with urine that not dependent on tumor histotype. The total concentration of nitrites and nitrates in tumors reached micromolar levels characteristic of nitrosative stress. The ability of peritoneal macrophages + monocytes to generates nitrites was suppressed at the stage of intensive growth of the Lewis lung carcinoma, which may indicate a decrease in the cytotoxic properties of immune cells. The possibility of formation in the Erlich carcinoma of volative N-nitrosodimethylamine and N-nitrosodiethylamine compounds with pronounced carcinogenic properties was demonstrated. A positive expression of iNOS was revealed in some areas of lung carcinoma at all investigated time points using the immunohistochemical method. The lungs metastases were not stain or weakly stained. This may indicate selection of the cells with a low activity of iNOS migrating in the lungs.

  7. Isotope inequilibrium of glucose metabolites in intact cells and particlefree supernatants of Ehrlich ascites tumor

    Daehnfeldt, J.L.; Winge, P.

    1975-01-01

    With an enzyme degradative technique, isotope inequilibrium of glucose metabolites was demonstrated in intact cells and particle-free supernatants of Ehrlich ascites tumor using I- 14 C-glucose as tracer. Inequilibrium was found between glucose and glucose-6-phosphate, glucose and fructose-6-phosphate, glucose and 6-phosphogluconate, while glucose-6-phosphate and fructose-6-phosphate were found to be in near equilibrium within the incubation time investigated. Glucose and lactate were found to be in near equilibrium after 8 min in intact cells. Calculations based on the equilibrium levels found, showed that these inequilibria could not be explained by the effects of the pentose cycle. (U.S.)

  8. Targeted Serum Metabolite Profiling Identifies Metabolic Signatures in Patients with Alzheimer's Disease, Normal Pressure Hydrocephalus and Brain Tumor

    Matej Orešič

    2018-01-01

    Full Text Available Progression to AD is preceded by elevated levels of 2,4-dihydroxybutanoic acid (2,4-DHB, implicating hypoxia in early pathogenesis. Since hypoxia may play a role in multiple CNS disorders, we investigated serum metabolite profiles across three disorders, AD, Normal Pressure Hydrocephalus (NPH and brain tumors (BT. Blood samples were collected from 27 NPH and 20 BT patients. The profiles of 21 metabolites were examined. Additionally, data from 37 AD patients and 46 controls from a previous study were analyzed together with the newly acquired data. No differences in 2,4-DHB were found across AD, NPH and BT samples. In the BT group, the fatty acids were increased as compared to HC and NPH groups, while the ketone body 3-hydroxybutyrate was increased as compared to AD. Glutamic acid was increased in AD as compared to the HC group. In the AD group, 3-hydroxybutyrate tended to be decreased with respect to all other groups (mean values −30% or more, but the differences were not statistically significant. Serine was increased in NPH as compared to BT. In conclusion, AD, NPH and BT have different metabolic profiles. This preliminary study may help in identifying the blood based markers that are specific to these three CNS diseases.

  9. Captopril improves tumor nanomedicine delivery by increasing tumor blood perfusion and enlarging endothelial gaps in tumor blood vessels.

    Zhang, Bo; Jiang, Ting; Tuo, Yanyan; Jin, Kai; Luo, Zimiao; Shi, Wei; Mei, Heng; Hu, Yu; Pang, Zhiqing; Jiang, Xinguo

    2017-12-01

    Poor tumor perfusion and unfavorable vessel permeability compromise nanomedicine drug delivery to tumors. Captopril dilates blood vessels, reducing blood pressure clinically and bradykinin, as the downstream signaling moiety of captopril, is capable of dilating blood vessels and effectively increasing vessel permeability. The hypothesis behind this study was that captopril can dilate tumor blood vessels, improving tumor perfusion and simultaneously enlarge the endothelial gaps of tumor vessels, therefore enhancing nanomedicine drug delivery for tumor therapy. Using the U87 tumor xenograft with abundant blood vessels as the tumor model, tumor perfusion experiments were carried out using laser Doppler imaging and lectin-labeling experiments. A single treatment of captopril at a dose of 100 mg/kg significantly increased the percentage of functional vessels in tumor tissues and improved tumor blood perfusion. Scanning electron microscopy of tumor vessels also indicated that the endothelial gaps of tumor vessels were enlarged after captopril treatment. Immunofluorescence-staining of tumor slices demonstrated that captopril significantly increased bradykinin expression, possibly explaining tumor perfusion improvements and endothelial gap enlargement. Additionally, imaging in vivo, imaging ex vivo and nanoparticle distribution in tumor slices indicated that after a single treatment with captopril, the accumulation of 115-nm nanoparticles in tumors had increased 2.81-fold with a more homogeneous distribution pattern in comparison to non-captopril treated controls. Finally, pharmacodynamics experiments demonstrated that captopril combined with paclitaxel-loaded nanoparticles resulted in the greatest tumor shrinkage and the most extensive necrosis in tumor tissues among all treatment groups. Taken together, the data from the present study suggest a novel strategy for improving tumor perfusion and enlarging blood vessel permeability simultaneously in order to improve

  10. Porritoxins, metabolites of Alternaria porri, as anti-tumor-promoting active compounds.

    Horiuchi, Masayuki; Tokuda, Harukuni; Ohnishi, Keiichiro; Yamashita, Masakazu; Nishino, Hoyoku; Maoka, Takashi

    2006-02-01

    To search for possible cancer chemopreventive agents from natural sources, we performed primary screening of metabolites of Alternaria porri by examining their possible inhibitory effects on Epstein-Barr virus early antigen (EBV-EA) activation induced by 12-O-tetradecanoylphorbol-13-acetate (TPA) in Raji cells. The ethyl acetate extract of A. porri showed the inhibitory effect on EBV-EA activation. Three porritoxins (1-3) were obtained as inhibitory active compounds for EBV-EA from ethyl acetate extract. 6-(3',3'-Dimethylallyloxy)-4-methoxy-5-methylphthalide (2) showed the strongest activity among them. Inhibitory effect of porritoxin (1) and (2) was superior to that of beta-carotene, a well-known anti-tumor promoter. Furthermore, the structure-activity correlation of porritoxins and their related compounds were discussed.

  11. Non-invasive quantitation of phosphorus metabolites in human brain and brain tumors by magnetic resonance spectroscopy

    Naruse, Shoji; Higuchi, Toshihiro; Horikawa, Yoshiharu; Tanaka, Chuzo; Roth, K.; Hubesch, B.; Meyerhoff, D.J.; Weiner, M.W.

    1989-01-01

    In obtaining localized magnetic resonance spectra in the clinical setting, the exact determination of volume of interest (VOI), the relative sensitivity of detection within the VOI, the inhomogeneity of B 1 field, the Q factor of the coil, and saturation factors should be considered. Taking these items into account, a quantitative method for calculating the absolute amount of phosphorus metabolites was developed. Using this method, phosphorus metabolites in the brain were determined in 15 patients with brain tumors - meningioma (8) and astrocytoma (7), and 10 normal volunteers. The integrals for metabolite signals were determined by using the curve-fitting software. The concentrations for ATP, PCr, PDE, inorganic orthophosphate (Pi), and phosphomonosters (PME) were 2.5, 4.9, 11.3, 1.9 and 3.9 mM, respectively, in the normal brain. For the brain tumors, phosphorus metabolites were decreased, except for Pi and PME. These results encourage the clinical use of this method in the quantitative analysis of metabolites of the diseased brain. (Namekawa, K)

  12. Blood Outgrowth Endothelial Cells Increase Tumor Growth Rates and Modify Tumor Physiology: Relevance for Therapeutic Targeting

    Pagan, Jonathan, E-mail: jdpagan@uams.edu; Przybyla, Beata; Jamshidi-Parsian, Azemat [Department of Radiation Oncology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205 (United States); Gupta, Kalpna [Vascular Biology Center and Division of Hematology-Oncology Transplantation, Department of Medicine, University of Minnesota Medical School, MN 72223 (United States); Griffin, Robert J. [Department of Radiation Oncology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205 (United States)

    2013-02-18

    Endothelial cell precursors from human peripheral blood have been shown to home to areas of neovascularization and may assist tumor growth by increasing or fortifying blood vessel growth. In the present study, the influence of these cells on tumor growth and physiology was investigated and the role of these cells as a therapeutic target or in determining treatment sensitivity was tested. After isolation from human blood and expansion in vitro, actively growing cells with verified endothelial phenotype (Blood Outgrowth Endothelial Cell, BOEC) were injected i.v. into tumor bearing mice for three consecutive days. The growth rate was significantly enhanced in relatively small RERF human lung tumors (i.e., less than 150 mm{sup 3}) grown in immunocompromised mice by an average of 1.5-fold while it had no effect when injections were given to animals bearing larger tumors. There were no signs of toxicity or unwanted systemic effects. We also observed evidence of increased perfusion, vessel number, response to 15 Gy radiation and oxygenation in RERF tumors of animals injected with BOECs compared to control tumors. In addition, FSaII murine fibrosarcoma tumors were found to grow faster upon injection of BOECs. When FSaII tumors were subjected to a partial thermal ablation treatment using high intensity focused ultrasound (HIFU) there was consistently elevated detection of fluorescently labeled and i.v. injected endothelial precursors in the tumor when analyzed with optical imaging and/or histological preparations. Importantly, we also observed that BOECs treated with the novel anti-angiogenic peptide anginex in-vitro, show decreased proliferation and increased sensitivity to radiation. In vivo, the normal increase in FSaII tumor growth induced by injected BOECs was blunted by the addition of anginex treatment. It appears that endothelial precursors may significantly contribute to tumor vessel growth, tumor progression and/or repair of tumor damage and may improve the

  13. Blood Outgrowth Endothelial Cells Increase Tumor Growth Rates and Modify Tumor Physiology: Relevance for Therapeutic Targeting

    Pagan, Jonathan; Przybyla, Beata; Jamshidi-Parsian, Azemat; Gupta, Kalpna; Griffin, Robert J.

    2013-01-01

    Endothelial cell precursors from human peripheral blood have been shown to home to areas of neovascularization and may assist tumor growth by increasing or fortifying blood vessel growth. In the present study, the influence of these cells on tumor growth and physiology was investigated and the role of these cells as a therapeutic target or in determining treatment sensitivity was tested. After isolation from human blood and expansion in vitro, actively growing cells with verified endothelial phenotype (Blood Outgrowth Endothelial Cell, BOEC) were injected i.v. into tumor bearing mice for three consecutive days. The growth rate was significantly enhanced in relatively small RERF human lung tumors (i.e., less than 150 mm 3 ) grown in immunocompromised mice by an average of 1.5-fold while it had no effect when injections were given to animals bearing larger tumors. There were no signs of toxicity or unwanted systemic effects. We also observed evidence of increased perfusion, vessel number, response to 15 Gy radiation and oxygenation in RERF tumors of animals injected with BOECs compared to control tumors. In addition, FSaII murine fibrosarcoma tumors were found to grow faster upon injection of BOECs. When FSaII tumors were subjected to a partial thermal ablation treatment using high intensity focused ultrasound (HIFU) there was consistently elevated detection of fluorescently labeled and i.v. injected endothelial precursors in the tumor when analyzed with optical imaging and/or histological preparations. Importantly, we also observed that BOECs treated with the novel anti-angiogenic peptide anginex in-vitro, show decreased proliferation and increased sensitivity to radiation. In vivo, the normal increase in FSaII tumor growth induced by injected BOECs was blunted by the addition of anginex treatment. It appears that endothelial precursors may significantly contribute to tumor vessel growth, tumor progression and/or repair of tumor damage and may improve the

  14. Increasing carbon availability stimulates growth and secondary metabolites via modulation of phytohormones in winter wheat

    Reichelt, Michael; Chowdhury, Somak; Hammerbacher, Almuth; Hartmann, Henrik

    2017-01-01

    Abstract Phytohormones play important roles in plant acclimation to changes in environmental conditions. However, their role in whole-plant regulation of growth and secondary metabolite production under increasing atmospheric CO2 concentrations ([CO2]) is uncertain but crucially important for understanding plant responses to abiotic stresses. We grew winter wheat (Triticum aestivum) under three [CO2] (170, 390, and 680 ppm) over 10 weeks, and measured gas exchange, relative growth rate (RGR), soluble sugars, secondary metabolites, and phytohormones including abscisic acid (ABA), auxin (IAA), jasmonic acid (JA), and salicylic acid (SA) at the whole-plant level. Our results show that, at the whole-plant level, RGR positively correlated with IAA but not ABA, and secondary metabolites positively correlated with JA and JA-Ile but not SA. Moreover, soluble sugars positively correlated with IAA and JA but not ABA and SA. We conclude that increasing carbon availability stimulates growth and production of secondary metabolites via up-regulation of auxin and jasmonate levels, probably in response to sugar-mediated signalling. Future low [CO2] studies should address the role of reactive oxygen species (ROS) in leaf ABA and SA biosynthesis, and at the transcriptional level should focus on biosynthetic and, in particular, on responsive genes involved in [CO2]-induced hormonal signalling pathways. PMID:28159987

  15. The influence of arachidonic acid metabolites on cell division in the intestinal epithelium and in colonic tumors.

    Petry, F M; Tutton, P J; Barkla, D H

    1984-09-01

    Various metabolites of arachidonic acid are now known to influence cell division. In this paper the effects on cell proliferation of arachidonic acid, some inhibitors of arachidonic acid metabolism and some analogs of arachidonic acid metabolites is described. The epithelial cell proliferation rate in the jejunum, in the descending colon and in dimethylhydrazine-induced tumors of rat colon was measured using a stathmokinetic technique. Administration of arachidonic acid resulted in retardation of cell proliferation in each of the tissues examined. A cyclooxygenase inhibitor (Flurbiprofen) prevented this effect of arachidonic acid in the jejunal crypts and in colonic tumors, but not in colonic crypts. In contrast, inhibitors of both cyclooxygenase and lipoxygenase (Benoxaprofen and BW755c) prevented the effect of arachidonic acid in the colonic crypts and reduced its effect on colonic tumours but did not alter its effect on the jejunum. An inhibitor of thromoboxane A2 synthetase (U51,605) was also able to prevent the inhibitory effect of arachidonic acid on colonic tumors. Treatment with 16,16-dimethyl PGE2 inhibited cell proliferation in jejunal crypts and in colonic tumors, as did a thromboxane A2 mimicking agent, U46619. Nafazatrom, an agent that stimulates prostacyclin synthesis and inhibits lypoxygenase, promoted cell proliferation in the jejunal crypts and colonic crypts, but inhibited cell proliferation in colonic tumours.

  16. Oral JS-38, a metabolite from Xenorhabdus sp., has both anti-tumor activity and the ability to elevate peripheral neutrophils.

    Liu, Min-Yu; Xiao, Lin; Chen, Geng-Hui; Wang, Yong-Xiang; Xiong, Wei-Xia; Li, Fei; Liu, Ying; Huang, Xiao-Ling; Deng, Yi-Fang; Zhang, Zhen; Sun, Hai-Yan; Liu, Quan-Hai; Yin, Ming

    2014-10-01

    JS-38 (mitothiolore), a synthetic version of a metabolite isolated from Xenorhabdus sp., was evaluated for its anti-tumor and white blood cell (WBC) elevating activities. These anti-proliferative activities were assessed in vitro using a panel of ten cell lines. The anti-tumor activities were tested in vivo using B16 allograft mouse models and xenograft models of A549 human lung carcinoma and QGY human hepatoma in nude mice. The anti-tumor interactions of JS-38 and cyclophosphamide (CTX) or 5-fluorouracil (5-Fu) were studied in a S180 sarcoma model in ICR mice. Specific stimulatory effects were determined on peripheral neutrophils in normal and CTX- and 5-Fu-induced neutropenic mice. The IC50 values ranged from 0.1 to 2.0 μmol·L(-1). JS-38 (1 μmol·L(-1)) caused an increase in A549 tumor cell apoptosis. Multi-daily gavage of JS-38 (15, 30, and 60 mg·kg(-1)·d(-1)) inhibited in vivo tumor progression without a significant effect on body weight. JS-38 additively enhanced the in vivo anti-tumor effects of CTX or 5-Fu. JS-38 increased peripheral neutrophil counts and neutrophil rates in normal BALB/c mice almost as effectively as granulocyte colony-stimulating factor (G-CSF). In mice with neutropenia induced by CTX or 5-Fu, JS-38 rapidly restored neutrophil counts. These results suggest that JS-38 has anti-tumor activity, and also has the ability to increase peripheral blood neutrophils. Copyright © 2014 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  17. 2-methoxyestradiol-mediated anti-tumor effect increases osteoprotegerin expression in osteosarcoma cells.

    Benedikt, Michaela B; Mahlum, Eric W; Shogren, Kristen L; Subramaniam, Malayannan; Spelsberg, Thomas C; Yaszemski, Michael J; Maran, Avudaiappan

    2010-04-01

    Osteosarcoma is a bone tumor that frequently develops during adolescence. 2-Methoxyestradiol (2-ME), a naturally occurring metabolite of 17beta-estradiol, induces cell cycle arrest and cell death in human osteosarcoma cells. To investigate whether the osteoprotegrin (OPG) protein plays a role in 2-ME actions, we studied the effect of 2-ME treatment on OPG gene expression in human osteosarcoma cells. 2-ME treatment induced OPG gene promoter activity and mRNA levels. Also, Western blot analysis showed that 2-ME treatment increased OPG protein levels in MG63, KHOS, 143B and LM7 osteosarcoma cells by 3-, 1.9-, 2.8-, and 2.5-fold, respectively, but did not affect OPG expression in normal bone cells. In addition, increases in OPG protein levels were observed in osteosarcoma cell culture media after 3 days of 2-ME treatment. The effect of 2-ME on osteosarcoma cells was ligand-specific as parent estrogen, 17beta-estradiol and a tumorigenic estrogen metabolite, 16alpha-hydroxyestradiol, which do not affect osteosarcoma cell cycle and cell death, had no effect on OPG protein expression. Furthermore, co-treating osteosarcoma cells with OPG protein did not further enhance 2-ME-mediated anti-tumor effects. OPG-released in 2-ME-treated cultures led to an increase in osteoblastic activity and a decrease in osteoclast number, respectively. These findings suggest that OPG is not directly involved in 2-ME-mediated anti-proliferative effects in osteosarcoma cells, but rather participates in anti-resorptive functions of 2-ME in bone tumor environment. Copyright 2010 Wiley-Liss, Inc.

  18. Persistent enhancement of bacterial motility increases tumor penetration.

    Thornlow, Dana N; Brackett, Emily L; Gigas, Jonathan M; Van Dessel, Nele; Forbes, Neil S

    2015-11-01

    Motile bacteria can overcome the transport limitations that hinder many cancer therapies. Active bacteria can penetrate through tissue to deliver treatment to resistant tumor regions. Bacterial therapy has had limited success, however, because this motility is heterogeneous, and within a population many individuals are non-motile. In human trials, heterogeneity led to poor dispersion and incomplete tumor colonization. To address these problems, a swarm-plate selection method was developed to increase swimming velocity. Video microscopy was used to measure the velocity distribution of selected bacteria and a microfluidic tumor-on-a-chip device was used to measure penetration through tumor cell masses. Selection on swarm plates increased average velocity fourfold, from 4.9 to 18.7 μm/s (P < 0.05) and decreased the number of non-motile individuals from 51% to 3% (P < 0.05). The selected phenotype was both robust and stable. Repeating the selection process consistently increased velocity and eliminated non-motile individuals. When selected strains were cryopreserved and subcultured for 30.1 doublings, the high-motility phenotype was preserved. In the microfluidic device, selected Salmonella penetrated deeper into cell masses than unselected controls. By 10 h after inoculation, control bacteria accumulated in the front 30% of cell masses, closest to the flow channel. In contrast, selected Salmonella accumulated in the back 30% of cell masses, farthest from the channel. Selection increased the average penetration distance from 150 to 400 μm (P < 0.05). This technique provides a simple and rapid method to generate high-motility Salmonella that has increased penetration and potential for greater tumor dispersion and clinical efficacy. © 2015 Wiley Periodicals, Inc.

  19. CYP2F2-generated metabolites, not styrene oxide, are a key event mediating the mode of action of styrene-induced mouse lung tumors.

    Cruzan, G; Bus, J; Hotchkiss, J; Harkema, J; Banton, M; Sarang, S

    2012-02-01

    Styrene induces lung tumors in mice but not in rats. Although metabolism of styrene to 7,8-styrene oxide (SO) by CYP2E1 has been suggested as a mediator of styrene toxicity, lung toxicity is not attenuated in CYP2E1 knockout mice. However, styrene and/or SO metabolism by mouse lung Clara cell-localized CYP2F2 to ring-oxidized cytotoxic metabolite(s) has been postulated as a key metabolic gateway responsible for both lung toxicity and possible tumorigenicity. To test this hypothesis, the lung toxicity of styrene and SO was evaluated in C57BL/6 (WT) and CYP2F2⁻/⁻ knockout mice treated with styrene (400 mg/kg/day, gavage, or 200 or 400 mg/kg/day, ip) or S- or R-SO (200 mg/kg/day, ip) for 5 days. Styrene treated WT mice displayed significant necrosis and exfoliation of Clara cells, and cumulative BrdU-labeling index of S-phase cells was markedly increased in terminal bronchioles of WT mice exposed to styrene or S- or RSO. In contrast, Clara and terminal bronchiole cell toxicity was not observed in CYP2F2⁻/⁻ mice exposed to either styrene or SO. This study clearly demonstrates that the mouse lung toxicity of both styrene and SO is critically dependent on metabolism by CYP2F2. Importantly, the human isoform of CYP2F, CYP2F1, is expressed at much lower levels and likely does not catalyze significant styrene metabolism, supporting the hypothesis that styrene-induced mouse lung tumors may not quantitatively, or possibly qualitatively, predict lung tumor potential in humans. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Increased metabolite levels of glycolysis and pentose phosphate pathway in rabbit atherosclerotic arteries and hypoxic macrophage.

    Atsushi Yamashita

    Full Text Available AIMS: Inflammation and possibly hypoxia largely affect glucose utilization in atherosclerotic arteries, which could alter many metabolic systems. However, metabolic changes in atherosclerotic plaques remain unknown. The present study aims to identify changes in metabolic systems relative to glucose uptake and hypoxia in rabbit atherosclerotic arteries and cultured macrophages. METHODS: Macrophage-rich or smooth muscle cell (SMC-rich neointima was created by balloon injury in the iliac-femoral arteries of rabbits fed with a 0.5% cholesterol diet or a conventional diet. THP-1 macrophages stimulated with lipopolysaccharides (LPS and interferon-γ (INFγ were cultured under normoxic and hypoxic conditions. We evaluated comprehensive arterial and macrophage metabolism by performing metabolomic analyses using capillary electrophoresis-time of flight mass spectrometry. We evaluated glucose uptake and its relationship to vascular hypoxia using (18F-fluorodeoxyglucose ((18F-FDG and pimonidazole, a marker of hypoxia. RESULTS: The levels of many metabolites increased in the iliac-femoral arteries with macrophage-rich neointima, compared with those that were not injured and those with SMC-rich neointima (glycolysis, 4 of 9; pentose phosphate pathway, 4 of 6; tricarboxylic acid cycle, 4 of 6; nucleotides, 10 of 20. The uptake of (18F-FDG in arterial walls measured by autoradiography positively correlated with macrophage- and pimonidazole-immunopositive areas (r = 0.76, and r = 0.59 respectively; n = 69 for both; p<0.0001. Pimonidazole immunoreactivity was closely localized with the nuclear translocation of hypoxia inducible factor-1α and hexokinase II expression in macrophage-rich neointima. The levels of glycolytic (8 of 8 and pentose phosphate pathway (4 of 6 metabolites increased in LPS and INFγ stimulated macrophages under hypoxic but not normoxic condition. Plasminogen activator inhibitor-1 protein levels in the supernatant were closely

  1. Targeted Serum Metabolite Profiling Identifies Metabolic Signatures in Patients with Alzheimer's Disease, Normal Pressure Hydrocephalus and Brain Tumor

    Orešič, Matej; Anderson, Gabriella; Mattila, Ismo

    2018-01-01

    , NPH and BT samples. In the BT group, the fatty acids were increased as compared to HC and NPH groups, while the ketone body 3-hydroxybutyrate was increased as compared to AD. Glutamic acid was increased in AD as compared to the HC group. In the AD group, 3-hydroxybutyrate tended to be decreased......Progression to AD is preceded by elevated levels of 2,4-dihydroxybutanoic acid (2,4-DHB), implicating hypoxia in early pathogenesis. Since hypoxia may play a role in multiple CNS disorders, we investigated serum metabolite profiles across three disorders, AD, Normal Pressure Hydrocephalus (NPH...

  2. Mechanical disruption of tumors by iron particles and magnetic field application results in increased anti-tumor immune responses.

    Myriam N Bouchlaka

    Full Text Available The primary tumor represents a potential source of antigens for priming immune responses for disseminated disease. Current means of debulking tumors involves the use of cytoreductive conditioning that impairs immune cells or removal by surgery. We hypothesized that activation of the immune system could occur through the localized release of tumor antigens and induction of tumor death due to physical disruption of tumor architecture and destruction of the primary tumor in situ. This was accomplished by intratumor injection of magneto-rheological fluid (MRF consisting of iron microparticles, in Balb/c mice bearing orthotopic 4T1 breast cancer, followed by local application of a magnetic field resulting in immediate coalescence of the particles, tumor cell death, slower growth of primary tumors as well as decreased tumor progression in distant sites and metastatic spread. This treatment was associated with increased activation of DCs in the draining lymph nodes and recruitment of both DCs and CD8(+T cells to the tumor. The particles remained within the tumor and no toxicities were observed. The immune induction observed was significantly greater compared to cryoablation. Further anti-tumor effects were observed when MRF/magnet therapy was combined with systemic low dose immunotherapy. Thus, mechanical disruption of the primary tumor with MRF/magnetic field application represents a novel means to induce systemic immune activation in cancer.

  3. Increased antioxidant activity and polyphenol metabolites in methyl jasmonate treated mung bean (Vigna radiata sprouts

    Li LI

    Full Text Available Abstract Mung bean sprouts are a popular health food both in China and worldwide. We determined the optimal concentration of exogenous methyl jasmonate (MeJA for the promotion of the sprouting in mung beans (Vigna radiata. The 1,1-diphenyl-2- picrylhydrazyl radical (DPPH scavenging test showed that MeJA application resulted in significantly improved antioxidant capacity in the sprouts 72 h later. Measurement of total polyphenols in MeJA-treated beans from 0 to 168 h, using Folin–Ciocalteu colorimetry, showed that the polyphenols changing was significantly correlated with antioxidant activity. The main polyphenols isovitexin, kaempferol-3-O-rutinoside, daidzein, genistein, isoquercitrin, p-coumaric acid, and caffeic acid were quantified using high-performance liquid chromatography (HPLC/QqQ MS and partial least squares discriminant analysis (PLS-DA. MeJA promoted the production of polyphenols, metabolites, and antioxidants in the sprouts; therefore, its use may allow sprouts to be prepared more quickly or increase their nutritional value.

  4. Flavonoid metabolites reduce tumor necrosis factor-α secretion to a greater extent than their precursor compounds in human THP-1 monocytes.

    di Gesso, Jessica L; Kerr, Jason S; Zhang, Qingzhi; Raheem, Saki; Yalamanchili, Sai Krishna; O'Hagan, David; Kay, Colin D; O'Connell, Maria A

    2015-06-01

    Flavonoids are generally studied in vitro, in isolation, and as unmetabolized precursor structures. However, in the habitual diet, multiple flavonoids are consumed together and found present in the circulation as complex mixtures of metabolites. Using a unique study design, we investigated the potential for singular or additive anti-inflammatory effects of flavonoid metabolites relative to their precursor structures. Six flavonoids, 14 flavonoid metabolites, and 29 combinations of flavonoids and their metabolites (0.1-10 μM) were screened for their ability to reduce LPS-induced tumor necrosis factor-α (TNF-α) secretion in THP-1 monocytes. One micromolar peonidin-3-glucoside, cyanidin-3-glucoside, and the metabolites isovanillic acid (IVA), IVA-glucuronide, vanillic acid-glucuronide, protocatechuic acid-3-sulfate, and benzoic acid-sulfate significantly reduced TNF-α secretion when in isolation, while there was no effect on TNF-α mRNA expression. Four combinations of metabolites that included 4-hydroxybenzoic acid (4HBA) and/or protocatechuic acid also significantly reduced TNF-α secretion to a greater extent than the precursors or metabolites alone. The effects on LPS-induced IL-1β and IL-10 secretion and mRNA expression were also examined. 4HBA significantly reduced IL-1β secretion but none of the flavonoids or metabolites significantly modified IL-10 secretion. This study provides novel evidence suggesting flavonoid bioactivity results from cumulative or additive effects of circulating metabolites. © 2015 The Authors. Molecular Nutrition & Food Research published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Flavonoid metabolites reduce tumor necrosis factor‐α secretion to a greater extent than their precursor compounds in human THP‐1 monocytes

    di Gesso, Jessica L.; Kerr, Jason S.; Zhang, Qingzhi; Raheem, Saki; Yalamanchili, Sai Krishna; O'Hagan, David; Kay, Colin D.; O'Connell, Maria A.

    2015-01-01

    1 Scope Flavonoids are generally studied in vitro, in isolation, and as unmetabolized precursor structures. However, in the habitual diet, multiple flavonoids are consumed together and found present in the circulation as complex mixtures of metabolites. Using a unique study design, we investigated the potential for singular or additive anti‐inflammatory effects of flavonoid metabolites relative to their precursor structures. 2 Methods and results Six flavonoids, 14 flavonoid metabolites, and 29 combinations of flavonoids and their metabolites (0.1–10 μM) were screened for their ability to reduce LPS‐induced tumor necrosis factor‐α (TNF‐α) secretion in THP‐1 monocytes. One micromolar peonidin‐3‐glucoside, cyanidin‐3‐glucoside, and the metabolites isovanillic acid (IVA), IVA‐glucuronide, vanillic acid‐glucuronide, protocatechuic acid‐3‐sulfate, and benzoic acid‐sulfate significantly reduced TNF‐α secretion when in isolation, while there was no effect on TNF‐α mRNA expression. Four combinations of metabolites that included 4‐hydroxybenzoic acid (4HBA) and/or protocatechuic acid also significantly reduced TNF‐α secretion to a greater extent than the precursors or metabolites alone. The effects on LPS‐induced IL‐1β and IL‐10 secretion and mRNA expression were also examined. 4HBA significantly reduced IL‐1β secretion but none of the flavonoids or metabolites significantly modified IL‐10 secretion. 3 Conclusion This study provides novel evidence suggesting flavonoid bioactivity results from cumulative or additive effects of circulating metabolites. PMID:25801720

  6. 1H-MRSI of prostate cancer: The relationship between metabolite ratio and tumor proliferation

    Wang Xizhen; Wang Bin; Gao Zhiqin; Liu Jingang; Liu Zuoqin; Niu Qingliang; Sun Zhenkui; Yuan Yuxiao

    2010-01-01

    Purpose: To investigate whether 1H-MRSI can be used to predict the proliferative activity of prostate cancer. Materials and methods: Thirty-eight patients with prostate cancer (PCa) and thirty-three patients with benign prostate hyperplasia (BPH) were included in this study. Patients were examined in supine position using a 1.5 T superconducting magnetic scanner equipped with a pelvic phased-array multi-coil and CSI-3D-PROSTATE sequence. Commercial software was used to acquire and process MR spectroscopic imaging data. Mean (Cho + Cr)/Cit ratios of PCa, BPH, and peripheral zone (PZ) were calculated. Cellularity of PCa was recorded based on hematoxylin and eosin staining. PCNA was detected using immunohistochemical techniques. Results: The mean (Cho + Cr)/Cit ratio of the peripheral zone (0.38 ± 0.09) was lower than that of BPH (0.51 ± 0.19) (P < 0.05). The average value of (Cho + Cr)/Cit ratio of prostate cancer was 3.98 ± 0.12. The (Cho + Cr)/Cit ratio of prostate cancer was higher than that of the peripheral zone and BPH (P < 0.05). The cellularity and PCNA LI of prostate cancer were 12.90 ± 4.07% and 72.1 ± 19.01%, respectively. The (Cho + Cr)/Cit ratio of prostate cancer positively correlated with tumor cellularity (r = 0.582, P = 0.027) and PCNA LI (r = 0.495, P = 0.022). Conclusion: The (Cho + Cr)/Cit ratio of PCa can reveal the differences in proliferative activity between PCa and BPH. MRSIs are therefore able to predict the proliferative rate of variously differentiated prostate cancers.

  7. Reduced blood flow increases the in vivo ammonium ion concentration in the RIF-1 tumor

    Constantinidis, Ioannis; Gamcsik, Michael P.

    1995-01-01

    Purpose: Previous studies from our laboratory have suggested that pooling of ammonium in tumor tissues may be caused by its inefficient removal due to the poor vasculature commonly found in tumors. The purpose of these experiments was to validate the relationship between tumor ammonium ion concentration and tumor blood flow, and to determine whether large concentrations of ammonium ion detected by Nuclear Magnetic Resonance (NMR) spectroscopy are either produced within the tumor or simply imported into the tumor through the blood stream. Methods and Materials: To test this hypothesis, we reduced blood flow in subcutaneously grown Radiation Induced Fibrosarcoma-1 (RIF-1) tumors, either by creating partial ischemia with a bolus injection of hydralazine or by occlusion with surgical sutures. 14 N and 31 P NMR spectroscopy were used to detect the presence of ammonium, and to assess the bioenergetic status of the tumors, respectively. Results: A correlation between ammonium ion concentration and (PCr(P i )) ratio was established for untreated tumors. An increase in the in vivo tumor ammonium ion concentration was observed for every tumor that experienced a reduction in blood flow caused by either hydralazine injection or suture ligation. Changes in ammonium ion concentration paralleled changes in the bioenergetics of hydralazine-treated tumors. Conclusion: Our results support the hypothesis that a reduction in tumor blood flow is responsible for the accumulation of ammonium in tumors, and that detected ammonium originated from within the tumor

  8. Preliminary 19F-MRS Study of Tumor Cell Proliferation with 3′-deoxy-3′-fluorothymidine and Its Metabolite (FLT-MP

    In Ok Ko

    2017-01-01

    Full Text Available The thymidine analogue 3′-deoxy-3′-[18F]fluorothymidine, or [18F]fluorothymidine ([18F]FLT, is used to measure tumor cell proliferation with positron emission tomography (PET imaging technology in nuclear medicine. FLT is phosphorylated by thymidine kinase 1 (TK1 and then trapped inside cells; it is not incorporated into DNA. Imaging with 18F-radiolabeled FLT is a noninvasive technique to visualize cellular proliferation in tumors. However, it is difficult to distinguish between [18F]FLT and its metabolites by PET imaging, and quantification has not been attempted using current imaging methods. In this study, we successfully acquired in vivo F19 spectra of natural or nonradioactive 3′-deoxy-3′-fluorothymidine ([19F]FLT and its monophosphate metabolite (FLT-MP in a tumor xenograft mouse model using 9.4T magnetic resonance imaging (MRI. This preliminary result demonstrates that 19F magnetic resonance spectroscopy (MRS with FLT is suitable for the in vivo assessment of tumor aggressiveness and for early prediction of treatment response.

  9. Hyperoxia increases the uptake of 5-fluorouracil in mammary tumors independently of changes in interstitial fluid pressure and tumor stroma

    Salvesen Gerd S

    2009-12-01

    Full Text Available Abstract Background Hypoxia is associated with increased resistance to chemo- and radiation-therapy. Hyperoxic treatment (hyperbaric oxygen has previously been shown to potentiate the effect of some forms of chemotherapy, and this has been ascribed to enhanced cytotoxicity or neovascularisation. The aim of this study was to elucidate whether hyperoxia also enhances any actual uptake of 5FU (5-fluorouracil into the tumor tissue and if this can be explained by changes in the interstitium and extracellular matrix. Methods One group of tumor bearing rats was exposed to repeated hyperbaric oxygen (HBO treatment (2 bar, pO2 = 2 bar, 4 exposures à 90 min, whereas one group was exposed to one single identical HBO treatment. Animals housed under normal atmosphere (1 bar, pO2 = 0.2 bar served as controls. Three doses of 5FU were tested for dose response. Uptake of [3H]-5FU in the tumor was assessed, with special reference to factors that might have contributed, such as interstitial fluid pressure (Pif, collagen content, oxygen stress (measured as malondialdehyd levels, lymphatics and transcapillary transport in the tumors. Results The uptake of the cytostatic agent increases immediately after a single HBO treatment (more than 50%, but not 24 hours after the last repeated HBO treatment. Thus, the uptake is most likely related to the transient increase in oxygenation in the tumor tissue. Factors like tumor Pif and collagen content, which decreased significantly in the tumor interstitium after repeated HBO treatment, was without effect on the drug uptake. Conclusion We showed that hyperoxia increases the uptake of [3H]-5FU in DMBA-induced mammary tumors per se, independently of changes in Pif, oxygen stress, collagen fibril density, or transendothelial transport alone. The mechanism by which such an uptake occur is still not elucidated, but it is clearly stimulated by elevated pO2.

  10. Increased plasma concentrations of vasopressin, oxytocin, cortisol and the prostaglandin F2alpha metabolite during labour in the dog.

    Olsson, K; Bergström, A; Kindahl, H; Lagerstedt, A-S

    2003-11-01

    This study investigated if the plasma vasopressin concentration increases during labour in the dog and whether the change in vasopressin correlates with that of oxytocin, 15-ketodihydro-PGF2alpha and cortisol. Five beagle dogs each delivered three to seven puppies. Blood samples were taken from a catheter inserted into the cephalic vein during labour and by venepuncture during the other periods. Vasopressin concentration increased from 2 +/- 0 pmol L-1 (anoestrus) to 26 +/- 11 pmol L-1 at the birth of the first puppy, remained high at the birth of the second puppy and then decreased. Oxytocin increased from 63 +/- 5 pmol L-1 (anoestrus) to 166 +/- 19 pmol L-1 at the birth of the first puppy and remained elevated throughout labour. The PGF2alpha metabolite concentration increased from 0.2 +/- 0.0 nmol L-1 (anoestrus) to 66 +/- 17 nmol L-1 at the birth of the first puppy and remained elevated 1 h after the completion of parturition. The cortisol concentration increased from 49 +/- 9 nmol L-1 (anoestrus) to 242 +/- 35 nmol L-1 at the birth of the first puppy, remained high during the birth of the second puppy and then declined. The plasma level of vasopressin was strongly correlated with that of cortisol but less with that of the PGF2alpha metabolite, and not significantly with the concentration of oxytocin. This indicates that the four hormones play different roles during labour in the dog.

  11. Increased tumor uptake of 67Ga citrate following a course of picibanil (NSC-B116209)

    Okuyama, Shinichi; Matsuzawa, Taiju; Mishina, Hitoshi.

    1979-01-01

    Exposure to exponential dose schedules of OK-432, penicillin-inactivated preparation of streptococcus hemolyticus (NSC-B116209), resulted in an increased retention of 67 Ga citrate. Its uptake in footpad tumors of AH 109A was also increased. The results may suggest that pretreatment with OK-432 would increase tumor uptake of 67 Ga citrate and help scintigraphic delineation of malignancies in man. It may probably augment tumor concentration of anticancer chemotherapeutics, too. Thus, the tumor affinitive property of OK-432 can be taken advantage of in anticancer strategy as well as cancer detection by 67 Ga scanning. (author)

  12. Increase of tumor oxygen tension and potentiation of radiation effects using pentoxifylline, vinpocetine and ticlopidine hydrochloride

    Amano, Morikazu; Monzen, Hajime; Suzuki, Takatoshi; Hasegawa, Takeo

    2004-01-01

    The effects of pentoxifylline (PTX), vinpocetine (VPT) and ticlopidine hydrochloride (TCD), each drug commonly used for vascular disorders in humans, on the pO 2 in SCC-7 (squamous cell carcinoma) tumors of C3H/HeJ mice on the radioresponse of SCC-7 tumors were investigated. When the SCC-7 implanted in the leg of C3H/HeJ mice grew about 100 mm 3 , the effects of PTX, VPT and TCD on the increase oxygen tension in the tumor was determined with polarography. The mice were injected intraperitoneally (ip) with 5 ml/kg PTX, 5 ml/kg VPT, or 10 ml/kg TCD, the tumor pO 2 increased slowly, peaked about 20-50 min postinjection, and returned to its original level in 60-80 min. When the C3H/HeJ mice bearing SCC-7 tumors in the legs were injected ip with 5 ml/kg PTX, 5 ml/kg VPT or 10 ml/kg TCD and tumors were X-irradiated 30 min later, the radiation induced growth delay of the tumor was greater than that caused by X-irradiation alone. The results in the present study, PTX, VPT and TCD increase the tumor pO 2 in rodent tumors strongly suggest that each drug may be useful for increasing the radiosensitivity of human tumor. (author)

  13. Increased Plasma Colloid Osmotic Pressure Facilitates the Uptake of Therapeutic Macromolecules in a Xenograft Tumor Model

    Matthias Hofmann

    2009-08-01

    Full Text Available Elevated tumor interstitial fluid pressure (TIFP is a characteristic of most solid tumors. Clinically, TIFP may hamper the uptake of chemotherapeutic drugs into the tumor tissue reducing their therapeutic efficacy. In this study, a means of modulating TIFP to increase the flux of macromolecules into tumor tissue is presented, which is based on the rationale that elevated plasma colloid osmotic pressure (COP pulls water from tumor interstitium lowering the TIFP. Concentrated human serum albumin: (20% HSA, used as an agent to enhance COP, reduced the TIFP time-dependently from 8 to 2 mm Hg in human tumor xenograft models bearing A431 epidermoid vulva carcinomas. To evaluate whether this reduction facilitates the uptake of macromolecules, the intratumoral distribution of fluorescently conjugated dextrans (2.5 mg/ml and cetuximab (2.0 mg/ml was probed using novel time domain nearinfrared fluorescence imaging. This method permitted discrimination and semiquantification of tumor-accumulated conjugate from background and unspecific probe fluorescence. The coadministration of 20% HSA together with either dextrans or cetuximab was found to lower the TIFP significantly and increase the concentration of the substances within the tumor tissue in comparison to control tumors. Furthermore, combined administration of 20%HSA plus cetuximab reduced the tumor growth significantly in comparison to standard cetuximab treatment. These data demonstrate that increased COP lowers the TIFP within hours and increases the uptake of therapeutic macromolecules into the tumor interstitium leading to reduced tumor growth. This model represents a novel approach to facilitate the delivery of therapeutics into tumor tissue, particularly monoclonal antibodies.

  14. Ascorbate availability affects tumor implantation-take rate and increases tumor rejection in Gulo–/– mice

    Campbell EJ

    2016-04-01

    Full Text Available Elizabeth J Campbell,1 Margreet CM Vissers,2 Gabi U Dachs1 1Mackenzie Cancer Research Group, 2Centre for Free Radical Research, Department of Pathology, University of Otago, Christchurch, New Zealand Abstract: In solid tumors, HIF1 upregulates the expression of hundreds of genes involved in cell survival, tumor growth, and adaptation to the hypoxic microenvironment. HIF1 stabilization and activity are suppressed by prolyl and asparagine hydroxylases, which require oxygen as a substrate and ascorbate as a cofactor. This has led us to hypothesize that intracellular ascorbate availability could modify the hypoxic HIF1 response and influence tumor growth. In this study, we investigated the effect of variable intracellular ascorbate levels on HIF1 induction in cancer cells in vitro, and on tumor-take rate and growth in the Gulo–/– mouse. These mice depend on dietary ascorbate, and were supplemented with 3,300 mg/L, 330 mg/L, or 33 mg/L ascorbate in their drinking water, resulting in saturating, medium, or low plasma and tissue ascorbate levels, respectively. In Lewis lung carcinoma cells (LL/2 in culture, optimal ascorbate supplementation reduced HIF1 accumulation under physiological but not pathological hypoxia. LL/2, B16-F10 melanoma, or CMT-93 colorectal cancer cells were implanted subcutaneously into Gulo–/– mice at a range of cell inocula. Establishment of B16-F10 tumors in mice supplemented with 3,300 mg/L ascorbate required an increased number of cancer cells to initiate tumor growth compared with the number of cells required in mice on suboptimal ascorbate intake. Elevated ascorbate intake was also associated with decreased tumor ascorbate levels and a reduction in HIF1α expression and transcriptional activity. Following initial growth, all CMT-93 tumors regressed spontaneously, but mice supplemented with 33 mg/L ascorbate had lower plasma ascorbate levels and grew larger tumors than optimally supplemented mice. The data from this

  15. Increase in tumor oxygen tension and radiosensitivity after administration of pentoxifylline

    Hasegawa, Takeo; Gu, Yeun Hwa; Nagao, Takashi; Miyata, Katsuyuki; Song, Chang W.; Tanake, Yoshimasa; Hasegawa, Takashi

    1999-01-01

    The effects of pentoxifylline (PTX) on the pO2 and radioresponse in SCK tumors of A/J mice were investigated. When the mice were injected intraperitoneally with 5 mg/kg of PTX, the tumor pO2 increased slowly, peaked 20-50 min postinjection, and returned to its original level in 70-90 min. The magnitude of the changes in tumor pO2 after on ip injection of 25 or 50 mg/kg PTX was similar to that caused by 5 mg/kg PTX. When the A/J mice bearing SCK tumors in the legs were injected ip with 50 mg/kg PTX and the tumors were X ray irradiated 20 min later, the tumor growth delay was greater than that of radiation alone

  16. Functional Imaging of Proteolysis: Stromal and Inflammatory Cells Increase Tumor Proteolysis

    Mansoureh Sameni

    2003-07-01

    Full Text Available The underlying basement membrane is degraded during progression of breast and colon carcinoma. Thus, we imaged degradation of a quenched fluorescent derivative of basement membrane type IV collagen (DQ-collagen IV by living human breast and colon tumor spheroids. Proteolysis of DQ-collagen IV by HCT 116 and HKh-2 human colon tumor spheroids was both intracellular and pericellular. In contrast, proteolysis of DQ-collagen IV by BT20 human breast tumor spheroids was pericellular. As stromal elements can contribute to proteolytic activities associated with tumors, we also examined degradation of DQ-collagen IV by human monocytes/macrophages and colon and breast fibroblasts. Fibroblasts themselves exhibited a modest amount of pericellular degradation. Degradation was increased 4–17-fold in cocultures of fibroblasts and tumor cells as compared to either cell type alone. Inhibitors of matrix metalloproteinases, plasmin, and the cysteine protease, cathepsin B, all reduced degradation in the cocultures. Monocytes did not degrade DQ-collagen IV; however, macrophages degraded DQ-collagen IV intracellularly. In coculture of tumor cells, fibroblasts, and macrophages, degradation of DQ-collagen IV was further increased. Imaging of living tumor and stromal cells has, thus, allowed us to establish that tumor proteolysis occurs pericellularly and intracellularly and that tumor, stromal, and inflammatory cells all contribute to degradative processes.

  17. Ozone Exposure Increases Circulating Stress Hormones and Lipid Metabolites in Humans

    RATIONALE: Air pollution has been associated with increased prevalence of type 2 diabetes; however, the mechanisms remain unknown. We have shown that acute ozone exposure in rats induces release of stress hormones, hyperglycemia, leptinemia, and gluoose intolerance that are assoc...

  18. Increases in extracellular serotonin and dopamine metabolite levels in the basal forebrain during sleep deprivation

    Zant, J.C.; Leenaars, C.H.; Kostin, A.; van Someren, E.J.W.; Porrka-Heiskanen, T.

    2011-01-01

    The basal forebrain (BF) is an important mediator of cortical arousal, which is innervated by all ascending arousal systems. During sleep deprivation (SD) a site-specific accumulation of sleep factors in the BF results in increased sleep pressure (Kalinchuk et al., 2006; Porkka-Heiskanen et al.,

  19. Increased plasma concentrations of vitamin D metabolites and vitamin D binding protein in women using hormonal contraceptives: a cross-sectional study

    Liendgaard, Ulla Kristine Møller; við Streym, Susanna; Jensen, Lars Thorbjørn

    2013-01-01

    UNLABELLED: Use of hormonal contraceptives (HC) may influence total plasma concentrations of vitamin D metabolites. A likely cause is an increased synthesis of vitamin D binding protein (VDBP). Discrepant results are reported on whether the use of HC affects free concentrations of vitamin D...... metabolites. AIM: In a cross-sectional study, plasma concentrations of vitamin D metabolites, VDBP, and the calculated free vitamin D index in users and non-users of HC were compared and markers of calcium and bone metabolism investigated. RESULTS: 75 Caucasian women aged 25-35 years were included during......, parathyroid hormone, and calcitonin, p > 0.21) or bone metabolism (plasma bone specific alkaline phosphatase, osteocalcin, and urinary NTX/creatinine ratio) between groups. IN CONCLUSION: Use of HC is associated with 13%-25% higher concentrations of total vitamin D metabolites and VDBP. This however...

  20. Podoplanin expression in primary brain tumors induces platelet aggregation and increases risk of venous thromboembolism.

    Riedl, Julia; Preusser, Matthias; Nazari, Pegah Mir Seyed; Posch, Florian; Panzer, Simon; Marosi, Christine; Birner, Peter; Thaler, Johannes; Brostjan, Christine; Lötsch, Daniela; Berger, Walter; Hainfellner, Johannes A; Pabinger, Ingrid; Ay, Cihan

    2017-03-30

    Venous thromboembolism (VTE) is common in patients with brain tumors, and underlying mechanisms are unclear. We hypothesized that podoplanin, a sialomucin-like glycoprotein, increases the risk of VTE in primary brain tumors via its ability to induce platelet aggregation. Immunohistochemical staining against podoplanin and intratumoral platelet aggregates was performed in brain tumor specimens of 213 patients (mostly high-grade gliomas [89%]) included in the Vienna Cancer and Thrombosis Study, a prospective observational cohort study of patients with newly diagnosed cancer or progressive disease aimed at identifying patients at risk of VTE. Platelet aggregation in response to primary human glioblastoma cells was investigated in vitro. During 2-year follow-up, 29 (13.6%) patients developed VTE. One-hundred fifty-one tumor specimens stained positive for podoplanin (33 high expression, 47 medium expression, 71 low expression). Patients with podoplanin-positive tumors had lower peripheral blood platelet counts ( P < .001) and higher D-dimer levels ( P < .001). Podoplanin staining intensity was associated with increasing levels of intravascular platelet aggregates in tumor specimens ( P < .001). High podoplanin expression was associated with an increased risk of VTE (hazard ratio for high vs no podoplanin expression: 5.71; 95% confidence interval, 1.52-21.26; P = 010), independent of age, sex, and tumor type. Podoplanin-positive primary glioblastoma cells induced aggregation of human platelets in vitro, which could be abrogated by an antipodoplanin antibody. In conclusion, high podoplanin expression in primary brain tumors induces platelet aggregation, correlates with hypercoagulability, and is associated with increased risk of VTE. Our data indicate novel insights into the pathogenesis of VTE in primary brain tumors. © 2017 by The American Society of Hematology.

  1. [Utility of Multiple Increased Lung Cancer Tumor Markers in Treatment of Patients with Advanced Lung Adenocarcinoma].

    Peng, Yan; Wang, Yan; Hao, Xuezhi; Li, Junling; Liu, Yutao; Wang, Hongyu

    2017-10-20

    Among frequently-used tumor markers in lung cancer, carcinoembryonic antigen (CEA) and carbohydrate antigen 125 (CA125), cytokeratin 19 (CYFRA21-1) and squamous carcinoma antigen (SCC), neuron specific enolase (NSE) and pro-gastrin-releasing peptide (ProGRP) are respectively expressed highly in lung adenocarcinoma, lung squamous carcinoma and small cell lung cancer. By comparing patients with multiple increased tumor markers (group A) and patients with increase of CEA and/or CA125 (group B), this study aims to investigate the utility of multiple increased tumor markers in therapeutic evaluation and prediction of disease relapsing in patients with advanced lung adenocarcinoma. Patients with stage IV lung adenocarcinoma who receiving the first line chemotherapy in Cancer Hospital, Chinese Academy of Medical Sciences were enrolled and retrospectively analyzed. Clinical characteristic, serum tumor markers before chemotherapy, efficacy evaluation, progression-free survival (PFS) were analyzed. Except CEA and CA125, the highest ratio of increased tumor markersin group A was CYFRA21-1 (93%), then was NSE (36%), SCC (13%) and ProGRP (12%). Patients with multiple increased tumor markers tend to have more distant metastasis (Ptumor markers have high risk of relapse, and maintenance therapy can reduce relapse risk.

  2. The role of body imaging in hereditary disorders with increased liability to tumor

    Landing, B.H.

    1985-01-01

    Recent developments in imaging techniques, described and discussed in other sections of this book, have greatly expanded the ability to monitor persons at risk of developing tumors. These developments will help identify tumors at an earlier stage, as well as enhance the ability to detect many pretumoral conditions at early or subsymptomatic stages in relatives or other persons at risk. The subsequent discussion presents many pretumoral conditions, both genetic and nongenetic, with emphasis on those often recognized in children. For the majority of such disorders, the knowledge of the type of tumor(s) in a given condition for which risk is increased adequately implies the type(s) of imaging techniques appropriate for evaluation but may not adequately specify those techniques most useful for screening others at risk of having the pretumoral state. In other words, for most pretumoral conditions the ''sign'' of the pretumoral state involves the locus (e.g., radiated thyroid) where tumor may develop, but for others (e.g., hemihypertrophy) may not, and for some (e.g., aniridia) does not at all involve the locus at risk for tumor. In planning and recommending monitoring or screening procedures, considerations must be given both to the properties of the pretumoral disorder and to the locus and type of tumor for which risk is increased by each such condition

  3. Increase in tumor oxygenation and potentiation of radiation effects using pentoxifylline, vinpocetine and ticlopidine hydrochloride

    Amano, Morikazu; Monzen, Hajime; Suzuki, Minoru; Terai, Kaoru; Andoh, Satoshi; Tsumuraya, Akio; Hasegawa, Takeo

    2005-01-01

    The purpose of the present study was to investigate the effects of Pentoxifylline (PTX), Vinpocetine (VPT) and Ticlopidine Hydrochloride (TCD), used commonly for vascular disorders in humans, on the pO 2 in SCCVII tumors of C3H/HeJ mice and on the radioresponse of SCCVII tumors. The pO 2 in the SCCVII tumors, which were measured 30 min after intraperioneal (i.p.) injection of PTX (5 mg/kg), VPT (5 mg/kg), or TCD (10 mg/kg) using polarography, was compared to that in saline-treated control tumors. All the three drugs, PTX, VPT and TCD, yielded significant increase of the pO 2 in the SCCVII tumors from 25.6 to 26.9 mmHg, from 18.6 to 22.9 mmHg, and from 22.6 to 25.9 mmHg, respectively. Frequency histogram of the pO 2 distribution in the saline-treated SCCVII tumors did not show hypoxic fraction of less than 10 mmHg. The radioresponses of the drugs were investigated by tumor growth delay assay. In the drug-treated groups, the SCCVII tumors were irradiated with a single dose of 15 Gy 30 min after injection of the drugs at the same doses as those used in the experiments for intratumoral pO 2 measurement. Compared with the irradiation alone group, significant tumor growth delays were observed in all the drug-treated groups. The time required to reach a four-fold increase in the initial tumor volume were 4 days in the saline-treated control group, 22 days in the irradiation (IR) alone group, 28 days in the PTX+IR group, 29 days in the VPT+IR group, and 32 days in TCD+IR group. In conclusion, VPT and TCD are potentially promising drugs for increasing the intratumoral pO 2 although the mechanism for radiopotentiation observed in the present study is unknown due to small hypoxic fraction in the SCCVII tumors. Further studies on other mechanisms for radiopotentiation of PTX, VPT or TCD, besides of increasing the pO 2 in the tumor, are needed. (author)

  4. Increased seroreactivity to glioma-expressed antigen 2 in brain tumor patients under radiation.

    Sabrina M Heisel

    Full Text Available BACKGROUND: Surgery and radiation are the mainstays of therapy for human gliomas that are the most common primary brain tumors. Most recently, cell culture and animal studies provided the first convincing evidence that radiation not only eliminates tumor cells, but also modulates the immune response and likely improves anti-tumor immunotherapy. METHODOLOGY/PRINCIPAL FINDINGS: We present an in vivo study that analyzes the effects of radiation on the immune response in tumor patients. As readout system, we utilized the reactivity of glioma patients' sera against antigen GLEA2 as the most frequent antigen immunogenic in glioblastoma patients. We established an ELISA assay to analyze reactivity of 24 glioblastoma patients over a period of several months. As control we used 30 sera from healthy donors as well as 30 sera from lung cancer patients. We compared the course of GLEA2 seroreactivity at different times prior, during and after radiation. The GLEA2 seroreactivity was increased by the time of surgery, decreased after surgery, increased again under radiation, and slightly decreased after radiation. CONCLUSIONS/SIGNIFICANCE: Our results provide in vivo evidence for an increased antibody response against tumor antigens under radiation. Antigens that become immunogenic with an increased antibody response as result of radiation can serve as ideal targets for immunotherapy of human tumors.

  5. Bioanalysis of a panel of neurotransmitters and their metabolites in plasma samples obtained from pediatric patients with neuroblastoma and Wilms' tumor.

    Konieczna, Lucyna; Roszkowska, Anna; Stachowicz-Stencel, Teresa; Synakiewicz, Anna; Bączek, Tomasz

    2018-02-01

    This paper details the quantitative analysis of neurotransmitters, including dopamine (DA), norepinephrine (NE), epinephrine (E), and serotonin (5-HT), along with their respective precursors and metabolites in children with solid tumors: Wilms' tumor (WT) and neuroblastoma (NB). A panel of neurotransmitters was determined with the use of dispersive liquid-liquid microextraction (DLLME) technique combined with liquid-chromatography mass spectrometry (LC-MS/MS) in plasma samples obtained from a group of pediatric subjects with solid tumors and a control group of healthy children. Next, statistical univariate analysis (t-test) and multivariate analysis (Principal Component Analysis) were performed using chromatographic data. The levels of tyrosine (Tyr) and tryptophan (Trp) (the precursors of analyzed neurotransmitters) as well as 3,4-dihydroxyphenylacetic acid (DOPAC) (a product of metabolism of DA) were significantly higher in the plasma samples obtained from pediatric patients with WT than in the samples taken from the control group. Moreover, statistically significant differences were observed between the levels of 5-HT and homovanillic acid (HVA) in the plasma samples from pediatric patients with solid tumors and the control group. However, elevated levels of these analytes did not facilitate a clear distinction between pediatric patients with WT and those with NB. Nonetheless, the application of advanced statistical tools allowed the healthy controls to be differentiated from the pediatric oncological patients. The identification and quantification of a panel of neurotransmitters as potential prognostic factors in selected childhood malignancies may provide clinically relevant information about ongoing metabolic alterations, and it could potentially serve as an adjunctive strategy in the effective diagnosis and treatment of solid tumors in children. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Increased expression of aquaporin-4 in human traumatic brain injury and brain tumors

    HU Hua; YAO Hong-tian; ZHANG Wei-ping; ZHANG LEI; DING Wei; ZHANG Shi-hong; CHEN Zhong; WEI Er-qing

    2005-01-01

    Objective: To characterize the expression of aquaporin-4 (AQP4), one of the aquaporins (AQPs), in human brain specimens from patients with traumatic brain injury or brain tumors. Methods: Nineteen human brain specimens were obtained from the patients with traumatic brain injury, brain tumors, benign meningioma or early stage hemorrhagic stroke. MRI or CT imaging was used to assess brain edema. Hematoxylin and eosin staining were used to evaluate cell damage. Immunohistochemistry was used to detect the AQP4 expression. Results: AQP4 expression was increased from 15h to at least 8 d after injury. AQP4immunoreactivity was strong around astrocytomas, ganglioglioma and metastatic adenocarcinoma. However, AQP4 immunoreactivity was only found in the centers of astrocytomas and ganglioglioma, but not in metastatic adenocarcinoma derived from lung.Conclusion: AQP4 expression increases in human brains after traumatic brain injury, within brain-derived tumors, and around brain tumors.

  7. 12/15 Lipoxygenase regulation of colorectal tumorigenesis is determined by the relative tumor levels of its metabolite 12-HETE and 13-HODE in animal models.

    Chang, Jian; Jiang, Li; Wang, Yinqiu; Yao, Bing; Yang, Shilin; Zhang, Bixiang; Zhang, Ming-Zhi

    2015-02-20

    Colorectal cancer (CRC) continues to be a major cause of morbidity and mortality. The arachidonic acid (AA) pathway and linoleic acid (LA) pathway have been implicated as important contributors to CRC development and growth. Human 15-lipoxygenase 1 (15-LOX-1) converts LA to anti-tumor 13-S-hydroxyoctadecadienoic acid (13-HODE)and 15-LOX-2 converts AA to 15-hydroxyeicosatetraenoic acid (15-HETE). In addition, human 12-LOX metabolizes AA to pro-tumor 12-HETE. In rodents, the function of 12-LOX and 15-LOX-1 and 15-LOX-2 is carried out by a single enzyme, 12/15-LOX. As a result, conflicting conclusions concerning the role of 12-LOX and 15-LOX have been obtained in animal studies. In the present studies, we determined that PD146176, a selective 15-LOX-1 inhibitor, markedly suppressed 13-HODE generation in human colon cancer HCA-7 cells and HCA-7 tumors, in association with increased tumor growth. In contrast, PD146176 treatment led to decreases in 12-HETE generation in mouse colon cancer MC38 cells and MC38 tumors, in association with tumor inhibition. Surprisingly, deletion of host 12/15-LOX alone led to increased MC38 tumor growth, in association with decreased tumor 13-HODE levels, possibly due to inhibition of 12/15-LOX activity in stroma. Therefore, the effect of 12/15-LOX on colorectal tumorigenesis in mouse models could be affected by tumor cell type (human or mouse), relative 12/15 LOX activity in tumor cells and stroma as well as the relative tumor 13-HODE and 12-HETE levels.

  8. Phosphodiesterase type 5 inhibitors increase Herceptin transport and treatment efficacy in mouse metastatic brain tumor models.

    Jinwei Hu

    2010-04-01

    Full Text Available Chemotherapeutic drugs and newly developed therapeutic monoclonal antibodies are adequately delivered to most solid and systemic tumors. However, drug delivery into primary brain tumors and metastases is impeded by the blood-brain tumor barrier (BTB, significantly limiting drug use in brain cancer treatment.We examined the effect of phosphodiesterase 5 (PDE5 inhibitors in nude mice on drug delivery to intracranially implanted human lung and breast tumors as the most common primary tumors forming brain metastases, and studied underlying mechanisms of drug transport. In vitro assays demonstrated that PDE5 inhibitors enhanced the uptake of [(14C]dextran and trastuzumab (Herceptin, a humanized monoclonal antibody against HER2/neu by cultured mouse brain endothelial cells (MBEC. The mechanism of drug delivery was examined using inhibitors for caveolae-mediated endocytosis, macropinocytosis and coated pit/clathrin endocytosis. Inhibitor analysis strongly implicated caveolae and macropinocytosis endocytic pathways involvement in the PDE5 inhibitor-enhanced Herceptin uptake by MBEC. Oral administration of PDE5 inhibitor, vardenafil, to mice with HER2-positive intracranial lung tumors led to an increased tumor permeability to high molecular weight [(14C]dextran (2.6-fold increase and to Herceptin (2-fold increase. Survival time of intracranial lung cancer-bearing mice treated with Herceptin in combination with vardenafil was significantly increased as compared to the untreated, vardenafil- or Herceptin-treated mice (p0.05.These findings suggest that PDE5 inhibitors may effectively modulate BTB permeability, and enhance delivery and therapeutic efficacy of monoclonal antibodies in hard-to-treat brain metastases from different primary tumors that had metastasized to the brain.

  9. BRAF inhibition is associated with increased clonality in tumor-infiltrating lymphocytes

    Cooper, Zachary A; Frederick, Dennie T; Juneja, Vikram R; Sullivan, Ryan J; Lawrence, Donald P; Piris, Adriano; Sharpe, Arlene H; Fisher, David E; Flaherty, Keith T; Wargo, Jennifer A

    2013-01-01

    There have been significant advances with regard to BRAF-targeted therapies against metastatic melanoma. However, the majority of patients receiving BRAF inhibitors (BRAFi) manifest disease progression within a year. We have recently shown that melanoma patients treated with BRAFi exhibit an increase in melanoma-associated antigens and in CD8+ tumor-infiltrating lymphocytes in response to therapy. To characterize such a T-cell infiltrate, we analyzed the complementarity-determining region 3 (CDR3) of rearranged T-cell receptor (TCR) β chain-coding genes in tumor biopsies obtained before the initiation of BRAFi and 10–14 d later. We observed an increase in the clonality of tumor-infiltrating lymphocytes in 7 of 8 patients receiving BRAFi, with a statistically significant 21% aggregate increase in clonality. Over 80% of individual T-cell clones detected after initiation of BRAFi treatment were new clones. Interestingly, the comparison of tumor infiltrates with clinical responses revealed that patients who had a high proportion of pre-existing dominant clones after the administration of BRAFi responded better to therapy than patients who had a low proportion of such pre-existing dominant clones following BRAFi. These data suggest that although the inhibition of BRAF in melanoma patients results in tumor infiltration by new lymphocytes, the response to treatment appears to be related to the presence of a pre-existing population of tumor-infiltrating T-cell clones. PMID:24251082

  10. Increased Tumor Oxygenation and Drug Uptake During Anti-Angiogenic Weekly Low Dose Cyclophosphamide Enhances the Anti-Tumor Effect of Weekly Tirapazamine

    Doloff, J.C.; Khan, N.; Ma, J.; Demidenko, E.; Swartz, H.M.; Jounaidi, Y.

    2010-01-01

    Metronomic cyclophosphamide treatment is associated with anti-angiogenic activity and is anticipated to generate exploitable hypoxia using hypoxia-activated prodrugs. Weekly administration of tirapazamine (TPZ; 5 mg/kg body weight i.p.) failed to inhibit the growth of 9L gliosarcoma tumors grown s.c. in scid mice. However, the anti-tumor effect of weekly cyclophosphamide (CPA) treatment (140 mg/kg BW i.p.) was substantially enhanced by weekly TPZ administration. An extended tumor free period and increased frequency of tumor eradication without overt toxicity were observed when TPZ was given 3, 4 or 5 days after each weekly CPA treatment. Following the 2nd CPA injection, Electron Paramagnetic Resonance (EPR) Oximetry indicated significant increases in tumor pO2, starting at 48 hr, which further increased after the 3rd CPA injection. pO2 levels were, however, stable in growing untreated tumors. A strong negative correlation (−0.81) between tumor pO2 and tumor volume during 21 days of weekly CPA chemotherapy was observed, indicating increasing tumor pO2 with decreasing tumor volume. Furthermore, CPA treatment resulted in increased tumor uptake of activated CPA. CPA induced increases in VEGF RNA, which reached a maximum on day 1, and in PLGF RNA which was sustained throughout the treatment, while anti-angiogenic host thrombospondin-1 increased dramatically through day 7 post-CPA treatment. Weekly cyclophosphamide treatment was anticipated to generate exploitable hypoxia. However, our findings suggest that weekly CPA treatment induces a functional improvement of tumor vasculature, which is characterized by increased tumor oxygenation and drug uptake in tumors, thus counter-intuitively, benefiting intratumoral activation of TPZ and perhaps other bioreductive drugs. PMID:19754361

  11. Root jasmonic acid synthesis and perception regulate folivore-induced shoot metabolites and increase Nicotiana attenuata resistance.

    Fragoso, Variluska; Rothe, Eva; Baldwin, Ian T; Kim, Sang-Gyu

    2014-06-01

    While jasmonic acid (JA) signaling is widely accepted as mediating plant resistance to herbivores, and the importance of the roots in plant defenses is recently being recognized, the role of root JA in the defense of above-ground parts remains unstudied. To restrict JA impairment to the roots, we micrografted wildtype Nicotiana attenuata shoots to the roots of transgenic plants impaired in JA signaling and evaluated ecologically relevant traits in the glasshouse and in nature. Root JA synthesis and perception are involved in regulating nicotine production in roots. Strikingly, systemic root JA regulated local leaf JA and abscisic acid (ABA) concentrations, which were associated with differences in nicotine transport from roots to leaves via the transpiration stream. Root JA signaling also regulated the accumulation of other shoot metabolites; together these account for differences in resistance against a generalist, Spodoptera littoralis, and a specialist herbivore, Manduca sexta. In N. attenuata's native habitat, silencing root JA synthesis increased the shoot damage inflicted by Empoasca leafhoppers, which are able to select natural jasmonate mutants. Silencing JA perception in roots also increased damage by Tupiocoris notatus. We conclude that attack from above-ground herbivores recruits root JA signaling to launch the full complement of plant defense responses. © 2014 Max Planck Society. New Phytologist © 2014 New Phytologist Trust.

  12. Omega 3 fatty acids increase spontaneous release of cytosolic components from tumor cells

    Jenski, L.J.; Sturdevant, L.K.; Ehringer, W.D.; Stillwell, W.

    1991-01-01

    Mice fed menhaden (fish) oil or coconut oil-rich diets were inoculated intraperitoneally with a rapidly growing leukemia, T27A. After one week, the tumor cells were harvested, and 51Cr was used to label intracellular molecules. Spontaneous release of 51Cr was used as a measure of plasma membrane permeability. Compared to cells from mice fed coconut oil (rich in saturated fatty acids), tumor cells from mice fed menhaden oil (rich in long chain polyunsaturated omega 3 fatty acids) showed an increased level of spontaneous 51Cr release, which was exacerbated by increased temperature and reduced by extracellular protein. At physiological salt concentrations, the released 51Cr was detected in particles of approximately 2700 daltons. Enhanced permeability correlated with the incorporation of dietary (fish oil) omega 3 polyunsaturated fatty acids docosahexaenoic and eicosapentaenoic acid into the tumor cells. The results demonstrate that omega 3 fatty acids are incorporated into cellular constituents of tumor cells and change properties associated with the plasma membrane. This result suggests that dietary manipulation may be used to enhance tumor cell permeability and contribute to tumor eradication

  13. Intermittent hypoxia increases kidney tumor vascularization in a murine model of sleep apnea.

    Vilaseca, Antoni; Campillo, Noelia; Torres, Marta; Musquera, Mireia; Gozal, David; Montserrat, Josep M; Alcaraz, Antonio; Touijer, Karim A; Farré, Ramon; Almendros, Isaac

    2017-01-01

    We investigate the effects of intermittent hypoxia (IH), a characteristic feature of obstructive sleep apnea (OSA), on renal cancer progression in an animal and cell model. An in vivo mouse model (Balb/c, n = 50) of kidney cancer was used to assess the effect of IH on tumor growth, metastatic capacity, angiogenesis and tumor immune response. An in vitro model tested the effect of IH on RENCA cells, macrophages and endothelial cells. Tumor growth, metastatic capacity, circulating vascular endothelial growth factor (VEGF) and content of endothelial cells, tumor associated macrophages and their phenotype were assessed in the tumor. In vitro, VEGF cell expression was quantified.Although IH did not boost tumor growth, it significantly increased endothelial cells (p = 0.001) and circulating VEGF (p<0.001) in the in vivo model. Macrophages exposed to IH in vitro increased VEGF expression, whereas RENCA cells and endothelial cells did not. These findings are in keeping with previous clinical data suggesting that OSA has no effect on kidney cancer size and that the association observed between OSA and higher Fuhrman grade of renal cell carcinoma may be mediated though a proangiogenic process, with a key role of macrophages.

  14. Intermittent hypoxia increases kidney tumor vascularization in a murine model of sleep apnea.

    Antoni Vilaseca

    Full Text Available We investigate the effects of intermittent hypoxia (IH, a characteristic feature of obstructive sleep apnea (OSA, on renal cancer progression in an animal and cell model. An in vivo mouse model (Balb/c, n = 50 of kidney cancer was used to assess the effect of IH on tumor growth, metastatic capacity, angiogenesis and tumor immune response. An in vitro model tested the effect of IH on RENCA cells, macrophages and endothelial cells. Tumor growth, metastatic capacity, circulating vascular endothelial growth factor (VEGF and content of endothelial cells, tumor associated macrophages and their phenotype were assessed in the tumor. In vitro, VEGF cell expression was quantified.Although IH did not boost tumor growth, it significantly increased endothelial cells (p = 0.001 and circulating VEGF (p<0.001 in the in vivo model. Macrophages exposed to IH in vitro increased VEGF expression, whereas RENCA cells and endothelial cells did not. These findings are in keeping with previous clinical data suggesting that OSA has no effect on kidney cancer size and that the association observed between OSA and higher Fuhrman grade of renal cell carcinoma may be mediated though a proangiogenic process, with a key role of macrophages.

  15. Targeting Potassium Channels for Increasing Delivery of Imaging Agents and Therapeutics to Brain Tumors

    Nagendra Sanyasihally Ningaraj

    2013-05-01

    Full Text Available Every year in the US, 20,000 new primary and nearly 200,000 metastatic brain tumor cases are reported. The cerebral microvessels/ capillaries that form the blood–brain barrier (BBB not only protect the brain from toxic agents in the blood but also pose a significant hindrance to the delivery of small and large therapeutic molecules. Different strategies have been employed to circumvent the physiological barrier posed by blood-brain tumor barrier (BTB. Studies in our laboratory have identified significant differences in the expression levels of certain genes and proteins between normal and brain tumor capillary endothelial cells. In this study, we validated the non-invasive and clinically relevant Dynamic Contrast Enhancing-Magnetic Resonance Imaging (DCE-MRI method with invasive, clinically irrelevant but highly accurate Quantitative Autoradiography (QAR method using rat glioma model. We also showed that DCE-MRI metric of tissue vessel perfusion-permeability is sensitive to changes in blood vessel permeability following administration of calcium-activated potassium (BKCa channel activator NS-1619. Our results show that human gliomas and brain tumor endothelial cells that overexpress BKCa channels can be targeted for increased BTB permeability for MRI enhancing agents to brain tumors. We conclude that monitoring the outcome of increased MRI enhancing agents’ delivery to microsatellites and leading tumor edges in glioma patients would lead to beneficial clinical outcome.

  16. Overexpression of the duffy antigen receptor for chemokines (DARC) by NSCLC tumor cells results in increased tumor necrosis

    Addison, Christina L; Belperio, John A; Burdick, Marie D; Strieter, Robert M

    2004-01-01

    The Duffy antigen receptor for chemokines (DARC) is known to be a promiscuous chemokine receptor that binds a variety of CXC and CC chemokines in the absence of any detectable signal transduction events. Within the CXC group of chemokines, DARC binds the angiogenic CXC chemokines including IL-8 (CXCL8), GROα (CXCL1) and ENA-78 (CXCL5), all of which have previously been shown to be important in non-small cell lung carcinoma (NSCLC) tumor growth. We hypothesized that overexpression of DARC by a NSCLC tumor cell line would result in the binding of the angiogenic ELR+ CXC chemokines by the tumor cells themselves, and thus interfere with the stimulation of endothelial cells and induction of angiogenesis by the tumor cell-derived angiogenic chemokines. NSCLC tumor cells that constitutively expressed DARC were generated and their growth characteristics were compared to control transfected cells in vitro and in vivo in SCID animals. We found that tumors derived from DARC-expressing cells were significantly larger in size than tumors derived from control-transfected cells. However, upon histological examination we found that DARC-expressing tumors had significantly more necrosis and decreased tumor cellularity, as compared to control tumors. Expression of DARC by NSCLC cells was also associated with a decrease in tumor-associated vasculature and a reduction in metastatic potential. The expression of DARC in the context of NSCLC tumors may act as a chemokine decoy receptor and interferes with normal tumor growth and chemokine-induced tumor neovascularization

  17. Increased PADI4 expression in blood and tissues of patients with malignant tumors

    Zhao Yan

    2009-01-01

    Full Text Available Abstract Background Peptidylarginine deiminase type 4 (PAD4/PADI4 post-translationally converts peptidylarginine to citrulline. Recent studies suggest that PADI4 represses expression of p53-regulated genes via citrullination of histones at gene promoters. Methods Expression of PADI4 was investigated in various tumors and non-tumor tissues (n = 1673 as well as in A549, SKOV3 and U937 tumor cell lines by immunohistochemistry, real-time PCR, and western blot. Levels of PADI4 and citrullinated antithrombin (cAT were investigated in the blood of patients with various tumors by ELISA (n = 1121. Results Immunohistochemistry detected significant PADI4 expression in various malignancies including breast carcinomas, lung adenocarcinomas, hepatocellular carcinomas, esophageal squamous cancer cells, colorectal adenocarcinomas, renal cancer cells, ovarian adenocarcinomas, endometrial carcinomas, uterine adenocarcinomas, bladder carcinomas, chondromas, as well as other metastatic carcinomas. However, PADI4 expression was not observed in benign leiomyomas of stomach, uterine myomas, endometrial hyperplasias, cervical polyps, teratomas, hydatidiform moles, trophoblastic cell hyperplasias, hyroid adenomas, hemangiomas, lymph hyperplasias, schwannomas, neurofibromas, lipomas, and cavernous hemangiomas of the liver. Additionally, PADI4 expression was not detected in non-tumor tissues including cholecystitis, cervicitis and synovitis of osteoarthritis, except in certain acutely inflamed tissues such as in gastritis and appendicitis. Quantitative PCR and western blot analysis showed higher PADI4 expression in gastric adenocarcinomas, lung adenocarcinomas, hepatocellular carcinomas, esophageal squamous cell cancers and breast cancers (n = 5 for each disease than in the surrounding healthy tissues. Furthermore, western blot analysis detected PADI4 expression in cultured tumor cell lines. ELISA detected increased PADI4 and cAT levels in the blood of patients with

  18. Increased PADI4 expression in blood and tissues of patients with malignant tumors

    Chang, Xiaotian; Han, Jinxiang; Pang, Li; Zhao, Yan; Yang, Yi; Shen, Zhonglin

    2009-01-01

    Peptidylarginine deiminase type 4 (PAD4/PADI4) post-translationally converts peptidylarginine to citrulline. Recent studies suggest that PADI4 represses expression of p53-regulated genes via citrullination of histones at gene promoters. Expression of PADI4 was investigated in various tumors and non-tumor tissues (n = 1673) as well as in A549, SKOV3 and U937 tumor cell lines by immunohistochemistry, real-time PCR, and western blot. Levels of PADI4 and citrullinated antithrombin (cAT) were investigated in the blood of patients with various tumors by ELISA (n = 1121). Immunohistochemistry detected significant PADI4 expression in various malignancies including breast carcinomas, lung adenocarcinomas, hepatocellular carcinomas, esophageal squamous cancer cells, colorectal adenocarcinomas, renal cancer cells, ovarian adenocarcinomas, endometrial carcinomas, uterine adenocarcinomas, bladder carcinomas, chondromas, as well as other metastatic carcinomas. However, PADI4 expression was not observed in benign leiomyomas of stomach, uterine myomas, endometrial hyperplasias, cervical polyps, teratomas, hydatidiform moles, trophoblastic cell hyperplasias, hyroid adenomas, hemangiomas, lymph hyperplasias, schwannomas, neurofibromas, lipomas, and cavernous hemangiomas of the liver. Additionally, PADI4 expression was not detected in non-tumor tissues including cholecystitis, cervicitis and synovitis of osteoarthritis, except in certain acutely inflamed tissues such as in gastritis and appendicitis. Quantitative PCR and western blot analysis showed higher PADI4 expression in gastric adenocarcinomas, lung adenocarcinomas, hepatocellular carcinomas, esophageal squamous cell cancers and breast cancers (n = 5 for each disease) than in the surrounding healthy tissues. Furthermore, western blot analysis detected PADI4 expression in cultured tumor cell lines. ELISA detected increased PADI4 and cAT levels in the blood of patients with various malignant tumors compared to those in patients

  19. Consumption of both low and high (-)-epicatechin apple puree attenuates platelet reactivity and increases plasma concentrations of nitric oxide metabolites: A randomized controlled trial

    Gasper, A.; Hollands, W.; Casgrain, A.; Saha, S.; Teucher, B.; Dainty, J.R.; Venema, D.P.; Hollman, P.C.H.

    2014-01-01

    We hypothesised that consumption of flavanol-containing apple puree would modulate platelet activity and increase nitric oxide metabolite status, and that high flavanol apple puree would exert a greater effect than low flavanol apple puree. 25 subjects consumed 230 g of apple puree containing 25 and

  20. High Birth Weight Increases the Risk for Bone Tumor: A Systematic Review and Meta-Analysis

    Songfeng Chen

    2015-09-01

    Full Text Available There have been several epidemiologic studies on the relationship between high birth weight and the risk for bone tumor in the past decades. However, due to the rarity of bone tumors, the sample size of individual studies was generally too small for reliable conclusions. Therefore, we have performed a meta-analysis to pool all published data on electronic databases with the purpose to clarify the potential relationship. According to the inclusion and exclusion criteria, 18 independent studies with more than 2796 cases were included. As a result, high birth weight was found to increase the risk for bone tumor with an Odds Ratio (OR of 1.13, with the 95% confidence interval (95% CI ranging from 1.01 to 1.27. The OR of bone tumor for an increase of 500 gram of birth weight was 1.01 (95% CI 1.00–1.02; p = 0.048 for linear trend. Interestingly, individuals with high birth weight had a greater risk for osteosarcoma (OR = 1.22, 95% CI 1.06–1.40, p = 0.006 than those with normal birth weight. In addition, in the subgroup analysis by geographical region, elevated risk was detected among Europeans (OR = 1.14, 95% CI 1.00–1.29, p = 0.049. The present meta-analysis supported a positive association between high birth weight and bone tumor risk.

  1. Increased growth rate of vestibular schwannoma after resection of contralateral tumor in neurofibromatosis type 2

    Peyre, Matthieu; Goutagny, Stephane; Imbeaud, Sandrine; Bozorg-Grayeli, Alexis; Felce, Michele; Sterkers, Olivier; Kalamarides, Michel

    2011-01-01

    Surgical management of bilateral vestibular schwannomas (VS) in neurofibromatosis type 2 (NF2) is often difficult, especially when both tumors threaten the brainstem. When the largest tumor has been removed, the management of the contralateral VS may become puzzling. To give new insights into the growth pattern of these tumors and to determine the best time point for treatment (surgery or medical treatment), we studied radiological growth in 11 VS (11 patients with NF2) over a long period (mean duration, 7.6 years), before and after removal of the contralateral tumor while both were threatening the brainstem. We used a quantitative approach of the radiological velocity of diametric expansion (VDE) on consecutive magnetic resonance images. Before first surgery, growth patterns of both tumors were similar in 9 of 11 cases. After the first surgery, VDE of the remaining VS was significantly elevated, compared with the preoperative period (2.5 ± 2.2 vs 4.4 ± 3.4 mm/year; P = .01, by Wilcoxon test). Decrease in hearing function was associated with increased postoperative growth in 3 cases. Growth pattern of coexisting intracranial meningiomas was not modified by VS surgery on the first side. In conclusion, removal of a large VS in a patient with NF2 might induce an increase in the growth rate of the contralateral medium or large VS. This possibility should be integrated in NF2 patient management to adequately treat the second VS. PMID:21798887

  2. Tumor cell-macrophage interactions increase angiogenesis through secretion of EMMPRIN

    Bat-Chen eAmit-Cohen

    2013-07-01

    Full Text Available Tumor macrophages are generally considered to be alternatively/M2 activated to induce secretion of pro-angiogenic factors such as VEGF and MMPs. EMMPRIN (CD147, basigin is overexpressed in many tumor types, and has been shown to induce fibroblasts and endothelial cell expression of MMPs and VEGF. We first show that tumor cell interactions with macrophages resulted in increased expression of EMMPRIN and induction of MMP-9 and VEGF. Human A498 renal carcinoma or MCF-7 breast carcinoma cell lines were co-cultured with the U937 monocytic-like cell line in the presence of TNFalpha (1 ng/ml. Membranal EMMPRIN expression was increased in the co-cultures (by 3-4 folds, p<0.01, as was the secretion of MMP-9 and VEGF (by 2-5 folds for both MMP-9 and VEGF, p<0.01, relative to the single cultures with TNFalpha. Investigating the regulatory mechanisms, we show that EMMPRIN was post-translationally regulated by miR-146a, as no change was observed in the tumoral expression of EMMPRIN mRNA during co-culture, expression of miR-146a was increased and its neutralization by its antagomir inhibited EMMPRIN expression. The secretion of EMMPRIN was also enhanced (by 2-3 folds, p<0.05, only in the A498 co-culture via shedding off of the membranal protein by a serine protease that is yet to be identified, as demonstrated by the use of wide range protease inhibitors. Finally, soluble EMMPRIN enhanced monocytic secretion of MMP-9 and VEGF, as inhibition of its expression levels by neutralizing anti-EMMPRIN or siRNA in the tumor cells lead to subsequent decreased induction of these two pro-angiogenic proteins. These results reveal a mechanism whereby tumor cell-macrophage interactions promote angiogenesis via an EMMPRIN-mediated pathway.

  3. Increased expression of CYP4Z1 promotes tumor angiogenesis and growth in human breast cancer

    Yu, Wei; Chai, Hongyan; Li, Ying; Zhao, Haixia; Xie, Xianfei; Zheng, Hao; Wang, Chenlong; Wang, Xue; Yang, Guifang; Cai, Xiaojun; Falck, John R.; Yang, Jing

    2012-01-01

    Cytochrome P450 (CYP) 4Z1, a novel CYP4 family member, is over-expressed in human mammary carcinoma and associated with high-grade tumors and poor prognosis. However, the precise role of CYP4Z1 in tumor progression is unknown. Here, we demonstrate that CYP4Z1 overexpression promotes tumor angiogenesis and growth in breast cancer. Stable expression of CYP4Z1 in T47D and BT-474 human breast cancer cells significantly increased mRNA expression and production of vascular endothelial growth factor (VEGF)-A, and decreased mRNA levels and secretion of tissue inhibitor of metalloproteinase-2 (TIMP-2), without affecting cell proliferation and anchorage-independent cell growth in vitro. Notably, the conditioned medium from CYP4Z1-expressing cells enhanced proliferation, migration and tube formation of human umbilical vein endothelial cells, and promoted angiogenesis in the zebrafish embryo and chorioallantoic membrane of the chick embryo. In addition, there were lower levels of myristic acid and lauric acid, and higher contents of 20-hydroxyeicosatetraenoic acid (20-HETE) in CYP4Z1-expressing T47D cells compared with vector control. CYP4Z1 overexpression significantly increased tumor weight and microvessel density by 2.6-fold and 1.9-fold in human tumor xenograft models, respectively. Moreover, CYP4Z1 transfection increased the phosphorylation of ERK1/2 and PI3K/Akt, while PI3K or ERK inhibitors and siRNA silencing reversed CYP4Z1-mediated changes in VEGF-A and TIMP-2 expression. Conversely, HET0016, an inhibitor of the CYP4 family, potently inhibited the tumor-induced angiogenesis with associated changes in the intracellular levels of myristic acid, lauric acid and 20-HETE. Collectively, these data suggest that increased CYP4Z1 expression promotes tumor angiogenesis and growth in breast cancer partly via PI3K/Akt and ERK1/2 activation. -- Highlights: ► CYP4Z1 overexpression promotes human breast cancer growth and angiogenesis. ► The pro-angiogenic effects of CYP4Z1 have

  4. Increased expression of CYP4Z1 promotes tumor angiogenesis and growth in human breast cancer

    Yu, Wei [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Chai, Hongyan [Center for Gene Diagnosis, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Li, Ying; Zhao, Haixia; Xie, Xianfei; Zheng, Hao; Wang, Chenlong; Wang, Xue [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Yang, Guifang [Department of Pathology, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Cai, Xiaojun [Department of Ophthalmology, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Falck, John R. [Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390 (United States); Yang, Jing, E-mail: yangjingliu@yahoo.com.cn [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China)

    2012-10-01

    Cytochrome P450 (CYP) 4Z1, a novel CYP4 family member, is over-expressed in human mammary carcinoma and associated with high-grade tumors and poor prognosis. However, the precise role of CYP4Z1 in tumor progression is unknown. Here, we demonstrate that CYP4Z1 overexpression promotes tumor angiogenesis and growth in breast cancer. Stable expression of CYP4Z1 in T47D and BT-474 human breast cancer cells significantly increased mRNA expression and production of vascular endothelial growth factor (VEGF)-A, and decreased mRNA levels and secretion of tissue inhibitor of metalloproteinase-2 (TIMP-2), without affecting cell proliferation and anchorage-independent cell growth in vitro. Notably, the conditioned medium from CYP4Z1-expressing cells enhanced proliferation, migration and tube formation of human umbilical vein endothelial cells, and promoted angiogenesis in the zebrafish embryo and chorioallantoic membrane of the chick embryo. In addition, there were lower levels of myristic acid and lauric acid, and higher contents of 20-hydroxyeicosatetraenoic acid (20-HETE) in CYP4Z1-expressing T47D cells compared with vector control. CYP4Z1 overexpression significantly increased tumor weight and microvessel density by 2.6-fold and 1.9-fold in human tumor xenograft models, respectively. Moreover, CYP4Z1 transfection increased the phosphorylation of ERK1/2 and PI3K/Akt, while PI3K or ERK inhibitors and siRNA silencing reversed CYP4Z1-mediated changes in VEGF-A and TIMP-2 expression. Conversely, HET0016, an inhibitor of the CYP4 family, potently inhibited the tumor-induced angiogenesis with associated changes in the intracellular levels of myristic acid, lauric acid and 20-HETE. Collectively, these data suggest that increased CYP4Z1 expression promotes tumor angiogenesis and growth in breast cancer partly via PI3K/Akt and ERK1/2 activation. -- Highlights: ► CYP4Z1 overexpression promotes human breast cancer growth and angiogenesis. ► The pro-angiogenic effects of CYP4Z1 have

  5. Increased metastatic potential of tumor cells in von Willebrand factor-deficient mice.

    Terraube, V; Pendu, R; Baruch, D; Gebbink, M F B G; Meyer, D; Lenting, P J; Denis, C V

    2006-03-01

    The key role played by von Willebrand factor (VWF) in platelet adhesion suggests a potential implication in various pathologies, where this process is involved. In cancer metastasis development, tumor cells interact with platelets and the vessel wall to extravasate from the circulation. As a potential mediator of platelet-tumor cell interactions, VWF could influence this early step of tumor spread and therefore play a role in cancer metastasis. To investigate whether VWF is involved in metastasis development. In a first step, we characterized the interaction between murine melanoma cells B16-BL6 and VWF in vitro. In a second step, an experimental metastasis model was used to compare the formation of pulmonary metastatic foci in C57BL/6 wild-type and VWF-null mice following the injection of B16-BL6 cells or Lewis lung carcinoma cells. In vitro adhesion assays revealed that VWF is able to promote a dose-dependent adhesion of B16-BL6 cells via its Arg-Gly-Asp (RGD) sequence. In the experimental metastasis model, we found a significant increase in the number of pulmonary metastatic foci in VWF-null mice compared with the wild-type mice, a phenotype that could be corrected by restoring VWF plasma levels. We also showed that increased survival of the tumor cells in the lungs during the first 24 h in the absence of VWF was the cause of this increased metastasis. These findings suggest that VWF plays a protective role against tumor cell dissemination in vivo. Underlying mechanisms remain to be investigated.

  6. Haploidentical hematopoietic SCT increases graft-versus-tumor effect against renal cell carcinoma.

    Budak-Alpdogan, T; Sauter, C T; Bailey, C P; Biswas, C S; Panis, M M; Civriz, S; Flomenberg, N; Alpdogan, O

    2013-08-01

    Allogeneic hematopoietic SCT (HSCT) has been shown to be an effective treatment option for advanced renal cell cancer (RCC). However, tumor resistance/relapse remains as the main post transplant issue. Therefore, enhancing graft-versus-tumor (GVT) activity without increasing GVHD is critical for improving the outcome of HSCT. We explored the GVT effect of haploidentical-SCT (haplo-SCT) against RCC in murine models. Lethally irradiated CB6F1 (H2K(b/d)) recipients were transplanted with T-cell-depleted BM cells from B6CBAF1 (H2K(b/k)) mice. Haplo-SCT combined with a low-dose haploidentical (HI) T-cell infusion (1 × 10(5)) successfully provided GVT activity without incurring GVHD. This effect elicited murine RCC growth control and consequently displayed a comparative survival advantage of haplo-SCT recipients when compared with MHC-matched (B6D2F1CB6F1) and parent-F1 (B6CB6F1) transplant recipients. Recipients of haplo-SCT had an increase in donor-derived splenic T-cell numbers, T-cell proliferation and IFN-γ-secreting donor-derived T-cells, a critical aspect for anti-tumor activity. The splenocytes from B6CBAF1 mice had a higher cytotoxicity against RENCA cells than the splenocytes from B6 and B6D2F1 donors after tumor challenge. These findings suggest that haplo-SCT might be an innovative immunotherapeutic platform for solid tumors, particularly for renal cell carcinoma.

  7. Radiotherapy, especially at young age, increases the risk for de novo brain tumors in patients treated for pituitary tumors

    Burman, Pia; Van Beek, André P.; Biller, Beverly M.K.; Camacho-Hubner, Cecilia; Mattsson, Anders F.

    Background: Excess mortality due to de novo malignant brain tumors was recently found in a national study of patients with hypopituitarism following treatment of pituitary tumors. Here, we examined a larger multi-national cohort to corroborate and extend this observation. Objective: To investigate

  8. Suppression of Peroxiredoxin 4 in Glioblastoma Cells Increases Apoptosis and Reduces Tumor Growth

    Kim, Tae Hyong; Song, Jieun; Alcantara Llaguno, Sheila R.; Murnan, Eric; Liyanarachchi, Sandya; Palanichamy, Kamalakannan; Yi, Ji-Yeun; Viapiano, Mariano Sebastian; Nakano, Ichiro; Yoon, Sung Ok; Wu, Hong; Parada, Luis F.; Kwon, Chang-Hyuk

    2012-01-01

    Glioblastoma multiforme (GBM), the most common and aggressive primary brain malignancy, is incurable despite the best combination of current cancer therapies. For the development of more effective therapies, discovery of novel candidate tumor drivers is urgently needed. Here, we report that peroxiredoxin 4 (PRDX4) is a putative tumor driver. PRDX4 levels were highly increased in a majority of human GBMs as well as in a mouse model of GBM. Reducing PRDX4 expression significantly decreased GBM cell growth and radiation resistance in vitro with increased levels of ROS, DNA damage, and apoptosis. In a syngenic orthotopic transplantation model, Prdx4 knockdown limited GBM infiltration and significantly prolonged mouse survival. These data suggest that PRDX4 can be a novel target for GBM therapies in the future. PMID:22916164

  9. Suppression of peroxiredoxin 4 in glioblastoma cells increases apoptosis and reduces tumor growth.

    Tae Hyong Kim

    Full Text Available Glioblastoma multiforme (GBM, the most common and aggressive primary brain malignancy, is incurable despite the best combination of current cancer therapies. For the development of more effective therapies, discovery of novel candidate tumor drivers is urgently needed. Here, we report that peroxiredoxin 4 (PRDX4 is a putative tumor driver. PRDX4 levels were highly increased in a majority of human GBMs as well as in a mouse model of GBM. Reducing PRDX4 expression significantly decreased GBM cell growth and radiation resistance in vitro with increased levels of ROS, DNA damage, and apoptosis. In a syngenic orthotopic transplantation model, Prdx4 knockdown limited GBM infiltration and significantly prolonged mouse survival. These data suggest that PRDX4 can be a novel target for GBM therapies in the future.

  10. Lactic Acid Bacteria from Kefir Increase Cytotoxicity of Natural Killer Cells to Tumor Cells.

    Yamane, Takuya; Sakamoto, Tatsuji; Nakagaki, Takenori; Nakano, Yoshihisa

    2018-03-27

    The Japanese fermented beverage, homemade kefir, contains six lactic acid bacteria: Lactococcus. lactis subsp. Lactis , Lactococcus . lactis subsp. Cremoris , Lactococcus. Lactis subsp. Lactis biovar diacetylactis , Lactobacillus plantarum , Leuconostoc meseuteroides subsp. Cremoris and Lactobacillus casei . In this study, we found that a mixture of the six lactic acid bacteria from kefir increased the cytotoxicity of human natural killer KHYG-1 cells to human chronic myelogenous leukemia K562 cells and colorectal tumor HCT116 cells. Furthermore, levels of mRNA expression and secretion of IFN-γ (interferon gamma) increased in KHYG-1 cells that had been treated with the six lactic acid bacteria mixture from kefir. The results suggest that the six lactic acid bacteria mixture from kefir has strong effects on natural immunity and tumor cell cytotoxicity.

  11. Lactic Acid Bacteria from Kefir Increase Cytotoxicity of Natural Killer Cells to Tumor Cells

    Takuya Yamane

    2018-03-01

    Full Text Available The Japanese fermented beverage, homemade kefir, contains six lactic acid bacteria: Lactococcus. lactis subsp. Lactis, Lactococcus. lactis subsp. Cremoris, Lactococcus. Lactis subsp. Lactis biovar diacetylactis, Lactobacillus plantarum, Leuconostoc meseuteroides subsp. Cremoris and Lactobacillus casei. In this study, we found that a mixture of the six lactic acid bacteria from kefir increased the cytotoxicity of human natural killer KHYG-1 cells to human chronic myelogenous leukemia K562 cells and colorectal tumor HCT116 cells. Furthermore, levels of mRNA expression and secretion of IFN-γ (interferon gamma increased in KHYG-1 cells that had been treated with the six lactic acid bacteria mixture from kefir. The results suggest that the six lactic acid bacteria mixture from kefir has strong effects on natural immunity and tumor cell cytotoxicity.

  12. Antibody directed against human YKL-40 increases tumor volume in a human melanoma xenograft model in scid mice

    Salamon, Johannes; Hoffmann, Tatjana; Elies, Eva

    2014-01-01

    were treated with intraperitoneal injections of anti-YKL-40, isoptype control or PBS. Non-YKL-40 expressing human pancreatic carcinoma cell line PaCa 5061 served as additional control. MR imaging was used for evaluation of tumor growth. Two days after the first injections of anti-YKL-40, tumor volume...... had increased significantly compared with controls, whereas no effects were observed for control tumors from PaCa 5061 cells lacking YKL-40 expression. After 18 days, mean tumor size of the mice receiving repeated anti-YKL-40 injections was 1.82 g, >4 times higher than mean tumor size of the controls...

  13. Tumor cell adhesion to endothelial cells is increased by endotoxin via an upregulation of beta-1 integrin expression.

    Andrews, E J

    2012-02-03

    BACKGROUND: Recent studies have demonstrated that metastatic disease develops from tumor cells that adhere to endothelial cells and proliferate intravascularly. The beta-1 integrin family and its ligand laminin have been shown to be important in tumor-to-endothelial cell adhesion. Lipopolysaccharide (LPS) has been implicated in the increased metastatic tumor growth that is seen postoperatively. We postulated that LPS increases tumor cell expression of beta-1 integrins and that this leads to increased adhesion. METHODS: The human metastatic colon cancer cell line LS174T was labeled with an enhanced green fluorescent protein (eGFP) using retroviral transfection. Cell cultures were treated with LPS for 1, 2, and 4 h (n = 6 each) and were subsequently cocultured for 30 or 120 min with confluent human umbilical vein endothelial cells (HUVECs), to allow adherence. Adherent tumor cells were counted using fluorescence microscopy. These experiments were carried out in the presence or absence of a functional blocking beta-1 integrin monoclonal antibody (4B4). Expression of beta-1 integrin and laminin on tumor and HUVECs was assessed using flow cytometric analysis. Tumor cell NF-kappaB activation after incubation with LPS was measured. RESULTS: Tumor cell and HUVEC beta-1 integrin expression and HUVEC expression of laminin were significantly (P < 0.05) enhanced after incubation with LPS. Tumor cell adhesion to HUVECs was significantly increased. Addition of the beta-1 integrin blocking antibody reduced tumor cell adhesion to control levels. LPS increased tumor cell NF-kappaB activation. CONCLUSIONS: Exposure to LPS increases tumor cell adhesion to the endothelium through a beta-1 integrin-mediated pathway that is NF-kappaB dependent. This may provide a target for immunotherapy directed at reducing postoperative metastatic tumor growth.

  14. Tumor-Induced Osteomalacia: Increased Level of FGF-23 in a Patient with a Phosphaturic Mesenchymal Tumor at the Tibia Expressing Periostin

    Anke H. Hautmann

    2014-01-01

    Full Text Available In our case, a 45-year-old male patient had multiple fractures accompanied by hypophosphatemia. FGF-23 levels were significantly increased, and total body magnetic resonance imaging (MRI revealed a tumor mass located at the distal tibia leading to the diagnosis of tumor-induced osteomalacia (TIO. After resection of the tumor, hypophosphatemia and the increased levels of FGF-23 normalized within a few days. Subsequent microscopic examination and immunohistochemical analysis revealed a phosphaturic mesenchymal tumor mixed connective tissue variant (PMTMCT showing a positive expression of somatostatin receptor 2A (SSTR2A, CD68, and Periostin. Electron microscopy demonstrated a poorly differentiated mesenchymal tumor with a multifocal giant cell component and evidence of neurosecretory-granules. However, the resected margins showed no tumor-free tissue, and therefore a subsequent postoperative radiotherapy was performed. The patient is still in complete remission after 34 months. Tumor resection of PMTMCTs is the therapy of choice. Subsequent radiotherapy in case of incompletely resected tumors can be an important option to avoid recurrence or metastasis even though this occurs rarely. The prognostic value of expression of Periostin has to be evaluated more precisely in a larger series of patients with TIO.

  15. Decompression of keratocystic odontogenic tumors leading to increased fibrosis, but without any change in epithelial proliferation.

    Awni, Sarah; Conn, Brendan

    2017-06-01

    The aim of this study was to investigate whether decompression treatment induces changes in the histology or biologic behavior of keratocystic odontogenic tumor (KCOT). Seventeen patients with KCOT underwent decompression treatment with or without enucleation. Histologic evaluation and immunohistochemical expression of p53, Ki-67, and Bcl-2 were analyzed by using conventional microscopy. KCOT showed significantly increased fibrosis (P = .01) and a subjective reduction in mitotic activity (P = .03) after decompression. There were no statistically significant changes in the expression of proliferation markers. An increase in daughter-cysts or epithelial rests was seen after decompression (P = .04). Recurrence was noted in four of 16 cases, and expression of p53 was strongly correlated with prolonged duration of treatment (P = .01) and intense inflammatory changes (P = .02). Structural changes in the KCOT epithelium or capsule following decompression facilitate surgical removal of the tumor. There was no statistical evidence that decompression influences expression of proliferation markers in the lining, indicating that the potential for recurrence may not be restricted to the cellular level. The statistically significant increase of p53 expression with increased duration of treatment and increase of inflammation may also indicate the possibility of higher rates of recurrence with prolonged treatment and significant inflammatory changes. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  16. Adipose progenitor cells increase fibronectin matrix strain and unfolding in breast tumors

    Chandler, E. M.; Saunders, M. P.; Yoon, C. J.; Gourdon, D.; Fischbach, C.

    2011-02-01

    Increased stiffness represents a hallmark of breast cancer that has been attributed to the altered physicochemical properties of the extracellular matrix (ECM). However, the role of fibronectin (Fn) in modulating the composition and mechanical properties of the tumor-associated ECM remains unclear. We have utilized a combination of biochemical and physical science tools to evaluate whether paracrine signaling between breast cancer cells and adipose progenitor cells regulates Fn matrix assembly and stiffness enhancement in the tumor stroma. In particular, we utilized fluorescence resonance energy transfer imaging to map the molecular conformation and stiffness of Fn that has been assembled by 3T3-L1 preadipocytes in response to conditioned media from MDA-MB231 breast cancer cells. Our results reveal that soluble factors secreted by tumor cells promote Fn expression, unfolding, and stiffening by adipose progenitor cells and that transforming growth factor-β serves as a soluble cue underlying these changes. In vivo experiments using orthotopic co-transplantation of primary human adipose-derived stem cells and MDA-MB231 into SCID mice support the pathological relevance of our results. Insights gained by these studies advance our understanding of the role of Fn in mammary tumorigenesis and may ultimately lead to improved anti-cancer therapies.

  17. Adipose progenitor cells increase fibronectin matrix strain and unfolding in breast tumors

    Chandler, E M; Saunders, M P; Yoon, C J; Fischbach, C; Gourdon, D

    2011-01-01

    Increased stiffness represents a hallmark of breast cancer that has been attributed to the altered physicochemical properties of the extracellular matrix (ECM). However, the role of fibronectin (Fn) in modulating the composition and mechanical properties of the tumor-associated ECM remains unclear. We have utilized a combination of biochemical and physical science tools to evaluate whether paracrine signaling between breast cancer cells and adipose progenitor cells regulates Fn matrix assembly and stiffness enhancement in the tumor stroma. In particular, we utilized fluorescence resonance energy transfer imaging to map the molecular conformation and stiffness of Fn that has been assembled by 3T3-L1 preadipocytes in response to conditioned media from MDA-MB231 breast cancer cells. Our results reveal that soluble factors secreted by tumor cells promote Fn expression, unfolding, and stiffening by adipose progenitor cells and that transforming growth factor-β serves as a soluble cue underlying these changes. In vivo experiments using orthotopic co-transplantation of primary human adipose-derived stem cells and MDA-MB231 into SCID mice support the pathological relevance of our results. Insights gained by these studies advance our understanding of the role of Fn in mammary tumorigenesis and may ultimately lead to improved anti-cancer therapies

  18. Increased frontal functional networks in adult survivors of childhood brain tumors

    Hongbo Chen

    2016-01-01

    Full Text Available Childhood brain tumors and associated treatment have been shown to affect brain development and cognitive outcomes. Understanding the functional connectivity of brain many years after diagnosis and treatment may inform the development of interventions to improve the long-term outcomes of adult survivors of childhood brain tumors. This work investigated the frontal region functional connectivity of 16 adult survivors of childhood cerebellar tumors after an average of 14.9 years from diagnosis and 16 demographically-matched controls using resting state functional MRI (rs-fMRI. Independent component analysis (ICA was applied to identify the resting state activity from rs-fMRI data and to select the specific regions associated with executive functions, followed by the secondary analysis of the functional networks connecting these regions. It was found that survivors exhibited differences in the functional connectivity in executive control network (ECN, default mode network (DMN and salience network (SN compared to demographically-matched controls. More specifically, the number of functional connectivity observed in the survivors is higher than that in the controls, and with increased strength, or stronger correlation coefficient between paired seeds, in survivors compared to the controls. Observed hyperconnectivity in the selected frontal functional network thus is consistent with findings in patients with other neurological injuries and diseases.

  19. Phenotypic Screening Identifies Protein Synthesis Inhibitors as H-Ras-Nanocluster-Increasing Tumor Growth Inducers.

    Najumudeen, Arafath K; Posada, Itziar M D; Lectez, Benoit; Zhou, Yong; Landor, Sebastian K-J; Fallarero, Adyary; Vuorela, Pia; Hancock, John; Abankwa, Daniel

    2015-12-15

    Ras isoforms H-, N-, and K-ras are each mutated in specific cancer types at varying frequencies and have different activities in cell fate control. On the plasma membrane, Ras proteins are laterally segregated into isoform-specific nanoscale signaling hubs, termed nanoclusters. As Ras nanoclusters are required for Ras signaling, chemical modulators of nanoclusters represent ideal candidates for the specific modulation of Ras activity in cancer drug development. We therefore conducted a chemical screen with commercial and in-house natural product libraries using a cell-based H-ras-nanoclustering FRET assay. Next to established Ras inhibitors, such as a statin and farnesyl-transferase inhibitor, we surprisingly identified five protein synthesis inhibitors as positive regulators. Using commonly employed cycloheximide as a representative compound, we show that protein synthesis inhibition increased nanoclustering and effector recruitment specifically of active H-ras but not of K-ras. Consistent with these data, cycloheximide treatment activated both Erk and Akt kinases and specifically promoted H-rasG12V-induced, but not K-rasG12V-induced, PC12 cell differentiation. Intriguingly, cycloheximide increased the number of mammospheres, which are enriched for cancer stem cells. Depletion of H-ras in combination with cycloheximide significantly reduced mammosphere formation, suggesting an exquisite synthetic lethality. The potential of cycloheximide to promote tumor cell growth was also reflected in its ability to increase breast cancer cell tumors grown in ovo. These results illustrate the possibility of identifying Ras-isoform-specific modulators using nanocluster-directed screening. They also suggest an unexpected feedback from protein synthesis inhibition to Ras signaling, which might present a vulnerability in certain tumor cell types.

  20. Lipofection indirectly increases expression of endogenous major histocompatibility complex class I molecules on tumor cells.

    Fox, B A; Drury, M; Hu, H M; Cao, Z; Huntzicker, E G; Qie, W; Urba, W J

    1998-01-01

    Direct intratumoral injection of a lipid/DNA complex encoding an allogeneic major histocompatibility complex (MHC) class I molecule leads to regression of both an immunogenic murine tumor and also melanoma lesions in some patients. We have sought to understand the mechanism(s) for this augmentation of antitumor activity. While optimizing parameters for in vitro gene transfer into the D5 subclone of B16BL6, it was noted that lipofected tumors not only expressed the new alloantigen but also exhibited increased expression of endogenous MHC class I, both H-2 Kb and H-2 Db. This increase in expression was not restricted to the small percentage of cells that expressed the transfected gene, but appeared to affect the majority of cells in culture. Class I expression was not increased by lipopolysaccharide, DNA alone, lipid, or lipid/lipopolysaccharide mixtures. Enhanced class I expression required a DNA/lipid complex and was greatest when parameters optimized for gene transfer of the alloantigen were used. All DNA plasmids tested had this effect, including one plasmid whose DNA was not transcribed because it lacked an expression cassette. Because of the critical role that MHC class I antigens play in immune recognition, we propose that lipid complex-mediated gene transfer may provide immunological advantages beyond those that are attributable to expression of the specific gene transferred.

  1. The vascular disrupting agent ZD6126 shows increased antitumor efficacy and enhanced radiation response in large, advanced tumors

    Siemann, Dietmar W.; Rojiani, Amyn M.

    2005-01-01

    Purpose: ZD6126 is a vascular-targeting agent that induces selective effects on the morphology of proliferating and immature endothelial cells by disrupting the tubulin cytoskeleton. The efficacy of ZD6126 was investigated in large vs. small tumors in a variety of animal models. Methods and Materials: Three rodent tumor models (KHT, SCCVII, RIF-1) and three human tumor xenografts (Caki-1, KSY-1, SKBR3) were used. Mice bearing leg tumors ranging in size from 0.1-2.0 g were injected intraperitoneally with a single 150 mg/kg dose of ZD6126. The response was assessed by morphologic and morphometric means as well as an in vivo to in vitro clonogenic cell survival assay. To examine the impact of tumor size on the extent of enhancement of radiation efficacy by ZD6126, KHT sarcomas of three different sizes were irradiated locally with a range of radiation doses, and cell survival was determined. Results: All rodent tumors and human tumor xenografts evaluated showed a strong correlation between increasing tumor size and treatment effect as determined by clonogenic cell survival. Detailed evaluation of KHT sarcomas treated with ZD6126 showed a reduction in patent tumor blood vessels that was ∼20% in small ( 90% in large (>1.0 g) tumors. Histologic assessment revealed that the extent of tumor necrosis after ZD6126 treatment, although minimal in small KHT sarcomas, became more extensive with increasing tumor size. Clonogenic cell survival after ZD6126 exposure showed a decrease in tumor surviving fraction from approximately 3 x 10 -1 to 1 x 10 -4 with increasing tumor size. When combined with radiotherapy, ZD6126 treatment resulted in little enhancement of the antitumor effect of radiation in small (<0.3 g) tumors but marked increases in cell kill in tumors larger than 1.0 g. Conclusions: Because bulky neoplastic disease is typically the most difficult to manage, the present findings provide further support for the continued development of vascular disrupting agents such as

  2. Increased hypoxia-inducible factor-1α in striated muscle of tumor-bearing mice.

    Devine, Raymond D; Bicer, Sabahattin; Reiser, Peter J; Wold, Loren E

    2017-06-01

    Cancer cachexia is a progressive wasting disease resulting in significant effects on the quality of life and high mortality. Most studies on cancer cachexia have focused on skeletal muscle; however, the heart is now recognized as a major site of cachexia-related effects. To elucidate possible mechanisms, a proteomic study was performed on the left ventricles of colon-26 (C26) adenocarcinoma tumor-bearing mice. The results revealed several changes in proteins involved in metabolism. An integrated pathway analysis of the results revealed a common mediator in hypoxia-inducible factor-1α (HIF-1α). Work by other laboratories has shown that extensive metabolic restructuring in the C26 mouse model causes changes in gene expression that may be affected directly by HIF-1α, such as glucose metabolic genes. M-mode echocardiography showed progressive decline in heart function by day 19 , exhibited by significantly decreased ejection fraction and fractional shortening, along with posterior wall thickness. Using Western blot analysis, we confirmed that HIF-1α is significantly upregulated in the heart, whereas there were no changes in its regulatory proteins, prolyl hydroxylase domain-containing protein 2 (PHD2) and von Hippel-Lindau protein (VHL). PHD2 requires both oxygen and iron as cofactors for the hydroxylation of HIF-1α, marking it for ubiquination via VHL and subsequent destruction by the proteasome complex. We examined venous blood gas values in the tumor-bearing mice and found significantly lower oxygen concentration compared with control animals in the third week after tumor inoculation. We also examined select skeletal muscles to determine whether they are similarly affected. In the diaphragm, extensor digitorum longus, and soleus, we found significantly increased HIF-1α in tumor-bearing mice, indicating a hypoxic response, not only in the heart, but also in skeletal muscle. These results indicate that HIF-1α may contribute, in part, to the metabolic changes

  3. Increased formic acid excretion and the development of kidney toxicity in rats following chronic dosing with trichloroethanol, a major metabolite of trichloroethylene

    Green, Trevor; Dow, Jacky; Foster, John

    2003-01-01

    The chronic toxicity of trichloroethanol, a major metabolite of trichloroethylene, has been assessed in male Fischer rats (60 per group) given trichloroethanol in drinking water at concentrations of 0, 0.5 and 1.0 g/l for 52 weeks. The rats excreted large amounts of formic acid in urine reaching a maximum after 12 weeks (∼65 mg/24 h at 1 g/l) and thereafter declining to reach an apparent steady state at 40 weeks (15-20 mg/24 h). Urine from treated rats was more acidic throughout the study and urinary methylmalonic acid and plasma N-methyltetrahydrofolate concentrations were increased, indicating an acidosis, vitamin B12 deficiency and impaired folate metabolism, respectively. The rats treated with trichloroethanol developed kidney damage over the duration of the study which was characterised by increased urinary NAG activity, protein excretion (from 4 weeks), increased basophilia, protein accumulation and tubular damage (from 12 to 40 weeks), increased cell replication (at week 28) and evidence in some rats of focal proliferation of abnormal tubules at 52 weeks. It was concluded that trichloroethanol, the major metabolite of trichloroethylene, induced nephrotoxicity in rats as a result of formic acid excretion and acidosis

  4. Tumor necrosis factor-alpha increases myocardial microvascular transport in vivo

    Hansen, P R; Svendsen, Jesper Hastrup; Høyer, S

    1994-01-01

    Tumor necrosis factor-alpha (TNF-alpha) is a primary mediator in the pathogenesis of tissue injury, and high circulating levels of TNF-alpha are found in a variety of pathological conditions. In open-chest anesthetized dogs, the effects of intracoronary recombinant human TNF-alpha (rTNF-alpha; 100...... in cardiac output and was associated with the appearance of areas with myocardial necrosis in the regional left ventricular wall. The myocardial plasma flow rate and maximum plasma flow rate in response to a 30-s coronary occlusion were not influenced by rTNF-alpha, although a decrease in the myocardial...... ng/kg for 60 min) on myocardial microvascular transport of a small hydrophilic indicator was examined by the single-injection, residue-detection method. Intracoronary infusion of rTNF-alpha increased myocardial microvascular transport after 120 min. This increase was preceded by a sustained decline...

  5. Increased Serotonin Signaling Contributes to the Warburg Effect in Pancreatic Tumor Cells Under Metabolic Stress and Promotes Growth of Pancreatic Tumors in Mice.

    Jiang, Shu-Heng; Li, Jun; Dong, Fang-Yuan; Yang, Jian-Yu; Liu, De-Jun; Yang, Xiao-Mei; Wang, Ya-Hui; Yang, Min-Wei; Fu, Xue-Liang; Zhang, Xiao-Xin; Li, Qing; Pang, Xiu-Feng; Huo, Yan-Miao; Li, Jiao; Zhang, Jun-Feng; Lee, Ho-Young; Lee, Su-Jae; Qin, Wen-Xin; Gu, Jian-Ren; Sun, Yong-Wei; Zhang, Zhi-Gang

    2017-07-01

    Desmoplasia and poor vascularity cause severe metabolic stress in pancreatic ductal adenocarcinomas (PDACs). Serotonin (5-HT) is a neuromodulator with neurotransmitter and neuroendocrine functions that contributes to tumorigenesis. We investigated the role of 5-HT signaling in the growth of pancreatic tumors. We measured the levels of proteins that regulate 5-HT synthesis, packaging, and degradation in pancreata from Kras G12D/+ /Trp53 R172H/+ /Pdx1-Cre (KPC) mice, which develop pancreatic tumors, as well as in PDAC cell lines and a tissue microarray containing 81 human PDAC samples. We also analyzed expression levels of proteins involved in 5-HT synthesis and degradation by immunohistochemical analysis of a tissue microarray containing 311 PDAC specimens, and associated expression levels with patient survival times. 5-HT level in 14 matched PDAC tumor and non-tumor tissues were analyzed by ELISA. PDAC cell lines were incubated with 5-HT and cell survival and apoptosis were measured. We analyzed expression of the 5-HT receptor HTR2B in PDAC cells and effects of receptor agonists and antagonists, as well as HTR2B knockdown with small hairpin RNAs. We determined the effects of 5-HT stimulation on gene expression profiles of BxPC-3 cells. Regulation of glycolysis by 5-HT signaling via HTR2B was assessed by immunofluorescence and immunoprecipitation analyses, as well as by determination of the extracellular acid ratio, glucose consumption, and lactate production. Primary PDACs, with or without exposure to SB204741 (a selective antagonist of HTR2B), were grown as xenograft tumors in mice, and SB204741 was administered to tumor-bearing KPC mice; tumor growth and metabolism were measured by imaging analyses. In immunohistochemical analysis of a tissue microarray of PDAC specimens, increased levels of TPH1 and decreased level of MAOA, which regulate 5-HT synthesis and degradation, correlated with stage and size of PDACs and shorter patient survival time. We found levels

  6. Tumoral tracers

    Camargo, E.E.

    1979-01-01

    Direct tumor tracers are subdivided in the following categories:metabolite tracers, antitumoral tracers, radioactive proteins and cations. Use of 67 Ga-citrate as a clinically important tumoral tracer is emphasized and gallium-67 whole-body scintigraphy is discussed in detail. (M.A.) [pt

  7. Biomimetic carriers mimicking leukocyte plasma membrane to increase tumor vasculature permeability

    Palomba, R.; Parodi, A.; Evangelopoulos, M.; Acciardo, S.; Corbo, C.; De Rosa, E.; Yazdi, I. K.; Scaria, S.; Molinaro, R.; Furman, N. E. Toledano; You, J.; Ferrari, M.; Salvatore, F.; Tasciotti, E.

    2016-10-01

    Recent advances in the field of nanomedicine have demonstrated that biomimicry can further improve targeting properties of current nanotechnologies while simultaneously enable carriers with a biological identity to better interact with the biological environment. Immune cells for example employ membrane proteins to target inflamed vasculature, locally increase vascular permeability, and extravasate across inflamed endothelium. Inspired by the physiology of immune cells, we recently developed a procedure to transfer leukocyte membranes onto nanoporous silicon particles (NPS), yielding Leukolike Vectors (LLV). LLV are composed of a surface coating containing multiple receptors that are critical in the cross-talk with the endothelium, mediating cellular accumulation in the tumor microenvironment while decreasing vascular barrier function. We previously demonstrated that lymphocyte function-associated antigen (LFA-1) transferred onto LLV was able to trigger the clustering of intercellular adhesion molecule 1 (ICAM-1) on endothelial cells. Herein, we provide a more comprehensive analysis of the working mechanism of LLV in vitro in activating this pathway and in vivo in enhancing vascular permeability. Our results suggest the biological activity of the leukocyte membrane can be retained upon transplant onto NPS and is critical in providing the particles with complex biological functions towards tumor vasculature.

  8. Epithelial-mesenchymal transition increases tumor sensitivity to COX-2 inhibition by apricoxib.

    Kirane, Amanda; Toombs, Jason E; Larsen, Jill E; Ostapoff, Katherine T; Meshaw, Kathryn R; Zaknoen, Sara; Brekken, Rolf A; Burrows, Francis J

    2012-09-01

    Although cyclooxygenase-2 (COX-2) inhibitors, such as the late stage development drug apricoxib, exhibit antitumor activity, their mechanisms of action have not been fully defined. In this study, we characterized the mechanisms of action of apricoxib in HT29 colorectal carcinoma. Apricoxib was weakly cytotoxic toward naive HT29 cells in vitro but inhibited tumor growth markedly in vivo. Pharmacokinetic analyses revealed that in vivo drug levels peaked at 2-4 µM and remained sufficient to completely inhibit prostaglandin E(2) production, but failed to reach concentrations cytotoxic for HT29 cells in monolayer culture. Despite this, apricoxib significantly inhibited tumor cell proliferation and induced apoptosis without affecting blood vessel density, although it did promote vascular normalization. Strikingly, apricoxib treatment induced a dose-dependent reversal of epithelial-mesenchymal transition (EMT), as shown by robust upregulation of E-cadherin and the virtual disappearance of vimentin and ZEB1 protein expression. In vitro, either anchorage-independent growth conditions or forced EMT sensitized HT29 and non-small cell lung cancer cells to apricoxib by 50-fold, suggesting that the occurrence of EMT may actually increase the dependence of colon and lung carcinoma cells on COX-2. Taken together, these data suggest that acquisition of mesenchymal characteristics sensitizes carcinoma cells to apricoxib resulting in significant single-agent antitumor activity.

  9. Paradoxical expression of INK4c in proliferative multiple myeloma tumors: bi-allelic deletion vs increased expression

    Hanamura Ichiro

    2006-10-01

    Full Text Available Abstract Background A high proliferative capacity of tumor cells usually is associated with shortened patient survival. Disruption of the RB pathway, which is critically involved in regulating the G1 to S cell cycle transition, is a frequent target of oncogenic events that are thought to contribute to increased proliferation during tumor progression. Previously, we determined that p18INK4c, an essential gene for normal plasma cell differentiation, was bi-allelically deleted in five of sixteen multiple myeloma (MM cell lines. The present study was undertaken to investigate a possible role of p18INK4c in increased proliferation of myeloma tumors as they progress. Results Thirteen of 40 (33% human myeloma cell lines do not express normal p18INK4c, with bi-allelic deletion of p18 in twelve, and expression of a mutated p18 fragment in one. Bi-allelic deletion of p18, which appears to be a late progression event, has a prevalence of about 2% in 261 multiple myeloma (MM tumors, but the prevalence is 6 to10% in the 50 tumors with a high expression-based proliferation index. Paradoxically, 24 of 40 (60% MM cell lines, and 30 of 50 (60% MM tumors with a high proliferation index express an increased level of p18 RNA compared to normal bone marrow plasma cells, whereas this occurs in only five of the 151 (3% MM tumors with a low proliferation index. Tumor progression is often accompanied by increased p18 expression and an increased proliferation index. Retroviral-mediated expression of exogenous p18 results in marked growth inhibition in three MM cell lines that express little or no endogenous p18, but has no effect in another MM cell line that already expresses a high level of p18. Conclusion Paradoxically, although loss of p18 appears to contribute to increased proliferation of nearly 10% of MM tumors, most MM cell lines and proliferative MM tumors have increased expression of p18. Apart from a small fraction of cell lines and tumors that have inactivated

  10. Overexpression of vascular endothelial growth factor C increases growth and alters the metastatic pattern of orthotopic PC-3 prostate tumors

    Tuomela, Johanna; Valta, Maija; Seppänen, Jani; Tarkkonen, Kati; Väänänen, H Kalervo; Härkönen, Pirkko

    2009-01-01

    Prostate cancer metastasizes to regional lymph nodes and distant sites but the roles of lymphatic and hematogenous pathways in metastasis are not fully understood. We studied the roles of VEGF-C and VEGFR3 in prostate cancer metastasis by blocking VEGFR3 using intravenous adenovirus-delivered VEGFR3-Ig fusion protein (VEGFR3-Ig) and by ectopic expression of VEGF-C in PC-3 prostate tumors in nude mice. VEGFR3-Ig decreased the density of lymphatic capillaries in orthotopic PC-3 tumors (p < 0.05) and inhibited metastasis to iliac and sacral lymph nodes. In addition, tumor volumes were smaller in the VEGFR3-Ig-treated group compared with the control group (p < 0.05). Transfection of PC-3 cells with the VEGF-C gene led to a high level of 29/31 kD VEGF-C expression in PC-3 cells. The size of orthotopic and subcutaneous PC-3/VEGF-C tumors was significantly greater than that of PC-3/mock tumors (both p < 0.001). Interestingly, while most orthotopic PC-3 and PC-3/mock tumors grown for 4 weeks metastasized to prostate-draining lymph nodes, orthotopic PC-3/VEGF-C tumors primarily metastasized to the lungs. PC-3/VEGF-C tumors showed highly angiogenic morphology with an increased density of blood capillaries compared with PC-3/mock tumors (p < 0.001). The data suggest that even though VEGF-C/VEGFR3 pathway is primarily required for lymphangiogenesis and lymphatic metastasis, an increased level of VEGF-C can also stimulate angiogenesis, which is associated with growth of orthotopic prostate tumors and a switch from a primary pattern of lymph node metastasis to an increased proportion of metastases at distant sites

  11. Evaluation of the Role of Peroxisome Proliferator-Activated Receptor α (PPARα) in Mouse Liver Tumor Induction by Trichloroethylene and Metabolites

    Trichloroethylene (TCE) is an industrial solvent and a widespread environmental contaminant. Induction of liver cancer in mice by TCE is thought to be mediated by two metabolites, dichloroacetate (DCA) and trichloroacetate (TCA), both of which are themselves mouse liver carcinoge...

  12. Relationship between increased serum tumor necrosis factor levels and insulin resistance in patients with essential hypertension

    Wang Weimin; Li Jinliang; Huang Yongqiang

    2010-01-01

    Objective: To investigate the relationship between serum tumor necrosis factor-α (TNF-α) levels and insulin resistance (IR) in patients with essential by pertension. Methods: Serum TNF-α and free insulin (fINS)levels were measured with RIA in 41 patients with essential hypertension and 38 controls. Insulin resistance was calculated with insulin resistance index (HOMA-IR). Results: The serum TNF-α levels were significantly higher in patients with essential hypertension than those in the controls (P<0.001). The HOMA-IR was also significantly higher in hypertension group than that in controls (P<0.001). Serum TNF-α levels was positively correlated with BMI, HOMA-IR and SBP both in hypertension group and control group (P<0.05). Conclusion: Serum TNF-α level was increased in hypertensive patients and positively correlated with obesity and IR. (authors)

  13. Increased metabolite production by deletion of an HDA1-type histone deacetylase in the phytopathogenic fungi, Magnaporthe oryzae (Pyricularia oryzae) and Fusarium asiaticum.

    Maeda, K; Izawa, M; Nakajima, Y; Jin, Q; Hirose, T; Nakamura, T; Koshino, H; Kanamaru, K; Ohsato, S; Kamakura, T; Kobayashi, T; Yoshida, M; Kimura, M

    2017-11-01

    Histone deacetylases (HDACs) play an important role in the regulation of chromatin structure and gene expression. We found that dark pigmentation of Magnaporthe oryzae (anamorph Pyricularia oryzae) ΔMohda1, a mutant strain in which an orthologue of the yeast HDA1 was disrupted by double cross-over homologous recombination, was significantly stimulated in liquid culture. Analysis of metabolites in a ΔMohda1 mutant culture revealed that the accumulation of shunt products of the 1,8-dihydroxynaphthalene melanin and ergosterol pathways were significantly enhanced compared to the wild-type strain. Northern blot analysis of the ΔMohda1 mutant revealed transcriptional activation of three melanin genes that are dispersed throughout the genome of M. oryzae. The effect of deletion of the yeast HDA1 orthologue was also observed in Fusarium asiaticum from the Fusarium graminearum species complex; the HDF2 deletion mutant produced increased levels of nivalenol-type trichothecenes. These results suggest that histone modification via HDA1-type HDAC regulates the production of natural products in filamentous fungi. Natural products of fungi have significant impacts on human welfare, in both detrimental and beneficial ways. Although HDA1-type histone deacetylase is not essential for vegetative growth, deletion of the gene affects the expression of clustered secondary metabolite genes in some fungi. Here, we report that such phenomena are also observed in physically unlinked genes required for melanin biosynthesis in the rice blast fungus. In addition, production of Fusarium trichothecenes, previously reported to be unaffected by HDA1 deletion, was significantly upregulated in another Fusarium species. Thus, the HDA1-inactivation strategy may be regarded as a general approach for overproduction and/or discovery of fungal metabolites. © 2017 The Society for Applied Microbiology.

  14. N-acetylphytosphingosine enhances the radiosensitivity of tumor cells by increasing apoptosis

    Han, Y.; Kim, Y.; Yun, Y.; Jeon, S.; Kim, K.; Song, J.; Hong, S.H.; Park, C.

    2005-01-01

    Ceramides are well-known second messengers which mediate apoptosis, proliferation, differentiation in mammalian cells, but the physiological roles of phytosphingosines are poorly understood. We hypothesized that one of the phytosphingosine derivatives, N-acetylphytosphingosine (NAPS) can induce apoptosis in human leukemia Jurkat cell line and increase apoptosis in irradiated MDA-MB-231 cells. We first examined the effect of NAPS on apoptosis of Jurkat cells. NAPS had a more rapid and stronger apoptotic effect than C 2 -ceramide in Jurkat cells and significant increase of apoptosis was observed at 3 h after treatment. In contrast, the apoptosis induced by C2-ceramide was observed only after 16 h of treatment. NAPS induced apoptosis was mediated by caspase 3 and 8 activation and inhibited by z-VAD-fmk. Ceramide plays a pivotal role in radiation induced apoptosis. We postulated that exogenous treatment of NAPS sensitizes tumor cells to ionizing radiation, since NAPS might be used as a more effective alternative to C2-ceramide. As expected, NAPS decreased clonogenic survival of irradiated MDA-MB-231 cells dose dependently, and apoptosis of irradiated cells in the presence of NAPS was increased through the caspase activation. Taken together, NAPS is an effective apoptosis-inducing agent, which can be readily synthesized from yeast sources, and is a potent alternative to ceramide for the further study of ceramide associated signaling and the development of radiosensitizing agent. (orig.)

  15. In Vivo Imaging Reveals Significant Tumor Vascular Dysfunction and Increased Tumor Hypoxia-Inducible Factor-1α Expression Induced by High Single-Dose Irradiation in a Pancreatic Tumor Model

    Maeda, Azusa [Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario (Canada); Chen, Yonghong; Bu, Jiachuan; Mujcic, Hilda [Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Wouters, Bradly G. [Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); DaCosta, Ralph S., E-mail: rdacosta@uhnres.utoronto.ca [Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario (Canada); Techna Institute, University Health Network, Toronto, Ontario (Canada)

    2017-01-01

    Purpose: To investigate the effect of high-dose irradiation on pancreatic tumor vasculature and microenvironment using in vivo imaging techniques. Methods and Materials: A BxPC3 pancreatic tumor xenograft was established in a dorsal skinfold window chamber model and a subcutaneous hind leg model. Tumors were irradiated with a single dose of 4, 12, or 24 Gy. The dorsal skinfold window chamber model was used to assess tumor response, vascular function and permeability, platelet and leukocyte adhesion to the vascular endothelium, and tumor hypoxia for up to 14 days after 24-Gy irradiation. The hind leg model was used to monitor tumor size, hypoxia, and vascularity for up to 65 days after 24-Gy irradiation. Tumors were assessed histologically to validate in vivo observations. Results: In vivo fluorescence imaging revealed temporary vascular dysfunction in tumors irradiated with a single dose of 4 to 24 Gy, but most significantly with a single dose of 24 Gy. Vascular functional recovery was observed by 14 days after irradiation in a dose-dependent manner. Furthermore, irradiation with 24 Gy caused platelet and leukocyte adhesion to the vascular endothelium within hours to days after irradiation. Vascular permeability was significantly higher in irradiated tumors compared with nonirradiated controls 14 days after irradiation. This observation corresponded with increased expression of hypoxia-inducible factor-1α in irradiated tumors. In the hind leg model, irradiation with a single dose of 24 Gy led to tumor growth delay, followed by tumor regrowth. Conclusions: Irradiation of the BxPC3 tumors with a single dose of 24 Gy caused transient vascular dysfunction and increased expression of hypoxia-inducible factor-1α. Such biological changes may impact tumor response to high single-dose and hypofractionated irradiation, and further investigations are needed to better understand the clinical outcomes of stereotactic body radiation therapy.

  16. ADAM12 redistributes and activates MMP-14, resulting in gelatin degradation, reduced apoptosis and increased tumor growth

    Albrechtsen, Reidar; Kveiborg, Marie; Hansen, Dorte Stautz

    2013-01-01

    that there is a positive correlation between MMP-14 and ADAM12 expression in human breast cancer. We demonstrated that in 293-VnR and human breast cancer cells expressing ADAM12 at the cell surface, endogenous MMP-14 was recruited to the cell surface, resulting in its activation. Subsequent to this activation, gelatin......Matrix metalloproteinases (MMPs), in particular MMP-2, MMP-9 and MMP-14, play a key role in various aspects of cancer pathology. Likewise, ADAMs (a disintegrin and metalloproteinases), including ADAM12, are upregulated in malignant tumors and contribute to the pathology of cancers. Here, we show....... Furthermore, orthotopic implantation of ADAM12-expressing MCF7 cells in nude mice produced tumors with increased levels of activated MMP-14 and confirmed that ADAM12 protects tumor cells against apoptosis, leading to increased tumor progression. In conclusion, our data suggest that a ternary protein complex...

  17. Tailored imaging of islet cell tumors of the pancreas amidst increasing options

    Fiebrich, Helle-Brit; van Asselt, Sophie J.; Brouwers, Adrienne H.; van Dullemen, Hendrik M.; Pijl, Milan E. J.; Elsinga, Philip H.; Links, Thera P.; de Vries, Elisabeth G. E.

    Pancreatic islet cell tumors are neuroendocrine tumors, which can produce hormones and can arise as part of multiple endocrine neoplasia type 1 or von-Hippel-Lindau-disease, two genetically well-defined hereditary cancer syndromes. Currently, technical innovation improves conventional and specific

  18. Tumor necrosis factor alpha increases epithelial barrier permeability by disrupting tight junctions in Caco-2 cells

    W. Cui

    2010-04-01

    Full Text Available The objectives of this study were to determine the effect of tumor necrosis factor alpha (TNF-α on intestinal epithelial cell permeability and the expression of tight junction proteins. Caco-2 cells were plated onto Transwell® microporous filters and treated with TNF-α (10 or 100 ng/mL for 0, 4, 8, 16, or 24 h. The transepithelial electrical resistance and the mucosal-to-serosal flux rates of the established paracellular marker Lucifer yellow were measured in filter-grown monolayers of Caco-2 intestinal cells. The localization and expression of the tight junction protein occludin were detected by immunofluorescence and Western blot analysis, respectively. SYBR-Green-based real-time PCR was used to measure the expression of occludin mRNA. TNF-α treatment produced concentration- and time-dependent decreases in Caco-2 transepithelial resistance and increases in transepithelial permeability to the paracellular marker Lucifer yellow. Western blot results indicated that TNF-α decreased the expression of phosphorylated occludin in detergent-insoluble fractions but did not affect the expression of non-phosphorylated occludin protein. Real-time RT-PCR data showed that TNF-α did not affect the expression of occludin mRNA. Taken together, our data demonstrate that TNF-α increases Caco-2 monolayer permeability, decreases occludin protein expression and disturbs intercellular junctions.

  19. Metabolite Damage and Metabolite Damage Control in Plants

    Hanson, Andrew D. [Horticultural Sciences Department and; Henry, Christopher S. [Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois 60439, email:; Computation Institute, University of Chicago, Chicago, Illinois 60637; Fiehn, Oliver [Genome Center, University of California, Davis, California 95616, email:; de Crécy-Lagard, Valérie [Microbiology and Cell Science Department, University of Florida, Gainesville, Florida 32611, email: ,

    2016-04-29

    It is increasingly clear that (a) many metabolites undergo spontaneous or enzyme-catalyzed side reactions in vivo, (b) the damaged metabolites formed by these reactions can be harmful, and (c) organisms have biochemical systems that limit the buildup of damaged metabolites. These damage-control systems either return a damaged molecule to its pristine state (metabolite repair) or convert harmful molecules to harmless ones (damage preemption). Because all organisms share a core set of metabolites that suffer the same chemical and enzymatic damage reactions, certain damage-control systems are widely conserved across the kingdoms of life. Relatively few damage reactions and damage-control systems are well known. Uncovering new damage reactions and identifying the corresponding damaged metabolites, damage-control genes, and enzymes demands a coordinated mix of chemistry, metabolomics, cheminformatics, biochemistry, and comparative genomics. This review illustrates the above points using examples from plants, which are at least as prone to metabolite damage as other organisms.

  20. Celecoxib increases miR-222 while deterring aromatase-expressing breast tumor growth in mice

    Wong, Tsz Yan; Li, Fengjuan; Lin, Shu-mei; Chan, Franky L; Chen, Shiuan; Leung, Lai K

    2014-01-01

    Breast cancer is one of the most deadly diseases in women. Inhibiting the synthesis of estrogen is effective in treating patients with estrogen-responsive breast cancer. Previous studies have demonstrated that use of cyclooxygenase (COX) inhibitors is associated with reduced breast cancer risk. In the present study, we employed an established mouse model for postmenopausal breast cancer to evaluate the potential mechanisms of the COX-2 inhibitor celecoxib. Aromatase-expressing MCF-7 cells were transplanted into ovariectomized athymic mice. The animals were given celecoxib at 1500 ppm or aspirin at 200 ppm by oral administration with androstenedione injection. Our results showed that both COX inhibitors could suppress the cancer xenograft growth without changing the plasma estrogen level. Protein expression of ERα, COX-2, Cyclin A, and Bcl-xL were reduced in celecoxib-treated tumor samples, whereas only Bcl-xL expression was suppressed in those treated with aspirin. Among the breast cancer-related miRNAs, miR-222 expression was elevated in samples treated with celecoxib. Further studies in culture cells verified that the increase in miR-222 expression might contribute to ERα downregulation but not the growth deterrence of cells. Overall, this study suggested that both celecoxib and aspirin could prevent breast cancer growth by regulating proteins in the cell cycle and apoptosis without blocking estrogen synthesis. Besides, celecoxib might affect miR expression in an undesirable fashion

  1. New trends in increase of efficacy of preoperative irradiation of malignant tumors

    Berdov, B.A.; Dunchik, V.N.; Firsova, P.P.; Sidorchenkov, V.O.

    1982-01-01

    It was shown the use of preoperative irradiation as a means altering the biologic nature of the tumor before the operation. The main attention is paid to development of methods for preoperative irradiation of malignant tumors, i. e. macrofractionated long-distance irradiation, intracavitary, combined irradiation, as well as to study of the effect of synchronization of tumor cells with 5-fluorouracil, of local heating of the tumor, and of electron-acceptor compounds application in the preoperative period. The results of combined treatment of 1007 patients with cancer of various localization: 121 patients with laryngeal carcinoma, 397 with mammary carcinoma, 100 with pulmonary carcinoma, 258 with gastric carcinoma, 131 with rectal carcinoma, and 114 with carcinoma of the urinary bladder were analyzed

  2. Increased suppression of oncolytic adenovirus carrying mutant k5 on colorectal tumor

    Fan Junkai; Xiao Tian; Gu Jinfa; Wei Na; He Lingfeng; Ding Miao; Liu Xinyuan

    2008-01-01

    Angiogenesis plays a key role in the development of a wide variety of malignant tumors. The approach of targeting antiangiogenesis has become an important field of cancer gene therapy. In this study, the antiangiogenesis protein K5 (the kringle 5 of human plasminogen) has been mutated by changing leucine71 to arginine to form mK5. Then the ZD55-mK5, which is an oncolytic adenovirus expressing mK5, was constructed. It showed stronger inhibition on proliferation of human umbilical vein endothelial cell. Moreover, in tube formation and embryonic chorioallantoic membrane assay, ZD55-mK5 exhibited more effective antiangiogenesis than ZD55-K5. In addition, ZD55-mK5 generated obvious suppression on the growth of colorectal tumor xenografts and prolonged the life span of nude mice. These results indicate that ZD55-mK5 is a potent agent for inhibiting the tumor angiogenesis and tumor growth

  3. New trends in increase of efficacy of preoperative irradiation of malignant tumors

    Berdov, B A; Dunchik, V N; Firsova, P P; Sidorchenkov, V O [Akademiya Meditsinskikh Nauk SSSR, Obninsk. Nauchno-Issledovatel' skij Inst. Meditsinskoj Radiologii

    1982-09-01

    It was shown the use of preoperative irradiation as a means altering the biologic nature of the tumor before the operation. The main attention is paid to development of methods for preoperative irradiation of malignant tumors, i.e. macrofractionated long-distance irradiation, intracavitary, combined irradiation, as well as to study of the effect of synchronization of tumor cells with 5-fluorouracil, of local heating of the tumor, and of electron-acceptor compounds application in the preoperative period. The results of combined treatment of 1007 patients with cancer of various localization: 121 patients with laryngeal carcinoma, 397 with mammary carcinoma, 100 with pulmonary carcinoma, 258 with gastric carcinoma, 131 with rectal carcinoma, and 114 with carcinoma of the urinary bladder were analyzed.

  4. The effects of TYB-2285 and its metabolites on eosinophil adhesion to tumor necrosis factor α-stimulated human umbilical vein endothelial cells

    Takanari Tominaga

    1996-01-01

    The results of the present study demonstrate that TYB-2285 and its metabolites selectively inhibit the adhesion of eosinophils to HUVECs stimulated with TNF-α and also suggest that TYB-2285, TC-286 and TC-326 might block the VLA-4/VCAM-1 pathway selectively.

  5. Increase of tumor necrosis factor receptor 1 expression in women with unexplained early spontaneous abortion

    YAN Chun-fang; YU Xue-wen; JIN Hui; LI Xu

    2004-01-01

    To investigate membrane tumor necrosis factor receptor 1 protein expression level in decidua andconcentration of soluble tumor necrosis factor receptor 1 in serum in women with unexplained early spontaneous abortion,threatened abortion, and compare the levels with healthy pregnant women. Methods: Thirty-seven women with unexplainedearly spontaneous abortion, 27 women with threatened abortion, and 34 healthy pregnant women undergoing artificial abortionof pregnancy at 6 - 10 weeks of gestation were selected. Decidual samples were collected when women were undergoing arti-ficial abortion, and blood samples were collected at the same time. The level of membrane tumor necrosis factor receptor 1 indecidua was detected by flow cytometer, and the concentration of soluble tumor necrosis factor receptor 1 in sera was mea-sured with an enzyme-linked immunosorbent assay. Results: The ercentages of membrane tumor necrosis factor receptor 1positive decidual cells were 16.42 ± 7.10 Mean ± SD for women with unexplained early spontaneous abortion and 13.14 ±6.30 for healthy pregnant women ( P < 0.05). Serum oncentration of soluble tumor necrosis factor receptor 1 was signifi-cantly higher in women with unexplained early spontaneous abortion than in healthy pregnant women and in women withthreatened abortion, and no difference was found between healthy pregnant women and women with threatened abortion.Conclusion: Women with unexplained early spontaneous abortion present significantly higher expression of tumor necrosisfactor receptor 1 than healthy pregnant women, suggesting that over-expression of tumor necrosis factor receptor 1 may cont-ribute to the development of early spontaneous abortion.

  6. Targeting Potassium Channels for Increasing Delivery of Imaging Agents and Therapeutics to Brain Tumors

    Nagendra Sanyasihally Ningaraj; Divya eKhaitan

    2013-01-01

    Every year in the US, 20,000 new primary and nearly 200,000 metastatic brain tumor cases are reported. The cerebral microvessels/ capillaries that form the blood–brain barrier (BBB) not only protect the brain from toxic agents in the blood but also pose a significant hindrance to the delivery of small and large therapeutic molecules. Different strategies have been employed to circumvent the physiological barrier posed by blood-brain tumor barrier (BTB). Studies in our laboratory have identifi...

  7. IGF-II transgenic mice display increased aberrant colon crypt multiplicity and tumor volume after 1,2-dimethylhydrazine treatment

    Oesterle Doris

    2006-01-01

    Full Text Available Abstract In colorectal cancer insulin-like growth factor II (IGF-II is frequently overexpressed. To evaluate, whether IGF-II affects different stages of tumorigenesis, we induced neoplastic alterations in the colon of wild-type and IGF-II transgenic mice using 1,2-dimethylhydrazine (DMH. Aberrant crypt foci (ACF served as markers of early lesions in the colonic mucosa, whereas adenomas and carcinomas characterized the endpoints of tumor development. DMH-treatment led initially to significantly more ACF in IGF-II transgenic than in wild-type mice. This increase in ACF was especially prominent for those consisting of ≥three aberrant crypts (AC. Nevertheless, adenomas and adenocarcinomas of the colon, present after 34 weeks in both genetic groups, were not found at different frequency. Tumor volumes, however, were significantly higher in IGF-II transgenic mice and correlated with serum IGF-II levels. Immunohistochemical staining for markers of proliferation and apoptosis revealed increased cell proliferation rates in tumors of IGF-II transgenic mice without significant affection of apoptosis. Increased proliferation was accompanied by elevated localization of β-catenin in the cytosol and cell nuclei and reduced appearance at the inner plasma membrane. In conclusion, we provide evidence that IGF-II, via activation of the β-catenin signaling cascade, promotes growth of ACF and tumors without affecting tumor numbers.

  8. Chimeric anti-tenascin antibody 81C6: Increased tumor localization compared with its murine parent

    Zalutsky, Michael R.; Archer, Gary E.; Garg, Pradeep K.; Batra, Surinder K.; Bigner, Darell D.

    1996-01-01

    When labeled using the Iodogen method, a chimeric antibody composed of the human IgG 2 constant region and the variable regions of murine anti-tenascin 81C6 exhibited superior uptake in human glioma xenografts compared with its murine parent. In the current study, three paired-label experiments were performed in athymic mice with subcutaneous D-54 MG human glioma xenografts to evaluate further the properties of radioiodinated chimeric 81C6. These studies demonstrated that (a) the enhanced tumor uptake of chimeric 81C6 is specific; (b) when labeling was performed using N-succinimidyl 3-iodobenzoate, chimeric 81C6 again showed preferential accumulation in tumor compared with murine 81C6; and (c) the tumor uptake advantage observed previously with murine 81C6 for N-succinimidyl 3-iodobenzoate compared with Iodogen labeling did not occur with chimeric 81C6

  9. Training-induced increase in nitric oxide metabolites in chronic heart failure and coronary artery disease: an extra benefit of water-based exercises?

    Laurent, Mourot; Daline, Teffaha; Malika, Bouhaddi; Fawzi, Ounissi; Philippe, Vernochet; Benoit, Dugue; Catherine, Monpère; Jacques, Regnard

    2009-04-01

    Rehabilitation programs involving immersed exercises are more and more frequently used, with severe cardiac patients as well. This study investigated whether a rehabilitation program including water-based exercises has additional effects on the cardiovascular system compared with a traditional land-based training in heart disease patients. Twenty-four male stable chronic heart failure patients and 24 male coronary artery disease patients with preserved left ventricular function participated in the study. Patients took part in the rehabilitation program performing cycle endurance exercises on land. They also performed gymnastic exercises either on land (first half of the participants) or in water (second half). Resting plasma concentration of nitric oxide metabolites (nitrate and nitrite) and catecholamine were evaluated, and a symptom-limited exercise test on a cycle ergometer was performed before and after the rehabilitation program. In the groups performing water-based exercises, the plasma concentration of nitrates was significantly increased (P = 0.035 for chronic heart failure and P = 0.042 for coronary artery disease), whereas it did not significantly change in the groups performing gymnastic exercise on land. No changes in plasma catecholamine concentration occurred. In every group, the cardiorespiratory capacity of patients was significantly increased after rehabilitation. The water-based exercises seemed to effectively increase the basal level of plasma nitrates. Such changes may be related to an enhancement of endothelial function and may be of importance for the health of the patients.

  10. 3D modeling of effects of increased oxygenation and activity concentration in tumors treated with radionuclides and antiangiogenic drugs

    Lagerloef, Jakob H.; Kindblom, Jon; Bernhardt, Peter [Department of Radiation Physics, Goeteborg University, Goeteborg 41345 (Sweden); Department of Oncology, Sahlgrenska University Hospital, Goeteborg 41345 (Sweden); Department of Radiation Physics, Goeteborg University, Goeteborg, Sweden and Department of Nuclear Medicine, Sahlgrenska University Hospital, Goeteborg 41345 (Sweden)

    2011-08-15

    Purpose: Formation of new blood vessels (angiogenesis) in response to hypoxia is a fundamental event in the process of tumor growth and metastatic dissemination. However, abnormalities in tumor neovasculature often induce increased interstitial pressure (IP) and further reduce oxygenation (pO{sub 2}) of tumor cells. In radiotherapy, well-oxygenated tumors favor treatment. Antiangiogenic drugs may lower IP in the tumor, improving perfusion, pO{sub 2} and drug uptake, by reducing the number of malfunctioning vessels in the tissue. This study aims to create a model for quantifying the effects of altered pO{sub 2}-distribution due to antiangiogenic treatment in combination with radionuclide therapy. Methods: Based on experimental data, describing the effects of antiangiogenic agents on oxygenation of GlioblastomaMultiforme (GBM), a single cell based 3D model, including 10{sup 10} tumor cells, was developed, showing how radionuclide therapy response improves as tumor oxygenation approaches normal tissue levels. The nuclides studied were {sup 90}Y, {sup 131}I, {sup 177}Lu, and {sup 211}At. The absorbed dose levels required for a tumor control probability (TCP) of 0.990 are compared for three different log-normal pO{sub 2}-distributions: {mu}{sub 1} = 2.483, {sigma}{sub 1} = 0.711; {mu}{sub 2} = 2.946, {sigma}{sub 2} = 0.689; {mu}{sub 3} = 3.689, and {sigma}{sub 3} = 0.330. The normal tissue absorbed doses will, in turn, depend on this. These distributions were chosen to represent the expected oxygen levels in an untreated hypoxic tumor, a hypoxic tumor treated with an anti-VEGF agent, and in normal, fully-oxygenated tissue, respectively. The former two are fitted to experimental data. The geometric oxygen distributions are simulated using two different patterns: one Monte Carlo based and one radially increasing, while keeping the log-normal volumetric distributions intact. Oxygen and activity are distributed, according to the same pattern. Results: As tumor pO{sub 2

  11. Increased expression of aquaporin-4 in human traumatic brain injury and brain tumors

    HuaHu; Wei-PingZhang; LeiZhang; ZhongChen; Er-QingWei

    2004-01-01

    Aquaporin-4 (AQP4) is one of the aquaporins (AQPs), a water channel family. In the brain, AQP4 is expressed in astroeyte foot processes, and plays an important role in water homeostasis and in the formation of brain edema. In our study, AQP4 expression in human brain specimens from patients with traumatic brain injury or different brain tumors was detected

  12. Increased tumor localization and reduced immune response to adenoviral vector formulated with the liposome DDAB/DOPE.

    Steel, Jason C; Cavanagh, Heather M A; Burton, Mark A; Abu-Asab, Mones S; Tsokos, Maria; Morris, John C; Kalle, Wouter H J

    2007-04-01

    We aimed to increase the efficiency of adenoviral vectors by limiting adenoviral spread from the target site and reducing unwanted host immune responses to the vector. We complexed adenoviral vectors with DDAB-DOPE liposomes to form adenovirus-liposomal (AL) complexes. AL complexes were delivered by intratumoral injection in an immunocompetent subcutaneous rat tumor model and the immunogenicity of the AL complexes and the expression efficiency in the tumor and other organs was examined. Animals treated with the AL complexes had significantly lower levels of beta-galactosidase expression in systemic tissues compared to animals treated with the naked adenovirus (NA) (P<0.05). The tumor to non-tumor ratio of beta-galactosidase marker expression was significantly higher for the AL complex treated animals. NA induced significantly higher titers of adenoviral-specific antibodies compared to the AL complexes (P<0.05). The AL complexes provided protection (immunoshielding) to the adenovirus from neutralizing antibody. Forty-seven percent more beta-galactosidase expression was detected following intratumoral injection with AL complexes compared to the NA in animals pre-immunized with adenovirus. Complexing of adenovirus with liposomes provides a simple method to enhance tumor localization of the vector, decrease the immunogenicity of adenovirus, and provide protection of the virus from pre-existing neutralizing antibodies.

  13. Quantitative multiparametric MRI in uveal melanoma: increased tumor permeability may predict monosomy 3

    Kamrava, Mitchell; Wang, Pin-Chieh; Roberts, Kristofer; Demanes, D.J. [University of California Los Angeles, Department of Radiation Oncology, Los Angeles, CA (United States); Sepahdari, Ali R.; Leu, Kevin; Ellingson, Benjamin M. [University of California Los Angeles, Department of Radiological Sciences, Los Angeles, CA (United States); McCannel, Tara [University of California Los Angeles, Department of Ophthalmology, Los Angeles, CA (United States)

    2015-08-15

    Uveal melanoma is a rare intraocular tumor with heterogeneous biological behavior, and additional noninvasive markers that may predict outcome are needed. Diffusion- and perfusion-weighted imaging may prove useful but have previously been limited in their ability to evaluate ocular tumors. Our purpose was to show the feasibility and potential value of a multiparametric (mp-) MRI protocol employing state of the art diffusion- and perfusion-weighted imaging techniques. Sixteen patients with uveal melanoma were imaged with mp-MRI. Multishot readout-segmented echoplanar diffusion-weighted imaging, quantitative dynamic contrast-enhanced (DCE) MR perfusion imaging, and anatomic sequences were obtained. Regions of interest (ROIs) were drawn around tumors for calculation of apparent diffusion coefficient (ADC) and perfusion metrics (K{sup trans}, v{sub e}, k{sub ep}, and v{sub p}). A generalized linear fit model was used to compare various MRI values with the American Joint Commission on Cancer (AJCC) tumor group and monosomy 3 status with significance set at P < 0.05. mp-MRI was performed successfully in all cases. MRI tumor height (mean [standard deviation]) was 6.5 mm (3.0). ROI volume was 278 mm{sup 3} (222). ADC was 1.07 (0.27) x 10-3 mm{sup 2}/s. DCE metrics were K{sup trans} 0.085/min (0.063), v{sub e} 0.060 (0.052), k{sub ep} 1.20/min (0.32), and v{sub p} 1.48 % (0.82). Patients with >33 % monosomy 3 had higher K{sup trans} and higher v{sub e} values than those with disomy 3 or ≤33 % monosomy (P < 0.01). There were no significant differences between ADC (P = 0.07), k{sub ep} (P = 0.37), and v{sub p} with respect to monosomy 3. mp-MRI for ocular tumor imaging using multishot EPI DWI and quantitative DCE perfusion is technically feasible. mp-MRI may help predict monosomy 3 in uveal melanoma. (orig.)

  14. Epigenetic Metabolite Acetate Inhibits Class I/II Histone Deacetylases, Promotes Histone Acetylation, and Increases HIV-1 Integration in CD4+ T Cells.

    Bolduc, Jean-François; Hany, Laurent; Barat, Corinne; Ouellet, Michel; Tremblay, Michel J

    2017-08-15

    In this study, we investigated the effect of acetate, the most concentrated short-chain fatty acid (SCFA) in the gut and bloodstream, on the susceptibility of primary human CD4 + T cells to HIV-1 infection. We report that HIV-1 replication is increased in CD3/CD28-costimulated CD4 + T cells upon acetate treatment. This enhancing effect correlates with increased expression of the early activation marker CD69 and impaired class I/II histone deacetylase (HDAC) activity. In addition, acetate enhances acetylation of histones H3 and H4 and augments HIV-1 integration into the genome of CD4 + T cells. Thus, we propose that upon antigen presentation, acetate influences class I/II HDAC activity that transforms condensed chromatin into a more relaxed structure. This event leads to a higher level of viral integration and enhanced HIV-1 production. In line with previous studies showing reactivation of latent HIV-1 by SCFAs, we provide evidence that acetate can also increase the susceptibility of primary human CD4 + T cells to productive HIV-1 infection. IMPORTANCE Alterations in the fecal microbiota and intestinal epithelial damage involved in the gastrointestinal disorder associated with HIV-1 infection result in microbial translocation that leads to disease progression and virus-related comorbidities. Indeed, notably via production of short-chain fatty acids, bacteria migrating from the lumen to the intestinal mucosa could influence HIV-1 replication by epigenetic regulatory mechanisms, such as histone acetylation. We demonstrate that acetate enhances virus production in primary human CD4 + T cells. Moreover, we report that acetate impairs class I/II histone deacetylase activity and increases integration of HIV-1 DNA into the host genome. Therefore, it can be postulated that bacterial metabolites such as acetate modulate HIV-1-mediated disease progression. Copyright © 2017 American Society for Microbiology.

  15. Effect of insulin analogues on insulin/IGF1 hybrid receptors: increased activation by glargine but not by its metabolites M1 and M2.

    Cécile Pierre-Eugene

    Full Text Available BACKGROUND: In diabetic patients, the pharmacokinetics of injected human insulin does not permit optimal control of glycemia. Fast and slow acting insulin analogues have been developed, but they may have adverse properties, such as increased mitogenic or anti-apoptotic signaling. Insulin/IGF1 hybrid receptors (IR/IGF1R, present in most tissues, have been proposed to transmit biological effects close to those of IGF1R. However, the study of hybrid receptors is difficult because of the presence of IR and IGF1R homodimers. Our objective was to perform the first study on the pharmacological properties of the five marketed insulin analogues towards IR/IGF1R hybrids. METHODOLOGY: To study the effect of insulin analogues on IR/IGF1R hybrids, we used our previously developed Bioluminescence Resonance Energy Transfer (BRET assay that permits specific analysis of the pharmacological properties of hybrid receptors. Moreover, we have developed a new, highly sensitive BRET-based assay to monitor phophatidylinositol-3 phosphate (PIP(3 production in living cells. Using this assay, we performed a detailed pharmacological analysis of PIP(3 production induced by IGF1, insulin and insulin analogues in living breast cancer-derived MCF-7 and MDA-MB231 cells. RESULTS: Among the five insulin analogues tested, only glargine stimulated IR/IGF1R hybrids with an EC50 that was significantly lower than insulin and close to that of IGF1. Glargine more efficiently stimulated PIP(3 production in MCF-7 cells but not in MDA-MB231 cells as compared to insulin. In contrast, glargine metabolites M1 and M2 showed lower potency for hybrid receptors stimulation, PIP(3 production, Akt and Erk1/2 phosphorylation and DNA synthesis in MCF-7 cells, compared to insulin. CONCLUSION: Glargine, possibly acting through IR/IGF1R hybrids, displays higher potency, whereas its metabolites M1 and M2 display lower potency than insulin for the stimulation of proliferative/anti-apoptotic pathways in

  16. Loss of 5-hydroxymethylcytosine correlates with increasing morphologic dysplasia in melanocytic tumors.

    Larson, Allison R; Dresser, Karen A; Zhan, Qian; Lezcano, Cecilia; Woda, Bruce A; Yosufi, Benafsha; Thompson, John F; Scolyer, Richard A; Mihm, Martin C; Shi, Yujiang G; Murphy, George F; Lian, Christine Guo

    2014-07-01

    DNA methylation is the most well-studied epigenetic modification in cancer biology. 5-hydroxymethylcytosine is an epigenetic mark that can be converted from 5-methylcytosine by the ten-eleven translocation gene family. We recently reported the loss of 5-hydroxymethylcytosine in melanoma compared with benign nevi and suggested that loss of this epigenetic marker is correlated with tumor virulence based on its association with a worse prognosis. In this study, we further characterize the immunoreactivity patterns of 5-hydroxymethylcytosine in the full spectrum of melanocytic lesions to further validate the potential practical application of this epigenetic marker. One hundred and seventy-five cases were evaluated: 18 benign nevi, 20 dysplastic nevi (10 low-grade and 10 high-grade lesions), 10 atypical Spitz nevi, 20 borderline tumors, 5 melanomas arising within nevi, and 102 primary melanomas. Progressive loss of 5-hydroxymethylcytosine from benign dermal nevi to high-grade dysplastic nevi to borderline melanocytic neoplasms to melanoma was observed. In addition, an analysis of the relationship of nuclear diameter with 5-hydroxymethylcytosine staining intensity within lesional cells revealed a significant correlation between larger nuclear diameter and decreased levels of 5-hydroxymethylcytosine. Furthermore, borderline lesions uniquely exhibited a diverse spectrum of staining of each individual case. This study further substantiates the association of 5-hydroxymethylcytosine loss with dysplastic cytomorphologic features and tumor progression and supports the classification of borderline lesions as a biologically distinct category of melanocytic lesions.

  17. Morphine metabolites

    Christrup, Lona Louring

    1997-01-01

    , morphine-3-glucuronide (M3G) and morphine-6-glucuronide (M6G) are the major metabolites of morphine. The metabolism of morphine occurs not only in the liver, but may also take place in the brain and the kidneys. The glucuronides are mainly eliminated via bile and urine. Glucuronides as a rule...... are considered as highly polar metabolites unable to cross the blood-brain barrier. Although morphine glucuronidation has been demonstrated in human brain tissue, the capacity is very low compared to that of the liver, indicating that the M3G and M6G concentrations observed in the cerebrospinal fluid (CSF) after...... systemic administration reflect hepatic metabolism of morphine and that the morphine glucuronides, despite their high polarity, can penetrate into the brain. Like morphine, M6G has been shown to be relatively more selective for mu-receptors than for delta- and kappa-receptors while M3G does not appear...

  18. Sorafenib Increases Tumor Hypoxia in Cervical Cancer Patients Treated With Radiation Therapy: Results of a Phase 1 Clinical Study

    Milosevic, Michael F., E-mail: mike.milosevic@rmp.uhn.ca [Radiation Medicine Program, Princess Margaret Cancer Center, University Health Network, Toronto (Canada); Department of Radiation Oncology, University of Toronto, Toronto (Canada); Townsley, Carol A. [Department of Medical Oncology, Princess Margaret Cancer Center, University Health Network, Toronto (Canada); Chaudary, Naz [Department of Advanced Molecular Oncology, Princess Margaret Cancer Center, University Health Network, Toronto (Canada); Clarke, Blaise [Department of Pathology, Princess Margaret Cancer Center, University Health Network, Toronto (Canada); Department of Laboratory Medicine and Pathology, University of Toronto, Toronto (Canada); Pintilie, Melania [Department of Clinical Study Coordination and Biostatistics, Princess Margaret Cancer Center, University Health Network, Toronto (Canada); Fan, Stacy; Glicksman, Rachel [Radiation Medicine Program, Princess Margaret Cancer Center, University Health Network, Toronto (Canada); Haider, Masoom [Department of Medical Imaging, Sunnybrook Health Sciences Centre, Toronto (Canada); Department of Medical Imaging, University of Toronto, Toronto (Canada); Kim, Sunmo [Radiation Medicine Program, Princess Margaret Cancer Center, University Health Network, Toronto (Canada); MacKay, Helen [Department of Medical Oncology, Princess Margaret Cancer Center, University Health Network, Toronto (Canada); Department of Medicine, University of Toronto, Toronto (Canada); Yeung, Ivan [Radiation Medicine Program, Princess Margaret Cancer Center, University Health Network, Toronto (Canada); Department of Radiation Oncology, University of Toronto, Toronto (Canada); Hill, Richard P. [Department of Radiation Oncology, University of Toronto, Toronto (Canada); Department of Advanced Molecular Oncology, Princess Margaret Cancer Center, University Health Network, Toronto (Canada); Department of Medical Biophysics, University of Toronto, Toronto (Canada); and others

    2016-01-01

    Purpose: Preclinical studies have shown that angiogenesis inhibition can improve response to radiation therapy (RT). The purpose of this phase 1 study was to examine the angiogenesis inhibitor sorafenib in patients with cervical cancer receiving radical RT and concurrent cisplatin (RTCT). Methods and Materials: Thirteen patients with stage IB to IIIB cervical cancer participated. Sorafenib was administered daily for 7 days before the start of standard RTCT in patients with early-stage, low-risk disease and also during RTCT in patients with high-risk disease. Biomarkers of tumor vascularity, perfusion, and hypoxia were measured at baseline and again after 7 days of sorafenib alone before the start of RTCT. The median follow-up time was 4.5 years. Results: Initial complete response was seen in 12 patients. One patient died without achieving disease control, and 4 experienced recurrent disease. One patient with an extensive, infiltrative tumor experienced pelvic fistulas during treatment. The 4-year actuarial survival was 85%. Late grade 3 gastrointestinal toxicity developed in 4 patients. Sorafenib alone produced a reduction in tumor perfusion/permeability and an increase in hypoxia, which resulted in early closure of the study. Conclusions: Sorafenib increased tumor hypoxia, raising concern that it might impair rather than improve disease control when added to RTCT.

  19. 12/15 lipoxygenase regulation of colorectal tumorigenesis is determined by the relative tumor levels of its metabolite 12-HETE and 13-HODE in animal models

    Chang, Jian; Jiang, Li; Wang, Yinqiu; Yao, Bing; Yang, Shilin; Zhang, Bixiang; Zhang, Ming-Zhi

    2014-01-01

    Colorectal cancer (CRC) continues to be a major cause of morbidity and mortality. The arachidonic acid (AA) pathway and linoleic acid (LA) pathway have been implicated as important contributors to CRC development and growth. Human 15-lipoxygenase 1 (15-LOX-1) converts LA to anti-tumor 13-S-hydroxyoctadecadienoic acid (13-HODE)and 15-LOX-2 converts AA to 15-hydroxyeicosatetraenoic acid (15-HETE). In addition, human 12-LOX metabolizes AA to pro-tumor 12-HETE. In rodents, the function of 12-LOX ...

  20. Hypoxia-inducible factor 1 alpha expression increases during colorectal carcinogenesis and tumor progression

    Simiantonaki, Nektaria; Taxeidis, Marios; Jayasinghe, Caren; Kurzik-Dumke, Ursula; Kirkpatrick, Charles James

    2008-01-01

    Hypoxia-inducible factor 1 alpha (HIF-1α) is involved in processes promoting carcinogenesis of many tumors. However, its role in the development of colorectal cancer is unknown. To investigate the significance of HIF-1α during colorectal carcinogenesis and progression we examined its expression in precursor lesions constituting the conventional and serrated pathways, as well as in non-metastatic and metastatic adenocarcinomas. Immunohistochemistry and Western blot is used to analyse HIF-1α expression in normal colonic mucosa, hyperplastic polyps (HPP), sessile serrated adenomas (SSA), low-grade (TA-LGD) and high-grade (TA-HGD) traditional adenomas as well as in non-metastatic and metastatic colorectal adenocarcinomas. Eight colorectal carcinoma cell lines are tested for their HIF-1α inducibility after lipopolysaccharide (LPS) stimulation using western blot and immunocytochemistry. In normal mucosa, HPP and TA-LGD HIF-1α was not expressed. In contast, perinuclear protein accumulation and nuclear expression of HIF-1α were shown in half of the examined SSA and TA-HGD. In all investigated colorectal carcinomas a significant nuclear HIF-1α overexpression compared to the premalignant lesions was observed but a significant correlation with the metastatic status was not found. Nuclear HIF-1α expression was strongly accumulated in perinecrotic regions. In these cases HIF-1α activation was seen in viable cohesive tumor epithelia surrounding necrosis and in dissociated tumor cells, which subsequently die. Enhanced distribution of HIF-1α was also seen in periiflammatory regions. In additional in vitro studies, treatment of diverse colorectal carcinoma cell lines with the potent pro-inflammatory factor lipopolysaccharide (LPS) led to HIF-1α expression and nuclear translocation. We conclude that HIF-1α expression occurs in early stages of colorectal carcinogenesis and achieves a maximum in the invasive stage independent of the metastatic status. Perinecrotic

  1. A role for H2S in the microcirculation of newborns: the major metabolite of H2S (thiosulphate is increased in preterm infants.

    Rebecca M Dyson

    Full Text Available Excessive vasodilatation during the perinatal period is associated with cardiorespiratory instability in preterm neonates. Little evidence of the mechanisms controlling microvascular tone during circulatory transition exists. We hypothesised that hydrogen sulphide (H2S, an important regulator of microvascular reactivity and central cardiac function in adults and animal models, may contribute to the vasodilatation observed in preterm newborns. Term and preterm neonates (24-43 weeks gestational age were studied. Peripheral microvascular blood flow was assessed by laser Doppler. Thiosulphate, a urinary metabolite of H2S, was determined by high performance liquid chromatography as a measure of 24 hr total body H2S turnover for the first 3 days of postnatal life. H2S turnover was greatest in very preterm infants and decreased with increasing gestational age (p = 0.0001. H2S turnover was stable across the first 72 hrs of life in older neonates. In very preterm neonates, H2S turnover increased significantly from day 1 to 3 (p =0.0001; and males had higher H2S turnover than females (p = 0.04. A significant relationship between microvascular blood flow and H2S turnover was observed on day 2 of postnatal life (p = 0.0004. H2S may play a role in maintaining microvascular tone in the perinatal period. Neonates at the greatest risk of microvascular dysfunction characterised by inappropriate peripheral vasodilatation--very preterm male neonates--are also the neonates with highest levels of total body H2S turnover suggesting that overproduction of this gasotransmitter may contribute to microvascular dysfunction in preterms. Potentially, H2S is a target to selectively control microvascular tone in the circulation of newborns.

  2. Does cell phone use increase the chances of parotid gland tumor development? A systematic review and meta-analysis.

    de Siqueira, Elisa Carvalho; de Souza, Fabrício Tinoco Alvim; Gomez, Ricardo Santiago; Gomes, Carolina Cavalieri; de Souza, Renan Pedra

    2017-08-01

    Prior epidemiological studies had examined the association between cell phone use and the development of tumors in the parotid glands. However, there is no consensus about the question of whether cell phone use is associated with increased risk of tumors in the parotid glands. We performed a meta-analysis to evaluate the existing literature about the mean question and to determine their statistical significance. Primary association studies. Papers that associated cell phone use and parotid gland tumors development were included, with no restrictions regarding publication date, language, and place of publication. Systematic literature search using PubMed, SciELO and Embase followed by meta-analysis. Initial screening included 37 articles, and three were included in meta-analysis. Using three independent samples including 5087 subjects from retrospective case-control studies, cell phone use seems to be associated with greater odds (1.28, 95%- confidence interval: 1.09-1.51) to develop salivary gland tumor. Results should be read with caution due to the limited number of studies available and their retrospective design. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Elevated expression of MMP-13 and TIMP-1 in head and neck squamous cell carcinomas may reflect increased tumor invasiveness

    Culhaci, Nil; Metin, Kubilay; Copcu, Eray; Dikicioglu, Emel

    2004-01-01

    Matrix metalloproteinases [MMPs], which degrade the extracellular matrix, play an important role in the invasion and metastasis of squamous cell carcinomas. One MMP, MMP-13, is thought to play a central role in MMP activation. The purpose of this study was to investigate MMP-13 and TIMP-1 expression in squamous cell carcinomas of the head and neck and to relate these levels of expression to histologic patterns of invasion. This study included T1 lesions obtained via biopsy from the larynx, tongue, and skin/mucosa of 78 patients with head and neck squamous cell carcinomas. The relationship between expression of MMP-13 and TIMP-1 and the mode of tumor invasion [MI] was evaluated immunohistochemically, using breast carcinoma tissue as a positive control. Increased expression was observed in highly invasive tumors, as reflected by the significant correlation between the degree of staining for MMP-13 or TIMP-1 and MI grade [p < 0.05]. There was no significant relationship between the degree of staining for MMP-13 or TIMP-1 and patient age, sex, tumor site, or tumor histologic grade. In addition, levels of staining for MMP-13 did not correlate with levels of staining for TIMP-1. The expression of MMP-13 and TIMP-1 appears to play an important role in determining the invasive capacity of squamous cell carcinomas of the head and neck. Whereas additional studies are needed to confirm these findings, evaluating expression of these MMPs in small biopsy samples may be useful in determining the invasive capacity of these tumors at an earlier stage

  4. Multiple fields may offer better esophagus sparing without increased probability of lung toxicity in optimized IMRT of lung tumors

    Chapet, Olivier; Fraass, Benedick A.; Haken, Randall K. ten

    2006-01-01

    Purpose: To evaluate whether increasing numbers of intensity-modulated radiation therapy (IMRT) fields enhance lung-tumor dose without additional predicted toxicity for difficult planning geometries. Methods and Materials: Data from 8 previous three dimensional conformal radiation therapy (3D-CRT) patients with tumors located in various regions of each lung, but with planning target volumes (PTVs) overlapping part of the esophagus, were used as input. Four optimized-beamlet IMRT plans (1 plan that used the 3D-CRT beam arrangement and 3 plans with 3, 5, or 7 axial, but predominantly one-sided, fields) were compared. For IMRT, the equivalent uniform dose (EUD) in the whole PTV was optimized simultaneously with that in a reduced PTV exclusive of the esophagus. Normal-tissue complication probability-based costlets were used for the esophagus, heart, and lung. Results: Overall, IMRT plans (optimized by use of EUD to judiciously allow relaxed PTV dose homogeneity) result in better minimum PTV isodose surface coverage and better average EUD values than does conformal planning; dose generally increases with the number of fields. Even 7-field plans do not significantly alter normal-lung mean-dose values or lung volumes that receive more than 13, 20, or 30 Gy. Conclusion: Optimized many-field IMRT plans can lead to escalated lung-tumor dose in the special case of esophagus overlapping PTV, without unacceptable alteration in the dose distribution to normal lung

  5. High circulating levels of tumor necrosis factor-alpha in centenarians are not associated with increased production in T lymphocytes

    Sandmand, Marie; Bruunsgaard, Helle; Kemp, Kåre

    2003-01-01

    BACKGROUND: Aging is characterized by increased inflammatory activity reflected by increased plasma levels of proinflammatory cytokines, concomitant with an altered cytokine profile of T lymphocytes. High plasma levels of tumor necrosis factor (TNF)-alpha are strongly associated with morbidity...... and mortality in elderly humans. However, the cellular source and mechanisms for the increased circulating TNF-alpha levels are unknown. OBJECTIVE: The aim of the present study was to investigate if high plasma levels of TNF-alpha are associated with increased production of TNF-alpha by T lymphocytes in elderly...... humans. METHODS: TNF-alpha production by CD4+ and CD8+ T lymphocytes was measured by flow cytometry following stimulation with phorbol 12-myristate 13-acetate and ionomycin in 28 young controls, 14, 81-year-olds and 25 centenarians. RESULTS: Plasma levels of TNF-alpha increased with increasing age...

  6. CYP2C19*17 increases clopidogrel-mediated platelet inhibition but does not alter the pharmacokinetics of the active metabolite of clopidogrel

    Pedersen, Rasmus Steen; Nielsen, Flemming; Stage, Tore Bjerregaard

    2014-01-01

    *1/*1, 11 CYP2C19*1/*17 and nine CYP2C19*17/*17). In Phase A, the pharmacokinetics of the derivatized active metabolite of clopidogrel (CAMD) and platelet function were determined after administration of a single oral dose of 600 mg clopidogrel (Plavix; Sanofi-Avensis, Horsholm, Denmark). In Phase B...

  7. Apo-10'-lycopenoic acid, a lycopene 1 metabolite, increases sirtuin 1 mRNA and protein levels and decreases hepatic fat accumulation in ob/ob mice

    Lycopene has been shown to be beneficial in protecting against high-fat diet-induced fatty liver. The recent demonstration that lycopene can be converted by carotene 99,10’-oxygenase into a biologically active metabolite, ALA, led us to propose that the function of lycopene can be mediated by ALA. I...

  8. Production of tumor necrosis factor-a is increased in urinary tract infections

    Neni Susilaningsih

    2015-12-01

    Full Text Available BACKGROUND Urinary tract infection (UTI is a common source of bacteriemia. The most common cause of UTI is Escherichia coli (E. coli. Tumor Necrosis Factor (TNF-á gene polymorphism has been reported to be responsible for an excessive production of TNF-á and eventual disruption of pro-inflammatory cytokine regulation. The aim of this study was to compare TNF-á serum levels and TNF-á allele polymorphisms in patients with UTI due to E.coli and in non- UTI controls. METHODS A cross-sectional study was conducted at Dr. Kariadi Central Hospital and the Center for Biomedical Research, Faculty of Medicine, Diponegoro University, Semarang. In 68 patients with UTI the TNF-á serum levels were determined by means of ELISA and compared to those of non-UTI controls (n=55. TNFá- 308G>A gene polymorphism was analyzed by polymerase chain reaction restriction fragment length using the NcoI enzyme. Fragments were visualized on polyacrylamide gel with silver staining. RESULTS TNF-á serum level in patients with UTI had a median of 8.9 pg/mL, which was significantly higher than the median of 3.7 pg/mL in the control group (pA gene polymorphisms found in the patient group were G/G=61 (90%, G/A=7(10% and A/A=0, while in the control group were G/G=48 (87%, G/A=7 (13% and A/A =0. There was no significant differences (p=0.578 in gene polymorphisms between the two groups. CONCLUSIONS TNF-á serum levels in patients with UTI due to E. coli were significantly higher than in non-UTI controls, but for the TNF-á-380 gene polymorphisms no significant difference was found between the two groups. There are presumably more important factors than host genotype that influence UTI pathogenesis.

  9. Association of increased levels of plasma tumor necrosis factor alpha with primary open-angle glaucoma

    Kondkar AA

    2018-04-01

    Full Text Available Altaf A Kondkar, Tahira Sultan, Faisal A Almobarak, Hatem Kalantan, Saleh A Al-Obeidan, Khaled K Abu-Amero Glaucoma Research Chair, Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia Purpose: Retinal ganglion cell (RGC death is a key feature of glaucoma. Elevated levels of tumor necrosis factor alpha (TNF-α, a pro-inflammatory cytokine, can induce RGC apoptosis and play a critical role in glaucomatous neurodegeneration. Based on the possible role of inflammation and oxidative stress in the pathogenesis of primary open-angle glaucoma (POAG, we investigated the association between plasma levels of TNF-α and POAG or its clinical indices in comparison to non-glaucomatous controls. Patients and methods: In a case–control retrospective cohort of 51 POAG cases and 88 controls, plasma TNF-α levels were measured using an enzyme-linked immunosorbent assay (ELISA. The assay was performed in duplicates on an automated ELISA analyzer. Results: Mean TNF-α level was significantly elevated in POAG cases (1.88 ± 2.17 pg/mL than the controls (0.93 ± 1.49 pg/mL; p = 0.003. The overall dose–response trend was significant (Χ2 = 6.12, df = 2; p = 0.047. No statistical difference was seen in age, gender and systemic disease distribution. A modest negative and significant correlation was seen between TNF-α level and number of antiglaucoma medications, an important clinical index of POAG severity. Moreover, logistic regression analysis showed that the risk of POAG was most significantly affected by TNF-α level and not by age and sex. Conclusion: High systemic level of an inflammatory cytokine, TNF-α, is associated with POAG; however, its possible use as a biomarker for early glaucoma diagnosis and/or disease severity needs further investigation. Keywords: apoptosis, biomarker, cytokines, ELISA, inflammation, neurodegeneration, oxidative stress

  10. Production of tumor necrosis factor-á is increased in urinary tract infections

    Neni Susilaningsih

    2012-12-01

    Full Text Available Background Urinary tract infection (UTI is a common source of bacteriemia. The most common cause of UTI is Escherichia coli (E. coli. Tumor Necrosis Factor (TNF-á gene polymorphism has been reported to be responsible for an excessive production of TNF-á and eventual disruption of pro-inflammatory cytokine regulation. The aim of this study was to compare TNF-á serum levels and TNF-á allele polymorphisms in patients with UTI due to E.coli and in non-UTI controls. Methods A cross-sectional study was conducted at Dr. Kariadi Central Hospital and the Center for Biomedical Research, Faculty of Medicine, Diponegoro University, Semarang. In 68 patients with UTI the TNF-á serum levels were determined by means of ELISA and compared to those of non-UTI controls (n=55. TNF-á-308G>A gene polymorphism was analyzed by polymerase chain reaction restriction fragment length using the NcoI enzyme. Fragments were visualized on polyacrylamide gel with silver staining. Results TNF-á serum level in patients with UTI had a median of 8.9 pg/mL, which was significantly higher than the median of 3.7 pg/mL in the control group (pA gene polymorphisms found in the patient group were G/G=61 (90%, G/A=7(10% and A/A=0, while in the control group were G/G=48 (87%, G/A=7 (13% and A/A =0. There was no significant differences (p=0.578 in gene polymorphisms between the two groups. Conclusions TNF-á serum levels in patients with UTI due to E. coli were significantly higher than in non-UTI controls, but for the TNF-á-380 gene polymorphisms no significant difference was found between the two groups. There are presumably more important factors than host genotype that influence UTI pathogenesis.

  11. Knock-down of hypoxia-induced carbonic anhydrases IX and XII radiosensitizes tumor cells by increasing intracellular acidosis

    Doyen, Jérome [Institute for Research on Cancer and Aging of Nice, CNRS UMR 7284, University of Nice Sophia-Antipolis,, Nice (France); Department of Radiation Oncology, Centre Antoine-Lacassagne, Nice (France); Parks, Scott K. [Institute for Research on Cancer and Aging of Nice, CNRS UMR 7284, University of Nice Sophia-Antipolis,, Nice (France); Marcié, Serge [Department of Radiation Oncology, Centre Antoine-Lacassagne, Nice (France); Pouysségur, Jacques [Institute for Research on Cancer and Aging of Nice, CNRS UMR 7284, University of Nice Sophia-Antipolis,, Nice (France); Centre Scientifique de Monaco (Monaco); Chiche, Johanna, E-mail: chiche@unice.fr [Institute for Research on Cancer and Aging of Nice, CNRS UMR 7284, University of Nice Sophia-Antipolis,, Nice (France)

    2013-01-07

    The relationship between acidosis within the tumor microenvironment and radioresistance of hypoxic tumor cells remains unclear. Previously we reported that hypoxia-induced carbonic anhydrases (CA) IX and CAXII constitute a robust intracellular pH (pH{sub i})-regulating system that confers a survival advantage on hypoxic human colon carcinoma LS174Tr cells in acidic microenvironments. Here we investigate the role of acidosis, CAIX and CAXII knock-down in combination with ionizing radiation. Fibroblasts cells (-/+ CAIX) and LS174Tr cells (inducible knock-down for ca9/ca12) were analyzed for cell cycle phase distribution and survival after irradiation in extracellular pH{sub o} manipulations and hypoxia (1% O{sub 2}) exposure. Radiotherapy was used to target ca9/ca12-silenced LS174Tr tumors grown in nude mice. We found that diminishing the pH{sub i}-regulating capacity of fibroblasts through inhibition of Na{sup +}/H{sup +} exchanger 1 sensitize cells to radiation-induced cell death. Secondly, the pH{sub i}-regulating function of CAIX plays a key protective role in irradiated fibroblasts in an acidic environment as accompanied by a reduced number of cells in the radiosensitive phases of the cell cycle. Thirdly, we demonstrate that irradiation of LS174Tr spheroids, silenced for either ca9 or both ca9/ca12, showed a respective 50 and 75% increase in cell death as a result of a decrease in cell number in the radioresistant S phase and a disruption of CA-mediated pH{sub i} regulation. Finally, LS174Tr tumor progression was strongly decreased when ca9/ca12 silencing was combined with irradiation in vivo. These findings highlight the combinatory use of radiotherapy with targeting of the pH{sub i}-regulating CAs as an anti-cancer strategy.

  12. Inhibition of Matrix Metalloproteinase Activity Prevents Increases in Myocardial Tumor Necrosis Factor-α

    Murray, David B.; Levick, Scott P; Brower, Gregory L.; Janicki, Joseph S.

    2010-01-01

    Aim TNF-α is known to cause adverse myocardial remodeling. While we have previously shown a role for cardiac mast cells in mediating myocardial TNF-α, matrix metalloproteinases (MMP) activation of TNF-α may also be contributory. We sought to determine the relative roles of MMPs and cardiac mast cells in the activation of TNF-α in the hearts of rats subjected to chronic volume overload. Methods Interventions with the broad spectrum MMP inhibitor, GM6001, or the mast cell stabilizer, nedocromil, were performed in the rat aortocaval fistula (ACF) model of volume overload. Results Myocardial TNF-α levels were significantly increased in the ACF. This increase was prevented by MMP inhibition with GM6001 (p ≤ 0.001 vs. ACF). Conversely, myocardial TNF-α levels were increased in the ACF + nedocromil treated fistula groups (p ≤ 0.001 vs. sham). The degradation of interstitial collagen volume fraction seen in the untreated ACF group was prevented in both the GM6001 and nedocromil treated hearts. Significant increases in LV myocardial ET-1 levels also occurred in the ACF group at 3 days post-fistula. Whereas administration of GM6001 significantly attenuated this increase, mast cell stabilization with nedocromil markedly exacerbated the increase, producing ET-1 levels 6.5 fold and 2 fold greater than that in the sham-operated control and ACF group, respectively. Conclusion The efficacy of the MMP inhibitor, GM6001, to prevent increased levels of myocardial TNF-α is indicative of MMP-mediated cleavage of latent extracellular membrane bound TNF-α protein as the primary source of bioactive TNF-α in the myocardium of the volume-overload heart. PMID:20403361

  13. AKT increases VEGF expression in tumor cells by transactivating the proximal VEGF promoter

    Pore, N.; Bernhard, E.J.; Shu, H.-K.; Li, B.; O'Rourke, D.M.; Maity, A.; Haas-Kogan, D.

    2003-01-01

    Vascular endothelial growth factor (VEGF) is overexpressed in many cancers including glioblastomas and may contribute to their growth. Epidermal growth factor receptor (EGFR) amplification and loss of PTEN, commonly found in glioblastomas leading to increase phosphatidylinositol-3-kinase (PI3K) activity and VEGF expression. In the current study we show that AKT, which is downstream of PI3K, regulates VEGF expression. U87MG human glioblastoma cells lack wildtype PTEN and express high levels of phosphorylated AKT. Over expression of AKT either by stable expression in immortalized human astrocytes or by transduction with adenovirus containing activated myristoylated AKT in SF188 glioblastoma cells increases VEGF expression. Moreover the elevation of angiogenesis by constitutively expressed AKT is further confirmed by in vivo matrigel plug assay in nude mice. The upregulation of VEGF by AKT is mediated through a region in the proximal promoter located between -88 and -70 (+1 is transcription start site). In transient transfection activity of a luciferase reporter containing the -88/+54 region of the VEGF promoter is increased by cotransfection with myristoylated AKT and downregulated by a dominant negative AKT expression vector. Mutation of the putative Sp1 binding sites located in the -88/-70 region we show that AKT acts through Sp1 to transactivate the VEGF promoter. Cotransfection of the VEGF promoter reporter with both Sp1 and myristoylated AKT expression vectors increases promoter activity to a greater extent than either Sp1 or Akt by itself. In vivo phosphate labeling of proteins reveals that AKT leads to increased Sp1 phosphorylation. Gel shift assays using a radio labeled probe corresponding to nucleotides -88 through -66 in the promoter show increased binding with nuclear extracts from cells transduced with adenovirus expressing myristoylated AKT. In conclusion, our results suggest that loss of PTEN leads to increased VEGF expression by increasing AKT

  14. Stromal matrix metalloprotease-13 knockout alters Collagen I structure at the tumor-host interface and increases lung metastasis of C57BL/6 syngeneic E0771 mammary tumor cells

    Perry, Seth W; Schueckler, Jill M; Burke, Kathleen; Arcuri, Giuseppe L; Brown, Edward B

    2013-01-01

    Matrix metalloproteases and collagen are key participants in breast cancer, but their precise roles in cancer etiology and progression remain unclear. MMP13 helps regulate collagen structure and has been ascribed largely harmful roles in cancer, but some studies demonstrate that MMP13 may also protect against tumor pathology. Other studies indicate that collagen’s organizational patterns at the breast tumor-host interface influence metastatic potential. Therefore we investigated how MMP13 modulates collagen I, a principal collagen subtype in breast tissue, and affects tumor pathology and metastasis in a mouse model of breast cancer. Tumors were implanted into murine mammary tissues, and their growth analyzed in Wildtype and MMP13 KO mice. Following extraction, tumors were analyzed for collagen I levels and collagen I macro- and micro-structural properties at the tumor-host boundary using immunocytochemistry and two-photon and second harmonic generation microscopy. Lungs were analyzed for metastases counts, to correlate collagen I changes with a clinically significant functional parameter. Statistical analyses were performed by t-test, analysis of variance, or Wilcoxon-Mann–Whitney tests as appropriate. We found that genetic ablation of host stromal MMP13 led to: 1. Increased mammary tumor collagen I content, 2. Marked changes in collagen I spatial organization, and 3. Altered collagen I microstructure at the tumor-host boundary, as well as 4. Increased metastasis from the primary mammary tumor to lungs. These results implicate host MMP13 as a key regulator of collagen I structure and metastasis in mammary tumors, thus making it an attractive potential therapeutic target by which we might alter metastatic potential, one of the chief determinants of clinical outcome in breast cancer. In addition to identifying stromal MMP13 is an important regulator of the tumor microenvironment and metastasis, these results also suggest that stromal MMP13 may protect against

  15. Stromal matrix metalloprotease-13 knockout alters Collagen I structure at the tumor-host interface and increases lung metastasis of C57BL/6 syngeneic E0771 mammary tumor cells.

    Perry, Seth W; Schueckler, Jill M; Burke, Kathleen; Arcuri, Giuseppe L; Brown, Edward B

    2013-09-05

    Matrix metalloproteases and collagen are key participants in breast cancer, but their precise roles in cancer etiology and progression remain unclear. MMP13 helps regulate collagen structure and has been ascribed largely harmful roles in cancer, but some studies demonstrate that MMP13 may also protect against tumor pathology. Other studies indicate that collagen's organizational patterns at the breast tumor-host interface influence metastatic potential. Therefore we investigated how MMP13 modulates collagen I, a principal collagen subtype in breast tissue, and affects tumor pathology and metastasis in a mouse model of breast cancer. Tumors were implanted into murine mammary tissues, and their growth analyzed in Wildtype and MMP13 KO mice. Following extraction, tumors were analyzed for collagen I levels and collagen I macro- and micro-structural properties at the tumor-host boundary using immunocytochemistry and two-photon and second harmonic generation microscopy. Lungs were analyzed for metastases counts, to correlate collagen I changes with a clinically significant functional parameter. Statistical analyses were performed by t-test, analysis of variance, or Wilcoxon-Mann-Whitney tests as appropriate. We found that genetic ablation of host stromal MMP13 led to: 1. Increased mammary tumor collagen I content, 2. Marked changes in collagen I spatial organization, and 3. Altered collagen I microstructure at the tumor-host boundary, as well as 4. Increased metastasis from the primary mammary tumor to lungs. These results implicate host MMP13 as a key regulator of collagen I structure and metastasis in mammary tumors, thus making it an attractive potential therapeutic target by which we might alter metastatic potential, one of the chief determinants of clinical outcome in breast cancer. In addition to identifying stromal MMP13 is an important regulator of the tumor microenvironment and metastasis, these results also suggest that stromal MMP13 may protect against breast

  16. Increased cFLIP expression in thymic epithelial tumors blocks autophagy via NF-κB signalling.

    Belharazem, Djeda; Grass, Albert; Paul, Cornelia; Vitacolonna, Mario; Schalke, Berthold; Rieker, Ralf J; Körner, Daniel; Jungebluth, Philipp; Simon-Keller, Katja; Hohenberger, Peter; Roessner, Eric M; Wiebe, Karsten; Gräter, Thomas; Kyriss, Thomas; Ott, German; Geserick, Peter; Leverkus, Martin; Ströbel, Philipp; Marx, Alexander

    2017-10-27

    The anti-apoptotic cellular FLICE-like inhibitory protein cFLIP plays a pivotal role in normal tissues homoeostasis and the development of many tumors, but its role in normal thymus (NT), thymomas and thymic carcinomas (TC) is largely unknown. Expression, regulation and function of cFLIP were analyzed in biopsies of NT, thymomas, thymic squamous cell carcinomas (TSCC), thymic epithelial cells (TECs) derived thereof and in the TC line 1889c by qRT-PCR, western blot, shRNA techniques, and functional assays addressing survival, senescence and autophagy. More than 90% of thymomas and TSCCs showed increased cFLIP expression compared to NT. cFLIP expression declined with age in NTs but not in thymomas. During short term culture cFLIP expression levels declined significantly slower in neoplastic than non-neoplastic primary TECs. Down-regulation of cFLIP by shRNA or NF-κB inhibition accelerated senescence and induced autophagy and cell death in neoplastic TECs. The results suggest a role of cFLIP in the involution of normal thymus and the development of thymomas and TSCC. Since increased expression of cFLIP is a known tumor escape mechanism, it may serve as tissue-based biomarker in future clinical trials, including immune checkpoint inhibitor trials in the commonly PD-L1 high thymomas and TCs.

  17. Increasing the effectiveness of hyperbaric oxygen in enhancing tumor oxygenation: Effect of perfluorochemical emulsion and moderate anaemia

    Photiou, A.

    1987-01-01

    Attempts were made to increase the effectiveness of HBO in overcoming tumor hypoxia. Tumor blood flow and O/sub 2/ content were modified by inducing moderate anaemia and giving a perfluorochemical emulsion (PFC-E). Mice were anaesthetized with Ketamine and Diazepam. The PFC-E, FC-43 (0.35 ml/25 g mouse), given iv 1-2 h before irradiation, produced a favourable effect on regrowth delay in those mice treated with HBO. A 25 Gy dose produced a significantly longer regrowth delay (p<0.01) of 44 days in PFC-treated mice compared with a delay of 29 days for mice treated with HBO alone. O/sub 2/ toxicity was observed in some anesthetized mice, with or without PFC-E. Attempts were made to increase the O/sub 2/ sensitization afforded by FC-43/HBO/anaesthesia. Blood viscosity was reduced by inducing a moderate level of acute anaemia by the administration of a single of acute anaemia by the administration of a single ip injection of Phenylhydrazine HCl (40 mg/kg). This reduced the haematocrit from 42% to 32%. Tumour regrowth delay after 25 Gy was significantly reduced (p<0.02) from 44 to 37.3 days be anaemia. PFC's may prove the be useful adjuncts to radiotherapy. However, it must be established that they have no adverse effects and that normal tissue radiosensitivity is not enhanced

  18. Lactic Acid Bacteria from Kefir Increase Cytotoxicity of Natural Killer Cells to Tumor Cells

    Takuya Yamane; Tatsuji Sakamoto; Takenori Nakagaki; Yoshihisa Nakano

    2018-01-01

    The Japanese fermented beverage, homemade kefir, contains six lactic acid bacteria: Lactococcus. lactis subsp. Lactis, Lactococcus. lactis subsp. Cremoris, Lactococcus. Lactis subsp. Lactis biovar diacetylactis, Lactobacillus plantarum, Leuconostoc meseuteroides subsp. Cremoris and Lactobacillus casei. In this study, we found that a mixture of the six lactic acid bacteria from kefir increased the cytotoxicity of human natural killer KHYG-1 cells to human chronic myelogenous leukemia K562 cell...

  19. Tumor Necrosis Factor B (TNFB) Genetic Variants and Its Increased Expression Are Associated with Vitiligo Susceptibility

    Laddha, Naresh C.; Dwivedi, Mitesh; Gani, Amina R.; Mansuri, Mohmmad Shoab; Begum, Rasheedunnisa

    2013-01-01

    Genetic polymorphisms in TNFB are involved in the regulation of its expression and are found to be associated with various autoimmune diseases. The aim of the present study was to determine whether TNFB +252A/G (rs909253) and exon 3 C/A (rs1041981) polymorphisms are associated with vitiligo susceptibility, and expression of TNFB and ICAM1 affects the disease onset and progression. We have earlier reported the role of TNFA in autoimmune pathogenesis of vitiligo, and we now show the involvement of TNFB in vitiligo pathogenesis. The two polymorphisms investigated in the TNFB were in strong linkage disequilibrium and significantly associated with vitiligo. TNFB and ICAM1 transcripts were significantly increased in patients compared to controls. Active vitiligo patients showed significant increase in TNFB transcripts compared to stable vitiligo. The genotype-phenotype analysis revealed that TNFB expression levels were higher in patients with GG and AA genotypes as compared to controls. Patients with the early age of onset and female patients showed higher TNFB and ICAM1 expression. Overall, our findings suggest that the increased TNFB transcript levels in vitiligo patients could result, at least in part, from variations at the genetic level which in turn leads to increased ICAM1 expression. For the first time, we show that TNFB +252A/G and exon 3 C/A polymorphisms are associated with vitiligo susceptibility and influence the TNFB and ICAM1 expression. Moreover, the study also emphasizes influence of TNFB and ICAM1 on the disease progression, onset and gender bias for developing vitiligo. PMID:24312346

  20. [The increasing importance of tumor and tissue banks in the light of genomic and proteomic research].

    Tschulik, A; Zatloukal, K

    2001-09-01

    Recent technological advances in genome and proteome research offer new perspectives for diagnosis and therapy. The DNA chip technology as well as high-resolution two-dimensional gel electrophoresis in combination with mass spectrometry is able to provide comprehensive information on gene and protein expression patterns, which allow insights into the dynamic and functional aspects of diseases. The application of these techniques depends on the availability of unfixed fresh or cryopreserved tissue with short ischaemia time. For this reason tissue banks are of increasing importance. The pathologist with his expertise and responsibility for histopathological diagnosis, plays a central role in the collection of the human tissues, in accordance with medical, legal and ethical standards, not only for diagnostic purposes, but also for research. The scientific value of a tissue bank is markedly increased if tissue samples are accompanied by detailed patient data as well as blood samples. Informed consent given by the patient is an essential requirement for the use of human tissue banks in biomedical research. The informed consent should not be restricted to scientific investigations but also include the potential commercial use of the data generated.

  1. Procedures for increasing the radiosensitivity of malignant tumors with special regard to synchronized radiotherapy

    Guenther, W

    1975-01-01

    Two principal ways to increase the radiosensitivity of malignant tumours are described: to begin with, both the use of highly ionizing corpuscular radiation - e.g. in neutron therapy - and the simultaneous application of photons and high-pressure oxygen heighten radiosensitivity by increasing the number of secondary hit events. The second principal direction - in which the radiation intervals are timed in dependence of lifetime and division rhythm of the tumour cells - is described and illustrated by results of 5-fluorouracil and /sup 60/Co irradiation of 71 patients. The results show a particularly good response of carcinomas of the ENT region and the breast. Questions of the radiosensitive stage, the time of infusion, the influence of the generation cycle and the influence of oxygen-starved cells on the results are major points for future studies on synchronized radiotherapy. Mathematical calculations are carried out concerning the time of infusion and the influence of the generation cycle. Some consequences are mentioned which had not been dealt with so far in synchronized radiotherapy: high single doses and short intervals between sessions for tumours with short generation and duplication times, and low doses and long intervals for small tumours with slow growth rates. There is no principal difference between oxygen-starved and oxygen-rich cells as far as the dependence of radiosensitivity on the generation cycle - i.e. the starting point of synchronized radiotherapy - is concerned.

  2. Improved Tumor Penetration and Single-Cell Targeting of Antibody-Drug Conjugates Increases Anticancer Efficacy and Host Survival.

    Cilliers, Cornelius; Menezes, Bruna; Nessler, Ian; Linderman, Jennifer; Thurber, Greg M

    2018-02-01

    Current antibody-drug conjugates (ADC) have made advances in engineering the antibody, linker, conjugation site, small-molecule payload, and drug-to-antibody ratio (DAR). However, the relationship between heterogeneous intratumoral distribution and efficacy of ADCs is poorly understood. Here, we compared trastuzumab and ado-trastuzumab emtansine (T-DM1) to study the impact of ADC tumor distribution on efficacy. In a mouse xenograft model insensitive to trastuzumab, coadministration of trastuzumab with a fixed dose of T-DM1 at 3:1 and 8:1 ratios dramatically improved ADC tumor penetration and resulted in twice the improvement in median survival compared with T-DM1 alone. In this setting, the effective DAR was lowered, decreasing the amount of payload delivered to each targeted cell but increasing the number of cells that received payload. This result is counterintuitive because trastuzumab acts as an antagonist in vitro and has no single-agent efficacy in vivo , yet improves the effectiveness of T-DM1 in vivo Novel dual-channel fluorescence ratios quantified single-cell ADC uptake and metabolism and confirmed that the in vivo cellular dose of T-DM1 alone exceeded the minimum required for efficacy in this model. In addition, this technique characterized cellular pharmacokinetics with heterogeneous delivery after 1 day, degradation and payload release by 2 days, and in vitro cell killing and in vivo tumor shrinkage 2 to 3 days later. This work demonstrates that the intratumoral distribution of ADC, independent of payload dose or plasma clearance, plays a major role in ADC efficacy. Significance: This study shows how lowering the drug-to-antibody ratio during treatment can improve the intratumoral distribution of a antibody-drug conjugate, with implications for improving the efficacy of this class of cancer drugs. Cancer Res; 78(3); 758-68. ©2017 AACR . ©2017 American Association for Cancer Research.

  3. Alterations of tumor suppressor genes (Rb, p16, p27 and p53) and an increased FDG uptake in lung cancer

    Sasaki, Masayuki; Sugio, Kenji; Kuwabara, Yasuo

    2003-01-01

    The FDG uptake in lung cancer is considered to reflect the degree of malignancy, while alterations of some tumor suppressor genes are considered to be related to the malignant biological behavior of tumors. The aim of this study is to examine the relationship between FDG-PET and alterations in the tumor suppression genes of lung cancer. We examined 28 patients with primary lung cancer who underwent FDG-PET before surgery consisting of 17 patients with adenocarcinoma, 10 with squamous cell carcinoma and 1 with large cell carcinoma. The FDG-PET findings were evaluated based on the standardized uptake value (SUV). Alterations in the tumor suppressor genes, Rb, p16, p27 and p53, were evaluated immunohistochemically. The FDG uptake in lung cancer with alteration in each tumor suppressor gene tended to be higher than in those genes without alterations, although the differences were not significant. In 15 tumors with alterations in either tumor suppressor genes, the FDG uptake was 6.83±3.21. On the other hand, the mean FDG uptake was 1.95 in 2 tumors without alterations in any genes. The difference in the FDG uptake between the 2 groups was statistically significant (p<0.001). In conclusion, the presence of abnormalities in the tumor suppressor genes, which results in an accelerated cell proliferation, is thus considered to increase the FDG uptake in lung cancer. (author)

  4. Zoledronic acid produces combinatory anti-tumor effects with cisplatin on mesothelioma by increasing p53 expression levels.

    Shinya Okamoto

    Full Text Available We examined anti-tumor effects of zoledronic acid (ZOL, one of the bisphosphonates agents clinically used for preventing loss of bone mass, on human mesothelioma cells bearing the wild-type p53 gene. ZOL-treated cells showed activation of caspase-3/7, -8 and -9, and increased sub-G1 phase fractions. A combinatory use of ZOL and cisplatin (CDDP, one of the first-line anti-cancer agents for mesothelioma, synergistically or additively produced the cytotoxicity on mesothelioma cells. Moreover, the combination achieved greater anti-tumor effects on mesothelioma developed in the pleural cavity than administration of either ZOL or CDDP alone. ZOL-treated cells as well as CDDP-treated cells induced p53 phosphorylation at Ser 15, a marker of p53 activation, and up-regulated p53 protein expression levels. Down-regulation of p53 levels with siRNA however did not influence the ZOL-mediated cytotoxicity but negated the combinatory effects by ZOL and CDDP. In addition, ZOL treatments augmented cytotoxicity of adenoviruses expressing the p53 gene on mesothelioma. These data demonstrated that ZOL-mediated augmentation of p53, which was not linked with ZOL-induced cytotoxicity, played a role in the combinatory effects with a p53 up-regulating agent, and suggests a possible clinical use of ZOL to mesothelioma with anti-cancer agents.

  5. Increased aPKC Expression Correlates with Prostatic Adenocarcinoma Gleason Score and Tumor Stage in the Japanese Population

    Anthony S. Perry

    2014-01-01

    Full Text Available Background. Levels of the protein kinase aPKC have been previously correlated with prostate cancer prognosis in a British cohort. However, prostate cancer incidence and progression rates, as well as genetic changes in this disease, show strong ethnic variance, particularly in Asian populations. Objective. The aim of this study was to validate association of aPKC expression with prostatic adenocarcinoma stages in a Japanese cohort. Methods. Tissue microarrays consisting of 142 malignant prostate cancer cases and 21 benign prostate tissues were subject to immunohistological staining for aPKC. aPKC staining intensity was scored by three independent pathologists and categorized as absent (0, dim (1+, intermediate (2+, and bright (3+. aPKC staining intensities were correlated with Gleason score and tumor stage. Results. Increased aPKC staining was observed in malignant prostate cancer, in comparison to benign tissue. Additionally, aPKC staining levels correlated with Gleason score and tumor stage. Our results extend the association of aPKC with prostate cancer to a Japanese population and establish the suitability of aPKC as a universal prostate cancer biomarker that performs consistently across ethnicities.

  6. Novel biomarker identification using metabolomic profiling to differentiate radiation necrosis and recurrent tumor following Gamma Knife radiosurgery.

    Lu, Alex Y; Turban, Jack L; Damisah, Eyiyemisi C; Li, Jie; Alomari, Ahmed K; Eid, Tore; Vortmeyer, Alexander O; Chiang, Veronica L

    2017-08-01

    OBJECTIVE Following an initial response of brain metastases to Gamma Knife radiosurgery, regrowth of the enhancing lesion as detected on MRI may represent either radiation necrosis (a treatment-related inflammatory change) or recurrent tumor. Differentiation of radiation necrosis from tumor is vital for management decision making but remains difficult by imaging alone. In this study, gas chromatography with time-of-flight mass spectrometry (GC-TOF) was used to identify differential metabolite profiles of the 2 tissue types obtained by surgical biopsy to find potential targets for noninvasive imaging. METHODS Specimens of pure radiation necrosis and pure tumor obtained from patient brain biopsies were flash-frozen and validated histologically. These formalin-free tissue samples were then analyzed using GC-TOF. The metabolite profiles of radiation necrosis and tumor samples were compared using multivariate and univariate statistical analysis. Statistical significance was defined as p ≤ 0.05. RESULTS For the metabolic profiling, GC-TOF was performed on 7 samples of radiation necrosis and 7 samples of tumor. Of the 141 metabolites identified, 17 (12.1%) were found to be statistically significantly different between comparison groups. Of these metabolites, 6 were increased in tumor, and 11 were increased in radiation necrosis. An unsupervised hierarchical clustering analysis found that tumor had elevated levels of metabolites associated with energy metabolism, whereas radiation necrosis had elevated levels of metabolites that were fatty acids and antioxidants/cofactors. CONCLUSIONS To the authors' knowledge, this is the first tissue-based metabolomics study of radiation necrosis and tumor. Radiation necrosis and recurrent tumor following Gamma Knife radiosurgery for brain metastases have unique metabolite profiles that may be targeted in the future to develop noninvasive metabolic imaging techniques.

  7. IK channel activation increases tumor growth and induces differential behavioral responses in two breast epithelial cell lines.

    Thurber, Amy E; Nelson, Michaela; Frost, Crystal L; Levin, Michael; Brackenbury, William J; Kaplan, David L

    2017-06-27

    Many potassium channel families are over-expressed in cancer, but their mechanistic role in disease progression is poorly understood. Potassium channels modulate membrane potential (Vmem) and thereby influence calcium ion dynamics and other voltage-sensitive signaling mechanisms, potentially acting as transcriptional regulators. This study investigated the differential response to over-expression and activation of a cancer-associated potassium channel, the intermediate conductance calcium-activated potassium channel (IK), on aggressive behaviors in mammary epithelial and breast cancer cell lines. IK was over-expressed in the highly metastatic breast cancer cell line MDA-MB-231 and the spontaneously immortalized breast epithelial cell line MCF-10A, and the effect on cancer-associated behaviors was assessed. IK over-expression increased primary tumor growth and metastasis of MDA-MB-231 in orthotopic xenografts, demonstrating for the first time in any cancer type that increased IK is sufficient to promote cancer aggression. The primary tumors had similar vascularization as determined by CD31 staining and similar histological characteristics. Interestingly, despite the increased in vivo growth and metastasis, neither IK over-expression nor activation with agonist had a significant effect on MDA-MB-231 proliferation, invasion, or migration in vitro. In contrast, IK decreased MCF-10A proliferation and invasion through Matrigel but had no effect on migration in a scratch-wound assay. We conclude that IK activity is sufficient to promote cell aggression in vivo. Our data provide novel evidence supporting IK and downstream signaling networks as potential targets for cancer therapies.

  8. miR-132 and miR-212 are increased in pancreatic cancer and target the retinoblastoma tumor suppressor

    Park, Jong-Kook [College of Pharmacy, Ohio State University, Columbus, OH 43210 (United States); Henry, Jon C. [Department of Surgery, Ohio State University, Columbus, OH 43210 (United States); Jiang, Jinmai [College of Pharmacy, Ohio State University, Columbus, OH 43210 (United States); Esau, Christine [Regulus Therapeutics, Carlsbad, CA (United States); Gusev, Yuriy [Lombardi Cancer Center, Georgetown University, Washington, DC (United States); Lerner, Megan R. [Veterans Affairs Medical Center, Oklahoma City, OK (United States); Postier, Russell G. [Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Brackett, Daniel J. [Veterans Affairs Medical Center, Oklahoma City, OK (United States); Schmittgen, Thomas D., E-mail: Schmittgen.2@osu.edu [College of Pharmacy, Ohio State University, Columbus, OH 43210 (United States)

    2011-03-25

    Research highlights: {yields} The expression of miR-132 and miR-212 are significantly increased in pancreatic cancer. {yields} miR-132 and miR-212 target the tumor suppressor pRb, resulting in enhanced proliferation. {yields} miR-132 and miR-212 expression is increased by a {beta}2 adrenergic receptor agonist, suggesting a novel mechanism for pancreatic cancer progression. -- Abstract: Numerous microRNAs (miRNAs) are reported as differentially expressed in cancer, however the consequence of miRNA deregulation in cancer is unknown for many miRNAs. We report that two miRNAs located on chromosome 17p13, miR-132 and miR-212, are over-expressed in pancreatic adenocarcinoma (PDAC) tissues. Both miRNAs are predicted to target the retinoblastoma tumor suppressor, Rb1. Validation of this interaction was confirmed by luciferase reporter assay and western blot in a pancreatic cancer cell line transfected with pre-miR-212 and pre-miR-132 oligos. Cell proliferation was enhanced in Panc-1 cells transfected with pre-miR-132/-212 oligos. Conversely, antisense oligos to miR-132/-212 reduced cell proliferation and caused a G{sub 2}/M cell cycle arrest. The mRNA of a number of E2F transcriptional targets were increased in cells over expressing miR-132/-212. Exposing Panc-1 cells to the {beta}2 adrenergic receptor agonist, terbutaline, increased the miR-132 and miR-212 expression by 2- to 4-fold. We report that over-expression of miR-132 and miR-212 result in reduced pRb protein in pancreatic cancer cells and that the increase in cell proliferation from over-expression of these miRNAs is likely due to increased expression of several E2F target genes. The {beta}2 adrenergic pathway may play an important role in this novel mechanism.

  9. miR-132 and miR-212 are increased in pancreatic cancer and target the retinoblastoma tumor suppressor

    Park, Jong-Kook; Henry, Jon C.; Jiang, Jinmai; Esau, Christine; Gusev, Yuriy; Lerner, Megan R.; Postier, Russell G.; Brackett, Daniel J.; Schmittgen, Thomas D.

    2011-01-01

    Research highlights: → The expression of miR-132 and miR-212 are significantly increased in pancreatic cancer. → miR-132 and miR-212 target the tumor suppressor pRb, resulting in enhanced proliferation. → miR-132 and miR-212 expression is increased by a β2 adrenergic receptor agonist, suggesting a novel mechanism for pancreatic cancer progression. -- Abstract: Numerous microRNAs (miRNAs) are reported as differentially expressed in cancer, however the consequence of miRNA deregulation in cancer is unknown for many miRNAs. We report that two miRNAs located on chromosome 17p13, miR-132 and miR-212, are over-expressed in pancreatic adenocarcinoma (PDAC) tissues. Both miRNAs are predicted to target the retinoblastoma tumor suppressor, Rb1. Validation of this interaction was confirmed by luciferase reporter assay and western blot in a pancreatic cancer cell line transfected with pre-miR-212 and pre-miR-132 oligos. Cell proliferation was enhanced in Panc-1 cells transfected with pre-miR-132/-212 oligos. Conversely, antisense oligos to miR-132/-212 reduced cell proliferation and caused a G 2 /M cell cycle arrest. The mRNA of a number of E2F transcriptional targets were increased in cells over expressing miR-132/-212. Exposing Panc-1 cells to the β2 adrenergic receptor agonist, terbutaline, increased the miR-132 and miR-212 expression by 2- to 4-fold. We report that over-expression of miR-132 and miR-212 result in reduced pRb protein in pancreatic cancer cells and that the increase in cell proliferation from over-expression of these miRNAs is likely due to increased expression of several E2F target genes. The β2 adrenergic pathway may play an important role in this novel mechanism.

  10. Early Increases in Superantigen-Specific Foxp3+ Regulatory T Cells during Mouse Mammary Tumor Virus Infection▿ †

    Cabrera, Gabriel; Burzyn, Dalia; Mundiñano, Juliana; Courreges, M. Cecilia; Camicia, Gabriela; Lorenzo, Daniela; Costa, Héctor; Ross, Susan R.; Nepomnaschy, Irene; Piazzon, Isabel

    2008-01-01

    Mouse mammary tumor virus (MMTV) is a milk-borne betaretrovirus that has developed strategies to exploit and subvert the host immune system. Here, we show in a natural model of MMTV infection that the virus causes early and progressive increases in superantigen (SAg)-specific Foxp3+ regulatory T cells (Treg) in Peyer's patches (PP). These increases were shown to be dependent on the presence of dendritic cells. CD4+ CD25+ T cells from the PP of infected mice preferentially suppress the proliferative response of T cells to SAg-expressing antigen-presenting cells ex vivo. We investigated the influence of the depletion of CD25+ cells at different stages of the infection. When CD25+ cells were depleted before MMTV infection, an increase in the number of PP SAg-cognate Foxp3− T cells was found at day 6 of infection. Since the SAg response is associated with viral amplification, the possibility exists that Treg cells attenuate the increase in viral load at the beginning of the infection. In contrast, depletion of CD25+ cells once the initial SAg response has developed caused a lower viral load, suggesting that at later stages Treg cells may favor viral persistence. Thus, our results indicated that Treg cells play an important and complex role during MMTV infection. PMID:18495774

  11. The occurrence of recruitment supported from the finding of an increase in radiosensitivity of quiescent cells in solid tumors after fractionated irradiation with X-rays

    Masunaga, Shinichiro; Ono, Koji; Kinashi, Yuko; Suzuki, Minoru; Akaboshi, Mitsuhiko

    1998-01-01

    We examined the behavior of quiescent cells in solid tumors irradiated twice at various intervals with X-rays, using our recently developed method for selectively detecting the response of quiescent cells in solid tumors. To determine the labeling indices of tumors at the second irradiation, each mouse group included mice that were continuously administered BrdU until just before the second irradiation using mini-osmotic pumps which had been implanted before the first irradiation. Radiosensitivity of total tumor cells at the second irradiation decreased in proportion to the increase in interval time. However, radiosensitivity of quiescent cells was raised with increase in the interval time. In addition, the labeling index at the second irradiation was higher than that at the first irradiation. These findings supported the occurrence of recruitment from quiescent to proliferating state during fractionated irradiation. (author)

  12. The incidence of second primary tumors in thyroid cancer patients is increased, but not related to treatment of thyroid cancer

    Verkooijen, Robbert B. T.; Smit, Jan W. A.; Romijn, Johannes A.; Stokkel, Marcel P. M.

    2006-01-01

    The aim of the present study is to assess the prevalence of second primary tumors in patients treated for thyroid cancer. Furthermore, we wanted to assess the standardized risk rates for all second primary tumors, but especially for breast cancer, as data in the literature indicate an excessive risk

  13. Increased cytosine DNA-methyltransferase activity in A/J mouse lung cells following carcinogen exposure and during tumor progression

    Belinsky, S.A.; Issa, J.-P.J.; Baylin, S.B.

    1994-01-01

    Considerable evidence has accumulated that 5-methylcytosine modification of mammalian DNA, both in exons and CpG rich islands located in promoter regions, is important in gene regulation. For example, a decrease of 5-methylcytosine in 5' flanking regions or exons of genes has been associated with increased gene transcription. In addition, hypermethylation at specific regions of chromosomes 17p and 3p have also been observed in lung and colon cancer. During colon cancer development, these hypermethylation changes precede allelic loss. In addition, the activity of the enzyme which maintains the methylation status at CpG dinucleotides, DNA methyltransferase (MT), has been shown to increase during colon cancer progression. These observations suggest changes in methylation patterns within specific genes could result in either inappropriate gene expression or gene deletion, both of which would contribute to the establishment of the malignant phenotype. The purpose of this investigation was to determine if DNA MT activity is elevated in target (alveolar type II), but not in nontarget (Clara, endothelial, macrophage) lung cells isolated from the A/J mouse following exposure to nitrosamine 4-methylnitrosamino-1-(3-pyridyl)-1-butanone (NNK). In addition, the activity of this enzyme during tumor progression was examined

  14. Increased apoptotic potential and dose-enhancing effect of gold nanoparticles in combination with single-dose clinical electron beams on tumor-bearing mice

    Chang Mengya; Chen Yuhung; Chang Chihjui; Chen Helen H-W; Wu Chaoliang; Shiau Aili

    2008-01-01

    High atomic number material, such as gold, may be used in conjunction with radiation to provide dose enhancement in tumors. In the current study, we investigated the dose-enhancing effect and apoptotic potential of gold nanoparticles in combination with single-dose clinical electron beams on B16F10 melanoma tumor-bearing mice. We revealed that the accumulation of gold nanoparticles was detected inside B16F10 culture cells after 18 h of incubation, and moreover, the gold nanoparticles were shown to be colocalized with endoplasmic reticulum and Golgi apparatus in cells. Furthermore, gold nanoparticles radiosensitized melanoma cells in the colony formation assay (P=0.02). Using a B16F10 tumor-bearing mouse model, we further demonstrated that gold nanoparticles in conjunction with ionizing radiation significantly retarded tumor growth and prolonged survival compared to the radiation alone controls (P<0.05). Importantly, an increase of apoptotic signals was detected inside tumors in the combined treatment group (P<0.05). Knowing that radiation-induced apoptosis has been considered a determinant of tumor responses to radiation therapy, and the length of tumor regrowth delay correlated with the extent of apoptosis after single-dose radiotherapy, these results may suggest the clinical potential of gold nanoparticles in improving the outcome of melanoma radiotherapy. (author)

  15. Engineering Microbial Metabolite Dynamics and Heterogeneity.

    Schmitz, Alexander C; Hartline, Christopher J; Zhang, Fuzhong

    2017-10-01

    As yields for biological chemical production in microorganisms approach their theoretical maximum, metabolic engineering requires new tools, and approaches for improvements beyond what traditional strategies can achieve. Engineering metabolite dynamics and metabolite heterogeneity is necessary to achieve further improvements in product titers, productivities, and yields. Metabolite dynamics, the ensemble change in metabolite concentration over time, arise from the need for microbes to adapt their metabolism in response to the extracellular environment and are important for controlling growth and productivity in industrial fermentations. Metabolite heterogeneity, the cell-to-cell variation in a metabolite concentration in an isoclonal population, has a significant impact on ensemble productivity. Recent advances in single cell analysis enable a more complete understanding of the processes driving metabolite heterogeneity and reveal metabolic engineering targets. The authors present an overview of the mechanistic origins of metabolite dynamics and heterogeneity, why they are important, their potential effects in chemical production processes, and tools and strategies for engineering metabolite dynamics and heterogeneity. The authors emphasize that the ability to control metabolite dynamics and heterogeneity will bring new avenues of engineering to increase productivity of microbial strains. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Low Z target switching to increase tumor endothelial cell dose enhancement during gold nanoparticle-aided radiation therapy

    Berbeco, Ross I., E-mail: rberbeco@partners.org; Detappe, Alexandre [Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 (United States); Tsiamas, Panogiotis [Department of Radiation Oncology, St. Jude Children’s Hospital, Memphis, Tennessee 38105 (United States); Parsons, David; Yewondwossen, Mammo; Robar, James [Department of Radiation Oncology and Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 1V7 (Canada)

    2016-01-15

    Purpose: Previous studies have introduced gold nanoparticles as vascular-disrupting agents during radiation therapy. Crucial to this concept is the low energy photon content of the therapy radiation beam. The authors introduce a new mode of delivery including a linear accelerator target that can toggle between low Z and high Z targets during beam delivery. In this study, the authors examine the potential increase in tumor blood vessel endothelial cell radiation dose enhancement with the low Z target. Methods: The authors use Monte Carlo methods to simulate delivery of three different clinical photon beams: (1) a 6 MV standard (Cu/W) beam, (2) a 6 MV flattening filter free (Cu/W), and (3) a 6 MV (carbon) beam. The photon energy spectra for each scenario are generated for depths in tissue-equivalent material: 2, 10, and 20 cm. The endothelial dose enhancement for each target and depth is calculated using a previously published analytic method. Results: It is found that the carbon target increases the proportion of low energy (<150 keV) photons at 10 cm depth to 28% from 8% for the 6 MV standard (Cu/W) beam. This nearly quadrupling of the low energy photon content incident on a gold nanoparticle results in 7.7 times the endothelial dose enhancement as a 6 MV standard (Cu/W) beam at this depth. Increased surface dose from the low Z target can be mitigated by well-spaced beam arrangements. Conclusions: By using the fast-switching target, one can modulate the photon beam during delivery, producing a customized photon energy spectrum for each specific situation.

  17. Web-based oil immersion whole slide imaging increases efficiency and clinical team satisfaction in hematopathology tumor board

    Zhongchuan Will Chen

    2014-01-01

    Full Text Available Background: Whole slide imaging (WSI is widely used for education and research, but is increasingly being used to streamline clinical workflow. We present our experience with regard to satisfaction and time utilization using oil immersion WSI for presentation of blood/marrow aspirate smears, core biopsies, and tissue sections in hematology/oncology tumor board/treatment planning conferences (TPC. Methods: Lymph nodes and bone marrow core biopsies were scanned at ×20 magnification and blood/marrow smears at 83X under oil immersion and uploaded to an online library with areas of interest to be displayed annotated digitally via web browser. Pathologist time required to prepare slides for scanning was compared to that required to prepare for microscope projection (MP. Time required to present cases during TPC was also compared. A 10-point evaluation survey was used to assess clinician satisfaction with each presentation method. Results: There was no significant difference in hematopathologist preparation time between WSI and MP. However, presentation time was significantly less for WSI compared to MP as selection and annotation of slides was done prior to TPC with WSI, enabling more efficient use of TPC presentation time. Survey results showed a significant increase in satisfaction by clinical attendees with regard to image quality, efficiency of presentation of pertinent findings, aid in clinical decision-making, and overall satisfaction regarding pathology presentation. A majority of respondents also noted decreased motion sickness with WSI. Conclusions: Whole slide imaging, particularly with the ability to use oil scanning, provides higher quality images compared to MP and significantly increases clinician satisfaction. WSI streamlines preparation for TPC by permitting prior slide selection, resulting in greater efficiency during TPC presentation.

  18. Web-based oil immersion whole slide imaging increases efficiency and clinical team satisfaction in hematopathology tumor board

    Chen, Zhongchuan Will; Kohan, Jessica; Perkins, Sherrie L.; Hussong, Jerry W.; Salama, Mohamed E.

    2014-01-01

    Background: Whole slide imaging (WSI) is widely used for education and research, but is increasingly being used to streamline clinical workflow. We present our experience with regard to satisfaction and time utilization using oil immersion WSI for presentation of blood/marrow aspirate smears, core biopsies, and tissue sections in hematology/oncology tumor board/treatment planning conferences (TPC). Methods: Lymph nodes and bone marrow core biopsies were scanned at ×20 magnification and blood/marrow smears at 83X under oil immersion and uploaded to an online library with areas of interest to be displayed annotated digitally via web browser. Pathologist time required to prepare slides for scanning was compared to that required to prepare for microscope projection (MP). Time required to present cases during TPC was also compared. A 10-point evaluation survey was used to assess clinician satisfaction with each presentation method. Results: There was no significant difference in hematopathologist preparation time between WSI and MP. However, presentation time was significantly less for WSI compared to MP as selection and annotation of slides was done prior to TPC with WSI, enabling more efficient use of TPC presentation time. Survey results showed a significant increase in satisfaction by clinical attendees with regard to image quality, efficiency of presentation of pertinent findings, aid in clinical decision-making, and overall satisfaction regarding pathology presentation. A majority of respondents also noted decreased motion sickness with WSI. Conclusions: Whole slide imaging, particularly with the ability to use oil scanning, provides higher quality images compared to MP and significantly increases clinician satisfaction. WSI streamlines preparation for TPC by permitting prior slide selection, resulting in greater efficiency during TPC presentation. PMID:25379347

  19. Nano-Engineered Mesenchymal Stem Cells Increase Therapeutic Efficacy of Anticancer Drug Through True Active Tumor Targeting.

    Layek, Buddhadev; Sadhukha, Tanmoy; Panyam, Jayanth; Prabha, Swayam

    2018-06-01

    Tumor-targeted drug delivery has the potential to improve therapeutic efficacy and mitigate non-specific toxicity of anticancer drugs. However, current drug delivery approaches rely on inefficient passive accumulation of the drug carrier in the tumor. We have developed a unique, truly active tumor-targeting strategy that relies on engineering mesenchymal stem cells (MSC) with drug-loaded nanoparticles. Our studies using the A549 orthotopic lung tumor model show that nano-engineered MSCs carrying the anticancer drug paclitaxel (PTX) home to tumors and create cellular drug depots that release the drug payload over several days. Despite significantly lower doses of PTX, nano-engineered MSCs resulted in significant inhibition of tumor growth and superior survival. Anticancer efficacy of nano-engineered MSCs was confirmed in immunocompetent C57BL/6 albino female mice bearing orthotopic Lewis Lung Carcinoma (LL/2-luc) tumors. Furthermore, at doses that resulted in equivalent therapeutic efficacy, nano-engineered MSCs had no effect on white blood cell count, whereas PTX solution and PTX nanoparticle treatments caused leukopenia. Biodistribution studies showed that nano-engineered MSCs resulted in greater than 9-fold higher AUC lung of PTX (1.5 μg.day/g) than PTX solution and nanoparticles (0.2 and 0.1 μg.day/g tissue, respectively) in the target lung tumors. Furthermore, the lung-to-liver and the lung-to-spleen ratios of PTX were several folds higher for nano-engineered MSCs relative to those for PTX solution and nanoparticle groups, suggesting that nano-engineered MSCs demonstrate significantly less off-target deposition. In summary, our results demonstrate that nano-engineered MSCs can serve as an efficient carrier for tumor-specific drug delivery and significantly improved anti-cancer efficacy of conventional chemotherapeutic drugs. Mol Cancer Ther; 17(6); 1196-206. ©2018 AACR . ©2018 American Association for Cancer Research.

  20. Caffeine decreases phospho-Chk1 (Ser317) and increases mitotic cells with cyclin B1 and caspase 3 in tumors from UVB-treated mice.

    Lu, Yao-Ping; Lou, You-Rong; Peng, Qing-Yun; Nghiem, Paul; Conney, Allan H

    2011-07-01

    Oral administration of caffeine to mice inhibits UVB-induced carcinogenesis, and these results are paralleled by epidemiology studies indicating that caffeinated coffee and tea intake (but not decaffeinated beverage intake) is associated with decreased incidence of nonmelanoma skin cancer. Topical applications of caffeine to the skin of SKH-1 mice that had previously been treated with UVB inhibited subsequent skin tumor development and stimulated apoptosis in tumors but not in nontumor areas of the epidermis. This study sought to determine the basis of these differential effects on tumor versus nontumor sites that can be induced by caffeine, long after all UVB treatment has ceased. The activation status of the ATR/Chk1 pathway in UVB-induced tumors and uninvolved skin was determined by quantitating phospho-Chk1 (Ser317) and induction of lethal mitosis in vivo in the presence and absence of topical caffeine treatment. In the absence of caffeine, we found that UVB-induced tumors often had islands of phospho-Chk1 (Ser317) staining cells that were not present in nontumor areas of the epidermis. Treatment of mice with topical caffeine significantly diminished phospho-Chk1 (Ser317) staining and increased the number of mitotic cells that expressed cyclin B1 and caspase 3 in tumors, consistent with caffeine-induced lethal mitosis selectively in tumors. We hypothesize that compared with adjacent uninvolved skin, UVB-induced skin tumors have elevated activation of, and dependence on, the ATR/Chk1 pathway long after UVB exposure has ceased and that caffeine can induce apoptosis selectively in tumors by inhibiting this pathway and promoting lethal mitosis.

  1. Diets high in resistant starch increase plasma levels of trimethylamine-N-oxide, a gut microbiome metabolite associated with CVD risk

    Bergeron, Nathalie; Williams, Paul T.; Lamendella, Regina; Faghihnia, Nastaran; Grube, Alyssa; Li, Xinmin; Wang, Zeneng; Knight, Rob; Jansson, Janet K.; Hazen, Stanley L.; Krauss, Ronald M.

    2016-12-20

    Production of trimethylamine-N-oxide (TMAO), a biomarker of CVD risk, is dependent on intestinal microbiota, but little is known of dietary conditions promoting changes in gut microbial communities. Resistant starches (RS) alter the human microbiota. We sought to determine whether diets varying in RS and carbohydrate (CHO) content affect plasma TMAO levels. We also assessed postprandial glucose and insulin responses and plasma lipid changes to diets high and low in RS. In a cross-over trial, fifty-two men and women consumed a 2-week baseline diet (41 percentage of energy (%E) CHO, 40 % fat, 19 % protein), followed by 2-week high- and low-RS diets separated by 2-week washouts. RS diets were assigned at random within the context of higher (51–53 %E)v. lower CHO (39–40 %E) intake. Measurements were obtained in the fasting state and, for glucose and insulin, during a meal test matching the composition of the assigned diet. With lower CHO intake, plasma TMAO, carnitine, betaine andγ-butyrobetaine concentrations were higher after the high-v. low-RS diet (P<0·01 each). These metabolites were not differentially affected by highv. low RS when CHO intake was high. Although the high-RS meal reduced postprandial insulin and glucose responses when CHO intake was low (P<0·01 each), RS did not affect fasting lipids, lipoproteins, glucose or insulin irrespective of dietary CHO content. In conclusion, a lower-CHO diet high in RS was associated with higher plasma TMAO levels. These findings, together with the absence of change in fasting lipids, suggest that short-term high-RS diets do not improve markers of cardiometabolic health.

  2. Increased uptake on 99mTc bone scintigraphy in a case of tumoral calcinosis in a child

    N Jawad

    2015-06-01

    Full Text Available Tumoral calcinosis is an idiopathic condition resulting in the periarticular deposition of calcium crystals and salts in soft tissues. It is rare in children, and even rarer in idiopathic form. We present a case of a 2-year-old female with tumoral calcinosis in the supraclavicular region, and, in particular, focus on the pertinent radiological findings with radiography, MRI and bone scintigraphy.

  3. Increased Tumor Necrosis Factor (TNF)-α and Its Promoter Polymorphisms Correlate with Disease Progression and Higher Susceptibility towards Vitiligo

    Laddha, Naresh C.; Dwivedi, Mitesh; Begum, Rasheedunnisa

    2012-01-01

    Abstract Tumor Necrosis Factor (TNF)-α, is a paracrine inhibitor of melanocytes, which plays a critical role in the pathogenesis of several autoimmune diseases including vitiligo, as abnormal immune responses have frequently been observed in vitiligo patients. Moreover, vitiligo patients show higher lesion levels of TNF-α. Genetic polymorphisms in the promoter region of TNF-α are involved in the regulation of its expression. The present study explores TNF-α promoter polymorphisms and correlates them with TNF-α transcript and protein levels in vitiligo patients and controls of Gujarat along with its effect on disease onset and progression. PCR-RFLP technique was used for genotyping of these polymorphisms in 977 vitiligo patients and 990 controls. TNF-α transcript and protein levels were measured by Real time PCR and ELISA respectively. The genotype and allele frequencies for the investigated polymorphisms were significantly associated with vitiligo patients. The study revealed significant increase in TNF-α transcript and protein levels in vitiligo patients compared to controls. In particular, haplotypes: AATCC, AACCT, AGTCT, GATCT, GATCC and AGCCT were found to increase the TNF-α levels in vitiligo patients. Analysis of TNF-α levels based on the gender and disease progression suggests that female patients and patients with active vitiligo had higher levels of TNF-α. Also, the TNF-α levels were high in patients with generalized vitiligo as compared to localized vitiligo. Age of onset analysis of the disease suggests that the haplotypes: AACAT, AACCT, AATCC and AATCT had a profound effect in the early onset of the disease. Moreover, the analysis suggests that female patients had an early onset of vitiligo. Overall, our results suggest that TNF-α promoter polymorphisms may be genetic risk factors for susceptibility and progression of the disease. The up-regulation of TNF-α transcript and protein levels in individuals with susceptible haplotypes advocates

  4. Interferon-β lipofection I. Increased efficacy of chemotherapeutic drugs on human tumor cells derived monolayers and spheroids.

    Villaverde, M S; Gil-Cardeza, M L; Glikin, G C; Finocchiaro, L M E

    2012-07-01

    We evaluated the effect of hIFNβ gene transfer alone or in combination with different antineoplastic drugs commonly used in cancer treatment. Five human tumor-derived cell lines were cultured as monolayers and spheroids. Four cell lines (Ewing sarcomas EW7 and COH, melanoma M8 and mammary carcinoma MCF-7) were sensitive to hIFNβ gene lipofection. Although this effect appeared in both culture configurations, spheroids showed a relative multicellular resistance (insensitive colon carcinoma HT-29 excluded). EW7 and M8 hIFNβ-expressing cells were exposed to different concentrations of bleomycin, bortezomib, carboplatin, doxorubicin, etoposide, methotrexate, paclitaxel and vincristine in both configuration models. In chemotherapy-sensitive EW7 monolayers, the combination of hIFNβ gene and antineoplastic drugs displayed only additive or counteractive (methotrexate) effects, suggesting that cytotoxic mechanisms triggered by hIFNβ gene lipofection could be saturating the signaling pathways. Conversely, in chemotherapy-resistant EW7 spheroids or M8 cells, the combination of hIFNβ with drugs that mainly operate at the genotoxic level (doxorubicin, methotrexate and paclitaxel) presented only additive effects. However, drugs that also increase pro-oxidant species can complement the antitumor efficacy of the hIFNβ gene and clearly caused potentiated effects (bleomycin, bortezomib, carboplatin, etoposide and vincristine). The great bystander effect induced by hIFNβ gene lipofection could be among the main causes of its effectiveness, because only 1 or 2% of EW7 or M8 hIFNβ-expressing cells killed more than 60 or 80% of cell population, respectively.

  5. Attenuation of G2 cell cycle checkpoint control in human tumor cells is associated with increased frequencies of unrejoined chromosome breaks but not increased cytotoxicity following radiation exposure

    Schwartz, J.L.; Cowan, J.; Grdina, D.J.

    1997-01-01

    The contribution of G 2 cell cycle checkpoint control to ionizing radiation responses was examined in ten human tumor cell lines. Most of the delay in cell cycle progression seen in the first cell cycle following radiation exposure was due to blocks in G 2 and there were large cell line-to-cell line variations in the length of the G 2 block. Longer delays were seen in cell lines that had mutations in p53. There was a highly significant inverse correlation between the length of G 2 delay and the frequency of unrejoined chromosome breaks seen as chromosome terminal deletions in mitosis, and observation that supports the hypothesis that the signal for G 2 delay in mammalian cells is an unrejoined chromosome break. There were also an inverse correlation between the length of G 2 delay and the level of chromosome aneuploidy in each cell line, suggesting that the G 2 and mitotic spindel checkpoints may be linked to each other. Attenuation in G 2 checkpoint control was not associated with alterations in either the frequency of induced chromosome rearrangements or cell survival following radiation exposure suggesting that chromosome rearrangements, the major radiation-induced lethal lesion in tumor cells, form before cells enters G 2 . Thus, agents that act solely to override G 2 arrest should produce little radiosensitization in human tumor cells

  6. Tumor necrosis factor increases the production of plasminogen activator inhibitor in human endothelial cells in vitro and in rats in vivo

    Hinsbergh, V.W.M. van; Kooistra, T.; Berg, E.A. van den; Princen, H.M.G.; Fiers, W.; Emeis, J.J.

    1988-01-01

    The vascular endothelium plays an important role in fibrinolysis by producing tissue-type plasminogen activator (t-PA) and plasminogen activator inhibitor (PAI). The monokine tumor necrosis factor (human recombinant TNF) increased the production of PAI by cultured human endothelial cells from

  7. Radiation of different human melanoma cell lines increased expression of RHOB. Level of this tumor suppressor gene in different cell lines

    Notcovich, C.; Molinari, B.; Duran, H.; Delgado González, D.; Sánchez Crespo, R.

    2013-01-01

    Previous results of our group show that a correlation exists between intrinsic radiosensitivity of human melanoma cells and cell death by apoptosis. RhoB is a small GTPase that regulates cytoskeletal organization. Besides, is related to the process of apoptosis in cells exposed to DNA damage as radiation. Also, RhoB levels decrease in a wide variety of tumors with the tumor stage, being considered a tumor suppressor gene due to its antiproliferative and proapoptotic effect. The aim of this study was to analyze the expression of RhoB in different human melanoma cell lines in relation to melanocytes, and evaluate the effect of gamma radiation on the expression of RhoB. We used the A375, SB2 and Meljcell lines, and the derived from melanocytes Pig1. It was found for all three tumor lines RhoB expression levels significantly lower than those of Pig1 (p <0.05), as assessed by semiquantitative RT-PCR . When tumor cells were irradiated to a dose of 2Gyinduction was observed at 3 hours RhoB irradiation. RhoB expression increased in all lines relative to non-irradiated control, showing a greater induction ( p< 0.05) for the more radiosensitive line SB2, consistent with apoptosis in response to radiation. The results allow for the first time in melanoma demonstrate that RhoB, as well as in other tumor types, has a lower expression in tumor cells than their normal counterparts. Moreover, induction in the expression of RhoB in irradiated cells may be associated with the process of radiation-induced apoptosis. The modulation of RhoB could be a new tool to sensitize radioresistant melanoma. (author)

  8. Anti-Tumor Necrosis Factor With a Glyco-Engineered Fc-Region Has Increased Efficacy in Mice With Colitis

    Bloemendaal, Felicia M.; Levin, Alon D.; Wildenberg, Manon E.; Koelink, Pim J.; Mcrae, Bradford L.; Salfeld, Jochen; Lum, Jenifer; van der Neut Kolfschoten, Marijn; Claassens, Jill W.; Visser, Remco; Bentlage, Arthur; D'Haens, Geert R. A. M.; Verbeek, J. Sjef; Vidarsson, Gestur; van den Brink, Gijs R.

    2017-01-01

    Although tumor necrosis factor (TNF) antagonists reduce many clinical features of inflammatory bowel disease, complete mucosal healing occurs in fewer than 50% of patients. The Fc-region of monoclonal antibodies against TNF has immunosuppressive properties via effects on macrophage polarization. We

  9. Metabolically stable bradykinin B2 receptor agonists enhance transvascular drug delivery into malignant brain tumors by increasing drug half-life

    Glen Daniel

    2009-05-01

    Full Text Available Abstract Background The intravenous co-infusion of labradimil, a metabolically stable bradykinin B2 receptor agonist, has been shown to temporarily enhance the transvascular delivery of small chemotherapy drugs, such as carboplatin, across the blood-brain tumor barrier. It has been thought that the primary mechanism by which labradimil does so is by acting selectively on tumor microvasculature to increase the local transvascular flow rate across the blood-brain tumor barrier. This mechanism of action does not explain why, in the clinical setting, carboplatin dosing based on patient renal function over-estimates the carboplatin dose required for target carboplatin exposure. In this study we investigated the systemic actions of labradimil, as well as other bradykinin B2 receptor agonists with a range of metabolic stabilities, in context of the local actions of the respective B2 receptor agonists on the blood-brain tumor barrier of rodent malignant gliomas. Methods Using dynamic contrast-enhanced MRI, the pharmacokinetics of gadolinium-diethyltriaminepentaacetic acid (Gd-DTPA, a small MRI contrast agent, were imaged in rodents bearing orthotopic RG-2 malignant gliomas. Baseline blood and brain tumor tissue pharmacokinetics were imaged with the 1st bolus of Gd-DTPA over the first hour, and then re-imaged with a 2nd bolus of Gd-DTPA over the second hour, during which normal saline or a bradykinin B2 receptor agonist was infused intravenously for 15 minutes. Changes in mean arterial blood pressure were recorded. Imaging data was analyzed using both qualitative and quantitative methods. Results The decrease in systemic blood pressure correlated with the known metabolic stability of the bradykinin B2 receptor agonist infused. Metabolically stable bradykinin B2 agonists, methionine-lysine-bradykinin and labradimil, had differential effects on the transvascular flow rate of Gd-DTPA across the blood-brain tumor barrier. Both methionine

  10. In vitro effects of phthalate esters in human myometrial and leiomyoma cells and increased urinary level of phthalate metabolite in women with uterine leiomyoma.

    Kim, Jin Hee; Kim, Sung Hoon; Oh, Young Sang; Ihm, Hyo Jin; Chae, Hee Dong; Kim, Chung-Hoon; Kang, Byung Moon

    2017-04-01

    To investigate the possible role of phthalate, a ubiquitous chemical used in consumer products, in the pathogenesis of uterine leiomyoma. Experimental and prospective case-control study using human samples. University hospital. Fifty-three women with histologic evidence of uterine leiomyoma and 33 surgical controls without leiomyoma. Human myometrial and leiomyoma cells were treated with di-(2-thylhexyl)-phthalate (DEHP). Cell viability assay and Western blot analyses after in vitro DEHP treatment; high-performance liquid chromatography electrospray ionization tandem mass spectrometry in cases and controls. In vitro treatment with DEHP led to an increased viability and increased expressions of proliferating cell nuclear antigen, B-cell lymphoma 2 protein, and type I collagen in myometrial and leiomyoma cells. The urinary concentration of mono-(2-ethyl-5-carboxypentyl) phthalate was higher in women with leiomyoma compared with controls. These findings suggest that exposure to phthalate may play a role in the pathogenesis of uterine leiomyoma by enhancing proliferative activity, exerting an antiapoptotic effect, and increasing collagen contents in myometrial and leiomyoma cells. Copyright © 2017 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  11. Sunitinib significantly suppresses the proliferation, migration, apoptosis resistance, tumor angiogenesis and growth of triple-negative breast cancers but increases breast cancer stem cells.

    Chinchar, Edmund; Makey, Kristina L; Gibson, John; Chen, Fang; Cole, Shelby A; Megason, Gail C; Vijayakumar, Srinivassan; Miele, Lucio; Gu, Jian-Wei

    2014-01-01

    The majority of triple-negative breast cancers (TNBCs) are basal-like breast cancers. However there is no reported study on anti-tumor effects of sunitinib in xenografts of basal-like TNBC (MDA-MB-468) cells. In the present study, MDA-MB-231, MDA-MB-468, MCF-7 cells were cultured using RPMI 1640 media with 10% FBS. Vascular endothelia growth factor (VEGF) protein levels were detected using ELISA (R & D Systams). MDA-MB-468 cells were exposed to sunitinib for 18 hours for measuring proliferation (3H-thymidine incorporation), migration (BD Invasion Chamber), and apoptosis (ApopTag and ApoScreen Anuexin V Kit). The effect of sunitinib on Notch-1 expression was determined by Western blot in cultured MDA-MB-468 cells. 10(6) MDA-MB-468 cells were inoculated into the left fourth mammary gland fat pad in athymic nude-foxn1 mice. When the tumor volume reached 100 mm(3), sunitinib was given by gavage at 80 mg/kg/2 days for 4 weeks. Tumor angiogenesis was determined by CD31 immunohistochemistry. Breast cancer stem cells (CSCs) isolated from the tumors were determined by flow cytometry analysis using CD44(+)/CD24(-) or low. ELISA indicated that VEGF was much more highly expressed in MDA-MB-468 cells than MDA-MB-231 and MCF-7 cells. Sunitinib significantly inhibited the proliferation, invasion, and apoptosis resistance in cultured basal like breast cancer cells. Sunitinib significantly increased the expression of Notch-1 protein in cultured MDA-MB-468 or MDA-MB-231 cells. The xenograft models showed that oral sunitinib significantly reduced the tumor volume of TNBCs in association with the inhibition of tumor angiogeneisis, but increased breast CSCs. These findings support the hypothesis that the possibility should be considered of sunitinib increasing breast CSCs though it inhibits TNBC tumor angiogenesis and growth/progression, and that effects of sunitinib on Notch expression and hypoxia may increase breast cancer stem cells. This work provides the groundwork for an

  12. Children with atopic dermatitis and frequent emollient use have increased urinary levels of low-molecular-weight phthalate metabolites and parabens

    Overgaard, L E K; Main, K M; Frederiksen, H

    2017-01-01

    BACKGROUND: Parabens may be added to cosmetic and personal care products for preservation purposes. Low-molecular weight (LMW) phthalate diesters function as plasticizers, fixatives or solvents in such products, but may also be found in small quantities as contaminants from plastic containers...... whether the difference is explained by increased use of the specific emollients that are used to treat pruritic and inflamed skin, and/or whether the impaired skin barrier allows chemicals to penetrate more easily. Moreover, the putative toxicological burden is unknown....

  13. Doxorubicin increases the effectiveness of Apo2L/TRAIL for tumor growth inhibition of prostate cancer xenografts

    El-Zawahry, Ahmed; McKillop, John; Voelkel-Johnson, Christina

    2005-01-01

    Prostate cancer is a significant health problem among American men. Treatment strategies for androgen-independent cancer are currently not available. Tumor necrosis factor-related apoptosis-inducing ligand (Apo2L/TRAIL) is a death receptor ligand that can induce apoptosis in a variety of cancer cell lines, including androgen-independent PC3 prostate carcinoma cells. In vitro, TRAIL-mediated apoptosis of prostate cancer cell lines can be enhanced by doxorubicin and correlates with the downregulation of the anti-apoptotic protein c-FLIP. This study evaluated the effects of doxorubicin on c-FLIP expression and tumor growth in combination with Apo2L/TRAIL in a xenograft model. In vitro cytotoxic effects of TRAIL were measured using a MTS-based viability assay. For in vivo studies, PC3 prostate carcinoma cells were grown subcutaneously in athymic nude mice and tumor growth was measured following treatment with doxorubicin and/or Apo2L/TRAIL. c-FLIP expression was determined by western blot analysis. Apoptosis in xenografts was detected using TUNEL. Statistical analysis was performed using the student t-test. In vitro experiments show that PC3 cells are partially susceptible to Apo2L/TRAIL and that susceptibility is enhanced by doxorubicin. In mice, doxorubicin did not significantly affect the growth of PC3 xenografts but reduced c-FLIP expression in tumors. Expression of c-FLIP in mouse heart was decreased only at the high doxorubicin concentration (8 mg/kg). Combination of doxorubicin with Apo2L/TRAIL resulted in more apoptotic cell death and tumor growth inhibition than Apo2L/TRAIL alone. Combination of doxorubicin and Apo2L/TRAIL is more effective in growth inhibition of PC3 xenografts in vivo than either agent alone and could present a novel treatment strategy against hormone-refractory prostate cancer. The intracellular mechanism by which doxorubicin enhances the effect of Apo2L/TRAIL on PC3 xenografts may be by reducing expression of c-FLIP

  14. Increasing the endogenous NO level causes catalase inactivation and reactivation of intercellular apoptosis signaling specifically in tumor cells

    Bauer, Georg

    2015-01-01

    Tumor cells generate extracellular superoxide anions and are protected against intercellular apoptosis-inducing HOCl- and NO/peroxynitrite signaling through the expression of membrane-associated catalase. This enzyme decomposes H2O2 and thus prevents HOCl synthesis. It efficiently interferes with NO/peroxynitrite signaling through oxidation of NO and decomposition of peroxynitrite. The regulatory potential of catalase at the crosspoint of ROS and RNS chemical biology, as well as its high local concentration on the outside of the cell membrane of tumor cells, establish tight control of intercellular signaling and thus prevent tumor cell apoptosis. Therefore, inhibition of catalase or its inactivation by singlet oxygen reactivate intercellular apoptosis-inducing signaling. Nitric oxide and peroxynitrite are connected with catalase in multiple and meaningful ways, as (i) NO can be oxidated by compound I of catalase, (ii) NO can reversibly inhibit catalase, (iii) peroxynitrite can be decomposed by catalase and (iv) the interaction between peroxynitrite and H2O2 leads to the generation of singlet oxygen that inactivates catalase. Therefore, modulation of the concentration of free NO through addition of arginine, inhibition of arginase, induction of NOS expression or inhibition of NO dioxygenase triggers an autoamplificatory biochemical cascade that is based on initial formation of singlet oxygen, amplification of superoxide anion/H2O2 and NO generation through singlet oxygen dependent stimulation of the FAS receptor and caspase-8. Finally, singlet oxygen is generated at sufficiently high concentration to inactivate protective catalase and to reactivate intercellular apoptosis-inducing ROS signaling. This regulatory network allows to establish several pathways for synergistic interactions, like the combination of modulators of NO metabolism with enhancers of superoxide anion generation, modulators of NO metabolism that act at different targets and between modulators of

  15. Increasing the endogenous NO level causes catalase inactivation and reactivation of intercellular apoptosis signaling specifically in tumor cells.

    Bauer, Georg

    2015-12-01

    Tumor cells generate extracellular superoxide anions and are protected against intercellular apoptosis-inducing HOCl- and NO/peroxynitrite signaling through the expression of membrane-associated catalase. This enzyme decomposes H2O2 and thus prevents HOCl synthesis. It efficiently interferes with NO/peroxynitrite signaling through oxidation of NO and decomposition of peroxynitrite. The regulatory potential of catalase at the crosspoint of ROS and RNS chemical biology, as well as its high local concentration on the outside of the cell membrane of tumor cells, establish tight control of intercellular signaling and thus prevent tumor cell apoptosis. Therefore, inhibition of catalase or its inactivation by singlet oxygen reactivate intercellular apoptosis-inducing signaling. Nitric oxide and peroxynitrite are connected with catalase in multiple and meaningful ways, as (i) NO can be oxidated by compound I of catalase, (ii) NO can reversibly inhibit catalase, (iii) peroxynitrite can be decomposed by catalase and (iv) the interaction between peroxynitrite and H2O2 leads to the generation of singlet oxygen that inactivates catalase. Therefore, modulation of the concentration of free NO through addition of arginine, inhibition of arginase, induction of NOS expression or inhibition of NO dioxygenase triggers an autoamplificatory biochemical cascade that is based on initial formation of singlet oxygen, amplification of superoxide anion/H2O2 and NO generation through singlet oxygen dependent stimulation of the FAS receptor and caspase-8. Finally, singlet oxygen is generated at sufficiently high concentration to inactivate protective catalase and to reactivate intercellular apoptosis-inducing ROS signaling. This regulatory network allows to establish several pathways for synergistic interactions, like the combination of modulators of NO metabolism with enhancers of superoxide anion generation, modulators of NO metabolism that act at different targets and between modulators of

  16. Elevated S100A9 expression in tumor stroma functions as an early recurrence marker for early-stage oral cancer patients through increased tumor cell invasion, angiogenesis, macrophage recruitment and interleukin-6 production.

    Fang, Wei-Yu; Chen, Yi-Wen; Hsiao, Jenn-Ren; Liu, Chiang-Shin; Kuo, Yi-Zih; Wang, Yi-Ching; Chang, Kung-Chao; Tsai, Sen-Tien; Chang, Mei-Zhu; Lin, Siao-Han; Wu, Li-Wha

    2015-09-29

    S100A9 is a calcium-binding protein with two EF-hands and frequently deregulated in several cancer types, however, with no clear role in oral cancer. In this report, the expression of S100A9 in cancer and adjacent tissues from 79 early-stage oral cancer patients was detected by immunohistochemical staining. Although S100A9 protein was present in both tumor and stromal cells, only the early-stage oral cancer patients with high stromal expression had reduced recurrence-free survival. High stromal S100A9 expression was also significantly associated with non-well differentiation and recurrence. In addition to increasing cell migration and invasion, ectopic S100A9 expression in tumor cells promoted xenograft tumorigenesis as well as the dominant expression of myeloid cell markers and pro-inflammatory IL-6. The expression of S100A9 in one stromal component, monocytes, stimulated the aggressiveness of co-cultured oral cancer cells. We also detected the elevation of serum S100A9 levels in early-stage oral cancer patients of a separate cohort of 73 oral cancer patients. The release of S100A9 protein into extracellular milieu enhanced tumor cell invasion, transendothelial monocyte migration and angiogenic activity. S100A9-mediated release of IL-6 requires the crosstalk of tumor cells with monocytes through the activation of NF-κB and STAT-3. Early-stage oral cancer patients with both high S100A9 expression and high CD68+ immune infiltrates in stroma had shortest recurrence-free survival, suggesting the use of both S100A9 and CD68 as poor prognostic markers for oral cancer. Together, both intracellular and extracellular S100A9 exerts a tumor-promoting action through the activation of oral cancer cells and their associated stroma in oral carcinogenesis.

  17. Bioavailable Concentrations of Delphinidin and Its Metabolite, Gallic Acid, Induce Antioxidant Protection Associated with Increased Intracellular Glutathione in Cultured Endothelial Cells

    Goszcz, Katarzyna; Deakin, Sherine J.; Duthie, Garry G.; Stewart, Derek

    2017-01-01

    Despite limited bioavailability and rapid degradation, dietary anthocyanins are antioxidants with cardiovascular benefits. This study tested the hypothesis that the antioxidant protection conferred by the anthocyanin, delphinidin, is mediated by modulation of endogenous antioxidant defences, driven by its degradation product, gallic acid. Delphinidin was found to degrade rapidly (t1/2 ~ 30 min), generating gallic acid as a major degradation product. Both delphinidin and gallic acid generated oxygen-centred radicals at high (100 μM) concentrations in vitro. In a cultured human umbilical vein endothelial cell model of oxidative stress, the antioxidant protective effects of both delphinidin and gallic acid displayed a hormesic profile; 100 μM concentrations of both were cytotoxic, but relatively low concentrations (100 nM–1 μM) protected the cells and were associated with increased intracellular glutathione. We conclude that delphinidin is intrinsically unstable and unlikely to confer any direct antioxidant activity in vivo yet it offered antioxidant protection to cells at low concentrations. This paradox might be explained by the ability of the degradation product, gallic acid, to confer benefit. The findings are important in understanding the mode of protection conferred by anthocyanins and reinforce the necessity to conduct in vitro experiments at biologically relevant concentrations. PMID:29081896

  18. Resveratrol-Induced Apoptosis and Increased Radiosensitivity in CD133-Positive Cells Derived From Atypical Teratoid/Rhabdoid Tumor

    Kao, C.-L.; Huang, P.-I; Tsai, P.-H.; Tsai, M.-L.; Lo, J.-F.; Lee, Y.-Y.; Chen, Y.-J.; Chen, Y.-W.; Chiou, S.-H.

    2009-01-01

    Purpose: CD133 has recently been proposed as a marker for cancer stem-like cells (CSC) in brain tumors. The aim of the present study was to investigate the possible role of resveratrol (RV) in radiosensitivity of CD133-positive/-negative cells derived from atypical teratoid/rhabdoid tumors (AT/RT-CD133 +/- ). Materials and Methods: AT/RT-CD133 +/- were isolated and characterized by flow cytometry and quantitative real-time reverse transcription-polymerase chain reaction, and then treated with RV at different doses. Migratory ability, colony formation, apoptotic activity, and xenotransplantation were assessed for RV alone, ionizing radiation (IR) alone, and IR with RV conditions. Results: AT/RT-CD133 + displayed enhanced self-renewal and highly coexpressed 'stem cell' genes and drug-resistant genes, in addition to showing significant resistance to chemotherapeutic agents and radiotherapy as compared with CD133 - cells. After treatment with 200 μM RV, the in vitro proliferation rates and in vivo tumor restoration abilities of ATRT-CD133 + were dramatically inhibited. Importantly, treatment with 150 μM RV can effectively inhibit the expression of drug-resistant genes in AT/RT-CD133 + , and further facilitate to the differentiation of CD133 + into CD133 - . In addition, treatment with 150 μM RV could significantly enhance the radiosensitivity and IR-mediated apoptosis in RV-treated ATRT-CD133 +/- . Kaplan-Meier survival analysis indicated that the mean survival rate of mice with ATRT-CD133 + that were treated with IR could be significantly improved when IR was combined with 150 μM RV treatment. Conclusions: AT/RT-CD133 + exhibit CSC properties and are refractory to IR treatment. Our results suggest that RV treatment plays crucial roles in antiproliferative, proapoptotic, and radiosensitizing effects on treated-CD133 +/- ; RV may therefore improve the clinical treatment of AT/RT.

  19. Photothermal Therapy Using Gold Nanorods and Near-Infrared Light in a Murine Melanoma Model Increases Survival and Decreases Tumor Volume

    Mary K. Popp

    2014-01-01

    Full Text Available Photothermal therapy (PTT treatments have shown strong potential in treating tumors through their ability to target destructive heat preferentially to tumor regions. In this paper we demonstrate that PTT in a murine melanoma model using gold nanorods (GNRs and near-infrared (NIR light decreases tumor volume and increases animal survival to an extent that is comparable to the current generation of melanoma drugs. GNRs, in particular, have shown a strong ability to reach ablative temperatures quickly in tumors when exposed to NIR light. The current research tests the efficacy of GNRs PTT in a difficult and fast growing murine melanoma model using a NIR light-emitting diode (LED light source. LED light sources in the NIR spectrum could provide a safer and more practical approach to photothermal therapy than lasers. We also show that the LED light source can effectively and quickly heat in vitro and in vivo models to ablative temperatures when combined with GNRs. We anticipate that this approach could have significant implications for human cancer therapy.

  20. Increased projection of MHC and tumor antigens in murine B16-BL6 melanoma induced by hydrostatic pressure and chemical crosslinking.

    Ramakrishna, V; Eisenthal, A; Skornick, Y; Shinitzky, M

    1993-05-01

    The B16-BL6 melanoma, like most spontaneously arising tumors, is poorly immunogenic and expresses low levels of major histocompatibility complex (MHC) antigens. Treatment of cells of this tumor in vitro by hydrostatic pressure in the presence of adenosine 2',3'-dialdehyde (oxAdo), a membrane-impermeant crosslinker, caused elevated projection of MHC and a specific tumor antigen as demonstrated by flow-cytometric analysis. Maximum projection of both the MHC and the tumor antigens could be reached by application of 1200 atm for 15 min in the presence of 20 mM oxAdo. It is not yet clear whether this passive increase in availability of antigens on the cell surface originated from a dormant pool of antigens in the plasma membrane or from pressure-induced fusion of antigen-rich intracellular organelles (e.g. the endoplasmic reticulum). The immunogenic properties of the antigen-enriched B16-BL6 cells are described in the following paper.

  1. Sparing Healthy Tissue and Increasing Tumor Dose Using Bayesian Modeling of Geometric Uncertainties for Planning Target Volume Personalization

    Herschtal, Alan; Te Marvelde, Luc; Mengersen, Kerrie; Foroudi, Farshad; Eade, Thomas; Pham, Daniel; Caine, Hannah; Kron, Tomas

    2015-01-01

    Objective: To develop a mathematical tool that can update a patient's planning target volume (PTV) partway through a course of radiation therapy to more precisely target the tumor for the remainder of treatment and reduce dose to surrounding healthy tissue. Methods and Materials: Daily on-board imaging was used to collect large datasets of displacements for patients undergoing external beam radiation therapy for solid tumors. Bayesian statistical modeling of these geometric uncertainties was used to optimally trade off between displacement data collected from previously treated patients and the progressively accumulating data from a patient currently partway through treatment, to optimally predict future displacements for that patient. These predictions were used to update the PTV position and margin width for the remainder of treatment, such that the clinical target volume (CTV) was more precisely targeted. Results: Software simulation of dose to CTV and normal tissue for 2 real prostate displacement datasets consisting of 146 and 290 patients treated with a minimum of 30 fractions each showed that re-evaluating the PTV position and margin width after 8 treatment fractions reduced healthy tissue dose by 19% and 17%, respectively, while maintaining CTV dose. Conclusion: Incorporating patient-specific displacement patterns from early in a course of treatment allows PTV adaptation for the remainder of treatment. This substantially reduces the dose to healthy tissues and thus can reduce radiation therapy–induced toxicities, improving patient outcomes

  2. Sparing Healthy Tissue and Increasing Tumor Dose Using Bayesian Modeling of Geometric Uncertainties for Planning Target Volume Personalization

    Herschtal, Alan, E-mail: Alan.Herschtal@petermac.org [Department of Biostatistics and Clinical Trials, Peter MacCallum Cancer Centre, Melbourne (Australia); Faculty of Health, Arts and Design, Swinburne University of Technology, Melbourne (Australia); Te Marvelde, Luc [Department of Biostatistics and Clinical Trials, Peter MacCallum Cancer Centre, Melbourne (Australia); Mengersen, Kerrie [School of Mathematical Sciences, Science and Engineering Faculty, Queensland University of Technology, Brisbane (Australia); Foroudi, Farshad [Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne (Australia); The Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne (Australia); Eade, Thomas [Northern Sydney Cancer Centre, Radiation Oncology Department, Royal North Shore Hospital, St. Leonards, Sydney (Australia); Northern Clinical School, University of Sydney (Australia); Pham, Daniel [Department of Radiation Therapy, Peter MacCallum Cancer Centre, Melbourne (Australia); Caine, Hannah [Northern Sydney Cancer Centre, Radiation Oncology Department, Royal North Shore Hospital, St. Leonards, Sydney (Australia); Kron, Tomas [The Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne (Australia); Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne (Australia)

    2015-06-01

    Objective: To develop a mathematical tool that can update a patient's planning target volume (PTV) partway through a course of radiation therapy to more precisely target the tumor for the remainder of treatment and reduce dose to surrounding healthy tissue. Methods and Materials: Daily on-board imaging was used to collect large datasets of displacements for patients undergoing external beam radiation therapy for solid tumors. Bayesian statistical modeling of these geometric uncertainties was used to optimally trade off between displacement data collected from previously treated patients and the progressively accumulating data from a patient currently partway through treatment, to optimally predict future displacements for that patient. These predictions were used to update the PTV position and margin width for the remainder of treatment, such that the clinical target volume (CTV) was more precisely targeted. Results: Software simulation of dose to CTV and normal tissue for 2 real prostate displacement datasets consisting of 146 and 290 patients treated with a minimum of 30 fractions each showed that re-evaluating the PTV position and margin width after 8 treatment fractions reduced healthy tissue dose by 19% and 17%, respectively, while maintaining CTV dose. Conclusion: Incorporating patient-specific displacement patterns from early in a course of treatment allows PTV adaptation for the remainder of treatment. This substantially reduces the dose to healthy tissues and thus can reduce radiation therapy–induced toxicities, improving patient outcomes.

  3. Steroid receptor coactivator 1 deficiency increases MMTV-neu mediated tumor latency and differentiation specific gene expression, decreases metastasis, and inhibits response to PPAR ligands

    Han, Ji Seung; Crowe, David L

    2010-01-01

    The peroxisome proliferator activated receptor (PPAR) subgroup of the nuclear hormone receptor superfamily is activated by a variety of natural and synthetic ligands. PPARs can heterodimerize with retinoid X receptors, which have homology to other members of the nuclear receptor superfamily. Ligand binding to PPAR/RXRs results in recruitment of transcriptional coactivator proteins such as steroid receptor coactivator 1 (SRC-1) and CREB binding protein (CBP). Both SRC-1 and CBP are histone acetyltransferases, which by modifying nucleosomal histones, produce more open chromatin structure and increase transcriptional activity. Nuclear hormone receptors can recruit limiting amounts of coactivators from other transcription factor binding sites such as AP-1, thereby inhibiting the activity of AP-1 target genes. PPAR and RXR ligands have been used in experimental breast cancer therapy. The role of coactivator expression in mammary tumorigenesis and response to drug therapy has been the subject of recent studies. We examined the effects of loss of SRC-1 on MMTV-neu mediated mammary tumorigenesis. SRC-1 null mutation in mammary tumor prone mice increased the tumor latency period, reduced tumor proliferation index and metastasis, inhibited response to PPAR and RXR ligands, and induced genes involved in mammary gland differentiation. We also examined human breast cancer cell lines overexpressing SRC-1 or CBP. Coactivator overexpression increased cellular proliferation with resistance to PPAR and RXR ligands and remodeled chromatin of the proximal epidermal growth factor receptor promoter. These results indicate that histone acetyltransferases play key roles in mammary tumorigenesis and response to anti-proliferative therapies

  4. LIN28 expression in malignant germ cell tumors down-regulates let-7 and increases oncogene levels

    Murray, Matthew J.; Saini, Harpreet K.; Siegler, Charlotte A.; Hanning, Jennifer E.; Barker, Emily M.; van Dongen, Stijn; Ward, Dawn M.; Raby, Katie L.; Groves, Ian J.; Scarpini, Cinzia G.; Pett, Mark R.; Thornton, Claire M.; Enright, Anton J.; Nicholson, James C.; Coleman, Nicholas

    2013-01-01

    Despite their clinico-pathologic heterogeneity, malignant germ-cell-tumors (GCTs) share molecular abnormalities that are likely to be functionally important. In this study, we investigated the potential significance of down-regulation of the let-7 family of tumor-suppressor microRNAs in malignant-GCTs. Microarray results from pediatric and adult samples (n=45) showed that LIN28, the negative-regulator of let-7 biogenesis, was abundant in malignant-GCTs, regardless of patient age, tumor site or histologic subtype. Indeed, a strong negative-correlation existed between LIN28 and let-7 levels in specimens with matched datasets. Low let-7 levels were biologically significant, since the sequence complementary to the 2-7nt common let-7 seed ‘GAGGUA’ was enriched in the 3′untranslated regions of mRNAs up-regulated in pediatric and adult malignant-GCTs, compared with normal gonads (a mixture of germ cells and somatic cells). We identified 27 mRNA targets of let-7 that were up-regulated in malignant-GCT cells, confirming significant negative-correlations with let-7 levels. Among 16 mRNAs examined in a largely independent set of specimens by qRT-PCR, we defined negative-associations with let-7e levels for six oncogenes, including MYCN, AURKB, CCNF, RRM2, MKI67 and C12orf5 (when including normal control tissues). Importantly, LIN28 depletion in malignant-GCT cells restored let-7 levels and repressed all of these oncogenic let-7 mRNA targets, with LIN28 levels correlating with cell proliferation and MYCN levels. Conversely, ectopic expression of let-7e was sufficient to reduce proliferation and down-regulate MYCN, AURKB and LIN28, the latter via a double-negative feedback loop. We concluded that the LIN28/let-7 pathway has a critical pathobiological role in malignant-GCTs and therefore offers a promising target for therapeutic intervention. PMID:23774216

  5. Favorable prognosis of operable non-small cell lung cancer (NSCLC) patients harboring an increased expression of tumor endothelial markers (TEMs).

    Pircher, Andreas; Fiegl, Michael; Untergasser, Gerold; Heidegger, Isabel; Medinger, Michael; Kern, Johann; Hilbe, Wolfgang

    2013-08-01

    Genome analyses of endothelial cells identified genes specifically expressed by tumor endothelial cells, called tumor endothelial markers (TEMs). Currently there are no data available concerning the role of TEMs in non-small cell lung cancer (NSCLC). Therefore, the aim of this study was to investigate the role of TEMs in NSCLC in vitro and in vivo. First we evaluated the expression of various TEMs (Robo4, Clec14 and ECSCR) by qRT-PCR and Western blot analyses in three NSCLC cell lines (A549, Calu1, Colo699) and compared them to human umbilical vein endothelial cells (HUVECs), endothelial colony forming cells (ECFCs) and human bronchial epithelial cells (HBEpCs). Next the expression of TEMs was measured in resected tumor tissue of NSCLC patients (n = 63) by qRT-PCR and compared to adjacent non-cancerous lung tissue (n = 52). Further, immunohistochemical analysis of Robo4 expression in tumor tissue (n = 33) and adjacent non-cancerous tissue (n = 27) was performed. We found that NSCLC cell lines and HBEpC did not express TEMs on the mRNA level compared to HUVECs (p = 0.001). In the contrary, a significant up-regulation of Robo4 and Clec14 was found in tumor samples (Robo4 p = 0.03, Clec14 p = 0.002). Both facts clearly indicate that these proteins are allocated to the tumor stromal department. Correlation with clinical data showed that increased TEM expression correlated with prolonged overall survival of operated NSCLC patients (Robo4 high 120.5 vs. Robo4 low 47.6 months, Clec14 high 108.1 vs. Clec14 low 54.5 months and ECSCR high 120.5 vs. ECSCR low 42.2 months). In summary, we found that TEMs are overexpressed in NSCLC stromal tissue and that an increased TEM expression correlated with an increased overall survival in early stage NSCLC. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. A ketogenic diet increases transport and oxidation of ketone bodies in RG2 and 9L gliomas without affecting tumor growth.

    De Feyter, Henk M; Behar, Kevin L; Rao, Jyotsna U; Madden-Hennessey, Kirby; Ip, Kevan L; Hyder, Fahmeed; Drewes, Lester R; Geschwind, Jean-François; de Graaf, Robin A; Rothman, Douglas L

    2016-08-01

    The dependence of tumor cells, particularly those originating in the brain, on glucose is the target of the ketogenic diet, which creates a plasma nutrient profile similar to fasting: increased levels of ketone bodies and reduced plasma glucose concentrations. The use of ketogenic diets has been of particular interest for therapy in brain tumors, which reportedly lack the ability to oxidize ketone bodies and therefore would be starved during ketosis. Because studies assessing the tumors' ability to oxidize ketone bodies are lacking, we investigated in vivo the extent of ketone body oxidation in 2 rodent glioma models. Ketone body oxidation was studied using (13)C MR spectroscopy in combination with infusion of a (13)C-labeled ketone body (beta-hydroxybutyrate) in RG2 and 9L glioma models. The level of ketone body oxidation was compared with nontumorous cortical brain tissue. The level of (13)C-beta-hydroxybutyrate oxidation in 2 rat glioma models was similar to that of contralateral brain. In addition, when glioma-bearing animals were fed a ketogenic diet, the ketone body monocarboxylate transporter was upregulated, facilitating uptake and oxidation of ketone bodies in the gliomas. These results demonstrate that rat gliomas can oxidize ketone bodies and indicate upregulation of ketone body transport when fed a ketogenic diet. Our findings contradict the hypothesis that brain tumors are metabolically inflexible and show the need for additional research on the use of ketogenic diets as therapy targeting brain tumor metabolism. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Metabolite Profiles of Diabetes Risk

    Gerszten, Robert E.

    2013-01-01

    Metabolic diseases present particular difficulty for clinicians because they are often present for years before becoming clinically apparent. We investigated whether metabolite profiles can predict the development of diabetes in the Framingham Heart Study. Five branched-chain and aromatic amino acids had highly-significant associations with future diabetes, while a combination of three amino acids strongly predicted future diabetes by up to 12 years (>5-fold increased risk for individuals in ...

  8. Inhibition of GLO1 in Glioblastoma Multiforme Increases DNA-AGEs, Stimulates RAGE Expression, and Inhibits Brain Tumor Growth in Orthotopic Mouse Models

    Rahul Jandial

    2018-01-01

    Full Text Available Cancers that exhibit the Warburg effect may elevate expression of glyoxylase 1 (GLO1 to detoxify the toxic glycolytic byproduct methylglyoxal (MG and inhibit the formation of pro-apoptotic advanced glycation endproducts (AGEs. Inhibition of GLO1 in cancers that up-regulate glycolysis has been proposed as a therapeutic targeting strategy, but this approach has not been evaluated for glioblastoma multiforme (GBM, the most aggressive and difficult to treat malignancy of the brain. Elevated GLO1 expression in GBM was established in patient tumors and cell lines using bioinformatics tools and biochemical approaches. GLO1 inhibition in GBM cell lines and in an orthotopic xenograft GBM mouse model was examined using both small molecule and short hairpin RNA (shRNA approaches. Inhibition of GLO1 with S-(p-bromobenzyl glutathione dicyclopentyl ester (p-BrBzGSH(Cp2 increased levels of the DNA-AGE N2-1-(carboxyethyl-2′-deoxyguanosine (CEdG, a surrogate biomarker for nuclear MG exposure; substantially elevated expression of the immunoglobulin-like receptor for AGEs (RAGE; and induced apoptosis in GBM cell lines. Targeting GLO1 with shRNA similarly increased CEdG levels and RAGE expression, and was cytotoxic to glioma cells. Mice bearing orthotopic GBM xenografts treated systemically with p-BrBzGSH(Cp2 exhibited tumor regression without significant off-target effects suggesting that GLO1 inhibition may have value in the therapeutic management of these drug-resistant tumors.

  9. Inhibition of GLO1 in Glioblastoma Multiforme Increases DNA-AGEs, Stimulates RAGE Expression, and Inhibits Brain Tumor Growth in Orthotopic Mouse Models.

    Jandial, Rahul; Neman, Josh; Lim, Punnajit P; Tamae, Daniel; Kowolik, Claudia M; Wuenschell, Gerald E; Shuck, Sarah C; Ciminera, Alexandra K; De Jesus, Luis R; Ouyang, Ching; Chen, Mike Y; Termini, John

    2018-01-30

    Cancers that exhibit the Warburg effect may elevate expression of glyoxylase 1 (GLO1) to detoxify the toxic glycolytic byproduct methylglyoxal (MG) and inhibit the formation of pro-apoptotic advanced glycation endproducts (AGEs). Inhibition of GLO1 in cancers that up-regulate glycolysis has been proposed as a therapeutic targeting strategy, but this approach has not been evaluated for glioblastoma multiforme (GBM), the most aggressive and difficult to treat malignancy of the brain. Elevated GLO1 expression in GBM was established in patient tumors and cell lines using bioinformatics tools and biochemical approaches. GLO1 inhibition in GBM cell lines and in an orthotopic xenograft GBM mouse model was examined using both small molecule and short hairpin RNA (shRNA) approaches. Inhibition of GLO1 with S -( p -bromobenzyl) glutathione dicyclopentyl ester ( p- BrBzGSH(Cp)₂) increased levels of the DNA-AGE N ²-1-(carboxyethyl)-2'-deoxyguanosine (CEdG), a surrogate biomarker for nuclear MG exposure; substantially elevated expression of the immunoglobulin-like receptor for AGEs (RAGE); and induced apoptosis in GBM cell lines. Targeting GLO1 with shRNA similarly increased CEdG levels and RAGE expression, and was cytotoxic to glioma cells. Mice bearing orthotopic GBM xenografts treated systemically with p -BrBzGSH(Cp)₂ exhibited tumor regression without significant off-target effects suggesting that GLO1 inhibition may have value in the therapeutic management of these drug-resistant tumors.

  10. The redox protein thioredoxin-1 (Trx-1) increases hypoxia-inducible factor 1alpha protein expression: Trx-1 overexpression results in increased vascular endothelial growth factor production and enhanced tumor angiogenesis.

    Welsh, Sarah J; Bellamy, William T; Briehl, Margaret M; Powis, Garth

    2002-09-01

    Hypoxia-inducible factor 1 (HIF-1), a heterodimer of HIF-1alpha and HIF-1beta subunits, is a transcriptional activator central to the cellular response to low oxygen that includes metabolic adaptation, angiogenesis, metastasis, and inhibited apoptosis. Thioredoxin-1 (Trx-1) is a small redox protein overexpressed in a number of human primary tumors. We have examined the effects of Trx-1 on HIF activity and the activation of downstream genes. Stable transfection of human breast carcinoma MCF-7 cells with human Trx-1 caused a significant increase in HIF-1alpha protein levels under both normoxic (20% oxygen) and hypoxic (1% oxygen) conditions. Trx-1 increased hypoxia-induced HIF-1 transactivation activity measured using a luciferase reporter under the control of the hypoxia response element. Changes in HIF-1alpha mRNA levels did not account for the changes observed at the protein level, and HIF-1beta protein levels did not change. Trx-1 transfection also caused a significant increase in the protein products of hypoxia-responsive genes, including vascular endothelial growth factor (VEGF) and nitric oxide synthase 2 in a number of different cell lines (MCF-7 human breast and HT29 human colon carcinomas and WEHI7.2 mouse lymphoma cells) under both normoxic and hypoxic conditions. The pattern of expression of the different isoforms of VEGF was not changed by Trx-1. Transfection of a redox-inactive Trx-1 (C32S/C35S) markedly decreased levels of HIF-1alpha protein, HIF-1 transactivating activity, and VEGF protein in MCF-7 cells compared with empty vector controls. In vivo studies using WEHI7.2 cells transfected with Trx-1 showed significantly increased tumor VEGF and angiogenesis. The results suggest that Trx-1 increases HIF-1alpha protein levels in cancer cells and increases VEGF production and tumor angiogenesis.

  11. Increased pulmonary secretion of tumor necrosis factor-alpha in calves experimentally infected with bovine respiratory syncytial virus

    Rontved, C. M.; Tjørnehøj, Kirsten; Viuff, B.

    2000-01-01

    , of which 23 were experimentally infected with BRSV and five were given a mock inoculum. The presence of the cytokine tumor necrosis factor alpha (TNF-alpha) in the BAL fluids was detected and quantified by a capture ELISA. TNF-alpha was detected in 21 of the infected animals. The amount of TNF-alpha...... in the BAL fluid of calves killed post inoculation day (PID) 2 and 4 was at the same very low level as in the uninfected control animals. Large amounts of TNF-alpha were detected on PID 6, maximum levels of TNF-alpha were reached on PID 7, and smaller amounts of TNF-alpha were seen on PID 8. The high levels...... of TNF-alpha appeared on the days where severe lung lesions and clinical signs were obvious and the amounts of BRSV-antigen were at their greatest. Although Pasteurellaceae were isolated from some of the BRSV-infected calves, calves treated with antibiotics before and through the whole period...

  12. Immunoregulation of antitumor response; differential secretion of arachidonic acid metabolites by macrophages during stimulation ''in vitro'' with BCG and ''Corynebacterium parvum''

    Tomecki, Jaroslaw; Sukiennik, Jadwiga; Kordowiak, Anna

    1993-01-01

    The level of arachidonic acid (AA) metabolites in the supernatants of cultures peritoneal exudate cells (PEC) were studied under various conditions using BCG and ''Corynebacterium parvum'' as stimulators. The metabolite levels were analyzed by thin layer chromatography (TLC). The degree of macrophage cytotoxic/cytostatic activity was dependent on the dose and character of stimulators used and the source of macrophages. The application of micro cytotoxicity assay for the evaluation of tumor cell lysis (lung sarcoma SaL-1) ''in vitro'' revealed that peritoneal macrophages from healthy and tumor bearing BALB/c mice may affect the degree of antitumor response. In the supernatants of cultured PEC from tumor bearing mice AA level increased (by 10-fold) in comparison with PEC from healthy mice. Stimulation with BCG induced over a double level of AA in PEC isolated from tumor bearing mice non-stimulated or stimulated with ''C.parvum''. A lower level of prostaglandins (PGs) was found in the supernatants of cultured PEC isolated from healthy mice (stimulated and non-stimulated), but the highest level of PGs was observed in the supernatants of cultured PEC isolated from tumor bearing mice stimulated with BCG. The unique metabolite of AA was found only in the supernatants form non-stimulated PEC from tumor bearing mice. PEC from tumor bearing mice produced metabolites of AA which were not detected in control group. These results suggest that macrophages also play a regulatory role by secretion of AA. This process can be modified by bacterial antigens. (author). 21 refs, 7 figs

  13. Dual PI3K/mTOR inhibitors, GSK2126458 and PKI-587, suppress tumor progression and increase radiosensitivity in nasopharyngeal carcinoma.

    Liu, Tongxin; Sun, Quanquan; Li, Qi; Yang, Hua; Zhang, Yuqin; Wang, Rong; Lin, Xiaoshan; Xiao, Dong; Yuan, Yawei; Chen, Longhua; Wang, Wei

    2015-02-01

    Although combined chemoradiotherapy has provided considerable improvements for nasopharyngeal carcinoma (NPC), recurrence and metastasis are still frequent. The PI3K/Akt/mTOR pathway plays a critical role in tumor formation and tumor cell survival after radiation-induced DNA damage. In the present study, we evaluated whether inhibition of PI3K/mTOR by two novel dual inhibitors, GSK2126458 and PKI-587, could suppress tumor progression and sensitize NPC cells to radiation. Four NPC cell lines (CNE-1, CNE-2, 5-8F, and 6-10B) were used to analyze the effects of GSK216458 and PKI-587 on cell proliferation, migration, invasion, clonogenic survival, amount of residual γ-H2AX foci, cell cycle, and apoptosis after radiation. A 5-8F xenograft model was used to evaluate the in vivo effects of the two compounds in combination with ionizing radiation (IR). Both GSK216458 and PKI-587 effectively inhibited cell proliferation and motility in NPC cells and suppressed phosphorylation of Akt, mTOR, S6, and 4EBP1 proteins in a concentration- and time-dependent manner. Moreover, both compounds sensitized NPC cells to IR by increasing DNA damage, enhancing G2-M cell-cycle delay, and inducing apoptosis. In vivo, the combination of IR with GSK2126458 or PKI-587 significantly inhibited tumor growth. Antitumor effect was correlated with induction of apoptosis and suppression of the phosphorylation of mTOR, Akt, and 4EBP1. These new findings suggest the usefulness of PI3K/mTOR dual inhibition for antitumor and radiosensitizing. The combination of IR with a dual PI3K/mTOR inhibitor, GSK2126458 or PKI-587, might be a promising therapeutic strategy for NPC. ©2014 American Association for Cancer Research.

  14. EMMPRIN/CD147-encriched membrane vesicles released from malignant human testicular germ cells increase MMP production through tumor-stroma interaction.

    Milia-Argeiti, Eleni; Mourah, Samia; Vallée, Benoit; Huet, Eric; Karamanos, Nikos K; Theocharis, Achilleas D; Menashi, Suzanne

    2014-08-01

    Elevated levels of EMMPRIN/CD147 in cancer tissues have been correlated with tumor progression but the regulation of its expression is not yet understood. Here, the regulation of EMMPRIN expression was investigated in testicular germ cell tumor (TGCTs) cell lines. EMMPRIN expression in seminoma JKT-1 and embryonal carcinoma NT2/D1 cell lines was determined by Western blot, immunofluorescence and qRT-PCR. Membrane vesicles (MVs) secreted from these cells, treated or not with EMMPRIN siRNA, were isolated by differential centrifugations of their conditioned medium. MMP-2 was analyzed by zymography and qRT-PCR. The more aggressive embryonic carcinoma NT2/D1 cells expressed more EMMPRIN mRNA than the seminoma JKT-1 cells, but surprisingly contained less EMMPRIN protein, as determined by immunoblotting and immunostaining. The protein/mRNA discrepancy was not due to accelerated protein degradation in NT2/D1 cells, but by the secretion of EMMPRIN within MVs, as the vesicles released from NT2/D1 contained considerably more EMMPRIN than those released from JKT-1. EMMPRIN-containing MVs obtained from NT2/D1, but not from EMMPRIN-siRNA treated NT2/D1, increased MMP-2 production in fibroblasts to a greater extent than those from JKT-1 cells. The data presented show that the more aggressive embryonic carcinoma cells synthesize more EMMPRIN than seminoma cells, but which they preferentially target to secreted MVs, unlike seminoma cells which retain EMMPRIN within the cell membrane. This cellular event points to a mechanism by which EMMPRIN expressed by malignant testicular cells can exert its MMP inducing effect on distant cells within the tumor microenvironment to promote tumor invasion. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Repairing the brain with physical exercise: Cortical thickness and brain volume increases in long-term pediatric brain tumor survivors in response to a structured exercise intervention

    Kamila U. Szulc-Lerch

    Full Text Available There is growing evidence that exercise induced experience dependent plasticity may foster structural and functional recovery following brain injury. We examined the efficacy of exercise training for neural and cognitive recovery in long-term pediatric brain tumor survivors treated with radiation.We conducted a controlled clinical trial with crossover of exercise training (vs. no training in a volunteer sample of 28 children treated with cranial radiation for brain tumors (mean age = 11.5 yrs.; mean time since diagnosis = 5.7 yrs. The endpoints were anatomical T1 MRI data and multiple behavioral outcomes presenting a broader analysis of structural MRI data across the entire brain. This included an analysis of changes in cortical thickness and brain volume using automated, user unbiased approaches. A series of general linear mixed effects models evaluating the effects of exercise training on cortical thickness were performed in a voxel and vertex-wise manner, as well as for specific regions of interest. In exploratory analyses, we evaluated the relationship between changes in cortical thickness after exercise with multiple behavioral outcomes, as well as the relation of these measures at baseline.Exercise was associated with increases in cortical thickness within the right pre and postcentral gyri. Other notable areas of increased thickness related to training were present in the left pre and postcentral gyri, left temporal pole, left superior temporal gyrus, and left parahippocampal gyrus. Further, we observed that compared to a separate cohort of healthy children, participants displayed multiple areas with a significantly thinner cortex prior to training and fewer differences following training, indicating amelioration of anatomical deficits. Partial least squares analysis (PLS revealed specific patterns of relations between cortical thickness and various behavioral outcomes both after training and at baseline.Overall, our results

  16. Transportable hyperpolarized metabolites

    Ji, Xiao; Bornet, Aurélien; Vuichoud, Basile; Milani, Jonas; Gajan, David; Rossini, Aaron J.; Emsley, Lyndon; Bodenhausen, Geoffrey; Jannin, Sami

    2017-01-01

    Nuclear spin hyperpolarization of 13C-labelled metabolites by dissolution dynamic nuclear polarization can enhance the NMR signals of metabolites by several orders of magnitude, which has enabled in vivo metabolic imaging by MRI. However, because of the short lifetime of the hyperpolarized magnetization (typically <1 min), the polarization process must be carried out close to the point of use. Here we introduce a concept that markedly extends hyperpolarization lifetimes and enables the transportation of hyperpolarized metabolites. The hyperpolarized sample can thus be removed from the polarizer and stored or transported for use at remote MRI or NMR sites. We show that hyperpolarization in alanine and glycine survives 16 h storage and transport, maintaining overall polarization enhancements of up to three orders of magnitude. PMID:28072398

  17. Hydrophobicity and charge shape cellular metabolite concentrations.

    Arren Bar-Even

    2011-10-01

    Full Text Available What governs the concentrations of metabolites within living cells? Beyond specific metabolic and enzymatic considerations, are there global trends that affect their values? We hypothesize that the physico-chemical properties of metabolites considerably affect their in-vivo concentrations. The recently achieved experimental capability to measure the concentrations of many metabolites simultaneously has made the testing of this hypothesis possible. Here, we analyze such recently available data sets of metabolite concentrations within E. coli, S. cerevisiae, B. subtilis and human. Overall, these data sets encompass more than twenty conditions, each containing dozens (28-108 of simultaneously measured metabolites. We test for correlations with various physico-chemical properties and find that the number of charged atoms, non-polar surface area, lipophilicity and solubility consistently correlate with concentration. In most data sets, a change in one of these properties elicits a ~100 fold increase in metabolite concentrations. We find that the non-polar surface area and number of charged atoms account for almost half of the variation in concentrations in the most reliable and comprehensive data set. Analyzing specific groups of metabolites, such as amino-acids or phosphorylated nucleotides, reveals even a higher dependence of concentration on hydrophobicity. We suggest that these findings can be explained by evolutionary constraints imposed on metabolite concentrations and discuss possible selective pressures that can account for them. These include the reduction of solute leakage through the lipid membrane, avoidance of deleterious aggregates and reduction of non-specific hydrophobic binding. By highlighting the global constraints imposed on metabolic pathways, future research could shed light onto aspects of biochemical evolution and the chemical constraints that bound metabolic engineering efforts.

  18. Repairing the brain with physical exercise: Cortical thickness and brain volume increases in long-term pediatric brain tumor survivors in response to a structured exercise intervention.

    Szulc-Lerch, Kamila U; Timmons, Brian W; Bouffet, Eric; Laughlin, Suzanne; de Medeiros, Cynthia B; Skocic, Jovanka; Lerch, Jason P; Mabbott, Donald J

    2018-01-01

    There is growing evidence that exercise induced experience dependent plasticity may foster structural and functional recovery following brain injury. We examined the efficacy of exercise training for neural and cognitive recovery in long-term pediatric brain tumor survivors treated with radiation. We conducted a controlled clinical trial with crossover of exercise training (vs. no training) in a volunteer sample of 28 children treated with cranial radiation for brain tumors (mean age = 11.5 yrs.; mean time since diagnosis = 5.7 yrs). The endpoints were anatomical T1 MRI data and multiple behavioral outcomes presenting a broader analysis of structural MRI data across the entire brain. This included an analysis of changes in cortical thickness and brain volume using automated, user unbiased approaches. A series of general linear mixed effects models evaluating the effects of exercise training on cortical thickness were performed in a voxel and vertex-wise manner, as well as for specific regions of interest. In exploratory analyses, we evaluated the relationship between changes in cortical thickness after exercise with multiple behavioral outcomes, as well as the relation of these measures at baseline. Exercise was associated with increases in cortical thickness within the right pre and postcentral gyri. Other notable areas of increased thickness related to training were present in the left pre and postcentral gyri, left temporal pole, left superior temporal gyrus, and left parahippocampal gyrus. Further, we observed that compared to a separate cohort of healthy children, participants displayed multiple areas with a significantly thinner cortex prior to training and fewer differences following training, indicating amelioration of anatomical deficits. Partial least squares analysis (PLS) revealed specific patterns of relations between cortical thickness and various behavioral outcomes both after training and at baseline. Overall, our results indicate that

  19. Bone tumor

    Tumor - bone; Bone cancer; Primary bone tumor; Secondary bone tumor; Bone tumor - benign ... The cause of bone tumors is unknown. They often occur in areas of the bone that grow rapidly. Possible causes include: Genetic defects ...

  20. Secondary metabolites from Ganoderma.

    Baby, Sabulal; Johnson, Anil John; Govindan, Balaji

    2015-06-01

    Ganoderma is a genus of medicinal mushrooms. This review deals with secondary metabolites isolated from Ganoderma and their biological significance. Phytochemical studies over the last 40years led to the isolation of 431 secondary metabolites from various Ganoderma species. The major secondary compounds isolated are (a) C30 lanostanes (ganoderic acids), (b) C30 lanostanes (aldehydes, alcohols, esters, glycosides, lactones, ketones), (c) C27 lanostanes (lucidenic acids), (d) C27 lanostanes (alcohols, lactones, esters), (e) C24, C25 lanostanes (f) C30 pentacyclic triterpenes, (g) meroterpenoids, (h) farnesyl hydroquinones (meroterpenoids), (i) C15 sesquiterpenoids, (j) steroids, (k) alkaloids, (l) prenyl hydroquinone (m) benzofurans, (n) benzopyran-4-one derivatives and (o) benzenoid derivatives. Ganoderma lucidum is the species extensively studied for its secondary metabolites and biological activities. Ganoderma applanatum, Ganoderma colossum, Ganoderma sinense, Ganoderma cochlear, Ganoderma tsugae, Ganoderma amboinense, Ganoderma orbiforme, Ganoderma resinaceum, Ganoderma hainanense, Ganoderma concinna, Ganoderma pfeifferi, Ganoderma neo-japonicum, Ganoderma tropicum, Ganoderma australe, Ganoderma carnosum, Ganoderma fornicatum, Ganoderma lipsiense (synonym G. applanatum), Ganoderma mastoporum, Ganoderma theaecolum, Ganoderma boninense, Ganoderma capense and Ganoderma annulare are the other Ganoderma species subjected to phytochemical studies. Further phytochemical studies on Ganoderma could lead to the discovery of hitherto unknown biologically active secondary metabolites. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. RNAi-mediated silencing of CD147 inhibits tumor cell proliferation, invasion and increases chemosensitivity to cisplatin in SGC7901 cells in vitro

    Zhu Chan

    2010-06-01

    Full Text Available Abstract Background CD147 is a widely distributed cell surface glycoprotein that belongs to the Ig superfamily. CD147 has been implicated in numerous physiological and pathological activities. Enriched on the surface of many tumor cells, CD147 promotes tumor growth, invasion, metastasis and angiogenesis and confers resistance to some chemotherapeutic drugs. In this study, we investigated the possible role of CD147 in the progression of gastric cancer. Methods Short hairpin RNA (shRNA expressing vectors targeting CD147 were constructed and transfected into human gastric cancer cells SGC7901 and CD147 expression was monitored by quantitative realtime RT-PCR and Western blot. Cell proliferation, the activities of MMP-2 and MMP-9, the invasive potential and chemosensitivity to cisplatin of SGC7901 cells were determined by MTT, gelatin zymography, Transwell invasion assay and MTT, respectively. Results Down-regulation of CD147 by RNAi approach led to decreased cell proliferation, MMP-2 and MMP-9 activities and invasive potential of SGC7901 cells as well as increased chemosensitivity to cisplatin. Conclusion CD147 involves in proliferation, invasion and chemosensitivity of human gastric cancer cell line SGC7901, indicating that CD147 may be a promising therapeutic target for gastric cancer.

  2. Paradoxical response with increased tumor necrosis factor-α levels to anti-tuberculosis treatment in a patient with disseminated tuberculosis

    Sho Watanabe

    2017-01-01

    Full Text Available It has been reported that tuberculosis (TB worsens after cessation of tumor necrosis factor-α inhibitors and starting anti-TB treatment. Little is known about the immunological pathogenesis of this paradoxical response (PR. We report the first case of a TB patient in whom PR occurred concurrently with elevation of circulating tumor necrosis factor-α (TNFα levels. A 75-year-old woman, who had been treated with adalimumab for SAPHO syndrome, developed disseminated TB. Soon after administration of anti-TB treatment (isoniazid, rifampicin, pyrazinamide, and ethambutol, and after discontinuation of adalimumab, a PR occurred. Serial testing of serum cytokine levels revealed a marked increase in TNFα, and a decline in interferon-γ levels. Despite intensive treatment with antibiotics, prednisolone, noradrenaline, and mechanical ventilation, acute respiratory distress syndrome developed and she died. Thus, overproduction of TNFα after cessation of TNFα inhibitors may partially account for the pathogenesis of a PR. This supports preventative or therapeutic reinitiation of TNFα inhibitors when PR occurs. Serial monitoring of circulating inflammatory cytokine levels could lead to earlier identification of a PR.

  3. Exosomes from metastatic cancer cells transfer amoeboid phenotype to non-metastatic cells and increase endothelial permeability: their emerging role in tumor heterogeneity.

    Schillaci, Odessa; Fontana, Simona; Monteleone, Francesca; Taverna, Simona; Di Bella, Maria Antonietta; Di Vizio, Dolores; Alessandro, Riccardo

    2017-07-05

    The goal of this study was to understand if exosomes derived from high-metastatic cells may influence the behavior of less aggressive cancer cells and the properties of the endothelium. We found that metastatic colon cancer cells are able to transfer their amoeboid phenotype to isogenic primary cancer cells through exosomes, and that this morphological transition is associated with the acquisition of a more aggressive behavior. Moreover, exosomes from the metastatic line (SW620Exos) exhibited higher ability to cause endothelial hyperpermeability than exosomes from the non metastatic line (SW480Exos). SWATH-based quantitative proteomic analysis highlighted that SW620Exos are significantly enriched in cytoskeletal-associated proteins including proteins activating the RhoA/ROCK pathway, known to induce amoeboid properties and destabilization of endothelial junctions. In particular, thrombin was identified as a key mediator of the effects induced by SW620Exos in target cells, in which we also found a significant increase of RhoA activity. Overall, our results demonstrate that in a heterogeneous context exosomes released by aggressive sub-clones can contribute to accelerate tumor progression by spreading malignant properties that affect both the tumor cell plasticity and the endothelial cell behavior.

  4. Krüppel-like Factor 5, Increased in Pancreatic Ductal Adenocarcinoma, Promotes Proliferation, Acinar-to-Ductal Metaplasia, Pancreatic Intraepithelial Neoplasia, and Tumor Growth in Mice.

    He, Ping; Yang, Jong Won; Yang, Vincent W; Bialkowska, Agnieszka B

    2018-04-01

    Activating mutations in KRAS are detected in most pancreatic ductal adenocarcinomas (PDACs). Expression of an activated form of KRAS (KrasG12D) in pancreata of mice is sufficient to induce formation of pancreatic intraepithelial neoplasia (PanINs)-a precursor of PDAC. Pancreatitis increases formation of PanINs in mice that express KrasG12D by promoting acinar-to-ductal metaplasia (ADM). We investigated the role of the transcription factor Krüppel-like factor 5 (KLF5) in ADM and KRAS-mediated formation of PanINs. We performed studies in adult mice with conditional disruption of Klf5 (Klf5 fl/fl ) and/or expression of Kras G12D (LSL-Kras G12D ) via Cre ERTM recombinase regulated by an acinar cell-specific promoter (Ptf1a). Activation of Kras G12D and loss of KLF5 was achieved by administration of tamoxifen. Pancreatitis was induced in mice by administration of cerulein; pancreatic tissues were collected, analyzed by histology and immunohistochemistry, and transcriptomes were compared between mice that did or did not express KLF5. We performed immunohistochemical analyses of human tissue microarrays, comparing levels of KLF5 among 96 human samples of PDAC. UN-KC-6141 cells (pancreatic cancer cells derived from Pdx1-Cre;LSL-Kras G12D mice) were incubated with inhibitors of different kinases and analyzed in proliferation assays and by immunoblots. Expression of KLF5 was knocked down with small hairpin RNAs or CRISPR/Cas9 strategies; cells were analyzed in proliferation and gene expression assays, and compared with cells expressing control vectors. Cells were subcutaneously injected into flanks of syngeneic mice and tumor growth was assessed. Of the 96 PDAC samples analyzed, 73% were positive for KLF5 (defined as nuclear staining in more than 5% of tumor cells). Pancreata from Ptf1a-Cre ERTM ;LSL-Kras G12D mice contained ADM and PanIN lesions, which contained high levels of nuclear KLF5 within these structures. In contrast, Ptf1a-Cre ERTM ;LSL-Kras G12D ;Klf5 fl

  5. Tumor suppressors BTG1 and IKZF1 cooperate during mouse leukemia development and increase relapse risk in B-cell precursor acute lymphoblastic leukemia patients.

    Scheijen, Blanca; Boer, Judith M; Marke, René; Tijchon, Esther; van Ingen Schenau, Dorette; Waanders, Esmé; van Emst, Liesbeth; van der Meer, Laurens T; Pieters, Rob; Escherich, Gabriele; Horstmann, Martin A; Sonneveld, Edwin; Venn, Nicola; Sutton, Rosemary; Dalla-Pozza, Luciano; Kuiper, Roland P; Hoogerbrugge, Peter M; den Boer, Monique L; van Leeuwen, Frank N

    2017-03-01

    Deletions and mutations affecting lymphoid transcription factor IKZF1 (IKAROS) are associated with an increased relapse risk and poor outcome in B-cell precursor acute lymphoblastic leukemia. However, additional genetic events may either enhance or negate the effects of IKZF1 deletions on prognosis. In a large discovery cohort of 533 childhood B-cell precursor acute lymphoblastic leukemia patients, we observed that single-copy losses of BTG1 were significantly enriched in IKZF1 -deleted B-cell precursor acute lymphoblastic leukemia ( P =0.007). While BTG1 deletions alone had no impact on prognosis, the combined presence of BTG1 and IKZF1 deletions was associated with a significantly lower 5-year event-free survival ( P =0.0003) and a higher 5-year cumulative incidence of relapse ( P =0.005), when compared with IKZF1 -deleted cases without BTG1 aberrations. In contrast, other copy number losses commonly observed in B-cell precursor acute lymphoblastic leukemia, such as CDKN2A/B, PAX5, EBF1 or RB1 , did not affect the outcome of IKZF1 -deleted acute lymphoblastic leukemia patients. To establish whether the combined loss of IKZF1 and BTG1 function cooperate in leukemogenesis, Btg1 -deficient mice were crossed onto an Ikzf1 heterozygous background. We observed that loss of Btg1 increased the tumor incidence of Ikzf1 +/- mice in a dose-dependent manner. Moreover, murine B cells deficient for Btg1 and Ikzf1 +/- displayed increased resistance to glucocorticoids, but not to other chemotherapeutic drugs. Together, our results identify BTG1 as a tumor suppressor in leukemia that, when deleted, strongly enhances the risk of relapse in IKZF1 -deleted B-cell precursor acute lymphoblastic leukemia, and augments the glucocorticoid resistance phenotype mediated by the loss of IKZF1 function. Copyright© Ferrata Storti Foundation.

  6. Deaths among adult patients with hypopituitarism: hypocortisolism during acute stress, and de novo malignant brain tumors contribute to an increased mortality.

    Burman, P; Mattsson, A F; Johannsson, G; Höybye, C; Holmer, H; Dahlqvist, P; Berinder, K; Engström, B E; Ekman, B; Erfurth, E M; Svensson, J; Wahlberg, J; Karlsson, F A

    2013-04-01

    Patients with hypopituitarism have an increased standardized mortality rate. The basis for this has not been fully clarified. To investigate in detail the cause of death in a large cohort of patients with hypopituitarism subjected to long-term follow-up. All-cause and cause-specific mortality in 1286 Swedish patients with hypopituitarism prospectively monitored in KIMS (Pfizer International Metabolic Database) 1995-2009 were compared to general population data in the Swedish National Cause of Death Registry. In addition, events reported in KIMS, medical records, and postmortem reports were reviewed. Standardized mortality ratios (SMR) were calculated, with stratification for gender, attained age, and calendar year during follow-up. An excess mortality was found, 120 deaths vs 84.3 expected, SMR 1.42 (95% confidence interval: 1.18-1.70). Infections, brain cancer, and sudden death were associated with significantly increased SMRs (6.32, 9.40, and 4.10, respectively). Fifteen patients, all ACTH-deficient, died from infections. Eight of these patients were considered to be in a state of adrenal crisis in connection with death (medical reports and post-mortem examinations). Another 8 patients died from de novo malignant brain tumors, 6 of which had had a benign pituitary lesion at baseline. Six of these 8 subjects had received prior radiation therapy. Two important causes of excess mortality were identified: first, adrenal crisis in response to acute stress and intercurrent illness; second, increased risk of a late appearance of de novo malignant brain tumors in patients who previously received radiotherapy. Both of these causes may be in part preventable by changes in the management of pituitary disease.

  7. Structural modification of resveratrol leads to increased anti-tumor activity, but causes profound changes in the mode of action

    Scherzberg, Maria-Christina; Kiehl, Andreas; Zivkovic, Aleksandra; Stark, Holger; Stein, Jürgen; Fürst, Robert; Steinhilber, Dieter; Ulrich-Rückert, Sandra

    2015-01-01

    (Z)-3,5,4′-Trimethoxystilbene (Z-TMS) is a resveratrol analog with increased antiproliferative activity towards a number of cancer cell lines compared to resveratrol, which has been shown to inhibit tubulin polymerization in vitro. The purpose of this study was to investigate if Z-TMS still shows potential for the prevention of metabolic diseases as known for resveratrol. Cell growth inhibition was determined with IC 50 values for Z-TMS between 0.115 μM and 0.473 μM (resveratrol: 110.7 μM to 190.2 μM). Flow cytometric analysis revealed a G 2 /M arrest after Z-TMS treatment, whereas resveratrol caused S phase arrest. Furthermore, Z-TMS was shown to impair microtubule polymerization. Beneficial effects on lipid accumulation were observed for resveratrol, but not for Z-TMS in an in vitro steatosis model. (E)-Resveratrol was confirmed to elevate cAMP levels, and knockdown of AMPK attenuated the antiproliferative activity, while Z-TMS did not show significant effects in these experiments. SIRT1 and AMPK activities were further measured indirectly via induction of the target gene small heterodimer partner (SHP). Thereby, (E)-resveratrol, but not Z-TMS, showed potent induction of SHP mRNA levels in an AMPK- and SIRT1-dependent manner, as confirmed by knockdown experiments. We provide evidence that Z-TMS does not show beneficial metabolic effects, probably due to loss of activity towards resveratrol target genes. Moreover, our data support previous findings that Z-TMS acts as an inhibitor of tubulin polymerization. These findings confirm that the methylation of resveratrol leads to profound changes in the mode of action, which should be taken into consideration when conducting lead structure optimization approaches. - Highlights: • Methylation of resveratrol leads to profound changes in biologic activity. • Z-TMS does not prevent hepatic steatosis, but inhibits tubulin polymerization. • Resveratrol analog Z-TMS does not influence known targets like PDEs, SIRT1

  8. Structural modification of resveratrol leads to increased anti-tumor activity, but causes profound changes in the mode of action

    Scherzberg, Maria-Christina; Kiehl, Andreas; Zivkovic, Aleksandra; Stark, Holger [Institute of Pharmaceutical Chemistry, Biozentrum, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main (Germany); Stein, Jürgen [Institute of Pharmaceutical Chemistry, Biozentrum, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main (Germany); Department of Internal Medicine, Sachsenhausen Hospital, Frankfurt am Main (Germany); Fürst, Robert [Institute of Pharmaceutical Biology, Biozentrum, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main (Germany); Steinhilber, Dieter [Institute of Pharmaceutical Chemistry, Biozentrum, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main (Germany); Ulrich-Rückert, Sandra, E-mail: sandra.ulrich@em.uni-frankfurt.de [Institute of Pharmaceutical Chemistry, Biozentrum, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main (Germany)

    2015-08-15

    (Z)-3,5,4′-Trimethoxystilbene (Z-TMS) is a resveratrol analog with increased antiproliferative activity towards a number of cancer cell lines compared to resveratrol, which has been shown to inhibit tubulin polymerization in vitro. The purpose of this study was to investigate if Z-TMS still shows potential for the prevention of metabolic diseases as known for resveratrol. Cell growth inhibition was determined with IC{sub 50} values for Z-TMS between 0.115 μM and 0.473 μM (resveratrol: 110.7 μM to 190.2 μM). Flow cytometric analysis revealed a G{sub 2}/M arrest after Z-TMS treatment, whereas resveratrol caused S phase arrest. Furthermore, Z-TMS was shown to impair microtubule polymerization. Beneficial effects on lipid accumulation were observed for resveratrol, but not for Z-TMS in an in vitro steatosis model. (E)-Resveratrol was confirmed to elevate cAMP levels, and knockdown of AMPK attenuated the antiproliferative activity, while Z-TMS did not show significant effects in these experiments. SIRT1 and AMPK activities were further measured indirectly via induction of the target gene small heterodimer partner (SHP). Thereby, (E)-resveratrol, but not Z-TMS, showed potent induction of SHP mRNA levels in an AMPK- and SIRT1-dependent manner, as confirmed by knockdown experiments. We provide evidence that Z-TMS does not show beneficial metabolic effects, probably due to loss of activity towards resveratrol target genes. Moreover, our data support previous findings that Z-TMS acts as an inhibitor of tubulin polymerization. These findings confirm that the methylation of resveratrol leads to profound changes in the mode of action, which should be taken into consideration when conducting lead structure optimization approaches. - Highlights: • Methylation of resveratrol leads to profound changes in biologic activity. • Z-TMS does not prevent hepatic steatosis, but inhibits tubulin polymerization. • Resveratrol analog Z-TMS does not influence known targets like

  9. Sodium orthovanadate associated with pharmacological doses of ascorbate causes an increased generation of ROS in tumor cells that inhibits proliferation and triggers apoptosis

    Günther, T-hat nia Mara Fischer; Kviecinski, Maicon Roberto; Baron, Carla Cristine; Felipe, Karina Bettega; Farias, Mirelle Sifroni; Ourique da Silva, Fabiana; Bücker, Nádia Cristina Falcão [Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis (Brazil); Pich, Claus Tröger [Campus de Araranguá, Universidade Federal de Santa Catarina, Araranguá (Brazil); Ferreira, Eduardo Antonio [Universidade de Brasília, Faculdade de Ceilândia, DF (Brazil); Filho, Danilo Wilhelm [Departamento de Ecologia e Zoologia, Universidade Federal de Santa Catarina, Florianópolis (Brazil); Verrax, Julien; Calderon, Pedro Buc [Toxicology and Cancer Biology Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels (Belgium); Pedrosa, Rozangela Curi, E-mail: rozangelapedrosa@gmail.com [Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis (Brazil)

    2013-01-18

    Graphical abstract: -- Abstract: Pharmacological doses of ascorbate were evaluated for its ability to potentiate the toxicity of sodium orthovanadate (Na{sub 3}VO{sub 4}) in tumor cells. Cytotoxicity, inhibition of cell proliferation, generation of ROS and DNA fragmentation were assessed in T24 cells. Na{sub 3}VO{sub 4} was cytotoxic against T24 cells (EC{sub 50} = 5.8 μM at 24 h), but in the presence of ascorbate (100 μM) the EC{sub 50} fell to 3.3 μM. Na{sub 3}VO{sub 4} plus ascorbate caused a strong inhibition of cell proliferation (up to 20%) and increased the generation of ROS (4-fold). Na{sub 3}VO{sub 4} did not directly cleave plasmid DNA, at this aspect no synergism was found occurring between Na{sub 3}VO{sub 4} and ascorbate once the resulting action of the combination was no greater than that of both substances administered separately. Cells from Ehrlich ascites carcinoma-bearing mice were used to determine the activity of antioxidant enzymes, the extent of the oxidative damage and the type of cell death. Na{sub 3}VO{sub 4} alone, or combined with ascorbate, increased catalase activity, but only Na{sub 3}VO{sub 4} plus ascorbate increased superoxide dismutase activity (up to 4-fold). Oxidative damage on proteins and lipids was higher due to the treatment done with Na{sub 3}VO{sub 4} plus ascorbate (2–3-fold). Ascorbate potentiated apoptosis in tumor cells from mice treated with Na{sub 3}VO{sub 4}. The results indicate that pharmacological doses of ascorbate enhance the generation of ROS induced by Na{sub 3}VO{sub 4} in tumor cells causing inhibition of proliferation and apoptosis. Apoptosis induced by orthovanadate and ascorbate is closer related to inhibition on Bcl-xL and activation of Bax. Our data apparently rule out a mechanism of cell demise p53-dependent or related to Cdk2 impairment.

  10. Acridine Orange/exosomes increase the delivery and the effectiveness of Acridine Orange in human melanoma cells: A new prototype for theranostics of tumors.

    Iessi, Elisabetta; Logozzi, Mariantonia; Lugini, Luana; Azzarito, Tommaso; Federici, Cristina; Spugnini, Enrico Pierluigi; Mizzoni, Davide; Di Raimo, Rossella; Angelini, Daniela F; Battistini, Luca; Cecchetti, Serena; Fais, Stefano

    2017-12-01

    Specifically targeted drug delivery systems with low immunogenicity and toxicity are deemed to increase efficacy of cancer chemotherapy. Acridine Orange (AO) is an acidophilic dye with a strong tumoricidal action following excitation with a light source at 466 nm. However, to date the clinical use of AO is limited by the potential side effects elicited by systemic administration. The endogenous nanocarrier exosomes have been recently introduced as a natural delivery system for therapeutic molecules. In this article, we show the outcome of the administration to human melanoma cells of AO charged Exosomes (Exo-AO), in both monolayer and spheroid models. The results showed an extended drug delivery time of Exo-AO to melanoma cells as compared to the free AO, improving the cytotoxicity of AO. This study shows that Exo-AO have a great potential for a real exploitation as a new theranostic approach against tumors based on AO delivered through the exosomes.

  11. Minoxidil sulfate induced the increase in blood-brain tumor barrier permeability through ROS/RhoA/PI3K/PKB signaling pathway.

    Gu, Yan-ting; Xue, Yi-xue; Wang, Yan-feng; Wang, Jin-hui; Chen, Xia; ShangGuan, Qian-ru; Lian, Yan; Zhong, Lei; Meng, Ying-nan

    2013-12-01

    Adenosine 5'-triphosphate-sensitive potassium channel (KATP channel) activator, minoxidil sulfate (MS), can selectively increase the permeability of the blood-tumor barrier (BTB); however, the mechanism by which this occurs is still under investigation. Using a rat brain glioma (C6) model, we first examined the expression levels of occludin and claudin-5 at different time points after intracarotid infusion of MS (30 μg/kg/min) by western blotting. Compared to MS treatment for 0 min group, the protein expression levels of occludin and claudin-5 in brain tumor tissue of rats showed no changes within 1 h and began to decrease significantly after 2 h of MS infusion. Based on these findings, we then used an in vitro BTB model and selective inhibitors of diverse signaling pathways to investigate whether reactive oxygen species (ROS)/RhoA/PI3K/PKB pathway play a key role in the process of the increase of BTB permeability induced by MS. The inhibitor of ROS or RhoA or PI3K or PKB significantly attenuated the expression of tight junction (TJ) protein and the increase of the BTB permeability after 2 h of MS treatment. In addition, the significant increases in RhoA activity and PKB phosphorylation after MS administration were observed, which were partly inhibited by N-2-mercaptopropionyl glycine (MPG) or C3 exoenzyme or LY294002 pretreatment. The present study indicates that the activation of signaling cascades involving ROS/RhoA/PI3K/PKB in BTB was required for the increase of BTB permeability induced by MS. Taken together, all of these results suggested that MS might increase BTB permeability in a time-dependent manner by down-regulating TJ protein expression and this effect could be related to ROS/RhoA/PI3K/PKB signal pathway. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Epoetin alfa 40000 U once weekly and intravenous iron supply in solid tumor patients: early increase of hemoglobin level during chemotherapy

    Lalle, M.; Antimi, M.; Pistillucci, G.; D'Aprile, M.

    2005-01-01

    The objective of this observational study was the early evaluation of the impact, a week after the first administration of epoetin alfa 40000 U once weekly and i.v. dose of 62.5 mg sodium ferric gluconate for seven days in improving hemoglobin levels in cancer patients affected by mild/moderate or severe anemia during chemotherapy. Twenty patients affected by solid tumors who received epoetin alfa 40000 U once weekly and daily i.v. sodium ferric gluconate for one week were evaluated: 90% of the patients showed hemoglobin increase, with a median level of hemoglobin increase of 0.73 g/L from baseline, and 50% of them showing a hemoglobin increase > 1 gr/L. The treatment was well tolerated and no adverse event was observed. The early increase of hemoglobin level from baseline is interesting and suggestive for the possibility of achieving an adequate hemoglobin level with a short-term treatment. It is still necessary to further explore the real need of iron supplementation to maintain adequate erythropoiesis prior and during epoetin therapy

  13. Prospective study of blood metabolites associated with colorectal cancer risk.

    Shu, Xiang; Xiang, Yong-Bing; Rothman, Nathaniel; Yu, Danxia; Li, Hong-Lan; Yang, Gong; Cai, Hui; Ma, Xiao; Lan, Qing; Gao, Yu-Tang; Jia, Wei; Shu, Xiao-Ou; Zheng, Wei

    2018-02-26

    Few prospective studies, and none in Asians, have systematically evaluated the relationship between blood metabolites and colorectal cancer risk. We conducted a nested case-control study to search for risk-associated metabolite biomarkers for colorectal cancer in an Asian population using blood samples collected prior to cancer diagnosis. Conditional logistic regression was performed to assess associations of metabolites with cancer risk. In this study, we included 250 incident cases with colorectal cancer and individually matched controls nested within two prospective Shanghai cohorts. We found 35 metabolites associated with risk of colorectal cancer after adjusting for multiple comparisons. Among them, 12 metabolites were glycerophospholipids including nine associated with reduced risk of colorectal cancer and three with increased risk [odds ratios per standard deviation increase of transformed metabolites: 0.31-1.98; p values: 0.002-1.25 × 10 -10 ]. The other 23 metabolites associated with colorectal cancer risk included nine lipids other than glycerophospholipid, seven aromatic compounds, five organic acids and four other organic compounds. After mutual adjustment, nine metabolites remained statistically significant for colorectal cancer. Together, these independently associated metabolites can separate cancer cases from controls with an area under the curve of 0.76 for colorectal cancer. We have identified that dysregulation of glycerophospholipids may contribute to risk of colorectal cancer. © 2018 UICC.

  14. Increase in tumor control and normal tissue complication probabilities in advanced head-and-neck cancer for dose-escalated intensity-modulated photon and proton therapy

    Annika eJakobi

    2015-11-01

    Full Text Available Introduction:Presently used radio-chemotherapy regimens result in moderate local control rates for patients with advanced head and neck squamous cell carcinoma (HNSCC. Dose escalation (DE may be an option to improve patient outcome, but may also increase the risk of toxicities in healthy tissue. The presented treatment planning study evaluated the feasibility of two DE levels for advanced HNSCC patients, planned with either intensity-modulated photon therapy (IMXT or proton therapy (IMPT.Materials and Methods:For 45 HNSCC patients, IMXT and IMPT treatment plans were created including DE via a simultaneous integrated boost (SIB in the high-risk volume, while maintaining standard fractionation with 2 Gy per fraction in the remaining target volume. Two DE levels for the SIB were compared: 2.3 Gy and 2.6 Gy. Treatment plan evaluation included assessment of tumor control probabilities (TCP and normal tissue complication probabilities (NTCP.Results:An increase of approximately 10% in TCP was estimated between the DE levels. A pronounced high-dose rim surrounding the SIB volume was identified in IMXT treatment. Compared to IMPT, this extra dose slightly increased the TCP values and to a larger extent the NTCP values. For both modalities, the higher DE level led only to a small increase in NTCP values (mean differences < 2% in all models, except for the risk of aspiration, which increased on average by 8% and 6% with IMXT and IMPT, respectively, but showed a considerable patient dependence. Conclusions:Both DE levels appear applicable to patients with IMXT and IMPT since all calculated NTCP values, except for one, increased only little for the higher DE level. The estimated TCP increase is of relevant magnitude. The higher DE schedule needs to be investigated carefully in the setting of a prospective clinical trial, especially regarding toxicities caused by high local doses that lack a sound dose response description, e.g., ulcers.

  15. Epigenome targeting by probiotic metabolites

    Licciardi Paul V

    2010-12-01

    Full Text Available Abstract Background The intestinal microbiota plays an important role in immune development and homeostasis. A disturbed microbiota during early infancy is associated with an increased risk of developing inflammatory and allergic diseases later in life. The mechanisms underlying these effects are poorly understood but are likely to involve alterations in microbial production of fermentation-derived metabolites, which have potent immune modulating properties and are required for maintenance of healthy mucosal immune responses. Probiotics are beneficial bacteria that have the capacity to alter the composition of bacterial species in the intestine that can in turn influence the production of fermentation-derived metabolites. Principal among these metabolites are the short-chain fatty acids butyrate and acetate that have potent anti-inflammatory activities important in regulating immune function at the intestinal mucosal surface. Therefore strategies aimed at restoring the microbiota profile may be effective in the prevention or treatment of allergic and inflammatory diseases. Presentation of the hypothesis Probiotic bacteria have diverse effects including altering microbiota composition, regulating epithelial cell barrier function and modulating of immune responses. The precise molecular mechanisms mediating these probiotic effects are not well understood. Short-chain fatty acids such as butyrate are a class of histone deacetylase inhibitors important in the epigenetic control of host cell responses. It is hypothesized that the biological function of probiotics may be a result of epigenetic modifications that may explain the wide range of effects observed. Studies delineating the effects of probiotics on short-chain fatty acid production and the epigenetic actions of short-chain fatty acids will assist in understanding the association between microbiota and allergic or autoimmune disorders. Testing the hypothesis We propose that treatment with

  16. Bone tumors

    Unni, K.K.

    1988-01-01

    This book contains the proceedings on bone tumors. Topics covered include: Bone tumor imaging: Contribution of CT and MRI, staging of bone tumors, perind cell tumors of bone, and metastatic bone disease

  17. Switched Memory B Cells Are Increased in Oligoarticular and Polyarticular Juvenile Idiopathic Arthritis and Their Change Over Time Is Related to Response to Tumor Necrosis Factor Inhibitors.

    Marasco, Emiliano; Aquilani, Angela; Cascioli, Simona; Moneta, Gian Marco; Caiello, Ivan; Farroni, Chiara; Giorda, Ezio; D'Oria, Valentina; Marafon, Denise Pires; Magni-Manzoni, Silvia; Carsetti, Rita; De Benedetti, Fabrizio

    2018-04-01

    To investigate whether abnormalities in B cell subsets in patients with juvenile idiopathic arthritis (JIA) correlate with clinical features and response to treatment. A total of 109 patients diagnosed as having oligoarticular JIA or polyarticular JIA were enrolled in the study. B cell subsets in peripheral blood and synovial fluid were analyzed by flow cytometry. Switched memory B cells were significantly increased in patients compared to age-matched healthy controls (P < 0.0001). When patients were divided according to age at onset of JIA, in patients with early-onset disease (presenting before age 6 years) the expansion in switched memory B cells was more pronounced than that in patients with late-onset disease and persisted throughout the disease course. In longitudinal studies, during methotrexate (MTX) treatment, regardless of the presence or absence of active disease, the number of switched memory B cells increased significantly (median change from baseline 36% [interquartile range {IQR} 15, 66]). During treatment with MTX plus tumor necrosis factor inhibitors (TNFi), in patients maintaining disease remission, the increase in switched memory B cells was significantly lower than that in patients who experienced active disease (median change from baseline 4% [IQR -6, 32] versus 41% [IQR 11, 73]; P = 0.004). The yearly rate of increases in switched memory B cells was 1.5% in healthy controls, 1.2% in patients who maintained remission during treatment with MTX plus TNFi, 4.7% in patients who experienced active disease during treatment with MTX plus TNFi, and ~4% in patients treated with MTX alone. Switched memory B cells expand during the disease course at a faster rate in JIA patients than in healthy children. This increase is more evident in patients with early-onset JIA. TNFi treatment inhibits this increase in patients who achieve and maintain remission, but not in those with active disease. © 2018, American College of Rheumatology.

  18. Tumor suppressor PTEN affects tau phosphorylation: deficiency in the phosphatase activity of PTEN increases aggregation of an FTDP-17 mutant Tau

    Zhang Xue

    2006-07-01

    Full Text Available Abstract Background Aberrant hyperphosphorylation of tau protein has been implicated in a variety of neurodegenerative disorders. Although a number of protein kinases have been shown to phosphorylate tau in vitro and in vivo, the molecular mechanisms by which tau phosphorylation is regulated pathophysiologically are largely unknown. Recently, a growing body of evidence suggests a link between tau phosphorylation and PI3K signaling. In this study, phosphorylation, aggregation and binding to the microtubule of a mutant frontal temporal dementia and parkinsonism linked to chromosome 17 (FTDP-17 tau in the presence of tumor suppressor PTEN, a major regulatory component in PI3K signaling, were investigated. Results Phosphorylation of the human mutant FTDP-17 tau, T40RW, was evaluated using different phospho-tau specific antibodies in the presence of human wild-type or phosphatase activity null mutant PTEN. Among the evaluated phosphorylation sites, the levels of Ser214 and Thr212 phospho-tau proteins were significantly decreased in the presence of wild-type PTEN, and significantly increased when the phosphatase activity null mutant PTEN was ectopically expressed. Fractionation of the mutant tau transfected cells revealed a significantly increased level of soluble tau in cytosol when wild-type PTEN was expressed, and an elevated level of SDS-soluble tau aggregates in the presence of the mutant PTEN. In addition, the filter/trap assays detected more SDS-insoluble mutant tau aggregates in the cells overexpressing the mutant PTEN compared to those in the cells overexpressing wild-type PTEN and control DNA. This notion was confirmed by the immunocytochemical experiment which demonstrated that the overexpression of the phosphatase activity null mutant PTEN caused the mutant tau to form aggregates in the COS-7 cells. Conclusion Tumor suppressor PTEN can alleviate the phosporylation of the mutant FTDP-17 tau at specific sites, and the phosphatase activity

  19. Larger Maximum Tumor Diameter at Radical Prostatectomy Is Associated With Increased Biochemical Failure, Metastasis, and Death From Prostate Cancer After Salvage Radiation for Prostate Cancer

    Johnson, Skyler B.; Hamstra, Daniel A.; Jackson, William C.; Zhou, Jessica; Foster, Benjamin; Foster, Corey; Song, Yeohan; Li, Darren; Palapattu, Ganesh S.; Kunju, Lakshmi; Mehra, Rohit; Sandler, Howard; Feng, Felix Y.

    2013-01-01

    Purpose: To investigate the maximum tumor diameter (MTD) of the dominant prostate cancer nodule in the radical prostatectomy specimen as a prognostic factor for outcome in patients treated with salvage external beam radiation therapy (SRT) for a rising prostate-specific antigen (PSA) value after radical prostatectomy. Methods and Materials: From an institutional cohort of 575 patients treated with SRT, data on MTD were retrospectively collected. The impact of MTD on biochemical failure (BF), metastasis, and prostate cancer-specific mortality (PCSM) was assessed on univariate and multivariate analysis using Kaplan-Meier and Cox proportional hazards models. Results: In the 173 patients with MTD data available, median follow-up was 77 months (interquartile range, 47-104 months) after SRT, and median MTD was 18 mm (interquartile range, 13-22 mm). Increasing MTD correlated with increasing pT stage, Gleason score, presence of seminal vesicle invasion, and lymph node invasion. Receiver operating characteristic curve analysis identified MTD of >14 mm to be the optimal cut-point. On univariate analysis, MTD >14 mm was associated with an increased risk of BF (P=.02, hazard ratio [HR] 1.8, 95% confidence interval [CI] 1.2-2.8), metastasis (P=.002, HR 4.0, 95% CI 2.1-7.5), and PCSM (P=.02, HR 8.0, 95% CI 2.9-21.8). On multivariate analysis MTD >14 mm remained associated with increased BF (P=.02, HR 1.9, 95% CI 1.1-3.2), metastasis (P=.02, HR 3.4, 95% CI 1.2-9.2), and PCSM (P=.05, HR 9.7, 95% CI 1.0-92.4), independent of extracapsular extension, seminal vesicle invasion, positive surgical margins, pre-RT PSA value, Gleason score, and pre-RT PSA doubling time. Conclusions: For patients treated with SRT for a rising PSA value after prostatectomy, MTD at time of radical prostatectomy is independently associated with BF, metastasis, and PCSM. Maximum tumor diameter should be incorporated into clinical decision making and future clinical risk assessment tools for those patients

  20. Pharmaceutically active secondary metabolites of marine actinobacteria.

    Manivasagan, Panchanathan; Venkatesan, Jayachandran; Sivakumar, Kannan; Kim, Se-Kwon

    2014-04-01

    Marine actinobacteria are one of the most efficient groups of secondary metabolite producers and are very important from an industrial point of view. Many representatives of the order Actinomycetales are prolific producers of thousands of biologically active secondary metabolites. Actinobacteria from terrestrial sources have been studied and screened since the 1950s, for many important antibiotics, anticancer, antitumor and immunosuppressive agents. However, frequent rediscovery of the same compounds from the terrestrial actinobacteria has made them less attractive for screening programs in the recent years. At the same time, actinobacteria isolated from the marine environment have currently received considerable attention due to the structural diversity and unique biological activities of their secondary metabolites. They are efficient producers of new secondary metabolites that show a range of biological activities including antibacterial, antifungal, anticancer, antitumor, cytotoxic, cytostatic, anti-inflammatory, anti-parasitic, anti-malaria, antiviral, antioxidant, anti-angiogenesis, etc. In this review, an evaluation is made on the current status of research on marine actinobacteria yielding pharmaceutically active secondary metabolites. Bioactive compounds from marine actinobacteria possess distinct chemical structures that may form the basis for synthesis of new drugs that could be used to combat resistant pathogens. With the increasing advancement in science and technology, there would be a greater demand for new bioactive compounds synthesized by actinobacteria from various marine sources in future. Copyright © 2013 Elsevier GmbH. All rights reserved.

  1. Electrosynthesis methods and approaches for the preparative production of metabolites from parent drugs

    Gül, Turan; Bischoff, Rainer; Permentier, Hjalmar

    2015-01-01

    Identification of potentially toxic metabolites is important for drug discovery and development. Synthesis of drug metabolites is typically performed by organic synthesis or enzymatic methods, but is not always straightforward. Electrochemical (EC) methods are increasingly used to study drug

  2. Cytotoxic Cytochalasins and Other Metabolites from Xylariaceae sp. FL0390, a Fungal Endophyte of Spanish Moss.

    Xu, Ya-Ming; Bashyal, Bharat P; Liu, Mangping X; Espinosa-Artiles, Patricia; U'Ren, Jana M; Arnold, A Elizabeth; Gunatilaka, A A Leslie

    2015-10-01

    Two new metabolites, 6-oxo-12-norcytochalasin D (1) and 4,5-di-isobutyl-2(1H)-pyrimidinone (2), together with seven known metabolites, cytochalasins D (3), Q (4), and N (5), 12-hydroxyzygosporin G (6), heptelidic acid chlorohydrin (7), (+)-heptelidic acid (8), and trichoderonic acid A (9), were isolated from Xylariaceae sp. FL0390, a fungal endophyte inhabiting Spanish moss, Tillandsia usneoides. Metabolite 1 is the first example of a 12-norcytochalasin. All metabolites, except 2 and 9, showed cytotoxic activity in a panel of five human tumor cell lines with IC50S of 0.2-5.0 μM.

  3. Comparison of 1.5T and 3T 1H MR Spectroscopy for Human Brain Tumors

    Kim, Ji hoon; Chang, Kee Hyun; Na, Dong Gyu; Song, In Chan; Kim, Seung Ja; Kwon, Bae Ju; Han, Moon Hee

    2006-01-01

    We wanted to estimate the practical improvements of 3T proton MR spectroscopy (1H MRS) as compared with 1.5T 1H MRS for the evaluation of human brain tumors. Single voxel 1H MRS was performed at both 1.5T and 3T in 13 patients suffering with brain tumors. Using the same data acquisition parameters at both field strengths, the 1H MRS spectra were obtained with a short echo time (TE) (35 msec) and an intermediate TE (144 msec) with the voxel size ranging from 2.0 cm 3 to 8.7 cm 3 . The signal to noise ratios (SNRs) of the metabolites (myoinositol [MI], choline compounds [Cho], creatine /phosphocreatine [Cr], N-acetyl-aspartate [NAA], lipid and lactate [LL]) and the metabolite ratios of MI/Cr, Cho/Cr, Cho/NAA and LL/Cr were compared at both TEs between the two field strengths in each brain tumor. The degrees 70f spectral resolution between the Cho and Cr peaks were qualitatively compared between the two field strengths in each brain tumor. The SNRs of the metabolites at 3T demonstrated 49-73% increase at a short TE (p 0.05) compared with those of 1.5T. The SNR of inverted lactate at an intermediate TE decreased down to 49% with poorer inversion at 3T (p 1 H MRS demonstrated 49-73% SNR increase in the cerebral metabolites and slightly superior spectral resolution only at a short TE, but little at an intermediate TE, in the brain tumors. There was no significant difference in the metabolite ratios between the two field strengths

  4. Adaptive Radiotherapy for Locally Advanced Non–Small-Cell Lung Cancer Does Not Underdose the Microscopic Disease and has the Potential to Increase Tumor Control

    Guckenberger, Matthias; Richter, Anne; Wilbert, Juergen; Flentje, Michael; Partridge, Mike

    2011-01-01

    Purpose: To evaluate doses to the microscopic disease (MD) in adaptive radiotherapy (ART) for locally advanced non–small-cell lung cancer (NSCLC) and to model tumor control probability (TCP). Methods and Materials: In a retrospective planning study, three-dimensional conformal treatment plans for 13 patients with locally advanced NSCLC were adapted to shape and volume changes of the gross tumor volume (GTV) once or twice during conventionally fractionated radiotherapy with total doses of 66 Gy; doses in the ART plans were escalated using an iso-mean lung dose (MLD) approach compared to non-adapted treatment. Dose distributions to the volumes of suspect MD were simulated for a scenario with synchronous shrinkage of the MD and GTV and for a scenario of a stationary MD despite GTV shrinkage; simulations were performed using deformable image registration. TCP calculations considering doses to the GTV and MD were performed using three different models. Results: Coverage of the MD at 50 Gy was not compromised by ART. Coverage at 60 Gy in the scenario of a stationary MD was significantly reduced from 92% ± 10% to 73% ± 19% using ART; however, the coverage was restored by iso-MLD dose escalation. Dose distributions in the MD were sufficient to achieve a TCP >80% on average in all simulation experiments, with the clonogenic cell density the major factor influencing TCP. The combined TCP for the GTV and MD was 19.9% averaged over all patients and TCP models in non-adaptive treatment with 66 Gy. Iso-MLD dose escalation achieved by ART increased the overall TCP by absolute 6% (adapting plan once) and by 8.7% (adapting plan twice) on average. Absolute TCP values were significantly different between the TCP models; however, all TCP models suggested very similar TCP increase by using ART. Conclusions: Adaptation of radiotherapy to the shrinking GTV did not compromise dose coverage of volumes of suspect microscopic disease and has the potential to increase TCP by >40% compared

  5. Grazing dairy cows had decreased interferon-γ, tumor necrosis factor, and interleukin-17, and increased expression of interleukin-10 during the first week after calving.

    Heiser, Axel; McCarthy, Allison; Wedlock, Neil; Meier, Susanne; Kay, Jane; Walker, Caroline; Crookenden, Mallory A; Mitchell, Murray D; Morgan, Stuart; Watkins, Kate; Loor, Juan J; Roche, John R

    2015-02-01

    Peripartum, and especially during the transition period, dairy cows undergo dramatic physiological changes. These coincide with an increased risk of disease during the first 2 wk after calving and have been linked to dairy cows failing to achieve production as well as reproductive targets. Previous evidence suggests that these physiological changes affect the immune system and that transition dairy cows experience some form of reduced immunocompetence. However, almost all of these studies were undertaken in high-production, housed dairy cows. Grazing cows have much lower levels of production and this study aimed to provide clarity whether or not the dysfunctional attributes of the peripartum immune system reported in high production housed cows are evident in these animals. Therefore, cell culture techniques, flow cytometry, and quantitative PCR were applied to analyze the cellular composition of peripheral blood mononuclear cells from transition dairy cows as well as the performance of these cells in an in vitro assay. First, a combination of in vitro stimulation and quantitative PCR for cytokines was validated as a quantifiable immunocompetence assay in 29 cattle and a correlation of quantitative PCR and ELISA demonstrated. Second, the relative number of T helper cells, cytotoxic T cells, B cells, γδ T cells, natural killer cells, and monocytes in peripheral blood was measured, of which B cells and natural killer cells increased in number postcalving (n=29) compared with precalving. Third, following in vitro stimulation cytokine profiles indicated decreased expression of IFNγ, tumor necrosis factor, and IL-17 and increased expression of IL-10 wk 1 after calving, which later all returned to precalving values (n=39). Additionally, treatment of transition cows with a nonsteroidal anti-inflammatory drug (i.e., carprofen) administered on d 1, 3, and 5 postcalving (n=19; untreated control n=20) did not affect the cytokine expression at any time point. In conclusion

  6. Radiotherapy, Especially at Young Age, Increases the Risk for De Novo Brain Tumors in Patients Treated for Pituitary/Sellar Lesions

    Burman, Pia; van Beek, Andre P.; Biller, Beverly M.K.; Camacho-Hubner, Cecilia; Mattsson, Anders F.

    2017-01-01

    Context: De novo brain tumors developing after treatment of pituitary/sellar lesions have been reported, but it is unknown whether this is linked to any of the treatment modalities. Objective: To study the occurrence of malignant brain tumors and meningiomas in a large cohort of patients treated for

  7. Increase of antitumor activity of cisplatin using agonist of gonadotropin-realising hormone and inhibitor of aromatase on the model of ascites ovarian tumor.

    Tkalia, I G; Vorobyova, L I; Grabovoy, A N; Svintsitsky, V S; Tarasova, T O; Lukyanova, N Y; Todor, I N; Chekhun, V F

    2014-09-01

    To study antitumor activity of triptorelin - agonist of gonadotropin-releasing hormone and exemestane - inhibitor of aromatase in monotherapy and in combination with cisplatin on the model of receptor-positive for estrogens and progesterone malignant ascites transplantable ovarian tumor (TOT), to assess therapeutic pathomorphosis and level of VEGF expression in tumor cells using diffe-rent combinations of cytostatics and hormonal drugs. 72 female Wistar rats, which underwent intraperitoneal transplantation of ascitic TOT, by 5·10(6) cells per animal, have been involved in the study. Rats were divided into 8 groups, 9 rats in each group. Histological study with assessment of therapeutic pathomorphosis in TOT and immunohistochemical study has been carried out. Survival of animals in the studied groups has been evaluated. Among animals treated in regimen of monotherapy, the most pronounced antiangiogenic activity in TOT has been observed on application of hormonal drugs (triptorelin - 39.4 ± 1.9 and exemestane - 33.9 ± 1.4%; р = 0.003), the highest grade of treatment pathomorphosis in TOT has been observed at treatment with cisplatin (11.7%; р = 0.001). Combination of triptorelin and exemestane has amplified antiangiogenic activity in TOT (12.2 ± 0.9%; р = 0.001), but has not significantly changed rates of pathomorphosis (22.1 ± 0.4%; р=0.005) and survival of animals (32.2%; р = 0.007) as compared with the same rates in rats treated with hormonal drugs in monotherapy. Significant correlation between VEGF expression and pathomorphosis has been established (relative part of viable tumor tissue (RPVTT)) in TOT (r = 0.712; р = 0.001), as well as between RPVTT and life-span of animals (r = -0.320; р = 0.007). However, lack of correlation between VEGF expression in cells of TOT and survival of rats has been determined (r = -0.194; р = 0.11). Combination of cytostatic agent with triptorelin or exemestane has demonstrated significantly high rates of therapeutic

  8. Combination of vascular endothelial growth factor antisense oligonucleotide therapy and radiotherapy increases the curative effects against maxillofacial VX2 tumors in rabbits

    Zheng Linfeng, E-mail: zhenglinfeng04@yahoo.com.cn [Department of Radiology, Shanghai First People' s Hospital, Medical College, Shanghai Jiaotong University, Hanning Road, 100, 200080 Shanghai (China); Li Yujie, E-mail: yujieli01@yahoo.com.cn [Department of Radiology, Shanghai First People' s Hospital, Medical College, Shanghai Jiaotong University, Hanning Road, 100, 200080 Shanghai (China); Wang Han, E-mail: bingowh@hotmail.com [Department of Radiology, Shanghai First People' s Hospital, Medical College, Shanghai Jiaotong University, Hanning Road, 100, 200080 Shanghai (China); Zhao Jinglong, E-mail: jinglongz@yahoo.com [Department of Radiology, Shanghai First People' s Hospital, Medical College, Shanghai Jiaotong University, Hanning Road, 100, 200080 Shanghai (China); Wang Xifu, E-mail: wangxiechen001@163.com [Department of Radiology, Shanghai First People' s Hospital, Medical College, Shanghai Jiaotong University, Hanning Road, 100, 200080 Shanghai (China); Hu Yunsheng, E-mail: springmorninghu@163.com [Department of Radiology, Shanghai First People' s Hospital, Medical College, Shanghai Jiaotong University, Hanning Road, 100, 200080 Shanghai (China); Zhang Guixiang, E-mail: guixiangzhang@sina.com [Department of Radiology, Shanghai First People' s Hospital, Medical College, Shanghai Jiaotong University, Hanning Road, 100, 200080 Shanghai (China)

    2011-05-15

    Purpose: To study the effects of combination of vascular endothelial growth factor (VEGF) antisense oligonucleotide therapy and radiotherapy on maxillofacial VX2 tumors in rabbits. Methods: We used 24 New Zealand white rabbits as a model to induce maxillofacial VX2 tumor. The rabbits were randomly divided into the following 4 groups: radiotherapy group (group A), treated with 16 Gy of radiotherapy; VEGF antisense oligonucleotide treatment group (group B), treated with an injection of 150 {mu}g of VEGF antisense oligonucleotide into the local tumor; VEGF antisense oligonucleotide combined with radiotherapy group (group C), treated with an injection of 150 {mu}g of VEGF antisense oligonucleotide into the local tumor immediately after 16 Gy of radiotherapy; and control group (group D), treated with an injection of 300 {mu}l 5% aqueous glucose solution into the local tumor. On days 3 and 14 after treatment, dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was performed to calculate maximal enhancement ratio (MER), slope of enhancement (SLE), and tumor volume change. Rabbits were killed on day 14 to obtain samples for pathological examination and immunohistochemical staining for VEGF. Results: In group C, tumor volume was significantly reduced on day 14 after treatment, and the difference was statistically different as compared to that before treatment, on day 3 after treatment and other groups (P < 0.01). Values of both MER and SLE after treatment were significantly lower than the values before treatment (P < 0.05). Pathological specimen revealed tumor cell edema, bleeding, necrosis, vascular wall thickening and occlusion, and decreased VEGF expression. The immunohistochemical score (IHS) of group C was significantly different from groups A and D respectively (P < 0.05). Conclusion: Injecting the tumor with VEGF antisense oligonucleotide immediately after radiotherapy can enhance the curative effect on rabbit maxillofacial VX2 tumor, and DCE-MRI can serve

  9. Production of Metabolites

    2011-01-01

    A recombinant micro-organism such as Saccharomyces cerevisiae which produces and excretes into culture medium a stilbenoid metabolite product when grown under stilbenoid production conditions, which expresses in above native levels a ABC transporter which transports said stilbenoid out of said...... micro-organism cells to the culture medium. The genome of the Saccharomyces cerevisiae produces an auxotrophic phenotype which is compensated by a plasmid which also expresses one or more of said enzymes constituting said metabolic pathway producing said stilbenoid, an expression product of the plasmid...

  10. Application of 31P MR spectroscopy to the brain tumors

    Ha, Dong Ho; Choi, Sun Seob; Oh, Jong Young; Yoon, Seong Kuk; Kang, Myong Jin; Kim, Ki Uk

    2013-01-01

    To evaluate the clinical feasibility and obtain useful parameters of 3 1P magnetic resonance spectroscopy (MRS) study for making the differential diagnosis of brain tumors. Twenty-eight patients with brain tumorous lesions (22 cases of brain tumor and 6 cases of abscess) and 11 normal volunteers were included. The patients were classified into the astrocytoma group, lymphoma group, metastasis group and the abscess group. We obtained the intracellular pH and the metabolite ratios of phosphomonoesters/phosophodiesters (PME/PDE), PME/inorganic phosphate (Pi), PDE/Pi, PME/adenosine triphosphate (ATP), PDE/ATP, PME/phosphocreatine (PCr), PDE/PCr, PCr/ATP, PCr/Pi, and ATP/Pi, and evaluated the statistical significances. The brain tumors had a tendency of alkalization (pH = 7.28 ± 0.27, p = 0.090), especially the pH of the lymphoma was significantly increased (pH = 7.45 ± 0.32, p = 0.013). The brain tumor group showed increased PME/PDE ratio compared with that in the normal control group (p 0.012). The ratios of PME/PDE, PDE/Pi, PME/PCr and PDE/PCr showed statistically significant differences between each brain lesion groups (p 1 'P MRS, and the pH, PME/PDE, PDE/Pi, PME/PCr, and PDE/PCr ratios are helpful for differentiating among the different types of brain tumors.

  11. Mutagenic azide metabolite is azidoalanine

    Owais, W.M.; Rosichan, J.L.; Ronald, R.C.; Kleinhofs, A.; Nilan, R.A.

    1981-01-01

    Sodium axide produces high mutation rates in a number of species. Azide mutagenicity is mediated through a metabolite in barley and bacteria. Many studies showed that azide affects the L-cysteine biosynthesis pathway. Cell-free extracts of Salmonella typhimurium convert azide and O-acetylserine to the mutagenic metabolite. O-acetylserine sulfhydrylase was identified as the enzyme responsible for the metabolite biosynthesis. To confirm the conclusion that the azide metabolite is formed through the β-substitution pathway of L-cysteine, we radioactively labeled the azide metabolite using 14 C-labeled precursors. Moreover, the mutagenic azide metabolite was purified and identified as azidoalanine based on mass spectroscopy and elemental analysis. 26 refs., 3 figs., 1 tab

  12. Kinetic Analysis of 2-[11C]Thymidine PET Imaging Studies of Malignant Brain Tumors: Compartmental Model Investigation and Mathematical Analysis

    Joanne M. Wells

    2002-07-01

    Full Text Available 2-[11C]Thymidine (TdR, a PET tracer for cellular proliferation, may be advantageous for monitoring brain tumor progression and response to therapy. We previously described and validated a five-compartment model for thymidine incorporation into DNA in somatic tissues, but the effect of the blood–brain barrier on the transport of TdR and its metabolites necessitated further validation before it could be applied to brain tumors. Methods: We investigated the behavior of the model under conditions experienced in the normal brain and brain tumors, performed sensitivity and identifiability analysis to determine the ability of the model to estimate the model parameters, and conducted simulations to determine whether it can distinguish between thymidine transport and retention. Results: Sensitivity and identifiability analysis suggested that the non-CO2 metabolite parameters could be fixed without significantly affecting thymidine parameter estimation. Simulations showed that K1t and KTdR could be estimated accurately (r = .97 and .98 for estimated vs. true parameters with standard errors < 15%. The model was able to separate increased transport from increased retention associated with tumor proliferation. Conclusion: Our model adequately describes normal brain and brain tumor kinetics for thymidine and its metabolites, and it can provide an estimate of the rate of cellular proliferation in brain tumors.

  13. Endocrine tumors other than thyroid tumors

    Takeichi, Norio; Dohi, Kiyohiko

    1992-01-01

    This paper discusses the tendency for the occurrence of tumors in the endocrine glands, other than the thyroid gland, in A-bomb survivors using both autopsy and clinical data. ABCC-RERF sample data using 4136 autopsy cases (1961-1977) revealed parathyroid tumors in 13 A-bomb survivors, including 3 with the associated hyperparathyroidism, with the suggestion of dose-dependent increase in the occurrence of tumors. Based on clinical data from Hiroshima University, 7 (46.7%) of 15 parathyroid tumors cases were A-bomb survivors. Data (1974-1987) from the Tumor Registry Committee (TRC) in Hiroshima Prefecture revealed that a relative risk of parathyroid tumors was 5.6 times higher in the entire group of A-bomb survivors and 16.2 times higher in the group of heavily exposed A-bomb survivors, suggesting the dose-dependent increase in their occurrence. Adrenal tumors were detected in 47 of 123 cases from the TRC data, and 15 (31.5%) of these 47 were A-bomb survivors. Particularly, 11 cases of adrenal tumors associated with Cushing syndrome included 6 A-bomb survivors (54.5%). The incidence of multiple endocrine gonadial tumors (MEGT) tended to be higher with increasing exposure doses; and the 1-9 rad group, the 10-99 rad group, and the 100 or more rad group had a risk of developing MEGT of 4.1, 5.7, and 7.1, respectively, relative to both the not-in the city group and the 0 rad group. These findings suggested that there is a correlation between A-bomb radiation and the occurrence of parathyroid tumors (including hyperparathyroidism), adrenal tumors associated with Cushing syndrome and MEGT (especially, the combined thyroid and ovarian tumors and the combined thyroid and parathyroid tumors). (N.K.)

  14. Inhibition of transient receptor potential vanilloid-1 confers neuroprotection, reduces tumor necrosis factor-alpha, and increases IL-10 in a rat stroke model.

    Hakimizadeh, Elham; Shamsizadeh, Ali; Roohbakhsh, Ali; Arababadi, Mohammad Kazemi; Hajizadeh, Mohammad R; Shariati, Mehdi; Rahmani, Mohammad R; Allahtavakoli, Mohammad

    2017-08-01

    Stroke is a major cause of mortality and long-term disability in adults. Transient receptor potential vanilloid-1 (TRPV1) plays a crucial role in neuroinflammation. In this study, the effects of TRPV1 agonist (capsaicin) and antagonist (AMG9810) on cerebral ischemia were investigated. Forty male Wistar rats were assigned to the following experimental groups: sham, vehicle) ischemic), AMG9810 (selective TRPV1 antagonist, 0.5 mg/kg; 3 h after stroke), and capsaicin (1 mg/kg; 3 h after stroke). Stroke was induced by permanent middle cerebral artery occlusion and neurological deficits were evaluated 1, 3, and 7 days after stroke. Then, infarct volume, brain edema, body temperature, mRNA expression of TRPV1, and serum concentrations of tumor necrosis factor-alpha (TNF-α) and IL-10 were measured. Compared to the vehicle group, AMG9810 significantly decreased the infarct volume (P < 0.01). Latency for the removal of sticky labels from the forepaw and the hanging time were significantly decreased and increased, respectively, following administration of AMG9810 (P < 0.01 and P < 0.001 vs. vehicle) 3 and 7 days after stroke. Compared to the sham group, the mRNA expression of TRPV1 was significantly increased in vehicle group (P < 0.01). Administration of AMG9810 significantly increased the anti-inflammatory cytokine IL-10 and decreased the inflammatory cytokine TNF-α (P < 0.05). Moreover, our results indicate that AMG9810 might a promising candidate for the hypothermic treatment of stroke. The findings also suggest a key role for AMG9810 in reducing inflammation after stroke and imply that TRPV1 could be a potential target for the treatment of ischemic stroke. © 2017 Société Française de Pharmacologie et de Thérapeutique.

  15. A high density of tertiary lymphoid structure B cells in lung tumors is associated with increased CD4+ T cell receptor repertoire clonality.

    Zhu, Wei; Germain, Claire; Liu, Zheng; Sebastian, Yinong; Devi, Priyanka; Knockaert, Samantha; Brohawn, Philip; Lehmann, Kim; Damotte, Diane; Validire, Pierre; Yao, Yihong; Valge-Archer, Viia; Hammond, Scott A; Dieu-Nosjean, Marie-Caroline; Higgs, Brandon W

    2015-12-01

    T and B cell receptor (TCR and BCR, respectively) Vβ or immunoglobulin heavy chain complementarity-determining region 3 sequencing allows monitoring of repertoire changes through recognition, clonal expansion, affinity maturation, and T or B cell activation in response to antigen. TCR and BCR repertoire analysis can advance understanding of antitumor immune responses in the tumor microenvironment. TCR and BCR repertoires of sorted CD4 + , CD8 + or CD19 + cells in tumor, non-tumoral distant tissue (NT), and peripheral compartments (blood/draining lymph node [P]) from 47 non-small cell lung cancer (NSCLC) patients (age median = 68 y) were sequenced. The clonotype spectra were assessed among different tissues and correlated with clinical and immunological parameters. In all tissues, CD4 + and CD8 + TCR repertoires had greater clonality relative to CD19 + BCR. CD4 + T cells exhibited greater clonality in NT compared to tumor ( p = 0.002) and P ( p 68). Younger patients exhibited greater CD4 + T cell diversity in P compared to older patients ( p = 0.05), and greater CD4 + T cell clonality in tumor relative to P ( p cell clonality in tumor and P, respectively (both p = 0.05), correlated with high density of tumor-associated tertiary lymphoid structure (TLS) B cells, a biomarker of higher overall survival in NSCLC. Results indicate distinct adaptive immune responses in NSCLC, where peripheral T cell diversity is modulated by age, and tumor T cell clonal expansion is favored by the presence of TLSs in the tumor microenvironment.

  16. Lipopolysaccharide (LPS) stimulates fresh human monocytes to lyse actinomycin D-treated WEHI-164 target cells via increased secretion of a monokine similar to tumor necrosis factor

    Chen, A.R.; McKinnon, K.P.; Koren, H.S.

    1985-01-01

    The effects of lipopolysaccharide (LPS) on tumoricidal activity of human monocytes freshly isolated from peripheral blood were studied. Actinomycin D-treated WEHI-164 cells were used as targets because they are NK insensitive and are lysed rapidly by monocytes in 6-hr 51 Cr-release assays. Monocytes exhibited significant spontaneous activity without endotoxin. Monocytes either pretreated for 1 hr with LPS or assayed in the presence of LPS exhibited 100- to 1000-fold increased cytolytic activity. Cytolytic activity was heat labile and trypsin sensitive, and was recovered from Sepharose S-200 columns in a single peak with an apparent m.w. between 25,000 and 40,000. Actinomycin D or cycloheximide treatment of monocytes before the addition of LPS inhibited cytolytic monokine production. Cytolytic monokine activity was practically neutralized by specific rabbit antisera to human tumor necrosis factor (TNF). It was concluded that, although fresh human monocytes exhibit spontaneous tumoricidal activity, LPS is a potent activating agent. Its stimulatory effects depend on new transcription and translation and are mediated by enhanced secretion of a cytolytic monokine similar to TNF

  17. Polycystic Ovary Syndrome and Increased Soluble Tumor Necrosis Factor Like Weak Inducer of Apoptosis Levels Are Independent Predictors of Dyslipidemia in Youth.

    Erkenekli, Kudret; Oztas, Efser; Kuscu, Elif; Keskin, Uğur; Kurt, Yasemin Gulcan; Tas, Ahmet; Yilmaz, Nafiye

    2017-01-01

    Dyslipidemia is common in women with polycystic ovary syndrome (PCOS) irrespective of age. Our aim was to investigate soluble tumor necrosis factor like weak inducer of apoptosis (sTWEAK), a cardiovascular risk marker in PCOS, and to determine if it is associated with dyslipidemia in youth. A prospective-observational study was carried out including 35 PCOS patients and 35 healthy controls. Serum sTWEAK levels were measured using commercially available kits. Multiple logistic regression analysis was then performed to verify the statistically significant differences in the possible predictors of dyslipidemia. Serum sTWEAK levels and the percentage of women with dyslipidemia were significantly higher in the PCOS group (p = 0.024 and p dyslipidemia. The percentage of women with PCOS was significantly higher in the dyslipidemic group when compared with controls; 70.7 vs. 20.7%, respectively (p 693 pg/ml; OR 3.810, 95% CI 1.075-13.501, p = 0.038) were independently associated with dyslipidemia. Increased levels of both sTWEAK and PCOS were found to be independently associated with dyslipidemia in youth. © 2016 S. Karger AG, Basel.

  18. Conflicting Roles of Connexin43 in Tumor Invasion and Growth in the Central Nervous System

    Miaki Uzu

    2018-04-01

    Full Text Available The tumor microenvironment is known to have increased levels of cytokines and metabolites, such as glutamate, due to their release from the surrounding cells. A normal cell around the tumor that responds to the inflammatory environment is likely to be subsequently altered. We discuss how these abnormalities will support tumor survival via the actions of gap junctions (GJs and hemichannels (HCs which are composed of hexamer of connexin43 (Cx43 protein. In particular, we discuss how GJ intercellular communication (GJIC in glioma cells, the primary brain tumor, is a regulatory factor and its attenuation leads to tumor invasion. In contrast, the astrocytes, which are normal cells around the glioma, are “hijacked” by tumor cells, either by receiving the transmission of malignant substances from the cancer cells via GJIC, or perhaps via astrocytic HC activity through the paracrine signaling which enable the delivery of these substances to the distal astrocytes. This astrocytic signaling would promote tumor expansion in the brain. In addition, brain metastasis from peripheral tissues has also been known to be facilitated by GJs formed between cerebral vascular endothelial cells and cancer cells. Astrocytes and microglia are generally thought to eliminate cancer cells at the blood–brain barrier. In contrast, some reports suggest they facilitate tumor progression as tumor cells take advantage of the normal functions of astrocytes that support the survival of the neurons by exchanging nutrients and metabolites. In summary, GJIC is essential for the normal physiological function of growth and allowing the diffusion of physiological substances. Therefore, whether GJIC is cancer promoting or suppressing may be dependent on what permeates through GJs, when it is active, and to which cells. The nature of GJs, which has been ambiguous in brain tumor progression, needs to be revisited and understood together with new findings on Cx proteins and HC

  19. BFD-22 a new potential inhibitor of BRAF inhibits the metastasis of B16F10 melanoma cells and simultaneously increased the tumor immunogenicity

    Ferreira, Adilson Kleber, E-mail: ferreira-kleber@usp.br [Laboratory of Tumor Immunology, University of São Paulo, São Paulo, SP (Brazil); Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen (Netherlands); Pasqualoto, Kerly Fernanda Mesquita [Biochemistry and Biophysics Laboratory, Butantan Institute, São Paulo, SP (Brazil); Kruyt, Frank A.E. [Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen (Netherlands); Palace-Berl, Fanny [Laboratory of Drug Design and Development, University of São Paulo, São Paulo, SP (Brazil); Azevedo, Ricardo Alexandre [Laboratory of Tumor Immunology, University of São Paulo, São Paulo, SP (Brazil); Turra, Kely Medeiros [Laboratory of Cytopathology, Department of Clinical Chemistry and Toxicology, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP (Brazil); Rodrigues, Cecilia Pessoa; Ferreira, Ana Carolina Franco; Salomón, Maria Alejandra Clavijo [Laboratory of Tumor Immunology, University of São Paulo, São Paulo, SP (Brazil); Sá, Paulo Luiz de [Laboratory of Genetics, Butantan Institute, São Paulo, SP (Brazil); Farias, Camyla Fernandes; Figueiredo, Carlos Rogerio [Experimental Oncology Section, The Federal University of São Paulo, São Paulo, SP (Brazil); and others

    2016-03-15

    -22 increases the therapeutic tumor immunogenicity. • BFD-22 presents stronger in vivo anti-metastatic effects than sorafenib and taxol.

  20. Bilateral Testicular Tumors Resulting in Recurrent Cushing Disease After Bilateral Adrenalectomy.

    Puar, Troy; Engels, Manon; van Herwaarden, Antonius E; Sweep, Fred C G J; Hulsbergen-van de Kaa, Christina; Kamphuis-van Ulzen, Karin; Chortis, Vasileios; Arlt, Wiebke; Stikkelbroeck, Nike; Claahsen-van der Grinten, Hedi L; Hermus, Ad R M M

    2017-02-01

    Recurrence of hypercortisolism in patients after bilateral adrenalectomy for Cushing disease is extremely rare. We present a 27-year-old man who previously underwent bilateral adrenalectomy for Cushing disease with complete clinical resolution. Cushingoid features recurred 12 years later, with bilateral testicular enlargement. Hormonal tests confirmed adrenocorticotropic hormone (ACTH)-dependent Cushing disease. Surgical resection of the testicular tumors led to clinical and biochemical remission. Gene expression analysis of the tumor tissue by quantitative polymerase chain reaction showed high expression of all key steroidogenic enzymes. Adrenocortical-specific genes were 5.1 × 105 (CYP11B1), 1.8 × 102 (CYP11B2), and 6.3 × 104 (MC2R) times higher than nonsteroidogenic fibroblast control. This correlated with urine steroid metabolome profiling showing 2 fivefold increases in the excretion of the metabolites of 11-deoxycortisol, 21-deoxycortisol, and total glucocorticoids. Leydig-specific genes were 4.3 × 101 (LHCGR) and 9.3 × 100 (HSD17B3) times higher than control, and urinary steroid profiling showed twofold increased excretion of the major androgen metabolites androsterone and etiocholanolone. These distinctly increased steroid metabolites were suppressed by dexamethasone but unresponsive to human chorionic gonadotropin stimulation, supporting the role of ACTH, but not luteinizing hormone, in regulating tumor-specific steroid excess. We report bilateral testicular tumors occurring in a patient with recurrent Cushing disease 12 years after bilateral adrenalectomy. Using mRNA expression analysis and steroid metabolome profiling, the tumors demonstrated both adrenocortical and gonadal steroidogenic properties, similar to testicular adrenal rest tumors found in patients with congenital adrenal hyperplasia, suggesting the presence of pluripotent cells even in patients without congenital adrenal hyperplasia. Copyright © 2017 by the Endocrine Society

  1. Recurrent TERT promoter mutations identified in a large-scale study of multiple tumor types are associated with increased TERT expression and telomerase activation

    Huang, Dong-Sheng; Wang, Zhaohui; He, Xu-Jun; Diplas, Bill H.; Yang, Rui; Killela, Patrick J.; Liang, Junbo; Meng, Qun; Ye, Zai-Yuan; Wang, Wei; Jiang, Xiao-Ting; Xu, Li; He, Xiang-Lei; Zhao, Zhong-Sheng; Xu, Wen-Juan; Wang, Hui-Ju; Ma, Ying-Yu; Xia, Ying-Jie; Li, Li; Zhang, Ru-Xuan; Jin, Tao; Zhao, Zhong-Kuo; Xu, Ji; Yu, Sheng; Wu, Fang; Wang, Si-Zhen; Jiao, Yu-Chen; Yan, Hai; Tao, Hou-Quan

    2015-01-01

    Background Several somatic mutation hotspots were recently identified in the TERT promoter region in human cancers. Large scale studies of these mutations in multiple tumor types are limited, in particular in Asian populations. This study aimed to: analyze TERT promoter mutations in multiple tumor types in a large Chinese patient cohort, investigate novel tumor types and assess the functional significance of the mutations. Methods TERT promoter mutation status was assessed by Sanger sequencing for 13 different tumor types and 799 tumor tissues from Chinese cancer patients. Thymic epithelial tumors, gastrointestinal leiomyoma, and gastric schwannoma were included, for which the TERT promoter has not been previously sequenced. Functional studies included TERT expression by RT-qPCR, telomerase activity by the TRAP assay, and promoter activity by the luciferase reporter assay. Results TERT promoter mutations were highly frequent in glioblastoma (83.9%), urothelial carcinoma (64.5%), oligodendroglioma (70.0%), medulloblastoma (33.3%), and hepatocellular carcinoma (31.4%). C228T and C250T were the most common mutations. In urothelial carcinoma, several novel rare mutations were identified. TERT promoter mutations were absent in GIST, thymic epithelial tumors, gastrointestinal leiomyoma, gastric schwannoma, cholangiocarcinoma, gastric and pancreatic cancer. TERT promoter mutations highly correlated with upregulated TERT mRNA expression and telomerase activity in adult gliomas. These mutations differentially enhanced the transcriptional activity of the TERT core promoter. Conclusions TERT promoter mutations are frequent in multiple tumor types and have similar distributions in Chinese cancer patients. The functional significance of these mutations reflect the importance to telomere maintenance and hence tumorigenesis, making them potential therapeutic targets. PMID:25843513

  2. The selenium metabolite methylselenol regulates the expression of ligands that trigger immune activation through the lymphocyte receptor NKG2D

    Hagemann-Jensen, Michael Henrik; Uhlenbrock, Franziska Katharina; Kehlet, Stephanie

    2014-01-01

    For decades Selenium (Se) research has been focused on the identification of active metabolites, which are crucial for Se chemoprevention of cancer. In this context, the metabolite methylselenol (CH3SeH) is known for its action to selectively kill transformed cells through mechanisms that include...... ligands. A balanced cell-surface expression of NKG2D ligands is considered as an innate barrier against tumor development. Our work therefore indicates that the application of selenium compounds, which are metabolized to CH3SeH, could improve NKG2D-based immune therapy.......: Increased formation of reactive oxygen species (ROS), induction of DNA damage, triggering of apoptosis and the inhibition of angiogenesis. Here, we revealed that CH3SeH modulates cell surface expression of NKG2D ligands. The expression of NKG2D ligands is induced by stress-associated pathways, which occur...

  3. Treatment of rheumatoid arthritis with tumor necrosis factor inhibitors may predispose to significant increase in tuberculosis risk: a multicenter active-surveillance report.

    Gómez-Reino, Juan J; Carmona, Loreto; Valverde, Vicente Rodríguez; Mola, Emilio Martín; Montero, Maria Dolores

    2003-08-01

    The long-term safety of therapeutic agents that neutralize tumor necrosis factor (TNF) is uncertain. Recent evidence based on spontaneous reporting shows an association with active tuberculosis (TB). We undertook this study to determine and describe the long-term safety of 2 of these agents, infliximab and etanercept, in rheumatic diseases based on a national active-surveillance system following the commercialization of the drugs. We analyzed the safety data actively collected in the BIOBADASER (Base de Datos de Productos Biológicos de la Sociedad Española de Reumatología) database, which was launched in February 2000 by the Spanish Society of Rheumatology. For the estimation of TB risk, the annual incidence rate in patients treated with these agents was compared with the background rate and with the rate in a cohort of patients with rheumatoid arthritis (RA) assembled before the era of anti-TNF treatment. Seventy-one participating centers sent data on 1,578 treatments with infliximab (86%) or etanercept (14%) in 1,540 patients. Drug survival rates (reported as the cumulative percentage of patients still receiving medication) for infliximab and etanercept pooled together were 85% and 81% at 1 year and 2 years, respectively. Instances of discontinuation were essentially due to adverse events. Seventeen cases of TB were found in patients treated with infliximab. The estimated incidence of TB associated with infliximab in RA patients was 1,893 per 100,000 in the year 2000 and 1,113 per 100,000 in the year 2001. These findings represent a significant increased risk compared with background rates. In the first 5 months of 2002, after official guidelines were established for TB prevention in patients treated with biologics, only 1 new TB case was registered (in January). Therapy with infliximab is associated with an increased risk of active TB. Proper measures are needed to prevent and manage this adverse event.

  4. Yeast synthetic biology for high-value metabolites.

    Dai, Zhubo; Liu, Yi; Guo, Juan; Huang, Luqi; Zhang, Xueli

    2015-02-01

    Traditionally, high-value metabolites have been produced through direct extraction from natural biological sources which are inefficient, given the low abundance of these compounds. On the other hand, these high-value metabolites are usually difficult to be synthesized chemically, due to their complex structures. In the last few years, the discovery of genes involved in the synthetic pathways of these metabolites, combined with advances in synthetic biology tools, has allowed the construction of increasing numbers of yeast cell factories for production of these metabolites from renewable biomass. This review summarizes recent advances in synthetic biology in terms of the use of yeasts as microbial hosts for the identification of the pathways involved in the synthesis, as well as for the production of high-value metabolites. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  5. The positive effects of high-frequency right dorsolateral prefrontal cortex repetitive transcranial magnetic stimulation on memory, correlated with increases in brain metabolites detected by proton magnetic resonance spectroscopy in recently detoxified alcohol-dependent patients.

    Qiao, Jun; Jin, Guixing; Lei, Licun; Wang, Lan; Du, Yaqiang; Wang, Xueyi

    2016-01-01

    To explore the effect of right dorsolateral prefrontal cortex (DLPFC) repetitive transcranial magnetic stimulation (rTMS) on memory, and its correlation with levels of hippocampal brain metabolites detected by proton magnetic resonance spectroscopy ( 1 H-MRS) in recently detoxified alcohol-dependent patients. In this randomized, double-blind sham-controlled trial, alcohol-dependent patients were enrolled and randomized into two groups: the experimental group (rTMS, 10 Hz, on right DLPFC, 20 sessions) and the control group (sham stimulation). Memory function was assessed using Hopkins Verbal Learning Test-Revised (HVLT-R) and Brief Visuospatial Memory Test-Revised (BVMT-R) before and after treatment. 1 H-MRS was used to detect the levels of N -acetyl aspartic acid (NAA), choline (Cho), and creatine (Cr) in bilateral hippocampi before and after treatment. Thirty-eight patients (18 in the experimental group and 20 in the control group) were included in the analyses. The experimental group showed significantly greater changes in HVLT-R, BVMT-R, NAA/Cr, and Cho/Cr after rTMS from baseline than the control group. The percentage change in BVMT-R and HVLT-R correlated with the percentage change in NAA/Cr and Cho/Cr in the right brain. High-frequency right DLPFC rTMS was associated with improvement in memory dysfunction, which is correlated with levels of hippocampal brain metabolites detected by 1 H-MRS in recently detoxified alcohol-dependent patients.

  6. Immune regulation by microbiome metabolites.

    Kim, Chang H

    2018-03-22

    Commensal microbes and the host immune system have been co-evolved for mutual regulation. Microbes regulate the host immune system, in part, by producing metabolites. A mounting body of evidence indicates that diverse microbial metabolites profoundly regulate the immune system via host receptors and other target molecules. Immune cells express metabolite-specific receptors such as P2X 7 , GPR41, GPR43, GPR109A, aryl hydrocarbon receptor precursor (AhR), pregnane X receptor (PXR), farnesoid X receptor (FXR), TGR5 and other molecular targets. Microbial metabolites and their receptors form an extensive array of signals to respond to changes in nutrition, health and immunological status. As a consequence, microbial metabolite signals contribute to nutrient harvest from diet, and regulate host metabolism and the immune system. Importantly, microbial metabolites bidirectionally function to promote both tolerance and immunity to effectively fight infection without developing inflammatory diseases. In pathogenic conditions, adverse effects of microbial metabolites have been observed as well. Key immune-regulatory functions of the metabolites, generated from carbohydrates, proteins and bile acids, are reviewed in this article. © 2018 John Wiley & Sons Ltd.

  7. “Marker of Self” CD47 on lentiviral vectors decreases macrophage-mediated clearance and increases delivery to SIRPA-expressing lung carcinoma tumors

    Nisha G Sosale

    2016-01-01

    Full Text Available Lentiviruses infect many cell types and are now widely used for gene delivery in vitro, but in vivo uptake of these foreign vectors by macrophages is a limitation. Lentivectors are produced here from packaging cells that overexpress “Marker of Self” CD47, which inhibits macrophage uptake of cells when prophagocytic factors are also displayed. Single particle analyses show “hCD47-Lenti” display properly oriented human-CD47 for interactions with the macrophage's inhibitory receptor SIRPA. Macrophages derived from human and NOD/SCID/Il2rg−/− (NSG mice show a SIRPA-dependent decrease in transduction, i.e., transgene expression, by hCD47-Lenti compared to control Lenti. Consistent with known “Self” signaling pathways, macrophage transduction by control Lenti is decreased by drug inhibition of Myosin-II to the same levels as hCD47-Lenti. In contrast, human lung carcinoma cells express SIRPA and use it to enhance transduction by hCD47-Lenti- as illustrated by more efficient gene deletion using CRISPR/Cas9. Intravenous injection of hCD47-Lenti into NSG mice shows hCD47 prolongs circulation, unless a blocking anti-SIRPA is preinjected. In vivo transduction of spleen and liver macrophages also decreases for hCD47-Lenti while transduction of lung carcinoma xenografts increases. hCD47 could be useful when macrophage uptake is limiting on other viral vectors that are emerging in cancer treatments (e.g., Measles glycoprotein-pseudotyped lentivectors and also in targeting various SIRPA-expressing tumors such as glioblastomas.

  8. Suberoylanilide hydroxamic acid increases anti-cancer effect of tumor necrosis factor-α through up-regulation of TNF receptor 1 in lung cancer cells.

    You, Bo Ra; Han, Bo Ram; Park, Woo Hyun

    2017-03-14

    Suberoylanilide hydroxamic acid (SAHA) as a histone deacetylase (HDAC) inhibitor has anti-cancer effect. Here, we evaluated the effect of SAHA on HDAC activity and cell growth in many normal lung and cancer cells. We observed that the HDAC activities of lung cancer cells were higher than that of normal lung cells. SAHA inhibited the growth of lung cancer cells regardless of the inhibitory effect on HDAC. This agent induced a G2/M phase arrest and apoptosis, which was accompanied by mitochondrial membrane potential (MMP: ΔΨm) loss in lung cancer cells. However, SAHA did not induce cell death in normal lung cells. All tested caspase inhibitors prevented apoptotic cell death in SAHA-treated A549 and Calu-6 lung cancer cells. Treatment with tumor necrosis factor-alpha (TNF-α) enhanced apoptosis in SAHA-treated lung cancer cells through caspase-8 and caspase-9 activations. Especially, SAHA increased the expression level of TNF-α receptor 1 (TNFR1), especially acetylation of the region of TNFR1 promoter -223/-29 in lung cancer cells. The down-regulation of TNFR1 suppressed apoptosis in TNF-α and SAHA-treated lung cancer cells. In conclusion, SAHA inhibited the growth of lung cancer cells via a G2/M phase arrest and caspase-dependent apoptosis. SAHA also enhanced apoptotic effect of TNF-α in human lung cancer cells through up-regulation of TNFR1. TNF-α may be a key to improve anti-cancer effect of HDAC inhibitors.

  9. Epigenetic silencing of MLH1 in endometrial cancers is associated with larger tumor volume, increased rate of lymph node positivity and reduced recurrence-free survival.

    Cosgrove, Casey M; Cohn, David E; Hampel, Heather; Frankel, Wendy L; Jones, Dan; McElroy, Joseph P; Suarez, Adrian A; Zhao, Weiqiang; Chen, Wei; Salani, Ritu; Copeland, Larry J; O'Malley, David M; Fowler, Jeffrey M; Yilmaz, Ahmet; Chassen, Alexis S; Pearlman, Rachel; Goodfellow, Paul J; Backes, Floor J

    2017-09-01

    To determine the relationship between mismatch repair (MMR) classification and clinicopathologic features including tumor volume, and explore outcomes by MMR class in a contemporary cohort. Single institution cohort evaluating MMR classification for endometrial cancers (EC). MMR immunohistochemistry (IHC)±microsatellite instability (MSI) testing and reflex MLH1 methylation testing was performed. Tumors with MMR abnormalities by IHC or MSI and MLH1 methylation were classified as epigenetic MMR deficiency while those without MLH1 methylation were classified as probable MMR mutations. Clinicopathologic characteristics were analyzed. 466 endometrial cancers were classified; 75% as MMR proficient, 20% epigenetic MMR defects, and 5% as probable MMR mutations. Epigenetic MMR defects were associated with advanced stage, higher grade, presence of lymphovascular space invasion, and older age. MMR class was significantly associated with tumor volume, an association not previously reported. The epigenetic MMR defect tumors median volume was 10,220mm 3 compared to 3321mm 3 and 2,846mm 3 , for MMR proficient and probable MMR mutations respectively (PMLH1 methylation analysis defines a subset of tumors that have worse prognostic features and reduced RFS. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Pharmacologic activity and pharmacokinetics of metabolites of regorafenib in preclinical models

    Zopf, Dieter; Fichtner, Iduna; Bhargava, Ajay; Steinke, Wolfram; Thierauch, Karl?Heinz; Diefenbach, Konstanze; Wilhelm, Scott; Hafner, Frank?Thorsten; Gerisch, Michael

    2016-01-01

    Abstract Regorafenib is an orally administered inhibitor of protein kinases involved in tumor angiogenesis, oncogenesis, and maintenance of the tumor microenvironment. Phase III studies showed that regorafenib has efficacy in patients with advanced gastrointestinal stromal tumors or treatment?refractory metastatic colorectal cancer. In clinical studies, steady?state exposure to the M?2 and M?5 metabolites of regorafenib was similar to that of the parent drug; however, the contribution of thes...

  11. The positive effects of high-frequency right dorsolateral prefrontal cortex repetitive transcranial magnetic stimulation on memory, correlated with increases in brain metabolites detected by proton magnetic resonance spectroscopy in recently detoxified alcohol-dependent patients

    Qiao J

    2016-09-01

    Full Text Available Jun Qiao,1,2 Guixing Jin,1,2 Licun Lei,3 Lan Wang,1,2 Yaqiang Du,3 Xueyi Wang1,2 1Institute of Mental Health, The First Hospital of Hebei Medical University, 2Brain Ageing and Cognitive Neuroscience Laboratory, Hebei Medical University, 3Department of Radiology, The First Hospital of Hebei Medical University, Hebei, People’s Republic of China Objective: To explore the effect of right dorsolateral prefrontal cortex (DLPFC repetitive transcranial magnetic stimulation (rTMS on memory, and its correlation with levels of hippocampal brain metabolites detected by proton magnetic resonance spectroscopy (1H-MRS in recently detoxified alcohol-dependent patients. Materials and methods: In this randomized, double-blind sham-controlled trial, alcohol-dependent patients were enrolled and randomized into two groups: the experimental group (rTMS, 10 Hz, on right DLPFC, 20 sessions and the control group (sham stimulation. Memory function was assessed using Hopkins Verbal Learning Test-Revised (HVLT-R and Brief Visuospatial Memory Test-Revised (BVMT-R before and after treatment. 1H-MRS was used to detect the levels of N-acetyl aspartic acid (NAA, choline (Cho, and creatine (Cr in bilateral hippocampi before and after treatment. Results: Thirty-eight patients (18 in the experimental group and 20 in the control group were included in the analyses. The experimental group showed significantly greater changes in HVLT-R, BVMT-R, NAA/Cr, and Cho/Cr after rTMS from baseline than the control group. The percentage change in BVMT-R and HVLT-R correlated with the percentage change in NAA/Cr and Cho/Cr in the right brain. Conclusion: High-frequency right DLPFC rTMS was associated with improvement in memory dysfunction, which is correlated with levels of hippocampal brain metabolites detected by 1H-MRS in recently detoxified alcohol-dependent patients. Keywords: alcohol dependence, memory, repetitive transcranial magnetic stimulation, MR spectroscopy

  12. frequency of increase in serum tumor marker carcinoembryonic antigen (cea) levels in primary breast cancer (pbc) patients at the time of diagnosis

    Riaz, O.; Mahmood, A.; Alvi, Z.A.; Rasul, S.; Haider, N

    2017-01-01

    To determine the frequency of increase in serum tumor marker CEA levels in PBC patients at the time of diagnosis. Study Design: Cross sectional study. Place and Duration of Study: Oncology Department of Combined Military Hospital (CMH) Rawalpindi, from January 2014 to November 2014. Material and Methods: Sixty three female patients with histopathologically confirmed carcinoma of breast and age range from 20 to 70 years from Oncology outpatient department (OPD)/indoor patient department at CMH Rawalpindi, were selected. All patients were staged by clinical and radiological work-up that included physical examination, all base line investigations, serum biomarkers, chest radiograph, ultrasound abdomen and pelvis, bone scan, computed tomography (CT) scan/magnetic resonance imaging (MRI) of the chest (optional). Patients serum carcino-embryonic antigen (CEA) levels were carried out only by blood sampling using chemiluminescent immunoassay with immulite 2000 CEA. Data analysis were done with the help of the Statistical Package for the Social Sciences (SPSS) version 19 software. Cut-off values of serum CEA levels >2.5 ng/ml were taken as elevated. Results: Sixty three female breast cancer patients with histopathologically confirmed carcinoma of breast revealed elevated serum CEA levels in three stages of the disease. The median age was 47 years (range, 20-70 years). Fifteen (23.8%) patients had family history of the breast cancer. Invasive ductal carcinoma (IDCA) was the commonest histology with 60 (95.23%) patients. Most of the patients had advanced stage of the disease. Node positive cases were 53 (84.1%). The frequency of abnormal CEA levels were varying from stage II to stage IV. Elevated serum CEA levels were noted in 4 (28.6%) of stage II, 19 (76%) of stage III and 17 (77.3%) patients of stage IV, respectively. Overall percentage increase in levels of serum CEA from stage I through IV were 0%, 6.34%, 30.2%, 26% respectively. The sensitivity of serum CEA in our

  13. Chronic alcohol intake promotes tumor growth in a diethylnitrosamine-induced hepatocarcinogenesis mouse model through increased Wnt/Beta-catenin signaling

    Ethanol (EtOH) metabolism is involved in both initiating and promoting mechanisms in hepatocellular carcinoma progression in chronic alcoholics. In this study, we developed a mouse model to test the hypothesis that chronic EtOH consumption promotes tumor growth irrespective of EtOH-related initiati...

  14. Bignoniaceae Metabolites as Semiochemicals

    Lucía Castillo

    2010-10-01

    Full Text Available Members of the family Bignoniaceae are mostly found in tropical and neo-tropical regions in America, Asia and Africa, although some of them are cultivated in other regions as ornamentals. Species belonging to this family have been extensively studied in regard to their pharmacological properties (as extracts and isolated compounds. The aim of this review is to summarize the reported scientific evidence about the chemical properties as well as that of the extracts and isolated compounds from species of this family, focusing mainly in insect-plant interactions. As it is known, this family is recognized for the presence of iridoids which are markers of oviposition and feeding preference to species which have became specialist feeders. Some herbivore species have also evolved to the point of been able to sequester iridoids and use them as defenses against their predators. However, iridoids also exhibit anti-insect properties, and therefore they may be good lead molecules to develop botanical pesticides. Other secondary metabolites, such as quinones, and whole extracts have also shown potential as anti-insect agents.

  15. Increased expression of IRF8 in tumor cells inhibits the generation of Th17 cells and predicts unfavorable survival of diffuse large B cell lymphoma patients.

    Zhong, Weijie; Xu, Xin; Zhu, Zhigang; Du, Qinghua; Du, Hong; Yang, Li; Ling, Yanying; Xiong, Huabao; Li, Qingshan

    2017-07-25

    The immunological pathogenesis of diffuse large B cell lymphoma (DLBCL) remains elusive. Searching for new prognostic markers of DLBCL is a crucial focal point for clinical scientists. The aim of the present study was to examine the prognostic value of interferon regulatory factor 8 (IRF8) expression and its effect on the development of Th17 cells in the tumor microenvironment of DLBCL patients. Flow cytometry, immunohistochemistry, and quantitative real-time PCR were used to detect the distribution of Th17 cells and related cytokines and IRF8 in tumor tissues from DLBCL patients. Two DLBCL cell lines (OCI-LY10 and OCI-LY1) with IRF8 knockdown or overexpression and two human B lymphoblast cell lines were co-cultured with peripheral blood mononuclear cells (PBMCs) in vitro to determine the effect of IRF8 on the generation of Th17 cells. Quantitative real-time PCR and Western blotting were used to investigate the involvement of retinoic acid receptor-related orphan receptor gamma t (RORγt) in the effect of IRF8 on Th17 cell generation. The survival of 67 DLBCL patients was estimated using the Kaplan-Meier method and log-rank analysis. The percentage of Th17 cells was lower in DLBCL tumor tissues than in PBMCs and corresponding adjacent benign tissues. Relative expression of interleukin (IL)-17A was lower, whereas that of interferon (IFN)-γ was higher in tumor tissues than in benign tissues. Co-culture with DLBCL cell lines inhibited the generation of Th17 cells in vitro. IRF8 upregulation was detected in DLBCL tumor tissues, and it was associated with decreased DLBCL patient survival. Investigation of the underlying mechanism suggested that IRF8 upregulation in DLBCL, through an unknown mechanism, inhibited Th17 cell generation by suppressing RORγt in neighboring CD4+ T cells. Tumor cells may express soluble or membrane-bound factors that inhibit the expression of RORγt in T cells within the tumor microenvironment. Our findings suggest that IRF8 expression could

  16. Increasing the Accuracy of Volume and ADC Delineation for Heterogeneous Tumor on Diffusion-Weighted MRI: Correlation with PET/CT

    Gong, Nan-Jie [Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong (China); Wong, Chun-Sing, E-mail: drcswong@gmail.com [Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong (China); Chu, Yiu-Ching [Department of Radiology, Kwong Wah Hospital, Hong Kong (China); Guo, Hua [Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing (China); Huang, Bingsheng [Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong (China); Chan, Queenie [Philips Healthcare, Hong Kong (China)

    2013-10-01

    Purpose: To improve the accuracy of volume and apparent diffusion coefficient (ADC) measurements in diffusion-weighted magnetic resonance imaging (MRI), we proposed a method based on thresholding both the b0 images and the ADC maps. Methods and Materials: In 21 heterogeneous lesions from patients with metastatic gastrointestinal stromal tumors (GIST), gross lesion were manually contoured, and corresponding volumes and ADCs were denoted as gross tumor volume (GTV) and gross ADC (ADC{sub g}), respectively. Using a k-means clustering algorithm, the probable high-cellularity tumor tissues were selected based on b0 images and ADC maps. ADC and volume of the tissues selected using the proposed method were denoted as thresholded ADC (ADC{sub thr}) and high-cellularity tumor volume (HCTV), respectively. The metabolic tumor volume (MTV) in positron emission tomography (PET)/computed tomography (CT) was measured using 40% maximum standard uptake value (SUV{sub max}) as the lower threshold, and corresponding mean SUV (SUV{sub mean}) was also measured. Results: HCTV had excellent concordance with MTV according to Pearson's correlation (r=0.984, P<.001) and linear regression (slope = 1.085, intercept = −4.731). In contrast, GTV overestimated the volume and differed significantly from MTV (P=.005). ADC{sub thr} correlated significantly and strongly with SUV{sub mean} (r=−0.807, P<.001) and SUV{sub max} (r=−0.843, P<.001); both were stronger than those of ADC{sub g}. Conclusions: The proposed lesion-adaptive semiautomatic method can help segment high-cellularity tissues that match hypermetabolic tissues in PET/CT and enables more accurate volume and ADC delineation on diffusion-weighted MR images of GIST.

  17. Secondary Metabolites from Higher Fungi: Discovery, Bioactivity, and Bioproduction

    Zhong, Jian-Jiang; Xiao, Jian-Hui

    Medicinal higher fungi such as Cordyceps sinensis and Ganoderma lucidum have been used as an alternative medicine remedy to promote health and longevity for people in China and other regions of the world since ancient times. Nowadays there is an increasing public interest in the secondary metabolites of those higher fungi for discovering new drugs or lead compounds. Current research in drug discovery from medicinal higher fungi involves a multifaceted approach combining mycological, biochemical, pharmacological, metabolic, biosynthetic and molecular techniques. In recent years, many new secondary metabolites from higher fungi have been isolated and are more likely to provide lead compounds for new drug discovery, which may include chemopreventive agents possessing the bioactivity of immunomodulatory, anticancer, etc. However, numerous challenges of secondary metabolites from higher fungi are encountered including bioseparation, identification, biosynthetic metabolism, and screening model issues, etc. Commercial production of secondary metabolites from medicinal mushrooms is still limited mainly due to less information about secondary metabolism and its regulation. Strategies for enhancing secondary metabolite production by medicinal mushroom fermentation include two-stage cultivation combining liquid fermentation and static culture, two-stage dissolved oxygen control, etc. Purification of bioactive secondary metabolites, such as ganoderic acids from G. lucidum, is also very important to pharmacological study and future pharmaceutical application. This review outlines typical examples of the discovery, bioactivity, and bioproduction of secondary metabolites of higher fungi origin.

  18. Krebs cycle metabolite profiling for identification and stratification of pheochromocytomas/paragangliomas due to succinate dehydrogenase deficiency.

    Richter, Susan; Peitzsch, Mirko; Rapizzi, Elena; Lenders, Jacques W; Qin, Nan; de Cubas, Aguirre A; Schiavi, Francesca; Rao, Jyotsna U; Beuschlein, Felix; Quinkler, Marcus; Timmers, Henri J; Opocher, Giuseppe; Mannelli, Massimo; Pacak, Karel; Robledo, Mercedes; Eisenhofer, Graeme

    2014-10-01

    Mutations of succinate dehydrogenase A/B/C/D genes (SDHx) increase susceptibility to development of pheochromocytomas and paragangliomas (PPGLs), with particularly high rates of malignancy associated with SDHB mutations. We assessed whether altered succinate dehydrogenase product-precursor relationships, manifested by differences in tumor ratios of succinate to fumarate or other metabolites, might aid in identifying and stratifying patients with SDHx mutations. PPGL tumor specimens from 233 patients, including 45 with SDHx mutations, were provided from eight tertiary referral centers for mass spectrometric analyses of Krebs cycle metabolites. Diagnostic performance of the succinate:fumarate ratio for identification of pathogenic SDHx mutations. SDH-deficient PPGLs were characterized by 25-fold higher succinate and 80% lower fumarate, cis-aconitate, and isocitrate tissue levels than PPGLs without SDHx mutations. Receiver-operating characteristic curves for use of ratios of succinate to fumarate or to cis-aconitate and isocitrate to identify SDHx mutations indicated areas under curves of 0.94 to 0.96; an optimal cut-off of 97.7 for the succinate:fumarate ratio provided a diagnostic sensitivity of 93% at a specificity of 97% to identify SDHX-mutated PPGLs. Succinate:fumarate ratios were higher in both SDHB-mutated and metastatic tumors than in those due to SDHD/C mutations or without metastases. Mass spectrometric-based measurements of ratios of succinate:fumarate and other metabolites in PPGLs offer a useful method to identify patients for testing of SDHx mutations, with additional utility to quantitatively assess functionality of mutations and metabolic factors responsible for malignant risk.

  19. Tumor penetrating peptides

    Tambet eTeesalu

    2013-08-01

    Full Text Available Tumor-homing peptides can be used to deliver drugs into tumors. Phage library screening in live mice has recently identified homing peptides that specifically recognize the endothelium of tumor vessels, extravasate, and penetrate deep into the extravascular tumor tissue. The prototypic peptide of this class, iRGD (CRGDKGPDC, contains the integrin-binding RGD motif. RGD mediates tumor homing through binding to αv integrins, which are selectively expressed on various cells in tumors, including tumor endothelial cells. The tumor-penetrating properties of iRGD are mediated by a second sequence motif, R/KXXR/K. This C-end Rule (or CendR motif is active only when the second basic residue is exposed at the C-terminus of the peptide. Proteolytic processing of iRGD in tumors activates the cryptic CendR motif, which then binds to neuropilin-1 activating an endocytic bulk transport pathway through tumor tissue. Phage screening has also yielded tumor-penetrating peptides that function like iRGD in activating the CendR pathway, but bind to a different primary receptor. Moreover, novel tumor-homing peptides can be constructed from tumor-homing motifs, CendR elements and protease cleavage sites. Pathologies other than tumors can be targeted with tissue-penetrating peptides, and the primary receptor can also be a vascular zip code of a normal tissue. The CendR technology provides a solution to a major problem in tumor therapy, poor penetration of drugs into tumors. The tumor-penetrating peptides are capable of taking a payload deep into tumor tissue in mice, and they also penetrate into human tumors ex vivo. Targeting with these peptides specifically increases the accumulation in tumors of a variety of drugs and contrast agents, such as doxorubicin, antibodies and nanoparticle-based compounds. Remarkably the drug to be targeted does not have to be coupled to the peptide; the bulk transport system activated by the peptide sweeps along any compound that is

  20. Secondary metabolites from marine microorganisms.

    Kelecom, Alphonse

    2002-03-01

    After 40 years of intensive research, chemistry of marine natural products has become a mature field. Since 1995, there are signals of decreased interest in the search of new metabolites from traditional sources such as macroalgae and octocorals, and the number of annual reports on marine sponges stabilized. On the contrary, metabolites from microorganisms is a rapidly growing field, due, at least in part, to the suspicion that a number of metabolites obtained from algae and invertebrates may be produced by associated microorganisms. Studies are concerned with bacteria and fungi, isolated from seawater, sediments, algae, fish and mainly from marine invertebrates such as sponges, mollusks, tunicates, coelenterates and crustaceans. Although it is still to early to define tendencies, it may be stated that the metabolites from microorganisms are in most cases quite different from those produced by the invertebrate hosts. Nitrogenated metabolites predominate over acetate derivatives, and terpenes are uncommon. Among the latter, sesquiterpenes, diterpenes and carotenes have been isolated; among nitrogenated metabolites, amides, cyclic peptides and indole alkaloids predominate.

  1. Secondary metabolites from marine microorganisms

    KELECOM ALPHONSE

    2002-01-01

    Full Text Available After 40 years of intensive research, chemistry of marine natural products has become a mature field. Since 1995, there are signals of decreased interest in the search of new metabolites from traditional sources such as macroalgae and octocorals, and the number of annual reports on marine sponges stabilized. On the contrary, metabolites from microorganisms is a rapidly growing field, due, at least in part, to the suspicion that a number of metabolites obtained from algae and invertebrates may be produced by associated microorganisms. Studies are concerned with bacteria and fungi, isolated from seawater, sediments, algae, fish and mainly from marine invertebrates such as sponges, mollusks, tunicates, coelenterates and crustaceans. Although it is still to early to define tendencies, it may be stated that the metabolites from microorganisms are in most cases quite different from those produced by the invertebrate hosts. Nitrogenated metabolites predominate over acetate derivatives, and terpenes are uncommon. Among the latter, sesquiterpenes, diterpenes and carotenes have been isolated; among nitrogenated metabolites, amides, cyclic peptides and indole alkaloids predominate.

  2. PKM2 Thr454 phosphorylation increases its nuclear translocation and promotes xenograft tumor growth in A549 human lung cancer cells

    Yu, Zhenhai, E-mail: tomsyu@163.com [Center for Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, 261031 (China); Huang, Liangqian [Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) & Shanghai Jiao Tong University School of Medicine -SJTUSM, Shanghai, 200025 (China); Qiao, Pengyun; Jiang, Aifang; Wang, Li; Yang, Tingting [Center for Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, 261031 (China); Tang, Shengjian; Zhang, Wei [Plastic Surgery Institute of Weifang Medical University, Weifang, Shandong, 261041 (China); Ren, Chune, E-mail: ren@wfmc.edu.cn [Center for Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, 261031 (China)

    2016-05-13

    Pyruvate kinase M2 (PKM2) is a key enzyme of glycolysis which is highly expressed in many tumor cells, and plays an important role in the Warburg effect. In previous study, we found PIM2 phosphorylates PKM2 at Thr454 residue (Yu, etl 2013). However, the functions of PKM2 Thr454 modification in cancer cells still remain unclear. Here we find PKM2 translocates into the nucleus after Thr454 phosphorylation. Replacement of wild type PKM2 with a mutant (T454A) enhances mitochondrial respiration, decreases pentose phosphate pathway, and enhances chemosensitivity in A549 cells. In addition, the mutant (T454A) PKM2 reduces xenograft tumor growth in nude mice. These findings demonstrate that PKM2 T454 phosphorylation is a potential therapeutic target in lung cancer.

  3. Metabolite profiling of Alzheimer's disease cerebrospinal fluid.

    Christian Czech

    Full Text Available Alzheimer's disease (AD is a neurodegenerative disorder characterized by progressive loss of cognitive functions. Today the diagnosis of AD relies on clinical evaluations and is only late in the disease. Biomarkers for early detection of the underlying neuropathological changes are still lacking and the biochemical pathways leading to the disease are still not completely understood. The aim of this study was to identify the metabolic changes resulting from the disease phenotype by a thorough and systematic metabolite profiling approach. For this purpose CSF samples from 79 AD patients and 51 healthy controls were analyzed by gas and liquid chromatography-tandem mass spectrometry (GC-MS and LC-MS/MS in conjunction with univariate and multivariate statistical analyses. In total 343 different analytes have been identified. Significant changes in the metabolite profile of AD patients compared to healthy controls have been identified. Increased cortisol levels seemed to be related to the progression of AD and have been detected in more severe forms of AD. Increased cysteine associated with decreased uridine was the best paired combination to identify light AD (MMSE>22 with specificity and sensitivity above 75%. In this group of patients, sensitivity and specificity above 80% were obtained for several combinations of three to five metabolites, including cortisol and various amino acids, in addition to cysteine and uridine.

  4. MR spectroscopy in brain tumors; MR-Spektroskopie bei Hirntumoren

    Papanagiotou, P.; Backens, M.; Grunwald, I.Q.; Farmakis, G.; Politi, M.; Roth, C.; Reith, W. [Universitaetsklinikum Saarland, Homburg (Germany). Klinik fuer Diagnostische und Interventionelle Neuroradiologie

    2007-06-15

    MRT allows the anatomical visualization of intracerebral space-occupying lesions, and when magnetic resonance spectroscopy (MRS) is used in routine clinical practice it can give more information and be helpful in the diagnosis of such lesions. In MRS with long echo times for nerve tissue there are five metabolites that are particularly significant: N-acetyl aspartate (NAA), creatine, choline, lactate, and lipids. NAA levels are lowered in the presence of intracerebral tumors. Creatine is lowered in situations of hypermetabolic metabolism and elevated in hypometabolic conditions, but remains constant in many pathologic states and can be used as a reliable reference value. With malignant tumors there are usually elevated choline concentrations, reflecting increased membrane synthesis and a higher cell turnover. The lactate level rises following a switch in metabolism from aerobic to anaerobic glycolysis, and this is frequently observed in the presence of malignant tumors. The occurrence of lipid peaks in a tumor spectrum suggests the presence of tissue necroses or metastases. There are typical constellations that are seen on MRS for individual tumors, which are discussed in detail in the present paper. (orig.)

  5. Oral administration of an estrogen metabolite-induced potentiation of radiation antitumor effects in presence of wild-type p53 in non-small-cell lung cancer

    Huober, Jens B.; Nakamura, Seiichi; Meyn, Ray; Roth, Jack A.; Mukhopadhyay, Tapas

    2000-01-01

    Purpose: The purpose of this study was to investigate the efficacy of 2-methoxyestradiol as an antitumor and radiosensitizing agent for the treatment of human malignancy. Methods and Materials: Two cancer cell lines with wild-type p53 status were exposed first to irradiation and then to an oral formulation of the nontoxic metabolite 2-methoxyestradiol (2ME) to stabilize p53 levels. Results: Cell growth was inhibited via G1 growth and apoptosis. Subsequent in vitro growth and Tunel assays indicated that this combination was superior to radiation alone at inducing p53 protein accumulation, stabilizing p53 protein levels, and substantially reducing long-term tumor cell growth (∼80%) and colony formation (∼95%) in vitro, and inducing apoptosis. However, harboring mutated p53, H322 cell line, was relatively insensitive to such a treatment regimen. Western blot analysis revealed that growth inhibition was associated with increased levels of p53 and p21 protein accumulation. Experiments with subcutaneous tumor in a nu/nu mouse showed the combination treatment to be superior to radiation alone at reducing tumor growth (∼50% reduction as compared to radiation alone) in vivo. Conclusion: Thus, our studies confirmed a unique strategy whereby oral administration of a nontoxic estrogen metabolite, 2ME, significantly enhanced the radiation effect on a subcutaneous tumor without any toxicity and suggesting that this strategy may be clinically useful as an adjuvant therapy

  6. Toxicity of acrylamide and its metabolite – Glicydamide

    Daria Pingot

    2013-04-01

    Full Text Available Acrylamide is a synthetic chemical compound commonly used in many branches of industry. It is mainly used in the synthesis of polyacrylamides, which are widely employed in plastics, paints, varnishes, adhesives and mortars production. Acrylamide is also applied in the cellulose-paper and cosmetic industries to produce toiletries and cosmetics. The interest in acrylamide increased in 2002, when Swedish scientists showed that a considerable amount of this substance is formed during frying and baking of various foods. Studies concerning toxicity of acrylamide and its metabolite - glicydamide showed their neurotoxic, genotoxic and carcinogenic effects. Neverthless, in humans only neurotoxic effect of acrylamide has been clearly evidenced. Genotoxic nature of acetylamide manifests itself mainly in its metabolic conversion to the epoxide derivative glicydamide. Carcinogenic effects of acrylamide have been shown in animal studies. Epidemiological studies have not provided explicit evidence that acrylamide supplied with the diet can initiate the formation of tumors in humans. Acrylamide exposure is assessed by measuring specific compounds (adducts formed during the reaction of acrylamide with hemoglobin and DNA. Med Pr 2013;64(2:259–271

  7. Attenuation of G{sub 2} cell cycle checkpoint control in human tumor cells is associated with increased frequencies of unrejoined chromosome breaks but not increased cytotoxicity following radiation exposure

    Schwartz, J.L.; Cowan, J.; Grdina, D.J. [and others

    1997-08-01

    The contribution of G{sub 2} cell cycle checkpoint control to ionizing radiation responses was examined in ten human tumor cell lines. Most of the delay in cell cycle progression seen in the first cell cycle following radiation exposure was due to blocks in G{sub 2} and there were large cell line-to-cell line variations in the length of the G{sub 2} block. Longer delays were seen in cell lines that had mutations in p53. There was a highly significant inverse correlation between the length of G{sub 2} delay and the frequency of unrejoined chromosome breaks seen as chromosome terminal deletions in mitosis, and observation that supports the hypothesis that the signal for G{sub 2} delay in mammalian cells is an unrejoined chromosome break. There were also an inverse correlation between the length of G{sub 2} delay and the level of chromosome aneuploidy in each cell line, suggesting that the G{sub 2} and mitotic spindel checkpoints may be linked to each other. Attenuation in G{sub 2} checkpoint control was not associated with alterations in either the frequency of induced chromosome rearrangements or cell survival following radiation exposure suggesting that chromosome rearrangements, the major radiation-induced lethal lesion in tumor cells, form before cells enters G{sub 2}. Thus, agents that act solely to override G{sub 2} arrest should produce little radiosensitization in human tumor cells.

  8. Sinus Tumors

    ... RESOURCES Medical Societies Patient Education About this Website Font Size + - Home > CONDITIONS > Sinus Tumors Adult Sinusitis Pediatric ... and they vary greatly in location, size and type. Care for these tumors is individualized to each ...

  9. Tumors markers

    Yamaguchi-Mizumoto, N.H.

    1989-01-01

    In order to study blood and cell components alterations (named tumor markers) that may indicate the presence of a tumor, several methods are presented. Aspects as diagnostic, prognostic, therapeutic value and clinical evaluation are discussed. (M.A.C.)

  10. Wilms tumor

    ... suggested. Alternative Names Nephroblastoma; Kidney tumor - Wilms Images Kidney anatomy Wilms tumor References Babaian KN, Delacroix SE, Wood CG, Jonasch E. Kidney cancer. In: Skorecki K, Chertow GM, Marsden PA, ...

  11. Metabolome analysis - mass spectrometry and microbial primary metabolites

    Højer-Pedersen, Jesper Juul

    2008-01-01

    , and therefore sample preparation is critical for metabolome analysis. The three major steps in sample preparation for metabolite analysis are sampling, extraction and concentration. These three steps were evaluated for the yeast Saccharomyces cerevisiae with primary focus on analysis of a large number...... of metabolites by one method. The results highlighted that there were discrepancies between different methods. To increase the throughput of cultivation, S. cerevisiae was grown in microtitier plates (MTPs), and the growth was found to be comparable with cultivations in shake flasks. The carbon source was either...... a theoretical metabolome. This showed that in combination with the specificity of MS up to 84% of the metabolites can be identified in a high-accuracy ESI-spectrum. A total of 66 metabolites were systematically analyzed by positive and negative ESI-MS/MS with the aim of initiating a spectral library for ESI...

  12. Extraction and applications of cyanotoxins and other cyanobacterial secondary metabolites.

    Haque, Fatima; Banayan, Sara; Yee, Josephine; Chiang, Yi Wai

    2017-09-01

    The rapid proliferation of cyanobacteria in bodies of water has caused cyanobacterial blooms, which have become an increasing cause of concern, largely due to the presence of toxic secondary metabolites (or cyanotoxins). Cyanotoxins are the toxins produced by cyanobacteria that may be harmful to surrounding wildlife. They include hepatotoxins, neurotoxins and dermatotoxins, and are classified based on the organs they affect. There are also non-toxic secondary metabolites that include chelators and UV-absorbing compounds. This paper summarizes the optimal techniques for secondary metabolite extraction and the possible useful products that can be obtained from cyanobacteria, with additional focus given to products derived from secondary metabolites. It becomes evident that the potential for their use as biocides, chelators, biofuels, biofertilizers, pharmaceuticals, food and feed, and cosmetics has not yet been comprehensively studied or extensively implemented. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Increased evidence for the prognostic value of primary tumor asphericity in pretherapeutic FDG PET for risk stratification in patients with head and neck cancer

    Hofheinz, Frank; Lougovski, Alexandr [Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, PET Center, Dresden (Germany); Zoephel, Klaus; Hentschel, Maria [University Hospital Carl Gustav Carus, Technische Universitaet Dresden, Department of Nuclear Medicine, Dresden (Germany); Steffen, Ingo G.; Wedel, Florian; Buchert, Ralph; Brenner, Winfried [Charite - Universitaetsmedizin Berlin, Department of Nuclear Medicine, Berlin (Germany); Apostolova, Ivayla [Universitaetsklinikum Magdeburg A.oe.R., Klinik fuer Radiologie und Nuklearmedizin, Magdeburg (Germany); Baumann, Michael [University Hospital Carl Gustav Carus, Technische Universitaet Dresden, Department of Radiation Oncology, Dresden (Germany); OncoRay - National Center for Radiation Research in Oncology, Dresden (Germany); Institute of Radiooncology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Kotzerke, Joerg; Hoff, Joerg van den [Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, PET Center, Dresden (Germany); University Hospital Carl Gustav Carus, Technische Universitaet Dresden, Department of Nuclear Medicine, Dresden (Germany)

    2014-11-22

    In a previous study, we demonstrated the first evidence that the asphericity (ASP) of pretherapeutic FDG uptake in the primary tumor provides independent prognostic information in patients with head and neck cancer. The aim of this work was to confirm these results in an independent patient group examined at a different site. FDG-PET/CT was performed in 37 patients. The primary tumor was delineated by an automatic algorithm based on adaptive thresholding. For the resulting ROIs, the metabolically active part of the tumor (MTV), SUV{sub max}, SUV{sub mean}, total lesion glycolysis (TLG) and ASP were computed. Univariate Cox regression with respect to progression free survival (PFS) and overall survival (OS) was performed. For survival analysis, patients were divided in groups of high and low risk according to the parameter cut-offs defined in our previous work. In a second step, the cut-offs were adjusted to the present data. Univariate and multivariate Cox regression was performed for the pooled data consisting of the current and the previously described patient group (N = 68). In multivariate Cox regression, clinically relevant parameters were included. Univariate Cox regression using the previously published cut-off values revealed TLG (hazard ratio (HR) = 3) and ASP (HR = 3) as significant predictors for PFS. For OS MTV (HR = 2.7) and ASP (HR = 5.9) were significant predictors. Using the adjusted cutoffs MTV (HR = 2.9/3.3), TLG (HR = 3.1/3.3) and ASP (HR = 3.1/5.9) were prognostic for PFS/OS. In the pooled data, multivariate Cox regression revealed a significant prognostic value with respect to PFS/OS for MTV (HR = 2.3/2.1), SUV{sub max} (HR = 2.1/2.5), TLG (HR = 3.5/3.6), and ASP (HR = 3.4/4.4). Our results confirm the independent prognostic value of ASP of the pretherapeutic FDG uptake in the primary tumor in patients with head and neck cancer. Moreover, these results demonstrate that ASP can be determined unambiguously across different sites. (orig.)

  14. [Immune system and tumors].

    Terme, Magali; Tanchot, Corinne

    2017-02-01

    Despite having been much debated, it is now well established that the immune system plays an essential role in the fight against cancer. In this article, we will highlight the implication of the immune system in the control of tumor growth and describe the major components of the immune system involved in the antitumoral immune response. The immune system, while exerting pressure on tumor cells, also will play a pro-tumoral role by sculpting the immunogenicity of tumors cells as they develop. Finally, we will illustrate the numerous mechanisms of immune suppression that take place within the tumoral microenvironment which allow tumor cells to escape control from the immune system. The increasingly precise knowledge of the brakes to an effective antitumor immune response allows the development of immunotherapy strategies more and more innovating and promising of hope. Copyright © 2016. Published by Elsevier Masson SAS.

  15. Imaging of pancreatic tumors

    Brambs, Hans-Juergen; Juchems, Markus

    2010-01-01

    Ductal adenocarcinoma is the most frequent solid tumor of the pancreas. This tumor has distinct features including early obstruction of the pancreatic duct, diminished enhancement after administration of contrast material due to desmoplastic growth, high propensity to infiltrate adjacent structures and to metastasize into the liver and the peritoneum. Hormone active endocrine tumors cause specific clinical symptoms. Imaging is aimed at localization of these hypervascular tumors. Non hormone active tumors are most frequently malignant and demonstrate very varying features. Cystic pancreatic tumors are increasingly detected by means of cross sectional imaging. Exact classification can be achieved with knowledge of the macropathology and considering clinical presentation as well as age and gender of the patients. (orig.)

  16. Spinal tumors

    Goethem, J.W.M. van; Hauwe, L. van den; Oezsarlak, Oe.; Schepper, A.M.A. de; Parizel, P.M.

    2004-01-01

    Spinal tumors are uncommon lesions but may cause significant morbidity in terms of limb dysfunction. In establishing the differential diagnosis for a spinal lesion, location is the most important feature, but the clinical presentation and the patient's age and gender are also important. Magnetic resonance (MR) imaging plays a central role in the imaging of spinal tumors, easily allowing tumors to be classified as extradural, intradural-extramedullary or intramedullary, which is very useful in tumor characterization. In the evaluation of lesions of the osseous spine both computed tomography (CT) and MR are important. We describe the most common spinal tumors in detail. In general, extradural lesions are the most common with metastasis being the most frequent. Intradural tumors are rare, and the majority is extramedullary, with meningiomas and nerve sheath tumors being the most frequent. Intramedullary tumors are uncommon spinal tumors. Astrocytomas and ependymomas comprise the majority of the intramedullary tumors. The most important tumors are documented with appropriate high quality CT or MR images and the characteristics of these tumors are also summarized in a comprehensive table. Finally we illustrate the use of the new World Health Organization (WHO) classification of neoplasms affecting the central nervous system

  17. Brain Tumors

    A brain tumor is a growth of abnormal cells in the tissues of the brain. Brain tumors can be benign, with no cancer cells, ... cancer cells that grow quickly. Some are primary brain tumors, which start in the brain. Others are ...

  18. Urogenital tumors

    Weller, R.E.

    1994-03-01

    An overview is provided for veterinary care of urogenital tumors in companion animals, especially the dog. Neoplasms discussed include tumors of the kidney, urinary bladder, prostate, testis, ovary, vagina, vulva and the canine transmissible venereal tumor. Topics addressed include description, diagnosis and treatment.

  19. Systemic depletion of L-cyst(e)ine with cyst(e)inase increases reactive oxygen species and suppresses tumor growth.

    Cramer, Shira L; Saha, Achinto; Liu, Jinyun; Tadi, Surendar; Tiziani, Stefano; Yan, Wupeng; Triplett, Kendra; Lamb, Candice; Alters, Susan E; Rowlinson, Scott; Zhang, Yan Jessie; Keating, Michael J; Huang, Peng; DiGiovanni, John; Georgiou, George; Stone, Everett

    2017-01-01

    Cancer cells experience higher oxidative stress from reactive oxygen species (ROS) than do non-malignant cells because of genetic alterations and abnormal growth; as a result, maintenance of the antioxidant glutathione (GSH) is essential for their survival and proliferation. Under conditions of elevated ROS, endogenous L-cysteine (L-Cys) production is insufficient for GSH synthesis. This necessitates uptake of L-Cys that is predominantly in its disulfide form, L-cystine (CSSC), via the xCT(-) transporter. We show that administration of an engineered and pharmacologically optimized human cyst(e)inase enzyme mediates sustained depletion of the extracellular L-Cys and CSSC pool in mice and non-human primates. Treatment with this enzyme selectively causes cell cycle arrest and death in cancer cells due to depletion of intracellular GSH and ensuing elevated ROS; yet this treatment results in no apparent toxicities in mice even after months of continuous treatment. Cyst(e)inase suppressed the growth of prostate carcinoma allografts, reduced tumor growth in both prostate and breast cancer xenografts and doubled the median survival time of TCL1-Tg:p53 -/- mice, which develop disease resembling human chronic lymphocytic leukemia. It was observed that enzyme-mediated depletion of the serum L-Cys and CSSC pool suppresses the growth of multiple tumors, yet is very well tolerated for prolonged periods, suggesting that cyst(e)inase represents a safe and effective therapeutic modality for inactivating antioxidant cellular responses in a wide range of malignancies.

  20. Responses to water stress of gas exchange and metabolites in Eucalyptus and Acacia spp.

    Warren, Charles R; Aranda, Ismael; Cano, F Javier

    2011-10-01

    Studies of water stress commonly examine either gas exchange or leaf metabolites, and many fail to quantify the concentration of CO₂ in the chloroplasts (C(c)). We redress these limitations by quantifying C(c) from discrimination against ¹³CO₂ and using gas chromatography-mass spectrometry (GC-MS) for leaf metabolite profiling. Five Eucalyptus and two Acacia species from semi-arid to mesic habitats were subjected to a 2 month water stress treatment (Ψ(pre-dawn) = -1.7 to -2.3 MPa). Carbohydrates dominated the leaf metabolite profiles of species from dry areas, whereas organic acids dominated the metabolite profiles of species from wet areas. Water stress caused large decreases in photosynthesis and C(c), increases in 17-33 metabolites and decreases in 0-9 metabolites. In most species, fructose, glucose and sucrose made major contributions to osmotic adjustment. In Acacia, significant osmotic adjustment was also caused by increases in pinitol, pipecolic acid and trans-4-hydroxypipecolic acid. There were also increases in low-abundance metabolites (e.g. proline and erythritol), and metabolites that are indicative of stress-induced changes in metabolism [e.g. γ-aminobutyric acid (GABA) shunt, photorespiration, phenylpropanoid pathway]. The response of gas exchange to water stress and rewatering is rather consistent among species originating from mesic to semi-arid habitats, and the general response of metabolites to water stress is rather similar, although the specific metabolites involved may vary. © 2011 Blackwell Publishing Ltd.

  1. Tumor immunology

    Otter, W. den

    1987-01-01

    Tumor immunology, the use of immunological techniques for tumor diagnosis and approaches to immunotherapy of cancer are topics covered in this multi-author volume. Part A, 'Tumor Immunology', deals with present views on tumor-associated antigens, the initiation of immune reactions of tumor cells, effector cell killing, tumor cells and suppression of antitumor immunity, and one chapter dealing with the application of mathematical models in tumor immunology. Part B, 'Tumor Diagnosis and Imaging', concerns the use of markers to locate the tumor in vivo, for the histological diagnosis, and for the monitoring of tumor growth. In Part C, 'Immunotherapy', various experimental approaches to immunotherapy are described, such as the use of monoclonal antibodies to target drugs, the use of interleukin-2 and the use of drugs inhibiting suppression. In the final section, the evaluation, a pathologist and a clinician evaluate the possibilities and limitations of tumor immunology and the extent to which it is useful for diagnosis and therapy. refs.; figs.; tabs

  2. Tumor radiation responses and tumor oxygenation in aging mice

    Rockwell, S.

    1989-01-01

    EMT6 mouse mammary tumors transplanted into aging mice are less sensitive to radiation than tumors growing in young adult animals. The experiments reported here compare the radiation dose-response curves defining the survivals of tumor cells in aging mice and in young adult mice. Cell survival curves were assessed in normal air-breathing mice and in mice asphyxiated with N 2 to produce uniform hypoxia throughout the tumors. Analyses of survival curves revealed that 41% of viable malignant cells were severely hypoxic in tumors in aging mice, while only 19% of the tumor cells in young adult animals were radiobiologically hypoxic. This did not appear to reflect anaemia in the old animals. Treatment of aging animals with a perfluorochemical emulsion plus carbogen (95% O 2 /5% CO 2 ) increased radiation response of the tumors, apparently by improving tumor oxygenation and decreasing the number of severely hypoxic, radiation resistant cells in the tumors. (author)

  3. Secondary metabolites from Eremostachys laciniata

    Calis, Ihsan; Güvenc, Aysegül; Armagan, Metin

    2008-01-01

    ), and forsythoside B (18), and five flavone derivatives, luteolin (19), luteolin 7-O-β-D-glucopyranoside (20), luteolin 7-O-(6''-O-β-D-apiofuranosyl)-β-D-glucopyranoside (21), apigenin 7-O-β-D-glucopyranoside (22), and apigenin 7-O-(6''-O-p-coumaroyl)-β-D-glucopyranoside (23). The structures of the metabolites were...... elucidated from spectroscopic (UV, IR, 1D- and 2D-NMR) and ESI-MS evidence, as well as from their specific optical rotation. The presence of these metabolites of three different classes strongly supports the close relationship of the genera Eremostachys and Phlomis....

  4. Thermogenic effects of sibutramine and its metabolites

    Connoley, Ian P; Liu, Yong-Ling; Frost, Ian; Reckless, Ian P; Heal, David J; Stock, Michael J

    1999-01-01

    The thermogenic activity of the serotonin and noradrenaline reuptake inhibitor sibutramine (BTS 54524; Reductil) was investigated by measuring oxygen consumption (VO2) in rats treated with sibutramine or its two pharmacologically-active metabolites. Sibutramine caused a dose-dependent rise in VO2, with a dose of 10 mg kg−1 of sibutramine or its metabolites producing increases of up to 30% that were sustained for at least 6 h, and accompanied by significant increases (0.5–1.0°C) in body temperature. Based on the accumulation in vivo of radiolabelled 2-deoxy-[3H]-glucose, sibutramine had little or no effect on glucose utilization in most tissues, but caused an 18 fold increase in brown adipose tissue (BAT). Combined high, non-selective doses (20 mg kg−1) of the β-adrenoceptor antagonists, atenolol and ICI 118551, inhibited completely the VO2 response to sibutramine, but the response was unaffected by low, β1-adrenoceptor-selective (atenolol) or β2-adrenoceptor-selective (ICI 118551) doses (1 mg kg−1). The ganglionic blocking agent, chlorisondamine (15 mg kg−1), inhibited completely the VO2 response to the metabolites of sibutramine, but had no effect on the thermogenic response to the β3-adrenoceptor-selective agonist BRL 35135. Similar thermogenic responses were produced by simultaneous injection of nisoxetine and fluoxetine at doses (30 mg kg−1) that had no effect on VO2 when injected individually. It is concluded that stimulation of thermogenesis by sibutramine requires central reuptake inhibition of both serotonin and noradrenaline, resulting in increased efferent sympathetic activation of BAT thermogenesis via β3-adrenoceptor, and that this contributes to the compound's activity as an anti-obesity agent. PMID:10217544

  5. 67Cu-labelled antibody fragments for RIT: strategies to prevent kidney accumulation of 67Cu-labelled metabolites

    Rutherford, R.A.D.; Zimmermann, K.; Waibel, R.; Ruch, C.; Pasquale, C. de; Novak-Hofer, I.

    1997-01-01

    Two different approaches to reduce accumulation of radiocopper labelled metabolites in the kidney were pursued. The first strategy consisted of pharmacological blockade of reuptake of metabolites by predosing with basic amino acids. The second approach is chemical modification of the DOTA chelator in an attempt to increase clearance of metabolites from the kidneys. (author) 1 fig., 1 ref

  6. Integration of Serum Protein Biomarker and Tumor Associated Autoantibody Expression Data Increases the Ability of a Blood-Based Proteomic Assay to Identify Breast Cancer.

    Meredith C Henderson

    Full Text Available Despite significant advances in breast imaging, the ability to accurately detect Breast Cancer (BC remains a challenge. With the discovery of key biomarkers and protein signatures for BC, proteomic technologies are currently poised to serve as an ideal diagnostic adjunct to imaging. Research studies have shown that breast tumors are associated with systemic changes in levels of both serum protein biomarkers (SPB and tumor associated autoantibodies (TAAb. However, the independent contribution of SPB and TAAb expression data for identifying BC relative to a combinatorial SPB and TAAb approach has not been fully investigated. This study evaluates these contributions using a retrospective cohort of pre-biopsy serum samples with known clinical outcomes collected from a single site, thus minimizing potential site-to-site variation and enabling direct assessment of SPB and TAAb contributions to identify BC. All serum samples (n = 210 were collected prior to biopsy. These specimens were obtained from 18 participants with no evidence of breast disease (ND, 92 participants diagnosed with Benign Breast Disease (BBD and 100 participants diagnosed with BC, including DCIS. All BBD and BC diagnoses were based on pathology results from biopsy. Statistical models were developed to differentiate BC from non-BC (i.e., BBD and ND using expression data from SPB alone, TAAb alone, and a combination of SPB and TAAb. When SPB data was independently used for modeling, clinical sensitivity and specificity for detection of BC were 74.7% and 77.0%, respectively. When TAAb data was independently used, clinical sensitivity and specificity for detection of BC were 72.2% and 70.8%, respectively. When modeling integrated data from both SPB and TAAb, the clinical sensitivity and specificity for detection of BC improved to 81.0% and 78.8%, respectively. These data demonstrate the benefit of the integration of SPB and TAAb data and strongly support the further development of

  7. Identification of Unique Metabolites of the Designer Opioid Furanyl Fentanyl.

    Goggin, Melissa M; Nguyen, An; Janis, Gregory C

    2017-06-01

    The illicit drug market has seen an increase in designer opioids, including fentanyl and methadone analogs, and other structurally unrelated opioid agonists. The designer opioid, furanyl fentanyl, is one of many fentanyl analogs clandestinely synthesized for recreational use and contributing to the fentanyl and opioid crisis. A method has been developed and validated for the analysis of furanyl fentanyl and furanyl norfentanyl in urine specimens from pain management programs. Approximately 10% of samples from a set of 500 presumptive heroin-positive urine specimens were found to contain furanyl fentanyl, with an average concentration of 33.8 ng/mL, and ranging from 0.26 to 390 ng/mL. Little to no furanyl norfentanyl was observed; therefore, the furanyl fentanyl specimens were further analyzed by untargeted high-resolution mass spectrometry to identify other metabolites. Multiple metabolites, including a dihydrodiol metabolite, 4-anilino-N-phenethyl-piperidine (4-ANPP) and a sulfate metabolite were identified. The aim of the presented study was to identify the major metabolite(s) of furanyl fentanyl and estimate their concentrations for the purpose of toxicological monitoring. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. SPHINGOSINE-1 PHOSPHATE: A NEW MODULATOR OF IMMUNE PLASTICITY IN THE TUMOR MICROENVIRONMENT

    Yamila I Rodriguez

    2016-10-01

    Full Text Available In the last 15 years, increasing evidences demonstrate a strong link between sphingosine-1-phosphate (S1P in both normal physiology and progression of different diseases, including cancer and inflammation. Indeed, numerous studies show that tissue levels of this sphingolipid metabolite are augmented in many cancers, affecting survival, proliferation, angiogenesis and metastatic spread. Recent insights into the possible role of S1P as a therapeutic target has attracted enormous attention and opened new opportunities in this evolving field. In this review we will focus on the role of S1P in cancer with particular emphasis in new developments that highlight the many functions of this sphingolipid in the tumor microenvironment. We will discuss how S1P modulates phenotypic plasticity of macrophages and mast cells, tumor-induced immune evasion, differentiation and survival of immune cells in the tumor milieu, interaction between cancer and stromal cells and hypoxic response.

  9. High Glucose Promotes Tumor Invasion and Increases Metastasis-Associated Protein Expression in Human Lung Epithelial Cells by Upregulating Heme Oxygenase-1 via Reactive Oxygen Species or the TGF-β1/PI3K/Akt Signaling Pathway

    Xiaowen Kang

    2015-02-01

    Full Text Available Background: Growing evidence indicates that heme oxygenase-1 (HO-1 is up-regulated in malignancies and subsequently alters tumor aggressiveness and various cancer-related factors, such as high glucose (HG levels. HO-1 expression can be induced when glucose concentrations are above 25 mM; however, the role of HO-1 in lung cancer patients with diabetes remains unknown. Therefore, in this study we investigated the promotion of tumor cell invasion and the expression of metastasis-associated proteins by inducing the up-regulation of HO-1 expression by HG treatment in A549 human lung epithelial cells. Methods: The expression of HO-1and metastasis-associated protein expression was explored by western blot analysis. HO-1 enzymatic activity, reactive oxygen species (ROS production and TGF-β1 production were examined by ELISA. Invasiveness was analyzed using a Transwell chamber. Results: HG treatment of A549 cells induced an increase in HO-1 expression, which was mediated by the HG-induced generation of reactive oxygen species (ROS and transforming growth factor-β1 (TGF-β1 in a concentration- and time-dependent manner. Following the increase in HO-1 expression, the enzymatic activity of HO-1 also increased in HG-treated cells. Pretreatment with N-acetyl-L-cysteine (NAC or with phosphatidylinositol 3-kinase (PI3K/Akt inhibitors attenuated the HG-induced increase in HO-1 expression. HG treatment of A549 cells enhanced the invasion potential of these cells, as shown with a Transwell assay, and increased metastasis-associated protein expression. However, HO-1 siRNA transfection significantly decreased these capabilities. Conclusion: this study is the first to demonstrate that HG treatment of A549 human lung epithelial cells promotes tumor cell invasion and increases metastasis-associated protein expression by up-regulating HO-1 expression via ROS or the TGF-β1/PI3K/Akt signaling pathway.

  10. Identification of metabolites in the normal ovary and their transformation in primary and metastatic ovarian cancer.

    Fong, Miranda Y; McDunn, Jonathan; Kakar, Sham S

    2011-01-01

    In this study, we characterized the metabolome of the human ovary and identified metabolic alternations that coincide with primary epithelial ovarian cancer (EOC) and metastatic tumors resulting from primary ovarian cancer (MOC) using three analytical platforms: gas chromatography mass spectrometry (GC/MS) and liquid chromatography tandem mass spectrometry (LC/MS/MS) using buffer systems and instrument settings to catalog positive or negative ions. The human ovarian metabolome was found to contain 364 biochemicals and upon transformation of the ovary caused changes in energy utilization, altering metabolites associated with glycolysis and β-oxidation of fatty acids--such as carnitine (1.79 fold in EOC, pcancer also displayed an enhanced oxidative stress response as indicated by increases in 2-aminobutyrate in EOC (1.46 fold, p = 0.0316) and in MOC (2.25 fold, povary, specifically N-acetylasparate and N-acetyl-aspartyl-glutamate, whose role in ovarian physiology has yet to be determined. These data enhance our understanding of the diverse biochemistry of the human ovary and demonstrate metabolic alterations upon transformation. Furthermore, metabolites with significant changes between groups provide insight into biochemical consequences of transformation and are candidate biomarkers of ovarian oncogenesis. Validation studies are warranted to determine whether these compounds have clinical utility in the diagnosis or clinical management of ovarian cancer patients.

  11. Primary expectations of secondary metabolites

    My program examines the plant secondary metabolites (i.e. phenolics) important for human health, and which impart the organoleptic properties that are quality indicators for fresh and processed foods. Consumer expectations such as appearance, taste, or texture influence their purchasing decisions; a...

  12. Synthesis and Bioactivity of Secondary Metabolites from Marine Sponges Containing Dibrominated Indolic Systems

    Azzurra Stefanucci

    2012-05-01

    Full Text Available Marine sponges. (e.g., Hyrtios sp., Dragmacidin sp., Aglophenia pleuma, Aplidium cyaneum, Aplidium meridianum. produce bioactive secondary metabolites involved in their defence mechanisms. Recently it was demonstrated that several of those compounds show a large variety of biological activities against different human diseases with possible applications in medicinal chemistry and in pharmaceutical fields, especially related to the new drug development process. Researchers have focused their attention principally on secondary metabolites with anti-cancer and cytotoxic activities. A common target for these molecules is the cytoskeleton, which has a central role in cellular proliferation, motility, and profusion involved in the metastatic process associate with tumors. In particular, many substances containing brominated indolic rings such as 5,6-dibromotryptamine, 5,6-dibromo-N-methyltryptamine, 5,6-dibromo-N-methyltryptophan (dibromoabrine, 5,6-dibromo-N,N-dimethyltryptamine and 5,6-dibromo-L-hypaphorine isolated from different marine sources, have shown anti-cancer activity, as well as antibiotic and anti-inflammatory properties. Considering the structural correlation between endogenous monoamine serotonin with marine indolic alkaloids 5,6-dibromoabrine and 5,6-dibromotryptamine, a potential use of some dibrominated indolic metabolites in the treatment of depression-related pathologies has also been hypothesized. Due to the potential applications in the treatment of various diseases and the increasing demand of these compounds for biological assays and the difficult of their isolation from marine sources, we report in this review a series of recent syntheses of marine dibrominated indole-containing products.

  13. Role of arachidonic acid metabolism in transcriptional induction of tumor necrosis factor gene expression by phorbol ester

    Horiguchi, J.; Spriggs, D.; Imamura, K.; Stone, R.; Luebbers, R.; Kufe, D.

    1989-01-01

    The treatment of human HL-60 promyelocytic leukemia cells with 12-0 tetradecanoylphorbol-13-acetate (TPA) is associated with induction of tumor necrosis factor (TNF) transcripts. The study reported here has examined TPA-induced signaling mechanisms responsible for the regulation of TNF gene expression in these cells. Run-on assays demonstrated that TPA increases TNS mRNA levels by transcriptional activation of this gene. The induction of TNF transcripts by TPA was inhibited by the isoquinolinesulfonamide derivative H7 but not by HA1004, suggesting that this effect of TPA is mediated by activation of protein kinase C. TPA treatment also resulted in increased arachidonic acid release. Moreover, inhibitors of phospholipase, A/sub 2/ blocked both the increase in arachidonic acid release and the induction of TNF transcripts. These findings suggest that TPA induces TNF gene expression through the formation of arachidonic acid metabolites. Although indomethacin had no detectable effect on this induction of TNF transcripts, ketoconazole, an inhibitor of 5-lipoxygenase, blocked TPA-induced increases in TNF mRNA levels. Moreover, TNF mRNA levels were increased by the 5-lipoxygenase metabolite leukotriene B/sub 4/. In contrast, the cyclooxygenase metabolite prostaglandin E/sub 2/ inhibited the induction of TNF transcripts by TPA. Taken together, these results suggest that TPA induces TNF gene expression through the arachidonic acid cascade and that the level of TNF transcripts is regulated by metabolites of the pathway, leukotriene B/sub 4/ and prostaglandin E/sub 2/.

  14. Prognostic Metabolite Biomarkers for Soft Tissue Sarcomas Discovered by Mass Spectrometry Imaging

    Lou, Sha; Balluff, Benjamin; Cleven, Arjen H. G.; Bovée, Judith V. M. G.; McDonnell, Liam A.

    2017-02-01

    Metabolites can be an important read-out of disease. The identification and validation of biomarkers in the cancer metabolome that can stratify high-risk patients is one of the main current research aspects. Mass spectrometry has become the technique of choice for metabolomics studies, and mass spectrometry imaging (MSI) enables their visualization in patient tissues. In this study, we used MSI to identify prognostic metabolite biomarkers in high grade sarcomas; 33 high grade sarcoma patients, comprising osteosarcoma, leiomyosarcoma, myxofibrosarcoma, and undifferentiated pleomorphic sarcoma were analyzed. Metabolite MSI data were obtained from sections of fresh frozen tissue specimens with matrix-assisted laser/desorption ionization (MALDI) MSI in negative polarity using 9-aminoarcridine as matrix. Subsequent annotation of tumor regions by expert pathologists resulted in tumor-specific metabolite signatures, which were then tested for association with patient survival. Metabolite signals with significant clinical value were further validated and identified by high mass resolution Fourier transform ion cyclotron resonance (FTICR) MSI. Three metabolite signals were found to correlate with overall survival ( m/z 180.9436 and 241.0118) and metastasis-free survival ( m/z 160.8417). FTICR-MSI identified m/z 241.0118 as inositol cyclic phosphate and m/z 160.8417 as carnitine.

  15. Marine metabolites: The sterols of soft coral

    Sarma, N.S.; Krishna, M.S.; Pasha, Sk.G.; Rao, T.S.P.; Venkateswarlu, Y.; Parameswaran, P.S.

    Sterols constitute a major group of secondary metabolites of soft corals. Several of these compounds have the 'usual' 3 beta-hydroxy, delta sup(5) (or delta sup(0)) cholestane skeleton, a large number of these metabolites are polar sterols...

  16. Familial Resemblance for Serum Metabolite Concentrations

    Draisma, H.H.M.; Beekman, M.; Pool, R.; van Ommen, G.J.B; Vaarhorst, A.A.M.; de Craen, A.J.; Willemsen, G.; Slagboom, P.E.; Boomsma, D.I.

    2013-01-01

    Metabolomics is the comprehensive study of metabolites, which are the substrates, intermediate, and end products of cellular metabolism. The heritability of the concentrations of circulating metabolites bears relevance for evaluating their suitability as biomarkers for disease. We report aspects of

  17. Tumor markers in clinical oncology

    Novakovic, S.

    2004-01-01

    The subtle differences between normal and tumor cells are exploited in the detection and treatment of cancer. These differences are designated as tumor markers and can be either qualitative or quantitative in their nature. That means that both the structures that are produced by tumor cells as well as the structures that are produced in excessive amounts by host tissues under the influence of tumor cells can function as tumor markers. Speaking in general, the tumor markers are the specific molecules appearing in the blood or tissues and the occurrence of which is associated with cancer. According to their application, tumor markers can be roughly divided as markers in clinical oncology and markers in pathology. In this review, only tumor markers in clinical oncology are going to be discussed. Current tumor markers in clinical oncology include (i) oncofetal antigens, (ii) placental proteins, (iii) hormones, (iv) enzymes, (v) tumor-associated antigens, (vi) special serum proteins, (vii) catecholamine metabolites, and (viii) miscellaneous markers. As to the literature, an ideal tumor marker should fulfil certain criteria - when using it as a test for detection of cancer disease: (1) positive results should occur in the early stages of the disease, (2) positive results should occur only in the patients with a specific type of malignancy, (3) positive results should occur in all patients with the same malignancy, (4) the measured values should correlate with the stage of the disease, (5) the measured values should correlate to the response to treatment, (6) the marker should be easy to measure. Most tumor markers available today meet several, but not all criteria. As a consequence of that, some criteria were chosen for the validation and proper selection of the most appropriate marker in a particular malignancy, and these are: (1) markers' sensitivity, (2) specificity, and (3) predictive values. Sensitivity expresses the mean probability of determining an elevated tumor

  18. Detection of driver metabolites in the human liver metabolic network using structural controllability analysis

    2014-01-01

    Background Abnormal states in human liver metabolism are major causes of human liver diseases ranging from hepatitis to hepatic tumor. The accumulation in relevant data makes it feasible to derive a large-scale human liver metabolic network (HLMN) and to discover important biological principles or drug-targets based on network analysis. Some studies have shown that interesting biological phenomenon and drug-targets could be discovered by applying structural controllability analysis (which is a newly prevailed concept in networks) to biological networks. The exploration on the connections between structural controllability theory and the HLMN could be used to uncover valuable information on the human liver metabolism from a fresh perspective. Results We applied structural controllability analysis to the HLMN and detected driver metabolites. The driver metabolites tend to have strong ability to influence the states of other metabolites and weak susceptibility to be influenced by the states of others. In addition, the metabolites were classified into three classes: critical, high-frequency and low-frequency driver metabolites. Among the identified 36 critical driver metabolites, 27 metabolites were found to be essential; the high-frequency driver metabolites tend to participate in different metabolic pathways, which are important in regulating the whole metabolic systems. Moreover, we explored some other possible connections between the structural controllability theory and the HLMN, and find that transport reactions and the environment play important roles in the human liver metabolism. Conclusion There are interesting connections between the structural controllability theory and the human liver metabolism: driver metabolites have essential biological functions; the crucial role of extracellular metabolites and transport reactions in controlling the HLMN highlights the importance of the environment in the health of human liver metabolism. PMID:24885538

  19. Profiling of plasma metabolites in canine oral melanoma using gas chromatography-mass spectrometry.

    Kawabe, Mifumi; Baba, Yuta; Tamai, Reo; Yamamoto, Ryohei; Komori, Masayuki; Mori, Takashi; Takenaka, Shigeo

    2015-08-01

    Malignant melanoma is one of the most common and aggressive tumors in the oral cavity of dog. The tumor has a poor prognosis, and methods for diagnosis and prediction of prognosis after treatment are required. Here, we examined metabolite profiling using gas chromatography-mass spectrometry (GC-MS) for development of a discriminant model for evaluation of prognosis. Metabolite profiles were evaluated in healthy and melanoma plasma samples using orthogonal projection to latent structure using discriminant analysis (OPLS-DA). Cases that were predicted to be healthy using the OPLS discriminant model had no advanced lesions after radiation therapy. These results indicate that metabolite profiling may be useful in diagnosis and prediction of prognosis of canine malignant melanoma.

  20. High bone sialoprotein (BSP expression correlates with increased tumor grade and predicts a poorer prognosis of high-grade glioma patients.

    Tao Xu

    Full Text Available OBJECTIVES: To investigate the expression and prognostic value of bone sialoprotein (BSP in glioma patients. METHODS: We determined the expression of BSP using real-time RT-PCR and immunohistochemistry in tissue microarrays containing 15 normal brain and 270 glioma samples. Cumulative survival was calculated by the Kaplan-Meier method and analyzed by the log-rank test. Univariate and multivariate analyses were performed by the stepwise forward Cox regression model. RESULTS: Both BSP mRNA and protein levels were significantly elevated in high-grade glioma tissues compared with those of normal brain and low-grade glioma tissues, and BSP expression positively correlated with tumor grade (P<0.001. Univariate and multivariate analysis showed high BSP expression was an independent prognostic factor for a shorter progression-free survival (PFS and overall survival (OS in both grade III and grade IV glioma patients [hazard ratio (HR = 2.549 and 3.154 for grade III glioma, and HR = 1.637 and 1.574 for grade IV glioma, respectively]. Patients with low BSP expression had a significantly longer median OS and PFS than those with high BSP expression. Small extent of resection and lineage of astrocyte served as independent risk factors of both shorter PFS and OS in grade III glioma patients; GBM patients without O(6-methylguanine (O(6-meG DNA methyltransferase (MGMT methylation and Karnofsky performance score (KPS less than 70 points were related to poor prognosis. Lack of radiotherapy related to shorter OS but not affect PFS in both grade III and grade IV glioma patients. CONCLUSION: High BSP expression occurs in a significant subset of high-grade glioma patients and predicts a poorer outcome. The study identifies a potentially useful molecular marker for the categorization and targeted therapy of gliomas.

  1. Natural single amino acid polymorphism (F19Y) in human galectin-8: detection of structural alterations and increased growth-regulatory activity on tumor cells.

    Ruiz, Federico M; Scholz, Barbara A; Buzamet, Eliza; Kopitz, Jürgen; André, Sabine; Menéndez, Margarita; Romero, Antonio; Solís, Dolores; Gabius, Hans-Joachim

    2014-03-01

    Natural amino acid substitution by single-site nucleotide polymorphism can become a valuable tool for structure-activity correlations, especially if evidence for association to disease parameters exists. Focusing on the F19Y change in human galectin-8, connected clinically to rheumatoid arthritis, we here initiate the study of consequences of a single-site substitution in the carbohydrate recognition domain of this family of cellular effectors. We apply a strategically combined set of structural and cell biological techniques for comparing properties of the wild-type and variant proteins. The overall hydrodynamic behavior of the full-length protein and of the separate N-domain is not noticeably altered, but displacements in the F0 β-strand of the β-sandwich fold in the N-domain are induced, as evidenced by protein crystallography. Analysis of thermal stability by circular dichroism spectroscopy revealed perceptible differences for the full-length proteins, pointing to an impact of the substitution beyond the N-domain. In addition, small differences in thermodynamic parameters of carbohydrate binding are detected. On the level of two types of tumor cells, characteristics of binding appeared rather similar. In further comparison of the influence on proliferation, the variant proved to be more active as growth regulator in the six tested lines of neuroblastoma, erythroleukemia and colon adenocarcinoma. The seemingly subtle structural change identified here thus has functional implications in vitro, encouraging further analysis in autoimmune regulation and, in a broad context, in work with other natural single-site variants, using the documented combined strategy. The atomic coordinates and structure factors (codes 4BMB, 4BME) have been deposited in the Protein Data Bank. © 2014 FEBS.

  2. Intact penetratin metabolite permeates across Caco-2 monolayers

    Birch, Ditlev; Christensen, Malene Vinther; Stærk, Dan

    . Previous studies have demonstrated that cell-penetrating peptides (CPPs) may be used as carriers in order to improve the bioavailability of a therapeutic cargo like insulin after oral administration. Penetratin, a commonly used CPP, has been shown to increase the uptake of insulin across Caco-2 cell......-2 cells cultured on permeable filter inserts and in cell lysates, respectively. The epithelial permeation of penetratin and the formed metabolites was assessed by using Caco-2 monolayers cultured on permeable filter inserts. Results Preliminary data revealed that at least one specific metabolite...... is formed upon both intracellular and extracellular degradation of penetratin (figure 1A). Following incubation with epithelium for 4 hours, the metabolite permeated the Caco-2 monolayer and the concentration increased approximately 10-fold when compared to a sample collected following 15 minutes...

  3. Animal tumors

    Gillette, E.L.

    1983-01-01

    There are few trained veterinary radiation oncologists and the expense of facilities has limited the extent to which this modality is used. In recent years, a few cobalt teletherapy units and megavoltage x-ray units have been employed in larger veterinary institutions. In addition, some radiation oncologists of human medical institutions are interested and willing to cooperate with veterinarians in the treatment of animal tumors. Carefully designed studies of the response of animal tumors to new modalities serve two valuable purposes. First, these studies may lead to improved tumor control in companion animals. Second, these studies may have important implications to the improvement of therapy of human tumors. Much remains to be learned of animal tumor biology so that appropriate model systems can be described for such studies. Many of the latter studies can be sponsored by agencies interested in the improvement of cancer management

  4. Metabolic engineering with systems biology tools to optimize production of prokaryotic secondary metabolites

    Kim, Hyun Uk; Charusanti, Pep; Lee, Sang Yup

    2016-01-01

    Metabolic engineering using systems biology tools is increasingly applied to overproduce secondary metabolites for their potential industrial production. In this Highlight, recent relevant metabolic engineering studies are analyzed with emphasis on host selection and engineering approaches...... for the optimal production of various prokaryotic secondary metabolites: native versus heterologous hosts (e.g., Escherichia coli) and rational versus random approaches. This comparative analysis is followed by discussions on systems biology tools deployed in optimizing the production of secondary metabolites....... The potential contributions of additional systems biology tools are also discussed in the context of current challenges encountered during optimization of secondary metabolite production....

  5. Methodological considerations for measuring glucocorticoid metabolites in feathers

    Berk, Sara A.; McGettrick, Julie R.; Hansen, Warren K.; Breuner, Creagh W.

    2016-01-01

    In recent years, researchers have begun to use corticosteroid metabolites in feathers (fCORT) as a metric of stress physiology in birds. However, there remain substantial questions about how to measure fCORT most accurately. Notably, small samples contain artificially high amounts of fCORT per millimetre of feather (the small sample artefact). Furthermore, it appears that fCORT is correlated with circulating plasma corticosterone only when levels are artificially elevated by the use of corticosterone implants. Here, we used several approaches to address current methodological issues with the measurement of fCORT. First, we verified that the small sample artefact exists across species and feather types. Second, we attempted to correct for this effect by increasing the amount of methanol relative to the amount of feather during extraction. We consistently detected more fCORT per millimetre or per milligram of feather in small samples than in large samples even when we adjusted methanol:feather concentrations. We also used high-performance liquid chromatography to identify hormone metabolites present in feathers and measured the reactivity of these metabolites against the most commonly used antibody for measuring fCORT. We verified that our antibody is mainly identifying corticosterone (CORT) in feathers, but other metabolites have significant cross-reactivity. Lastly, we measured faecal glucocorticoid metabolites in house sparrows and correlated these measurements with corticosteroid metabolites deposited in concurrently grown feathers; we found no correlation between faecal glucocorticoid metabolites and fCORT. We suggest that researchers should be cautious in their interpretation of fCORT in wild birds and should seek alternative validation methods to examine species-specific relationships between environmental challenges and fCORT. PMID:27335650

  6. Age related changes in tumor vascularity

    Loerelius, L.E.; Stridbeck, H.

    1984-01-01

    VX 2 tumors in the rabbit hind leg were investigated at one, two and three weeks of age. Angiograms were compared with vascular casts. The tumors grew rapidly the first two weeks of age. Large variations in vascularity were noted between tumors of different ages. With increasing age arteriovenous shunts at the tumor periphery and areas of avascularity of necrosis in the tumor center increased in size. Possible reasons for tumor necrosis are increased tissue pressure, anoxia caused by arteriovenous shunts and elevation in venous pressure. The natural history of the VX 2 tumor must be considered in every experimental study of the effect of any treatment. (orig.)

  7. Relationship between measurements of blood oxidative metabolites and skin reaction in irradiated rats

    Kaneko, Takashi; Goto, Jun; Nomiya, Takuma; Nemoto, Kenji

    2011-01-01

    Recently, oxidative metabolites have been able to be measured by simple small device. It has been reported that the value of oxidative metabolites increases under several conditions such as hypertension, smoking, diabetes mellitus, etc. Radiation used in radiotherapy also causes free radicals and oxidative metabolites, and irradiation causes dermatitis and sometimes causes skin ulcer in the irradiated site. We analyzed the relationships between the value of oxidative metabolites and skin reactions. A certain doses of radiation were irradiated to the right thigh of rats, and oxidative metabolites of rat's blood from caudal vein were measured by d-reactive oxygen metabolites (ROMs) test using an exclusive device. Skin reactions were evaluated according to a skin-reaction grading system from the day before irradiation to day 38 after irradiation. As a results, a significant correlation was shown between irradiation dose and skin grade. And a significant correlation was also shown between the value of oxidative metabolites and irradiation dose. The increase in oxidative metabolites was seen in the Day 16 after irradiation, and that corresponded with the appearance of skin reaction. It was suggested that the value of oxidative metabolites seems to be useful for estimating degree of skin reaction and time to appear skin reaction after irradiation. (author)

  8. Metabolites in vertebrate Hedgehog signaling.

    Roberg-Larsen, Hanne; Strand, Martin Frank; Krauss, Stefan; Wilson, Steven Ray

    2014-04-11

    The Hedgehog (HH) signaling pathway is critical in embryonic development, stem cell biology, tissue homeostasis, chemoattraction and synapse formation. Irregular HH signaling is associated with a number of disease conditions including congenital disorders and cancer. In particular, deregulation of HH signaling has been linked to skin, brain, lung, colon and pancreatic cancers. Key mediators of the HH signaling pathway are the 12-pass membrane protein Patched (PTC), the 7-pass membrane protein Smoothened (SMO) and the GLI transcription factors. PTC shares homology with the RND family of small-molecule transporters and it has been proposed that it interferes with SMO through metabolites. Although a conclusive picture is lacking, substantial efforts are made to identify and understand natural metabolites/sterols, including cholesterol, vitamin D3, oxysterols and glucocorticoides, that may be affected by, or influence the HH signaling cascade at the level of PTC and SMO. In this review we will elaborate the role of metabolites in HH signaling with a focus on oxysterols, and discuss advancements in modern analytical approaches in the field. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Central nervous system tumors

    Gavin, P.R.; Fike, J.R.; Hoopes, P.J.

    1995-01-01

    Central nervous system (CNS) tumors are relatively common in veterinary medicine, with most diagnoses occurring in the canine and feline species. Numerous tumor types from various cells or origins have been identified with the most common tumors being meningiomas and glial cell tumors. Radiation therapy is often used as an aid to control the clinical signs associated with these neoplasms. In general, these tumors have a very low metastatic potential, such that local control offers substantial benefit. Experience in veterinary radiation oncology would indicate that many patients benefit from radiation treatment. Current practice indicates the need for computed tomography or magnetic resonance imaging studies. These highly beneficial studies are used for diagnosis, treatment planning, and to monitor treatment response. Improvements in treatment planning and radiation delivered to the tumor, while sparing the normal tissues, should improve local control and decrease potential radiation related problems to the CNS. When possible, multiple fractions of 3 Gy or less should be used. The tolerance dose to the normal tissue with this fractionation schedule is 50 to 55 Gy. The most common and serious complications of radiation for CNS tumors is delayed radiation myelopathy and necrosis. Medical management of the patient during radiation therapy requires careful attention to anesthetic protocols, and medications to reduce intracranial pressure that is often elevated in these patients. Canine brain tumors have served as an experimental model to test numerous new treatments. Increased availability of advanced imaging modalities has spawned increased detection of these neoplasms. Early detection of these tumors with appropriate aggressive therapy should prove beneficial to many patients

  10. Metabolomics by proton nuclear magnetic resonance spectroscopy of the response to chloroethylnitrosourea reveals drug efficacy and tumor adaptive metabolic pathways.

    Morvan, Daniel; Demidem, Aicha

    2007-03-01

    Metabolomics of tumors may allow discovery of tumor biomarkers and metabolic therapeutic targets. Metabolomics by two-dimensional proton high-resolution magic angle spinning nuclear magnetic resonance spectroscopy was applied to investigate metabolite disorders following treatment by chloroethylnitrosourea of murine B16 melanoma (n = 33) and 3LL pulmonary carcinoma (n = 31) in vivo. Treated tumors of both types resumed growth after a delay. Nitrosoureas provoke DNA damage but the metabolic consequences of genotoxic stress are little known yet. Although some differences were observed in the metabolite profile of untreated tumor types, the prominent metabolic features of the response to nitrosourea were common to both. During the growth inhibition phase, there was an accumulation of glucose (more than x10; P < 0.05), glutamine (x3 to 4; P < 0.01), and aspartate (x2 to 5; P < 0.01). This response testified to nucleoside de novo synthesis down-regulation and drug efficacy. However, this phase also involved the increase in alanine (P < 0.001 in B16 melanoma), the decrease in succinate (P < 0.001), and the accumulation of serine-derived metabolites (glycine, phosphoethanolamine, and formate; P < 0.01). This response witnessed the activation of pathways implicated in energy production and resumption of nucleotide de novo synthesis, thus metabolic pathways of DNA repair and adaptation to treatment. During the growth recovery phase, it remained polyunsaturated fatty acid accumulation (x1.5 to 2; P < 0.05) and reduced utilization of glucose compared with glutamine (P < 0.05), a metabolic fingerprint of adaptation. Thus, this study provides the proof of principle that metabolomics of tumor response to an anticancer agent may help discover metabolic pathways of drug efficacy and adaptation to treatment.

  11. Kynurenine pathway metabolites are associated with hippocampal activity during autobiographical memory recall in patients with depression.

    Young, Kymberly D; Drevets, Wayne C; Dantzer, Robert; Teague, T Kent; Bodurka, Jerzy; Savitz, Jonathan

    2016-08-01

    Inflammation-related changes in the concentrations of inflammatory mediators such as c-reactive protein (CRP), interleukin 1β (IL-1), and IL-6 as well as kynurenine metabolites are associated with major depressive disorder (MDD) and affect depressive behavior, cognition, and hippocampal plasticity in animal models. We previously reported that the ratios of kynurenic acid (KynA) to the neurotoxic metabolites, 3-hydroxykynurenine (3HK) and quinolinic acid (QA), were positively correlated with hippocampal volume in depression. The hippocampus is critical for autobiographical memory (AM) recall which is impaired in MDD. Here we tested whether the ratios, KynA/3HK and KynA/QA were associated with AM recall performance as well as hippocampal activity during AM recall. Thirty-five unmedicated depressed participants and 25 healthy controls (HCs) underwent fMRI scanning while recalling emotionally-valenced AMs and provided serum samples for the quantification of kynurenine metabolites, CRP, and cytokines (IL-1 receptor antagonist - IL-1RA; IL-6, tumor necrosis factor alpha - TNF, interferon gamma -IFN-γ, IL-10). KynA/3HK and KynA/QA were lower in the MDD group relative to the HCs. The concentrations of the CRP and the cytokines did not differ significantly between the HCs and the MDD group. Depressed individuals recalled fewer specific AMs and displayed increased left hippocampal activity during the recall of positive and negative memories. KynA/3HK was inversely associated with left hippocampal activity during specific AM recall in the MDD group. Further, KynA/QA was positively correlated with percent negative specific memories recalled in the MDD group and showed a non-significant trend toward a positive correlation with percent positive specific memories recalled in HCs. In contrast, neither CRP nor the cytokines were significantly associated with AM recall or activity of the hippocampus during AM recall. Conceivably, an imbalance in levels of KynA versus QA

  12. Analysis of renal cell transformation following exposure to trichloroethene in vivo and its metabolite S-(dichlorovinyl)-L-cysteine in vitro

    Mally, Angela; Walker, Cheryl L.; Everitt, Jeffrey I.; Dekant, Wolfgang; Vamvakas, Spiros

    2006-01-01

    Trichloroethene (TCE) is classified as a potential human carcinogen although there is a significant debate regarding the mechanism of TCE induced renal tumor formation. This controversy stems in part from the extremely high doses of TCE required to induce renal tumors and the potential contribution of the associated nephrotoxicity to tumorigenesis. We have used Eker rats, which are uniquely susceptible to renal carcinogens, to determine if exposures to TCE in vivo or exposure to its metabolite S-(dichlorovinyl)-L-cysteine (DCVC) in vitro can transform kidney epithelial cells in the absence of cytotoxicity. Treatment with TCE (0, 100, 250, 500, 1000 mg/kg bw by gavage, 5 days a week) for 13 weeks resulted in a significant increase in cell proliferation in kidney tubule cells, but did not enhance formation of preneoplastic lesions or tumor incidence in Eker rat kidneys as compared to controls. In vitro, concentrations of DCVC, which reduced cell survival to 50%, were able to transform rat kidney epithelial cells. However, no carcinogen-specific mutations were identified in the VHL or Tsc-2 tumor suppressor genes in the transformants. Taken together, the inability of TCE to enhance formation of preneoplastic changes or neoplasia and the absence of carcinogen-specific alteration of genes accepted to be critical for renal tumor development suggest that TCE mediated carcinogenicity may occur secondary to continuous toxic injury and sustained regenerative cell proliferation

  13. Loss of metabolites from monkey striatum during PET with FDOPA

    Cumming, P; Munk, O L; Doudet, D

    2001-01-01

    constants using data recorded during 240 min of FDOPA circulation in normal monkeys and in monkeys with unilateral 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) lesions. Use of the extended models increased the magnitudes of K(D)(i) and k(D)(3) in striatum; in the case of k(D)(3), variance...... of the estimate was substantially improved upon correction for metabolite loss. The rate constants for metabolite loss were higher in MPTP-lesioned monkey striatum than in normal striatum. The high correlation between individual estimates of k(Lin)(cl) and k(DA)(9) suggests that both rate constants reveal loss...

  14. Rat Tumor Response to the Vascular-Disrupting Agent 5,6-Dimethylxanthenone-4-Acetic Acid as Measured by Dynamic Contrast-Enhanced Magnetic Resonance Imaging, Plasma 5-Hydroxyindoleacetic Acid Levels, and Tumor Necrosis

    Lesley D. McPhail

    2006-03-01

    Full Text Available The dose-dependent effects of 5,6-dimethylxanthenone-4-acetic acid (DMXAA on rat GH3 prolactinomas were investigated in vivo. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI was used to assess tumor blood flow/permeability pretreatment and 24 hours posttreatment with 0, 100, 200, or 350 mg/kg DMXAA. DCE-MRI data were analyzed using Ktrans and the integrated area under the gadolinium time curve (IAUGC as response biomarkers. Highperformance liquid chromatography (HPLC was used to determine the plasma concentration of the serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA following treatment to provide an index of increased vessel permeability and vascular damage. Finally, tumor necrosis was assessed by grading hematoxylin and eosin-stained sections cut from the same tumors investigated by MRI. Both tumor Ktrans and IAUGC were significantly reduced 24 hours posttreatment with 350 mg/kg DMXAA only, with no evidence of dose response. HPLC demonstrated a significant increase in plasma 5-HIAA 24 hours posttreatment with 200 and 350 mg/kg DMXAA. Histologic analysis revealed some evidence of tumor necrosis following treatment with 100 or 200 mg/kg DMXAA, reaching significance with 350 mg/kg DMXAA. The absence of any reduction in Ktrans or IAUGC following treatment with 200 mg/kg, despite a significant increase in 5-HIAA, raises concerns about the utility of established DCE-MRI biomarkers to assess tumor response to DMXAA.

  15. Urinary estrogen metabolites and breast cancer

    Dallal, Cher M; Stone, Roslyn A; Cauley, Jane A

    2013-01-01

    Background: Circulating estrogens are associated with increased breast cancer risk, yet the role of estrogen metabolites in breast carcinogenesis remains unclear. This combined analysis of 5 published studies evaluates urinary 2-hydroxyestrone (2-OHE1), 16a-hydroxyestrone (16a-OHE1......), and their ratio (2:16a-OHE1) in relation to breast cancer risk. ¿Methods: Primary data on 726 premenopausal women (183 invasive breast cancer cases and 543 controls) and 1,108 postmenopausal women (385 invasive breast cancer cases and 723 controls) were analyzed. Urinary estrogen metabolites were measured using...... premenopausal 2:16a-OHE1 was suggestive of reduced breast cancer risk overall (study-adjusted ORIIIvsI=0.80; 95% CI: 0.49-1.32) and for estrogen receptor negative (ER-) subtype (ORIIIvsI=0.33; 95% CI: 0.13-0.84). Among postmenopausal women, 2:16a-OHE1 was unrelated to breast cancer risk (study-adjusted ORIIIvs...

  16. Dysbiosis of gut microbiota and microbial metabolites in Parkinson's Disease.

    Sun, Meng-Fei; Shen, Yan-Qin

    2018-04-26

    Gut microbial dysbiosis and alteration of microbial metabolites in Parkinson's disease (PD) have been increasingly reported. Dysbiosis in the composition and abundance of gut microbiota can affect both the enteric nervous system and the central nervous system (CNS), indicating the existence of a microbiota-gut-brain axis and thereby causing CNS diseases. Disturbance of the microbiota-gut-brain axis has been linked to specific microbial products that are related to gut inflammation and neuroinflammation. Future directions should therefore focus on the exploration of specific gut microbes or microbial metabolites that contribute to the development of PD. Microbiota-targeted interventions, such as antibiotics, probiotics and fecal microbiota transplantation, have been shown to favorably affect host health. In this review, recent findings regarding alterations and the role of gut microbiota and microbial metabolites in PD are summarized, and potential molecular mechanisms and microbiota-targeted interventions in PD are discussed. Copyright © 2018. Published by Elsevier B.V.

  17. Dietary fat modulation of mammary tumor growth and metabolism demonstrated by 31P-nuclear magnetic resonance

    Erickson, K.L.; Buckman, D.K.; Hubbard, N.E.; Ross, B.

    1986-01-01

    The relationship of dietary fat concentration and saturation on the growth and metabolic activity of line 168 was studied using syngeneic mice fed 6 experimental diets before and during tumor growth. Tumor latency was significantly greater for mice fed a diet containing the minimum of essential fatty acids (EFA, 0.5% corn oil) or 8% coconut oil (SF) than for mice fed 8 or 20% safflower oil (PUF) or 20% SF. Changes in dietary fat resulted in alterations of tumor cell and serum fatty acid composition but not the number of inflammatory cells infiltrating the tumor. 31 P-surface coil NMR was used to measure possible changes in tumor metabolism in vivo. Although pH decreased from 7.2 to 6.6 as the tumor volume increased, there was no difference in pH among dietary groups. There was an inverse relationship between both sugar phosphate (SP)/Pi and ATP/Pi ratios and tumor volume; those ratios for mice fed an EFA deficient or minimal EFA diet decreased at a different rate than ratios for mice fed diets with additional fat. Tumors of mice fed diets containing no or a low level (0.3%) of 18:2 had higher SP/ATP ratios than mice fed diets containing a moderate level (∼ 4%) of 18:2. Thus, high levels of dietary fat had a significant effect on promotion of mammary tumors during early stages of tumor growth. Differences in tumor volume associated with dietary fat may be related to changes in the levels of high energy phosphate metabolites

  18. Pituitary Tumors

    ... Association (ABTA) International RadioSurgery Association National Brain Tumor Society National Institute of Child Health and Human Development ... Definition The pituitary is a small, bean-sized gland ...

  19. Hypothalamic tumor

    ... in the brain to reduce spinal fluid pressure. Risks of radiation therapy include damage to healthy brain cells when tumor cells are destroyed. Common side effects from chemotherapy include loss of appetite, nausea and vomiting, and fatigue.

  20. Phosphorus MRS study in bone and soft-tissue tumors

    Du Xiangke; Jiang Baoguo

    2000-01-01

    Objective: To study the metabolite changes in bone and soft-tissue tumors using phosphorus MRS for better understanding of the phospholipid metabolite and energy metabolite of tumors, which will provide more information for clinical diagnosis and therapy. Methods: Phosphorus MRS and MRI were performed in 14 bone and soft-tissue tumor patients (benign 6, malignant 8) and 19 healthy volunteers at 2.0 T. The areas under the peak of various metabolite in spectra were measured. The ratios of the other metabolite related to β-ATP, ATP, and Pcr were calculated. Intracellular pH was calculated according to the chemical shift change of Pi relative to Pcr. Results: The ratio of PME/β-ATP, PME/ATP, Pcr/PME in both benign and malignant group, intracellular pH in malignant group and LEP/Pcr in benign group were higher than that of the normal group significantly (P < 0.01). the ratios of Pi/Pcr in benign and malignant group, PDE/ATP, PDE/β-ATP, LET/Pcr, Pi/β-ATP in malignant group and LET/β-ATP in benign group were significantly different from that of the normal group (P < 0.05). Between benign and malignant tumors group, the ratios of Pcr/PME and Intracellular pH were different significantly (P < 0.05). Conclusion: The in vivo phosphorus MRS can non-invasively find abnormal phospholipid metabolite, energy metabolite and pH changes in bone and soft tissue tumors

  1. Metabolite modifications in Solanum lycopersicum roots and leaves ...

    During the treatment, Cd accumulated significantly in the roots compared to stems and leaves. Plant growth (root, stem and leaf) decreased when Cd concentration increased. The analysis of 1H-NMR spectra of polar extracts showed clear differences between metabolites amounts (soluble sugars, organic and amino acids) ...

  2. Blood metabolites of intensively reared gravid west African dwarf ...

    Blood metabolites of intensively reared gravid west African dwarf goats fed pulverized biofibre wastes based diets. ... packed cell volume (PCV), haemoglobin (Hb), mean cell volume (MCV) and mean cell haemoglobin (MCH), while goats on PMC/CsP/BG had significantly increased (p<0.05) white blood cell (WBC).

  3. Extraction of secondary metabolites from plant material: a review

    Starmans, D.A.J.; Nijhuis, H.H.

    1996-01-01

    This review article intends to give an overview of the developments in the extraction technology of secondary metabolites from plant material. There are three types of conventional extraction techniques. In order of increasing technological difficulty, these involve the use of solvents, steam or

  4. Plasma L-cystine/L-glutamate imbalance increases tumor necrosis factor-alpha from CD14+ circulating monocytes in patients with advanced cirrhosis.

    Eiji Kakazu

    Full Text Available BACKGROUND AND AIMS: The innate immune cells can not normally respond to the pathogen in patients with decompensated cirrhosis. Previous studies reported that antigen-presenting cells take up L-Cystine (L-Cys and secrete substantial amounts of L-Glutamate (L-Glu via the transport system Xc- (4F2hc+xCT, and that this exchange influences the immune responses. The aim of this study is to investigate the influence of the plasma L-Cys/L-Glu imbalance observed in patients with advanced cirrhosis on the function of circulating monocytes. METHODS: We used a serum-free culture medium consistent with the average concentrations of plasma amino acids from patients with advanced cirrhosis (ACM, and examined the function of CD14+ monocytes or THP-1 under ACM that contained 0-300 nmol/mL L-Cys with LPS. In patients with advanced cirrhosis, we actually determined the TNF-alpha and xCT mRNA of monocytes, and evaluated the correlation between the plasma L-Cys/L-Glu ratio and TNF-alpha. RESULTS: The addition of L-Cys significantly increased the production of TNF alpha from monocytes under ACM. Monocytes with LPS and THP-1 expressed xCT and a high level of extracellular L-Cys enhanced L-Cys/L-Glu antiport, and the intracellular GSH/GSSG ratio was decreased. The L-Cys transport was inhibited by excess L-Glu. In patients with advanced cirrhosis (n = 19, the TNF-alpha and xCT mRNA of monocytes were increased according to the Child-Pugh grade. The TNF-alpha mRNA of monocytes was significantly higher in the high L-Cys/L-Glu ratio group than in the low ratio group, and the plasma TNF-alpha was significantly correlated with the L-Cys/L-Glu ratio. CONCLUSIONS: A plasma L-Cys/L-Glu imbalance, which appears in patients with advanced cirrhosis, increased the TNF-alpha from circulating monocytes via increasing the intracellular oxidative stress. These results may reflect the immune abnormality that appears in patients with decompensated cirrhosis.

  5. Simultaneous determination of ethanol's four types of non-oxidative metabolites in human whole blood by liquid chromatography tandem mass spectrometry

    Zhang, Xinyu; Zheng, Feng; Lin, Zebin

    2017-01-01

    The importance of ethanol non-oxidative metabolites as the specific biomarkers of alcohol consumption in clinical and forensic settings is increasingly acknowledged. Simultaneous determination of these metabolites can provide a wealth of information like drinking habit and history, but it was dif......The importance of ethanol non-oxidative metabolites as the specific biomarkers of alcohol consumption in clinical and forensic settings is increasingly acknowledged. Simultaneous determination of these metabolites can provide a wealth of information like drinking habit and history...

  6. Tumor Types: Understanding Brain Tumors

    ... May cause excessive secretion of hormones Common among men and women in their 50s-80s Accounts for about 13 percent of all brain tumors Symptoms Headache Depression Vision loss Nausea or vomiting Behavioral and cognitive ...

  7. Common Phenolic Metabolites of Flavonoids, but Not Their Unmetabolized Precursors, Reduce the Secretion of Vascular Cellular Adhesion Molecules by Human Endothelial Cells.

    Warner, Emily F; Zhang, Qingzhi; Raheem, K Saki; O'Hagan, David; O'Connell, Maria A; Kay, Colin D

    2016-03-01

    Flavonoids have been implicated in the prevention of cardiovascular disease; however, their mechanisms of action have yet to be elucidated, possibly because most previous in vitro studies have used supraphysiological concentrations of unmetabolized flavonoids, overlooking their more bioavailable phenolic metabolites. We aimed to explore the effects of phenolic metabolites and their precursor flavonoids at physiologically achievable concentrations, in isolation and combination, on soluble vascular cellular adhesion molecule-1 (sVCAM-1). Fourteen phenolic acid metabolites and 6 flavonoids were screened at 1 μM for their relative effects on sVCAM-1 secretion by human umbilical vein endothelial cells stimulated with tumor necrosis factor alpha (TNF-α). The active metabolites were further studied for their response at different concentrations (0.01 μM-100 μM), structure-activity relationships, and effect on vascular cellular adhesion molecule (VCAM)-1 mRNA expression. In addition, the additive activity of the metabolites and flavonoids was investigated by screening 25 unique mixtures at cumulative equimolar concentrations of 1 μM. Of the 20 compounds screened at 1 μM, inhibition of sVCAM-1 secretion was elicited by 4 phenolic metabolites, of which protocatechuic acid (PCA) was the most active (-17.2%, P = 0.05). Investigations into their responses at different concentrations showed that PCA significantly reduced sVCAM-1 15.2-36.5% between 1 and 100 μM, protocatechuic acid-3-sulfate and isovanillic acid reduced sVCAM-1 levels 12.2-54.7% between 10 and 100 μM, and protocatechuic acid-4-sulfate and isovanillic acid-3-glucuronide reduced sVCAM-1 secretion 27.6% and 42.8%, respectively, only at 100 μM. PCA demonstrated the strongest protein response and was therefore explored for its effect on VCAM-1 mRNA, where 78.4% inhibition was observed only after treatment with 100 μM PCA. Mixtures of the metabolites showed no activity toward sVCAM-1, suggesting no additive

  8. Green tea increases anti-inflammatory tristetraprolin and decreases pro-inflammatory tumor necrosis factor mRNA levels in rats

    Roussel Anne M

    2007-01-01

    Full Text Available Abstract Background Tristetraprolin (TTP/ZFP36 family proteins have anti-inflammatory activity by binding to and destabilizing pro-inflammatory mRNAs such as Tnf mRNA, and represent a potential therapeutic target for inflammation-related diseases. Tea has anti-inflammatory properties but the molecular mechanisms have not been completely elucidated. We hypothesized that TTP and/or its homologues might contribute to the beneficial effects of tea as an anti-inflammatory product. Methods Quantitative real-time PCR was used to investigate the effects of green tea (0, 1, and 2 g solid extract/kg diet on the expression of Ttp family genes (Ttp/Tis11/Zfp36, Zfp36l1/Tis11b, Zfp36l2/Tis11d, Zfp36l3, pro-inflammatory genes (Tnf, Csf2/Gm-csf, Ptgs2/Cox2, and Elavl1/Hua/Hur and Vegf genes in liver and muscle of rats fed a high-fructose diet known to induce insulin resistance, oxidative stress, inflammation, and TNF-alpha levels. Results Ttp and Zfp36l1 mRNAs were the major forms in both liver and skeletal muscle. Ttp, Zfp36l1, and Zfp36l2 mRNA levels were more abundant in the liver than those in the muscle. Csf2/Gm-csf and Zfp36l3 mRNAs were undetectable in both tissues. Tea (1 g solid extract/kg diet increased Ttp mRNA levels by 50–140% but Tnf mRNA levels decreased by 30% in both tissues, and Ptgs2/Cox2 mRNA levels decreased by 40% in the muscle. Tea (2 g solid extract/kg diet increased Elavl1/Hua/Hur mRNA levels by 40% in the liver but did not affect any of the other mRNA levels in liver or muscle. Conclusion These results show that tea can modulate Ttp mRNA levels in animals and suggest that a post-transcriptional mechanism through TTP could partially account for tea's anti-inflammatory properties. The results also suggest that drinking adequate amounts of green tea may play a role in the prevention of inflammation-related diseases.

  9. Effects of aspartame metabolites on astrocytes and neurons.

    Rycerz, Karol; Jaworska-Adamu, Jadwiga Elżbieta

    2013-01-01

    Aspartame, a widespread sweetener used in many food products, is considered as a highly hazardous compound. Aspartame was discovered in 1965 and raises a lot of controversy up to date. Astrocytes are glial cells, the presence and functions of which are closely connected with the central nervous system (CNS). The aim of this article is to demonstrate the direct and indirect role of astrocytes participating in the harmful effects of aspartame metabolites on neurons. The artificial sweetener is broken down into phenylalanine (50%), aspartic acid (40%) and methanol (10%) during metabolism in the body. The excess of phenylalanine blocks the transport of important amino acids to the brain contributing to reduced levels of dopamine and serotonin. Astrocytes directly affect the transport of this amino acid and also indirectly by modulation of carriers in the endothelium. Aspartic acid at high concentrations is a toxin that causes hyperexcitability of neurons and is also a precursor of other excitatory amino acid - glutamates. Their excess in quantity and lack of astrocytic uptake induces excitotoxicity and leads to the degeneration of astrocytes and neurons. The methanol metabolites cause CNS depression, vision disorders and other symptoms leading ultimately to metabolic acidosis and coma. Astrocytes do not play a significant role in methanol poisoning due to a permanent consumption of large amounts of aspartame. Despite intense speculations about the carcinogenicity of aspartame, the latest studies show that its metabolite - diketopiperazine - is cancirogenic in the CNS. It contributes to the formation of tumors in the CNS such as gliomas, medulloblastomas and meningiomas. Glial cells are the main source of tumors, which can be caused inter alia by the sweetener in the brain. On the one hand the action of astrocytes during aspartame poisoning may be advantageous for neuro-protection while on the other it may intensify the destruction of neurons. The role of the glia in

  10. Metabolite quantitation in breast cancer by in vivo MR spectroscopy

    Jagananthan, Naranamangalam R.

    2014-01-01

    A large number of biochemical and imaging investigations are available for the diagnosis of cancer but detection is still a challenging task. Various magnetic resonance imaging (MRI) methods are used for the detection of tumors that gives morphological and functional details. On the other hand, magnetic resonance spectroscopy (MRS) provides metabolites or biochemicals at the molecular level. With technological advancement in MR, it is possible to detect in vivo metabolites from normal and pathological tissues that are present in millimolar concentrations and there are several localization methods available for the same. The commonest cancer in women is the breast cancer and is a leading cause of death among the female population worldwide. The in vivo localized proton MR spectroscopy of normal breast tissues is dominated by a huge lipid with little contribution from water while malignant breast tissues contain high water content. By suppressing the water and fat contribution, it is possible to detect choline containing compounds (tCho) in malignant breast tissues. The parameters obtained from in vivo proton MRS of breast tissues are water-to-fat (W-F) ratio and detection of tCho. tCho has been documented by many workers as a potential marker of breast malignancy. Recently, quantitative assessment of tCho concentration has been reported. There are two methods that are used for quantification of tCho: (a) semi-quantitative method that calculates the signal-to-noise ratio (SNR) of the choline signal; and (b) determination of the absolute concentration of tCho using water as an internal and external reference. Both W-F ratio and tCho concentration have been evaluated as markers for assessment of tumor response to therapy. This talk would cover various MRS methods used for the diagnosis of breast cancer together with the details of the determination of the absolute and relative concentrations of metabolites. (author)

  11. Brain tumor-targeted drug delivery strategies

    Xiaoli Wei

    2014-06-01

    Full Text Available Despite the application of aggressive surgery, radiotherapy and chemotherapy in clinics, brain tumors are still a difficult health challenge due to their fast development and poor prognosis. Brain tumor-targeted drug delivery systems, which increase drug accumulation in the tumor region and reduce toxicity in normal brain and peripheral tissue, are a promising new approach to brain tumor treatments. Since brain tumors exhibit many distinctive characteristics relative to tumors growing in peripheral tissues, potential targets based on continuously changing vascular characteristics and the microenvironment can be utilized to facilitate effective brain tumor-targeted drug delivery. In this review, we briefly describe the physiological characteristics of brain tumors, including blood–brain/brain tumor barriers, the tumor microenvironment, and tumor stem cells. We also review targeted delivery strategies and introduce a systematic targeted drug delivery strategy to overcome the challenges.

  12. Tumor immunology.

    Mocellin, Simone; Lise, Mario; Nitti, Donato

    2007-01-01

    Advances in tumor immunology are supporting the clinical implementation of several immunological approaches to cancer in the clinical setting. However, the alternate success of current immunotherapeutic regimens underscores the fact that the molecular mechanisms underlying immune-mediated tumor rejection are still poorly understood. Given the complexity of the immune system network and the multidimensionality of tumor/host interactions, the comprehension of tumor immunology might greatly benefit from high-throughput microarray analysis, which can portrait the molecular kinetics of immune response on a genome-wide scale, thus accelerating the discovery pace and ultimately catalyzing the development of new hypotheses in cell biology. Although in its infancy, the implementation of microarray technology in tumor immunology studies has already provided investigators with novel data and intriguing new hypotheses on the molecular cascade leading to an effective immune response against cancer. Although the general principles of microarray-based gene profiling have rapidly spread in the scientific community, the need for mastering this technique to produce meaningful data and correctly interpret the enormous output of information generated by this technology is critical and represents a tremendous challenge for investigators, as outlined in the first section of this book. In the present Chapter, we report on some of the most significant results obtained with the application of DNA microarray in this oncology field.

  13. Metabolite Profiling of Red Sea Corals

    Ortega, Jovhana Alejandra

    2016-12-01

    Looking at the metabolite profile of an organism provides insights into the metabolomic state of a cell and hence also into pathways employed. Little is known about the metabolites produced by corals and their algal symbionts. In particular, corals from the central Red Sea are understudied, but interesting study objects, as they live in one of the warmest and most saline environments and can provide clues as to the adjustment of corals to environmental change. In this study, we applied gas chromatography – mass spectrometry (GC–MS) metabolite profiling to analyze the metabolic profile of four coral species and their associated symbionts: Fungia granulosa, Acropora hemprichii, Porites lutea, and Pocillopora verrucosa. We identified and quantified 102 compounds among primary and secondary metabolites across all samples. F. granulosa and its symbiont showed a total of 59 metabolites which were similar to the 51 displayed by P. verrucosa. P. lutea and A. hemprichii both harbored 40 compounds in conjunction with their respective isolated algae. Comparing across species, 28 metabolites were exclusively present in algae, while 38 were exclusive to corals. A principal component and cluster analyses revealed that metabolite profiles clustered between corals and algae, but each species harbored a distinct catalog of metabolites. The major classes of compounds were carbohydrates and amino acids. Taken together, this study provides a first description of metabolites of Red Sea corals and their associated symbionts. As expected, the metabolites of coral hosts differ from their algal symbionts, but each host and algal species harbor a unique set of metabolites. This corroborates that host-symbiont species pairs display a fine-tuned complementary metabolism that provide insights into the specific nature of the symbiosis. Our analysis also revealed aquatic pollutants, which suggests that metabolite profiling might be used for monitoring pollution levels and assessing

  14. Thermodynamics-based Metabolite Sensitivity Analysis in metabolic networks.

    Kiparissides, A; Hatzimanikatis, V

    2017-01-01

    The increasing availability of large metabolomics datasets enhances the need for computational methodologies that can organize the data in a way that can lead to the inference of meaningful relationships. Knowledge of the metabolic state of a cell and how it responds to various stimuli and extracellular conditions can offer significant insight in the regulatory functions and how to manipulate them. Constraint based methods, such as Flux Balance Analysis (FBA) and Thermodynamics-based flux analysis (TFA), are commonly used to estimate the flow of metabolites through genome-wide metabolic networks, making it possible to identify the ranges of flux values that are consistent with the studied physiological and thermodynamic conditions. However, unless key intracellular fluxes and metabolite concentrations are known, constraint-based models lead to underdetermined problem formulations. This lack of information propagates as uncertainty in the estimation of fluxes and basic reaction properties such as the determination of reaction directionalities. Therefore, knowledge of which metabolites, if measured, would contribute the most to reducing this uncertainty can significantly improve our ability to define the internal state of the cell. In the present work we combine constraint based modeling, Design of Experiments (DoE) and Global Sensitivity Analysis (GSA) into the Thermodynamics-based Metabolite Sensitivity Analysis (TMSA) method. TMSA ranks metabolites comprising a metabolic network based on their ability to constrain the gamut of possible solutions to a limited, thermodynamically consistent set of internal states. TMSA is modular and can be applied to a single reaction, a metabolic pathway or an entire metabolic network. This is, to our knowledge, the first attempt to use metabolic modeling in order to provide a significance ranking of metabolites to guide experimental measurements. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier

  15. Pancreatic islet cell tumor

    ... cell tumors; Islet of Langerhans tumor; Neuroendocrine tumors; Peptic ulcer - islet cell tumor; Hypoglycemia - islet cell tumor ... stomach acid. Symptoms may include: Abdominal pain Diarrhea ... and small bowel Vomiting blood (occasionally) Glucagonomas make ...

  16. of Several Organophosphorus Insecticide Metabolites

    Russell L. Carr

    2015-01-01

    Full Text Available Paraoxonase (PON1 is a calcium dependent enzyme that is capable of hydrolyzing organophosphate anticholinesterases. PON1 activity is present in most mammals and previous research established that PON1 activity differs depending on the species. These studies mainly used the organophosphate substrate paraoxon, the active metabolite of the insecticide parathion. Using serum PON1 from different mammalian species, we compared the hydrolysis of paraoxon with the hydrolysis of the active metabolites (oxons of two additional organophosphorus insecticides, methyl parathion and chlorpyrifos. Paraoxon hydrolysis was greater than that of methyl paraoxon, but the level of activity between species displayed a similar pattern. Regardless of the species tested, the hydrolysis of chlorpyrifos-oxon was significantly greater than that of paraoxon or methyl paraoxon. These data indicate that chlorpyrifos-oxon is a better substrate for PON1 regardless of the species. The pattern of species differences in PON1 activity varied with the change in substrate to chlorpyrifos-oxon from paraoxon or methyl paraoxon. For example, the sex difference observed here and reported elsewhere in the literature for rat PON1 hydrolysis of paraoxon was not present when chlorpyrifos-oxon was the substrate.

  17. Imaging of brain tumors

    Gaensler, E.H.L.

    1995-01-01

    The contents are diagnostic approaches, general features of tumors -hydrocephalus, edema, attenuation and/or intensity value, hemorrhage, fat, contrast enhancement, intra-axial supratentorial tumors - tumors of glial origin, oligodendrogliomas, ependymomas, subependymomas, subependymal giant cell astrocytomas, choroid plexus papilloma; midline tumors - colloid cysts, craniopharyngiomas; pineal region tumors and miscellaneous tumors i.e. primary intracerebral lymphoma, primitive neuroectodermal tumors, hemangioblastomas; extraaxial tumors - meningiomas; nerve sheath tumors -schwannomas, epidermoids, dermoids, lipomas, arachnoid cysts; metastatic tumors (8 refs.)

  18. Imaging of brain tumors

    Gaensler, E H.L. [California Univ., San Francisco, CA (United States). Dept. of Radiology

    1996-12-31

    The contents are diagnostic approaches, general features of tumors -hydrocephalus, edema, attenuation and/or intensity value, hemorrhage, fat, contrast enhancement, intra-axial supratentorial tumors - tumors of glial origin, oligodendrogliomas, ependymomas, subependymomas, subependymal giant cell astrocytomas, choroid plexus papilloma; midline tumors - colloid cysts, craniopharyngiomas; pineal region tumors and miscellaneous tumors i.e. primary intracerebral lymphoma, primitive neuroectodermal tumors, hemangioblastomas; extraaxial tumors - meningiomas; nerve sheath tumors -schwannomas, epidermoids, dermoids, lipomas, arachnoid cysts; metastatic tumors (8 refs.).

  19. Neuroendocrine tumors and smoking

    Tanja Miličević

    2016-12-01

    Full Text Available Neuroendocrine cells are dispersed around the body and can be found within the gastrointestinal system, lungs, larynx, thymus, thyroid, adrenal, gonads, skin and other tissues. These cells form the so-called ''diffuse neuroendocrine system'' and tumors arising from them are defined as neuroendocrine tumors (NETs. The traditional classification of NETs based on their embryonic origin includes foregut tumors (lung, thymus, stomach, pancreas and duodenum, midgut tumors (beyond the ligament of Treitz of the duodenum to the proximal transverse colon and hindgut tumors (distal colon and rectum. NETs at each site are biologically and clinically distinct from their counterparts at other sites. Symptoms in patients with early disease are often insidious in onset, leading to a delay in diagnosis. The majority of these tumors are thus diagnosed at a stage at which the only curative treatment, radical surgical intervention, is no longer an option. Due to the increasing incidence and mortality, many studies have been conducted in order to identify risk factors for the development of NETs. Still, little is known especially when it comes to preventable risk factors such as smoking. This review will focus on smoking and its contribution to the development of different subtypes of NETs.

  20. Pericytes limit tumor cell metastasis

    Xian, Xiaojie; Håkansson, Joakim; Ståhlberg, Anders

    2006-01-01

    Previously we observed that neural cell adhesion molecule (NCAM) deficiency in beta tumor cells facilitates metastasis into distant organs and local lymph nodes. Here, we show that NCAM-deficient beta cell tumors grew leaky blood vessels with perturbed pericyte-endothelial cell-cell interactions...... the microvessel wall. To directly address whether pericyte dysfunction increases the metastatic potential of solid tumors, we studied beta cell tumorigenesis in primary pericyte-deficient Pdgfb(ret/ret) mice. This resulted in beta tumor cell metastases in distant organs and local lymph nodes, demonstrating a role...... and deficient perivascular deposition of ECM components. Conversely, tumor cell expression of NCAM in a fibrosarcoma model (T241) improved pericyte recruitment and increased perivascular deposition of ECM molecules. Together, these findings suggest that NCAM may limit tumor cell metastasis by stabilizing...

  1. Antitumor Effect of Selenium and Modified Pectin Nano Particles and Gamma Radiation on Ehrilch Solid Tumor in Female Mice

    Mansour, S. Z.; Anis, L.M.; EI- Batal, A.I.

    2010-01-01

    Selenium nano particle (Nano- Se) is a novel Se species with novel biological activities with low toxicity. The aim of the present work was to evaluate the antitumor activity of a novel Nano- Se compound with or without gamma irradiation of female mice. Selenium size- controlled Nano-Se was prepared by a simple method by adding modified pectin to the selenious acid and ascorbic acid. The antitumor activity of Selenium and Modified Pectin Nano Particles (Se-Mp- NPs) were evaluated against Ehrilch ascites carcinoma (In vitro) and Ehrilch solid tumor model (In vivo). The antioxidant states of the novel compound were assessed measuring parameters in blood and tumor tissue of female mice. Malonaldehydoyl (MDA) end product of lipid peroxidation was evaluated in plasma and tumor tissue. Glutathione -S- transferase (GST) and cytochrome P450 (Cyto P450) were determined in tumor tissue homogenate. Tumor necrosis factor alpha (TNF- a) concentration and interleukin 10 (IL- 10) concentrations was evaluated in plasma of female mice. The effect of tumor inoculation and different treatments on liver enzymes (ALT and AST) and kidney Function (urea and creatinine) were detected in the plasma of animals. Apoptosis was shown and estimated in tumor tissue of animals histopathological of tumor in different groups of mice were examined. Ehrilch solid tumor induced a significant increase in MDA content, GSH-Px and GST activities level and in the amount of metabolites of CYP 450. Moreover, a significant decrease was observed in GSH content, SOD activity level in the tumor tissue, INF- a concentration, IL- 10 concentration in the plasma. Also, a significant alteration in kidney and liver functions was occurred as compared to control group. The results showed a significant antitumor activity of selenium and Modified Pectin Nano Particles (Se-Mp- NPs) at the concentration 2.25 μg / ml was 70%

  2. A Decade in the MIST: Learnings from Investigations of Drug Metabolites in Drug Development under the "Metabolites in Safety Testing" Regulatory Guidance.

    Schadt, Simone; Bister, Bojan; Chowdhury, Swapan K; Funk, Christoph; Hop, Cornelis E C A; Humphreys, W Griffith; Igarashi, Fumihiko; James, Alexander D; Kagan, Mark; Khojasteh, S Cyrus; Nedderman, Angus N R; Prakash, Chandra; Runge, Frank; Scheible, Holger; Spracklin, Douglas K; Swart, Piet; Tse, Susanna; Yuan, Josh; Obach, R Scott

    2018-06-01

    Since the introduction of metabolites in safety testing (MIST) guidance by the Food and Drug Administration in 2008, major changes have occurred in the experimental methods for the identification and quantification of metabolites, ways to evaluate coverage of metabolites, and the timing of critical clinical and nonclinical studies to generate this information. In this cross-industry review, we discuss how the increased focus on human drug metabolites and their potential contribution to safety and drug-drug interactions has influenced the approaches taken by industry for the identification and quantitation of human drug metabolites. Before the MIST guidance was issued, the method of choice for generating comprehensive metabolite profile was radio chromatography. The MIST guidance increased the focus on human drug metabolites and their potential contribution to safety and drug-drug interactions and led to changes in the practices of drug metabolism scientists. In addition, the guidance suggested that human metabolism studies should also be accelerated, which has led to more frequent determination of human metabolite profiles from multiple ascending-dose clinical studies. Generating a comprehensive and quantitative profile of human metabolites has become a more urgent task. Together with technological advances, these events have led to a general shift of focus toward earlier human metabolism studies using high-resolution mass spectrometry and to a reduction in animal radiolabel absorption/distribution/metabolism/excretion studies. The changes induced by the MIST guidance are highlighted by six case studies included herein, reflecting different stages of implementation of the MIST guidance within the pharmaceutical industry. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  3. Correcting ligands, metabolites, and pathways

    Vriend Gert

    2006-11-01

    Full Text Available Abstract Background A wide range of research areas in bioinformatics, molecular biology and medicinal chemistry require precise chemical structure information about molecules and reactions, e.g. drug design, ligand docking, metabolic network reconstruction, and systems biology. Most available databases, however, treat chemical structures more as illustrations than as a datafield in its own right. Lack of chemical accuracy impedes progress in the areas mentioned above. We present a database of metabolites called BioMeta that augments the existing pathway databases by explicitly assessing the validity, correctness, and completeness of chemical structure and reaction information. Description The main bulk of the data in BioMeta were obtained from the KEGG Ligand database. We developed a tool for chemical structure validation which assesses the chemical validity and stereochemical completeness of a molecule description. The validation tool was used to examine the compounds in BioMeta, showing that a relatively small number of compounds had an incorrect constitution (connectivity only, not considering stereochemistry and that a considerable number (about one third had incomplete or even incorrect stereochemistry. We made a large effort to correct the errors and to complete the structural descriptions. A total of 1468 structures were corrected and/or completed. We also established the reaction balance of the reactions in BioMeta and corrected 55% of the unbalanced (stoichiometrically incorrect reactions in an automatic procedure. The BioMeta database was implemented in PostgreSQL and provided with a web-based interface. Conclusion We demonstrate that the validation of metabolite structures and reactions is a feasible and worthwhile undertaking, and that the validation results can be used to trigger corrections and improvements to BioMeta, our metabolite database. BioMeta provides some tools for rational drug design, reaction searches, and

  4. Misonidazole in patients receiving radical radiotherapy: pharmacokinetic effects of phenytoin tumor response and neurotoxicity

    Moore, J.L.; Biol, F.I.; Patterson, I.C.M.; Dawes, P.J.D.K.; Henk, J.M.

    1982-01-01

    In 1978, a pilot study began of 29 patients with advanced tumors of the head and neck. The study showed an initial peripheral neuropathy rate of 55%, despite a dose limitation of 12 g/m 2 of misonidazole. Tumor response at 9 months was most encouraging. We are now able to examine tumor response and persistence of neuropathy in these patients 2 1/2 years after radical radiotherapy. The results are comparable with those obtained with hyperbaric oxygen in a clinical trial at this center during the 1970's. Neuropathy was a serious side effect but the drug phenytoin has been shown to shorten the half-life of misonidazole. We have examined the effect of phenytoin on the pharmacokinetics of misonidazole in 13 patients who received radical radiotherapy for advanced head and neck tumors or oesophageal tumors. Misonidazole was given in multiple doses, i.e. daily or weekly as it would be used in conventional therapy. Phenytoin was given either daily throughout treatment, or it was withdrawn during treatment. There were dramatic changes in the half-life of misonidazole, but the concentration at the time of irradiation was little affected. The significant changes in the half-life of misonidazole and the increased concentration of the metabolite desmethylmisonidazole are discussed

  5. Characterization of Urinary Phthalate Metabolites Among Custodians

    Cavallari, Jennifer M.; Simcox, Nancy J.; Wakai, Sara; Lu, Chensheng; Garza, Jennifer L.; Cherniack, Martin

    2015-01-01

    Phthalates, a ubiquitous class of chemicals found in consumer, personal care, and cleaning products, have been linked to adverse health effects. Our goal was to characterize urinary phthalate metabolite concentrations and to identify work and nonwork sources among custodians using traditional cleaning chemicals and ‘green’ or environmentally preferable products (EPP). Sixty-eight custodians provided four urine samples on a workday (first void, before shift, end of shift, and before bedtime) and trained observers recorded cleaning tasks and types of products used (traditional, EPP, or disinfectant) hourly over the work shifts. Questionnaires were used to assess personal care product use. Four different phthalate metabolites [monoethyl phthalate (MEP), monomethyl phthalate (MMP), mono (2-ethylhexyl) phthalate (MEHP), and monobenzyl phthalate (MBzP)] were quantified using liquid chromatography mass spectrometry. Geometric means (GM) and 95% confidence intervals (95% CI) were calculated for creatinine-adjusted urinary phthalate concentrations. Mixed effects univariate and multivariate modeling, using a random intercept for each individual, was performed to identify predictors of phthalate metabolites including demographics, workplace factors, and personal care product use. Creatinine-adjusted urinary concentrations [GM (95% CI)] of MEP, MMP, MEHP, and MBzP were 107 (91.0–126), 2.69 (2.18–3.30), 6.93 (6.00–7.99), 8.79 (7.84–9.86) µg g−1, respectively. An increasing trend in phthalate concentrations from before to after shift was not observed. Creatinine-adjusted urinary MEP was significantly associated with frequency of traditional cleaning chemical intensity in the multivariate model after adjusting for potential confounding by demographics, workplace factors, and personal care product use. While numerous demographics, workplace factors, and personal care products were statistically significant univariate predictors of MMP, MEHP, and MBzP, few

  6. Bone tumors

    Moylan, D.J.; Yelovich, R.M.

    1991-01-01

    Primary bone malignancies are relatively rare with less than 4,000 new cases per year. Multiple myeloma (more correctly a hematologic malignancy) accounts for 40%; osteosarcomas, 28%; chondrosarcomas, 13%; fibrosarcomas arising in bone, 4%; and Ewing's sarcoma, 7%. The authors discuss various treatments for bone tumors, including radiotherapy, chemotherapy and surgery

  7. Wilms Tumor

    ... a child's general health and to detect any adverse side effects (such as low red or white blood cell ... medicine needed, which helps reduce long-term side effects. The most common ... can be completely removed by surgery. About 41% of all Wilms tumors are stage ...

  8. Nephrogenic tumors

    Wiesbauer, P.

    2008-01-01

    Nephroblastomas are the most common malignant renal tumors in childhood. According to the guidelines of the SIOP (Societe Internationale d'Oncologie Pediatrique) and GPOH (Gesellschaft fuer Paediatrische Onkologie und Haematologie) pre-operative chemotherapy can be started without histological confirmation and thus initial imaging studies, in particular ultrasound, play an outstanding role for diagnostic purposes

  9. Magnetic resonance spectroscopy of brain tumors; MR-Spektroskopie bei Hirntumoren

    Ditter, P.; Hattingen, E. [Universitaetsklinikum Bonn, FE Neuroradiologie, Radiologische Klinik, Bonn (Germany)

    2017-06-15

    Conventional magnetic resonance imaging (MRI) under consideration of clinical information enables the correct diagnosis and therapy for the majority of cerebral space-occupying lesions. Some important differential diagnoses, e. g. low vs. high-grade tumors, require additional MRI methods. This article critically discusses the importance of magnetic resonance spectroscopy ({sup 1}H-MRS) in brain tumors. The concentration of normal and pathological brain metabolites can be non-invasively measured by {sup 1}H-MRS. It is based on the principle that chemical proton compounds of certain brain metabolites focally attenuate the external magnetic field and change the proton resonance frequency according to typical patterns. In addition, parameter maps of MRS imaging (MRSI) can show the tumor heterogeneity as well as changes in the surrounding brain tissue. In this context, the patterns of N-acetylaspartate, total choline (tCho) and creatine are relatively robust, whereas the patterns of other metabolites, such as myoinositol, glutamate, lactate or lipids greatly depend on the external field strength and echo time. The signal intensity of tCho in vital tumor tissue increases with the WHO grade of the brain tumor, i.e. increases with the level of malignancy. The use of MRSI facilitates the WHO grading of gliomas by determining target points in biopsies. Different distribution patterns and specific metabolite signals enable a better differentiation between abscesses, metastases, central nervous system (CNS) lymphomas and gliomas. The use of {sup 1}H-MRS provides valuable information on the differential diagnosis and graduation of brain tumors; however, so far artefacts, signal strength, parameter selection and a lack of standardization impede the establishment of {sup 1}H-MRS for use in clinical routine diagnostics. (orig.) [German] Die konventionelle MRT ermoeglicht unter Beruecksichtigung klinischer Information bei einem Grossteil zerebraler Raumforderungen die richtige

  10. Antimycobacterial Metabolites from Marine Invertebrates.

    Daletos, Georgios; Ancheeva, Elena; Chaidir, Chaidir; Kalscheuer, Rainer; Proksch, Peter

    2016-10-01

    Marine organisms play an important role in natural product-based drug research due to accumulation of structurally unique and bioactive metabolites. The exploration of marine-derived compounds may significantly extend the scientific knowledge of potential scaffolds for antibiotic drug discovery. Development of novel antitubercular agents is especially significant as the emergence of drug-resistant Mycobacterium tuberculosis strains remains threateningly high. Marine invertebrates (i.e., sponges, corals, gorgonians) as a source of new chemical entities are the center of research for several scientific groups, and the wide spectrum of biological activities of marine-derived compounds encourages scientists to carry out investigations in the field of antibiotic research, including tuberculosis treatment. The present review covers published data on antitubercular natural products from marine invertebrates grouped according to their biogenetic origin. Studies on the structure-activity relationships of these important leads are highlighted as well. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The secondary metabolite bioinformatics portal

    Weber, Tilmann; Kim, Hyun Uk

    2016-01-01

    . In this context, this review gives a summary of tools and databases that currently are available to mine, identify and characterize natural product biosynthesis pathways and their producers based on ‘omics data. A web portal called Secondary Metabolite Bioinformatics Portal (SMBP at http...... analytical and chemical methods gave access to this group of compounds, nowadays genomics-based methods offer complementary approaches to find, identify and characterize such molecules. This paradigm shift also resulted in a high demand for computational tools to assist researchers in their daily work......Natural products are among the most important sources of lead molecules for drug discovery. With the development of affordable whole-genome sequencing technologies and other ‘omics tools, the field of natural products research is currently undergoing a shift in paradigms. While, for decades, mainly...

  12. Duodenal L cell density correlates with features of metabolic syndrome and plasma metabolites

    Annieke C G van Baar

    2018-05-01

    Full Text Available Background: Enteroendocrine cells are essential for the regulation of glucose metabolism, but it is unknown whether they are associated with clinical features of metabolic syndrome (MetS and fasting plasma metabolites. Objective: We aimed to identify fasting plasma metabolites that associate with duodenal L cell, K cell and delta cell densities in subjects with MetS with ranging levels of insulin resistance. Research design and methods: In this cross-sectional study, we evaluated L, K and delta cell density in duodenal biopsies from treatment-naïve males with MetS using machine-learning methodology. Results: We identified specific clinical biomarkers and plasma metabolites associated with L cell and delta cell density. L cell density was associated with increased plasma metabolite levels including symmetrical dimethylarginine, 3-aminoisobutyric acid, kynurenine and glycine. In turn, these L cell-linked fasting plasma metabolites correlated with clinical features of MetS. Conclusions: Our results indicate a link between duodenal L cells, plasma metabolites and clinical characteristics of MetS. We conclude that duodenal L cells associate with plasma metabolites that have been implicated in human glucose metabolism homeostasis. Disentangling the causal relation between L cells and these metabolites might help to improve the (small intestinal-driven pathophysiology behind insulin resistance in human obesity.

  13. Measurements of diagnostic examination performance using quantitative apparent diffusion coefficient and proton MR spectroscopic imaging in the preoperative evaluation of tumor grade in cerebral gliomas

    Server, Andres; Kulle, Bettina; Gadmar, Oystein B.; Josefsen, Roger; Kumar, Theresa; Nakstad, Per H.

    2011-01-01

    . Results: Statistical analysis demonstrated a threshold minimum ADC tumor value of 1.07 to provide sensitivity, specificity, PPV, and NPV of 79.7%, 60.0%, 88.7%, and 42.9% respectively, in determining high-grade gliomas. Threshold values of 1.35 and 1.78 for peritumoral Cho/Cr and Cho/NAA metabolite ratios resulted in sensitivity, specificity, PPV, and NPV of 83.3%, 85.1%, 41.7%, 97.6%, and 100%, 57.4%, 23.1% and 100% respectively for determining high-grade gliomas. Significant differences were noted in the ADC tumor values and ratios, peritumoral Cho/Cr and Cho/NAA metabolite ratios, and tumoral Cho/NAA ratio between low- and high-grade gliomas. The combination of mean ADC tumor value, maximum ADC tumor ratio, peritumoral Cho/Cr and Cho/NAA metabolite ratios resulted in sensitivity, specificity, PPV, and NPV of 91.5%, 100%, 100% and 60% respectively. Conclusion: Combining DWI and MRSI increases the accuracy of preoperative imaging in the determination of glioma grade. MRSI had superior diagnostic performance in predicting glioma grade compared with DWI alone. The predictive values are helpful in the clinical decision-making process to evaluate the histologic grade of tumors, and provide a means of guiding treatment.

  14. Microsomal metabolism of trenbolone acetate metabolites ...

    Trenbolone acetate (TBA) is a synthetic growth promoter widely used in animal agriculture, and its metabolites are suspected endocrine disrupting compounds in agriculturally impacted receiving waters. However, beyond the three widely recognized TBA metabolites (17-trenbolone, 17-trenbolone and trendione), little is known about other metabolites formed in vivo and subsequently discharged into the environment, with some evidence suggesting these unknown metabolites comprise a majority of the TBA mass dosed to the animal. Here, we explored the metabolism of the three known TBA metabolites using rat liver microsome studies. All TBA metabolites are transformed into a complex mixture of monohydroxylated products. Based on product characterization, the majority are more polar than the parent metabolites but maintain their characteristic trienone backbone. A minor degree of interconversion between known metabolites was also observed, as were higher order hydroxylated products with a greater extent of reaction. Notably, the distribution and yield of products were generally comparable across a series of variably induced rat liver microsomes, as well as during additional studies with human and bovine liver microsomes. Bioassays conducted with mixtures of these transformation products suggest that androgen receptor (AR) binding activity is diminished as a result of the microsomal treatment, suggesting that the transformation products are generally less potent than

  15. SECONDARY METABOLITES FROM MARINE PENICILLIUM BREVICOMPACTUM

    ROVIROSA, JUANA; DIAZ-MARRERO, ANA; DARIAS, JOSE; PAINEMAL, KARIN; SAN MARTIN, AURELIO

    2006-01-01

    In a screening of Basidiomycete cultures isolated from marine invertebrates collected along the Chilean coastline for the production of antibiotics we identified a Penicillium brevicompactum strain as a producer of metabolites inhibiting the growth of bacteria and fungi. Bioactivity guided purification resulted in the isolation of four known metabolites. Their structures were elucidated by spectroscopic methods.

  16. Biochemical and secondary metabolites changes under moisture ...

    The study showed the importance of carbohydrate and nitrogen cycle related metabolites in mediating tolerance in cassava by affecting their phenotypic expression in the plant. Keywords: Hydrothermal stress, bio-chemicals, pigments, secondary metabolites, cassava. African Journal of Biotechnology, Vol 13(31) 3173-3186 ...

  17. MARSI: metabolite analogues for rational strain improvement

    Cardoso, João G. R.; Zeidan, Ahmad A; Jensen, Kristian

    2018-01-01

    reactions in an organism can be used to predict effects of MAs on cellular phenotypes. Here, we present the Metabolite Analogues for Rational Strain Improvement (MARSI) framework. MARSI provides a rational approach to strain improvement by searching for metabolites as targets instead of genes or reactions...

  18. Short-echo 3D H-1 Magnetic Resonance Spectroscopic Imaging of patients with glioma at 7T for characterization of differences in metabolite levels

    Li, Yan; Larson, Peder; Chen, Albert P.; Lupo, Janine M.; Ozhinsky, Eugene; Kelley, Douglas; Chang, Susan M.; Nelson, Sarah J.

    2014-01-01

    Purpose The purpose of this study was to evaluate the feasibility of using a short echo time, 3D H-1 magnetic resonance spectroscopic imaging (MRSI) sequence at 7T to assess the metabolic signature of lesions for patients with glioma. Materials and Methods 29 patients with glioma were studied. MRSI data were obtained using CHESS water suppression, spectrally-selective adiabatic inversion-recovery pulses and automatically prescribed outer-volume-suppression for lipid suppression, and spin echo slice selection (TE=30ms). An interleaved flyback echo-planar trajectory was applied to shorten the total acquisition time (~10min). Relative metabolite ratios were estimated in tumor and in normal-appearing white and gray matter (NAWM, GM). Results Levels of glutamine, myo-inositol, glycine and glutathione relative to total creatine (tCr) were significantly increased in the T2 lesions for all tumor grades compared to those in the NAWM (p < 0.05), while N-acetyl aspartate to tCr were significantly decreased (p < 0.05). In grade 2 gliomas, level of total choline-containing-compounds to tCr was significantly increased (p = 0.0137), while glutamate to tCr was significantly reduced (p = 0.0012). Conclusion The improved sensitivity of MRSI and the increased number of metabolites that can be evaluated using 7T MR scanners is of interest for evaluating patients with glioma. This study has successfully demonstrated the application of a short-echo spin-echo MRSI sequence to detect characteristic differences in regions of tumor versus normal appearing brain. PMID:24935758

  19. Drinking water guideline for ethylene thiourea, a metabolite of ethylene bisdithiocarbamate fungicides

    Frakes, R.A.

    1988-01-01

    The ethylene bisdithiocarbamate fungicides are the most heavily used pesticides in Maine. Ethylene thiourea (ETU) is a metabolite and environmental decomposition product of these compounds, is highly water soluble, and has been detected in groundwater in the state. ETU is a recognized animal carcinogen and teratogen. When administered in the diet, ETU produced a significant increase in thyroid carcinomas in rats in two studies. Two strains of mice fed ETU in the diet developed an increased incidence of hepatomas and a slight increase in lymphomas. Application of the linearized multistage model resulted in virtually safe doses (10(-5) lifetime cancer risk) of 0.25 to 1.6 micrograms/kg/day. The major teratologic effect has been the development of hydrocephalus and other CNS defects postnatally, resulting in a high mortality rate among the offspring. The NOEL for this effect was 5 mg/kg in a single oral dose. Retarded parietal ossification was observed at 5 mg/kg/day. Serious nononcogenic thyroid effects, such as goiter, decreased 131I uptake, and reduced thyroxine production, have been observed. Thyroid hyperplasia was produced at doses as low as 0.3 mg/kg/day ETU ingested in the diet. Based on protection against thyroid and/or liver tumors and alteration in thyroid function, the recommended Drinking Water Guideline for ETU is determined to be 3 ppb. This will also provide protection against developmental effects, since these occur at doses that are one to two orders of magnitude higher. 37 references

  20. Renal-Specific Silencing of TNF (Tumor Necrosis Factor) Unmasks Salt-Dependent Increases in Blood Pressure via an NKCC2A (Na+-K+-2Cl- Cotransporter Isoform A)-Dependent Mechanism.

    Hao, Shoujin; Hao, Mary; Ferreri, Nicholas R

    2018-06-01

    We tested the hypothesis that TNF (tumor necrosis factor)-α produced within the kidney and acting on the renal tubular system is part of a regulatory mechanism that attenuates increases in blood pressure in response to high salt intake. Intrarenal administration of a lentivirus construct, which specifically silenced TNF in the kidney, did not affect baseline blood pressure. However, blood pressure increased significantly 1 day after mice with intrarenal silencing of TNF ingested 1% NaCl in the drinking water. The increase in blood pressure, which was continuously observed for 11 days, promptly returned to baseline levels when mice were switched from 1% NaCl to tap water. Silencing of renal TNF also increased NKCC2 (Na + -K + -2Cl - cotransporter) phosphorylation and induced a selective increase in NKCC2A (NKCC2 isoform A) mRNA accumulation in both the cortical and medullary thick ascending limb of Henle loop that was neither associated with a compensatory decrease of NKCC2F in the medulla nor NKCC2B in the cortex. The NaCl-mediated increases in blood pressure were completely absent when NKCC2A, using a lentivirus construct that did not alter expression of NKCC2F or NKCC2B, and TNF were concomitantly silenced in the kidney. Moreover, the decrease in urine volume and NaCl excretion induced by renal TNF silencing was abolished when NKCC2A was concurrently silenced, suggesting that this isoform contributes to the transition from a salt-resistant to salt-sensitive phenotype. Collectively, the data are the first to demonstrate a role for TNF produced by the kidney in the modulation of sodium homeostasis and blood pressure regulation. © 2018 American Heart Association, Inc.

  1. Plasma methoxytyramine: A novel biomarker of metastatic pheochromocytoma and paraganglioma in relation to established risk factors of tumor size, location and SDHB mutation status

    Eisenhofer, Graeme; Lenders, Jacques W.M.; Siegert, Gabriele; Bornstein, Stefan R.; Friberg, Peter; Milosevic, Dragana; Mannelli, Massimo; Linehan, W. Marston; Adams, Karen; Timmers, Henri J.; Pacak, Karel

    2012-01-01

    Summary Background There are currently no reliable biomarkers for malignant pheochromocytomas and paragangliomas (PPGLs). This study examined whether measurements of catecholamines and their metabolites might offer utility for this purpose. Methods Subjects included 365 patients with PPGLs, including 105 with metastases, and a reference population of 846 without the tumor. Eighteen catecholamine-related analytes were examined in relation to tumor location, size and mutations of succinate dehydrogenase subunit B (SDHB). Results Receiver-operating characteristic curves indicated that plasma methoxytyramine, the O-methylated metabolite of dopamine, provided the most accurate biomarker for discriminating patients with and without metastases. Plasma methoxytyramine was 4.7-fold higher in patients with than without metastases, a difference independent of tumor burden and the associated 1.6- to 1.8-fold higher concentrations of norepinephrine and normetanephrine. Increased plasma methoxytyramine was associated with SDHB mutations and extra-adrenal disease, but was also present in patients without SDHB mutations and metastases or those with metastases secondary to adrenal tumors. High risk of malignancy associated with SDHB mutations reflected large size and extra-adrenal locations of tumors, both independent predictors of metastatic disease. A plasma methoxytyramine above 0.2 nmol/L or a tumor diameter above 5 cm indicated increased likelihood of metastatic spread, particularly when associated with an extra-adrenal location. Interpretation Plasma methoxytyramine is a novel biomarker for metastatic PPGLs that together with SDHB mutation status, tumor size and location provide useful information to assess the likelihood of malignancy and manage affected patients. PMID:22036874

  2. Analysis of blood clearance and labeled metabolites for the estrogen receptor tracer [F-18]-16α-fluorestradiol (FES)

    Mankoff, David A.; Tewson, Timothy J.; Eary, Janet F.

    1997-01-01

    [F-18] 16α-Fluoroestradiol (FES) has been shown to be a tracer of estrogen receptor content in breast tumors; however, quantitative analysis of FES images is complicated by the rapid metabolism of the tracer in vivo. To optimize FES PET imaging studies and to provide an input function for the quantitative analysis of the tracer FES uptake in breast tumors, we studied the clearance and metabolism of FES in 15 breast cancer patients. FES clearance, protein binding, and metabolite production and limited assays to determine the identity of labeled metabolites were performed. These studies show that FES was rapidly cleared from the blood and metabolized; at 20 min only 20% of the circulating radioactivity was unmetabolized FES, and much of this was protein bound. The detectable metabolites in either blood or urine are conjugation products, largely the glucuronide and the sulfate of FES, and these are excreted through the kidneys at a rate comparable to their introduction into the circulation. After 20 min postinjection the blood levels of radioactivity remain fairly constant. Our results, the first report on human metabolites, are in close agreement with previous animal studies of FES metabolism. These studies show that because FES clearance is rapid and metabolite background is nearly constant, imaging starting at 20 to 30 min after injection may provide good visualization of estrogen-containing tissues. Labeled metabolites need to be accounted for in quantifying FES uptake

  3. Complicating factors in safety testing of drug metabolites: Kinetic differences between generated and preformed metabolites

    Prueksaritanont, Thomayant; Lin, Jiunn H.; Baillie, Thomas A.

    2006-01-01

    This paper aims to provide a scientifically based perspective on issues surrounding the proposed toxicology testing of synthetic drug metabolites as a means of ensuring adequate nonclinical safety evaluation of drug candidates that generate metabolites considered either to be unique to humans or are present at much higher levels in humans than in preclinical species. We put forward a number of theoretical considerations and present several specific examples where the kinetic behavior of a preformed metabolite given to animals or humans differs from that of the corresponding metabolite generated endogenously from its parent. The potential ramifications of this phenomenon are that the results of toxicity testing of the preformed metabolite may be misleading and fail to characterize the true toxicological contribution of the metabolite when formed from the parent. It is anticipated that such complications would be evident in situations where (a) differences exist in the accumulation of the preformed versus generated metabolites in specific tissues, and (b) the metabolite undergoes sequential metabolism to a downstream product that is toxic, leading to differences in tissue-specific toxicity. Owing to the complex nature of this subject, there is a need to treat drug metabolite issues in safety assessment on a case-by-case basis, in which a knowledge of metabolite kinetics is employed to validate experimental paradigms that entail administration of preformed metabolites to animal models

  4. A new paradigm for known metabolite identification in metabonomics/metabolomics: metabolite identification efficiency.

    Everett, Jeremy R

    2015-01-01

    A new paradigm is proposed for assessing confidence in the identification of known metabolites in metabonomics studies using NMR spectroscopy approaches. This new paradigm is based upon the analysis of the amount of metabolite identification information retrieved from NMR spectra relative to the molecular size of the metabolite. Several new indices are proposed including: metabolite identification efficiency (MIE) and metabolite identification carbon efficiency (MICE), both of which can be easily calculated. These indices, together with some guidelines, can be used to provide a better indication of known metabolite identification confidence in metabonomics studies than existing methods. Since known metabolite identification in untargeted metabonomics studies is one of the key bottlenecks facing the science currently, it is hoped that these concepts based on molecular spectroscopic informatics, will find utility in the field.

  5. A New Paradigm for Known Metabolite Identification in Metabonomics/Metabolomics: Metabolite Identification Efficiency

    Jeremy R. Everett

    2015-01-01

    Full Text Available A new paradigm is proposed for assessing confidence in the identification of known metabolites in metabonomics studies using NMR spectroscopy approaches. This new paradigm is based upon the analysis of the amount of metabolite identification information retrieved from NMR spectra relative to the molecular size of the metabolite. Several new indices are proposed including: metabolite identification efficiency (MIE and metabolite identification carbon efficiency (MICE, both of which can be easily calculated. These indices, together with some guidelines, can be used to provide a better indication of known metabolite identification confidence in metabonomics studies than existing methods. Since known metabolite identification in untargeted metabonomics studies is one of the key bottlenecks facing the science currently, it is hoped that these concepts based on molecular spectroscopic informatics, will find utility in the field.

  6. Rare incidence of tumor lysis syndrome in metastatic prostate cancer following treatment with docetaxel.

    Bhardwaj, Sharonlin; Varma, Seema

    2018-03-01

    Tumor lysis syndrome is a serious and sometimes lethal complication of cancer treatment that is comprised of a set of metabolic disturbances along with clinical manifestations. Initiating chemotherapy in bulky, rapidly proliferating tumors causes rapid cell turnover that in turn releases metabolites into circulation that give rise to metabolic derangements that can be dangerous. This syndrome is usually seen in high-grade hematological malignancies. Less commonly, tumor lysis syndrome can present in solid tumors and even rarely in genitourinary tumors. In this report, the authors describe a specific case of tumor lysis syndrome in a patient with metastatic prostate cancer following treatment with docetaxel.

  7. Human mesenchymal stromal cells transiently increase cytokine production by activated T cells before suppressing T-cell proliferation: effect of interferon-γ and tumor necrosis factor-α stimulation.

    Cuerquis, Jessica; Romieu-Mourez, Raphaëlle; François, Moïra; Routy, Jean-Pierre; Young, Yoon Kow; Zhao, Jing; Eliopoulos, Nicoletta

    2014-02-01

    Mesenchymal stromal cells (MSCs) suppress T-cell proliferation, especially after activation with inflammatory cytokines. We compared the dynamic action of unprimed and interferon (IFN)-γ plus tumor necrosis factor (TNF)-α-pretreated human bone marrow-derived MSCs on resting or activated T cells. MSCs were co-cultured with allogeneic peripheral blood mononuclear cells (PBMCs) at high MSC-to-PBMC ratios in the absence or presence of concomitant CD3/CD28-induced T-cell activation. The kinetic effects of MSCs on cytokine production and T-cell proliferation, cell cycle and apoptosis were assessed. Unprimed MSCs increased the early production of IFN-γ and interleukin (IL)-2 by CD3/CD28-activated PBMCs before suppressing T-cell proliferation. In non-activated PBMC co-cultures, low levels of IL-2 and IL-10 synthesis were observed with MSCs in addition to low levels of CD69 expression by T cells and no T-cell proliferation. MSCs also decreased apoptosis in resting and activated T cells and inhibited the transition of these cells into the sub-G0/G1 and the S phases. With inhibition of indoleamine 2,3 dioxygenase, MSCs increased CD3/CD28-induced T-cell proliferation. After priming with IFN-γ plus TNF-α, MSCs were less potent at increasing cytokine production by CD3/CD28-activated PBMCs and more effective at inhibiting T-cell proliferation but had preserved anti-apoptotic functions. Unprimed MSCs induce a transient increase in IFN-γ and IL-2 synthesis by activated T cells. Pre-treatment of MSCs with IFN-γ plus TNF-α may increase their effectiveness and safety in vivo. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  8. "Cancer tumor".

    Bronshtehn, V. A.

    The title is a phrase borrowed from a speech by a Leningrad pressman, V. E. Lvov, who called upon those attending a theoretical conference on ideological issues in astronomy held by the Leningrad Branch of the All-Union Astronomic and Geodetic Society (13 - 4 December 1948), "to make a more radical emphasis on the negative role of relativistic cosmology which is a cancer tumor disintegrating the contemporary astronomy theory, and a major ideological enemy of a materialist astronomy".

  9. Multiparametric MR assessment of pediatric brain tumors

    Tzika, A.A.; Astrakas, L.G.; Zarifi, M.K.; Petridou, N.; Young-Poussaint, T.; Goumnerova, L.; Black, P.McL.; Zurakowski, D.; Anthony, D.C.

    2003-01-01

    MR assessment of pediatric brain tumors has expanded to include physiologic information related to cellular metabolites, hemodynamic and diffusion parameters. The purpose of this study was to investigate the relationship between MR and proton MR spectroscopic imaging in children with primary brain tumors. Twenty-one patients (mean age 9 years) with histologically verified brain tumors underwent conventional MR imaging, hemodynamic MR imaging (HMRI) and proton MR spectroscopic imaging (MRSI). Fourteen patients also had diffusion-weighted MR imaging (DWMRI). Metabolic indices including choline-containing compounds (Cho), total creatine (tCr) and lipids/lactate (L) were derived by proton MRSI, relative cerebral blood volume (rCBV) by HMRI, and apparent tissue water diffusion coefficients (ADC) by DWMRI. Variables were examined by linear regression and correlation as well as by ANOVA. Cho (suggestive of tumor cellularity and proliferative activity) correlated positively with rCBV, while the relationship between Cho and ADC (suggestive of cellular density) was inverse (P<0.001). The relationship between rCBV and ADC was also inverse (P=0.004). Cho and lipids (suggestive of necrosis and/or apoptosis) were not significantly correlated (P=0.51). A positive relationship was found between lipids and ADC (P=0.002). The relationships between Cho, rCBV, ADC and lipids signify that tumor physiology is influenced by the tumor's physical and chemical environment. Normalized Cho and lipids distinguished high-grade from low-grade tumors (P<0.05). Multiparametric MR imaging using MRSI, HMRI and DWMRI enhances assessment of brain tumors in children and improves our understanding of tumor physiology while promising to distinguish higher- from lower-malignancy tumors, a distinction that is particularly clinically important among inoperable tumors. (orig.)

  10. Racial and ethnic variations in phthalate metabolite concentration changes across full-term pregnancies.

    James-Todd, Tamarra M; Meeker, John D; Huang, Tianyi; Hauser, Russ; Seely, Ellen W; Ferguson, Kelly K; Rich-Edwards, Janet W; McElrath, Thomas F

    2017-03-01

    Higher concentrations of certain phthalate metabolites are associated with adverse reproductive and pregnancy outcomes, as well as poor infant/child health outcomes. In non-pregnant populations, phthalate metabolite concentrations vary by race/ethnicity. Few studies have documented racial/ethnic differences between phthalate metabolite concentrations at multiple time points across the full-course of pregnancy. The objective of the study was to characterize the change in phthalate metabolite concentrations by race/ethnicity across multiple pregnancy time points. Women were participants in a prospectively collected pregnancy cohort who delivered at term (≥37 weeks) and had available urinary phthalate metabolite concentrations for ≥3 time points across full-term pregnancies (n=350 women). We assessed urinary concentrations of eight phthalate metabolites that were log-transformed and specific gravity-adjusted. We evaluated the potential racial/ethnic differences in phthalate metabolite concentrations at baseline (median 10 weeks gestation) using ANOVA and across pregnancy using linear mixed models to calculate the percent change and 95% confidence intervals adjusted for sociodemographic and lifestyle factors. Almost 30% of the population were non-Hispanic black or Hispanic. With the exception of mono-(3-carboxypropyl) (MCPP) and di-ethylhexyl phthalate (DEHP) metabolites, baseline levels of phthalate metabolites were significantly higher in non-whites (Pethnicity, mono-ethyl phthalate (MEP) and MCPP had significant percent changes across pregnancy. MEP was higher in Hispanics at baseline and decreased in mid-pregnancy but increased in late pregnancy for non-Hispanic blacks. MCPP was substantially higher in non-Hispanic blacks at baseline but decreased later in pregnancy. Across pregnancy, non-Hispanic black and Hispanic women had higher concentrations of certain phthalate metabolites. These differences may have implications for racial/ethnic differences in adverse

  11. Mediastinal tumors. Update 1995

    Wood, D.E.; Thomas, C.R. Jr.

    1995-01-01

    This volume represents the premier work devoted solely to the complex myriad of mediastinal tumors. The contributors to the state-of-the-art text are clinical investigators of international renown. The diagnosis, natural history, and therapeutic strategies in respect of all mediastinal tumors are thoroughly addressed in a concise and logical manner. An emphasis on the multidisciplinary nature of mediastinal tumors is thematic throughout the text. Moreover, the combined-modality treatment schemes that have been increasingly developed worldwide are analyzed. This textbook will prove of value to all general surgeons, thoracic surgeons, medical oncologists, radiation oncologists, pulmonologists, and endocrinologists, as well as to nursing and medical students, residents and fellows-in training. (orig.). 55 figs., 21 tabs

  12. Tumor scintigram, 2

    Nakano, Shunichi; Hasegawa, Yoshihisa; Shimura, Kazuo; Ifuka, Keijiro

    1975-01-01

    In various cases of malignant tumors, especially those of lung cancer and liver cancer, scans were made with 57 Co-bleomycin(BLM), and its diagnostic significance was evaluated. Tumors were visualized with 57 Co-BLM in 22 of the 26 cases of lung cancer (84.6%). Concentrations of the RI were noted in all of the cases of squamous epithelium cancer, adenoid cancer and cellule-type undifferentiated cancer. The smallest tumor that could be detected was a 2 x 2 cm adenoid cancer. Tumors were imaged in 19 of the 27 cases of liver cancer (70.4%). This detection rate was increased by a combination of 57 Co-BLM and 198 Au-colloid scanning. The authors believe that 57 Co-BLM will help to establish the diagnosis of lung cancer or liver cancer. Tumors were also imaged in 6 of the 15 cases of breast cancer, but no distinct concentration was noted in the 7 cases of thyroid cancer. (Ueda, J.)

  13. Tumor cell proliferation kinetics and tumor growth rate

    Tubiana, M

    1989-01-01

    The present knowledge on the growth rate and the proliferation kinetics of human tumor is based on the measurement of the tumor doubling times (DT) in several hundred patients and on the determination of the proportion of proliferating cells with radioactive thymidine or by flow cytometry in large numbers of patients. The results show that the DT of human tumor varies widely, from less than one week to over one year with a median value of approximately 2 months. The DTs are significantly correlated with the histological type. They depend upon (1) the duration of the cell cycle whose mean duration is 2 days with small variations from tumor to tumor, (2) the proportion of proliferating cells and consequently the cell birth rate which varies widely among tumors and which is significantly correlated to the DT, (3) the cell loss factors which also vary widely and which are the greatest when proliferation is most intensive. These studies have several clinical implications: (a) they have further increased our understanding of the natural history of human tumor, (b) they have therapeutic implications since tumor responsiveness and curability by radiation and drugs are strongly influenced by the cell kinetic parameters of the tumor, (c) the proportion of proliferating cells is of great prognostic value in several types of human cancers. The investigation of the molecular defects, which are correlated with the perturbation of control of cell proliferation, should lead to significant fundamental and therapeutic advances. (orig.).

  14. Development of an updated PBPK model for trichloroethylene and metabolites in mice, and its application to discern the role of oxidative metabolism in TCE-induced hepatomegaly.

    Evans, M V; Chiu, W A; Okino, M S; Caldwell, J C

    2009-05-01

    Trichloroethylene (TCE) is a lipophilic solvent rapidly absorbed and metabolized via oxidation and conjugation to a variety of metabolites that cause toxicity to several internal targets. Increases in liver weight (hepatomegaly) have been reported to occur quickly in rodents after TCE exposure, with liver tumor induction reported in mice after long-term exposure. An integrated dataset for gavage and inhalation TCE exposure and oral data for exposure to two of its oxidative metabolites (TCA and DCA) was used, in combination with an updated and more accurate physiologically-based pharmacokinetic (PBPK) model, to examine the question as to whether the presence of TCA in the liver is responsible for TCE-induced hepatomegaly in mice. The updated PBPK model was used to help discern the quantitative contribution of metabolites to this effect. The update of the model was based on a detailed evaluation of predictions from previously published models and additional preliminary analyses based on gas uptake inhalation data in mice. The parameters of the updated model were calibrated using Bayesian methods with an expanded pharmacokinetic database consisting of oral, inhalation, and iv studies of TCE administration as well as studies of TCE metabolites in mice. The dose-response relationships for hepatomegaly derived from the multi-study database showed that the proportionality of dose to response for TCE- and DCA-induced hepatomegaly is not observed for administered doses of TCA in the studied range. The updated PBPK model was used to make a quantitative comparison of internal dose of metabolized and administered TCA. While the internal dose of TCA predicted by modeling of TCE exposure (i.e., mg TCA/kg-d) showed a linear relationship with hepatomegaly, the slope of the relationship was much greater than that for directly administered TCA. Thus, the degree of hepatomegaly induced per unit of TCA produced through TCE oxidation is greater than that expected per unit of TCA

  15. Development of an updated PBPK model for trichloroethylene and metabolites in mice, and its application to discern the role of oxidative metabolism in TCE-induced hepatomegaly

    Evans, M.V.; Chiu, W.A.; Okino, M.S.; Caldwell, J.C.

    2009-01-01

    Trichloroethylene (TCE) is a lipophilic solvent rapidly absorbed and metabolized via oxidation and conjugation to a variety of metabolites that cause toxicity to several internal targets. Increases in liver weight (hepatomegaly) have been reported to occur quickly in rodents after TCE exposure, with liver tumor induction reported in mice after long-term exposure. An integrated dataset for gavage and inhalation TCE exposure and oral data for exposure to two of its oxidative metabolites (TCA and DCA) was used, in combination with an updated and more accurate physiologically-based pharmacokinetic (PBPK) model, to examine the question as to whether the presence of TCA in the liver is responsible for TCE-induced hepatomegaly in mice. The updated PBPK model was used to help discern the quantitative contribution of metabolites to this effect. The update of the model was based on a detailed evaluation of predictions from previously published models and additional preliminary analyses based on gas uptake inhalation data in mice. The parameters of the updated model were calibrated using Bayesian methods with an expanded pharmacokinetic database consisting of oral, inhalation, and iv studies of TCE administration as well as studies of TCE metabolites in mice. The dose-response relationships for hepatomegaly derived from the multi-study database showed that the proportionality of dose to response for TCE- and DCA-induced hepatomegaly is not observed for administered doses of TCA in the studied range. The updated PBPK model was used to make a quantitative comparison of internal dose of metabolized and administered TCA. While the internal dose of TCA predicted by modeling of TCE exposure (i.e., mg TCA/kg-d) showed a linear relationship with hepatomegaly, the slope of the relationship was much greater than that for directly administered TCA. Thus, the degree of hepatomegaly induced per unit of TCA produced through TCE oxidation is greater than that expected per unit of TCA

  16. Removal of uremic retention products by hemodialysis is coupled with indiscriminate loss of vital metabolites.

    Zhang, Zhi-Hao; Mao, Jia-Rong; Chen, Hua; Su, Wei; Zhang, Yuan; Zhang, Li; Chen, Dan-Qian; Zhao, Ying-Yong; Vaziri, Nosratola D

    2017-12-01

    Although dialysis ameliorates uremia and fluid and electrolytes disorders, annual mortality rate remains high in dialysis population reflecting its shortcoming in replacing renal function. Unlike the normal kidney, dialysis causes dramatic shifts in volume and composition of body fluids and indiscriminate removal of vital solutes. Present study was undertaken to determine the impact of hemodialysis on plasma metabolites in end-stage renal disease (ESRD) patients. 80 hemodialysis patients and 80 age/gender-matched healthy controls were enrolled in the study. Using ultra performance liquid chromatography-high-definition mass spectrometry, we measured plasma metabolites before, during, and after hemodialysis procedure and in blood entering and leaving the dialysis filter. Principal component analysis revealed significant difference in concentration of 214 metabolites between healthy control and ESRD patients' pre-dialysis plasma (126 increased and 88 reduced in ESRD group). Comparison of post-dialysis with pre-dialysis data revealed significant changes in the 362 metabolites. Among ESI + metabolites 195 decreased and 55 increased and among ESI - metabolites 82 decreased and 30 increased following hemodialysis. Single blood passage through the dialyzer caused significant changes in 323 metabolites. Comparison of ESRD patients' post-hemodialysis with healthy subjects' data revealed marked differences in metabolic profiles. We identified 55 of the 362 differential metabolites including well known uremic toxins, waste products and vital biological compounds. In addition to uremic toxins and waste products hemodialysis removes large number of identified and as-yet un-identified metabolites. Depletion of vital biological compounds by dialysis may contribute to the high morbidity and annual mortality rate in this population. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  17. Understanding Brain Tumors

    ... to Know About Brain Tumors . What is a Brain Tumor? A brain tumor is an abnormal growth
 ... Tumors” from Frankly Speaking Frankly Speaking About Cancer: Brain Tumors Download the full book Questions to ask ...

  18. Brain tumor - primary - adults

    ... Vestibular schwannoma (acoustic neuroma) - adults; Meningioma - adults; Cancer - brain tumor (adults) ... Primary brain tumors include any tumor that starts in the brain. Primary brain tumors can start from brain cells, ...

  19. Brain tumor - children

    ... children; Neuroglioma - children; Oligodendroglioma - children; Meningioma - children; Cancer - brain tumor (children) ... The cause of primary brain tumors is unknown. Primary brain tumors may ... (spread to nearby areas) Cancerous (malignant) Brain tumors ...

  20. Adrenal Gland Tumors: Statistics

    ... Gland Tumor: Statistics Request Permissions Adrenal Gland Tumor: Statistics Approved by the Cancer.Net Editorial Board , 03/ ... primary adrenal gland tumor is very uncommon. Exact statistics are not available for this type of tumor ...

  1. Radiation-Induced Growth Retardation and Microstructural and Metabolite Abnormalities in the Hippocampus.

    Rodgers, Shaefali P; Zawaski, Janice A; Sahnoune, Iman; Leasure, J Leigh; Gaber, M Waleed

    2016-01-01

    Cranial radiotherapy (CRT) increases survival in pediatric brain-tumor patients but can cause deleterious effects. This study evaluates the acute and long-term impact of CRT delivered during childhood/adolescence on the brain and body using a rodent model. Rats received CRT, either 4 Gy fractions × 5 d (fractionated) or a cumulative dose of 20 Gy (single dose) at 28 d of age. Animals were euthanized 1 d, 5 d, or 3.5 mo after CRT. The 3.5 mo group was imaged prior to euthanasia. At 3.5 mo, we observed significant growth retardation in irradiated animals, versus controls, and the effects of single dose on brain and body weights were more severe than fractionated. Acutely single dose significantly reduced body weight but increased brain weight, whereas fractionation significantly reduced brain but not body weights, versus controls. CRT suppressed cell proliferation in the hippocampal subgranular zone acutely. Fractional anisotropy (FA) in the fimbria was significantly lower in the single dose versus controls. Hippocampal metabolite levels were significantly altered in the single dose animals, reflecting a heightened state of inflammation that was absent in the fractionated. Our findings indicate that despite the differences in severity between the doses they both demonstrated an effect on cell proliferation and growth retardation, important factors in pediatric CRT.

  2. Pediatric brain tumors

    Poussaint, Tina Y. [Department of Radiology, Boston, MA (United States); Panigrahy, Ashok [Children' s Hospital of Pittsburgh of University of Pittsburgh Medical Center, Department of Radiology, Pittsburgh, PA (United States); Huisman, Thierry A.G.M. [Charlotte R. Bloomberg Children' s Center, Johns Hopkins Hospital, Division of Pediatric Radiology and Pediatric Neuroradiology, Baltimore, MD (United States)

    2015-09-15

    Among all causes of death in children from solid tumors, pediatric brain tumors are the most common. This article includes an overview of a subset of infratentorial and supratentorial tumors with a focus on tumor imaging features and molecular advances and treatments of these tumors. Key to understanding the imaging features of brain tumors is a firm grasp of other disease processes that can mimic tumor on imaging. We also review imaging features of a common subset of tumor mimics. (orig.)

  3. Imaging Tumor Necrosis with Ferumoxytol.

    Maryam Aghighi

    Full Text Available Ultra-small superparamagnetic iron oxide nanoparticles (USPIO are promising contrast agents for magnetic resonance imaging (MRI. USPIO mediated proton relaxation rate enhancement is strongly dependent on compartmentalization of the agent and can vary depending on their intracellular or extracellular location in the tumor microenvironment. We compared the T1- and T2-enhancement pattern of intracellular and extracellular USPIO in mouse models of cancer and pilot data from patients. A better understanding of these MR signal effects will enable non-invasive characterizations of the composition of the tumor microenvironment.Six 4T1 and six MMTV-PyMT mammary tumors were grown in mice and imaged with ferumoxytol-enhanced MRI. R1 relaxation rates were calculated for different tumor types and different tumor areas and compared with histology. The transendothelial leakage rate of ferumoxytol was obtained by our measured relaxivity of ferumoxytol and compared between different tumor types, using a t-test. Additionally, 3 patients with malignant sarcomas were imaged with ferumoxytol-enhanced MRI. T1- and T2-enhancement patterns were compared with histopathology in a descriptive manner as a proof of concept for clinical translation of our observations.4T1 tumors showed central areas of high signal on T1 and low signal on T2 weighted MR images, which corresponded to extracellular nanoparticles in a necrotic core on histopathology. MMTV-PyMT tumors showed little change on T1 but decreased signal on T2 weighted images, which correlated to compartmentalized nanoparticles in tumor associated macrophages. Only 4T1 tumors demonstrated significantly increased R1 relaxation rates of the tumor core compared to the tumor periphery (p<0.001. Transendothelial USPIO leakage was significantly higher for 4T1 tumors (3.4±0.9x10-3 mL/min/100cm3 compared to MMTV-PyMT tumors (1.0±0.9x10-3 mL/min/100 cm3. Likewise, ferumoxytol imaging in patients showed similar findings with

  4. Urinary Concentrations of Phthalate Metabolites and Pregnancy Loss Among Women Conceiving with Medically Assisted Reproduction.

    Messerlian, Carmen; Wylie, Blair J; Mínguez-Alarcón, Lidia; Williams, Paige L; Ford, Jennifer B; Souter, Irene C; Calafat, Antonia M; Hauser, Russ

    2016-11-01

    Animal studies demonstrate that several phthalates are embryofetotoxic and are associated with increased pregnancy loss and malformations. Results from human studies on phthalates and pregnancy loss are inconsistent. We examined pregnancy loss prospectively in relation to urinary phthalate metabolite concentrations among women undergoing medically assisted reproduction. We used data from 256 women conceiving 303 pregnancies recruited between 2004 and 2012 from the Massachusetts General Hospital Fertility Center. We quantified 11 phthalate metabolite concentrations and calculated the molar sum of four di(2-ethylhexyl) phthalate (DEHP) metabolites (ΣDEHP). We estimated risk ratios (RRs) and 95% confidence intervals for biochemical loss and total pregnancy loss (assisted reproduction.

  5. Linoleic acid participates in the response to ischemic brain injury through oxidized metabolites that regulate neurotransmission.

    Hennebelle, Marie; Zhang, Zhichao; Metherel, Adam H; Kitson, Alex P; Otoki, Yurika; Richardson, Christine E; Yang, Jun; Lee, Kin Sing Stephen; Hammock, Bruce D; Zhang, Liang; Bazinet, Richard P; Taha, Ameer Y

    2017-06-28

    Linoleic acid (LA; 18:2 n-6), the most abundant polyunsaturated fatty acid in the US diet, is a precursor to oxidized metabolites that have unknown roles in the brain. Here, we show that oxidized LA-derived metabolites accumulate in several rat brain regions during CO 2 -induced ischemia and that LA-derived 13-hydroxyoctadecadienoic acid, but not LA, increase somatic paired-pulse facilitation in rat hippocampus by 80%, suggesting bioactivity. This study provides new evidence that LA participates in the response to ischemia-induced brain injury through oxidized metabolites that regulate neurotransmission. Targeting this pathway may be therapeutically relevant for ischemia-related conditions such as stroke.

  6. Optimization of the tumor microenvironment and nanomedicine properties simultaneously to improve tumor therapy.

    Zhang, Bo; Shi, Wei; Jiang, Ting; Wang, Lanting; Mei, Heng; Lu, Heng; Hu, Yu; Pang, Zhiqing

    2016-09-20

    Effective delivery of nanomedicines to tumor tissues depends on both the tumor microenvironment and nanomedicine properties. Accordingly, tumor microenvironment modification or advanced design of nanomedicine was emerging to improve nanomedicine delivery to tumors. However, few studies have emphasized the necessity to optimize the tumor microenvironment and nanomedicine properties simultaneously to improve tumor treatment. In the present study, imatinib mesylate (IMA) was used to normalize the tumor microenvironment including platelet-derived growth factor receptor-β expression inhibition, tumor vessel normalization, and tumor perfusion improvement as demonstrated by immunofluorescence staining. In addition, the effect of tumor microenvironment normalization on tumor delivery of nanomedicines with different sizes was carefully investigated. It was shown that IMA treatment significantly reduced the accumulation of nanoparticles (NPs) around 110 nm but enhanced the accumulation of micelles around 23 nm by in vivo fluorescence imaging experiment. Furthermore, IMA treatment limited the distribution of NPs inside tumors but increased that of micelles with a more homogeneous pattern. Finally, the anti-tumor efficacy study displayed that IMA pretreatment could significantly increase the therapeutic effects of paclitaxel-loaded micelles. All-together, a new strategy to improve nanomedicine delivery to tumor was provided by optimizing both nanomedicine size and the tumor microenvironment simultaneously, and it will have great potential in clinics for tumor treatment.

  7. Dichlorodiphenyltrichloroethane (DDT), DDT Metabolites and Pregnancy Outcomes

    Kezios, Katrina L.; Liu, Xinhua; Cirillo, Piera M.; Cohn, Barbara A.; Kalantzi, Olga I.; Wang, Yunzhu; Petreas, Myrto X.; Park, June-Soo; Factor-Litvak, Pam

    2012-01-01

    Organochlorine pesticides (OCPs) are persistent endocrine disruptors. OCPs cross the placenta; this prenatal exposure has been associated with adverse pregnancy outcomes. We investigated associations between prenatal exposure to OCPs and gestational age and birth weight in 600 infants born between 1960 and 1963. The primary OCP was 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (p,p′-DDT), its primary metabolite, 1,1′-dichloro-2,2'-bis(p-chlorophenyl)ethylene(p,p′-DDE) and the contaminant, 1,1,1-trichloro-2-(p-chlorophenyl)-2-(o-chlorophenyl)-ethane (o,p′-DDT). Regression analysis indicated that for each natural log unit increase in p,p′-DDT, birth weight increased by 274 grams (95% CI 122, 425) when controlling for p,p′-DDE and o,p′-DDT. At a given level of p,p′-DDT exposure, o,p′-DDT and p,p′-DDE were associated with decreased birth weight. p,p′-DDE was negatively associated with length of gestation, controlling for p,p′-DDT and o,p′-DDT. These findings suggest opposing associations between exposure to p,p′-DDT and p,p′-DDE and birth weight. We did not find evidence to support mediation by maternal thyroid hormone status nor that the association differed by sex. PMID:23142753

  8. Progress in radiotherapy of diencephalohypophyseal tumor

    Takakura, Kintomo; Kubo, Osami [Tokyo Women`s Medical Coll. (Japan). Neurological Inst.

    1997-12-01

    The patients with hypophyseal adenoma (36 patients) were treated with peripheral irradiation (between 10 and 35 Gy) using gamma unit. The results are shown as follows: GH producing hypophyseal tumor (8 patients); tumor volume did not reduce rapidly. Growth hormone level fell, but it took more than 12 months to recover to normal level. PRL producing hypophyseal tumor (5 patients); five intractable patients were irradiated. Tumor contraction was not obvious, but the increase of tumor size was restrained. ACTH producing hypophyseal tumor (4 patients); ACTH level dropped gradually, and tumor size was reduced. However, there were 2 intractable cases. Non-functional hypophyseal tumor (19 patients); local tumor control rate was 100% in all patients and visual field was recovered. The size of craniopharyngioma was obviously reduced with peripheral irradiation of 10 Gy dimension about 10 months later. (K.H.)

  9. Testis tumors

    White, R.L.; Maier, J.G.

    1987-01-01

    Clinical trials are evaluating new combinations of drugs with the goal of diminishing the toxicity associated with the current regimens while not compromising the chance for cure. The evolution of information and staging studies such as tumor markers, CT scanning and MR scanning has made possible the detection of residual metastatic disease while obviating the need for surgical staging procedures. This has made less treatment possible for a large number of patients. The regularity of follow-up studies has made early detection of recurrences a possibility, so that effective and curative treatment is generally possible

  10. Risk of borderline ovarian tumors among women with benign ovarian tumors

    Guleria, Sonia; Jensen, Allan; Kjær, Susanne K

    2018-01-01

    tumors among women with a benign ovarian tumor. METHODS: This nationwide cohort study included all Danish women diagnosed with a benign ovarian tumor (n=139,466) during 1978-2012. The cohort was linked to the Danish Pathology Data Bank and standardized incidence ratios (SIR) with 95% confidence intervals...... (CI) were calculated. RESULTS: Women with benign ovarian tumors had increased risks for subsequent borderline ovarian tumors (SIR 1.62, 95% CI 1.43-1.82), and this applied to both serous (SIR 1.69, 95% CI 1.39-2.03) and mucinous (SIR 1.75, 95% CI 1.45-2.10) histotypes of borderline ovarian tumors....... The risk for borderline ovarian tumors was primarily increased for women diagnosed with a benign ovarian tumor before 40years of age. The risk remained increased up to 9years after a benign ovarian tumor diagnosis. Finally, the associations did not change markedly when analyzed for the different histotypes...

  11. Teratoid Wilms′ tumor - A rare renal tumor

    Biswanath Mukhopadhyay

    2011-01-01

    Full Text Available Teratoid Wilms′ tumor is an extremely rare renal tumor. We report a case of unilateral teratoid Wilms′ tumor in a 4-year-old girl. The patient was admitted with a right-sided abdominal mass. The mass was arising from the right kidney. Radical nephrectomy was done and the patient had an uneventful recovery. Histopathology report showed teratoid Wilms′ tumor.

  12. Metabolite profiles of common Stemphylium species

    Andersen, Birgitte; Solfrizzo, Michelle; Visconti, Angelo

    1995-01-01

    and identified by their chromatographic and spectroscopic data (Rf values, reflectance spectrum, retention index and ultraviolet spectrum). These metabolites have been used for the chemotaxonomical characterization of Stemphylium botryosum, S. herbarum, S. alfalfae, S. majusculum, S. sarciniforme, S. vesicarium...

  13. Detecting beer intake by unique metabolite patterns

    Gürdeniz, Gözde; Jensen, Morten Georg; Meier, Sebastian

    2016-01-01

    Evaluation of health related effects of beer intake is hampered by the lack of accurate tools for assessing intakes (biomarkers). Therefore, we identified plasma and urine metabolites associated with recent beer intake by untargeted metabolomics and established a characteristic metabolite pattern...... representing raw materials and beer production as a qualitative biomarker of beer intake. In a randomized, crossover, single-blinded meal study (MSt1) 18 participants were given one at a time four different test beverages: strong, regular and non-alcoholic beers and a soft drink. Four participants were...... assigned to have two additional beers (MSt2). In addition to plasma and urine samples, test beverages, wort and hops extract were analyzed by UPLC-QTOF. A unique metabolite pattern reflecting beer metabolome, including metabolites derived from beer raw material (i.e. N-methyl tyramine sulfate and the sum...

  14. METABOLITE CHARACTERIZATION IN SERUM SAMPLES FROM ...

    Preferred Customer

    Metabonomics offers a distinct advantage over other tests as it can be ... Metabolic profiling in heart disease has also been successfully ... resonances of the small metabolites showing fingerprints of serum metabolomic profile (Figure. 3).

  15. Secondary metabolites of cyanobacteria Nostoc sp.

    Kobayashi, Akio; Kajiyama, Shin-Ichiro

    1998-03-01

    Cyanobacteria attracted much attention recently because of their secondary metabolites with potent biological activities and unusual structures. This paper reviews some recent studies on the isolation, structural, elucidation and biological activities of the bioactive compounds from cyanobacteria Nostoc species.

  16. Metabolite Profiling of Red Sea Corals

    Ortega, Jovhana Alejandra

    2016-01-01

    that provide insights into the specific nature of the symbiosis. Our analysis also revealed aquatic pollutants, which suggests that metabolite profiling might be used for monitoring pollution levels and assessing environmental impact.

  17. Mechanism of brain tumor headache.

    Taylor, Lynne P

    2014-04-01

    Headaches occur commonly in all patients, including those who have brain tumors. Using the search terms "headache and brain tumors," "intracranial neoplasms and headache," "facial pain and brain tumors," "brain neoplasms/pathology," and "headache/etiology," we reviewed the literature from the past 78 years on the proposed mechanisms of brain tumor headache, beginning with the work of Penfield. Most of what we know about the mechanisms of brain tumor associated headache come from neurosurgical observations from intra-operative dural and blood vessel stimulation as well as intra-operative observations and anecdotal information about resolution of headache symptoms with various tumor-directed therapies. There is an increasing overlap between the primary and secondary headaches and they may actually share a similar biological mechanism. While there can be some criticism that the experimental work with dural and arterial stimulation produced head pain and not actual headache, when considered with the clinical observations about headache type, coupled with improvement after treatment of the primary tumor, we believe that traction on these structures, coupled with increased intracranial pressure, is clearly part of the genesis of brain tumor headache and may also involve peripheral sensitization with neurogenic inflammation as well as a component of central sensitization through trigeminovascular afferents on the meninges and cranial vessels. © 2014 American Headache Society.

  18. Determinants of Organophosphorus Pesticide Urinary Metabolite Levels in Young Children Living in an Agricultural Community

    Brenda Eskenazi

    2011-04-01

    Full Text Available Organophosphorus (OP pesticides are used in agriculture and several are registered for home use. As young children age they may experience different pesticide exposures due to varying diet, behavior, and other factors. We measured six OP dialkylphosphate (DAP metabolites (three dimethyl alkylphosphates (DMAP and three diethyl alkylphosphates (DEAP in urine samples collected from ~400 children living in an agricultural community when they were 6, 12, and 24 months old. We examined bivariate associations between DAP metabolite levels and determinants such as age, diet, season, and parent occupation. To evaluate independent impacts, we then used generalized linear mixed multivariable models including interaction terms with age. The final models indicated that DMAP metabolite levels increased with age. DMAP levels were also positively associated with daily servings of produce at 6- and 24-months. Among the 6-month olds, DMAP metabolite levels were higher when samples were collected during the summer/spring versus the winter/fall months. Among the 12-month olds, DMAP and DEAP metabolites were higher when children lived ≤60 meters from an agricultural field. Among the 24-month-olds, DEAP metabolite levels were higher during the summer/spring months. Our findings suggest that there are multiple determinants of OP pesticide exposures, notably dietary intake and temporal and spatial proximity to agricultural use. The impact of these determinants varied by age and class of DAP metabolite.

  19. Differences in metabolite profiles caused by pre-analytical blood processing procedures.

    Nishiumi, Shin; Suzuki, Makoto; Kobayashi, Takashi; Yoshida, Masaru

    2018-05-01

    Recently, the use of metabolomic analysis of human serum and plasma for biomarker discovery and disease diagnosis in clinical studies has been increasing. The feasibility of using a metabolite biomarker for disease diagnosis is strongly dependent on the metabolite's stability during pre-analytical blood processing procedures, such as serum or plasma sampling and sample storage prior to centrifugation. However, the influence of blood processing procedures on the stability of metabolites has not been fully characterized. In the present study, we compared the levels of metabolites in matched human serum and plasma samples using gas chromatography coupled with mass spectrometry and liquid chromatography coupled with mass spectrometry. In addition, we evaluated the changes in plasma metabolite levels induced by storage at room temperature or at a cold temperature prior to centrifugation. As a result, it was found that 76 metabolites exhibited significant differences between their serum and plasma levels. Furthermore, the pre-centrifugation storage conditions significantly affected the plasma levels of 45 metabolites. These results highlight the importance of blood processing procedures during metabolome analysis, which should be considered during biomarker discovery and the subsequent use of biomarkers for disease diagnosis. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Fate of cyanobacteria and their metabolites during water treatment sludge management processes.

    Ho, Lionel; Dreyfus, Jennifer; Boyer, Justine; Lowe, Todd; Bustamante, Heriberto; Duker, Phil; Meli, Tass; Newcombe, Gayle

    2012-05-01

    Cyanobacteria and their metabolites are an issue for water authorities; however, little is known as to the fate of coagulated cyanobacterial-laden sludge during waste management processes in water treatment plants (WTPs). This paper provides information on the cell integrity of Anabaena circinalis and Cylindrospermopsis raciborskii during: laboratory-scale coagulation/sedimentation processes; direct filtration and backwashing procedures; and cyanobacterial-laden sludge management practices. In addition, the metabolites produced by A. circinalis (geosmin and saxitoxins) and C. raciborskii (cylindrospermopsin) were investigated with respect to their release (and possible degradation) during each of the studied processes. Where sedimentation was used, coagulation effectively removed cyanobacteria (and intracellular metabolites) without any considerable exertion on coagulant demand. During direct filtration experiments, cyanobacteria released intracellular metabolites through a stagnation period, suggesting that more frequent backwashing of filters may be required to prevent floc build-up and metabolite release. Cyanobacteria appeared to be protected within the flocs, with minimal damage during backwashing of the filters. Within coagulant sludge, cyanobacteria released intracellular metabolites into the supernatant after 3d, even though cells remained viable up to 7d. This work has improved the understanding of cyanobacterial metabolite risks associated with management of backwash water and sludge and is likely to facilitate improvements at WTPs, including increased monitoring and the application of treatment strategies and operational practices, with respect to cyanobacterial-laden sludge and/or supernatant recycle management. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Urinary metabolites of tetrahydronorharman in the rat

    Greiner, B.; Rommelspacher, H.

    1982-01-01

    The metabolism of THN in the rat was studied in vivo by use of /sup 14/C-radiolabelled compound. Structures of major urinary metabolites were determined by exact spectral data. Their concentrations were measured by liquid scintillation counting. It was found that THN is submitted to endogenous transformation, and that the excreted derivatives form three groups of similar concentration: unchanged substance, hydroxylated/conjugated compounds, and aromatic metabolites. Structures and proposed pathways are summed in diagram.

  2. Urinary metabolites of tetrahydronorharman in the rat

    Greiner, B.; Rommelspacher, H.

    1982-01-01

    The metabolism of THN in the rat was studied in vivo by use of 14 C-radiolabelled compound. Structures of major urinary metabolites were determined by exact spectral data. Their concentrations were measured by liquid scintillation counting. It was found that THN is submitted to endogenous transformation, and that the excreted derivatives form three groups of similar concentration: unchanged substance, hydroxylated/conjugated compounds, and aromatic metabolites. Structures and proposed pathways are summed in diagram

  3. GPCR-Mediated Signaling of Metabolites

    Husted, Anna Sofie; Trauelsen, Mette; Rudenko, Olga

    2017-01-01

    microbiota target primarily enteroendocrine, neuronal, and immune cells in the lamina propria of the gut mucosa and the liver and, through these tissues, the rest of the body. In contrast, metabolites from the intermediary metabolism act mainly as metabolic stress-induced autocrine and paracrine signals...... and obesity. The concept of key metabolites as ligands for specific GPCRs has broadened our understanding of metabolic signaling significantly and provides a number of novel potential drug targets....

  4. Solid-pseudo papillary tumor of the pancreas: Frantz's tumor

    Oliveira, Bruno Righi Rodrigues de; Moreira, Reni Cecilia Lopes; Campos, Marcelo Esteves Chaves

    2010-01-01

    The pseudo papillary solid tumor of the pancreas, also known as Frantz's tumor, is a rare disease, taking place in approximately 0.17% to 2.7% of non-endocrine tumors of the pancreas. Recently, the increase of its incidence has been noted with more than two-thirds of the total cases described in the last 10 years. A possible explanation is a greater knowledge of the disease and a greater uniformity of conceptualization in the last years. Generally, it affects young adult females. In most of the series, the tumor principally attacks the body and tail of the pancreas. The objective of the present report is to present the diagnostic and therapeutic option used in this rare pancreatic tumor of low-grade malignancy. (author)

  5. New metabolites of hongdenafil, homosildenafil and hydroxyhomosildenafil.

    Yeo, Miseon; Park, Yujin; Lee, Heesang; Choe, Sanggil; Baek, Seung-Hoon; Kim, Hye Kyung; Pyo, Jae Sung

    2018-02-05

    Recently, illegal sildenafil analogues have emerged, causing serious social issues. In spite of the importance of sildenafil analogues, their metabolic profiles or clinical effects have not been reported yet. In this study, new metabolites of illegal sildenafil analogues such as hongdenafil, homosildenafil, and hydroxyhomosildenafil were determined using liquid chromatography quadrupole-time of flight mass spectrometry (LC-Q-TOF-MS) and tandem mass spectrometry (LC-Q-TOF-MS/MS). To prepare metabolic samples, in vitro and in vivo studies were performed. For in vivo metabolites analysis, urine and feces samples of rats treated with sildenafil analogues were analyzed. For in vitro metabolites analysis, human liver microsomes incubated with sildenafil analogues were extracted and analyzed. All metabolites were characterized by LC-Q-TOF-MS and LC-Q-TOF-MS/MS. As a result, five, six, and seven metabolites were determined in hongdenafil, homosildenafil, and hydroxyhomosildenafil treated samples, respectively. These results could be applied to forensic science and other analytical fields. Moreover, these newly identified metabolites could be used as fundamental data to determine the side effect and toxicity of illegal sildenafil analogues. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Metabolites of cannabidiol identified in human urine.

    Harvey, D J; Mechoulam, R

    1990-03-01

    1. Urine from a dystonic patient treated with cannabidiol (CBD) was examined by g.l.c.-mass spectrometry for CBD metabolites. Metabolites were identified as their trimethylsilyl (TMS), [2H9]TMS, and methyl ester/TMS derivatives and as the TMS derivatives of the product of lithium aluminium deuteride reduction. 2. Thirty-three metabolites were identified in addition to unmetabolized CBD, and a further four metabolites were partially characterized. 3. The major metabolic route was hydroxylation and oxidation at C-7 followed by further hydroxylation in the pentyl and propenyl groups to give 1"-, 2"-, 3"-, 4"- and 10-hydroxy derivatives of CBD-7-oic acid. Other metabolites, mainly acids, were formed by beta-oxidation and related biotransformations from the pentyl side-chain and these were also hydroxylated at C-6 or C-7. The major oxidized metabolite was CBD-7-oic acid containing a hydroxyethyl side-chain. 4. Two 8,9-dihydroxy compounds, presumably derived from the corresponding epoxide were identified. 5. Also present were several cyclized cannabinoids including delta-6- and delta-1-tetrahydrocannabinol and cannabinol. 6. This is the first metabolic study of CBD in humans; most observed metabolic routes were typical of those found for CBD and related cannabinoids in other species.

  7. Radiation-induced nitric oxide mitigates tumor hypoxia and radioresistance in a murine SCCVII tumor model

    Nagane, Masaki; Yasui, Hironobu; Yamamori, Tohru; Zhao, Songji; Kuge, Yuji; Tamaki, Nagara; Kameya, Hiromi; Nakamura, Hideo; Fujii, Hirotada; Inanami, Osamu

    2013-01-01

    Highlights: •IR-induced NO increased tissue perfusion and pO 2 . •IR increased NO production in tumors without changes in the mRNA and protein levels of NOS isoforms. •NOS activity assay showed that IR upregulated eNOS activity in tumors. •IR-induced NO decreased tumor hypoxia and altered tumor radiosensitivity. -- Abstract: Tumor hypoxia, which occurs mainly as a result of inadequate tissue perfusion in solid tumors, is a well-known challenge for successful radiotherapy. Recent evidence suggests that ionizing radiation (IR) upregulates nitric oxide (NO) production and that IR-induced NO has the potential to increase intratumoral circulation. However, the kinetics of NO production and the responsible isoforms for NO synthase in tumors exposed to IR remain unclear. In this study, we aimed to elucidate the mechanism by which IR stimulates NO production in tumors and the effect of IR-induced NO on tumor radiosensitivity. Hoechst33342 perfusion assay and electron spin resonance oxymetry showed that IR increased tissue perfusion and pO 2 in tumor tissue. Immunohistochemical analysis using two different hypoxic probes showed that IR decreased hypoxic regions in tumors; treatment with a nitric oxide synthase (NOS) inhibitor, L-NAME, abrogated the effects of IR. Moreover, IR increased endothelial NOS (eNOS) activity without affecting its mRNA or protein expression levels in SCCVII-transplanted tumors. Tumor growth delay assay showed that L-NAME decreased the anti-tumor effect of fractionated radiation (10 Gy × 2). These results suggested that IR increased eNOS activity and subsequent tissue perfusion in tumors. Increases in intratumoral circulation simultaneously decreased tumor hypoxia. As a result, IR-induced NO increased tumor radiosensitivity. Our study provides a new insight into the NO-dependent mechanism for efficient fractionated radiotherapy

  8. Sensitivity and proportionality assessment of metabolites from microdose to high dose in rats using LC-MS/MS.

    Ni, Jinsong; Ouyang, Hui; Seto, Carmai; Sakuma, Takeo; Ellis, Robert; Rowe, Josh; Acheampong, Andrew; Welty, Devin; Szekely-Klepser, Gabriella

    2010-03-01

    The objective of this study was to evaluate the sensitivity requirement for LC-MS/MS as an analytical tool to characterize metabolites in plasma and urine at microdoses in rats and to investigate proportionality of metabolite exposure from a microdose of 1.67 µg/kg to a high dose of 5000 µg/kg for atorvastatin, ofloxacin, omeprazole and tamoxifen. Only the glucuronide metabolite of ofloxacin, the hydroxylation metabolite of omeprazole and the hydration metabolite of tamoxifen were characterized in rat plasma at microdose by LC-MS/MS. The exposure of detected metabolites of omeprazole and tamoxifen appeared to increase in a nonproportional manner with increasing doses. Exposure of ortho- and para-hydroxyatorvastatin, but not atorvastatin and lactone, increased proportionally with increasing doses. LC-MS/MS has demonstrated its usefulness for detecting and characterizing the major metabolites in plasma and urine at microdosing levels in rats. The exposure of metabolites at microdose could not simply be used to predict their exposure at higher doses.

  9. Tumor-Infiltrating Immune Cells Promoting Tumor Invasion and Metastasis: Existing Theories

    Yan-gao Man, Alexander Stojadinovic, Jeffrey Mason, Itzhak Avital, Anton Bilchik, Bjoern Bruecher, Mladjan Protic, Aviram Nissan, Mina Izadjoo, Xichen Zhang, Anahid Jewett

    2013-01-01

    Full Text Available It is a commonly held belief that infiltration of immune cells into tumor tissues and direct physical contact between tumor cells and infiltrated immune cells is associated with physical destructions of the tumor cells, reduction of the tumor burden, and improved clinical prognosis. An increasing number of studies, however, have suggested that aberrant infiltration of immune cells into tumor or normal tissues may promote tumor progression, invasion, and metastasis. Neither the primary reason for these contradictory observations, nor the mechanism for the reported diverse impact of tumor-infiltrating immune cells has been elucidated, making it difficult to judge the clinical implications of infiltration of immune cells within tumor tissues. This mini-review presents several existing hypotheses and models that favor the promoting impact of tumor-infiltrating immune cells on tumor invasion and metastasis, and also analyzes their strength and weakness.

  10. Hypoxia-inducible factor 1–mediated characteristic features of cancer cells for tumor radioresistance

    Harada, Hiroshi

    2016-01-01

    Tumor hypoxia has been attracting increasing attention in the fields of radiation biology and oncology since Thomlinson and Gray detected hypoxic cells in malignant solid tumors and showed that they exert a negative impact on the outcome of radiation therapy. This unfavorable influence has, at least partly, been attributed to cancer cells acquiring a radioresistant phenotype through the activation of the transcription factor, hypoxia-inducible factor 1 (HIF-1). On the other hand, accumulating evidence has recently revealed that, even though HIF-1 is recognized as an important regulator of cellular adaptive responses to hypoxia, it may not become active and induce tumor radioresistance under hypoxic conditions only. The mechanisms by which HIF-1 is activated in cancer cells not only under hypoxic conditions, but also under normoxic conditions, through cancer-specific genetic alterations and the resultant imbalance in intermediate metabolites have been summarized herein. The relevance of the HIF-1–mediated characteristic features of cancer cells, such as the production of antioxidants through reprogramming of the glucose metabolic pathway and cell cycle regulation, for tumor radioresistance has also been reviewed

  11. Nitric oxide metabolites in goldfish under normoxic and hypoxic conditions

    Hansen, Marie N.; Jensen, Frank Bo

    2010-01-01

    – and it is metabolized to nitrite and nitrate. Nitrite is used as a marker for NOS activity but it is also a NO donor that can be activated by various cellular proteins under hypoxic conditions. Here, we report the first systematic study of NO metabolites (nitrite, nitrate, S-nitroso, N-nitroso and Fe-nitrosyl compounds...... to and below the critical PO2] for two days caused large decreases in plasma nitrite and nitrate, which suggests reduced NOS activity and increased nitrite/nitrate utilization or loss. Tissue NO metabolites were largely maintained at their tissue-specific values under hypoxia, pointing at nitrite transfer from...... extracellular to intracellular compartments and cellular NO generation from nitrite. The data highlights the preference of goldfish to defend intracellular NO homeostasis during hypoxia....

  12. Pathway elucidation and metabolic engineering of specialized plant metabolites

    Salomonsen, Bo

    A worldwide need to liberate ourselves from unsustainable petrochemicals has led to numerous metabolic engineering projects, mostly carried out in microbial hosts. Using systems biology for predicting and altering the metabolism of microorganisms towards production of a desired metabolite......, these projects have increased revenues on fermentative production of several biochemicals. The use of systems biology is, however, not limited to microorganisms. Recent advances in biotechnology methods have provided a wealth of data within functional genomics, metabolomics, transcriptomics, proteomics...... and fluxomics for a considerable number of organisms. Unfortunately, transferring the wealth of data to valuable information for metabolic engineering purposes is a non-obvious task. This PhD thesis describes a palate of tools used in generation of cell factories for production of specialized plant metabolites...

  13. Clozapine response and plasma catecholamines and their metabolites.

    Green, A I; Alam, M Y; Sobieraj, J T; Pappalardo, K M; Waternaux, C; Salzman, C; Schatzberg, A F; Schildkraut, J J

    1993-02-01

    The atypical neuroleptic clozapine has an unusual profile of clinical effects and a distinctive spectrum of pharmacological actions. Plasma measures of catecholamines and their metabolites have been used in the past to study the action of typical neuroleptics. We obtained longitudinal assessments of plasma measures of dopamine (pDA), norepinephrine (pNE), and their metabolites, homovanillic acid (pHVA) and 3-methoxy-4-hydroxyphenylglycol (pMHPG), in eight treatment-resistant or treatment-intolerant schizophrenic patients who were treated with clozapine for 12 weeks following a prolonged drug-washout period. Our findings from the study of these eight patients suggest the following: Plasma levels of HVA and possibly NE derived from the neuroleptic-free baseline period may predict response to clozapine; plasma levels of HVA and MHPG decrease during the initial weeks of treatment in responders but not in nonresponders; and plasma levels of DA and NE increase in both responders and nonresponders to clozapine.

  14. Fate of cyanobacteria and their metabolites during water treatment sludge management processes

    Ho, Lionel, E-mail: lionel.ho@sawater.com.au [Australian Water Quality Centre, SA Water Corporation, 250 Victoria Square, Adelaide, SA 5000 (Australia); Centre for Water Management and Reuse, University of South Australia, Mawson Lakes, SA 5095 (Australia); Dreyfus, Jennifer; Boyer, Justine; Lowe, Todd [Australian Water Quality Centre, SA Water Corporation, 250 Victoria Square, Adelaide, SA 5000 (Australia); Bustamante, Heriberto; Duker, Phil [Sydney Water, PO Box 399, Parramatta, NSW 2124 (Australia); Meli, Tass [TRILITY Pty Ltd, PO Box 86, Appin, NSW 2560 (Australia); Newcombe, Gayle [Australian Water Quality Centre, SA Water Corporation, 250 Victoria Square, Adelaide, SA 5000 (Australia); Centre for Water Management and Reuse, University of South Australia, Mawson Lakes, SA 5095 (Australia)

    2012-05-01

    Cyanobacteria and their metabolites are an issue for water authorities; however, little is known as to the fate of coagulated cyanobacterial-laden sludge during waste management processes in water treatment plants (WTPs). This paper provides information on the cell integrity of Anabaena circinalis and Cylindrospermopsis raciborskii during: laboratory-scale coagulation/sedimentation processes; direct filtration and backwashing procedures; and cyanobacterial-laden sludge management practices. In addition, the metabolites produced by A. circinalis (geosmin and saxitoxins) and C. raciborskii (cylindrospermopsin) were investigated with respect to their release (and possible degradation) during each of the studied processes. Where sedimentation was used, coagulation effectively removed cyanobacteria (and intracellular metabolites) without any considerable exertion on coagulant demand. During direct filtration experiments, cyanobacteria released intracellular metabolites through a stagnation period, suggesting that more frequent backwashing of filters may be required to prevent floc build-up and metabolite release. Cyanobacteria appeared to be protected within the flocs, with minimal damage during backwashing of the filters. Within coagulant sludge, cyanobacteria released intracellular metabolites into the supernatant after 3 d, even though cells remained viable up to 7 d. This work has improved the understanding of cyanobacterial metabolite risks associated with management of backwash water and sludge and is likely to facilitate improvements at WTPs, including increased monitoring and the application of treatment strategies and operational practices, with respect to cyanobacterial-laden sludge and/or supernatant recycle management. - Highlights: Black-Right-Pointing-Pointer Coagulation removed cyanobacteria without an additional exertion on coagulant demand. Black-Right-Pointing-Pointer During a stagnation period in direct filtration intracellular metabolites were

  15. Fate of cyanobacteria and their metabolites during water treatment sludge management processes

    Ho, Lionel; Dreyfus, Jennifer; Boyer, Justine; Lowe, Todd; Bustamante, Heriberto; Duker, Phil; Meli, Tass; Newcombe, Gayle

    2012-01-01

    Cyanobacteria and their metabolites are an issue for water authorities; however, little is known as to the fate of coagulated cyanobacterial-laden sludge during waste management processes in water treatment plants (WTPs). This paper provides information on the cell integrity of Anabaena circinalis and Cylindrospermopsis raciborskii during: laboratory-scale coagulation/sedimentation processes; direct filtration and backwashing procedures; and cyanobacterial-laden sludge management practices. In addition, the metabolites produced by A. circinalis (geosmin and saxitoxins) and C. raciborskii (cylindrospermopsin) were investigated with respect to their release (and possible degradation) during each of the studied processes. Where sedimentation was used, coagulation effectively removed cyanobacteria (and intracellular metabolites) without any considerable exertion on coagulant demand. During direct filtration experiments, cyanobacteria released intracellular metabolites through a stagnation period, suggesting that more frequent backwashing of filters may be required to prevent floc build-up and metabolite release. Cyanobacteria appeared to be protected within the flocs, with minimal damage during backwashing of the filters. Within coagulant sludge, cyanobacteria released intracellular metabolites into the supernatant after 3 d, even though cells remained viable up to 7 d. This work has improved the understanding of cyanobacterial metabolite risks associated with management of backwash water and sludge and is likely to facilitate improvements at WTPs, including increased monitoring and the application of treatment strategies and operational practices, with respect to cyanobacterial-laden sludge and/or supernatant recycle management. - Highlights: ► Coagulation removed cyanobacteria without an additional exertion on coagulant demand. ► During a stagnation period in direct filtration intracellular metabolites were released. ► Cyanobacterial cells were not damaged

  16. Tumor Macroenvironment and Metabolism

    Al-Zhoughbi, Wael; Huang, Jianfeng; Paramasivan, Ganapathy S.; Till, Holger; Pichler, Martin; Guertl-Lackner, Barbara; Hoefler, Gerald

    2014-01-01

    In this review we introduce the concept of the tumor macroenvironment and explore it in the context of metabolism. Tumor cells interact with the tumor microenvironment including immune cells. Blood and lymph vessels are the critical components that deliver nutrients to the tumor and also connect the tumor to the macroenvironment. Several factors are then released from the tumor itself but potentially also from the tumor microenvironment, influencing the metabolism of distant tissues and organ...

  17. Dietary Metabolites and Chronic Kidney Disease

    Sho Hasegawa

    2017-04-01

    Full Text Available Dietary contents and their metabolites are closely related to chronic kidney disease (CKD progression. Advanced glycated end products (AGEs are a type of uremic toxin produced by glycation. AGE accumulation is not only the result of elevated glucose levels or reduced renal clearance capacity, but it also promotes CKD progression. Indoxyl sulfate, another uremic toxin derived from amino acid metabolism, accumulates as CKD progresses and induces tubulointerstitial fibrosis and glomerular sclerosis. Specific types of amino acids (d-serine or fatty acids (palmitate are reported to be closely associated with CKD progression. Promising therapeutic targets associated with nutrition include uremic toxin absorbents and inhibitors of AGEs or the receptor for AGEs (RAGE. Probiotics and prebiotics maintain gut flora balance and also prevent CKD progression by enhancing gut barriers and reducing uremic toxin formation. Nrf2 signaling not only ameliorates oxidative stress but also reduces elevated AGE levels. Bardoxolone methyl, an Nrf2 activator and NF-κB suppressor, has been tested as a therapeutic agent, but the phase 3 clinical trial was terminated owing to the high rate of cardiovascular events. However, a phase 2 trial has been initiated in Japan, and the preliminary analysis reveals promising results without an increase in cardiovascular events.

  18. Cystic tumors of the pancreas

    Brambs, H.J.; Juchems, M.

    2008-01-01

    Cystic lesions of the pancreas encompass a broad spectrum of benign, premalignant, and malignant tumors which are primarily cystic or result from cystic necroses of solid neoplasms. Because of the wide use of cross-sectional imaging techniques they are increasingly being identified in asymptomatic patients as well as in patients presenting with abdominal pain, jaundice or pancreatitis. Among these lesions, intraductal papillary mucinous neoplasms, serous cystic neoplasms and mucinous cystic neoplasms represent the majority of cases. With increasing experience with these tumors, a refinement of our understanding of their morphology and of their natural course has emerged. It is important to be familiar with the CT and MR imaging features of these lesions to differentiate these tumors and to orient the diagnosis towards benign or malignant forms. Because characterization of cystic tumors of the pancreas can sometimes be difficult due to overlapping imaging features, additional criteria such as clinical symptoms, localization, age and gender have to be taken into account. If appropriately treated, these tumors can usually be cured by resection and the decreasing risk of pancreatic surgery has led to an increasing number of resections of pancreatic tumors. The management of cystic tumors of the pancreas has not yet been standardized and the correct evaluation and subsequent management of the disease in asymptomatic patients have not been fully defined. (orig.) [de

  19. Pharmacologically active plant metabolites as survival strategy products.

    Attardo, C; Sartori, F

    2003-01-01

    The fact that plant organisms produce chemical substances that are able to positively or negatively interfere with the processes which regulate human life has been common knowledge since ancient times. One of the numerous possible examples in the infusion of Conium maculatum, better known as Hemlock, a plant belonging to the family umbelliferae, used by the ancient Egyptians to cure skin diseases. The current official pharmacopoeia includes various chemical substances produced by secondary plant metabolisms. For example, the immunosuppressive drugs used to prevent organ transplant rejection and the majority of antibiotics are metabolites produced by fungal organisms, pilocarpin, digitalis, strophantus, salicylic acid and curare are examples of plant organism metabolites. For this reason, there has been an increase in research into plants, based on information on their medicinal use in the areas where they grow. The study of plants in relation to local culture and traditions is known as "ethnobotany". Careful study of the behaviour of sick animals has also led to the discovery of medicinal plants. The study of this subject is known as "zoopharmacognosy". The aim of this article is to discuss the fact that "ad hoc" production of such chemical substances, defined as "secondary metabolites", is one of the modes in which plant organisms respond to unfavourable environmental stimuli, such as an attack by predatory phytophagous animals or an excessive number of plant individuals, even of the same species, in a terrain. In the latter case, the plant organisms produce toxic substances, called "allelopathic" which limit the growth of other individuals. "Secondary metabolites" are produced by metabolic systems that are shunts of the primary systems which, when required, may be activated from the beginning, or increased to the detriment of others. The study of the manner in which such substances are produced is the subject of a new branch of learning called "ecological

  20. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism.

    Zhao, Hongyun; Yang, Lifeng; Baddour, Joelle; Achreja, Abhinav; Bernard, Vincent; Moss, Tyler; Marini, Juan C; Tudawe, Thavisha; Seviour, Elena G; San Lucas, F Anthony; Alvarez, Hector; Gupta, Sonal; Maiti, Sourindra N; Cooper, Laurence; Peehl, Donna; Ram, Prahlad T; Maitra, Anirban; Nagrath, Deepak

    2016-02-27

    Cancer-associated fibroblasts (CAFs) are a major cellular component of tumor microenvironment in most solid cancers. Altered cellular metabolism is a hallmark of cancer, and much of the published literature has focused on neoplastic cell-autonomous processes for these adaptations. We demonstrate that exosomes secreted by patient-derived CAFs can strikingly reprogram the metabolic machinery following their uptake by cancer cells. We find that CAF-derived exosomes (CDEs) inhibit mitochondrial oxidative phosphorylation, thereby increasing glycolysis and glutamine-dependent reductive carboxylation in cancer cells. Through 13C-labeled isotope labeling experiments we elucidate that exosomes supply amino acids to nutrient-deprived cancer cells in a mechanism similar to macropinocytosis, albeit without the previously described dependence on oncogenic-Kras signaling. Using intra-exosomal metabolomics, we provide compelling evidence that CDEs contain intact metabolites, including amino acids, lipids, and TCA-cycle intermediates that are avidly utilized by cancer cells for central carbon metabolism and promoting tumor growth under nutrient deprivation or nutrient stressed conditions.

  1. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism

    Zhao, Hongyun; Yang, Lifeng; Baddour, Joelle; Achreja, Abhinav; Bernard, Vincent; Moss, Tyler; Marini, Juan C; Tudawe, Thavisha; Seviour, Elena G; San Lucas, F Anthony; Alvarez, Hector; Gupta, Sonal; Maiti, Sourindra N; Cooper, Laurence; Peehl, Donna; Ram, Prahlad T; Maitra, Anirban; Nagrath, Deepak

    2016-01-01

    Cancer-associated fibroblasts (CAFs) are a major cellular component of tumor microenvironment in most solid cancers. Altered cellular metabolism is a hallmark of cancer, and much of the published literature has focused on neoplastic cell-autonomous processes for these adaptations. We demonstrate that exosomes secreted by patient-derived CAFs can strikingly reprogram the metabolic machinery following their uptake by cancer cells. We find that CAF-derived exosomes (CDEs) inhibit mitochondrial oxidative phosphorylation, thereby increasing glycolysis and glutamine-dependent reductive carboxylation in cancer cells. Through 13C-labeled isotope labeling experiments we elucidate that exosomes supply amino acids to nutrient-deprived cancer cells in a mechanism similar to macropinocytosis, albeit without the previously described dependence on oncogenic-Kras signaling. Using intra-exosomal metabolomics, we provide compelling evidence that CDEs contain intact metabolites, including amino acids, lipids, and TCA-cycle intermediates that are avidly utilized by cancer cells for central carbon metabolism and promoting tumor growth under nutrient deprivation or nutrient stressed conditions. DOI: http://dx.doi.org/10.7554/eLife.10250.001 PMID:26920219

  2. Low-Molecular-Weight Metabolites from Diatoms: Structures, Biological Roles and Biosynthesis

    Valentin Stonik

    2015-06-01

    Full Text Available Diatoms are abundant and important biological components of the marine environment that biosynthesize diverse natural products. These microalgae are rich in various lipids, carotenoids, sterols and isoprenoids, some of them containing toxins and other metabolites. Several groups of diatom natural products have attracted great interest due to their potential practical application as energy sources (biofuel, valuable food constituents, and prospective materials for nanotechnology. In addition, hydrocarbons, which are used in climate reconstruction, polyamines which participate in biomineralization, new apoptotic agents against tumor cells, attractants and deterrents that regulate the biochemical communications between marine species in seawaters have also been isolated from diatoms. However, chemical studies on these microalgae are complicated by difficulties, connected with obtaining their biomass, and the influence of nutrients and contaminators in their environment as well as by seasonal and climatic factors on the biosynthesis of the corresponding natural products. Overall, the number of chemically studied diatoms is lower than that of other algae, but further studies, particularly those connected with improvements in the isolation and structure elucidation technique as well as the genomics of diatoms, promise both to increase the number of studied species with isolated biologically active natural products and to provide a clearer perception of their biosynthesis.

  3. Study of wilms' tumor

    Khan, M.H.; Yaqub, N.

    2001-01-01

    This study is an effort to bring into light data related to children with Wilms' tumor managed at Islamabad as local literature on this topic is lacking. It was retrospective study. The study was conducted at Children Hospital, Pakistan Institute of Medical Science, Islamabad between January, 1987 and December 1995. All patients managed during the study period were included in the study. In all the patients complete blood count (CBC), urine analysis (D/R),X-ray abdomen and chest, ultrasound abdomen and in selected cases CT scan were performed. National Wilms' Tumor Study Group (NWTS 3) protocol was followed for further management. Fifty patients including 28 males and 22 females with the age range from 9 months to 8 years were managed in 9 years period. Left kidney was involved in 31 patients. Most of the tumors were solid on ultrasound, 76% patients were in stage III and IV. In one case bilateral involvement of kidney was found. Forty patients underwent primary surgery. Only 14 patients received complete course of chemotherapy while 31 radiotherapy. Nineteen patients died and 15 lost to follow-up. The survival and mortality rates are comparable to NWTS-3 results, although, most of the patients were presented in advance stage of Wilms tumor. The survival of these patients can be improved by increasing awareness of society through electronic and print media. (author)

  4. The Role of miR-330-3p/PKC-α Signaling Pathway in Low-Dose Endothelial-Monocyte Activating Polypeptide-II Increasing the Permeability of Blood-Tumor Barrier

    Jiahui Liu

    2017-12-01

    Full Text Available This study was performed to determine whether EMAP II increases the permeability of the blood-tumor barrier (BTB by affecting the expression of miR-330-3p as well as its possible mechanisms. We determined the over-expression of miR-330-3p in glioma microvascular endothelial cells (GECs by Real-time PCR. Endothelial monocyte-activating polypeptide-II (EMAP-II significantly decreased the expression of miR-330-3p in GECs. Pre-miR-330-3p markedly decreased the permeability of BTB and increased the expression of tight junction (TJ related proteins ZO-1, occludin and claudin-5, however, anti-miR-330-3p had the opposite effects. Anti-miR-330-3p could enhance the effect of EMAP-II on increasing the permeability of BTB, however, pre-miR-330-3p partly reversed the effect of EMAP-II on that. Similarly, anti-miR-330-3p improved the effects of EMAP-II on increasing the expression levels of PKC-α and p-PKC-α in GECs and pre-miR-330-3p partly reversed the effects. MiR-330-3p could target bind to the 3′UTR of PKC-α. The results of in vivo experiments were similar to those of in vitro experiments. These suggested that EMAP-II could increase the permeability of BTB through inhibiting miR-330-3p which target negative regulation of PKC-α. Pre-miR-330-3p and PKC-α inhibitor decreased the BTB permeability and up-regulated the expression levels of ZO-1, occludin and claudin-5 while anti-miR-330-3p and PKC-α activator brought the reverse effects. Compared with EMAP-II, anti-miR-330-3p and PKC-α activator alone, the combination of the three combinations significantly increased the BTB permeability. EMAP-II combined with anti-miR-330-3p and PKCα activator could enhance the DOX’s effects on inhibiting the cell viabilities and increasing the apoptosis of U87 glioma cells. Our studies suggest that low-dose EMAP-II up-regulates the expression of PKC-α and increases the activity of PKC-α by inhibiting the expression of miR-330-3p, reduces the expression of ZO-1

  5. Cryospectrophotometric determination of tumor intravascular oxyhemoglobin saturations: dependence on vascular geometry and tumor growth.

    Fenton, B M; Rofstad, E K; Degner, F L; Sutherland, R M

    1988-12-21

    To delineate the complex relationships between overall tumor oxygenation and vascular configuration, intravascular oxyhemoglobin (HbO2) saturation distributions were measured with cryospectrophotometric techniques. Four factors related to vascular morphometry and tumor growth were evaluated: a) vessel diameter, b) distance of vessel from the tumor surface, c) tumor volume, and d) vascular density. To measure intertumor heterogeneity, two murine sarcomas (RIF-1 and KHT) and two human ovarian carcinoma xenografts (OWI and MLS) were utilized. In contrast to skeletal muscle, a preponderance of very low HbO2 saturations was observed for both large and small tumors of all lines. Saturations up to about 90% were also generally present, however, even in very large tumors. Variations in vascular configuration were predominantly tumor-line dependent rather than due to inherent characteristics of the host vasculature, and widely disparate HbO2 distributions were found for alternate lines implanted in identical host mice. Although peripheral saturations remained fairly constant with tumor growth, HbO2 values were markedly lower for vessels nearer the tumor center and further decreased with increasing tumor volume. HbO2 saturations did not change substantially with increasing vascular density (except for KHT tumors), although density did decrease with increasing distance from tumor surface. Combined effects of vessel diameter, tumor volume, and vessel location on HbO2 saturations were complex and varied markedly with both tumor line and vessel class. For specific classes, HbO2 distributions correlated closely with radiobiological hypoxic fractions, i.e., for tumor lines in which hypoxic fraction increased substantially with tumor volume, corresponding HbO2 values decreased, while for lines in which hypoxic fraction remained constant, HbO2 values also were unchanged. Although these trends may also be a function of differing oxygen consumption rates between tumor lines

  6. C3G knock-down enhances migration and invasion by increasing Rap1-mediated p38α activation, while it impairs tumor growth through p38α-independent mechanisms

    Priego, Neibla; Arechederra, María; Sequera, Celia; Bragado, Paloma; Vázquez-Carballo, Ana; Gutiérrez-Uzquiza, Álvaro; Martín-Granado, Víctor; Ventura, Juan José; Kazanietz, Marcelo G.; Guerrero, Carmen; Porras, Almudena

    2016-01-01

    C3G, a Guanine nucleotide Exchange Factor (GEF) for Rap1 and R-Ras, has been shown to play important roles in development and cancer. Previous studies determined that C3G regulates cell death through down-regulation of p38α MAPK activity. Here, we found that C3G knock-down in MEFs and HCT116 cells promotes migration and invasion through Rap1-mediated p38α hyper-activation. These effects of C3G were inhibited by Rap1 knock-down or inactivation. The enhanced migration observed in C3G depleted HCT116 cells was associated with reduction in E-cadherin expression, internalization of ZO-1, actin cytoskeleton reorganization and decreased adhesion. We also found that matrix metalloproteases MMP2 and MMP9 are involved in the pro-invasive effect of C3G down-regulation. Additionally, our studies revealed that both C3G and p38α collaborate to promote growth of HCT116 cells in vitro and in vivo, possibly by enhancing cell survival. In fact, knocking-down C3G or p38α individually or together promoted cell death in vitro, although only the double C3G-p38α silencing was able to increase cell death within tumors. Notably, we found that the pro-tumorigenic function of C3G does not depend on p38α or Rap1 activation. Altogether, our studies uncover novel mechanisms by which C3G controls key aspects of tumorigenesis. PMID:27286263

  7. Biological stoichiometry in tumor micro-environments.

    Irina Kareva

    Full Text Available Tumors can be viewed as evolving ecological systems, in which heterogeneous populations of cancer cells compete with each other and somatic cells for space and nutrients within the ecosystem of the human body. According to the growth rate hypothesis (GRH, increased phosphorus availability in an ecosystem, such as the tumor micro-environment, may promote selection within the tumor for a more proliferative and thus potentially more malignant phenotype. The applicability of the GRH to tumor growth is evaluated using a mathematical model, which suggests that limiting phosphorus availability might promote intercellular competition within a tumor, and thereby delay disease progression. It is also shown that a tumor can respond differently to changes in its micro-environment depending on the initial distribution of clones within the tumor, regardless of its initial size. This suggests that composition of the tumor as a whole needs to be evaluated in order to maximize the efficacy of therapy.

  8. MRI diagnosis of tongue tumors

    Minowa, Kazuyuki; Abe, Satoru; Ohmori, Keiichi; Hosokawa, Yoichirou; Yamasaki, Michio; Hirano, Masayasu.

    1992-01-01

    MRI studies were performed on 29 patients with tongue tumors. Twenty-six cases were fresh, others were recurrent. Signal intensity of tongue tumor was not characteristic and specific, and it was a low∼iso signal on T1 weighted image (WI), heterogeneously iso∼high signal intensity on T2 WI, heterogeneous enhancement on gadolinium-DTPA enhanced image compared to muscle signal intensity. In 3 of 29 patients, the tongue tumor invaded to the mandible. With regard to the grasping tumor invasion to the mandible, the STIR method was superior to T1, T2 WI of the spin echo method. Dynamic enhanced MR images were performed in 6 of 29 patients. Dynamic change of signal intensity after gadolinium-DTPA administration were assessed with fast low angle shot imaging. On dynamic study at about 20 seconds after gadolinium-DTPA injection, the first signal intensity in the periphery of the tumor gradually began to increase. Maximum signal intensity of the tumor showed at about 70 seconds after gadolinium-DTPA injection. In search from 0 to 5 minutes, after the tongue tumor showed maximum signal intensity, its signal maintain the maximum. Necrotic and peritumorous edema showed a significantly lower and more gradual increase in signal intensity than adjacent neoplastic tissue on dynamic enhanced MRI. (author)

  9. Effect of Arrabidaea chica extracts on the Ehrlich solid tumor development

    Ana Flávia C. Ribeiro

    2012-04-01

    Full Text Available The aim of this study was to investigate the effect of Arrabidaea chica (Humb. & Bonpl. B. Verl., Bignoniaceae, extracts on Ehrlich solid tumor development in Swiss mice. Leaves of A. chica were extracted with two distinct solvents, ethanol and water. The phytochemical analysis of the extracts indicated different classes of secondary metabolites like as anthocyanidins, flavonoids, tannins and saponins. Ethanol (EE and aqueous (AE extracts at 30 mg/kg reduced the development of Ehrlich solid tumor after ten days of oral treatment. The EE group presented increase in neutrophil count, α1 and β globulin values, and decrease of α2 globulin values. Furthermore, EE reduced the percentage of CD4+ T cells in blood but did not alter the percentage of inflammatory mononuclear cells associated with tumor suggesting a direct action of EE on tumor cells. Reduced tumor development observed in AE group was accompanied by a lower percentage of CD4+ T lymphocytes in blood. At the tumor microenvironment, this treatment decreased the percentage of CD3+ T cells, especially due to a reduction of CD8+ T subpopulation and NK cells. The antitumor activity presented by the AE is possibly related to an anti-inflammatory activity. None of the extracts produced toxic effects in animals. In conclusion, the ethanol and aqueous extracts of A. chica have immunomodulatory and antitumor activities attributed to the presence of flavonoids, such as kaempferol. These effects appear to be related to different mechanisms of action for each extract. This study demonstrates the potential of A. chica as an antitumor agent confirming its use in traditional popular medicine.

  10. Pharmacokinetic studies of 131 I-stevioside and his metabolites

    Cardoso, V.N.

    1993-01-01

    Stevia rebaudiana is a shrub widely in Paraguay and Brazil, belonging to the compositae family. The leaves of this plant contain large amounts of stevioside. Since the use of stevioside as sugar substitute continues to increase, the purpose of this study is to investigate the biological distribution, excretion and the possibility of stevioside to be degraded to steviol 'in vitro'. 131 -I-stevioside (1,10 MBq) was i.v. injected in Wistar male rats its distribution in the body and metabolism were studied. The highest concentration of radioactivity was observed in the liver and the small intestine after 10 and 120 minutes respectively. RP-HPLC analysis of the bile showed that steviol appeared as a major metabolite, representing 47,3% of the radioactivity while stevioside represented 37,3% and the remaining 15,4% was due to an unidentified metabolite. The results showed that stevioside was partially degraded 'in vivo' to steviol and other metabolite, and that part of the radioactivity was absorbed from the small intestine. (author)

  11. A Latex Metabolite Benefits Plant Fitness under Root Herbivore Attack.

    Meret Huber

    2016-01-01

    Full Text Available Plants produce large amounts of secondary metabolites in their shoots and roots and store them in specialized secretory structures. Although secondary metabolites and their secretory structures are commonly assumed to have a defensive function, evidence that they benefit plant fitness under herbivore attack is scarce, especially below ground. Here, we tested whether latex secondary metabolites produced by the common dandelion (Taraxacum officinale agg. decrease the performance of its major native insect root herbivore, the larvae of the common cockchafer (Melolontha melolontha, and benefit plant vegetative and reproductive fitness under M. melolontha attack. Across 17 T. officinale genotypes screened by gas and liquid chromatography, latex concentrations of the sesquiterpene lactone taraxinic acid β-D-glucopyranosyl ester (TA-G were negatively associated with M. melolontha larval growth. Adding purified TA-G to artificial diet at ecologically relevant concentrations reduced larval feeding. Silencing the germacrene A synthase ToGAS1, an enzyme that was identified to catalyze the first committed step of TA-G biosynthesis, resulted in a 90% reduction of TA-G levels and a pronounced increase in M. melolontha feeding. Transgenic, TA-G-deficient lines were preferred by M. melolontha and suffered three times more root biomass reduction than control lines. In a common garden experiment involving over 2,000 T. officinale individuals belonging to 17 different genotypes, high TA-G concentrations were associated with the maintenance of high vegetative and reproductive fitness under M. melolontha attack. Taken together, our study demonstrates that a latex secondary metabolite benefits plants under herbivore attack, a result that provides a mechanistic framework for root herbivore driven natural selection and evolution of plant defenses below ground.

  12. A Latex Metabolite Benefits Plant Fitness under Root Herbivore Attack.

    Huber, Meret; Epping, Janina; Schulze Gronover, Christian; Fricke, Julia; Aziz, Zohra; Brillatz, Théo; Swyers, Michael; Köllner, Tobias G; Vogel, Heiko; Hammerbacher, Almuth; Triebwasser-Freese, Daniella; Robert, Christelle A M; Verhoeven, Koen; Preite, Veronica; Gershenzon, Jonathan; Erb, Matthias

    2016-01-01

    Plants produce large amounts of secondary metabolites in their shoots and roots and store them in specialized secretory structures. Although secondary metabolites and their secretory structures are commonly assumed to have a defensive function, evidence that they benefit plant fitness under herbivore attack is scarce, especially below ground. Here, we tested whether latex secondary metabolites produced by the common dandelion (Taraxacum officinale agg.) decrease the performance of its major native insect root herbivore, the larvae of the common cockchafer (Melolontha melolontha), and benefit plant vegetative and reproductive fitness under M. melolontha attack. Across 17 T. officinale genotypes screened by gas and liquid chromatography, latex concentrations of the sesquiterpene lactone taraxinic acid β-D-glucopyranosyl ester (TA-G) were negatively associated with M. melolontha larval growth. Adding purified TA-G to artificial diet at ecologically relevant concentrations reduced larval feeding. Silencing the germacrene A synthase ToGAS1, an enzyme that was identified to catalyze the first committed step of TA-G biosynthesis, resulted in a 90% reduction of TA-G levels and a pronounced increase in M. melolontha feeding. Transgenic, TA-G-deficient lines were preferred by M. melolontha and suffered three times more root biomass reduction than control lines. In a common garden experiment involving over 2,000 T. officinale individuals belonging to 17 different genotypes, high TA-G concentrations were associated with the maintenance of high vegetative and reproductive fitness under M. melolontha attack. Taken together, our study demonstrates that a latex secondary metabolite benefits plants under herbivore attack, a result that provides a mechanistic framework for root herbivore driven natural selection and evolution of plant defenses below ground.

  13. Serotonergic neurotoxic metabolites of ecstasy identified in rat brain.

    Jones, Douglas C; Duvauchelle, Christine; Ikegami, Aiko; Olsen, Christopher M; Lau, Serrine S; de la Torre, Rafael; Monks, Terrence J

    2005-04-01

    The selective serotonergic neurotoxicity of 3,4-methylenedioxyamphetamine (MDA) and 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) depends on their systemic metabolism. We have recently shown that inhibition of brain endothelial cell gamma-glutamyl transpeptidase (gamma-GT) potentiates the neurotoxicity of both MDMA and MDA, indicating that metabolites that are substrates for this enzyme contribute to the neurotoxicity. Consistent with this view, glutathione (GSH) and N-acetylcysteine conjugates of alpha-methyl dopamine (alpha-MeDA) are selective neurotoxicants. However, neurotoxic metabolites of MDMA or MDA have yet to be identified in brain. Using in vivo microdialysis coupled to liquid chromatography-tandem mass spectroscopy and a high-performance liquid chromatography-coulometric electrode array system, we now show that GSH and N-acetylcysteine conjugates of N-methyl-alpha-MeDA are present in the striatum of rats administered MDMA by subcutaneous injection. Moreover, inhibition of gamma-GT with acivicin increases the concentration of GSH and N-acetylcysteine conjugates of N-methyl-alpha-MeDA in brain dialysate, and there is a direct correlation between the concentrations of metabolites in dialysate and the extent of neurotoxicity, measured by decreases in serotonin (5-HT) and 5-hydroxyindole acetic (5-HIAA) levels. Importantly, the effects of acivicin are independent of MDMA-induced hyperthermia, since acivicin-mediated potentiation of MDMA neurotoxicity occurs in the context of acivicin-mediated decreases in body temperature. Finally, we have synthesized 5-(N-acetylcystein-S-yl)-N-methyl-alpha-MeDA and established that it is a relatively potent serotonergic neurotoxicant. Together, the data support the contention that MDMA-mediated serotonergic neurotoxicity is mediated by the systemic formation of GSH and N-acetylcysteine conjugates of N-methyl-alpha-MeDA (and alpha-MeDA). The mechanisms by which such metabolites access the brain and produce selective

  14. Detecting Beer Intake by Unique Metabolite Patterns.

    Gürdeniz, Gözde; Jensen, Morten Georg; Meier, Sebastian; Bech, Lene; Lund, Erik; Dragsted, Lars Ove

    2016-12-02

    Evaluation of the health related effects of beer intake is hampered by the lack of accurate tools for assessing intakes (biomarkers). Therefore, we identified plasma and urine metabolites associated with recent beer intake by untargeted metabolomics and established a characteristic metabolite pattern representing raw materials and beer production as a qualitative biomarker of beer intake. In a randomized, crossover, single-blinded meal study (MSt1), 18 participants were given, one at a time, four different test beverages: strong, regular, and nonalcoholic beers and a soft drink. Four participants were assigned to have two additional beers (MSt2). In addition to plasma and urine samples, test beverages, wort, and hops extract were analyzed by UPLC-QTOF. A unique metabolite pattern reflecting beer metabolome, including metabolites derived from beer raw material (i.e., N-methyl tyramine sulfate and the sum of iso-α-acids and tricyclohumols) and the production process (i.e., pyro-glutamyl proline and 2-ethyl malate), was selected to establish a compliance biomarker model for detection of beer intake based on MSt1. The model predicted the MSt2 samples collected before and up to 12 h after beer intake correctly (AUC = 1). A biomarker model including four metabolites representing both beer raw materials and production steps provided a specific and accurate tool for measurement of beer consumption.

  15. Plant metabolites and nutritional quality of vegetables.

    Hounsome, N; Hounsome, B; Tomos, D; Edwards-Jones, G

    2008-05-01

    Vegetables are an important part of the human diet and a major source of biologically active substances such as vitamins, dietary fiber, antioxidants, and cholesterol-lowering compounds. Despite a large amount of information on this topic, the nutritional quality of vegetables has not been defined. Historically, the value of many plant nutrients and health-promoting compounds was discovered by trial and error. By the turn of the century, the application of chromatography, mass spectrometry, infrared spectrometry, and nuclear magnetic resonance allowed quantitative and qualitative measurements of a large number of plant metabolites. Approximately 50000 metabolites have been elucidated in plants, and it is predicted that the final number will exceed 200000. Most of them have unknown function. Metabolites such as carbohydrates, organic and amino acids, vitamins, hormones, flavonoids, phenolics, and glucosinolates are essential for plant growth, development, stress adaptation, and defense. Besides the importance for the plant itself, such metabolites determine the nutritional quality of food, color, taste, smell, antioxidative, anticarcinogenic, antihypertension, anti-inflammatory, antimicrobial, immunostimulating, and cholesterol-lowering properties. This review is focused on major plant metabolites that characterize the nutritional quality of vegetables, and methods of their analysis.

  16. Secondary metabolites in fungus-plant interactions

    Pusztahelyi, Tünde; Holb, Imre J.; Pócsi, István

    2015-01-01

    Fungi and plants are rich sources of thousands of secondary metabolites. The genetically coded possibilities for secondary metabolite production, the stimuli of the production, and the special phytotoxins basically determine the microscopic fungi-host plant interactions and the pathogenic lifestyle of fungi. The review introduces plant secondary metabolites usually with antifungal effect as well as the importance of signaling molecules in induced systemic resistance and systemic acquired resistance processes. The review also concerns the mimicking of plant effector molecules like auxins, gibberellins and abscisic acid by fungal secondary metabolites that modulate plant growth or even can subvert the plant defense responses such as programmed cell death to gain nutrients for fungal growth and colonization. It also looks through the special secondary metabolite production and host selective toxins of some significant fungal pathogens and the plant response in form of phytoalexin production. New results coming from genome and transcriptional analyses in context of selected fungal pathogens and their hosts are also discussed. PMID:26300892

  17. Functional metabolite assemblies—a review

    Aizen, Ruth; Tao, Kai; Rencus-Lazar, Sigal; Gazit, Ehud

    2018-05-01

    Metabolites are essential for the normal operation of cells and fulfill various physiological functions. It was recently found that in several metabolic disorders, the associated metabolites could self-assemble to generate amyloid-like structures, similar to canonical protein amyloids that have a role in neurodegenerative disorders. Yet, assemblies with typical amyloid characteristics are also known to have physiological function. In addition, many non-natural proteins and peptides presenting amyloidal properties have been used for the fabrication of functional nanomaterials. Similarly, functional metabolite assemblies are also found in nature, demonstrating various physiological roles. A notable example is the structural color formed by guanine crystals or fluorescent crystals in feline eyes responsible for enhanced night vision. Moreover, some metabolites have been used for the in vitro fabrication of functional materials, such as glycine crystals presenting remarkable piezoelectric properties or indigo films used to assemble organic semi-conductive electronic devices. Therefore, we believe that the study of metabolite assemblies is not only important in order to understand their role in normal physiology and in pathology, but also paves a new route in exploring the fabrication of organic, bio-compatible materials.

  18. Peculiarities in the CT findings of germ cell tumors in various tumor localizations

    Tazoe, Makoto; Miyagami, Mitsusuke; Tsubokawa, Takashi

    1991-01-01

    The CT findings of 17 germ cell tumors were studied in relation to the locations of the tumor, the pathological diagnoses, and the tumor markers (AFP and HCG). Generally, the CT findings of germ cell tumors depended on the pathological diagnoses more strongly than on the location of the tumors. On plain CT of 7 germ cell tumors in the pineal region, all of them demonstrated heterogeneous findings. Hydrocephalus was seen in 6 cases (86%) and calcification in 6 cases (86%) of the germ cell tumors in the pineal region. Calcification and hydrocephalus that appeared more often than in other regions were characteristic of germ cell tumors of the pineal region. The germ cell tumors in the basal ganglia had a slightly homogenous high density, with small cysts and calcification in most of them on plain CT. On enhanced CT, the tumors were moderately enhanced in all cases located in the basal ganglia. Four cases of germ cell tumors located in the basal ganglia revealed the dilatation of lateral ventricle due to hemispheric atrophy in the tumor side. The germ cell tumors showing an increase in the tumor markers such as AFP and HCG, which were usually malignant germ cell tumors, were strongly enhanced on enhanced CT. (author)

  19. Targeting Mitochondrial Function to Treat Quiescent Tumor Cells in Solid Tumors

    Xiaonan Zhang

    2015-11-01

    Full Text Available The disorganized nature of tumor vasculature results in the generation of microenvironments characterized by nutrient starvation, hypoxia and accumulation of acidic metabolites. Tumor cell populations in such areas are often slowly proliferating and thus refractory to chemotherapeutical drugs that are dependent on an active cell cycle. There is an urgent need for alternative therapeutic interventions that circumvent growth dependency. The screening of drug libraries using multicellular tumor spheroids (MCTS or glucose-starved tumor cells has led to the identification of several compounds with promising therapeutic potential and that display activity on quiescent tumor cells. Interestingly, a common theme of these drug screens is the recurrent identification of agents that affect mitochondrial function. Such data suggest that, contrary to the classical Warburg view, tumor cells in nutritionally-compromised microenvironments are dependent on mitochondrial function for energy metabolism and survival. These findings suggest that mitochondria may represent an “Achilles heel” for the survival of slowly-proliferating tumor cells and suggest strategies for the development of therapy to target these cell populations.

  20. Pediatric Brain Tumor Foundation

    ... navigate their brain tumor diagnosis. WATCH AND SHARE Brain tumors and their treatment can be deadly so ... Pediatric Central Nervous System Cancers Read more >> Pediatric Brain Tumor Foundation 302 Ridgefield Court, Asheville, NC 28806 ...

  1. Brain Tumors (For Parents)

    ... Staying Safe Videos for Educators Search English Español Brain Tumors KidsHealth / For Parents / Brain Tumors What's in ... radiation therapy or chemotherapy, or both. Types of Brain Tumors There are many different types of brain ...

  2. Childhood Brain Tumors

    Brain tumors are abnormal growths inside the skull. They are among the most common types of childhood ... still be serious. Malignant tumors are cancerous. Childhood brain and spinal cord tumors can cause headaches and ...

  3. Malignant bone tumors

    Zedgenidze, G.A.; Kishkovskij, A.N.; Elashov, Yu.G.

    1984-01-01

    Clinicoroentgenologic semiotics of malignant bone tumors as well as metastatic bone tumors are presented. Diagnosis of malignant and metastatic bone tumors should be always complex, representing a result of cooperation of a physician, roentgenologist, pathoanatomist

  4. Tumors and Pregnancy

    Tumors during pregnancy are rare, but they can happen. Tumors can be either benign or malignant. Benign tumors aren't cancer. Malignant ones are. The most common cancers in pregnancy are breast cancer, cervical cancer, lymphoma, and melanoma. ...

  5. Neuroendocrine Tumor: Statistics

    ... Tumor > Neuroendocrine Tumor: Statistics Request Permissions Neuroendocrine Tumor: Statistics Approved by the Cancer.Net Editorial Board , 01/ ... the body. It is important to remember that statistics on the survival rates for people with a ...

  6. Association of plasma IL-6 and Hsp70 with HRV at different levels of PAHs metabolites.

    Jian Ye

    Full Text Available Exposure to polycyclic aromatic hydrocarbons (PAHs is associated with reduced heart rate variability (HRV, a strong predictor of cardiovascular diseases, but the mechanism is not well understood.We hypothesized that PAHs might induce systemic inflammation and stress response, contributing to altered cardiac autonomic function.HRV indices were measured using a 3-channel digital Holter monitor in 800 coke oven workers. Plasma levels of interleukin-6 (IL-6 and heat shock protein 70 (Hsp70 were determined using ELISA. Twelve urinary PAHs metabolites (OH-PAHs were measured by gas chromatography-mass spectrometry.We found that significant dose-dependent relationships between four urinary OH-PAHs and IL-6 (all Ptrend<0.05; and an increase in quartiles of IL-6 was significantly associated with a decrease in total power (TP and low frequency (LF (Ptrend = 0.014 and 0.006, respectively. In particular, elevated IL-6 was associated in a dose-dependent manner with decreased TP and LF in the high-PAHs metabolites groups (all Ptrend<0.05, but not in the low-PAHs metabolites groups. No significant association between Hsp70 and HRV in total population was found after multivariate adjustment. However, increased Hsp70 was significantly associated with elevated standard deviation of NN intervals (SDNN, TP and LF in the low-PAHs metabolites groups (all Ptrend<0.05. We also observed that both IL-6 and Hsp70 significantly interacted with multiple PAHs metabolites in relation to HRV.In coke oven workers, increased IL-6 was associated with a dose-response decreased HRV in the high-PAHs metabolites groups, whereas increase of Hsp70 can result in significant dose-related increase in HRV in the low-PAHs metabolites groups.

  7. Prostate Tumor Growth Can Be Modulated by Dietarily Targeting the 15-Lipoxygenase-1 and Cyclooxygenase-2 Enzymes

    Uddhav P. Kelavkar

    2009-07-01

    Full Text Available The main objectives of our study were to determine the bioavailability of omega-3 (ω-3 to the tumor, to understand its mechanisms, and to determine the feasibility of targeting the ω-6 polyunsaturated fatty acids (PUFAs metabolizing 15-lipoxygenase-1 (15-LO-1 and cyclooxygenase-2 (COX-2 pathways. Nude mice injected subcutaneously with LAPC-4 prostate cancer cells were randomly divided into three different isocaloric (and same percent [%] of total fat diet groups: high ω-6 linoleic acid (LA, high ω-3 stearidonic acid (SDA PUFAs, and normal (control diets. Tumor growth and apoptosis were examined as end points after administration of short-term (5 weeks ω-3 and ω-6 fatty acid diets. Tumor tissue membranes were examined for growth, lipids, enzyme activities, apoptosis, and proliferation. Tumors from the LA diet-fed mice exhibited the most rapid growth compared with tumors from the control and SDA diet-fed mice. Moreover, a diet switch from LA to SDA caused a dramatic decrease in the growth of tumors in 5 weeks, whereas tumors grew more aggressively when mice were switched from an SDA to an LA diet. Evaluating tumor proliferation (Ki-67 and apoptosis (caspase-3 in mice fed the LA and SDA diets suggested increased percentage proliferation index from the ω-6 diet-fed mice compared with the tumors from the ω-3 SDA-fed mice. Further, increased apoptosis was observed in tumors from ω-3 SDA diet-fed mice versus tumors from ω-6 diet-fed mice. Levels of membrane phospholipids of red blood cells reflected dietary changes and correlated with the levels observed in tumors. Linoleic or arachidonic acid and metabolites (eicosanoid/prostaglandins were analyzed for 15-LO-1 and COX-2 activities by high-performance liquid chromatography. We also examined the percent unsaturated or saturated fatty acids in the total phospholipids, PUFA ω-6/ω-3 ratios, and other major enzymes (elongase, Delta [Δ]-5-desaturase, and Δ-6-desaturase of ω-6 catabolic

  8. La depleción de las células T regulatorias aumenta el número de las células CD8 durante la infección con el virus del tumor mamario murino Regulatory T cell depletion increases the number of CD8 cells during mouse mammary tumor virus infection

    Gabriel Cabrera

    2011-06-01

    Full Text Available El virus del tumor mamario murino (MMTV es un retrovirus que se transmite durante la lactancia y que ha desarrollado estrategias para explotar y subvertir el sistema inmune. En un modelo de infección natural con MMTV hemos mostrado previamente que la infección causa incrementos tempranos y progresivos de células T regulatorias (Treg CD4+CD25+Foxp3+ específicas para el superantígeno (Sag viral en las placas de Peyer (PP. En este trabajo se evaluó si la depleción de las células Treg influencia la población de células CD8+ durante la infección con MMTV a través del amamantamiento. La depleción de las células Treg al día 6 de infección causó incrementos en el porcentaje y número absoluto de las células CD8+ en los ganglios y provocó un incremento en la intensidad de fluorescencia media del marcador de activación CD44 en esas células. Los incrementos en el número absoluto de las células CD8 se observaron en células con cadenas variables Vβ del receptor de las células T (TCR tanto reactivas como no reactivas al Sag. Previamente habíamos demostrado que la depleción de las células Treg al día 6 de infección disminuye la carga viral. Los resultados presentados en este trabajo sugieren que, al menos a partir del día 6 de infección con MMTV, las células Treg podrían tener un rol inhibiendo la generación de una respuesta CD8 antiviral.Mouse mammary tumor virus (MMTV is a milk-borne betaretrovirus that has developed strategies to exploit and subvert the host immune system. We have shown in a natural model of MMTV infection that the virus causes early and progressive increases in superantigen (Sag-specific CD4+ CD25+ Foxp3+ regulatory T cells (Treg in Peyer's patches. Herein, we evaluated whether the depletion of Treg cells affects the CD8+ population during milk-borne MMTV infection. At day 6 of infection, the depletion of Treg cells increased the percentage and absolute number of CD8+ cells in lymph nodes as well as the

  9. Simvastatin (SV) metabolites in mouse tissues

    Duncan, C.A.; Vickers, S.

    1990-01-01

    SV, a semisynthetic analog of lovastatin, is hydrolyzed in vivo to its hydroxy acid (SVA), a potent inhibitor of HMG CoA reductase (HR). Thus SV lowers plasma cholesterol. SV is a substrate for mixed function oxidases whereas SVA undergoes lactonization and β-oxidation. Male CD-1 mice were dosed orally with a combination of ( 14 C)SV and ( 3 H)SVA at 25 mg/kg of each, bled and killed at 0.5, 2 and 4 hours. Labeled SV, SVA, 6'exomethylene SV (I), 6'CH 2 OH-SV (II), 6'COOH-SV (III) and a β-oxidized metabolite (IV) were assayed in liver, bile, kidneys, testes and plasma by RIDA. Levels of potential and active HR inhibitors in liver were 10 to 40 fold higher than in other tissues. II and III, in which the configuration at 6' is inverted, may be 2 metabolites of I. Metabolites I-III are inhibitors of HR in their hydroxy acid forms. Qualitatively ( 14 C)SV and ( 3 H)SVA were metabolized similarly (consistent with their proposed interconversion). However 3 H-SVA, I-III (including hydroxy acid forms) achieved higher concentrations than corresponding 14 C compounds (except in gall bladder bile). Major radioactive metabolites in liver were II-IV (including hydroxy acid forms). These metabolites have also been reported in rat tissues. In bile a large fraction of either label was unidentified polar metabolites. The presence of IV indicated that mice (like rats) are not good models for SV metabolism in man

  10. Peripheral epithelial odontogenic tumor

    Carzoglio, J.; Tancredi, N.; Capurro, S.; Ravecca, T.; Scarrone, P.

    2006-01-01

    A new case of peripheral epithelial odontogenic tumor (Pindborg tumor) is reported. It is localized in the superior right gingival region, a less frequent site, and has the histopathological features previously reported. Immunochemical studies were performed, revealing a differential positive stain to cytokeratins in tumor cells deeply seated in the tumor mass, probably related to tumoral cell heterogeneity.Interestingly, in this particular case S-100 protein positive reactivity was also detected in arborescent cells intermingled with tumoral cells, resembling Langerhans cells. Even though referred in the literature in central Pindborg tumors, no references were found about their presence in peripheral tumors, like the one that is presented here

  11. Maternal high fat diet promotion of mammary tumor risk in adult progeny is associated with early expansion of mammary cancer stem-like cells and increased maternal oxidative environment

    Many adult chronic diseases might be programmed during early life by maternal nutritional history. Here, we evaluated effects of maternal high fat diet on mammary gland development and tumor formation in adult progeny. Female Wnt-1 transgenic mice exposed to high fat (HFD, 45% kcal fat) or control C...

  12. A Variant Form of the Human Deleted in Malignant Brain Tumor 1 (DMBT1) Gene Shows Increased Expression in Inflammatory Bowel Diseases and Interacts with Dimeric Trefoil Factor 3 (TFF3)

    Madsen, Jens; Sorensen, Grith Lykke; Nielsen, Ole Stig

    2013-01-01

    The protein deleted in malignant brain tumors (DMBT1) and the trefoil factor (TFF) proteins have all been proposed to have roles in epithelial cell growth and cell differentiation and shown to be up regulated in inflammatory bowel diseases. A panel of monoclonal antibodies was raised against human...

  13. Novel Sulfur Metabolites of Garlic Attenuate Cardiac Hypertrophy and Remodeling through Induction of Na+/K+-ATPase Expression.

    Khatua, Tarak N; Borkar, Roshan M; Mohammed, Soheb A; Dinda, Amit K; Srinivas, R; Banerjee, Sanjay K

    2017-01-01

    Epidemiologic studies show an inverse correlation between garlic consumption and progression of cardiovascular disease. However, the molecular basis for the beneficial effect of garlic on the heart is not known. Therefore, the objective of the present study was to (1) investigate the effect of raw garlic on isoproterenol (Iso) induced cardiac hypertrophy (2) find the active metabolites of garlic responsible for the beneficial effect. Cardiac hypertrophy was induced in rats by subcutaneous single injection of Iso 5 mg kg -1 day -1 for 15 days and the effect of garlic (250 mg/kg/day orally) was evaluated. Garlic metabolites in in vivo were identified by LC/MS study. The effect of garlic and its metabolites were evaluated against hypertrophy in H9C2 cells. Garlic normalized cardiac oxidative stress after Iso administration. Cardiac pathology and mitochondrial enzyme activities were improved in hypertrophy heart after garlic administration. Decreased Na + /K + -ATPase protein level that observed in hypertrophy heart was increased after garlic administration. We identified three garlic metabolites in rat serum. To confirm the role of garlic metabolites on cardiac hypertrophy, Na + /K + -ATPase expression and intracellular calcium levels were measured after treating H9C2 cells with raw garlic and two of its active metabolites, allyl methyl sulfide and allyl methyl sulfoxide. Raw garlic and both metabolites increased Na + /K + -ATPase protein level and decreased intracellular calcium levels and cell size in Iso treated H9C2 cells. This antihypertrophic effect of garlic and its sulfur metabolites were lost in H9C2 cells in presence of Na + /K + -ATPase inhibitor. In conclusion, garlic and its active metabolites increased Na + /K + -ATPase in rat heart, and attenuated cardiac hypertrophy and associated remodeling. Our data suggest that identified new garlic metabolites may be useful for therapeutic intervention against cardiac hypertrophy.

  14. Metabolite production by species of Stemphylium

    Olsen, Kresten Jon Kromphardt; Rossman, Amy; Andersen, Birgitte

    2018-01-01

    metabolites were found to be important for distinguishing species, while some unknown metabolites were also found to have important roles in distinguishing species of Stemphylium. This study is the first of its kind to investigate the chemical potential of Stemphylium across the whole genus.......Morphology and phylogeny has been used to distinguish members of the plant pathogenic fungal genus Stemphylium. A third method for distinguishing species is by chemotaxonomy. The main goal of the present study was to investigate the chemical potential of Stemphylium via HPLC-UV-MS analysis, while...

  15. Animal bioavailability of defined xenobiotic lignin metabolites

    Sandermann, H. Jr.; Arjmand, M.; Gennity, I.; Winkler, R.; Struble, C.B.; Aschbacher, P.W.

    1990-01-01

    Lignin has been recognized as a major component of bound pesticide residues in plants and is thought to be undigestible in animals. Two defined ring-U- 14 C-labeled chloroaniline/lignin metabolites have now been fed to rats, where a release of ∼66% of the bound xenobiotic occurred in the form of simple chloroaniline derivatives. The observed high degree of bioavailability indicates that bound pesticidal residues may possess ecotoxicological significance. In parallel studies, the white-rot fungus Phanerochaete chrysosporium was more efficient, and a soil system was much less efficient, in the degradation of the [ring-U- 14 C]chloroaniline/lignin metabolites

  16. 3D high-content screening for the identification of compounds that target cells in dormant tumor spheroid regions

    Wenzel, Carsten; Riefke, Björn; Gründemann, Stephan; Krebs, Alice; Christian, Sven; Prinz, Florian; Osterland, Marc; Golfier, Sven; Räse, Sebastian; Ansari, Nariman; Esner, Milan; Bickle, Marc; Pampaloni, Francesco; Mattheyer, Christian; Stelzer, Ernst H.; Parczyk, Karsten; Prechtl, Stefan; Steigemann, Patrick

    2014-01-01

    Cancer cells in poorly vascularized tumor regions need to adapt to an unfavorable metabolic microenvironment. As distance from supplying blood vessels increases, oxygen and nutrient concentrations decrease and cancer cells react by stopping cell cycle progression and becoming dormant. As cytostatic drugs mainly target proliferating cells, cancer cell dormancy is considered as a major resistance mechanism to this class of anti-cancer drugs. Therefore, substances that target cancer cells in poorly vascularized tumor regions have the potential to enhance cytostatic-based chemotherapy of solid tumors. With three-dimensional growth conditions, multicellular tumor spheroids (MCTS) reproduce several parameters of the tumor microenvironment, including oxygen and nutrient gradients as well as the development of dormant tumor regions. We here report the setup of a 3D cell culture compatible high-content screening system and the identification of nine substances from two commercially available drug libraries that specifically target cells in inner MCTS core regions, while cells in outer MCTS regions or in 2D cell culture remain unaffected. We elucidated the mode of action of the identified compounds as inhibitors of the respiratory chain and show that induction of cell death in inner MCTS core regions critically depends on extracellular glucose concentrations. Finally, combinational treatment with cytostatics showed increased induction of cell death in MCTS. The data presented here shows for the first time a high-content based screening setup on 3D tumor spheroids for the identification of substances that specifically induce cell death in inner tumor spheroid core regions. This validates the approach to use 3D cell culture screening systems to identify substances that would not be detectable by 2D based screening in otherwise similar culture conditions. - Highlights: • Establishment of a novel method for 3D cell culture based high-content screening. • First reported high

  17. 3D high-content screening for the identification of compounds that target cells in dormant tumor spheroid regions

    Wenzel, Carsten; Riefke, Björn; Gründemann, Stephan; Krebs, Alice; Christian, Sven; Prinz, Florian; Osterland, Marc; Golfier, Sven; Räse, Sebastian [Bayer Pharma AG, Global Drug Discovery, Muellerstrasse 178, 13353 Berlin (Germany); Ansari, Nariman [Physical Biology Group, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt (Germany); Esner, Milan; Bickle, Marc [Max Planck Institute of Molecular Cell Biology and Genetics, High-Throughput Technology Development Studio (TDS), Dresden (Germany); Pampaloni, Francesco; Mattheyer, Christian; Stelzer, Ernst H. [Physical Biology Group, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt (Germany); Parczyk, Karsten; Prechtl, Stefan [Bayer Pharma AG, Global Drug Discovery, Muellerstrasse 178, 13353 Berlin (Germany); Steigemann, Patrick, E-mail: Patrick.Steigemann@bayer.com [Bayer Pharma AG, Global Drug Discovery, Muellerstrasse 178, 13353 Berlin (Germany)

    2014-04-15

    Cancer cells in poorly vascularized tumor regions need to adapt to an unfavorable metabolic microenvironment. As distance from supplying blood vessels increases, oxygen and nutrient concentrations decrease and cancer cells react by stopping cell cycle progression and becoming dormant. As cytostatic drugs mainly target proliferating cells, cancer cell dormancy is considered as a major resistance mechanism to this class of anti-cancer drugs. Therefore, substances that target cancer cells in poorly vascularized tumor regions have the potential to enhance cytostatic-based chemotherapy of solid tumors. With three-dimensional growth conditions, multicellular tumor spheroids (MCTS) reproduce several parameters of the tumor microenvironment, including oxygen and nutrient gradients as well as the development of dormant tumor regions. We here report the setup of a 3D cell culture compatible high-content screening system and the identification of nine substances from two commercially available drug libraries that specifically target cells in inner MCTS core regions, while cells in outer MCTS regions or in 2D cell culture remain unaffected. We elucidated the mode of action of the identified compounds as inhibitors of the respiratory chain and show that induction of cell death in inner MCTS core regions critically depends on extracellular glucose concentrations. Finally, combinational treatment with cytostatics showed increased induction of cell death in MCTS. The data presented here shows for the first time a high-content based screening setup on 3D tumor spheroids for the identification of substances that specifically induce cell death in inner tumor spheroid core regions. This validates the approach to use 3D cell culture screening systems to identify substances that would not be detectable by 2D based screening in otherwise similar culture conditions. - Highlights: • Establishment of a novel method for 3D cell culture based high-content screening. • First reported high

  18. Tumor trapping of 5-fluorouracil: In vivo 19F NMR spectroscopic pharmacokinetics in tumor-bearing humans and rabbits

    Wolf, W.; Servis, K.L.; El-Tahtawy, A.; Singh, M.; Ray, M.; Shani, J.; Presant, C.A.; King, M.; Wiseman, C.; Blayney, D.; Albright, M.J.; Atkinson, D.; Ong, R.; Barker, P.B.; Ring, R. III

    1990-01-01

    The pharmacokinetics of 5-fluorouracil (5FU) were studied in vivo in patients with discrete tumors and in rabbits bearing VX2 tumors by using 19 F NMR spectroscopy. Free 5FU was detected in the tumors of four of the six patients and in all VX2 tumors but not in normal rabbit tissues. No other metabolites were seen in these tumors, contrary to the extensive catabolism previously documented using 19 F NMR spectroscopy in both human and animal livers. The tumor pool of free 5FU in those human tumors that trapped 5FU was determined to have a half-life of 0.4-2.1 hr, much longer than expected and significantly longer than the half-life of 5FU in blood (5-15 min), whereas the half-life of trapped 5FU in the VX2 tumors ranged from 1.05 to 1.22 hr. These studies document that NMR spectroscopy is clinically feasible in vivo, allows noninvasive pharmacokinetic analyses at a drug-target tissue in real time, and may produce therapeutically important information at the time of drug administration. Demonstration of the trapping of 5FU in tumors provides both a model for studying metabolic modulation in experimental tumors (in animals) and a method for testing modulation strategies clinically (in patients)

  19. NMR characteristics of rat mammary tumors

    Osbakken, M.; Kreider, J.; Taczanowsky, P.

    1984-01-01

    12 rats were injected intradermally with 13762A rat mammary adenocarcinoma (1 x 10/sup 6/ cells). 3 rats died before completion of the study and 2 rat had tumor regression; the first 3 were excluded from data analysis. NMR imaging with a 1.5K gauss resistive magnet at 2, 3, 4, and 5 weeks after injection demonstrated increasing tumor mass. Saturation recovery (SR), inversion recovery (IR), and spin echo (SE) pulse sequence images and T/sub 1/ calculation were done for tumor characterization. (Tumor size was too small to identify at 2 weeks.) 3 rats were sacrificed after the last 3 imaging periods for histological studies, done to distinguish solid tumor mass from necrosis. Planimetry of tumor areas showed that as tumors grew in size, the ratio of necrotic area to area of solid tumor increased (week 3 = .3 +- .11; week 4 = .45 +- .07; week 5 = .51 +- 05); simultaneous calculated T/sub 1/ values also increased (week 3 = .35 +- .15; week 4 = .45 +- .06; week 5 = .42 +- 03). Qualitative NMR image T/sub 1/ values also increased as evidenced by progression of SR and IR tumor image intensity from very bright compared to the rest of the body at week 3 to less intense than other structures at week 5. These findings indicate that change in T/sub 1/ may be secondary to the pathophysiological change in the tumor (the increasing in necrosis, associated with increased free water). Thus, the range of T/sub 1/ values obtained in tumors in this study (and in previous studies) may be due to change in tumor physiology and anatomy. Careful correlation of histological with NMR data may allow ultimate use of NMR relaxation characteristics for determination of the physiological state of tumors

  20. Semen quality in Peruvian pesticide applicators: association between urinary organophosphate metabolites and semen parameters

    Gasco Manuel

    2008-11-01

    Full Text Available Abstract Background Organophosphates are broad class of chemicals widely used as pesticides throughout the world. We performed a cross-sectional study of associations between dialkylphosphate metabolites of organophosphates and semen quality among pesticide applicators in Majes (Arequipa, Peru. Methods Thirty-one men exposed to organophosphate (OP pesticides and 31 non-exposed were recruited (age, 20–60 years. In exposed subjects, semen and a blood sample were obtained one day after the last pesticide application. Subjects were grouped according to levels of OP metabolites in urine. Semen samples were analyzed for sperm concentration, percentage of sperm motility, percentage of normal morphology, semen leucocytes and concentrations of fructose and zinc. Exposure to OP was assessed by measuring six urinary OP metabolites (dimethyl and diethyl phosphates and thiophosphates by gas chromatography using a single flame photometric detector. Results Diethyldithiophosphate (p = 0.04 and diethylthiophosphate (p = 0.02 better reflected occupational pesticide exposure than other OP metabolites. Semen analysis revealed a significant reduction of semen volume and an increase in semen pH in men with OP metabolites. Multiple regression analysis showed that both occupational exposure to pesticides and the time of exposure to pesticides were more closely related to alterations in semen quality parameters than the single measurement of OP metabolites in urine. Conclusion The study demonstrated that occupational exposure to OP pesticides was more closely related to alterations in semen quality than a single measurement of urine OP metabolites. Current measurement of OP metabolites in urine may not reflect the full risk.

  1. LC-MS metabolomic analysis of environmental stressor impacts on the metabolite diversity in Nephthea spp.

    Hedi Indra Januar

    2012-01-01

    Full Text Available Context: The soft coral Nephthea spp. is a source of terpenoid class that potentially has pharmaceutical properties. However, metabolite diversity and cytotoxic activity of this species are varied among coral reefs from various sites. Aim: To analyze the water quality in Nephthea spp. environment as a possible factor causing a difference in its metabolite diversity. Settings and Design: Nephthea spp. from seven sites were taken in October 2010 at the Alor District of Marine Protected Area, Indonesia. Materials and Methods: Water quality assessment was analyzed in situ and indexed by Canadian Council of Ministry Environment-Water Quality Index (CCME-WQI method. Meanwhile, metabolite diversity was analyzed by a LC-MS metabolomic method, using C18 reversed phase and gradient water-acetonitrile system. Statistical Analysis Used: Spearman′s rho and regression analysis were applied to correlate the water quality index to ecological index (richness, diversity, and evenness from LC-MS results. Results: The water quality index had a significant positive correlation and strong linear regression determinant to the total metabolite (R 2 = 0.704, particularly to semipolar metabolite richness (R 2 = 0.809, the area of terpenoid class in the organism. Conclusion: It can be concluded that water quality may serve as a major factor that affects the amount of richness in Nephthea spp. metabolites. When the water quality is lower, as environment stresses increases, it may affect the metabolite richness within direct disrupt of metabolite biosynthesis or indirect ecological means. Terpenoids are known as a soft coral antipredator (coral fishes, the amount of which depends on the water quality.

  2. Metabolite variation in hybrid corn grain from a large-scale multisite study

    Mingjie Chen

    2016-06-01

    Full Text Available Metabolite composition is strongly affected by genotype, environment, and interactions between genotype and environment, although the extent of variation caused by these factors may depend upon the type of metabolite. To characterize the complexity of genotype, environment, and their interaction in hybrid seeds, 50 genetically diverse non-genetically modified (GM maize hybrids were grown in six geographically diverse locations in North America. Polar metabolites from 553 harvested corn grain samples were isolated and analyzed by gas chromatography–mass spectrometry and 45 metabolites detected in all samples were used to generate a data matrix for statistical analysis. There was moderate variation among biological replicates and across genotypes and test sites. The genotype effects were detected by univariate and Hierarchical clustering analyses (HCA when environmental effects were excluded. Overall, environment exerted larger effects than genotype, and polar metabolite accumulation showed a geographic effect. We conclude that it is possible to increase seed polar metabolite content in hybrid corn by selection of appropriate inbred lines and growing regions.

  3. Thyroid Hormone and Blood Metabolites Concentration of Gilts Superovulated Prior to Mating

    RA Mege

    2009-05-01

    Full Text Available An experiment was conducted to study injection of pregnant mare serum gonadotrophin (PMSG and human chorionic gonadotrophin (hCG as superovulation agent in gilts to improve thyroid hormone and blood metabolites concentraton. In this experiment, 48 gilts were assigned into four groups of twelve gilts injected with PMSG dan hCG dose levels of 0, 600, 1200 and 1800 IU/gilt. Injections were conducted three days before estrus. During gestation, gilts were placed in colony pigpen. On days 15, 35, and 70 of gestation blood collected to determine triiodothyronine, tetraiodothyronine, tryglicerides, glucose, protein and bood nitrogen urea concentration. The resuts showed that superovulation dose levels of 600 to 1200 IU/gilt increased concentration of thyroid hormone (triiodothyronine and tetraiodothyronine/thyroxin and blood metabolite (triglycerides, glucose, and protein, but decreased blood urea nitrogen in gestation ages 15, 35, and 70 days. It is concluded that superovulation with dose of 600 to 1200 IU can improve of gilts metabolite hormone and blood metabolites. (Animal Production 11(2: 88-95 (2009Key Words: gilts, superovulation, metabolite hormone, blood metabolites

  4. Metabolic Networks and Metabolites Underlie Associations Between Maternal Glucose During Pregnancy and Newborn Size at Birth.

    Scholtens, Denise M; Bain, James R; Reisetter, Anna C; Muehlbauer, Michael J; Nodzenski, Michael; Stevens, Robert D; Ilkayeva, Olga; Lowe, Lynn P; Metzger, Boyd E; Newgard, Christopher B; Lowe, William L

    2016-07-01

    Maternal metabolites and metabolic networks underlying associations between maternal glucose during pregnancy and newborn birth weight and adiposity demand fuller characterization. We performed targeted and nontargeted gas chromatography/mass spectrometry metabolomics on maternal serum collected at fasting and 1 h following glucose beverage consumption during an oral glucose tolerance test (OGTT) for 400 northern European mothers at ∼28 weeks' gestation in the Hyperglycemia and Adverse Pregnancy Outcome Study. Amino acids, fatty acids, acylcarnitines, and products of lipid metabolism decreased and triglycerides increased during the OGTT. Analyses of individual metabolites indicated limited maternal glucose associations at fasting, but broader associations, including amino acids, fatty acids, carbohydrates, and lipids, were found at 1 h. Network analyses modeling metabolite correlations provided context for individual metabolite associations and elucidated collective associ