WorldWideScience

Sample records for metabolite megasynthetases production

  1. Production of Metabolites

    DEFF Research Database (Denmark)

    2011-01-01

    A recombinant micro-organism such as Saccharomyces cerevisiae which produces and excretes into culture medium a stilbenoid metabolite product when grown under stilbenoid production conditions, which expresses in above native levels a ABC transporter which transports said stilbenoid out of said...... micro-organism cells to the culture medium. The genome of the Saccharomyces cerevisiae produces an auxotrophic phenotype which is compensated by a plasmid which also expresses one or more of said enzymes constituting said metabolic pathway producing said stilbenoid, an expression product of the plasmid...

  2. Production of Secondary Metabolites in Extreme Environments: Food- and Airborne Wallemia spp. Produce Toxic Metabolites at Hypersaline Conditions

    DEFF Research Database (Denmark)

    Jančič, Sašo; Frisvad, Jens Christian; Kocev, Dragi

    2016-01-01

    the genome data analysis of W. mellicola (previously W. sebi sensu lato) and W. ichthyophaga revealed a low number of secondary metabolites clusters, a substantial number of secondary metabolites were detected at different conditions. Machine learning analysis of the obtained dataset showed that NaCl has...... of salt or sugar. In relation to food safety, the effect of high salt and sugar concentrations on the production of secondary metabolites by this toxigenic fungus was investigated. The secondary metabolite profiles of 30 strains of the listed species were examined using general growth media, known...... to support the production of secondary metabolites, supplemented with different concentrations of NaCl, glucose and MgCl2. In more than two hundred extracts approximately one hundred different compounds were detected using high-performance liquid chromatography-diode array detection (HPLC-DAD). Although...

  3. Bioactive metabolite production by Streptomyces albolongus in favourable environment

    Directory of Open Access Journals (Sweden)

    Myn Uddin

    2013-06-01

    Full Text Available Objectives: Demand for new antibiotic is rising up due to continuous resistance risk against conventional antibiotic.This attempt was taken to find out a novel antimicrobial metabolite.Methods: Chili field antagonistic actinomycetes Streptomyces albolongus was isolated and tested for optimum antimicrobialmetabolite production. Primary screening was done by selective media and antibiotic assay was done by agarcup plate method. Fermented product was recovered by separating funnel using suitable solvent.Results: Maximum antimicrobial metabolite production was found at temperature 35°C and pH 9.0 and on 6th day ofincubation. The medium consisting of corn steep liquor (0.2%, glucose (1.0%, NaCl (0.5%, K2HPO4 (0.1% was screenedout as suitable medium for maximum antimicrobial production. Sucrose was found as the best carbon source amongfour sources. The antimicrobial metabolite was found to be stable at pH and temperature up to 11.0 and 100°C respectively.The active agent was best extracted with chloroform. The antimicrobial spectrum of the metabolite was wideand shows activity against Shigella dysenteriae (AE14612, Shigella sonnei (CRL, ICDDR, B, Salmonella typhi (AE14296,Vibrio cholerae (AE14748, Pseudomonas aeruginosa (CRL, ICDDR, B, Bacillus cereus (BTCC19, Staphylococcus aureus(ATCC6538, Bacillus subtilis (BTTC17 and Bacillus megaterium (BTTC18.Conclusions: The findings of antibacterial activity of S. albolongus against several species of human pathogens includingboth Gram-positive and Gram-negative bacteria indicated that our produced material might be an alternative antimicrobialsubstance to control human diseases. J Microbiol Infect Dis 2013; 3(2: 75-82Key words: Streptomyces albolongus, antimicrobial metabolite, optimum production, antimicrobial spectrum

  4. Metabolic engineering with systems biology tools to optimize production of prokaryotic secondary metabolites

    DEFF Research Database (Denmark)

    Kim, Hyun Uk; Charusanti, Pep; Lee, Sang Yup

    2016-01-01

    Metabolic engineering using systems biology tools is increasingly applied to overproduce secondary metabolites for their potential industrial production. In this Highlight, recent relevant metabolic engineering studies are analyzed with emphasis on host selection and engineering approaches...... for the optimal production of various prokaryotic secondary metabolites: native versus heterologous hosts (e.g., Escherichia coli) and rational versus random approaches. This comparative analysis is followed by discussions on systems biology tools deployed in optimizing the production of secondary metabolites....... The potential contributions of additional systems biology tools are also discussed in the context of current challenges encountered during optimization of secondary metabolite production....

  5. A modular modulation method for achieving increases in metabolite production.

    Science.gov (United States)

    Acerenza, Luis; Monzon, Pablo; Ortega, Fernando

    2015-01-01

    Increasing the production of overproducing strains represents a great challenge. Here, we develop a modular modulation method to determine the key steps for genetic manipulation to increase metabolite production. The method consists of three steps: (i) modularization of the metabolic network into two modules connected by linking metabolites, (ii) change in the activity of the modules using auxiliary rates producing or consuming the linking metabolites in appropriate proportions and (iii) determination of the key modules and steps to increase production. The mathematical formulation of the method in matrix form shows that it may be applied to metabolic networks of any structure and size, with reactions showing any kind of rate laws. The results are valid for any type of conservation relationships in the metabolite concentrations or interactions between modules. The activity of the module may, in principle, be changed by any large factor. The method may be applied recursively or combined with other methods devised to perform fine searches in smaller regions. In practice, it is implemented by integrating to the producer strain heterologous reactions or synthetic pathways producing or consuming the linking metabolites. The new procedure may contribute to develop metabolic engineering into a more systematic practice. © 2015 American Institute of Chemical Engineers.

  6. Secondary Metabolites Production by Solid-State Fermentation

    Directory of Open Access Journals (Sweden)

    Barrios-González, J.

    2005-01-01

    Full Text Available Microbial secondary metabolites are useful high value products with an enormous range of biological activities. Moreover, the past two decades have been a phase of rapid discovery of new activities and development of major compounds for use in different industrial fields, mainly pharmaceuticals, cosmetics, food, agriculture and farming. Many of these metabolites could be produced advantageously in industry by solid–state fermentation (SSF. Two types of SSF can be distinguished, depending on the nature of the solid phase used: 1 Solid cultures of one support-substrate phase in which solid phase is constituted by a material that assumes, simultaneously, the functions of support and of nutrients source; and 2 Solid cultures of two substrate-support phases: solid phase is constituted by an inert support impregnated with a liquid medium. Besides good production performance, two phases systems have provided a convenient model for basic studies. Studies in our laboratory, as well as in others, have shown that physiology of idiophase (production phase in SSF share several similarities with the physiology in liquid medium, so similar strategies must be adapted for efficient production processes. However, our studies indicate the need to develop special strains for SSF since overproducing strains, generated for liquid fermentation, cannot be relied upon to perform well in SSF. On the other hand, there are important parameters, specific for SSF, that have to be optimized (pretreatment, initial moisture content, medium concentration and aeration. Respiration studies of secondary metabolites SSF, performed in our laboratory, have shown more subtle aspects of efficient production in SSF. This indicates that there are certain particularities of physiology in SSF that represent the point that needs a better understanding, and that promise to generate knowledge that will be the basis for efficient processes development and control strategies, as well as for

  7. The role of metabolic engineering in the production of secondary metabolites

    DEFF Research Database (Denmark)

    Nielsen, Jens Bredal

    1998-01-01

    In the production of secondary metabolites yield and productivity are the most important design parameters. The focus is therefore to direct the carbon fluxes towards the product of interest, and this can be obtained through metabolic engineering whereby directed genetic changes are introduced...... into the production strain. In this process it is, however, important to analyze the metabolic network through measurement of the intracellular metabolites and the flux distributions. Besides playing an important role in the optimization of existing processes, metabolic engineering also offers the possibility...

  8. Lightweight expanded clay aggregates (LECA), a new up-scaleable matrix for production of microfungal metabolites

    DEFF Research Database (Denmark)

    Nielsen, Kristian Fog; Larsen, Thomas Ostenfeld; Frisvad, Jens Christian

    2004-01-01

    In order to compare the effects of different growth matrices on secondary metabolite production we compared 16 Penicillium species known to produce several families of bioactive compounds. The isolates were grown in rich complex media formulated as semisolid (agar), liquid (still), shake culture,...... for production of sporulation-associated metabolites, such as cyclopenins and viridicatins, for quick up-scaling from agar based media, and as an alternative for production of metabolites that are not induced under submerse conditions....

  9. Production of secondary metabolites by some terverticillate penicillia on carbohydrate-rich and meat substrates.

    Science.gov (United States)

    Núñez, Félix; Westphal, Carmen D; Bermúdez, Elena; Asensio, Miguel A

    2007-12-01

    Most terverticillate penicillia isolated from dry-cured meat products are toxigenic, but their ability to produce hazardous metabolites on meat-based substrates is not well known. The production of extrolites by selected terverticillate penicillia isolated from dry-cured ham has been studied on carbohydrate-rich media (malt extract agar, Czapek yeast autolysate agar, rice extract agar, and rice), meat extract triolein salt agar, and ham slices. Chloroform extracts from the selected strains grown on malt extract agar were toxic for the brine shrimp (Artemia salina) larvae and VERO cells at a concentration of 2 mg/ml, but 0.02 mg/ml produced no toxic effect. Analysis by high-pressure liquid chromatography (HPLC) coupled with photodiode array detection (DAD) or with mass spectrometry (MS) and an atmospheric pressure chemical ionization (APCI) source revealed different biologically active metabolites: cyclopiazonic acid and rugulovasine A from Penicillium commune; verrucosidin, anacine, puberuline, verrucofortine, and viridicatols from Penicillium polonicum; arisugacin and viridicatols from Penicillium echinulatum; and compactin and viridicatols from Penicillium solitum. Most of these metabolites, including the amino acid-derived compounds, were produced in the media containing high levels of carbohydrates. High concentrations of nitrogen compounds in the medium does not imply a greater production of the metabolites studied, not even those derived from the amino acids. However, molds growing on dry-cured ham are able to synthesize limited amounts of some secondary metabolites, a fact not previously reported. The combination of HPLC coupled with DAD and MS-APCI was useful for identification of closely related terverticillate Penicillium species from dry-cured ham. These techniques could be used to characterize the risk associated with the potential production of secondary metabolites in cured meats.

  10. An in silico platform for the design of heterologous pathways in nonnative metabolite production

    Directory of Open Access Journals (Sweden)

    Chatsurachai Sunisa

    2012-05-01

    Full Text Available Abstract Background Microorganisms are used as cell factories to produce valuable compounds in pharmaceuticals, biofuels, and other industrial processes. Incorporating heterologous metabolic pathways into well-characterized hosts is a major strategy for obtaining these target metabolites and improving productivity. However, selecting appropriate heterologous metabolic pathways for a host microorganism remains difficult owing to the complexity of metabolic networks. Hence, metabolic network design could benefit greatly from the availability of an in silico platform for heterologous pathway searching. Results We developed an algorithm for finding feasible heterologous pathways by which nonnative target metabolites are produced by host microorganisms, using Escherichia coli, Corynebacterium glutamicum, and Saccharomyces cerevisiae as templates. Using this algorithm, we screened heterologous pathways for the production of all possible nonnative target metabolites contained within databases. We then assessed the feasibility of the target productions using flux balance analysis, by which we could identify target metabolites associated with maximum cellular growth rate. Conclusions This in silico platform, designed for targeted searching of heterologous metabolic reactions, provides essential information for cell factory improvement.

  11. Engineering Microbial Metabolite Dynamics and Heterogeneity.

    Science.gov (United States)

    Schmitz, Alexander C; Hartline, Christopher J; Zhang, Fuzhong

    2017-10-01

    As yields for biological chemical production in microorganisms approach their theoretical maximum, metabolic engineering requires new tools, and approaches for improvements beyond what traditional strategies can achieve. Engineering metabolite dynamics and metabolite heterogeneity is necessary to achieve further improvements in product titers, productivities, and yields. Metabolite dynamics, the ensemble change in metabolite concentration over time, arise from the need for microbes to adapt their metabolism in response to the extracellular environment and are important for controlling growth and productivity in industrial fermentations. Metabolite heterogeneity, the cell-to-cell variation in a metabolite concentration in an isoclonal population, has a significant impact on ensemble productivity. Recent advances in single cell analysis enable a more complete understanding of the processes driving metabolite heterogeneity and reveal metabolic engineering targets. The authors present an overview of the mechanistic origins of metabolite dynamics and heterogeneity, why they are important, their potential effects in chemical production processes, and tools and strategies for engineering metabolite dynamics and heterogeneity. The authors emphasize that the ability to control metabolite dynamics and heterogeneity will bring new avenues of engineering to increase productivity of microbial strains. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Effect of competition on the production and activity of secondary metabolites in Aspergillus species

    DEFF Research Database (Denmark)

    Losada, L.; Ajayi, O.; Frisvad, Jens Christian

    2009-01-01

    and in the presence of other fungal species. However, it is not known whether secreted secondary metabolites provide a competitive advantage over other fungal species, or whether competition has any effect on the production of those metabolites. Here, we have performed co-cultivation competition assays among......Secondary metabolites are of intense interest to humans due to their pharmaceutical and/or toxic properties. Also, these metabolites are clinically relevant because of their importance in fungal pathogenesis. Aspergillus species secrete secondary metabolites when grown individually...... different species of Aspergillus to determine relative species fitness in culture, and to analyze the presence of possible antifungal activity of secondary metabolites in extracts. The results show that, for the most part, at 30C only one species is able to survive direct competition with a second species...

  13. Gamma irradiation of medicinally important plants and the enhancement of secondary metabolite production.

    Science.gov (United States)

    Vardhan, P Vivek; Shukla, Lata I

    2017-09-01

    The profitable production of some important plant-based secondary metabolites (ginsenosides, saponins, camptothecin, shikonins etc.) in vitro by gamma irradiation is a current area of interest. We reviewed different types of secondary metabolites, their mode of synthesis and effect of γ-radiation on their yield for different plants, organs and in vitro cultures (callus, suspension, hairy root). Special effort has been made to review the biochemical mechanisms underlying the increase in secondary metabolites. A comparison of yield improvement with biotic and abiotic stresses was made. Phenolic compounds increase with γ-irradiation in whole plants/plant parts; psoralen content in the common herb babchi (Psoralea corylifolia) was increased as high as 32-fold with γ-irradiation of seeds at 20 kGy. The capsaicinoids, a phenolic compound increased about 10% with 10 kGy in paprika (Capsicum annum L.). The in vitro studies show all the three types of secondary metabolites are reported to increase with γ-irradiation. Stevioside, total phenolic and flavonoids content were slightly increased in 15 Gy-treated callus cultures of stevia (Stevia rebaudiana Bert.). In terpenoids, total saponin and ginsenosides content were increased 1.4- and 1.8-fold, respectively, with 100 Gy for wild ginseng (Panax ginseng Meyer) hairy root cultures. In alkaloids, camptothecin yield increased as high as 20-fold with 20 Gy in callus cultures of ghanera (Nothapodytes foetida). Shikonins increased up to 4-fold with 16 Gy in suspension cultures of purple gromwell (Lithospermum erythrorhizon S.). The enzymes associated with secondary metabolite production were increased with γ-irradiation of 20 Gy; namely, phenylalanine ammonia-lyase (PAL) for phenolics, chalcone synthase (CHS) for flavonoids, squalene synthase (SS), squalene epoxidase (SE) and oxidosqualene cyclases (OSC) for ginsenosides and PHB (p-hydroxylbenzoic acid) geranyl transferase for shikonins. An increase in secondary

  14. Effect of metal ions on the growth and metabolites production of ...

    African Journals Online (AJOL)

    Effect of metal ions on the growth and metabolites production of Ganoderma lucidum in submerged culture. YH Cui, KC Zhang. Abstract. The effects of several metal ions on the cell growth, production of polysaccharides by Ganoderma lucidum in submerged fermentation were studied. The results showed that 50 ppm Se2+ ...

  15. Secondary metabolites from Penicillium roqueforti, a starter for the production of Gorgonzola cheese

    Directory of Open Access Journals (Sweden)

    Lisa Vallone

    2014-09-01

    Full Text Available The presence of mold in food, although necessary for production, can involve the presence of secondary metabolites, which are sometimes toxic. Penicillium roqueforti is a common saprophytic fungus but it is also the essential fungus used in the production of Roquefort cheese and other varieties of blue cheese containing internal mold. The study was conducted on industrial batches of Penicillium roqueforti starters used in the production of the Gorgonzola cheese, with the aim to verify the production of secondary metabolites. Nine Penicillium roqueforti strains were tested. The presence of roquefortine C, PR toxin and mycophenolic acid was tested first in vitro, then on bread-like substrate and lastly in vivo in nine cheese samples produced with the same starters and ready to market. In vitro, only Penicillium out of nine produced roquefortine C, four starters showed mycophenolic acid production, while no significant amounts of PR toxin were detected. In the samples grown on bread-like substrate, Penicillium did not produce secondary metabolites, likewise with each cheese samples tested. To protect consumers’ health and safety, the presence of mycotoxins needs to be verified in food which is widely consumed, above all for products protected by the protected denomination of origin (DOP label (i.e. a certificate guaranteeing the geographic origin of the product, such as Gorgonzola cheese.

  16. Encapsulates for Food Bioconversions and Metabolite Production

    Science.gov (United States)

    Breguet, Véronique; Vojinovic, Vojislav; Marison, Ian W.

    The control of production costs in the food industry must be very strict as a result of the relatively low added value of food products. Since a wide variety of enzymes and/or cells are employed in the food industry for starch processing, cheese making, food preservation, lipid hydrolysis and other applications, immobilization of the cells and/or enzymes has been recognized as an attractive approach to improving food processes while minimizing costs. This is due to the fact that biocatalyst immobilization allows for easier separation/purification of the product and reutilization of the biocatalyst. The advantages of the use of immobilized systems are many, and they have a special relevance in the area of food technology, especially because industrial processes using immobilized biosystems are usually characterized by lower capital/energy costs and better logistics. The main applications of immobilization, related to the major processes of food bioconversions and metabolite production, will be described and discussed in this chapter.

  17. Cytoplasmic Acidification and Secondary Metabolite Production in Different Plant Cell Suspensions (A Comparative Study).

    Science.gov (United States)

    Hagendoorn, MJM.; Wagner, A. M.; Segers, G.; Van Der Plas, LHW.; Oostdam, A.; Van Walraven, H. S.

    1994-10-01

    In this study, a correlation is described between low cytoplasmic pH, measured with the fluorescent probes 2[prime],7[prime]-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (acetoxymethyl ester) and bis- [3-propyl-5-oxoisoxazol-4-yl]pentamethine oxonol, and the production of secondary metabolites for several plant cell-suspension systems. Anthraquinone production in Morinda citrifolia suspensions is negligible in the presence of 2,4-dichlorophenoxyacetic acid (2,4-D), whereas with naphthalene acetic acid (NAA) a significant accumulation is realized. NAA-grown cells showed a lower cytoplasmic pH than did 2,4-D-grown cells. Addition of 2,4-D or parachlorophenoxy acetic acid to NAA-grown cells resulted in an inhibition of anthraquinone production and an increase of the cytoplasmic pH, whereas addition of parachlorophenyl acetic acid had no effect on either parameter. Lignin production in Petunia hybrida cells could be induced by subculturing them in a medium without iron. These cells showed a lower cytoplasmic pH than control cells. Addition of Fe3+ led to a decreased lignin content and an increased cytoplasmic pH. Two cell lines of Linum flavum showed a different level of coniferin and lignin concentration in their cells. Cells that accumulated coniferin and lignin had a lower cytoplasmic pH than cells that did not accumulate these secondary metabolites. Apparently, in different species and after different kinds of treatment there is a correlation between acidification of the cytoplasm and the production of different secondary metabolites. The possible role of this acidification in secondary metabolite production is discussed.

  18. Differentiation-Dependent Energy Production and Metabolite Utilization: A Comparative Study on Neural Stem Cells, Neurons, and Astrocytes

    Science.gov (United States)

    Jády, Attila Gy.; Nagy, Ádám M.; Kőhidi, Tímea; Ferenczi, Szilamér; Tretter, László

    2016-01-01

    While it is evident that the metabolic machinery of stem cells should be fairly different from that of differentiated neurons, the basic energy production pathways in neural stem cells (NSCs) or in neurons are far from clear. Using the model of in vitro neuron production by NE-4C NSCs, this study focused on the metabolic changes taking place during the in vitro neuronal differentiation. O2 consumption, H+ production, and metabolic responses to single metabolites were measured in cultures of NSCs and in their neuronal derivatives, as well as in primary neuronal and astroglial cultures. In metabolite-free solutions, NSCs consumed little O2 and displayed a higher level of mitochondrial proton leak than neurons. In stem cells, glycolysis was the main source of energy for the survival of a 2.5-h period of metabolite deprivation. In contrast, stem cell-derived or primary neurons sustained a high-level oxidative phosphorylation during metabolite deprivation, indicating the consumption of own cellular material for energy production. The stem cells increased O2 consumption and mitochondrial ATP production in response to single metabolites (with the exception of glucose), showing rapid adaptation of the metabolic machinery to the available resources. In contrast, single metabolites did not increase the O2 consumption of neurons or astrocytes. In “starving” neurons, neither lactate nor pyruvate was utilized for mitochondrial ATP production. Gene expression studies also suggested that aerobic glycolysis and rapid metabolic adaptation characterize the NE-4C NSCs, while autophagy and alternative glucose utilization play important roles in the metabolism of stem cell-derived neurons. PMID:27116891

  19. Programming adaptive control to evolve increased metabolite production.

    Science.gov (United States)

    Chou, Howard H; Keasling, Jay D

    2013-01-01

    The complexity inherent in biological systems challenges efforts to rationally engineer novel phenotypes, especially those not amenable to high-throughput screens and selections. In nature, increased mutation rates generate diversity in a population that can lead to the evolution of new phenotypes. Here we construct an adaptive control system that increases the mutation rate in order to generate diversity in the population, and decreases the mutation rate as the concentration of a target metabolite increases. This system is called feedback-regulated evolution of phenotype (FREP), and is implemented with a sensor to gauge the concentration of a metabolite and an actuator to alter the mutation rate. To evolve certain novel traits that have no known natural sensors, we develop a framework to assemble synthetic transcription factors using metabolic enzymes and construct four different sensors that recognize isopentenyl diphosphate in bacteria and yeast. We verify FREP by evolving increased tyrosine and isoprenoid production.

  20. Removal of uremic retention products by hemodialysis is coupled with indiscriminate loss of vital metabolites.

    Science.gov (United States)

    Zhang, Zhi-Hao; Mao, Jia-Rong; Chen, Hua; Su, Wei; Zhang, Yuan; Zhang, Li; Chen, Dan-Qian; Zhao, Ying-Yong; Vaziri, Nosratola D

    2017-12-01

    Although dialysis ameliorates uremia and fluid and electrolytes disorders, annual mortality rate remains high in dialysis population reflecting its shortcoming in replacing renal function. Unlike the normal kidney, dialysis causes dramatic shifts in volume and composition of body fluids and indiscriminate removal of vital solutes. Present study was undertaken to determine the impact of hemodialysis on plasma metabolites in end-stage renal disease (ESRD) patients. 80 hemodialysis patients and 80 age/gender-matched healthy controls were enrolled in the study. Using ultra performance liquid chromatography-high-definition mass spectrometry, we measured plasma metabolites before, during, and after hemodialysis procedure and in blood entering and leaving the dialysis filter. Principal component analysis revealed significant difference in concentration of 214 metabolites between healthy control and ESRD patients' pre-dialysis plasma (126 increased and 88 reduced in ESRD group). Comparison of post-dialysis with pre-dialysis data revealed significant changes in the 362 metabolites. Among ESI + metabolites 195 decreased and 55 increased and among ESI - metabolites 82 decreased and 30 increased following hemodialysis. Single blood passage through the dialyzer caused significant changes in 323 metabolites. Comparison of ESRD patients' post-hemodialysis with healthy subjects' data revealed marked differences in metabolic profiles. We identified 55 of the 362 differential metabolites including well known uremic toxins, waste products and vital biological compounds. In addition to uremic toxins and waste products hemodialysis removes large number of identified and as-yet un-identified metabolites. Depletion of vital biological compounds by dialysis may contribute to the high morbidity and annual mortality rate in this population. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  1. Pharmacologically active plant metabolites as survival strategy products.

    Science.gov (United States)

    Attardo, C; Sartori, F

    2003-01-01

    The fact that plant organisms produce chemical substances that are able to positively or negatively interfere with the processes which regulate human life has been common knowledge since ancient times. One of the numerous possible examples in the infusion of Conium maculatum, better known as Hemlock, a plant belonging to the family umbelliferae, used by the ancient Egyptians to cure skin diseases. The current official pharmacopoeia includes various chemical substances produced by secondary plant metabolisms. For example, the immunosuppressive drugs used to prevent organ transplant rejection and the majority of antibiotics are metabolites produced by fungal organisms, pilocarpin, digitalis, strophantus, salicylic acid and curare are examples of plant organism metabolites. For this reason, there has been an increase in research into plants, based on information on their medicinal use in the areas where they grow. The study of plants in relation to local culture and traditions is known as "ethnobotany". Careful study of the behaviour of sick animals has also led to the discovery of medicinal plants. The study of this subject is known as "zoopharmacognosy". The aim of this article is to discuss the fact that "ad hoc" production of such chemical substances, defined as "secondary metabolites", is one of the modes in which plant organisms respond to unfavourable environmental stimuli, such as an attack by predatory phytophagous animals or an excessive number of plant individuals, even of the same species, in a terrain. In the latter case, the plant organisms produce toxic substances, called "allelopathic" which limit the growth of other individuals. "Secondary metabolites" are produced by metabolic systems that are shunts of the primary systems which, when required, may be activated from the beginning, or increased to the detriment of others. The study of the manner in which such substances are produced is the subject of a new branch of learning called "ecological

  2. The relevance of "non-relevant metabolites" from plant protection products (PPPs) for drinking water: the German view.

    Science.gov (United States)

    Dieter, Hermann H

    2010-03-01

    "Non-relevant metabolites" are those degradation products of plant protection products (PPPs), which are devoid of the targeted toxicities of the PPP and devoid of genotoxicity. Most often, "non-relevant metabolites" have a high affinity to the aquatic environment, are very mobile within this environment, and, usually, are also persistent. Therefore, from the point of drinking water hygiene, they must be characterized as "relevant for drinking water" like many other hydrophilic/polar environmental contaminants of different origins. "Non-relevant metabolites" may therefore penetrate to water sources used for abstraction of drinking water and may thus ultimately be present in drinking water. The presence of "non-relevant metabolites" and similar trace compounds in the water cycle may endanger drinking water quality on a long-term scale. During oxidative drinking water treatment, "non-relevant metabolites" may also serve as the starting material for toxicologically relevant transformation products similar to processes observed by drinking water disinfection with chlorine. This hypothesis was recently confirmed by the detection of the formation of N-nitroso-dimethylamine from ozone and dimethylsulfamide, a "non-relevant metabolite" of the fungicide tolylfluanide. In order to keep drinking water preferably free of "non-relevant metabolites", the German drinking water advisory board of the Federal Ministry of Health supports limiting their penetration into raw and drinking water to the functionally (agriculturally) unavoidable extent. On this background, the German Federal Environment Agency (UBA) recently has recommended two health related indication values (HRIV) to assess "non-relevant metabolites" from the view of drinking water hygiene. Considering the sometimes incomplete toxicological data base for some "non-relevant metabolites", HRIV also have the role of health related precautionary values. Depending on the completeness and quality of the toxicological

  3. Yield improvement strategies for the production of secondary metabolites in plant tissue culture: silymarin from Silybum marianum tissue culture.

    Science.gov (United States)

    AbouZid, S

    2014-01-01

    Plant cell culture can be a potential source for the production of important secondary metabolites. This technology bears many advantages over conventional agricultural methods. The main problem to arrive at a cost-effective process is the low productivity. This is mainly due to lack of differentiation in the cultured cells. Many approaches have been used to maximise the yield of secondary metabolites produced by cultured plant cells. Among these approaches: choosing a plant with a high biosynthetic capacity, obtaining efficient cell line for growth and production of metabolite of interest, manipulating culture conditions, elicitation, metabolic engineering and organ culture. This article gives an overview of the various approaches used to maximise the production of pharmaceutically important secondary metabolites in plant cell cultures. Examples of using these different approaches are shown for the production of silymarin from Silybum marianum tissue culture.

  4. Microsomal metabolism of trenbolone acetate metabolites ...

    Science.gov (United States)

    Trenbolone acetate (TBA) is a synthetic growth promoter widely used in animal agriculture, and its metabolites are suspected endocrine disrupting compounds in agriculturally impacted receiving waters. However, beyond the three widely recognized TBA metabolites (17-trenbolone, 17-trenbolone and trendione), little is known about other metabolites formed in vivo and subsequently discharged into the environment, with some evidence suggesting these unknown metabolites comprise a majority of the TBA mass dosed to the animal. Here, we explored the metabolism of the three known TBA metabolites using rat liver microsome studies. All TBA metabolites are transformed into a complex mixture of monohydroxylated products. Based on product characterization, the majority are more polar than the parent metabolites but maintain their characteristic trienone backbone. A minor degree of interconversion between known metabolites was also observed, as were higher order hydroxylated products with a greater extent of reaction. Notably, the distribution and yield of products were generally comparable across a series of variably induced rat liver microsomes, as well as during additional studies with human and bovine liver microsomes. Bioassays conducted with mixtures of these transformation products suggest that androgen receptor (AR) binding activity is diminished as a result of the microsomal treatment, suggesting that the transformation products are generally less potent than

  5. Inter-individual variability in the production of flavan-3-ol colonic metabolites: preliminary elucidation of urinary metabotypes.

    Science.gov (United States)

    Mena, Pedro; Ludwig, Iziar A; Tomatis, Virginia B; Acharjee, Animesh; Calani, Luca; Rosi, Alice; Brighenti, Furio; Ray, Sumantra; Griffin, Julian L; Bluck, Les J; Del Rio, Daniele

    2018-04-03

    There is much information on the bioavailability of (poly)phenolic compounds following acute intake of various foods. However, there are only limited data on the effects of repeated and combined exposure to specific (poly)phenol food sources and the inter-individual variability in their bioavailability. This study evaluated the combined urinary excretion of (poly)phenols from green tea and coffee following daily consumption by healthy subjects in free-living conditions. The inter-individual variability in the production of phenolic metabolites was also investigated. Eleven participants consumed both tablets of green tea and green coffee bean extracts daily for 8 weeks and 24-h urine was collected on five different occasions. The urinary profile of phenolic metabolites and a set of multivariate statistical tests were used to investigate the putative existence of characteristic metabotypes in the production of flavan-3-ol microbial metabolites. (Poly)phenolic compounds in the green tea and green coffee bean extracts were absorbed and excreted after simultaneous consumption, with green tea resulting in more inter-individual variability in urinary excretion of phenolic metabolites. Three metabotypes in the production of flavan-3-ol microbial metabolites were tentatively defined, characterized by the excretion of different amounts of trihydroxyphenyl-γ-valerolactones, dihydroxyphenyl-γ-valerolactones, and hydroxyphenylpropionic acids. The selective production of microbiota-derived metabolites from flavan-3-ols and the putative existence of characteristic metabotypes in their production represent an important development in the study of the bioavailability of plant bioactives. These observations will contribute to better understand the health effects and individual differences associated with consumption of flavan-3-ols, arguably the main class of flavonoids in the human diet.

  6. In vitro culture of lavenders (Lavandula spp.) and the production of secondary metabolites.

    Science.gov (United States)

    Gonçalves, Sandra; Romano, Anabela

    2013-01-01

    Lavenders (Lavandula spp., Lamiaceae) are aromatic ornamental plants that are used widely in the food, perfume and pharmaceutical industries. The large-scale production of lavenders requires efficient in vitro propagation techniques to avoid the overexploitation of natural populations and to allow the application of biotechnology-based approaches for plant improvement and the production of valuable secondary metabolites. In this review we discuss micropropagation methods that have been developed in several lavender species, mainly based on meristem proliferation and organogenesis. Specific requirements during stages of micropropagation (establishment, shoot multiplication, root induction and acclimatization) and requisites for plant regeneration trough organogenesis, as an important step for the implementation of plant improvement programs, were revised. We also discuss different methods for the in vitro production of valuable secondary metabolites, focusing on the prospects for highly scalable cultures to meet the market demand for lavender-derived products. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Phthalate metabolites in Norwegian mothers and children: Levels, diurnal variation and use of personal care products.

    Science.gov (United States)

    Sakhi, Amrit Kaur; Sabaredzovic, Azemira; Cequier, Enrique; Thomsen, Cathrine

    2017-12-01

    Exposure to phthalates has been associated with reproductive and developmental toxicity. Data on levels of these compounds in the Norwegian population is limited. In this study, urine samples were collected from 48 mothers and their children in two counties in Norway. Eleven different phthalate metabolites originating from six commonly used phthalates in consumer products were determined. Concentrations of phthalate metabolites were significantly higher in children compared to mothers except for mono-ethyl phthalate (MEP). The mothers provided several urine samples during 24hours (h) and diurnal variation showed that the concentrations in the morning urine samples (24-8h) were significantly higher than at other time-periods for most of the phthalate metabolites. Intraclass correlation coefficients (ICCs) for 24-hour time-period were in the range of 0.49-0.81. These moderate to high ICCs indicate that one spot urine sample can be used to estimate the exposure to phthalates. Since a significant effect of time of day was observed, it is still advisable to standardize the collection time point to reduce the variation. For the mothers, the use of personal care products (PCPs) were less associated with morning urine samples than early day (8-12h) and evening (16-24h) urine samples. The use of perfume and hair products were positively associated with the urinary concentrations of low molecular weight phthalates. Use of shower soap and shampoo were positively associated with urinary concentration of di(2-ethylhexyl) phthalate (DEHP) metabolites. For children, face cream use was positively associated with phthalate metabolites in the morning samples, and hand soap use was negatively associated with concentration of urinary DEHP metabolites in afternoon/evening samples. Since different PCPs were associated with the urinary phthalate metabolites in different time-periods during a day, more than one spot urine sample might be required to study associations between urinary

  8. Exploring plant tissue culture in Withania somnifera (L.) Dunal: in vitro propagation and secondary metabolite production.

    Science.gov (United States)

    Shasmita; Rai, Manoj K; Naik, Soumendra K

    2017-12-26

    Withania somnifera (L.) Dunal (family: Solanaceae), commonly known as "Indian Ginseng", is a medicinally and industrially important plant of the Indian subcontinent and other warmer parts of the world. The plant has multi-use medicinal potential and has been listed among 36 important cultivated medicinal plants of India that are in high demand for trade due to its pharmaceutical uses. The medicinal importance of this plant is mainly due to the presence of different types of steroidal lactones- withanolides in the roots and leaves. Owing to low seed viability and poor germination, the conventional propagation of W. somnifera falls short to cater its commercial demands particularly for secondary metabolite production. Therefore, there is a great need to develop different biotechnological approaches through tissue and organ culture for seasonal independent production of plants in large scale which will provide sufficient raw materials of uniform quality for pharmaceutical purposes. During past years, a number of in vitro plant regeneration protocols via organogenesis and somatic embryogenesis and in vitro conservation through synthetic seed based encapsulation technology have been developed for W. somnifera. Several attempts have also been made to standardize the protocol of secondary metabolite production via tissue/organ cultures, cell suspension cultures, and Agrobacterium rhizogenes-mediated transformed hairy root cultures. Employment of plant tissue culture based techniques would provide means for rapid propagation and conservation of this plant species and also provide scope for enhanced production of different bioactive secondary metabolites. The present review provides a comprehensive report on research activities conducted in the area of tissue culture and secondary metabolite production in W. somnifera during the past years. It also discusses the unexplored areas which might be taken into consideration for future research so that the medicinal properties and

  9. Diversity in metabolite production by Fusarium langsethiae, Fusarium poae, and Fusarium sporotrichioides

    DEFF Research Database (Denmark)

    Thrane, Ulf; Adler, A.; Clasen, P.E.

    2004-01-01

    The production of mycotoxins and other metabolites by 109 strains of Fusarium langsethiae, Fusarium poae, Fusarium sporotrichioides, and F. kyushuense was investigated independently in four laboratories by liquid or gas chromatography analyses of cultural extracts with UV diode array, electron...

  10. Extractive biotransformation for production of metabolites of poorly soluble compounds: synthesis of 32-hydroxy-rifalazil.

    Science.gov (United States)

    Mozhaev, Vadim V; Mozhaeva, Lyudmila V; Michels, Peter C; Khmelnitsky, Yuri L

    2008-10-01

    A novel reaction system was developed for the production of metabolites of poorly water-soluble parent compounds using mammalian liver microsomes. The system includes the selection and use of an appropriate hydrophobic polymeric resin as a reservoir for the hydrophobic parent compounds and its metabolites. The utility of the extractive biotransformation approach was shown for the production of a low-yielding, synthetically challenging 32-hydroxylated metabolite of the antibiotic rifalazil using mouse liver microsomes. To address the low solubility and reactivity of rifalazil in the predominantly aqueous microsomal catalytic system, a variety of strategies were tested for the enhanced delivery of hydrophobic substrates, including the addition of mild detergents, polyvinylpyrrolidone, glycerol, bovine serum albumin, and hydrophobic polymeric resins. The latter strategy was identified as the most suitable for the production of 32-hydroxy-rifalazil, resulting in up to 13-fold enhancement of the volumetric productivity compared with the standard aqueous system operating at the solubility limit of rifalazil. The production process was optimized for a wide range of reaction parameters; the most important for improving volumetric productivity included the type and amount of the polymeric resin, cofactor recycling system, concentrations of the biocatalyst and rifalazil, reaction temperature, and agitation rate. The optimized extractive biotransformation system was used to synthesize 32-hydroxy-rifalazil on a multimilligram scale.

  11. Protection by fungal starters against growth and secondary metabolite production of fungal spoilers of cheese.

    Science.gov (United States)

    Nielsen, M S; Frisvad, J C; Nielsen, P V

    1998-06-30

    The influence of fungal starter cultures on growth and secondary metabolite production of fungal contaminants associated with cheese was studied on laboratory media and Camembert cheese. Isolates of the species Penicillium nalgiovense, P. camemberti, P. roqueforti and Geotrichum candidum were used as fungal starters. The species P. commune, P. caseifulvum, P. verrucosum, P. discolor, P. solitum, P. coprophilum and Aspergillus versicolor were selected as contaminants. The fungal starters showed different competitive ability on laboratory media and Camembert cheese. The presence of the Penicillium species, especially P. nalgiovense, showed an inhibitory effect on the growth of the fungal contaminants on laboratory media. G. candidum caused a significant inhibition of the fungal contaminants on Camembert cheese. The results indicate that G. candidum plays an important role in competition with undesirable microorganisms in mould fermented cheeses. Among the starters, P. nalgiovense caused the largest reduction in secondary metabolite production of the fungal contaminants on the laboratory medium. On Camembert cheese no significant changes in metabolite production of the fungal contaminants was observed in the presence of the starters.

  12. Characterization of rhizobacteria associated to maize crop in IAA, siderophores and salicylic acid metabolite production

    Directory of Open Access Journals (Sweden)

    Annia Hernández

    2004-01-01

    Full Text Available It has been demonstrated that rhizobacteria are able to produce metabolites having agricultural interest, including salicylic acid, the siderophores and phytohormones. Indol acetic acid (IAA is the most well-known and studied auxin, playing a governing role in culture growth. The object of this work was to characterise rhizobacteria associated with the maize crop in terms of producing IAA, siderophores and salicylic acid metabolites. Burkholderia cepacia and Pseudomonas fluorescens strains previously isolated from maize Francisco variety rhizosphere were used. Colorimetric and chromatographic techniques for detecting these metabolites were studied; multi-variable analysis of hierarchic conglomerate and complete ligament were used for selecting the best strains for producing metabolites of interest. These results demonstrated that all rhizobacteria strains studied produced IAA, siderophores and salicylic acid metabolites. Burkholderia cepacia MBf21, MBp1, MBp2, MBf22, MBp3, MBf20, MBf 15 and Pseudomonas fluorescens MPp4strains have presented the greatest production of these metabolites, showing that these strains could be used in promoting vegetal growth in economically important cultures. Key words: Pseudomonas fluorescens, Burkholderia cepacia, IAA, siderophore, salicylic acid.

  13. The secondary metabolite bioinformatics portal: Computational tools to facilitate synthetic biology of secondary metabolite production

    Directory of Open Access Journals (Sweden)

    Tilmann Weber

    2016-06-01

    Full Text Available Natural products are among the most important sources of lead molecules for drug discovery. With the development of affordable whole-genome sequencing technologies and other ‘omics tools, the field of natural products research is currently undergoing a shift in paradigms. While, for decades, mainly analytical and chemical methods gave access to this group of compounds, nowadays genomics-based methods offer complementary approaches to find, identify and characterize such molecules. This paradigm shift also resulted in a high demand for computational tools to assist researchers in their daily work. In this context, this review gives a summary of tools and databases that currently are available to mine, identify and characterize natural product biosynthesis pathways and their producers based on ‘omics data. A web portal called Secondary Metabolite Bioinformatics Portal (SMBP at http://www.secondarymetabolites.org is introduced to provide a one-stop catalog and links to these bioinformatics resources. In addition, an outlook is presented how the existing tools and those to be developed will influence synthetic biology approaches in the natural products field.

  14. Interactions between amphibians’ symbiotic bacteria cause the production of emergent anti-fungal metabolites

    Directory of Open Access Journals (Sweden)

    Andrew Howard Loudon

    2014-08-01

    Full Text Available Amphibians possess beneficial skin bacteria that protect against the disease chytridiomycosis by producing secondary metabolites that inhibit the pathogen Batrachochytrium dendrobatidis (Bd. Metabolite production may be a mechanism of competition between bacterial species that results in host protection as a by-product. We expect that some co-cultures of bacterial species or strains will result in greater Bd inhibition than mono-cultures. To test this, we cultured four bacterial isolates (Bacillus sp., Janthinobacterium sp., Pseudomonas sp. and Chitinophaga arvensicola from red-backed salamanders (Plethodon cinereus and cultured isolates both alone and together to collect their cell-free supernatants (CFS. We challenged Bd with CFSs from four bacterial species in varying combinations. This resulted in three experimental treatments: 1 CFSs of single isolates; 2 combined CFSs of two isolates; and 3 CFSs from co-cultures. Pair-wise combinations of four bacterial isolates CFSs were assayed against Bd and revealed additive Bd inhibition in 42.2% of trials, synergistic inhibition in 42.2% and no effect in 16.6% of trials. When bacteria isolates were grown in co-cultures, complete Bd inhibition was generally observed, and synergistic inhibition occurred in four out of six trials. A metabolite profile of the most potent co-culture, Bacillus sp. and Chitinophaga arvensicola, was determined with LC-MS and compared with the profiles of each isolate in mono-culture. Emergent metabolites appearing in the co-culture were inhibitory to Bd, and the most potent inhibitor was identified as tryptophol. Thus mono-cultures of bacteria cultured from red-backed salamanders interacted synergistically and additively to inhibit Bd, and such bacteria produced emergent metabolites when cultured together, with even greater pathogen inhibition. Knowledge of how bacterial species interact to inhibit Bd can be used to select probiotics to provide amphibians with protection

  15. Global analysis of biosynthetic gene clusters reveals vast potential of secondary metabolite production in Penicillium species

    DEFF Research Database (Denmark)

    Nielsen, Jens Christian; Grijseels, Sietske; Prigent, Sylvain

    2017-01-01

    Filamentous fungi produce a wide range of bioactive compounds with important pharmaceutical applications, such as antibiotic penicillins and cholesterol-lowering statins. However, less attention has been paid to fungal secondary metabolites compared to those from bacteria. In this study, we...... sequenced the genomes of 9 Penicillium species and, together with 15 published genomes, we investigated the secondary metabolism of Penicillium and identified an immense, unexploited potential for producing secondary metabolites by this genus. A total of 1,317 putative biosynthetic gene clusters (BGCs) were......-referenced the predicted pathways with published data on the production of secondary metabolites and experimentally validated the production of antibiotic yanuthones in Penicillia and identified a previously undescribed compound from the yanuthone pathway. This study is the first genus-wide analysis of the genomic...

  16. Enzymatic production by tissue extracts of a metabolite of nicotinamide adenine dinucleotide with calcium-releasing ability

    International Nuclear Information System (INIS)

    Tich, N.R.

    1989-01-01

    This research investigated the occurrence and characterization of the metabolite in mammalian tissues. In all mammalian tissues tested, including rabbit liver, heart, spleen, kidney, and brain, the factor to convert NAD into its active metabolite was present. The conversion exhibited many characteristics of an enzymatic process such as temperature sensitivity, concentration dependence and protease sensitivity. Production of the NAD metabolite occurred within a time frame of 15-45 minutes at 37 degree C, depending upon the particular preparation. The metabolite was isolated using high performance liquid chromatography from all mammalian tissues. This purified metabolite was then tested for its effectiveness in releasing intracellular calcium in an intact cell by microinjecting it into unfertilized sea urchin eggs. These eggs undergo a massive morphological change upon fertilization which is dependent upon the release of calcium from inside the cell. Upon injection of the NAD metabolite into unfertilized eggs, this same morphological change was observed showing indirectly that the metabolite released intracellular calcium from an intact, viable cell. In addition, radioactive studies using 45 Ca 2+ loaded into permeabilized hepatocytes, indicated in preliminary studies that the NAD metabolite could also release calcium from intracellular stores of mammalian cells

  17. Antimicrobial properties and the influence of temperature on secondary metabolite production in cold environment soil fungi

    Science.gov (United States)

    Yogabaanu, U.; Weber, Jean-Frederic Faizal; Convey, Peter; Rizman-Idid, Mohammed; Alias, Siti Aisyah

    2017-12-01

    The Arctic and Antarctic share environmental extremes. To survive in such environments, microbes such as soil fungi need to compete with or protect themselves effectively from other soil microbiota and to obtain the often scarce nutrients available, and many use secondary metabolites to facilitate this. We therefore (i) screened for antimicrobial properties of cold-environment Arctic and Antarctic soil fungi, and (ii) identified changes in the secreted secondary metabolite profiles of a subset of these strains in response to temperature variation. A total of 40 polar soil fungal strains from King George Island, maritime Antarctic and Hornsund, Svalbard, High Arctic, were obtained from the Malaysian National Antarctic Research Centre culture collections. The plug assay technique was used to screen for antimicrobial potential against Gram-positive and Gram-negative human pathogenic bacteria (Bacillus subtilis, B. cereus, Pseudomonas aeruginosa, Enterococcus faecalis and Escherichia coli). About 45% of the tested fungal strains showed antimicrobial activity against at least one tested microorganism. Three fungal isolates showed good bioactivity and were subjected to secondary metabolite profiling at different temperatures (4, 10, 15 and 28 °C). We observed a range of responses in fungal metabolite production when incubated at varying temperatures, confirming an influence of environmental conditions such as temperature on the production of secondary metabolites.

  18. Metabolite production by species of Stemphylium

    DEFF Research Database (Denmark)

    Olsen, Kresten Jon Kromphardt; Rossman, Amy; Andersen, Birgitte

    2018-01-01

    metabolites were found to be important for distinguishing species, while some unknown metabolites were also found to have important roles in distinguishing species of Stemphylium. This study is the first of its kind to investigate the chemical potential of Stemphylium across the whole genus.......Morphology and phylogeny has been used to distinguish members of the plant pathogenic fungal genus Stemphylium. A third method for distinguishing species is by chemotaxonomy. The main goal of the present study was to investigate the chemical potential of Stemphylium via HPLC-UV-MS analysis, while...

  19. Secondary metabolites in fungus-plant interactions

    Science.gov (United States)

    Pusztahelyi, Tünde; Holb, Imre J.; Pócsi, István

    2015-01-01

    Fungi and plants are rich sources of thousands of secondary metabolites. The genetically coded possibilities for secondary metabolite production, the stimuli of the production, and the special phytotoxins basically determine the microscopic fungi-host plant interactions and the pathogenic lifestyle of fungi. The review introduces plant secondary metabolites usually with antifungal effect as well as the importance of signaling molecules in induced systemic resistance and systemic acquired resistance processes. The review also concerns the mimicking of plant effector molecules like auxins, gibberellins and abscisic acid by fungal secondary metabolites that modulate plant growth or even can subvert the plant defense responses such as programmed cell death to gain nutrients for fungal growth and colonization. It also looks through the special secondary metabolite production and host selective toxins of some significant fungal pathogens and the plant response in form of phytoalexin production. New results coming from genome and transcriptional analyses in context of selected fungal pathogens and their hosts are also discussed. PMID:26300892

  20. Regulation of non-relevant metabolites of plant protection products in drinking and groundwater in the EU: Current status and way forward.

    Science.gov (United States)

    Laabs, V; Leake, C; Botham, P; Melching-Kollmuß, S

    2015-10-01

    Non-relevant metabolites are defined in the EU regulation for plant protection product authorization and a detailed definition of non-relevant metabolites is given in an EU Commission DG Sanco (now DG SANTE - Health and Food Safety) guidance document. However, in water legislation at EU and member state level non-relevant metabolites of pesticides are either not specifically regulated or diverse threshold values are applied. Based on their inherent properties, non-relevant metabolites should be regulated based on substance-specific and toxicity-based limit values in drinking and groundwater like other anthropogenic chemicals. Yet, if a general limit value for non-relevant metabolites in drinking and groundwater is favored, an application of a Threshold of Toxicological Concern (TTC) concept for Cramer class III compounds leads to a threshold value of 4.5 μg L(-1). This general value is exemplarily shown to be protective for non-relevant metabolites, based on individual drinking water limit values derived for a set of 56 non-relevant metabolites. A consistent definition of non-relevant metabolites of plant protection products, as well as their uniform regulation in drinking and groundwater in the EU, is important to achieve legal clarity for all stakeholders and to establish planning security for development of plant protection products for the European market. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. The effect of viscosity, friction, and sonication on the morphology and metabolite production from Aspergillus terreus ATCC 20542.

    Science.gov (United States)

    Rahim, Muhamad Hafiz Abd; Hasan, Hanan; Harith, Hanis H; Abbas, Ali

    2017-12-01

    This study investigates the effects of viscosity, friction, and sonication on the morphology and the production of lovastatin, (+)-geodin, and sulochrin by Aspergillus terreus ATCC 20542. Sodium alginate and gelatine were used to protect the fungal pellet from mechanical force by increasing the media viscosity. Sodium alginate stimulated the production of lovastatin by up to 329.0% and sulochrin by 128.7%, with inhibitory effect on (+)-geodin production at all concentrations used. However, the use of gelatine to increase viscosity significantly suppressed lovastatin, (+)-geodin, and sulochrin's production (maximum reduction at day 9 of 42.7, 60.8, and 68.3%, respectively), which indicated that the types of chemical play a major role in metabolite production. Higher viscosity increased both pellet biomass and size in all conditions. Friction significantly increased (+)-geodin's titre by 1527.5%, lovastatin by 511.1%, and sulochrin by 784.4% while reducing pellet biomass and size. Conversely, sonication produced disperse filamentous morphology with significantly lower metabolites. Sodium alginate-induced lovastatin and sulochrin production suggest that these metabolites are not affected by viscosity; rather, their production is affected by the specific action of certain chemicals. In contrast, low viscosity adversely affected (+)-geodin's production, while pellet disintegration can cause a significant production of (+)-geodin.

  2. Heat and light stresses affect metabolite production in the fruit body of the medicinal mushroom Cordyceps militaris.

    Science.gov (United States)

    Jiaojiao, Zhang; Fen, Wang; Kuanbo, Liu; Qing, Liu; Ying, Yang; Caihong, Dong

    2018-05-01

    Cordyceps militaris is a highly valued edible and medicinal fungus due to its production of various metabolites, including adenosine, cordycepin, N 6 -(2-hydroxyethyl)-adenosine, and carotenoids. The contents of these metabolites are indicative of the quality of commercially available fruit body of this fungus. In this work, the effects of environmental abiotic factors, including heat and light stresses, on the fruit body growth and metabolite production in C. militaris were evaluated during the late growth stage. The optimal growth temperature of C. militaris was 20 °C. It was found that a heat stress of 25 °C for 5-20 days during the late growth stage significantly promoted cordycepin and carotenoid production without affecting the biological efficiency. Light stress at 6000 lx for 5-20 days during the late growth stage significantly promoted cordycepin production but decreased the carotenoid content. Both heat and light stresses promoted N 6 -(2-hydroxyethyl)-adenosine production. In addition, gene expression analysis showed that there were simultaneous increases in the expression of genes encoding a metal-dependent phosphohydrolase (CCM_04437) and ATP phosphoribosyltransferase (CCM_04438) that are involved in the cordycepin biosynthesis pathway, which was consistent with the accumulation of cordycepin during heat stress for 5-20 days. A positive weak correlation between the cordycepin and adenosine contents was observed with a Pearson correlation coefficient of 0.338 (P fruit body of C. militaris and contribute to further elucidation of the effects of abiotic stress on metabolite accumulation in fungi.

  3. Simultaneous growth and metabolite production by yoghurt starters and probiotics: a metabolomics approach

    NARCIS (Netherlands)

    Settachaimongkon, S.

    2014-01-01

    The main objective of this research was to investigate the simultaneous growth and metabolite production by yoghurt starters and different probiotic strains, i.e. Lactobacillus rhamnosus GG, Bifidobacterium animalis subsp. lactis BB12 and Lactobacillus

  4. Production of Bacillus amyloliquefaciens OG and its metabolites in renewable media: valorisation for biodiesel production and p-xylene decontamination.

    Science.gov (United States)

    Etchegaray, Augusto; Coutte, François; Chataigné, Gabrielle; Béchet, Max; Dos Santos, Ramon H Z; Leclère, Valérie; Jacques, Philippe

    2017-01-01

    Biosurfactants are important in many areas; however, costs impede large-scale production. This work aimed to develop a global sustainable strategy for the production of biosurfactants by a novel strain of Bacillus amyloliquefaciens. Initially, Bacillus sp. strain 0G was renamed B. amyloliquefaciens subsp. plantarum (syn. Bacillus velezensis) after analysis of the gyrA and gyrB DNA sequences. Growth in modified Landy's medium produced 3 main recoverable metabolites: surfactin, fengycin, and acetoin, which promote plant growth. Cultivation was studied in the presence of renewable carbon (as glycerol) and nitrogen (as arginine) sources. While diverse kinetics of acetoin production were observed in different media, similar yields (6-8 g·L -1 ) were obtained after 72 h of growth. Glycerol increased surfactin-specific production, while arginine increased the yields of surfactin and fengycin and increased biomass significantly. The specific production of fengycin increased ∼10 times, possibly due to a connecting pathway involving arginine and ornithine. Adding value to crude extracts and biomass, both were shown to be useful, respectively, for the removal of p-xylene from contaminated water and for biodiesel production, yielding ∼70 mg·g -1 cells and glycerol, which could be recycled in novel media. This is the first study considering circular bioeconomy to lower the production costs of biosurfactants by valorisation of both microbial cells and their primary and secondary metabolites.

  5. Arsenate impact on the metabolite profile, production and arsenic loading of xylem sap in cucumbers (Cucumis sativus L.

    Directory of Open Access Journals (Sweden)

    Kalle eUroic

    2012-04-01

    Full Text Available Arsenic uptake and translocation studies on xylem sap focus generally on the concentration and speciation of arsenic in the xylem. Arsenic impact on the xylem sap metabolite profile and its production during short term exposure has not been reported in detail. To investigate this, cucumbers were grown hydroponically and arsenate (AsV and DMA were used for plant treatment for 24 h. Total arsenic and arsenic speciation in xylem sap was analysed including a metabolite profiling under arsenate stress. Produced xylem sap was quantified and absolute arsenic transported was determined. AsV exposure has a significant impact on the metabolite profile of xylem sap. Four m/z values corresponding to four compounds were up regulated, one compound down regulated by arsenate exposure. The compound down regulated was identified to be isoleucine. Furthermore, arsenate has a significant influence on sap production, leading to a reduction of up to 96 % sap production when plants are exposed to 1000 μg kg-1 arsenate. No difference to control plants was observed when plants were exposed to 1000 μg kg-1 DMA. Absolute arsenic amount in xylem sap was the lowest at high arsenate exposure. These results show that AsV has a significant impact on the production and metabolite profile of xylem sap. The physiological importance of isoleucine needs further attention.

  6. Arsenate Impact on the Metabolite Profile, Production, and Arsenic Loading of Xylem Sap in Cucumbers (Cucumis sativus L.)

    Science.gov (United States)

    Uroic, M. Kalle; Salaün, Pascal; Raab, Andrea; Feldmann, Jörg

    2012-01-01

    Arsenic uptake and translocation studies on xylem sap focus generally on the concentration and speciation of arsenic in the xylem. Arsenic impact on the xylem sap metabolite profile and its production during short term exposure has not been reported in detail. To investigate this, cucumbers were grown hydroponically and arsenate (AsV) and DMA were used for plant treatment for 24 h. Total arsenic and arsenic speciation in xylem sap was analyzed including a metabolite profiling under AsV stress. Produced xylem sap was quantified and absolute arsenic transported was determined. AsV exposure had a significant impact on the metabolite profile of xylem sap. Four m/z values corresponding to four compounds were up-regulated, one compound down-regulated by AsV exposure. The compound down-regulated was identified to be isoleucine. Furthermore, AsV exposure had a significant influence on sap production, leading to a reduction of up to 96% sap production when plants were exposed to 1000 μg kg−1 AsV. No difference to control plants was observed when plants were exposed to 1000 μg kg−1 DMA. Absolute arsenic amount in xylem sap was the lowest at high AsV exposure. These results show that AsV has a significant impact on the production and metabolite profile of xylem sap. The physiological importance of isoleucine needs further attention. PMID:22536187

  7. Software sensor for primary metabolite production case of alcoholic fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Roux, G.; Dahhou, B.; Queinnec, I. [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France)]|[Institut National des Sciences Appliquees (INSA), 31 - Toulouse (France); Goma, G. [Institut National des Sciences Appliquees (INSA), 31 - Toulouse (France)

    1995-12-31

    This paper investigate the application of an observer for state and parameter estimation to batch, continuous and fed batch fermentations for alcohol production taken as model for a primary metabolite production. This observer is provided to palliate the lack of suitable sensors for on-line biomass and ethanol concentrations measurements and to estimate the time varying specific growth rate. Estimates are obtained from an interlaced structure filter based on a `modified extended Kalman filter` by using on-line measurements of carbon dioxide outflow rate and substrate concentration. The filter algorithm was tested during batch, continuous and fed batch fermentation processes. The filter behaviour observed in the experiments gives good results with an agreement theory/practice. (authors) 18 refs.

  8. Production of Phytotoxic Metabolite Using Biphasic Fermentation System from Strain C1136 of Lasiodiplodia pseudotheobromae, a Potential Bioherbicidal Agent

    OpenAIRE

    Charles Oluwaseun ADETUNJI; Julius Kola OLOKE; Gandham PRASAD; Moses ABALAKA; Emenike Onyebum IROKANULO

    2017-01-01

    Formulation of effective and environmental friendly bioherbicides depends on the type of fermentation medium used for the production of phytotoxic metabolites. The effect of biomass, colony forming unit and the phytotoxic metabolite produced from the biphasic fermentation was carried out, while the phytotoxic metabolite was tested in vivo and in-vitro on Echinochola crus-galli and dicotyledonous Chromolaena odorata. The mutant strain of Lasiodiplodia pseudotheobromae C1136 (Lp90) produced th...

  9. Production of Phytotoxic Metabolite Using Biphasic Fermentation System from Strain C1136 of Lasiodiplodia pseudotheobromae, a Potential Bioherbicidal Agent

    Directory of Open Access Journals (Sweden)

    Charles Oluwaseun ADETUNJI

    2017-09-01

    Full Text Available Formulation of effective and environmental friendly bioherbicides depends on the type of fermentation medium used for the production of phytotoxic metabolites. The effect of biomass, colony forming unit and the phytotoxic metabolite produced from the biphasic fermentation was carried out, while the phytotoxic metabolite was tested in vivo and in-vitro on Echinochola crus-galli and dicotyledonous Chromolaena odorata. The mutant strain of Lasiodiplodia pseudotheobromae C1136 (Lp90 produced the highest amount of conidia and the largest necrotic area on the two tested weeds when compared to its wild strain in the different biphasic media combinations. The study revealed that the biphasic system containing PDB + rice produced the highest bioherbicidal activities. Therefore, the phytotoxic metabolites from strain C1136 are suggested for large scale production of bioherbicides for the management of weeds in conventional farming to improve yield and enhance food security.

  10. Modeling Substrate Utilization, Metabolite Production, and Uranium Immobilization in Shewanella oneidensis Biofilms

    Directory of Open Access Journals (Sweden)

    Ryan S. Renslow

    2017-06-01

    Full Text Available In this study, we developed a two-dimensional mathematical model to predict substrate utilization and metabolite production rates in Shewanella oneidensis MR-1 biofilm in the presence and absence of uranium (U. In our model, lactate and fumarate are used as the electron donor and the electron acceptor, respectively. The model includes the production of extracellular polymeric substances (EPS. The EPS bound to the cell surface and distributed in the biofilm were considered bound EPS (bEPS and loosely associated EPS (laEPS, respectively. COMSOL® Multiphysics finite element analysis software was used to solve the model numerically (model file provided in the Supplementary Material. The input variables of the model were the lactate, fumarate, cell, and EPS concentrations, half saturation constant for fumarate, and diffusion coefficients of the substrates and metabolites. To estimate unknown parameters and calibrate the model, we used a custom designed biofilm reactor placed inside a nuclear magnetic resonance (NMR microimaging and spectroscopy system and measured substrate utilization and metabolite production rates. From these data we estimated the yield coefficients, maximum substrate utilization rate, half saturation constant for lactate, stoichiometric ratio of fumarate and acetate to lactate and stoichiometric ratio of succinate to fumarate. These parameters are critical to predicting the activity of biofilms and are not available in the literature. Lastly, the model was used to predict uranium immobilization in S. oneidensis MR-1 biofilms by considering reduction and adsorption processes in the cells and in the EPS. We found that the majority of immobilization was due to cells, and that EPS was less efficient at immobilizing U. Furthermore, most of the immobilization occurred within the top 10 μm of the biofilm. To the best of our knowledge, this research is one of the first biofilm immobilization mathematical models based on experimental

  11. Activation of the Silent Secondary Metabolite Production by Introducing Neomycin-Resistance in a Marine-Derived Penicillium purpurogenum G59

    Directory of Open Access Journals (Sweden)

    Chang-Jing Wu

    2015-04-01

    Full Text Available Introduction of neomycin-resistance into a marine-derived, wild-type Penicillium purpurogenum G59 resulted in activation of silent biosynthetic pathways for the secondary metabolite production. Upon treatment of G59 spores with neomycin and dimethyl sulfoxide (DMSO, a total of 56 mutants were obtained by single colony isolation. The acquired resistance of mutants to neomycin was testified by the resistance test. In contrast to the G59 strain, the EtOAc extracts of 28 mutants inhibited the human cancer K562 cells, indicating that the 28 mutants have acquired the capability to produce bioactive metabolites. HPLC-photodiode array detector (PDAD-UV and HPLC-electron spray ionization (ESI-MS analyses further indicated that diverse secondary metabolites have been newly produced in the bioactive mutant extracts. Followed isolation and characterization demonstrated that five bioactive secondary metabolites, curvularin (1, citrinin (2, penicitrinone A (3, erythro-23-O-methylneocyclocitrinol (4 and 22E-7α-methoxy-5α, 6α-epoxyergosta-8(14,22-dien-3β-ol (5, were newly produced by a mutant, 4-30, compared to the G59 strain. All 1–5 were also not yet found in the secondary metabolites of other wild type P. purpurogenum strains. Compounds 1–5 inhibited human cancer K562, HL-60, HeLa and BGC-823 cells to varying extents. Both present bioassays and chemical investigations demonstrated that the introduction of neomycin-resistance into the marine-derived fungal G59 strain could activate silent secondary metabolite production. The present work not only extended the previous DMSO-mediated method for introducing drug-resistance in fungi both in DMSO concentrations and antibiotics, but also additionally exemplified effectiveness of this method for activating silent fungal secondary metabolites. This method could be applied to other fungal isolates to elicit their metabolic potentials to investigate secondary metabolites from silent biosynthetic pathways.

  12. Metabolite profiling of recombinant CHO cells: Designing tailored feeding regimes that enhance recombinant antibody production.

    NARCIS (Netherlands)

    Sellick, C.A.; Croxford, A.S.; Maqsood, A.R.; Stephens, G.; Westerhoff, H.V.; Goodacre, R.; Dickson, A.J.

    2011-01-01

    Chinese hamster ovary (CHO) cells are the primary platform for commercial expression of recombinant therapeutic proteins. Obtaining maximum production from the expression platform requires optimal cell culture medium (and associated nutrient feeds). We have used metabolite profiling to define the

  13. Metabolite profiling of recombinant CHO cells: designing tailored feeding regimes that enhance recombinant antibody production.

    NARCIS (Netherlands)

    Sellick, C.A.; Croxford, A.S.; Maqsood, A.R.; Stephens, G.; Westerhoff, H.V.; Goodacre, R.; Dickson, A.J.

    2011-01-01

    Chinese hamster ovary (CHO) cells are the primary platform for commercial expression of recombinant therapeutic proteins. Obtaining maximum production from the expression platform requires optimal cell culture medium (and associated nutrient feeds). We have used metabolite profiling to define the

  14. Production of secondary metabolites trimethyl xanthina by Camellia sinensis L suspension culture

    Science.gov (United States)

    Sutini, Sodiq, Mochamad; Muslihatin, Wirdhatul; Indra, Mochamad Rasjad

    2017-06-01

    Bioactive trimethyl xanthina can be obtained from the plant Camellia sinensis L. To obtain bioactive plant of which there are several hurdles for instance to wait up to five years to be harvested, also it needs land at a certain height from the sea level. Therefore, the production of secondary metabolites trimethyl xanthina need to be developed with suspense culture techniques. The purpose of this study obtained the production of bioactive trimethyl xanthina way culturally suspense in large scale with a relatively short time, potentially as anti-oxidants. Research methods include: (1) initiation of callus from pieces of leaves, shoots the youngest of the plant Camellia sinensis L in the media MS with the optimization of the addition of growth regulators, (2) the subculture of callus on media and plant growth regulator that is equal to the stage of initiation, (3) initiation of suspension culture using explants of callus Camellia sinensis L, (4) Analysis of secondary metabolites trimethyl xanthina growth in suspension culture, (5) the isolation and identification of trimethyl xanthina qualitatively and quantitatively using thin layer chromatography/high performance chromatography column. The results of the study suspension cultures containing bioactive trimethyl xanthina candidates that can be used as an antioxidant.

  15. Effect of agitation rate on the production of antifungal metabolites by Streptomyces hygroscopicus in a lab-scale bioreactor

    Directory of Open Access Journals (Sweden)

    Mitrović Ivana Ž.

    2017-01-01

    Full Text Available The application of antifungal compounds produced by microorganisms in the control of plant diseases caused by phytopathogenic fungi is a promising alternative to synthetic pesticides. Among phytopathogenic fungi, Alternaria alternata and Fusarium avenaceum are significant pathogens responsible for the storage rot of apple fruits. During storage, transport and marketing A. alternata and F. avenaceum can cause significant losses of apple fruits and their control is of great importance for the producers and consumers. In the present study, the effects of agitation rate on the production of antifungal methabolite( s by Streptomyces hygroscopicus in a 3-L lab-scale bioreactor (Biostat® Aplus, Sartorius AG, Germany against two isolates of A. alternata and two isolates of F. avenaceum were investigated. The cultivation of S. hygroscopicus was carried out at 27°C with agitation rates of 100 rpm and 200 rpm during 7 days. The aim was to analyze the bioprocess parameters of biofungicide production in a medium containing glycerol as a carbon source, and examine the effect of agitation rate on the production of antifungal metabolite(s. The in vitro antifungal activity of the produced metabolites against fungi from the genera Alternaria and Fusarium grown on potato dextrose agar medium was determined every 24 h using wells technique. In the experiments conducted in the bioreactor at different stirring speeds, it was found that the maximum production of antifungal metabolites occurred after 96 hours of cultivation. A higher consumption of nutrients and a larger inhibition zone diameter was registered in the experiment with an agitation rate of 200 rpm. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR-31002

  16. Metabolite Profiles of Lactic Acid Bacteria in Grass Silage▿

    OpenAIRE

    Broberg, Anders; Jacobsson, Karin; Ström, Katrin; Schnürer, Johan

    2007-01-01

    The metabolite production of lactic acid bacteria (LAB) on silage was investigated. The aim was to compare the production of antifungal metabolites in silage with the production in liquid cultures previously studied in our laboratory. The following metabolites were found to be present at elevated concentrations in silos inoculated with LAB strains: 3-hydroxydecanoic acid, 2-hydroxy-4-methylpentanoic acid, benzoic acid, catechol, hydrocinnamic acid, salicylic acid, 3-phenyllactic acid, 4-hydro...

  17. Preliminary Study and Improve the Production of Metabolites with Antifungal Activity by A Bacillus Sp Strain IBA 33

    Directory of Open Access Journals (Sweden)

    María Antonieta Gordillo

    2009-01-01

    Full Text Available Bacillus sp strain IBA 33 metabolites, isolated from decaying lemon fruits, were evaluated for the control of pathogenic and non-pathogenic fungi (Penicillium digitatum, Geotrichum candidum, Penicillium expansum, Aspergillus clavatus, Aspergillus flavus, Aspergillus niger, and Fusarium moniliforme. These metabolites were recovered from Landy medium (LM without aminoacids. In order to optimize metabolites production the LM was modified by adding different concentrations and sources of amino acids and carbohydrates at different culture conditions.Bacillus sp strain IBA 33 metabolites efficacy to control fungi were evaluated with in vitro and in vivo assays. A. flavus growth inhibition was 52% with the metabolites of Bacillus sp strain IBA 33 recovered from LM (MBLM in vitro assays. MBLM supplemented with 0.5% glutamic acid, inhibited the growth of P. digitatum, G. candidum, A. clavatus, A. niger and F. moniliforme by 65%, 88.44%, 84%, 34% and 92% respectively. The highest inhibition of P. expansum was 45% with MBLM supplemented with 0.5% aspartic acid. Similar results were obtained in vivo assays. These results showed that Bacillus sp strain IBA 33 metabolites specificity against fungi depended on the composition of the LM.

  18. Preliminary Study and Improve the Production of Metabolites with Antifungal Activity by A Bacillus Sp Strain IBA 33

    Directory of Open Access Journals (Sweden)

    María Antonieta Gordillo

    2009-04-01

    Full Text Available Bacillus sp strain IBA 33 metabolites, isolated from decaying lemon fruits, were evaluated for the control of pathogenic and non-pathogenic fungi (Penicillium digitatum, Geotrichum candidum, Penicillium expansum, Aspergillus clavatus, Aspergillus flavus, Aspergillus niger, and Fusarium moniliforme. These metabolites were recovered from Landy medium (LM without aminoacids. In order to optimize metabolites production the LM was modified by adding different concentrations and sources of amino acids and carbohydrates at different culture conditions. Bacillus sp strain IBA 33 metabolites efficacy to control fungi were evaluated with in vitro and in vivo assays. A. flavus growth inhibition was 52% with the metabolites of Bacillus sp strain IBA 33 recovered from LM (MBLM in vitro assays. MBLM supplemented with 0.5% glutamic acid, inhibited the growth of P. digitatum, G. candidum, A. clavatus, A. niger and F. moniliforme by 65%, 88.44%, 84%, 34% and 92% respectively. The highest inhibition of P. expansum was 45% with MBLM supplemented with 0.5% aspartic acid. Similar results were obtained in vivo assays. These results showed that Bacillus sp strain IBA 33 metabolites specificity against fungi depended on the composition of the LM.

  19. Impact of metal stress on the production of secondary metabolites in Pteris vittata L. and associated rhizosphere bacterial communities.

    Science.gov (United States)

    Pham, Hoang Nam; Michalet, Serge; Bodillis, Josselin; Nguyen, Tien Dat; Nguyen, Thi Kieu Oanh; Le, Thi Phuong Quynh; Haddad, Mohamed; Nazaret, Sylvie; Dijoux-Franca, Marie-Geneviève

    2017-07-01

    Plants adapt to metal stress by modifying their metabolism including the production of secondary metabolites in plant tissues. Such changes may impact the diversity and functions of plant associated microbial communities. Our study aimed to evaluate the influence of metals on the secondary metabolism of plants and the indirect impact on rhizosphere bacterial communities. We then compared the secondary metabolites of the hyperaccumulator Pteris vittata L. collected from a contaminated mining site to a non-contaminated site in Vietnam and identified the discriminant metabolites. Our data showed a significant increase in chlorogenic acid derivatives and A-type procyanidin in plant roots at the contaminated site. We hypothesized that the intensive production of these compounds could be part of the antioxidant defense mechanism in response to metals. In parallel, the structure and diversity of bulk soil and rhizosphere communities was studied using high-throughput sequencing. The results showed strong differences in bacterial composition, characterized by the dominance of Proteobacteria and Nitrospira in the contaminated bulk soil, and the enrichment of some potential human pathogens, i.e., Acinetobacter, Mycobacterium, and Cupriavidus in P. vittata's rhizosphere at the mining site. Overall, metal pollution modified the production of P. vittata secondary metabolites and altered the diversity and structure of bacterial communities. Further investigations are needed to understand whether the plant recruits specific bacteria to adapt to metal stress.

  20. Yeast synthetic biology for high-value metabolites.

    Science.gov (United States)

    Dai, Zhubo; Liu, Yi; Guo, Juan; Huang, Luqi; Zhang, Xueli

    2015-02-01

    Traditionally, high-value metabolites have been produced through direct extraction from natural biological sources which are inefficient, given the low abundance of these compounds. On the other hand, these high-value metabolites are usually difficult to be synthesized chemically, due to their complex structures. In the last few years, the discovery of genes involved in the synthetic pathways of these metabolites, combined with advances in synthetic biology tools, has allowed the construction of increasing numbers of yeast cell factories for production of these metabolites from renewable biomass. This review summarizes recent advances in synthetic biology in terms of the use of yeasts as microbial hosts for the identification of the pathways involved in the synthesis, as well as for the production of high-value metabolites. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  1. Effects of carbon dioxide on metabolite production and bacterial communities during kimchi fermentation.

    Science.gov (United States)

    Park, Doo Hyun

    2018-04-24

    Bacterial communities and metabolites in kimchi fermented under conventional conditions (CC) compared to CO 2 -rich environments (CO 2 ) were analyzed. After a 20-day fermentation, lactic and acetic acid productions were 54 and 69 mM under CC, and 19 and 12 mM under CO 2 , respectively. The final pH of kimchi fermented under CC (CC-fermenting) and CO 2 (CO 2 -fermenting) were 4.1 and 4.7, respectively. For bacterial communities, OTU and Chao1 indices were both 35 in fresh kimchi, 10 and 15 in CC-fermenting kimchi, and 8 and 24 in CO 2 -fermenting kimchi, respectively. Shannon and Simpson indices were 3.47 and 0.93 in fresh kimchi, 1.87-0.06 and 0.46-0.01 in CC-fermenting kimchi, and 1.65-0.44 and 0.63-0.12 in CO 2 -fermenting kimchi, respectively. Non-lactic acid bacteria were eliminated in fermenting kimchi after 12 days under CC and 6 days under CO 2 . I conclude that carbon dioxide can alter bacterial communities, reduce metabolite production, and improve fermented kimchi quality.

  2. [Growth and metabolite production of the marine cyanobacterium Synechococcus sp. (Chroococcales) in function to irradiance].

    Science.gov (United States)

    Rosales-Loaiza, Néstor; Guevara, Miguel; Lodeiros, César; Morales, Ever

    2008-06-01

    Changes in salinity, temperature and irradiance during wet and dry seasons have induced metabolic versatility in cyanobacteria from saline environments. Cyanobacteria from these environments have biotechnological potential for the production of metabolites with pharmaceutical and industrial interest. We studied the growth, dry mass and metabolite production of the cyanobacterium Synechococcus sp. MOF-03 in function of irradiance (78, 156 and 234 micromol q m(-2) s(-1)). All batch cultures were maintained by triplicate in constant aeration, 12:12 h photoperiod, 30 +/- 2 degrees C and 35% per hundred. Maximum values of protein, carbohydrates and lipids, of 530.19 +/- 11.16, 408.94 +/- 4.27 and 56.20 +/- 1.17 microg ml(-1), respectively, were achieved at 78 micromol q m(-2) s(-1). Pigments, analyzed by HPLC, showed maximum values at 78 micromol q m(-2) s(-1) for chlorophyll a with 7.72 +/- 0.16 microg ml(-1), and at 234 micromol q m(-2) s(-1) for beta-carotene and zeaxanthin with 0.70 +/- 0.01 and 0.67 +/- 0.05 microg ml(-1). Chlorophyll a:beta-carotene ratio decreased from 17.15 to 6.91 at 78 and 234 micromol q m(-2) s(-'1); whereas beta-carotene:zeaxanthin ratio showed no changes between 78 and 156 micromol q m(-2) s(-1), around 1.21, and decreased at 234 micromol q m(-2) s(-1), to 1.04. Also, this cyanobacterium produced the greatest cell density and dry mass at 156 micromol q m(-2) s(-1), with 406.13 +/- 21.74 x l0(6) cell ml(-1) and 1.49 +/- 0.11 mg ml(-1), respectively. Exopolysaccharide production was stable between 156 y 234 micromol q m(-2) s(-1), around 110 microg ml(-1). This Synechococcus strain shows a great potential for the production of enriched biomass with high commercial value metabolites.

  3. Familial Resemblance for Serum Metabolite Concentrations

    NARCIS (Netherlands)

    Draisma, H.H.M.; Beekman, M.; Pool, R.; van Ommen, G.J.B; Vaarhorst, A.A.M.; de Craen, A.J.; Willemsen, G.; Slagboom, P.E.; Boomsma, D.I.

    2013-01-01

    Metabolomics is the comprehensive study of metabolites, which are the substrates, intermediate, and end products of cellular metabolism. The heritability of the concentrations of circulating metabolites bears relevance for evaluating their suitability as biomarkers for disease. We report aspects of

  4. Complicating factors in safety testing of drug metabolites: Kinetic differences between generated and preformed metabolites

    International Nuclear Information System (INIS)

    Prueksaritanont, Thomayant; Lin, Jiunn H.; Baillie, Thomas A.

    2006-01-01

    This paper aims to provide a scientifically based perspective on issues surrounding the proposed toxicology testing of synthetic drug metabolites as a means of ensuring adequate nonclinical safety evaluation of drug candidates that generate metabolites considered either to be unique to humans or are present at much higher levels in humans than in preclinical species. We put forward a number of theoretical considerations and present several specific examples where the kinetic behavior of a preformed metabolite given to animals or humans differs from that of the corresponding metabolite generated endogenously from its parent. The potential ramifications of this phenomenon are that the results of toxicity testing of the preformed metabolite may be misleading and fail to characterize the true toxicological contribution of the metabolite when formed from the parent. It is anticipated that such complications would be evident in situations where (a) differences exist in the accumulation of the preformed versus generated metabolites in specific tissues, and (b) the metabolite undergoes sequential metabolism to a downstream product that is toxic, leading to differences in tissue-specific toxicity. Owing to the complex nature of this subject, there is a need to treat drug metabolite issues in safety assessment on a case-by-case basis, in which a knowledge of metabolite kinetics is employed to validate experimental paradigms that entail administration of preformed metabolites to animal models

  5. Influence of carbon and nitrogen source on production of volatile fragrance and flavour metabolites by the yeast Kluyveromyces marxianus.

    Science.gov (United States)

    Gethins, Loughlin; Guneser, Onur; Demirkol, Aslı; Rea, Mary C; Stanton, Catherine; Ross, R Paul; Yuceer, Yonca; Morrissey, John P

    2015-01-01

    The yeast Kluyveromyces marxianus produces a range of volatile molecules with applications as fragrances or flavours. The purpose of this study was to establish how nutritional conditions influence the production of these metabolites. Four strains were grown on synthetic media, using a variety of carbon and nitrogen sources and volatile metabolites analysed using gas chromatography-mass spectrometry (GC-MS). The nitrogen source had pronounced effects on metabolite production: levels of the fusel alcohols 2-phenylethanol and isoamyl alcohol were highest when yeast extract was the nitrogen source, and ammonium had a strong repressing effect on production of 2-phenylethyl acetate. In contrast, the nitrogen source did not affect production of isoamyl acetate or ethyl acetate, indicating that more than one alcohol acetyl transferase activity is present in K. marxianus. Production of all acetate esters was low when cells were growing on lactose (as opposed to glucose or fructose), with a lower intracellular pool of acetyl CoA being one explanation for this observation. Bioinformatic and phylogenetic analysis of the known yeast alcohol acetyl transferases ATF1 and ATF2 suggests that the ancestral protein Atf2p may not be involved in synthesis of volatile acetate esters in K. marxianus, and raises interesting questions as to what other genes encode this activity in non-Saccharomyces yeasts. Identification of all the genes involved in ester synthesis will be important for development of the K. marxianus platform for flavour and fragrance production. Copyright © 2014 John Wiley & Sons, Ltd.

  6. Ecotoxicity and genotoxicity of cyclophosphamide, ifosfamide, their metabolites/transformation products and their mixtures

    International Nuclear Information System (INIS)

    Česen, Marjeta; Eleršek, Tina; Novak, Matjaž; Žegura, Bojana; Kosjek, Tina; Filipič, Metka; Heath, Ester

    2016-01-01

    Cyclophosphamide (CP) and ifosfamide (IF) are commonly used cytostatic drugs that repress cell division by interaction with DNA. The present study investigates the ecotoxicity and genotoxicity of CP, IF, their human metabolites/transformation products (TPs) carboxy-cyclophosphamide (CPCOOH), keto-cyclophosphamide (ketoCP) and N-dechloroethyl-cyclophosphamide (NdCP) as individual compounds and as mixture. The two parent compounds (CP and IF), at concentrations up to 320 mg L −1 , were non-toxic towards the alga Pseudokirchneriella subcapitata and cyanobacterium Synecococcus leopoliensis. Further ecotoxicity studies of metabolites/TPs and a mixture of parent compounds and metabolites/TPs performed in cyanobacteria S. leopoliensis, showed that only CPCOOH (EC 50  = 17.1 mg L −1 ) was toxic. The measured toxicity (EC 50  = 11.5 mg L −1 ) of the mixture was lower from the toxicity predicted by concentration addition model (EC 50  = 21.1 mg L −1 ) indicating potentiating effects of the CPCOOH toxicity. The SOS/umuC assay with Salmonella typhimurium revealed genotoxic activity of CP, CPCOOH and the mixture in the presence of S9 metabolic activation. Only CPCOOH was genotoxic also in the absence of metabolic activation indicating that this compound is a direct acting genotoxin. This finding is of particular importance as in the environment such compounds can directly affect DNA of non-target organisms and also explains toxicity of CPCOOH against cyanobacteria S. leopoliensis. The degradation study with UV irradiation of samples containing CP and IF showed efficient degradation of both compounds and remained non-toxic towards S. leopoliensis, suggesting that no stable TPs with adverse effects were formed. To our knowledge, this is the first study describing the ecotoxicity and genotoxicity of the commonly used cytostatics CP and IF, their known metabolites/TPs and their mixture. The results indicate the importance of toxicological evaluation and

  7. Simultaneous Determination of Cocaine, Cocaethylene, and Their Possible Pentafluoropropylated Metabolites and Pyrolysis Products by Gas Chromatography/Mass Spectrometry

    National Research Council Canada - National Science Library

    Cardona, Patrick

    2003-01-01

    .... Therefore, it is important to determine concentrations of COC and its metabolites ethanol analogs, and pyrolysis products for establishing the degree of toxicity that possible ingestion of ethanol...

  8. A combined genetic and multi medium approach revels new secondary metabolites in Aspergillus nidulans

    DEFF Research Database (Denmark)

    Klejnstrup, Marie Louise; Nielsen, Morten Thrane; Frisvad, Jens Christian

    Secondary metabolites are a diverse group of metabolites which serve as important natural sources of drugs for treating diseases. The availability of full genome sequences of several filamentous fungi has revealed a large genetic potential for production of secondary metabolites that are not obse......Secondary metabolites are a diverse group of metabolites which serve as important natural sources of drugs for treating diseases. The availability of full genome sequences of several filamentous fungi has revealed a large genetic potential for production of secondary metabolites...... that are not observed under standard laboratory conditions. Genetic approaches have proven a fruitfull strategy towards the production and identification of these unknown metabolites. Examples include deletion of the cclA1 and laeA2 genes in A. nidulans which affects the expression of secondary metabolites including...... monodictyphenone and terrequinone A respectively. We have deleted the cclA gene in A. nidulans and grown the mutants on several complex media to provoke the production of secondary metabolites. This resulted in the production of several metabolites not previously reported from A. nidulans. Some of these have been...

  9. Phenylalanine and tyrosine levels are rate-limiting factors in production of health promoting metabolites in Vitis vinifera cv. Gamay Red cell suspension.

    Science.gov (United States)

    Manela, Neta; Oliva, Moran; Ovadia, Rinat; Sikron-Persi, Noga; Ayenew, Biruk; Fait, Aaron; Galili, Gad; Perl, Avichai; Weiss, David; Oren-Shamir, Michal

    2015-01-01

    Environmental stresses such as high light intensity and temperature cause induction of the shikimate pathway, aromatic amino acids (AAA) pathways, and of pathways downstream from AAAs. The induction leads to production of specialized metabolites that protect the cells from oxidative damage. The regulation of the diverse AAA derived pathways is still not well understood. To gain insight on that regulation, we increased AAA production in red grape Vitis vinifera cv. Gamay Red cell suspension, without inducing external stress on the cells, and characterized the metabolic effect of this induction. Increased AAA production was achieved by expressing a feedback-insensitive bacterial form of 3-deoxy- D-arabino-heptulosonate 7-phosphate synthase enzyme (AroG (*)) of the shikimate pathway under a constitutive promoter. The presence of AroG(*) protein led to elevated levels of primary metabolites in the shikimate and AAA pathways including phenylalanine and tyrosine, and to a dramatic increase in phenylpropanoids. The AroG (*) transformed lines accumulated up to 20 and 150 fold higher levels of resveratrol and dihydroquercetin, respectively. Quercetin, formed from dihydroquercetin, and resveratrol, are health promoting metabolites that are induced due to environmental stresses. Testing the expression level of key genes along the stilbenoids, benzenoids, and phenylpropanoid pathways showed that transcription was not affected by AroG (*). This suggests that concentrations of AAAs, and of phenylalanine in particular, are rate-limiting in production of these metabolites. In contrast, increased phenylalanine production did not lead to elevated concentrations of anthocyanins, even though they are also phenylpropanoid metabolites. This suggests a control mechanism of this pathway that is independent of AAA concentration. Interestingly, total anthocyanin concentrations were slightly lower in AroG(*) cells, and the relative frequencies of the different anthocyanins changed as well.

  10. Phenylalanine and tyrosine levels are rate-limiting factors in production of health promoting metabolites in Vitis vinifera cv. Gamay Red cell suspension

    Directory of Open Access Journals (Sweden)

    Neta eManela

    2015-07-01

    Full Text Available Environmental stresses such as high light intensity and temperature cause induction of the shikimate pathway, aromatic amino acids (AAA pathways, and of pathways downstream from AAAs. The induction leads to production of specialized metabolites that protect the cells from oxidative damage. The regulation of the diverse AAA derived pathways is still not well understood. To gain insight on that regulation, we increased AAA production in red grape Vitis vinifera cv. Gamay Red cell suspension, without inducing external stress on the cells, and characterized the metabolic effect of this induction. Increased AAA production was achieved by expressing a feedback-insensitive bacterial form of 3-deoxy- D-arabino-heptulosonate 7-phosphate synthase enzyme (AroG* of the shikimate pathway under a constitutive promoter. The presence of AroG* protein led to elevated levels of primary metabolites in the shikimate and AAA pathways including phenylalanine and tyrosine, and to a dramatic increase in phenylpropanoids. The AroG* transformed lines accumulated up to 20 and 150 fold higher levels of resveratrol and dihydroquercetin, respectively. Quercetin, formed from dihydroquercetin, and resveratrol, are health promoting metabolites that are induced due to environmental stresses. Testing the expression level of key genes along the stilbenoids, benzenoids and phenylpropanoid pathways showed that transcription was not affected by AroG*. This suggests that concentrations of AAAs, and of phenylalanine in particular, are rate-limiting in production of these metabolites. In contrast, increased phenylalanine production did not lead to elevated concentrations of anthocyanins, even though they are also phenylpropanoid metabolites. This suggests a control mechanism of this pathway that is independent of AAA concentration. Interestingly, total anthocyanin concentrations were slightly lower in AroG* cells, and the relative frequencies of the different anthocyanins changed as

  11. Production of fungal and bacterial growth modulating secondary metabolites is widespread among mycorrhiza-associated streptomycetes

    Science.gov (United States)

    2012-01-01

    Background Studies on mycorrhiza associated bacteria suggest that bacterial-fungal interactions play important roles during mycorrhiza formation and affect plant health. We surveyed Streptomyces Actinobacteria, known as antibiotic producers and antagonists of fungi, from Norway spruce mycorrhizas with predominantly Piloderma species as the fungal partner. Results Fifteen Streptomyces isolates exhibited substantial variation in inhibition of tested mycorrhizal and plant pathogenic fungi (Amanita muscaria, Fusarium oxysporum, Hebeloma cylindrosporum, Heterobasidion abietinum, Heterobasidion annosum, Laccaria bicolor, Piloderma croceum). The growth of the mycorrhiza-forming fungus Laccaria bicolor was stimulated by some of the streptomycetes, and Piloderma croceum was only moderately affected. Bacteria responded to the streptomycetes differently than the fungi. For instance the strain Streptomyces sp. AcM11, which inhibited most tested fungi, was less inhibitory to bacteria than other tested streptomycetes. The determined patterns of Streptomyces-microbe interactions were associated with distinct patterns of secondary metabolite production. Notably, potentially novel metabolites were produced by strains that were less antagonistic to fungi. Most of the identified metabolites were antibiotics (e.g. cycloheximide, actiphenol) and siderophores (e.g. ferulic acid, desferroxiamines). Plant disease resistance was activated by a single streptomycete strain only. Conclusions Mycorrhiza associated streptomycetes appear to have an important role in inhibiting the growth of fungi and bacteria. Additionally, our study indicates that the Streptomyces strains, which are not general antagonists of fungi, may produce still un-described metabolites. PMID:22852578

  12. Optimized Jasmonic Acid Production by Lasiodiplodia theobromae Reveals Formation of Valuable Plant Secondary Metabolites.

    Directory of Open Access Journals (Sweden)

    Felipe Eng

    Full Text Available Jasmonic acid is a plant hormone that can be produced by the fungus Lasiodiplodia theobromae via submerged fermentation. From a biotechnological perspective jasmonic acid is a valuable feedstock as its derivatives serve as important ingredients in different cosmetic products and in the future it may be used for pharmaceutical applications. The objective of this work was to improve the production of jasmonic acid by L. theobromae strain 2334. We observed that jasmonic acid formation is dependent on the culture volume. Moreover, cultures grown in medium containing potassium nitrate as nitrogen source produced higher amounts of jasmonic acid than analogous cultures supplemented with ammonium nitrate. When cultivated under optimal conditions for jasmonic acid production, L. theobromae secreted several secondary metabolites known from plants into the medium. Among those we found 3-oxo-2-(pent-2-enyl-cyclopentane-1-butanoic acid (OPC-4 and hydroxy-jasmonic acid derivatives, respectively, suggesting that fungal jasmonate metabolism may involve similar reaction steps as that of plants. To characterize fungal growth and jasmonic acid-formation, we established a mathematical model describing both processes. This model may form the basis of industrial upscaling attempts. Importantly, it showed that jasmonic acid-formation is not associated to fungal growth. Therefore, this finding suggests that jasmonic acid, despite its enormous amount being produced upon fungal development, serves merely as secondary metabolite.

  13. Low Water Activity Induces the Production of Bioactive Metabolites in Halophilic and Halotolerant Fungi

    Directory of Open Access Journals (Sweden)

    Nina Gunde-Cimerman

    2010-12-01

    Full Text Available The aim of the present study was to investigate indigenous fungal communities isolated from extreme environments (hypersaline waters of solar salterns and subglacial ice, for the production of metabolic compounds with selected biological activities: hemolysis, antibacterial, and acetylcholinesterase inhibition. In their natural habitats, the selected fungi are exposed to environmental extremes, and therefore the production of bioactive metabolites was tested under both standard growth conditions for mesophilic microorganisms, and at high NaCl and sugar concentrations and low growth temperatures. The results indicate that selected halotolerant and halophilic species synthesize specific bioactive metabolites under conditions that represent stress for non-adapted species. Furthermore, adaptation at the level of the chemical nature of the solute lowering the water activity of the medium was observed. Increased salt concentrations resulted in higher hemolytic activity, particularly within species dominating the salterns. The appearance of antibacterial potential under stress conditions was seen in the similar pattern of fungal species as for hemolysis. The active extracts exclusively affected the growth of the Gram-positive bacterium tested, Bacillus subtilis. None of the extracts tested showed inhibition of acetylcholinesterase activity.

  14. Production of human metabolites by gastrointestinal bacteria as a potential source of post-mortem alteration of antemortem drug/metabolite concentrations.

    Science.gov (United States)

    Martindale, Stephanie M; Powers, Robert H; Bell, Suzanne C

    2015-01-01

    Previous studies have demonstrated that bacterial species are capable of transforming complex chemical substances. Several of these species, native to the human gastrointestinal tract, are active in postmortem decomposition. They have potential to cause biotransformations affecting compound-to-metabolite ratios within the human body, especially after death. Investigation of postmortem effects could supply valuable information, especially concerning compound identification and confirmation. The purpose of this research was to investigate the effects of Escherichia coli, Bacteroides fragilis, and Clostridium perfringens on diazepam and flunitrazepam in Reinforced Clostridial Medium, and to compare bacterial biotransformation products to those of human metabolism. A decrease in diazepam concentration between pre- and post-incubation was observed for samples inoculated with Escherichia coli (14.7-20.2%) as well as Bacteroides fragilis (13.9-25.7%); however there was no corresponding increase in concentration for the monitored human metabolites. Flunitrazepam demonstrated a greater concentration loss when incubated with individual bacterial species as well as mixed culture (79.2-100.0%). Samples incubated with Bacteroides fragilis, Clostridium perfringens, and mixed culture resulted in nearly complete conversion of flunitrazepam. Increased 7-aminoflunitrazepam concentrations accounted for the majority of the conversion; however discrepancies in the mass balance of the reaction suggested the possibility of a minor metabolite that was not monitored in the current analysis. These experiments served as a pilot study and proof of concept that can be adapted and applied to a realm of possibilities. Ultimately, this methodology would be ideal to study compounds that are too toxic or lethal for animal and human metabolic investigations. Copyright © 2014 John Wiley & Sons, Ltd.

  15. An extensive case study of hairy-root cultures for enhanced secondary-metabolite production through metabolic-pathway engineering.

    Science.gov (United States)

    Mehrotra, Shakti; Rahman, Laiq Ur; Kukreja, Arun Kumar

    2010-08-23

    An intrinsic improvement is taking place in the methodologies for the development of culture systems with first-rate production of plant-based molecules. The blending of HR (hairy root) cultures with ME (metabolic engineering) approaches offers new insights into, and possibilities for, improving the system productivity for known and/or novel high-value plant-derived active compounds. The introduction and expression of foreign genes in plants results in improvement of cellular activities by manipulating enzymatic, regulatory and transport function of the cell. The rational amendments in the rate-limiting steps of a biosynthetic pathway as well as inactivating the inefficient pathway(s) for by-product formation can be accomplished either through single-step engineering or through the multi-step engineering. The hierarchical control of any metabolic process can lead the engineer to apply the ME ideas and principles to any of the strata, including transcriptional, moving on to translational and enzymatic activity. The HR culture systems offer a remarkable potential for commercial production of a number of low-volume, but high-value, secondary metabolites. Taking HR as a model system, in the present review, we discuss engineering principles and perceptions to exploit secondary-metabolite pathways for the production of important bioactive compounds. We also talk about requisites and possible challenges that occur during ME, with emphasis on examples of various HR systems. Furthermore, it also highlights the utilization of global information obtained from '-omic' platforms in order to explore pathway architecture, structural and functional aspects of important enzymes and genes that can support the design of sets of engineering, resulting in the generation of wide-ranging views of DNA sequence-to-metabolite passageway networking and their control to obtain desired results.

  16. Secondary metabolites from marine microorganisms.

    Science.gov (United States)

    Kelecom, Alphonse

    2002-03-01

    After 40 years of intensive research, chemistry of marine natural products has become a mature field. Since 1995, there are signals of decreased interest in the search of new metabolites from traditional sources such as macroalgae and octocorals, and the number of annual reports on marine sponges stabilized. On the contrary, metabolites from microorganisms is a rapidly growing field, due, at least in part, to the suspicion that a number of metabolites obtained from algae and invertebrates may be produced by associated microorganisms. Studies are concerned with bacteria and fungi, isolated from seawater, sediments, algae, fish and mainly from marine invertebrates such as sponges, mollusks, tunicates, coelenterates and crustaceans. Although it is still to early to define tendencies, it may be stated that the metabolites from microorganisms are in most cases quite different from those produced by the invertebrate hosts. Nitrogenated metabolites predominate over acetate derivatives, and terpenes are uncommon. Among the latter, sesquiterpenes, diterpenes and carotenes have been isolated; among nitrogenated metabolites, amides, cyclic peptides and indole alkaloids predominate.

  17. Secondary metabolites from marine microorganisms

    Directory of Open Access Journals (Sweden)

    KELECOM ALPHONSE

    2002-01-01

    Full Text Available After 40 years of intensive research, chemistry of marine natural products has become a mature field. Since 1995, there are signals of decreased interest in the search of new metabolites from traditional sources such as macroalgae and octocorals, and the number of annual reports on marine sponges stabilized. On the contrary, metabolites from microorganisms is a rapidly growing field, due, at least in part, to the suspicion that a number of metabolites obtained from algae and invertebrates may be produced by associated microorganisms. Studies are concerned with bacteria and fungi, isolated from seawater, sediments, algae, fish and mainly from marine invertebrates such as sponges, mollusks, tunicates, coelenterates and crustaceans. Although it is still to early to define tendencies, it may be stated that the metabolites from microorganisms are in most cases quite different from those produced by the invertebrate hosts. Nitrogenated metabolites predominate over acetate derivatives, and terpenes are uncommon. Among the latter, sesquiterpenes, diterpenes and carotenes have been isolated; among nitrogenated metabolites, amides, cyclic peptides and indole alkaloids predominate.

  18. Finger millet (Eleusine coracana) - an economically viable source for antihypercholesterolemic metabolites production by Monascus purpureus.

    Science.gov (United States)

    Venkateswaran, V; Vijayalakshmi, G

    2010-08-01

    Rice, parboiled rice, finger millet, germinated finger millet, broken wheat, njavara (medicinal rice), sorghum and maize were used as substrates for solid state fermentation of Monascus purpureus at 28°C for 7 days using 2% seed medium as inoculum for the production of its metabolites. The fungus exhibited good growth in all the substrates. The fermented substrates were dried at 45°C and analysed for antihypercholesterolemic metabolite statins by standardized HPLC method and dietary sterol contents by spectrophotometric method using reference standards of statin (pravastatin and lovastatin) and cholesterol, respectively. Germinated finger millet yielded higher total statin production of 5.2 g/kg dry wt with pravastatin and lovastatin content of 4.9 and 0.37 g/kg dry wt respectively than other substrates which range from 1.04-4.41 g/kg. In addition to statin, monascus fermented germinated finger millet yielded dietary sterol of 0.053 g/kg dry wt which is 7.6 folds higher than the control. The value addition of finger millet by germination and fermentation with Monascus purpureus provides scope for development of functional food.

  19. Interactions among filamentous fungi Aspergillus niger, Fusarium verticillioides and Clonostachys rosea: fungal biomass, diversity of secreted metabolites and fumonisin production.

    Science.gov (United States)

    Chatterjee, Subhankar; Kuang, Yi; Splivallo, Richard; Chatterjee, Paramita; Karlovsky, Petr

    2016-05-10

    Interactions among fungi colonizing dead organic matter involve exploitation competition and interference competition. Major mechanism of interference competition is antibiosis caused by secreted secondary metabolites. The effect of competition on secondary metabolite production by fungi is however poorly understood. Fungal biomass was rarely monitored in interaction studies; it is not known whether dominance in pairwise interactions follows congruent patterns. Pairwise interactions of three fungal species with different life styles were studied. The saprophyte Aspergillus niger (A.n.), the plant pathogen Fusarium verticillioides (F.v.), and the mycoparasite Clonostachys rosea (C.r.) were grown in single and dual cultures in minimal medium with asparagine as nitrogen source. Competitive fitness shifted with time: in dual C.r./F.v. cultures after 10 d F.v. grew well while C.r. was suppressed; after 20 d C.r. recovered while F.v. became suppressed; and after 30 d most F.v. was destroyed. At certain time points fungal competitive fitness exhibited a rock-paper-scissors pattern: F.v. > A.n., A.n. > C.r., and C.r. > F.v. Most metabolites secreted to the medium at early stages in single and dual cultures were not found at later times. Many metabolites occurring in supernatants of single cultures were suppressed in dual cultures and many new metabolites not occurring in single cultures were found in dual cultures. A. niger showed the greatest ability to suppress the accumulation of metabolites produced by the other fungi. A. niger was also the species with the largest capacity of transforming metabolites produced by other fungi. Fumonisin production by F. verticillioides was suppressed in co-cultures with C. rosea but fumonisin B1 was not degraded by C. rosea nor did it affect the growth of C. rosea up to a concentration of 160 μg/ml. Competitive fitness in pairwise interactions among fungi is incongruent, indicating that species-specific factors and/or effects are

  20. A Two-Layer Gene Circuit for Decoupling Cell Growth from Metabolite Production.

    Science.gov (United States)

    Lo, Tat-Ming; Chng, Si Hui; Teo, Wei Suong; Cho, Han-Saem; Chang, Matthew Wook

    2016-08-01

    We present a synthetic gene circuit for decoupling cell growth from metabolite production through autonomous regulation of enzymatic pathways by integrated modules that sense nutrient and substrate. The two-layer circuit allows Escherichia coli to selectively utilize target substrates in a mixed pool; channel metabolic resources to growth by delaying enzymatic conversion until nutrient depletion; and activate, terminate, and re-activate conversion upon substrate availability. We developed two versions of controller, both of which have glucose nutrient sensors but differ in their substrate-sensing modules. One controller is specific for hydroxycinnamic acid and the other for oleic acid. Our hydroxycinnamic acid controller lowered metabolic stress 2-fold and increased the growth rate 2-fold and productivity 5-fold, whereas our oleic acid controller lowered metabolic stress 2-fold and increased the growth rate 1.3-fold and productivity 2.4-fold. These results demonstrate the potential for engineering strategies that decouple growth and production to make bio-based production more economical and sustainable. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  1. [Effective productions of plant secondary metabolites having antitumor activity by plant cell and tissue cultures].

    Science.gov (United States)

    Taniguchi, Shoko

    2005-06-01

    Methods for the effective production of plant secondary metabolites with antitumor activity using plant cell and tissue cultures were developed. The factors in tannin productivity were investigated using culture strains producing different types of hydrolyzable tannins, i.e., gallotannins (mixture of galloylglucoses), ellagi-, and dehydroellagitannins. Production of ellagi- and dehydroellagitannins was affected by the concentrations and ratio of nitrogen sources in the medium. The formation of oligomeric ellagitannins in shoots of Oenothera tetraptera was correlated with the differentiation of tissues. Cultured cells of Eriobotrya japonica producing ursane- and oleanane-type triterpenes with antitumor activities were also established.

  2. Search for Hydrophilic Marine Fungal Metabolites: A Rational Approach for Their Production and Extraction in a Bioactivity Screening Context

    Directory of Open Access Journals (Sweden)

    Jean-François Biard

    2011-01-01

    Full Text Available In the search for bioactive natural products, our lab screens hydrophobic extracts from marine fungal strains. While hydrophilic active substances were recently identified from marine macro-organisms, there was a lack of reported metabolites in the marine fungi area. As such, we decided to develop a general procedure for screening of hydrophobic metabolites. The aim of this study was to compare different processes of fermentation and extraction, using six representative marine fungal strains, in order to define the optimized method for production. The parameters studied were (a which polar solvent to select, (b which fermentation method to choose between solid and liquid cultures, (c which raw material, the mycelium or its medium, to extract and (d which extraction process to apply. The biochemical analysis and biological evaluations of obtained extracts led to the conclusion that the culture of marine fungi by agar surface fermentation followed by the separate extraction of the mycelium and its medium by a cryo-crushing and an enzymatic digestion with agarase, respectively, was the best procedure when screening for hydrophilic bioactive metabolites. During this development, several bioactivities were detected, confirming the potential of hydrophilic crude extracts in the search for bioactive natural products.

  3. Microsomal metabolism of trenbolone acetate metabolites: Transformation product formation and bioactivity.

    Science.gov (United States)

    Trenbolone acetate (TBA) is a synthetic growth promoter widely used in animal agriculture, and its metabolites are suspected endocrine disrupting compounds in agriculturally impacted receiving waters. However, beyond the three widely recognized TBA metabolites (17-trenbo...

  4. Spatial Distribution of Lactococcus lactis Colonies Modulates the Production of Major Metabolites during the Ripening of a Model Cheese.

    Science.gov (United States)

    Le Boucher, Clémentine; Gagnaire, Valérie; Briard-Bion, Valérie; Jardin, Julien; Maillard, Marie-Bernadette; Dervilly-Pinel, Gaud; Le Bizec, Bruno; Lortal, Sylvie; Jeanson, Sophie; Thierry, Anne

    2016-01-01

    In cheese, lactic acid bacteria are immobilized at the coagulation step and grow as colonies. The spatial distribution of bacterial colonies is characterized by the size and number of colonies for a given bacterial population within cheese. Our objective was to demonstrate that different spatial distributions, which lead to differences in the exchange surface between the colonies and the cheese matrix, can influence the ripening process. The strategy was to generate cheeses with the same growth and acidification of a Lactococcus lactis strain with two different spatial distributions, big and small colonies, to monitor the production of the major ripening metabolites, including sugars, organic acids, peptides, free amino acids, and volatile metabolites, over 1 month of ripening. The monitored metabolites were qualitatively the same for both cheeses, but many of them were more abundant in the small-colony cheeses than in the big-colony cheeses over 1 month of ripening. Therefore, the results obtained showed that two different spatial distributions of L. lactis modulated the ripening time course by generating moderate but significant differences in the rates of production or consumption for many of the metabolites commonly monitored throughout ripening. The present work further explores the immobilization of bacteria as colonies within cheese and highlights the consequences of this immobilization on cheese ripening. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  5. Production of fungal and bacterial growth modulating secondary metabolites is widespread among mycorrhiza-associated streptomycetes

    Directory of Open Access Journals (Sweden)

    Schrey Silvia D

    2012-08-01

    Full Text Available Abstract Background Studies on mycorrhiza associated bacteria suggest that bacterial-fungal interactions play important roles during mycorrhiza formation and affect plant health. We surveyed Streptomyces Actinobacteria, known as antibiotic producers and antagonists of fungi, from Norway spruce mycorrhizas with predominantly Piloderma species as the fungal partner. Results Fifteen Streptomyces isolates exhibited substantial variation in inhibition of tested mycorrhizal and plant pathogenic fungi (Amanita muscaria, Fusarium oxysporum, Hebeloma cylindrosporum, Heterobasidion abietinum, Heterobasidion annosum, Laccaria bicolor, Piloderma croceum. The growth of the mycorrhiza-forming fungus Laccaria bicolor was stimulated by some of the streptomycetes, and Piloderma croceum was only moderately affected. Bacteria responded to the streptomycetes differently than the fungi. For instance the strain Streptomyces sp. AcM11, which inhibited most tested fungi, was less inhibitory to bacteria than other tested streptomycetes. The determined patterns of Streptomyces-microbe interactions were associated with distinct patterns of secondary metabolite production. Notably, potentially novel metabolites were produced by strains that were less antagonistic to fungi. Most of the identified metabolites were antibiotics (e.g. cycloheximide, actiphenol and siderophores (e.g. ferulic acid, desferroxiamines. Plant disease resistance was activated by a single streptomycete strain only. Conclusions Mycorrhiza associated streptomycetes appear to have an important role in inhibiting the growth of fungi and bacteria. Additionally, our study indicates that the Streptomyces strains, which are not general antagonists of fungi, may produce still un-described metabolites.

  6. Detecting Beer Intake by Unique Metabolite Patterns.

    Science.gov (United States)

    Gürdeniz, Gözde; Jensen, Morten Georg; Meier, Sebastian; Bech, Lene; Lund, Erik; Dragsted, Lars Ove

    2016-12-02

    Evaluation of the health related effects of beer intake is hampered by the lack of accurate tools for assessing intakes (biomarkers). Therefore, we identified plasma and urine metabolites associated with recent beer intake by untargeted metabolomics and established a characteristic metabolite pattern representing raw materials and beer production as a qualitative biomarker of beer intake. In a randomized, crossover, single-blinded meal study (MSt1), 18 participants were given, one at a time, four different test beverages: strong, regular, and nonalcoholic beers and a soft drink. Four participants were assigned to have two additional beers (MSt2). In addition to plasma and urine samples, test beverages, wort, and hops extract were analyzed by UPLC-QTOF. A unique metabolite pattern reflecting beer metabolome, including metabolites derived from beer raw material (i.e., N-methyl tyramine sulfate and the sum of iso-α-acids and tricyclohumols) and the production process (i.e., pyro-glutamyl proline and 2-ethyl malate), was selected to establish a compliance biomarker model for detection of beer intake based on MSt1. The model predicted the MSt2 samples collected before and up to 12 h after beer intake correctly (AUC = 1). A biomarker model including four metabolites representing both beer raw materials and production steps provided a specific and accurate tool for measurement of beer consumption.

  7. Growth-coupled overproduction is feasible for almost all metabolites in five major production organisms

    Science.gov (United States)

    von Kamp, Axel; Klamt, Steffen

    2017-06-01

    Computational modelling of metabolic networks has become an established procedure in the metabolic engineering of production strains. One key principle that is frequently used to guide the rational design of microbial cell factories is the stoichiometric coupling of growth and product synthesis, which makes production of the desired compound obligatory for growth. Here we show that the coupling of growth and production is feasible under appropriate conditions for almost all metabolites in genome-scale metabolic models of five major production organisms. These organisms comprise eukaryotes and prokaryotes as well as heterotrophic and photoautotrophic organisms, which shows that growth coupling as a strain design principle has a wide applicability. The feasibility of coupling is proven by calculating appropriate reaction knockouts, which enforce the coupling behaviour. The study presented here is the most comprehensive computational investigation of growth-coupled production so far and its results are of fundamental importance for rational metabolic engineering.

  8. SECONDARY METABOLITES FROM MARINE PENICILLIUM BREVICOMPACTUM

    OpenAIRE

    ROVIROSA, JUANA; DIAZ-MARRERO, ANA; DARIAS, JOSE; PAINEMAL, KARIN; SAN MARTIN, AURELIO

    2006-01-01

    In a screening of Basidiomycete cultures isolated from marine invertebrates collected along the Chilean coastline for the production of antibiotics we identified a Penicillium brevicompactum strain as a producer of metabolites inhibiting the growth of bacteria and fungi. Bioactivity guided purification resulted in the isolation of four known metabolites. Their structures were elucidated by spectroscopic methods.

  9. The methoxychlor metabolite, HPTE, inhibits rat luteal cell progesterone production.

    Science.gov (United States)

    Akgul, Yucel; Derk, Raymond C; Meighan, Terence; Rao, K Murali Krishna; Murono, Eisuke P

    2011-07-01

    The methoxychlor metabolite, HPTE, was shown to inhibit P450-cholesterol side-chain cleavage (P450scc) activity resulting in decreased progesterone production by cultured ovarian follicular cells in previous studies. It is not known whether HPTE has any effect on progesterone formation by the corpus luteum. Exposure to 100 nM HPTE reduced progesterone production by luteal cells with progressive declines to progesterone formation and P450scc catalytic activity of hCG- or 8 Br-cAMP-stimulated luteal cells. However, HPTE did not alter mRNA and protein levels of P450scc. Compounds acting as estrogen (17 β-estradiol, bisphenol-A or octylphenol), antiestrogen (ICI) or antiandrogen (monobutyl phthalate, flutamide or M-2) added alone to luteal cells did not mimic the action of HPTE on progesterone and P450scc activity. These results suggest that HPTE directly inhibits P450scc catalytic activity resulting in reduced progesterone formation, and this action was not mediated through estrogen or androgen receptors. Published by Elsevier Inc.

  10. To Stretch the Boundary of Secondary Metabolite Production in Plant Cell-Based Bioprocessing: Anthocyanin as a Case Study

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2004-01-01

    Full Text Available Plant cells and tissue cultures hold great promise for controlled production of a myriad of useful secondary metabolites on demand. The current yield and productivity cannot fulfill the commercial goal of a plant cell-based bioprocess for the production of most secondary metabolites. In order to stretch the boundary, recent advances, new directions and opportunities in plant cell-based bioprocessing, have been critically examined for the 10 years from 1992 to 2002. A review of the literature indicated that most of the R&D work was devoted predominantly to studies at an empirical level. A rational approach to molecular plant cell bioprocessing based on the fundamental understanding of metabolic pathways and their regulations is urgently required to stimulate further advances; however, the strategies and technical framework are still being developed. It is the aim of this review to take a step forward in framing workable strategies and technologies for molecular plant cell-based bioprocessing. Using anthocyanin biosynthesis as a case study, an integrated postgenomic approach has been proposed. This combines the functional analysis of metabolic pathways for biosynthesis of a particular metabolite from profiling of gene expression and protein expression to metabolic profiling. A global correlation not only can thus be established at the three molecular levels, but also places emphasis on the interactions between primary metabolism and secondary metabolism; between competing and/or complimentary pathways; and between biosynthetic and post-biosynthetic events.

  11. Metabolomics and bioanalysis of terpenoid derived secondary metabolites : Analysis of Cannabis sativa L. metabolite production and prenylases for cannabinoid production

    NARCIS (Netherlands)

    Muntendam, Remco

    2015-01-01

    Cannabinoid research has gained a renenewed interest by both the public and scientist. Focus is mainly directed to the medicinal activities, as reported for various cannabinoid structures. This thesis focusses on prenyl-derived secondary metabolites with main focus on cannabinoids. Firstly the

  12. Transformation products and human metabolites of triclocarban and tricllosan in sewage sludge across the United States

    Science.gov (United States)

    Pycke, Benny F.G.; Roll, Isaac B.; Brownawell, Bruce J.; Kinney, Chad A.; Furlong, Edward T.; Kolpin, Dana W.; Halden, Rolf U.

    2014-01-01

    Removal of triclocarban (TCC) and triclosan (TCS) from wastewater is a function of adsorption, abiotic degradation, and microbial mineralization or transformation, reactions that are not currently controlled or optimized in the pollution control infrastructure of standard wastewater treatment. Here, we report on the levels of eight transformation products, human metabolites, and manufacturing byproducts of TCC and TCS in raw and treated sewage sludge. Two sample sets were studied: samples collected once from 14 wastewater treatment plants (WWTPs) representing nine states, and multiple samples collected from one WWTP monitored for 12 months. Time-course analysis of significant mass fluxes (α = 0.01) indicate that transformation of TCC (dechlorination) and TCS (methylation) occurred during sewage conveyance and treatment. Strong linear correlations were found between TCC and the human metabolite 2′-hydroxy-TCC (r = 0.84), and between the TCC-dechlorination products dichlorocarbanilide (DCC) and monochlorocarbanilide (r = 0.99). Mass ratios of DCC-to-TCC and of methyl-triclosan (MeTCS)-to-TCS, serving as indicators of transformation activity, revealed that transformation was widespread under different treatment regimes across the WWTPs sampled, though the degree of transformation varied significantly among study sites (α = 0.01). The analysis of sludge sampled before and after different unit operation steps (i.e., anaerobic digestion, sludge heat treatment, and sludge drying) yielded insights into the extent and location of TCC and TCS transformation. Results showed anaerobic digestion to be important for MeTCS transformation (37–74%), whereas its contribution to partial TCC dechlorination was limited (0.4–2.1%). This longitudinal and nationwide survey is the first to report the occurrence of transformation products, human metabolites, and manufacturing byproducts of TCC and TCS in sewage sludge.

  13. Development of a yeast cell factory for production of aromatic secondary metabolites

    DEFF Research Database (Denmark)

    Rodriguez Prado, Edith Angelica

    Aromatic secondary metabolites are compounds mainly synthesized by plants and fungi as a response to predators and environmental stresses. These compounds have a broad range of natural properties such as reduction of oxidative damage in cells, antibacterial effects and UV protection. Many...... of these properties can be useful for the treatment of different diseases and development of pharmaceutical products. The low abundance of these compounds in natural sources together with technical challenges for the extraction of these compounds from plants, open up the possibility for synthesizing aromatic....... The systems biology analysis of the platform strain suggests that the strain has transcriptional downregulations in genes involved in the transport of amino acids and sugars, which could be a response to the stress triggered by the production of p-coumaric acid. The platform strain was capable of synthesizing...

  14. Patulin and secondary metabolite production by marine-derived Penicillium strains

    DEFF Research Database (Denmark)

    Vansteelandt, Marieke; Kerzaon, Isabelle; Blanchet, Elodie

    2012-01-01

    )–mass spectrometry (MS)/MS. Each strain was grown on six different culture media to enhance the number of observable metabolites.Thirty-two secondary metabolites were detected in crude extracts with twenty first observations for studied species. Patulin, a major mycotoxin, was classically detected in extracts...... of these fungi in shellfish farming areas.Patulin induced acute neurotoxicity on Diptera larvae, indicating the interest of this bioassay as an additional tool for detection of this major mycotoxin in crude extracts....

  15. Prototype of an intertwined secondary-metabolite supercluster

    Science.gov (United States)

    Phillipp Wiemann; Chun-Jun. Guo; Jonathan M. Palmer; Relebohile Sekonyela; Clay C.C. Wang; Nancy P. Keller

    2013-01-01

    The hallmark trait of fungal secondary-metabolite gene clusters is well established, consisting of contiguous enzymatic and often regulatory gene(s) devoted to the production of a metabolite of a specific chemical class. Unexpectedly, we have found a deviation from this motif in a subtelomeric region of Aspergillus fumigatus. This region, under the...

  16. Toxicity assessment strategies, data requirements, and risk assessment approaches to derive health based guidance values for non-relevant metabolites of plant protection products.

    Science.gov (United States)

    Dekant, Wolfgang; Melching-Kollmuss, Stephanie; Kalberlah, Fritz

    2010-03-01

    In Europe, limits for tolerable concentrations of "non-relevant metabolites" for active ingredients (AI) of plant protection products in drinking water between 0.1 and 10 microg/L are discussed depending on the toxicological information available. "Non-relevant metabolites" are degradation products of AIs, which do not or only partially retain the targeted toxicities of AIs. For "non-relevant metabolites" without genotoxicity (to be confirmed by testing in vitro), the application of the concept of "thresholds of toxicological concern" results in a health-based drinking water limit of 4.5 microg/L even for Cramer class III compounds, using the TTC threshold of 90 microg/person/day (divided by 10 and 2). Taking into account the thresholds derived from two reproduction toxicity data bases a drinking water limit of 3.0 microg/L is proposed. Therefore, for "non-relevant metabolites" whose drinking water concentration is below 3.0 microg/L, no toxicity testing is necessary. This work develops a toxicity assessment strategy as a basis to delineate health-based limits for "non-relevant metabolites" in ground and drinking water. Toxicological testing is recommended to investigate, whether the metabolites are relevant or not, based on the hazard properties of the parent AIs, as outlined in the SANCO Guidance document. Also, genotoxicity testing of the water metabolites is clearly recommended. In this publication, tiered testing strategies are proposed for non-relevant metabolites, when drinking water concentrations >3.0 microg/L will occur. Conclusions based on structure-activity relationships and the detailed toxicity database on the parent AI should be included. When testing in animals is required for risk assessment, key aspects are studies along OECD-testing guidelines with "enhanced" study designs addressing additional endpoints such as reproductive toxicity and a developmental screening test to derive health-based tolerable drinking water limits with a limited number

  17. Effects of zilpaterol hydrochloride on methane production, total body oxygen consumption, and blood metabolites in finishing beef steers

    Science.gov (United States)

    An indirect calorimetry experiment was conducted to determine the effects of feeding zilpaterol hydrochloride (ZH) for 20 d on total body oxygen consumption, respiratory quotient, methane production, and blood metabolites in finishing beef steers. Sixteen Angus steers (initial BW = 555 ± 12.7 kg) w...

  18. EFFECTS OF ATRAZINE AND AN ATRAZINE METABOLITE MIXTURE ON DIFFERENTIATED MAMMARY EPITHELIAL CELL MILK PROTEIN PRODUCTION IN CULTURE

    Science.gov (United States)

    Effects of Atrazine and an Atrazine Metabolite Mixture on Differentiated Mammary Epithelial Cell Milk Protein Production in CultureE.P. Hines, R. Barbee, M. Blanton, M.S. Pooler, and S.E. Fenton. US EPA, ORD/NHEERL, RTD, RTP, NC, 27711, USA.Previous studies have ...

  19. Biological activity of anthocyanins and their phenolic degradation products and metabolites in human vascular endothelial cells

    OpenAIRE

    Edwards, Michael

    2013-01-01

    Human, animal, and in vitro data indicate significant vasoprotective activity of anthocyanins. However, few studies have investigated the activity of anthocyanin degradation products and metabolites which are likely to mediate bioactivity in vivo. The present thesis therefore examined the vascular bioactivity in vitro of anthocyanins, their phenolic degradants, and the potential for interactions between dietary bioactive compounds. Seven treatment compounds (cyanidin-, peonidin-, petunidin- &...

  20. Activation of dormant secondary metabolite production by introducing neomycin resistance into the deep-sea fungus, Aspergillus versicolor ZBY-3.

    Science.gov (United States)

    Dong, Yuan; Cui, Cheng-Bin; Li, Chang-Wei; Hua, Wei; Wu, Chang-Jing; Zhu, Tian-Jiao; Gu, Qian-Qun

    2014-07-29

    A new ultrasound-mediated approach has been developed to introduce neomycin-resistance to activate silent pathways for secondary metabolite production in a bio-inactive, deep-sea fungus, Aspergillus versicolor ZBY-3. Upon treatment of the ZBY-3 spores with a high concentration of neomycin by proper ultrasound irradiation, a total of 30 mutants were obtained by single colony isolation. The acquired resistance of the mutants to neomycin was confirmed by a resistance test. In contrast to the ZBY-3 strain, the EtOAc extracts of 22 of the 30 mutants inhibited the human cancer K562 cells, indicating that these mutants acquired a capability to produce antitumor metabolites. HPLC-photodiode array detector (PDAD)-UV and HPLC-electron spray ionization (ESI)-MS analyses of the EtOAc extracts of seven bioactive mutants and the ZBY-3 strain indicated that diverse secondary metabolites have been newly produced in the mutant extracts in contrast to the ZBY-3 extract. The followed isolation and characterization demonstrated that six metabolites, cyclo(D-Pro-D-Phe) (1), cyclo(D-Tyr-D-Pro) (2), phenethyl 5-oxo-L-prolinate (3), cyclo(L-Ile-L-Pro) (4), cyclo(L-Leu-L-Pro) (5) and 3β,5α,9α-trihydroxy-(22E,24R)-ergosta-7,22-dien-6-one (6), were newly produced by the mutant u2n2h3-3 compared to the parent ZBY-3 strain. Compound 3 was a new compound; 2 was isolated from a natural source for the first time, and all of these compounds were also not yet found in the metabolites of other A. versicolor strains. Compounds 1-6 inhibited the K562 cells, with inhibition rates of 54.6% (1), 72.9% (2), 23.5% (3), 29.6% (4), 30.9% (5) and 51.1% (6) at 100 μg/mL, and inhibited also other human cancer HL-60, BGC-823 and HeLa cells, to some extent. The present study demonstrated the effectiveness of the ultrasound-mediated approach to activate silent metabolite production in fungi by introducing acquired resistance to aminoglycosides and its potential for discovering new compounds from silent fungal

  1. The Production of Secondary Metabolites with Flavour Potential during Brewing and Distilling Wort Fermentations

    Directory of Open Access Journals (Sweden)

    Graham G. Stewart

    2017-11-01

    Full Text Available Ethanol, carbon dioxide and glycerol are the major products produced by yeast during wort fermentation but they have little impact on beer and spirit flavour. It is the type and concentration of secondary metabolites that can determine overall beer flavour. These compounds are (but not only primarily: higher alcohols, esters, carbonyls and sulphur compounds—inorganic and organic. There are a number of factors that can modify the balance of these compounds most of which are discussed in this review paper.

  2. Primary and secondary metabolites production in signal grass around the year under nitrogen fertilizer

    OpenAIRE

    Syeda Maryam Hussain

    2016-01-01

    Plants produce a number of substances and products and primary and secondary metabolites (SM) are amongst them with many benefits but limitation as well. Usually, the fodder are not considered toxic to animals or as a source having higher SM. The Brachiaria decumbens has a considerable nutritional value, but it is considered as a toxic grass for causing photosensitization in animals, if the grass is not harvested for more than 30 days or solely. The absence of detailed information in the lite...

  3. Production of urinary selenium metabolites in the rat following 75SeO32- administration

    International Nuclear Information System (INIS)

    Kiker, K.W.; Burk, R.F.

    1974-01-01

    Urinary metabolites of 75 Se were studied in male Holtzmann rats fed a Torula yeast diet with either no selenium (basal) or 0.5 ppM selenium (selenium) added as sodium selenite. The animals were anesthetized, a ureter was cannulated, and 20 μCi of 75 SeO 3 2- were injected intraportally. Only a small fraction (1.3 percent) of the injected 75 Se was excreted in 6 h by animals fed the basal diet but 13.3 percent was excreted by animals fed the selenium diet. Paper chromatography showed that both groups excreted mostly inorganic 75 Se in the first 10 min. A decrease in 75 Se excretion followed, and then, 70 min after the collection was started, the selenium diet group had an increase in 75 Se excretion which persisted for the rest of the 6 h and consisted mainly of the organic metabolites trimethylselenonium ion and U-2. 75 Se excretion remained low in the basal diet group. Liver uptake and release of 75 Se in the 1 h following intraperitoneal 75 SeO 3 2- injection was much greater in the selenium diet rats than in the basal diet rats. These results suggest that the greater excretion of 75 Se by rats fed the selenium diet than that by rats fed the basal diet was due to increased production of organic urinary selenium metabolites by the liver. (U.S.)

  4. Analysis, occurrence, fate and risks of proton pump inhibitors, their metabolites and transformation products in aquatic environment: A review

    International Nuclear Information System (INIS)

    Kosma, Christina I.; Lambropoulou, Dimitra A.; Albanis, Triantafyllos A.

    2016-01-01

    Proton pump inhibitors (PPIs) which include omeprazole, esomeprazole, lansoprazole, pantoprazole and rabeprazole, are extensively used for the relief of gastro-intestinal disorders. Despite their high worldwide consumption, PPIs are extensively metabolized in human bodies and therefore are not regularly detected in monitoring studies. Very recently, however, it has been shown that some omeprazole metabolites may enter and are likely to persist in aquatic environment. Hence, to fully assess the environmental exposures and risks associated with PPIs, it is important to better understand and evaluate the fate and behavior not only of the parent compound but also of their metabolites and their transformation products arising from biotic and abiotic processes (hydrolysis, photodegradation, biodegradation etc.) in the environment. In this light, the purpose of this review is to summarize the present state of knowledge on the introduction and behavior of these chemicals in natural and engineering systems and highlight research needs and gaps. It draws attention to their transformation, the increase contamination by their metabolites/TPs in different environmental matrices and their potential adverse effects in the environment. Furthermore, existing research on analytical developments with respect to sample treatment, separation and detection of PPIs and their metabolites/TPs is provided. - Highlights: • Occurrence and fate of PPIs and their metabolites/TPs in the aquatic environment • Overview of the analytical methods applied, using LC-MS techniques • Omeprazole attended the most frequent analysis • Determination and behavior of omeprazole's metabolites/TPs in the environment • More ecotoxicological research is needed to assess the risks of PPIs.

  5. Analysis, occurrence, fate and risks of proton pump inhibitors, their metabolites and transformation products in aquatic environment: A review

    Energy Technology Data Exchange (ETDEWEB)

    Kosma, Christina I. [Department of Chemistry, University of Ioannina, Ioannina, 45110 (Greece); Lambropoulou, Dimitra A., E-mail: dlambro@chem.auth.gr [Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Albanis, Triantafyllos A. [Department of Chemistry, University of Ioannina, Ioannina, 45110 (Greece)

    2016-11-01

    Proton pump inhibitors (PPIs) which include omeprazole, esomeprazole, lansoprazole, pantoprazole and rabeprazole, are extensively used for the relief of gastro-intestinal disorders. Despite their high worldwide consumption, PPIs are extensively metabolized in human bodies and therefore are not regularly detected in monitoring studies. Very recently, however, it has been shown that some omeprazole metabolites may enter and are likely to persist in aquatic environment. Hence, to fully assess the environmental exposures and risks associated with PPIs, it is important to better understand and evaluate the fate and behavior not only of the parent compound but also of their metabolites and their transformation products arising from biotic and abiotic processes (hydrolysis, photodegradation, biodegradation etc.) in the environment. In this light, the purpose of this review is to summarize the present state of knowledge on the introduction and behavior of these chemicals in natural and engineering systems and highlight research needs and gaps. It draws attention to their transformation, the increase contamination by their metabolites/TPs in different environmental matrices and their potential adverse effects in the environment. Furthermore, existing research on analytical developments with respect to sample treatment, separation and detection of PPIs and their metabolites/TPs is provided. - Highlights: • Occurrence and fate of PPIs and their metabolites/TPs in the aquatic environment • Overview of the analytical methods applied, using LC-MS techniques • Omeprazole attended the most frequent analysis • Determination and behavior of omeprazole's metabolites/TPs in the environment • More ecotoxicological research is needed to assess the risks of PPIs.

  6. Cyanobacteria as Cell Factories to Produce Plant Secondary Metabolites

    OpenAIRE

    Xue, Yong; He, Qingfang

    2015-01-01

    Cyanobacteria represent a promising platform for the production of plant secondary metabolites. Their capacity to express plant P450 proteins, which have essential functions in the biosynthesis of many plant secondary metabolites, makes cyanobacteria ideal for this purpose, and their photosynthetic capability allows cyanobacteria to grow with simple nutrient inputs. This review summarizes the advantages of using cyanobacteria to transgenically produce plant secondary metabolites. Some techniq...

  7. Possible endocrine disrupting effects of parabens and their metabolites

    DEFF Research Database (Denmark)

    Boberg, Julie; Taxvig, Camilla; Christiansen, Sofie

    2010-01-01

    Parabens are preservatives used in a wide range of cosmetic products, including products for children, and some are permitted in foods. However, there is concern for endocrine disrupting effects. This paper critically discusses the conclusions of recent reviews and original research papers...... and provides an overview of studies on toxicokinetics. After dermal uptake, parabens are hydrolyzed and conjugated and excreted in urine. Despite high total dermal uptake of paraben and metabolites,little intact paraben can be recovered in blood and urine. Paraben metabolites may play a role in the endocrine...... disruption seen in experimental animals and studies are needed to determine human levels of parabens and metabolites. Overall, the estrogenic burden of parabens and their metabolites in blood may exceed the action of endogenous estradiol in childhood and the safety margin for propylparaben is very low when...

  8. Introduction to metabolic genetic engineering for the production of valuable secondary metabolites in in vivo and in vitro plant systems.

    Science.gov (United States)

    Benedito, Vagner A; Modolo, Luzia V

    2014-01-01

    Plants are capable of producing a myriad of chemical compounds. While these compounds serve specific functions in the plant, many have surprising effects on the human body, often with positive action against diseases. These compounds are often difficult to synthesize ex vivo and require the coordinated and compartmentalized action of enzymes in living organisms. However, the amounts produced in whole plants are often small and restricted to single tissues of the plant or even cellular organelles, making their extraction an expensive process. Since most natural products used in therapeutics are specialized, secondary plant metabolites, we provide here an overview of the classification of the main classes of these compounds, with its biochemical pathways and how this information can be used to create efficient in and ex planta production pipelines to generate highly valuable compounds. Metabolic genetic engineering is introduced in light of physiological and genetic methods to enhance production of high-value plant secondary metabolites.

  9. Production of Metabolites as Bacterial Responses to the Marine Environment

    Directory of Open Access Journals (Sweden)

    Pedro Fernandes

    2010-03-01

    Full Text Available Bacteria in marine environments are often under extreme conditions of e.g., pressure, temperature, salinity, and depletion of micronutrients, with survival and proliferation often depending on the ability to produce biologically active compounds. Some marine bacteria produce biosurfactants, which help to transport hydrophobic low water soluble substrates by increasing their bioavailability. However, other functions related to heavy metal binding, quorum sensing and biofilm formation have been described. In the case of metal ions, bacteria developed a strategy involving the release of binding agents to increase their bioavailability. In the particular case of the Fe3+ ion, which is almost insoluble in water, bacteria secrete siderophores that form soluble complexes with the ion, allowing the cells to uptake the iron required for cell functioning. Adaptive changes in the lipid composition of marine bacteria have been observed in response to environmental variations in pressure, temperature and salinity. Some fatty acids, including docosahexaenoic and eicosapentaenoic acids, have only been reported in prokaryotes in deep-sea bacteria. Cell membrane permeability can also be adapted to extreme environmental conditions by the production of hopanoids, which are pentacyclic triterpenoids that have a function similar to cholesterol in eukaryotes. Bacteria can also produce molecules that prevent the attachment, growth and/or survival of challenging organisms in competitive environments. The production of these compounds is particularly important in surface attached strains and in those in biofilms. The wide array of compounds produced by marine bacteria as an adaptive response to demanding conditions makes them suitable candidates for screening of compounds with commercially interesting biological functions. Biosurfactants produced by marine bacteria may be helpful to increase mass transfer in different industrial processes and in the bioremediation of

  10. Effect of intake on fasting heat production, respiratory quotient and plasma metabolites measured using the washed rumen technique

    Science.gov (United States)

    The objective was to investigate the effect of intake prior to fasting on concentrations of metabolites and hormones, respiratory quotient (RQ) and fasting heat production (HP) using the washed rumen technique and to compare these values with those from the fed state. Six Holstein steers (360 ± 22 k...

  11. Metabolite damage and repair in metabolic engineering design

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jiayi; Jeffryes, James G.; Henry, Christopher S.; Bruner, Steven D.; Hanson, Andrew D.

    2017-11-01

    The necessarily sharp focus of metabolic engineering and metabolic synthetic biology on pathways and their fluxes has tended to divert attention from the damaging enzymatic and chemical side-reactions that pathway metabolites can undergo. Although historically overlooked and underappreciated, such metabolite damage reactions are now known to occur throughout metabolism and to generate (formerly enigmatic) peaks detected in metabolomics datasets. It is also now known that metabolite damage is often countered by dedicated repair enzymes that undo or prevent it. Metabolite damage and repair are highly relevant to engineered pathway design: metabolite damage reactions can reduce flux rates and product yields, and repair enzymes can provide robust, host-independent solutions. Herein, after introducing the core principles of metabolite damage and repair, we use case histories to document how damage and repair processes affect efficient operation of engineered pathways - particularly those that are heterologous, non-natural, or cell-free. We then review how metabolite damage reactions can be predicted, how repair reactions can be prospected, and how metabolite damage and repair can be built into genome-scale metabolic models. Lastly, we propose a versatile 'plug and play' set of well-characterized metabolite repair enzymes to solve metabolite damage problems known or likely to occur in metabolic engineering and synthetic biology projects.

  12. Secondary Metabolites from Higher Fungi: Discovery, Bioactivity, and Bioproduction

    Science.gov (United States)

    Zhong, Jian-Jiang; Xiao, Jian-Hui

    Medicinal higher fungi such as Cordyceps sinensis and Ganoderma lucidum have been used as an alternative medicine remedy to promote health and longevity for people in China and other regions of the world since ancient times. Nowadays there is an increasing public interest in the secondary metabolites of those higher fungi for discovering new drugs or lead compounds. Current research in drug discovery from medicinal higher fungi involves a multifaceted approach combining mycological, biochemical, pharmacological, metabolic, biosynthetic and molecular techniques. In recent years, many new secondary metabolites from higher fungi have been isolated and are more likely to provide lead compounds for new drug discovery, which may include chemopreventive agents possessing the bioactivity of immunomodulatory, anticancer, etc. However, numerous challenges of secondary metabolites from higher fungi are encountered including bioseparation, identification, biosynthetic metabolism, and screening model issues, etc. Commercial production of secondary metabolites from medicinal mushrooms is still limited mainly due to less information about secondary metabolism and its regulation. Strategies for enhancing secondary metabolite production by medicinal mushroom fermentation include two-stage cultivation combining liquid fermentation and static culture, two-stage dissolved oxygen control, etc. Purification of bioactive secondary metabolites, such as ganoderic acids from G. lucidum, is also very important to pharmacological study and future pharmaceutical application. This review outlines typical examples of the discovery, bioactivity, and bioproduction of secondary metabolites of higher fungi origin.

  13. Transcriptome of Aspergillus flavus aswA (AFLA_085170) deletion strain related to sclerotial development and production of secondary metabolites

    Science.gov (United States)

    Aspergillus flavus produces many secondary metabolites including aflatoxins. Besides conidia, the fungus uses sclerotia as another type of propagule. We obtained transcriptomes from four growth conditions of the aswA mutant, a strain impaired in sclerotial development and production of sclerotium-sp...

  14. Metabolite Damage and Metabolite Damage Control in Plants

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Andrew D. [Horticultural Sciences Department and; Henry, Christopher S. [Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois 60439, email:; Computation Institute, University of Chicago, Chicago, Illinois 60637; Fiehn, Oliver [Genome Center, University of California, Davis, California 95616, email:; de Crécy-Lagard, Valérie [Microbiology and Cell Science Department, University of Florida, Gainesville, Florida 32611, email: ,

    2016-04-29

    It is increasingly clear that (a) many metabolites undergo spontaneous or enzyme-catalyzed side reactions in vivo, (b) the damaged metabolites formed by these reactions can be harmful, and (c) organisms have biochemical systems that limit the buildup of damaged metabolites. These damage-control systems either return a damaged molecule to its pristine state (metabolite repair) or convert harmful molecules to harmless ones (damage preemption). Because all organisms share a core set of metabolites that suffer the same chemical and enzymatic damage reactions, certain damage-control systems are widely conserved across the kingdoms of life. Relatively few damage reactions and damage-control systems are well known. Uncovering new damage reactions and identifying the corresponding damaged metabolites, damage-control genes, and enzymes demands a coordinated mix of chemistry, metabolomics, cheminformatics, biochemistry, and comparative genomics. This review illustrates the above points using examples from plants, which are at least as prone to metabolite damage as other organisms.

  15. Genetically engineering Synechocystis sp. Pasteur Culture Collection 6803 for the sustainable production of the plant secondary metabolite p-coumaric acid.

    Science.gov (United States)

    Xue, Yong; Zhang, Yan; Cheng, Dan; Daddy, Soumana; He, Qingfang

    2014-07-01

    p-Coumaric acid is the precursor of phenylpropanoids, which are plant secondary metabolites that are beneficial to human health. Tyrosine ammonia lyase catalyzes the production of p-coumaric acid from tyrosine. Because of their photosynthetic ability and biosynthetic versatility, cyanobacteria are promising candidates for the production of certain plant metabolites, including phenylpropanoids. Here, we produced p-coumaric acid in a strain of transgenic cyanobacterium Synechocystis sp. Pasteur Culture Collection 6803 (hereafter Synechocystis 6803). Whereas a strain of Synechocystis 6803 genetically engineered to express sam8, a tyrosine ammonia lyase gene from the actinomycete Saccharothrix espanaensis, accumulated little or no p-coumaric acid, a strain that both expressed sam8 and lacked slr1573, a native hypothetical gene shown here to encode a laccase that oxidizes polyphenols, produced ∼82.6 mg/L p-coumaric acid, which was readily purified from the growth medium.

  16. Identification of Volatile Secondary Metabolites from an Endophytic Microfungus Aspergillus Nomius KUB105

    International Nuclear Information System (INIS)

    Lateef Adebola Azeez; Lateef Adebola Azeez; Sepiah Muid; Bolhassan Mohamad Hasnul

    2016-01-01

    Microfungi are a highly diverse group of micro-organisms and important components of the ecosystem with great potential for diverse metabolite production. During a survey of microfungi on leaves in a National Park in Sarawak, an uncommon endophytic microfungus Aspergillus nomius was encountered. The metabolite production of this microfungus was investigated by growing it in a liquid basal medium for 2 weeks. Gas Chromatography - Mass Spectrometry (GC-MS) and Fourier Transform Infrared (FTIR) profiling of the secondary metabolites produced by this microfungus in the liquid medium revealed the presence of 46 different secondary metabolites. The metabolites include saturated hydrocarbons, alkyl halides, alcohols and an unsaturated hydrocarbon. Majority of the metabolites produced were saturated hydrocarbons. Tetracosane, Icosane and 10-Methylicosane were the most abundant metabolites identified while heptadecane and 2,4-dimethylundecane were the least abundant respectively. This study is the first GC-MS and FTIR report of secondary metabolites from A. nomius. The results from this study confirm the ability of microfungi to produce diverse metabolites, including saturated hydrocarbons. (author)

  17. Metabolite damage and repair in metabolic engineering design.

    Science.gov (United States)

    Sun, Jiayi; Jeffryes, James G; Henry, Christopher S; Bruner, Steven D; Hanson, Andrew D

    2017-11-01

    The necessarily sharp focus of metabolic engineering and metabolic synthetic biology on pathways and their fluxes has tended to divert attention from the damaging enzymatic and chemical side-reactions that pathway metabolites can undergo. Although historically overlooked and underappreciated, such metabolite damage reactions are now known to occur throughout metabolism and to generate (formerly enigmatic) peaks detected in metabolomics datasets. It is also now known that metabolite damage is often countered by dedicated repair enzymes that undo or prevent it. Metabolite damage and repair are highly relevant to engineered pathway design: metabolite damage reactions can reduce flux rates and product yields, and repair enzymes can provide robust, host-independent solutions. Herein, after introducing the core principles of metabolite damage and repair, we use case histories to document how damage and repair processes affect efficient operation of engineered pathways - particularly those that are heterologous, non-natural, or cell-free. We then review how metabolite damage reactions can be predicted, how repair reactions can be prospected, and how metabolite damage and repair can be built into genome-scale metabolic models. Lastly, we propose a versatile 'plug and play' set of well-characterized metabolite repair enzymes to solve metabolite damage problems known or likely to occur in metabolic engineering and synthetic biology projects. Copyright © 2017 International Metabolic Engineering Society. All rights reserved.

  18. Production of cyathane type secondary metabolites by submerged cultures of Hericium erinaceus and evaluation of their antibacterial activity by direct bioautography.

    Science.gov (United States)

    Shen, T; Morlock, G; Zorn, H

    2015-01-01

    Fungi of the phylum Basidiomycota are well-known to form a broad spectrum of biologically active secondary metabolites, especially low molecular weight compounds such as terpenoids. Hericium erinaceus produces various cyathane type diterpenoids including erinacines. However, no quantitative data and production kinetics have been reported on the biosynthesis of the erinacines C and P in submerged cultures. In the present study, the production of erinacine C was optimized, and the product formation kinetics as well as the antimicrobial activity were studied by high-performance liquid chromatography (HPLC), high-performance thin-layer chromatography (HPTLC) and direct bioautography. Oatmeal and Edamin ® K were identified to be crucial media components for an efficient production of erinacine C. The highest concentrations of erinacine C were obtained in the optimized culture medium on the 9 th culture day (approximately 260 mg L -1 ). The production of erinacine P was strongly time dependent. The maximum concentration of erinacine P of 184 mg L -1 was observed on the third culture day. Afterwards, the concentrations of erinacine P decreased while the concentrations of erinacine C steadily increased. Comparable results were obtained by HPTLC with UV detection and HPLC with diode-array detection (DAD) analyses. Direct bioautography allowed for an additional analysis of the antimicrobial activity of the secondary metabolites. The C and N sources oatmeal and Edamin ® K induced the formation of erinacine C. Detailed product formation kinetics of the erinacines C and P have been reported for the first time. HPTLC combined with the Aliivibrio fischeri bioassay allowed for an instant detection of cyathane diterpenoids in crude extracts and for an evaluation of the antimicrobial activity of the secondary metabolites directly on the plate.

  19. Analysis, occurrence, fate and risks of proton pump inhibitors, their metabolites and transformation products in aquatic environment: A review.

    Science.gov (United States)

    Kosma, Christina I; Lambropoulou, Dimitra A; Albanis, Triantafyllos A

    2016-11-01

    Proton pump inhibitors (PPIs) which include omeprazole, esomeprazole, lansoprazole, pantoprazole and rabeprazole, are extensively used for the relief of gastro-intestinal disorders. Despite their high worldwide consumption, PPIs are extensively metabolized in human bodies and therefore are not regularly detected in monitoring studies. Very recently, however, it has been shown that some omeprazole metabolites may enter and are likely to persist in aquatic environment. Hence, to fully assess the environmental exposures and risks associated with PPIs, it is important to better understand and evaluate the fate and behavior not only of the parent compound but also of their metabolites and their transformation products arising from biotic and abiotic processes (hydrolysis, photodegradation, biodegradation etc.) in the environment. In this light, the purpose of this review is to summarize the present state of knowledge on the introduction and behavior of these chemicals in natural and engineering systems and highlight research needs and gaps. It draws attention to their transformation, the increase contamination by their metabolites/TPs in different environmental matrices and their potential adverse effects in the environment. Furthermore, existing research on analytical developments with respect to sample treatment, separation and detection of PPIs and their metabolites/TPs is provided. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Enhanced production of vanillin flavour metabolites by precursor feeding in cell suspension cultures of Decalepis hamiltonii Wight & Arn., in shake flask culture.

    Science.gov (United States)

    Matam, Pradeep; Parvatam, Giridhar; Shetty, Nandini P

    2017-12-01

    The flavour rich tuberous roots of Decalepis hamiltonii are known for its edible and medicinal use and have become endangered due to commercial over-exploitation. Besides 2-Hydroxy-4-methoxy benzaldehyde (2H4MB), other flavour metabolites in tuberous roots include vanillin, 4-Methoxy Cinnamic acid derivatives, aromatic alcohols etc. So far, there are no reports on the pathway of 2H4MB biosynthesis nor there is an organized work on biotransformation using normal and cell suspension cultures for obtaining these metabolites using precursors. The main aim of the study is to develop a method for enhanced production of flavour attributing metabolites through ferulic acid (FA) feeding to the D. hamiltonii callus culture medium. Biomass of D. hamiltonii cell suspension cultures was maximum (200.38 ± 1.56 g/l) by 4th week. Maximum production of 2H4MB was recorded on 4th week (0.08 ± 0.01 mg/100 g dry weight) as quantified by HPLC. Addition of 0.1-1.5 mM ferulic acid as precursor in the culture medium showed significant ( p  vanillin, 2H4MB, vanillic acid, ferulic acid were of 0.1 ± 0.02 mg/100 g, 0.44 ± 0.01 mg/100 g, 0.52 ± 0.04 mg/100 g, 0.18 ± 0.02 mg/100 g DW respectively in 4 weeks of cultured cells supplemented with 1 mM ferulic acid as a precursor. The results indicate that, substantial increase in the levels of flavour metabolites in D. hamiltonii callus suspension culture was achieved. This would be having implications in biosynthesis of respective vanilla flavour attributing metabolites at very high levels for their large scale production.

  1. Production of arachidonic and linoleic acid metabolites by guinea pig tracheal epithelial cells

    International Nuclear Information System (INIS)

    Oosthuizen, M.J.; Engels, F.; Van Esch, B.; Henricks, P.A.; Nijkamp, F.P.

    1990-01-01

    Pulmonary epithelial cells may be responsible for regulating airway smooth muscle function, in part by release of fatty acid-derived mediators. Incubation of isolated guinea pig tracheal epithelial cells with radiolabeled arachidonic acid (AA) leads to the production of 5- and 15-hydroxyeicosatetraenoic acid (5- and 15-HETE) and smaller amounts of leukotriene (LT) B4 and C4 and 12-hydroxyheptadecatrienoic acid (HHT). Epithelial cells also are able to release linoleic acid (LA) metabolites. Incubation with radiolabeled linoleic acid leads to the formation of 9- and 13-hydroxyoctadecadienoic acid (9- and 13-HODE). The biological significance of these mediators produced by epithelial cells is discussed

  2. Electrosynthesis methods and approaches for the preparative production of metabolites from parent drugs

    NARCIS (Netherlands)

    Gül, Turan; Bischoff, Rainer; Permentier, Hjalmar

    2015-01-01

    Identification of potentially toxic metabolites is important for drug discovery and development. Synthesis of drug metabolites is typically performed by organic synthesis or enzymatic methods, but is not always straightforward. Electrochemical (EC) methods are increasingly used to study drug

  3. Extraction and applications of cyanotoxins and other cyanobacterial secondary metabolites.

    Science.gov (United States)

    Haque, Fatima; Banayan, Sara; Yee, Josephine; Chiang, Yi Wai

    2017-09-01

    The rapid proliferation of cyanobacteria in bodies of water has caused cyanobacterial blooms, which have become an increasing cause of concern, largely due to the presence of toxic secondary metabolites (or cyanotoxins). Cyanotoxins are the toxins produced by cyanobacteria that may be harmful to surrounding wildlife. They include hepatotoxins, neurotoxins and dermatotoxins, and are classified based on the organs they affect. There are also non-toxic secondary metabolites that include chelators and UV-absorbing compounds. This paper summarizes the optimal techniques for secondary metabolite extraction and the possible useful products that can be obtained from cyanobacteria, with additional focus given to products derived from secondary metabolites. It becomes evident that the potential for their use as biocides, chelators, biofuels, biofertilizers, pharmaceuticals, food and feed, and cosmetics has not yet been comprehensively studied or extensively implemented. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Detecting beer intake by unique metabolite patterns

    DEFF Research Database (Denmark)

    Gürdeniz, Gözde; Jensen, Morten Georg; Meier, Sebastian

    2016-01-01

    Evaluation of health related effects of beer intake is hampered by the lack of accurate tools for assessing intakes (biomarkers). Therefore, we identified plasma and urine metabolites associated with recent beer intake by untargeted metabolomics and established a characteristic metabolite pattern...... representing raw materials and beer production as a qualitative biomarker of beer intake. In a randomized, crossover, single-blinded meal study (MSt1) 18 participants were given one at a time four different test beverages: strong, regular and non-alcoholic beers and a soft drink. Four participants were...... assigned to have two additional beers (MSt2). In addition to plasma and urine samples, test beverages, wort and hops extract were analyzed by UPLC-QTOF. A unique metabolite pattern reflecting beer metabolome, including metabolites derived from beer raw material (i.e. N-methyl tyramine sulfate and the sum...

  5. Urinary phthalate metabolites and their biotransformation products: predictors and temporal variability among men and women

    Science.gov (United States)

    Meeker, John D.; Calafat, Antonia M.; Hauser, Russ

    2012-01-01

    Most epidemiology studies investigating potential adverse health effects in relation to phthalates measure the urinary concentration of the free plus glucuronidated species of phthalate metabolites (i.e., total concentration) to estimate exposure. However, the free species may represent the biologically relevant dose. In this study, we collected 943 urine samples from 112 men and 157 women and assessed the between- and within-person variability and predictors of a) the free and total urinary concentrations of phthalate metabolites, and b) the percentage of free phthalate metabolites (a potential phenotypic indicator of individual susceptibility). We also explored the proportion of urinary di-(2-ethylhexyl) phthalate (DEHP) metabolites contributed to by the bioactive mono-2-ethylhexyl phthalate (MEHP), considered a possible indicator of susceptibility to phthalate exposure. The percentage of phthalate metabolites present in the free form were less stable over time than the total metabolite concentration, and, therefore, it is not likely a useful indicator of metabolic susceptibility. Thus, the added costs and effort involved in the measurement of free in addition to total metabolite concentrations in large-scale studies may not be justified. Conversely, the proportion of DEHP metabolites contributed to by MEHP was more stable within individuals over time and may be a promising indicator of susceptibility if time of day of sample collection is carefully considered. PMID:22354176

  6. Extracellular Metabolites from Industrial Microalgae and Their Biotechnological Potential

    Directory of Open Access Journals (Sweden)

    Lu Liu

    2016-10-01

    Full Text Available Industrial microalgae, as a big family of promising producers of renewable biomass feedstock, have been commercially exploited for functional food, living feed and feed additives, high-value chemicals in nutraceuticals, cosmeceuticals, and chemical reagents. Recently, microalgae have also been considered as a group that might play an important role in biofuel development and environmental protection. Almost all current products of industrial microalgae are derived from their biomass; however, large amounts of spent cell-free media are available from mass cultivation that is mostly unexploited. In this contribution we discuss that these media, which may contain a remarkable diversity of bioactive substances are worthy to be recovered for further use. Obviously, the extracellular metabolites from industrial microalgae have long been neglected in the development of production methods for valuable metabolites. With the advances in the last ten years, more and more structures and properties from extracellular metabolites have been identified, and the potential utilization over wide fields is attracting attention. Some of these extracellular metabolites can be potentially used as drugs, antioxidants, growth regulators or metal chelators. The purpose of this review is to provide an overview of the known extracellular metabolites from industrial microalgae which might be of commercial interest. The attention mainly focuses on the reports of extracellular bioactive metabolites and their potential application in biotechnology.

  7. Personal Care Product Use in Men and Urinary Concentrations of Select Phthalate Metabolites and Parabens

    DEFF Research Database (Denmark)

    Nassan, Feiby L; Coull, Brent A; Gaskins, Audrey J

    2017-01-01

    BACKGROUND: Personal care products (PCPs) are exposure sources to phthalates and parabens; however, their contribution to men's exposure is understudied. OBJECTIVES: We examined the association between PCP use and urinary concentrations of phthalate metabolites and parabens in men. METHODS...... in urinary concentrations associated with PCP use using linear mixed and Tobit mixed regressions. We also estimated weights for each PCP in a weighted binary score regression and modeled the resulting composite weighted PCP use. RESULTS: Four hundred men contributed 1,037 urine samples (mean of 3/man...

  8. Production of Bioactive Secondary Metabolites by Marine Vibrionaceae

    Directory of Open Access Journals (Sweden)

    Lone Gram

    2011-08-01

    Full Text Available Bacteria belonging to the Vibrionaceae family are widespread in the marine environment. Today, 128 species of vibrios are known. Several of them are infamous for their pathogenicity or symbiotic relationships. Despite their ability to interact with eukaryotes, the vibrios are greatly underexplored for their ability to produce bioactive secondary metabolites and studies have been limited to only a few species. Most of the compounds isolated from vibrios so far are non-ribosomal peptides or hybrids thereof, with examples of N-containing compounds produced independent of nonribosomal peptide synthetases (NRPS. Though covering a limited chemical space, vibrios produce compounds with attractive biological activities, including antibacterial, anticancer, and antivirulence activities. This review highlights some of the most interesting structures from this group of bacteria. Many compounds found in vibrios have also been isolated from other distantly related bacteria. This cosmopolitan occurrence of metabolites indicates a high incidence of horizontal gene transfer, which raises interesting questions concerning the ecological function of some of these molecules. This account underlines the pending potential for exploring new bacterial sources of bioactive compounds and the challenges related to their investigation.

  9. Role of secondary metabolites/antioxidants in vitro

    Science.gov (United States)

    In literature, secondary metabolites are described as natural products, waste, phytopharmaceuticals, bioactive constituents or by-products of the primary metabolism. They occur in many plant genera and microorganisms in vivo and in vitro, and have complex chemical structures specific to the plants w...

  10. Quantitative quenching evaluation and direct intracellular metabolite analysis in Penicillium chrysogenum.

    Science.gov (United States)

    Meinert, Sabine; Rapp, Sina; Schmitz, Katja; Noack, Stephan; Kornfeld, Georg; Hardiman, Timo

    2013-07-01

    Sustained progress in metabolic engineering methodologies has stimulated new efforts toward optimizing fungal production strains such as through metabolite analysis of Penicillium chrysogenum industrial-scale processes. Accurate intracellular metabolite quantification requires sampling procedures that rapidly stop metabolism (quenching) and avoid metabolite loss via the cell membrane (leakage). When sampling protocols are validated, the quenching efficiency is generally not quantitatively assessed. For fungal metabolomics, quantitative biomass separation using centrifugation is a further challenge. In this study, P. chrysogenum intracellular metabolites were quantified directly from biomass extracts using automated sampling and fast filtration. A master/slave bioreactor concept was applied to provide industrial production conditions. Metabolic activity during sampling was monitored by 13C tracing. Enzyme activities were efficiently stopped and metabolite leakage was absent. This work provides a reliable method for P. chrysogenum metabolomics and will be an essential base for metabolic engineering of industrial processes. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Analysis of metabolic networks of Streptomyces leeuwenhoekii C34 by means of a genome scale model: Prediction of modifications that enhance the production of specialized metabolites.

    Science.gov (United States)

    Razmilic, Valeria; Castro, Jean F; Andrews, Barbara; Asenjo, Juan A

    2018-07-01

    The first genome scale model (GSM) for Streptomyces leeuwenhoekii C34 was developed to study the biosynthesis pathways of specialized metabolites and to find metabolic engineering targets for enhancing their production. The model, iVR1007, consists of 1,722 reactions, 1,463 metabolites, and 1,007 genes, it includes the biosynthesis pathways of chaxamycins, chaxalactins, desferrioxamines, ectoine, and other specialized metabolites. iVR1007 was validated using experimental information of growth on 166 different sources of carbon, nitrogen and phosphorous, showing an 83.7% accuracy. The model was used to predict metabolic engineering targets for enhancing the biosynthesis of chaxamycins and chaxalactins. Gene knockouts, such as sle03600 (L-homoserine O-acetyltransferase), and sle39090 (trehalose-phosphate synthase), that enhance the production of the specialized metabolites by increasing the pool of precursors were identified. Using the algorithm of flux scanning based on enforced objective flux (FSEOF) implemented in python, 35 and 25 over-expression targets for increasing the production of chaxamycin A and chaxalactin A, respectively, that were not directly associated with their biosynthesis routes were identified. Nineteen over-expression targets that were common to the two specialized metabolites studied, like the over-expression of the acetyl carboxylase complex (sle47660 (accA) and any of the following genes: sle44630 (accA_1) or sle39830 (accA_2) or sle27560 (bccA) or sle59710) were identified. The predicted knockouts and over-expression targets will be used to perform metabolic engineering of S. leeuwenhoekii C34 and obtain overproducer strains. © 2018 Wiley Periodicals, Inc.

  12. Exo-metabolites of mycelial fungi isolated in production premises of cheese-making and meat-processing plants.

    Science.gov (United States)

    Kozlovsky, A G; Zhelifonova, V P; Antipova, T V; Baskunov, B P; Ivanushkina, N E; Ozerskaya, S M

    2014-01-01

    Data were obtained on the species composition of mycelial fungi isolated from the air of workrooms and production premises in cheese-making and meat-processing plants. The strains studied were shown to be capable of producing various low molecular weight compounds. Many of them are mycotoxins such as α-cyclopiazonic acid (CPA), mycophenolic acid (MPA), citrinin, cladosporin, roquefortine and ergot alkaloids. The profiles of the secondary metabolites were used to elucidate the species' names of the isolated strains.

  13. Effects of Plant Secondary Metabolites on Methane Production and Fermentation Parameters in In vitro Ruminal Cultures

    Directory of Open Access Journals (Sweden)

    Mihaela Giuburunca

    2014-10-01

    Full Text Available Enteric fermentation process is of concern worldwide for its contribution to global warming. It is known that ruminant animals, due to natural fermentation process contribute substantially to the increase in methane production. Methanogenesis process represents besides its contribution to greenhouse gases emissions an energy loss to the animal. To reduce ruminal methane productions in an ecologically and sustainable way, many attempts have been initiated, such as: uses of chemicals additives or ionophore antibiotics, defaunation process or immunization against ruminal methanogenesis. In the last years, a new strategy has been evaluated whether plant secondary metabolites can be used as natural additives to reduce ruminal methane emissions. The present study has been conducted to investigate the effects of trans-cinnamic, caffeic, p-coumaric acids and catechin hydrate, four plant secondary metabolites (PSMs on methane production and fermentation in in vitro ruminal cultures. The four PSMs were added anaerobically in a 6 mM concentration to 100 ml serum bottles containing 500 mg grass hay as a substrate, 10 ml rumen fluid collected from a fistulated sheep before morning feeding and 40 ml 141 DSM culture medium. The bottles were incubated at 39 ̊C. After 24 h, the following variables were measured: total gas volume, pH, methane and volatile fatty acids (VFAs production. The results showed that caffeic (p = 0.058 and p-coumaric (p = 0.052 acids tended to decrease methane production in comparison to control but the decrease was not statistic significantly at α= 0.05. The other two PSMs had no significant effect on methane production. Addition of PSMs did not affected the total gas volume, the pH and VFAs profile (P>0.05 in relation to the control (no PSM added. In conclusion, caffeic and p-coumaric acids in 6 mM concentration showed some promising effects for decreasing ruminal methane emissions without affecting ruminal fermentation parameters but

  14. Chemical composition, secondary metabolites, in vitro gas ...

    African Journals Online (AJOL)

    Chemical composition, secondary metabolites, in vitro gas production characteristics and acceptability study of some forage for ruminant feeding in South-Western Nigeria. ... Chemical composition and qualitative analysis of saponins, phenol and steroids of the plants were determined. In vitro gas production (IVGP) was ...

  15. Metabolites of cannabidiol identified in human urine.

    Science.gov (United States)

    Harvey, D J; Mechoulam, R

    1990-03-01

    1. Urine from a dystonic patient treated with cannabidiol (CBD) was examined by g.l.c.-mass spectrometry for CBD metabolites. Metabolites were identified as their trimethylsilyl (TMS), [2H9]TMS, and methyl ester/TMS derivatives and as the TMS derivatives of the product of lithium aluminium deuteride reduction. 2. Thirty-three metabolites were identified in addition to unmetabolized CBD, and a further four metabolites were partially characterized. 3. The major metabolic route was hydroxylation and oxidation at C-7 followed by further hydroxylation in the pentyl and propenyl groups to give 1"-, 2"-, 3"-, 4"- and 10-hydroxy derivatives of CBD-7-oic acid. Other metabolites, mainly acids, were formed by beta-oxidation and related biotransformations from the pentyl side-chain and these were also hydroxylated at C-6 or C-7. The major oxidized metabolite was CBD-7-oic acid containing a hydroxyethyl side-chain. 4. Two 8,9-dihydroxy compounds, presumably derived from the corresponding epoxide were identified. 5. Also present were several cyclized cannabinoids including delta-6- and delta-1-tetrahydrocannabinol and cannabinol. 6. This is the first metabolic study of CBD in humans; most observed metabolic routes were typical of those found for CBD and related cannabinoids in other species.

  16. Optimization of adventitious root culture for production of biomass and secondary metabolites in Prunella vulgaris L.

    Science.gov (United States)

    Fazal, Hina; Abbasi, Bilal Haider; Ahmad, Nisar

    2014-11-01

    Adventitious root cultures of Prunella vulgaris L. were established in shaking flask system for the production of biomass and secondary metabolites. Adventitious root cultures were induced from callus cultures obtained from leaf explants on solid Murashige and Skoog (MS) medium containing combination of 6-benzyladenine (BA; 1.0 mg l(-1)) and naphthalene acetic acid (NAA; 1.5 mg l(-1)). Thereafter, 0.49 g inoculum was transferred to liquid MS medium supplemented with different concentrations of NAA (0.5-2.0 mg l(-1)). Growth kinetics of adventitious roots was recorded with an interval of 7 days for 49 days period. Highest biomass accumulation (2.13 g/l) was observed in liquid medium containing 1.0 mg l(-1) NAA after 21 days of inoculation. However, other concentrations of NAA also showed similar accumulation pattern but the biomass gradually decreases after 49 days of inoculation. Adventitious roots were collected and dried for investigation of total phenolics (TP), total flavonoids (TF), and antioxidant activities. Higher TPC (0.995 GAE mg/g-DRB) and TFC (6.615 RE mg/g-DRB) were observed in 0.5 mg l(-1) NAA treated cultures. In contrast, higher antioxidant activity (83.53 %) was observed 1.5 mg l(-1) NAA treated cultures. These results are helpful in up scaling of root cultures into bioreactor for secondary metabolites production.

  17. Impact of CHO Metabolism on Cell Growth and Protein Production: An Overview of Toxic and Inhibiting Metabolites and Nutrients

    DEFF Research Database (Denmark)

    Pereira, Sara; Kildegaard, Helene F.; Andersen, Mikael R.

    2018-01-01

    and process optimization and monitoring to perform efficiently. One of the main reasons for this is the production and accumulation of toxic and growth-inhibiting metabolites during culture. Lactate and ammonium are the most known, but many more have been identified. In this review, we present an overview...... of metabolites that deplete and accumulate throughout the course of cultivations with toxic and growth inhibitory effects to the cells. We further provide an overview of the CHO metabolism with emphasis to metabolic pathways of amino acids, glutathione (GSH), and related compounds which have growth...... of resources that describe the cellular mechanisms of CHO and are available on-line. Finally, we discuss the application of this knowledge for bioprocess and medium development and cell line engineering....

  18. Antibacterial activity of secondary metabolites isolated from ...

    African Journals Online (AJOL)

    Aghomotsegin

    2015-10-28

    Oct 28, 2015 ... Alternaria spp. are cosmopolitan mould fungi and can be found in soils ... the secondary metabolites products from A. alternata and ..... Zone of inhibition (mm) of test bacterial strains to fungal products and standard antibiotics. Fungal ... marine actinomycetes from pulicat, Muttukadu, and Ennore estuaries.

  19. Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production.

    Science.gov (United States)

    Wu, Gary D; Compher, Charlene; Chen, Eric Z; Smith, Sarah A; Shah, Rachana D; Bittinger, Kyle; Chehoud, Christel; Albenberg, Lindsey G; Nessel, Lisa; Gilroy, Erin; Star, Julie; Weljie, Aalim M; Flint, Harry J; Metz, David C; Bennett, Michael J; Li, Hongzhe; Bushman, Frederic D; Lewis, James D

    2016-01-01

    The consumption of an agrarian diet is associated with a reduced risk for many diseases associated with a 'Westernised' lifestyle. Studies suggest that diet affects the gut microbiota, which subsequently influences the metabolome, thereby connecting diet, microbiota and health. However, the degree to which diet influences the composition of the gut microbiota is controversial. Murine models and studies comparing the gut microbiota in humans residing in agrarian versus Western societies suggest that the influence is large. To separate global environmental influences from dietary influences, we characterised the gut microbiota and the host metabolome of individuals consuming an agrarian diet in Western society. Using 16S rRNA-tagged sequencing as well as plasma and urinary metabolomic platforms, we compared measures of dietary intake, gut microbiota composition and the plasma metabolome between healthy human vegans and omnivores, sampled in an urban USA environment. Plasma metabolome of vegans differed markedly from omnivores but the gut microbiota was surprisingly similar. Unlike prior studies of individuals living in agrarian societies, higher consumption of fermentable substrate in vegans was not associated with higher levels of faecal short chain fatty acids, a finding confirmed in a 10-day controlled feeding experiment. Similarly, the proportion of vegans capable of producing equol, a soy-based gut microbiota metabolite, was less than that was reported in Asian societies despite the high consumption of soy-based products. Evidently, residence in globally distinct societies helps determine the composition of the gut microbiota that, in turn, influences the production of diet-dependent gut microbial metabolites. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  20. Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production

    Science.gov (United States)

    Wu, Gary D; Compher, Charlene; Chen, Eric Z; Smith, Sarah A; Shah, Rachana D; Bittinger, Kyle; Chehoud, Christel; Albenberg, Lindsey G; Nessel, Lisa; Gilroy, Erin; Star, Julie; Weljie, Aalim M; Flint, Harry J; Metz, David C; Bennett, Michael J; Li, Hongzhe; Bushman, Frederic D; Lewis, James D

    2015-01-01

    Objective The consumption of an agrarian diet is associated with a reduced risk for many diseases associated with a ‘Westernised’ lifestyle. Studies suggest that diet affects the gut microbiota, which subsequently influences the metabolome, thereby connecting diet, microbiota and health. However, the degree to which diet influences the composition of the gut microbiota is controversial. Murine models and studies comparing the gut microbiota in humans residing in agrarian versus Western societies suggest that the influence is large. To separate global environmental influences from dietary influences, we characterised the gut microbiota and the host metabolome of individuals consuming an agrarian diet in Western society. Design and results Using 16S rRNA-tagged sequencing as well as plasma and urinary metabolomic platforms, we compared measures of dietary intake, gut microbiota composition and the plasma metabolome between healthy human vegans and omnivores, sampled in an urban USA environment. Plasma metabolome of vegans differed markedly from omnivores but the gut microbiota was surprisingly similar. Unlike prior studies of individuals living in agrarian societies, higher consumption of fermentable substrate in vegans was not associated with higher levels of faecal short chain fatty acids, a finding confirmed in a 10-day controlled feeding experiment. Similarly, the proportion of vegans capable of producing equol, a soy-based gut microbiota metabolite, was less than that was reported in Asian societies despite the high consumption of soy-based products. Conclusions Evidently, residence in globally distinct societies helps determine the composition of the gut microbiota that, in turn, influences the production of diet-dependent gut microbial metabolites. PMID:25431456

  1. Structural elucidation of in vitro and in vivo metabolites of emodin in rats by LC -ESI-MS/MS

    International Nuclear Information System (INIS)

    Wang, D.; Zhu, Q.; Chen, G.; Liu, B.; Chen, L.

    2013-01-01

    Emodin is a widely occurring natural product and has been studied extensively for its varieties of pharmacological activity. In attempt to know more deeply about its metabolism, this paper investigated the metabolites of emodin in rats, including its in vitro conversion product by intestinal microflora and urinary metabolites. The detection of emodin metabolites was performed by liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) with negative ion mode. By comparing the changes of metabolites in molecular masses (delta M), product ions and retention times with those of the parent drug, six metabolites (8-O-methylemodin, omega-hydroxyemodin, x-hydroxyemodin, emodin glucuronide, hydroxyemodin glucuronide and emodin sulfate) were observed,and what is more, the metabolite hydroxyemodin glucuronide was first reported in this article. For some metabolites, identification of their precise structure needs to be confirmed by other techniques such as the 1H and 13C NMR. (author)

  2. An Interspecies Signaling System Mediated by Fusaric Acid Has Parallel Effects on Antifungal Metabolite Production by Pseudomonas protegens Strain Pf-5 and Antibiosis of Fusarium spp.

    Science.gov (United States)

    Quecine, Maria Carolina; Kidarsa, Teresa A.; Goebel, Neal C.; Shaffer, Brenda T.; Henkels, Marcella D.; Zabriskie, T. Mark

    2015-01-01

    Pseudomonas protegens strain Pf-5 is a rhizosphere bacterium that suppresses soilborne plant diseases and produces at least seven different secondary metabolites with antifungal properties. We derived mutants of Pf-5 with single and multiple mutations in biosynthesis genes for seven antifungal metabolites: 2,4-diacetylphoroglucinol (DAPG), pyrrolnitrin, pyoluteorin, hydrogen cyanide, rhizoxin, orfamide A, and toxoflavin. These mutants were tested for inhibition of the pathogens Fusarium verticillioides and Fusarium oxysporum f. sp. pisi. Rhizoxin, pyrrolnitrin, and DAPG were found to be primarily responsible for fungal antagonism by Pf-5. Previously, other workers showed that the mycotoxin fusaric acid, which is produced by many Fusarium species, including F. verticillioides, inhibited the production of DAPG by Pseudomonas spp. In this study, amendment of culture media with fusaric acid decreased DAPG production, increased pyoluteorin production, and had no consistent influence on pyrrolnitrin or orfamide A production by Pf-5. Fusaric acid also altered the transcription of biosynthetic genes, indicating that the mycotoxin influenced antibiotic production by Pf-5 at the transcriptional level. Addition of fusaric acid to the culture medium reduced antibiosis of F. verticillioides by Pf-5 and derivative strains that produce DAPG but had no effect on antibiosis by Pf-5 derivatives that suppressed F. verticillioides due to pyrrolnitrin or rhizoxin production. Our results demonstrated the importance of three compounds, rhizoxin, pyrrolnitrin, and DAPG, in suppression of Fusarium spp. by Pf-5 and confirmed that an interspecies signaling system mediated by fusaric acid had parallel effects on antifungal metabolite production and antibiosis by the bacterial biological control organism. PMID:26655755

  3. Approach for detecting mutagenicity of biodegraded and ozonated pharmaceuticals, metabolites and transformation products from a drinking water perspective.

    Science.gov (United States)

    Gartiser, Stefan; Hafner, Christoph; Kronenberger-Schäfer, Kerstin; Happel, Oliver; Trautwein, Christoph; Kümmerer, Klaus

    2012-09-01

    Many pharmaceuticals and related metabolites are not efficiently removed in sewage treatment plants and enter into surface water. There, they might be subject of drinking water abstraction and treatment by ozonation. In this study, a systematic approach for producing and effect-based testing of transformation products (TPs) during the drinking water ozonation process is proposed. For this, two pharmaceutical parent substances, three metabolites and one environmental degradation product were investigated with respect to their biodegradability and fate during drinking water ozonation. The Ames test (TA98, TA100) was used for the identification of mutagenic activity present in the solutions after testing inherent biodegradability and/or after ozonation of the samples. Suspicious results were complemented with the umu test. Due to the low substrate concentration required for ozonation, all ozonated samples were concentrated via solid phase extraction (SPE) before performing the Ames test. With the exception of piracetam, all substances were only incompletely biodegradable, suggesting the formation of stable TPs. Metformin, piracetam and guanylurea could not be removed completely by the ozonation process. We received some evidence that technical TPs are formed by ozonation of metformin and piracetam, whereas all tested metabolites were not detectable by analytical means after ozonation. In the case of guanylurea, one ozonation TP was identified by LC/MS. None of the experiments showed an increase of mutagenic effects in the Ames test. However, the SPE concentration procedure might lead to false-positive results due to the generation of mutagenic artefacts or might lead to false-negative results by missing adequate recovery efficiency. Thus, these investigations should always be accompanied by process blank controls that are carried out along the whole ozonation and SPE procedure. The study presented here is a first attempt to investigate the significance of

  4. Epigenome targeting by probiotic metabolites

    Directory of Open Access Journals (Sweden)

    Licciardi Paul V

    2010-12-01

    Full Text Available Abstract Background The intestinal microbiota plays an important role in immune development and homeostasis. A disturbed microbiota during early infancy is associated with an increased risk of developing inflammatory and allergic diseases later in life. The mechanisms underlying these effects are poorly understood but are likely to involve alterations in microbial production of fermentation-derived metabolites, which have potent immune modulating properties and are required for maintenance of healthy mucosal immune responses. Probiotics are beneficial bacteria that have the capacity to alter the composition of bacterial species in the intestine that can in turn influence the production of fermentation-derived metabolites. Principal among these metabolites are the short-chain fatty acids butyrate and acetate that have potent anti-inflammatory activities important in regulating immune function at the intestinal mucosal surface. Therefore strategies aimed at restoring the microbiota profile may be effective in the prevention or treatment of allergic and inflammatory diseases. Presentation of the hypothesis Probiotic bacteria have diverse effects including altering microbiota composition, regulating epithelial cell barrier function and modulating of immune responses. The precise molecular mechanisms mediating these probiotic effects are not well understood. Short-chain fatty acids such as butyrate are a class of histone deacetylase inhibitors important in the epigenetic control of host cell responses. It is hypothesized that the biological function of probiotics may be a result of epigenetic modifications that may explain the wide range of effects observed. Studies delineating the effects of probiotics on short-chain fatty acid production and the epigenetic actions of short-chain fatty acids will assist in understanding the association between microbiota and allergic or autoimmune disorders. Testing the hypothesis We propose that treatment with

  5. Identification of a Classical Mutant in the Industrial Host Aspergillus niger by Systems Genetics: LaeA Is Required for Citric Acid Production and Regulates the Formation of Some Secondary Metabolites

    DEFF Research Database (Denmark)

    Niu, Jing; Arentshorst, Mark; Nair, P. Deepa S.

    2015-01-01

    could provide new insights into the transcriptional control mechanisms related to citric acid production in A. niger. Interestingly, the secondary metabolite profile of a ΔlaeA strain differed from the wild-type strain, showing both decreased and increased metabolite levels, indicating that LaeA is also...

  6. Towards systems metabolic engineering of streptomycetes for secondary metabolites production

    DEFF Research Database (Denmark)

    Robertsen, Helene Lunde; Weber, Tilmann; Kim, Hyun Uk

    2017-01-01

    Streptomycetes are known for their inherent ability to produce pharmaceutically relevant secondary metabolites. Discovery of medically useful, yet novel compounds has become a great challenge due to frequent rediscovery of known compounds and a consequent decline in the number of relevant clinical...

  7. New secondary metabolites of phenylbutyrate in humans and rats.

    Science.gov (United States)

    Kasumov, Takhar; Brunengraber, Laura L; Comte, Blandine; Puchowicz, Michelle A; Jobbins, Kathryn; Thomas, Katherine; David, France; Kinman, Renee; Wehrli, Suzanne; Dahms, William; Kerr, Douglas; Nissim, Itzhak; Brunengraber, Henri

    2004-01-01

    Phenylbutyrate is used to treat inborn errors of ureagenesis, malignancies, cystic fibrosis, and thalassemia. High-dose phenylbutyrate therapy results in toxicity, the mechanism of which is unexplained. The known metabolites of phenylbutyrate are phenylacetate, phenylacetylglutamine, and phenylbutyrylglutamine. These are excreted in urine, accounting for a variable fraction of the dose. We identified new metabolites of phenylbutyrate in urine of normal humans and in perfused rat livers. These metabolites result from interference between the metabolism of phenylbutyrate and that of carbohydrates and lipids. The new metabolites fall into two categories, glucuronides and phenylbutyrate beta-oxidation side products. Two questions are raised by these data. First, is the nitrogen-excreting potential of phenylbutyrate diminished by ingestion of carbohydrates or lipids? Second, does competition between the metabolism of phenylbutyrate, carbohydrates, and lipids alter the profile of phenylbutyrate metabolites? Finally, we synthesized glycerol esters of phenylbutyrate. These are partially bioavailable in rats and could be used to administer large doses of phenylbutyrate in a sodium-free, noncaustic form.

  8. Uncovering Potential Applications of Cyanobacteria and Algal Metabolites in Biology, Agriculture and Medicine: Current Status and Future Prospects

    Science.gov (United States)

    Singh, Rachana; Parihar, Parul; Singh, Madhulika; Bajguz, Andrzej; Kumar, Jitendra; Singh, Samiksha; Singh, Vijay P.; Prasad, Sheo M.

    2017-01-01

    Cyanobacteria and algae having complex photosynthetic systems can channelize absorbed solar energy into other forms of energy for production of food and metabolites. In addition, they are promising biocatalysts and can be used in the field of “white biotechnology” for enhancing the sustainable production of food, metabolites, and green energy sources such as biodiesel. In this review, an endeavor has been made to uncover the significance of various metabolites like phenolics, phytoene/terpenoids, phytols, sterols, free fatty acids, photoprotective compounds (MAAs, scytonemin, carotenoids, polysaccharides, halogenated compounds, etc.), phytohormones, cyanotoxins, biocides (algaecides, herbicides, and insecticides) etc. Apart from this, the importance of these metabolites as antibiotics, immunosuppressant, anticancer, antiviral, anti-inflammatory agent has also been discussed. Metabolites obtained from cyanobacteria and algae have several biotechnological, industrial, pharmaceutical, and cosmetic uses which have also been discussed in this review along with the emerging technology of their harvesting for enhancing the production of compounds like bioethanol, biofuel etc. at commercial level. In later sections, we have discussed genetically modified organisms and metabolite production from them. We have also briefly discussed the concept of bioprocessing highlighting the functioning of companies engaged in metabolites production as well as their cost effectiveness and challenges that are being addressed by these companies. PMID:28487674

  9. Uncovering Potential Applications of Cyanobacteria and Algal Metabolites in Biology, Agriculture and Medicine: Current Status and Future Prospects

    Directory of Open Access Journals (Sweden)

    Vijay P. Singh

    2017-04-01

    Full Text Available Cyanobacteria and algae having complex photosynthetic systems can channelize absorbed solar energy into other forms of energy for production of food and metabolites. In addition, they are promising biocatalysts and can be used in the field of “white biotechnology” for enhancing the sustainable production of food, metabolites, and green energy sources such as biodiesel. In this review, an endeavor has been made to uncover the significance of various metabolites like phenolics, phytoene/terpenoids, phytols, sterols, free fatty acids, photoprotective compounds (MAAs, scytonemin, carotenoids, polysaccharides, halogenated compounds, etc., phytohormones, cyanotoxins, biocides (algaecides, herbicides, and insecticides etc. Apart from this, the importance of these metabolites as antibiotics, immunosuppressant, anticancer, antiviral, anti-inflammatory agent has also been discussed. Metabolites obtained from cyanobacteria and algae have several biotechnological, industrial, pharmaceutical, and cosmetic uses which have also been discussed in this review along with the emerging technology of their harvesting for enhancing the production of compounds like bioethanol, biofuel etc. at commercial level. In later sections, we have discussed genetically modified organisms and metabolite production from them. We have also briefly discussed the concept of bioprocessing highlighting the functioning of companies engaged in metabolites production as well as their cost effectiveness and challenges that are being addressed by these companies.

  10. Pathway elucidation and metabolic engineering of specialized plant metabolites

    DEFF Research Database (Denmark)

    Salomonsen, Bo

    A worldwide need to liberate ourselves from unsustainable petrochemicals has led to numerous metabolic engineering projects, mostly carried out in microbial hosts. Using systems biology for predicting and altering the metabolism of microorganisms towards production of a desired metabolite......, these projects have increased revenues on fermentative production of several biochemicals. The use of systems biology is, however, not limited to microorganisms. Recent advances in biotechnology methods have provided a wealth of data within functional genomics, metabolomics, transcriptomics, proteomics...... and fluxomics for a considerable number of organisms. Unfortunately, transferring the wealth of data to valuable information for metabolic engineering purposes is a non-obvious task. This PhD thesis describes a palate of tools used in generation of cell factories for production of specialized plant metabolites...

  11. Increased metabolite production by deletion of an HDA1-type histone deacetylase in the phytopathogenic fungi, Magnaporthe oryzae (Pyricularia oryzae) and Fusarium asiaticum.

    Science.gov (United States)

    Maeda, K; Izawa, M; Nakajima, Y; Jin, Q; Hirose, T; Nakamura, T; Koshino, H; Kanamaru, K; Ohsato, S; Kamakura, T; Kobayashi, T; Yoshida, M; Kimura, M

    2017-11-01

    Histone deacetylases (HDACs) play an important role in the regulation of chromatin structure and gene expression. We found that dark pigmentation of Magnaporthe oryzae (anamorph Pyricularia oryzae) ΔMohda1, a mutant strain in which an orthologue of the yeast HDA1 was disrupted by double cross-over homologous recombination, was significantly stimulated in liquid culture. Analysis of metabolites in a ΔMohda1 mutant culture revealed that the accumulation of shunt products of the 1,8-dihydroxynaphthalene melanin and ergosterol pathways were significantly enhanced compared to the wild-type strain. Northern blot analysis of the ΔMohda1 mutant revealed transcriptional activation of three melanin genes that are dispersed throughout the genome of M. oryzae. The effect of deletion of the yeast HDA1 orthologue was also observed in Fusarium asiaticum from the Fusarium graminearum species complex; the HDF2 deletion mutant produced increased levels of nivalenol-type trichothecenes. These results suggest that histone modification via HDA1-type HDAC regulates the production of natural products in filamentous fungi. Natural products of fungi have significant impacts on human welfare, in both detrimental and beneficial ways. Although HDA1-type histone deacetylase is not essential for vegetative growth, deletion of the gene affects the expression of clustered secondary metabolite genes in some fungi. Here, we report that such phenomena are also observed in physically unlinked genes required for melanin biosynthesis in the rice blast fungus. In addition, production of Fusarium trichothecenes, previously reported to be unaffected by HDA1 deletion, was significantly upregulated in another Fusarium species. Thus, the HDA1-inactivation strategy may be regarded as a general approach for overproduction and/or discovery of fungal metabolites. © 2017 The Society for Applied Microbiology.

  12. Characterization of Urinary Phthalate Metabolites Among Custodians

    Science.gov (United States)

    Cavallari, Jennifer M.; Simcox, Nancy J.; Wakai, Sara; Lu, Chensheng; Garza, Jennifer L.; Cherniack, Martin

    2015-01-01

    Phthalates, a ubiquitous class of chemicals found in consumer, personal care, and cleaning products, have been linked to adverse health effects. Our goal was to characterize urinary phthalate metabolite concentrations and to identify work and nonwork sources among custodians using traditional cleaning chemicals and ‘green’ or environmentally preferable products (EPP). Sixty-eight custodians provided four urine samples on a workday (first void, before shift, end of shift, and before bedtime) and trained observers recorded cleaning tasks and types of products used (traditional, EPP, or disinfectant) hourly over the work shifts. Questionnaires were used to assess personal care product use. Four different phthalate metabolites [monoethyl phthalate (MEP), monomethyl phthalate (MMP), mono (2-ethylhexyl) phthalate (MEHP), and monobenzyl phthalate (MBzP)] were quantified using liquid chromatography mass spectrometry. Geometric means (GM) and 95% confidence intervals (95% CI) were calculated for creatinine-adjusted urinary phthalate concentrations. Mixed effects univariate and multivariate modeling, using a random intercept for each individual, was performed to identify predictors of phthalate metabolites including demographics, workplace factors, and personal care product use. Creatinine-adjusted urinary concentrations [GM (95% CI)] of MEP, MMP, MEHP, and MBzP were 107 (91.0–126), 2.69 (2.18–3.30), 6.93 (6.00–7.99), 8.79 (7.84–9.86) µg g−1, respectively. An increasing trend in phthalate concentrations from before to after shift was not observed. Creatinine-adjusted urinary MEP was significantly associated with frequency of traditional cleaning chemical intensity in the multivariate model after adjusting for potential confounding by demographics, workplace factors, and personal care product use. While numerous demographics, workplace factors, and personal care products were statistically significant univariate predictors of MMP, MEHP, and MBzP, few

  13. Human metabolites of brevetoxin PbTx-2: Identification and confirmation of structure

    Science.gov (United States)

    Guo, Fujiang; An, Tianying; Rein, Kathleen S.

    2010-01-01

    Four metabolites were identified upon incubation of brevetoxin (PbTx-2) with human liver microsomes. Chemical transformation of PbTx-2 confirmed the structures of three known metabolites BTX-B5, PbTx-9 and 41, 43-dihydro-BTX-B5 and a previously unknown metabolite, 41, 43-dihydro-PbTx-2. These metabolites were also observed upon incubation of PbTx-2 with nine human recombinant cytochrome P450s (1A1, 1A2, 2C8, 2C9, 2C19, 2D6, 2E1, 3A4 and 3A5). Cytochrome P450 3A4 produced oxidized metabolites while other CYPs generated the reduced products. PMID:20600229

  14. An Interspecies Signaling System Mediated by Fusaric Acid Has Parallel Effects on Antifungal Metabolite Production by Pseudomonas protegens Strain Pf-5 and Antibiosis of Fusarium spp.

    Science.gov (United States)

    Quecine, Maria Carolina; Kidarsa, Teresa A; Goebel, Neal C; Shaffer, Brenda T; Henkels, Marcella D; Zabriskie, T Mark; Loper, Joyce E

    2015-12-11

    Pseudomonas protegens strain Pf-5 is a rhizosphere bacterium that suppresses soilborne plant diseases and produces at least seven different secondary metabolites with antifungal properties. We derived mutants of Pf-5 with single and multiple mutations in biosynthesis genes for seven antifungal metabolites: 2,4-diacetylphoroglucinol (DAPG), pyrrolnitrin, pyoluteorin, hydrogen cyanide, rhizoxin, orfamide A, and toxoflavin. These mutants were tested for inhibition of the pathogens Fusarium verticillioides and Fusarium oxysporum f. sp. pisi. Rhizoxin, pyrrolnitrin, and DAPG were found to be primarily responsible for fungal antagonism by Pf-5. Previously, other workers showed that the mycotoxin fusaric acid, which is produced by many Fusarium species, including F. verticillioides, inhibited the production of DAPG by Pseudomonas spp. In this study, amendment of culture media with fusaric acid decreased DAPG production, increased pyoluteorin production, and had no consistent influence on pyrrolnitrin or orfamide A production by Pf-5. Fusaric acid also altered the transcription of biosynthetic genes, indicating that the mycotoxin influenced antibiotic production by Pf-5 at the transcriptional level. Addition of fusaric acid to the culture medium reduced antibiosis of F. verticillioides by Pf-5 and derivative strains that produce DAPG but had no effect on antibiosis by Pf-5 derivatives that suppressed F. verticillioides due to pyrrolnitrin or rhizoxin production. Our results demonstrated the importance of three compounds, rhizoxin, pyrrolnitrin, and DAPG, in suppression of Fusarium spp. by Pf-5 and confirmed that an interspecies signaling system mediated by fusaric acid had parallel effects on antifungal metabolite production and antibiosis by the bacterial biological control organism. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  15. Bioreactor design and implementation strategies for the cultivation of filamentous fungi and the production of fungal metabolites: from traditional methods to engineered systems

    Directory of Open Access Journals (Sweden)

    Musoni, M.

    2015-01-01

    Full Text Available The production of fungal metabolites and conidia at an industrial scale requires an adequate yield at relatively low cost. To this end, many factors are examined and the design of the bioreactor to be used for the selected product takes a predominant place in the analysis. One approach to addressing the issue is to integrate the scaling-up procedure according to the biological characteristics of the microorganism considered, i.e. in our case filamentous fungi. Indeed, the scaling-up procedure is considered as one of the major bottlenecks in fermentation technology, mainly due to the near impossibility of reproducing the ideal conditions obtained in small reactors designed for research purposes when transposing them to a much larger production scale. The present review seeks to make the point regarding the bioreactor design and its implementation for cultivation of filamentous fungi and the production of fungal metabolites according to different developmental stages of fungi of industrial interest. Solid-state (semi-solid, submerged, fermentation and biofilm reactors are analyzed. The different bioreactor designs used for these three processes are also described at the technological level.

  16. A Novel Fungal Metabolite with Beneficial Properties for Agricultural Applications

    Directory of Open Access Journals (Sweden)

    Francesco Vinale

    2014-07-01

    Full Text Available Trichoderma are ubiquitous soil fungi that include species widely used as biocontrol agents in agriculture. Many isolates are known to secrete several secondary metabolites with different biological activities towards plants and other microbes. Harzianic acid (HA is a T. harzianum metabolite able to promote plant growth and strongly bind iron. In this work, we isolated from the culture filtrate of a T. harzianum strain a new metabolite, named isoharzianic acid (iso-HA, a stereoisomer of HA. The structure and absolute configuration of this compound has been determined by spectroscopic methods, including UV-Vis, MS, 1D and 2D NMR analyses. In vitro applications of iso-HA inhibited the mycelium radial growth of Sclerotinia sclerotiorum and Rhizoctonia solani. Moreover, iso HA improved the germination of tomato seeds and induced disease resistance. HPLC-DAD experiments showed that the production of HA and iso HA was affected by the presence of plant tissue in the liquid medium. In particular, tomato tissue elicited the production of HA but negatively modulated the biosynthesis of its analogue iso-HA, suggesting that different forms of the same Trichoderma secondary metabolite have specific roles in the molecular mechanism regulating the Trichoderma plant interaction.

  17. A novel fungal metabolite with beneficial properties for agricultural applications.

    Science.gov (United States)

    Vinale, Francesco; Manganiello, Gelsomina; Nigro, Marco; Mazzei, Pierluigi; Piccolo, Alessandro; Pascale, Alberto; Ruocco, Michelina; Marra, Roberta; Lombardi, Nadia; Lanzuise, Stefania; Varlese, Rosaria; Cavallo, Pierpaolo; Lorito, Matteo; Woo, Sheridan L

    2014-07-08

    Trichoderma are ubiquitous soil fungi that include species widely used as biocontrol agents in agriculture. Many isolates are known to secrete several secondary metabolites with different biological activities towards plants and other microbes. Harzianic acid (HA) is a T. harzianum metabolite able to promote plant growth and strongly bind iron. In this work, we isolated from the culture filtrate of a T. harzianum strain a new metabolite, named isoharzianic acid (iso-HA), a stereoisomer of HA. The structure and absolute configuration of this compound has been determined by spectroscopic methods, including UV-Vis, MS, 1D and 2D NMR analyses. In vitro applications of iso-HA inhibited the mycelium radial growth of Sclerotinia sclerotiorum and Rhizoctonia solani. Moreover, iso HA improved the germination of tomato seeds and induced disease resistance. HPLC-DAD experiments showed that the production of HA and iso HA was affected by the presence of plant tissue in the liquid medium. In particular, tomato tissue elicited the production of HA but negatively modulated the biosynthesis of its analogue iso-HA, suggesting that different forms of the same Trichoderma secondary metabolite have specific roles in the molecular mechanism regulating the Trichoderma plant interaction.

  18. Streptopyrrole: An antimicrobial metabolite from Streptomyces armeniacus

    DEFF Research Database (Denmark)

    Breinholt, J.; Gürtler, Hanne; Kjær, Anders

    1998-01-01

    A colourless, crystalline metabolite, C14H12ClNO4, named streptopyrrole, has been isolated from submerged fermentation cultures of Streptomyces armeniacus by extraction, followed by chromatographic purification. Its tricyclic molecular framework, seemingly without natural product precedents. as w...

  19. Photosynthetic induction in a C4, Flaveria trinervia. I. Initial products of 14CO2 assimilation and levels of whole leaf C4 metabolites

    International Nuclear Information System (INIS)

    Moore, B.D.; Edwards, G.E.

    1986-01-01

    Labeling patterns from 14 CO 2 pulses to leaves and whole leaf metabolite contents were examined during photosynthetic induction in Flaveria trinervia, a C 4 dicot of the NADP-malic enzyme subgroup. During the first one to two minutes of illumination, malate was the primary initial product of 14 CO 2 assimilation (about 77% of total 14 C incorporated). After about 5 minutes of illumination, the proportion of initial label to aspartate increased from 16 to 66%, and then gradually declined during the following 7 to 10 minutes of illumination. Nutrition experiments showed that the increase in 14 CO 2 partitioning to aspartate was delayed about 2.5 minutes in plants grown with limiting N, and was highly dampened in plants previously treated 10 to 12 days with ammonia as the sole N source. Measurements of C 4 leaf metabolites revealed several transients in metabolite pools during the first few minutes of illumination, and subsequently, more gradual adjustments in pool sizes. These include a large initial decrease in malate (about 1.6 micromoles per milligram chlorophyll) and a small initial decrease in pyruvate. There was a transient increase in alanine levels after 1 minute of illumination, which was followed by a gradual, prolonged decrease during the remainder of the induction period. Total leaf aspartate decreased initially, but temporarily doubled in amount between 5 and 10 minutes of illumination (after its surge as a primary product). These results are discussed in terms of a plausible sequence of metabolic events which lead to the formation of the intercellular metabolite gradients required in C 4 photosynthesis

  20. Spatial mapping of lichen specialized metabolites using LDI-MSI: chemical ecology issues for Ophioparma ventosa

    OpenAIRE

    Legouin, Béatrice; Geairon, Audrey; Rogniaux, Hélène; Lohezic-Le Devehat, Francoise; Obermayer, Walter

    2016-01-01

    Imaging mass spectrometry techniques have become a powerful strategy to assess the spatial distribution of metabolites in biological systems. Based on auto-ionisability of lichen metabolites using LDI-MS, we herein image the distribution of major secondary metabolites (specialized metabolites) from the lichen Ophioparma ventosa by LDI-MSI (Mass Spectrometry Imaging). Such technologies offer tremendous opportunities to discuss the role of natural products through spatial mapping, their distrib...

  1. Secondary metabolites from Scorzonera latifolia roots

    Czech Academy of Sciences Publication Activity Database

    Acikara, O. B.; Šmejkal, K.; Cvačka, Josef; Buděšínský, Miloš; Dračínský, Martin; Saltan, G.

    2015-01-01

    Roč. 81, č. 16 (2015), PM167 ISSN 0032-0943. [GA 2015. International Congress and Annual Meeting of the Society for Medicinal Plant and Natural Product Research /63./. 23.08.2015-27.08.2015, Budapest] Institutional support: RVO:61388963 Keywords : medical plant * metabolites * Asteraceae Subject RIV: CB - Analytical Chemistry, Separation

  2. Correlation of different spectral lights with biomass accumulation and production of antioxidant secondary metabolites in callus cultures of medicinally important Prunella vulgaris L.

    Science.gov (United States)

    Fazal, Hina; Abbasi, Bilal Haider; Ahmad, Nisar; Ali, Syed Shujait; Akbar, Fazal; Kanwal, Farina

    2016-06-01

    Light is one of the key elicitors that directly fluctuates plant developmental processes and biosynthesis of secondary metabolites. In this study, the effects of various spectral lights on biomass accumulation and production of antioxidant secondary metabolites in callus cultures of Prunella vulgaris were investigated. Among different spectral lights, green light induced the maximum callogenic response (95%). Enhanced fresh biomass accumulation was observed in log phases on day-35, when callus cultures were exposed to yellow and violet lights. Yellow light induced maximum biomass accumulation (3.67g/100ml) from leaf explants as compared to control (1.27g/100ml). In contrast, violet lights enhanced biomass accumulation (3.49g/100ml) from petiole explant. Maximum total phenolics content (TPC; 23.9mg/g-DW) and total flavonoids content (TFC; 1.65mg/g-DW) were observed when cultures were grown under blue lights. In contrast, green and yellow lights enhanced total phenolics production (TPP; 112.52g/100ml) and total flavonoids production (TFP; 9.64g/100ml) as compared to control. The calli grown under green, red and blue lights enhanced DPPH-free radical scavenging activity (DFRSA; 91.3%, 93.1% and 93%) than control (56.44%) respectively. The DFRSA was correlated either with TPC and TFC or TPP and TFP. Furthermore, yellow lights enhanced superoxide dismutase (SOD), peroxidase (POD) and protease activities, however, the content of total protein (CTP) was higher in control cultures (186μg BSAE/mg FW) as compared to spectral lights. These results suggest that the exposure of callus cultures to various spectral lights have shown a key role in biomass accumulation and production of antioxidant secondary metabolites. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. A new paradigm for known metabolite identification in metabonomics/metabolomics: metabolite identification efficiency.

    Science.gov (United States)

    Everett, Jeremy R

    2015-01-01

    A new paradigm is proposed for assessing confidence in the identification of known metabolites in metabonomics studies using NMR spectroscopy approaches. This new paradigm is based upon the analysis of the amount of metabolite identification information retrieved from NMR spectra relative to the molecular size of the metabolite. Several new indices are proposed including: metabolite identification efficiency (MIE) and metabolite identification carbon efficiency (MICE), both of which can be easily calculated. These indices, together with some guidelines, can be used to provide a better indication of known metabolite identification confidence in metabonomics studies than existing methods. Since known metabolite identification in untargeted metabonomics studies is one of the key bottlenecks facing the science currently, it is hoped that these concepts based on molecular spectroscopic informatics, will find utility in the field.

  4. A New Paradigm for Known Metabolite Identification in Metabonomics/Metabolomics: Metabolite Identification Efficiency

    Directory of Open Access Journals (Sweden)

    Jeremy R. Everett

    2015-01-01

    Full Text Available A new paradigm is proposed for assessing confidence in the identification of known metabolites in metabonomics studies using NMR spectroscopy approaches. This new paradigm is based upon the analysis of the amount of metabolite identification information retrieved from NMR spectra relative to the molecular size of the metabolite. Several new indices are proposed including: metabolite identification efficiency (MIE and metabolite identification carbon efficiency (MICE, both of which can be easily calculated. These indices, together with some guidelines, can be used to provide a better indication of known metabolite identification confidence in metabonomics studies than existing methods. Since known metabolite identification in untargeted metabonomics studies is one of the key bottlenecks facing the science currently, it is hoped that these concepts based on molecular spectroscopic informatics, will find utility in the field.

  5. Engineering of secondary metabolite production in streptomycetes

    DEFF Research Database (Denmark)

    Robertsen, Helene Lunde; Gram, Lone

    Streptomycetes are known for their ability to produce a range of different secondary metabolites, including antibiotics, immunosuppressive, anti-fungals, and anti-cancer compounds. Of these compounds, antibiotics play an important role in the clinics for treatment of both mild and severe bacterial...... the computational prediction of suitable 20 bp protospacers for the single guide RNAs and a USER-cloning method for construction of the CRISPR plasmids. Additional improvement to the system was achieved through the development of an optimised USER assembly workflow for cheaper and faster plasmid construction....... The workflow was verified by manual knock-down of two biosynthetic gene clusters in model organism Streptomyces coelicolor A3(2), which confirmed the applicability of the system. A second part of the thesis was devoted to engineering of Streptomyces collinus Tü 365, which is a known producer of the narrow...

  6. Exometabolomic Analysis of Cross-Feeding Metabolites.

    Science.gov (United States)

    Lubbe, Andrea; Bowen, Benjamin P; Northen, Trent

    2017-10-04

    Microbial consortia have the potential to perform complex, industrially important tasks. The design of microbial consortia requires knowledge of the substrate preferences and metabolic outputs of each member, to allow understanding of potential interactions such as competition and beneficial metabolic exchange. Here, we used exometabolite profiling to follow the resource processing by a microbial co-culture of two biotechnologically relevant microbes, the bacterial cellulose degrader Cellulomonas fimi, and the oleaginous yeast Yarrowia lipolytica. We characterized the substrate preferences of the two strains on compounds typically found in lignocellulose hydrolysates. This allowed prediction that specific sugars resulting from hemicellulose polysaccharide degradation by C. fimi may serve as a cross-feeding metabolites to Y. lipolytica in co-culture. We also showed that products of ionic liquid-treated switchgrass lignocellulose degradation by C. fimi were channeled to Y. lipolytica in a co-culture. Additionally, we observed metabolites, such as shikimic acid accumulating in the co-culture supernatants, suggesting the potential for producing interesting co-products. Insights gained from characterizing the exometabolite profiles of individual and co-cultures of the two strains can help to refine this interaction, and guide strategies for making this an industrially viable co-culture to produce valuable products from lignocellulose material.

  7. Rewiring a secondary metabolite pathway towards itaconic acid production in Aspergillus niger.

    Science.gov (United States)

    Hossain, Abeer H; Li, An; Brickwedde, Anja; Wilms, Lars; Caspers, Martien; Overkamp, Karin; Punt, Peter J

    2016-07-28

    The industrially relevant filamentous fungus Aspergillus niger is widely used in industry for its secretion capabilities of enzymes and organic acids. Biotechnologically produced organic acids promise to be an attractive alternative for the chemical industry to replace petrochemicals. Itaconic acid (IA) has been identified as one of the top twelve building block chemicals which have high potential to be produced by biotechnological means. The IA biosynthesis cluster (cadA, mttA and mfsA) has been elucidated in its natural producer Aspergillus terreus and transferred to A. niger to enable IA production. Here we report the rewiring of a secondary metabolite pathway towards further improved IA production through the overexpression of a putative cytosolic citrate synthase citB in a A. niger strain carrying the IA biosynthesis cluster. We have previously shown that expression of cadA from A. terreus results in itaconic acid production in A. niger AB1.13, albeit at low levels. This low-level production is boosted fivefold by the overexpression of mttA and mfsA in itaconic acid producing AB1.13 CAD background strains. Controlled batch cultivations with AB1.13 CAD + MFS + MTT strains showed increased production of itaconic acid compared with AB1.13 CAD strain. Moreover, preliminary RNA-Seq analysis of an itaconic acid producing AB1.13 CAD strain has led to the identification of the putative cytosolic citrate synthase citB which was induced in an IA producing strain. We have overexpressed citB in a AB1.13 CAD + MFS + MTT strain and by doing so hypothesize to have targeted itaconic acid production to the cytosolic compartment. By overexpressing citB in AB1.13 CAD + MFS + MTT strains in controlled batch cultivations we have achieved highly increased titers of up to 26.2 g/L IA with a productivity of 0.35 g/L/h while no CA was produced. Expression of the IA biosynthesis cluster in Aspergillus niger AB1.13 strain enables IA production. Moreover, in the AB1.13 CAD

  8. Light-induced biochemical variations in secondary metabolite production and antioxidant activity in callus cultures of Stevia rebaudiana (Bert).

    Science.gov (United States)

    Ahmad, Naveed; Rab, Abdur; Ahmad, Nisar

    2016-01-01

    Stevia rebaudiana (S. rebaudiana) is a very important species with worldwide medicinal and commercial uses. Light is one of the major elicitors that fluctuate morphogenic potential and biochemical responses. In the present study, we investigated the effect of various spectral lights on biomass accumulation and secondary metabolite production in callus cultures of S. rebaudiana. Leaf explants were placed on Murashige and Skoog (MS) medium and exposed to various spectral lights. 6-Benzyle adenine (BA) and 2, 4-dichlorophenoxy acetic acid (2, 4-D; 2.0 mgl(-1)) were used for callus induction. The control light (16/8h) produced optimum callogenic response (92.73%) than other colored lights. Compared to other colored lights, control grown cultures displayed maximum biomass accumulation (5.78 gl(-1)) during a prolonged log phase at the 18th day of growth kinetics. Cultures grown under blue light enhanced total phenolic content (TPC; 102.32 μg/g DW), total flavonoid content (TFC; 22.07 μg/g DW) and total antioxidant capacity (TAC; 11.63 μg/g DW). On the contrary, green and red lights improved reducing power assay (RPA; 0.71Fe(II)g(-1) DW) and DPPH-radical scavenging activity (DRSA; 80%). Herein, we concluded that the utilization of colored lights is a promising strategy for enhanced production of antioxidant secondary metabolites in callus cultures of S. rebaudiana. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Diversity of secondary metabolites from Genus Artocarpus (Moraceae

    Directory of Open Access Journals (Sweden)

    ALIEFMAN HAKIM

    2010-11-01

    Full Text Available Hakim A. 2010. The diversity of secondary metabolites from Genus Artocarpus (Moraceae. Nusantara Bioscience 2:146-156. Several species of the Artocarpus genus (Moraceae have been investigated their natural product. The secondary metabolites successfully being isolatad from Artocarpus genus consist of terpenoid, flavonoids, stilbenoid, arylbenzofuran, neolignan, and adduct Diels-Alder. Flavonoid group represent the compound which is the most found from Artocarpus plant. The flavonoids compound which are successfully isolated from Artocarpus plant consist of the varied frameworks like chalcone, flavanone, flavan-3-ol, simple flavone, prenylflavone, oxepinoflavone, pyranoflavone, dihydrobenzoxanthone, furanodihydrobenzoxanthone, pyranodihydrobenzoxanthone, quinonoxanthone, cyclopentenoxanthone, xanthonolide, dihydroxanthone.

  10. Microbial Metabolite Production for Accelerated Metal and Radionuclide Bioremediation (Microbial Metabolite Production Report)

    International Nuclear Information System (INIS)

    TURICK, CHARLES

    2004-01-01

    Biogeochemical activity is an ongoing and dynamic process due to bacterial activity in the subsurface. Bacteria contribute significantly to biotransformation of metals and radionuclides. As basic science reveals more information about specific mechanisms of bacterial-metal reduction, an even greater contribution of bacteria to biogeochemical activities is realized. An understanding and application of the mechanisms of metal and radionuclide reduction offers tremendous potential for development into bioremedial processes and technologies. Most bacteria are capable of biogeochemical transformation as a result of meeting nutrient requirements. These assimilatory mechanisms for metals transformation include production of small molecules that serve as electron shuttles for metal reduction. This contribution to biogeochemistry is small however due to only trace requirements for minerals by bacteria. Dissimilatory metal reducing bacteria (DMRB) reduce oxidized metals and insoluble mineral oxides as a means for biological energy production during growth. These types of bacteria offer considerable potential for bioremediation of environments contaminated with toxic metals and radionuclides because of the relatively large amount of metal biotransformation they require for growth. One of the mechanisms employed by some DMRB for electron transfer to insoluble metal oxides is melanin production. The electrochemical properties of melanin provide this polymeric, humic-type compound with electron shuttling properties. Melanin, specifically, pyomelanin, increases the rate and degree of metal reduction in DMRB as a function of pyomelanin concentration. Due to its electron shuttling behavior, only low femtogram quantities per cell are required to significantly increase metal reduction capacity of DMRB. Melanin production is not limited to DMRB. In fact melanin is one of the most common pigments produced by biological systems. Numerous soil microorganisms produce melanin, contributing

  11. Biologically Active Metabolites Synthesized by Microalgae

    Directory of Open Access Journals (Sweden)

    Michele Greque de Morais

    2015-01-01

    Full Text Available Microalgae are microorganisms that have different morphological, physiological, and genetic traits that confer the ability to produce different biologically active metabolites. Microalgal biotechnology has become a subject of study for various fields, due to the varied bioproducts that can be obtained from these microorganisms. When microalgal cultivation processes are better understood, microalgae can become an environmentally friendly and economically viable source of compounds of interest, because production can be optimized in a controlled culture. The bioactive compounds derived from microalgae have anti-inflammatory, antimicrobial, and antioxidant activities, among others. Furthermore, these microorganisms have the ability to promote health and reduce the risk of the development of degenerative diseases. In this context, the aim of this review is to discuss bioactive metabolites produced by microalgae for possible applications in the life sciences.

  12. Genomics-guided discovery of secondary metabolites and their regulation in Pseudomonas protegens Pf-5

    Science.gov (United States)

    Pseudomonas protegens strain Pf-5 is a well-characterized rhizosphere bacterium known for its production of a diverse spectrum of secondary metabolites and its capacity to suppress plant diseases caused by soilborne fungal, bacterial and oomycete pathogens. Metabolites produced by Pf-5 include 2,4-...

  13. Untargeted metabolomics of colonic digests reveals kynurenine pathway metabolites, dityrosine and 3-dehydroxycarnitine as red versus white meat discriminating metabolites

    Science.gov (United States)

    Rombouts, Caroline; Hemeryck, Lieselot Y.; Van Hecke, Thomas; De Smet, Stefaan; De Vos, Winnok H.; Vanhaecke, Lynn

    2017-01-01

    Epidemiological research has demonstrated that the consumption of red meat is an important risk factor for the development of colorectal cancer (CRC), diabetes mellitus and cardiovascular diseases. However, there is no holistic insight in the (by-) products of meat digestion that may contribute to disease development. To address this hiatus, an untargeted mass spectrometry (MS)-based metabolomics approach was used to create red versus white meat associated metabolic fingerprints following in vitro colonic digestion using the fecal inocula of ten healthy volunteers. Twenty-two metabolites were unequivocally associated with simulated colonic digestion of red meat. Several of these metabolites could mechanistically be linked to red meat-associated pathways including N’-formylkynurenine, kynurenine and kynurenic acid (all involved in tryptophan metabolism), the oxidative stress marker dityrosine, and 3-dehydroxycarnitine. In conclusion, the used MS-based metabolomics platform proved to be a powerful platform for detection of specific metabolites that improve the understanding of the causal relationship between red meat consumption and associated diseases. PMID:28195169

  14. Identification of a Classical Mutant in the Industrial Host Aspergillus niger by Systems Genetics: LaeA Is Required for Citric Acid Production and Regulates the Formation of Some Secondary Metabolites

    Directory of Open Access Journals (Sweden)

    Jing Niu

    2016-01-01

    Full Text Available The asexual filamentous fungus Aspergillus niger is an important industrial cell factory for citric acid production. In this study, we genetically characterized a UV-generated A. niger mutant that was originally isolated as a nonacidifying mutant, which is a desirable trait for industrial enzyme production. Physiological analysis showed that this mutant did not secrete large amounts of citric acid and oxalic acid, thus explaining the nonacidifying phenotype. As traditional complementation approaches to characterize the mutant genotype were unsuccessful, we used bulk segregant analysis in combination with high-throughput genome sequencing to identify the mutation responsible for the nonacidifying phenotype. Since A. niger has no sexual cycle, parasexual genetics was used to generate haploid segregants derived from diploids by loss of whole chromosomes. We found that the nonacidifying phenotype was caused by a point mutation in the laeA gene. LaeA encodes a putative methyltransferase-domain protein, which we show here to be required for citric acid production in an A. niger lab strain (N402 and in other citric acid production strains. The unexpected link between LaeA and citric acid production could provide new insights into the transcriptional control mechanisms related to citric acid production in A. niger. Interestingly, the secondary metabolite profile of a ΔlaeA strain differed from the wild-type strain, showing both decreased and increased metabolite levels, indicating that LaeA is also involved in regulating the production of secondary metabolites. Finally, we show that our systems genetics approach is a powerful tool to identify trait mutations.

  15. Identification of a Classical Mutant in the Industrial Host Aspergillus niger by Systems Genetics: LaeA Is Required for Citric Acid Production and Regulates the Formation of Some Secondary Metabolites.

    Science.gov (United States)

    Niu, Jing; Arentshorst, Mark; Nair, P Deepa S; Dai, Ziyu; Baker, Scott E; Frisvad, Jens C; Nielsen, Kristian F; Punt, Peter J; Ram, Arthur F J

    2015-11-13

    The asexual filamentous fungus Aspergillus niger is an important industrial cell factory for citric acid production. In this study, we genetically characterized a UV-generated A. niger mutant that was originally isolated as a nonacidifying mutant, which is a desirable trait for industrial enzyme production. Physiological analysis showed that this mutant did not secrete large amounts of citric acid and oxalic acid, thus explaining the nonacidifying phenotype. As traditional complementation approaches to characterize the mutant genotype were unsuccessful, we used bulk segregant analysis in combination with high-throughput genome sequencing to identify the mutation responsible for the nonacidifying phenotype. Since A. niger has no sexual cycle, parasexual genetics was used to generate haploid segregants derived from diploids by loss of whole chromosomes. We found that the nonacidifying phenotype was caused by a point mutation in the laeA gene. LaeA encodes a putative methyltransferase-domain protein, which we show here to be required for citric acid production in an A. niger lab strain (N402) and in other citric acid production strains. The unexpected link between LaeA and citric acid production could provide new insights into the transcriptional control mechanisms related to citric acid production in A. niger. Interestingly, the secondary metabolite profile of a ΔlaeA strain differed from the wild-type strain, showing both decreased and increased metabolite levels, indicating that LaeA is also involved in regulating the production of secondary metabolites. Finally, we show that our systems genetics approach is a powerful tool to identify trait mutations. Copyright © 2016 Niu et al.

  16. Metabolites from inhalation of aerosolized S-8 synthetic jet fuel in rats.

    Science.gov (United States)

    Tremblay, Raphael T; Martin, Sheppard A; Fisher, Jeffrey W

    2011-01-01

    Alternative fuels are being considered for civilian and military uses. One of these is S-8, a replacement jet fuel synthesized using the Fischer-Tropsch process, which contains no aromatic compounds and is mainly composed of straight and branched alkanes. Metabolites of S-8 fuel in laboratory animals have not been identified. The goal of this study was to identify metabolic products from exposure to aerosolized S-8 and a designed straight-chain alkane/polyaromatic mixture (decane, undecane, dodecane, tridecane, tetradecane, pentadecane, naphthalene, and 2-methylnaphthalene) in male Fischer 344 rats. Collected blood and tissue samples were analyzed for 70 straight and branched alcohols and ketones ranging from 7 to 15 carbons. No fuel metabolites were observed in the blood, lungs, brain, and fat following S-8 exposure. Metabolites were detected in the liver, urine, and feces. Most of the metabolites were 2- and 3-position alcohols and ketones of prominent hydrocarbons with very few 1- or 4-position metabolites. Following exposure to the alkane mixture, metabolites were observed in the blood, liver, and lungs. Interestingly, heavy metabolites (3-tridecanone, 2-tridecanol, and 2-tetradecanol) were observed only in the lung tissues possibly indicating that metabolism occurred in the lungs. With the exception of these heavy metabolites, the metabolic profiles observed in this study are consistent with previous studies reporting on the metabolism of individual alkanes. Further work is needed to determine the potential metabolic interactions of parent, primary, and secondary metabolites and identify more polar metabolites. Some metabolites may have potential use as biomarkers of exposure to fuels.

  17. Biodegradation of clofibric acid and identification of its metabolites

    International Nuclear Information System (INIS)

    Salgado, R.; Oehmen, A.; Carvalho, G.; Noronha, J.P.; Reis, M.A.M.

    2012-01-01

    Graphical abstract: Metabolites produced during clofibric acid biodegradation. Highlights: ► Clofibric acid is biodegradable. ► Mainly heterotrophic bacteria degraded the clofibric acid. ► Metabolites of clofibric acid biodegradation were identified. ► The metabolic pathway of clofibric acid biodegradation is proposed. - Abstract: Clofibric acid (CLF) is the pharmaceutically active metabolite of lipid regulators clofibrate, etofibrate and etofyllinclofibrate, and it is considered both environmentally persistent and refractory. This work studied the biotransformation of CLF in aerobic sequencing batch reactors (SBRs) with mixed microbial cultures, monitoring the efficiency of biotransformation of CLF and the production of metabolites. The maximum removal achieved was 51% biodegradation (initial CLF concentration = 2 mg L −1 ), where adsorption and abiotic removal mechanisms were shown to be negligible, showing that CLF is indeed biodegradable. Tests showed that the observed CLF biodegradation was mainly carried out by heterotrophic bacteria. Three main metabolites were identified, including α-hydroxyisobutyric acid, lactic acid and 4-chlorophenol. The latter is known to exhibit higher toxicity than the parent compound, but it did not accumulate in the SBRs. α-Hydroxyisobutyric acid and lactic acid accumulated for a period, where nitrite accumulation may have been responsible for inhibiting their degradation. A metabolic pathway for the biodegradation of CLF is proposed in this study.

  18. New Protocol Based on UHPLC-MS/MS for Quantitation of Metabolites in Xylose-Fermenting Yeasts

    Science.gov (United States)

    Campos, Christiane Gonçalves; Veras, Henrique César Teixeira; de Aquino Ribeiro, José Antônio; Costa, Patrícia Pinto Kalil Gonçalves; Araújo, Katiúscia Pereira; Rodrigues, Clenilson Martins; de Almeida, João Ricardo Moreira; Abdelnur, Patrícia Verardi

    2017-12-01

    Xylose fermentation is a bottleneck in second-generation ethanol production. As such, a comprehensive understanding of xylose metabolism in naturally xylose-fermenting yeasts is essential for prospection and construction of recombinant yeast strains. The objective of the current study was to establish a reliable metabolomics protocol for quantification of key metabolites of xylose catabolism pathways in yeast, and to apply this protocol to Spathaspora arborariae. Ultra-high performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS) was used to quantify metabolites, and afterwards, sample preparation was optimized to examine yeast intracellular metabolites. S. arborariae was cultivated using xylose as a carbon source under aerobic and oxygen-limited conditions. Ion pair chromatography (IPC) and hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS) were shown to efficiently quantify 14 and 5 metabolites, respectively, in a more rapid chromatographic protocol than previously described. Thirteen and eleven metabolites were quantified in S. arborariae under aerobic and oxygen-limited conditions, respectively. This targeted metabolomics protocol is shown here to quantify a total of 19 metabolites, including sugars, phosphates, coenzymes, monosaccharides, and alcohols, from xylose catabolism pathways (glycolysis, pentose phosphate pathway, and tricarboxylic acid cycle) in yeast. Furthermore, to our knowledge, this is the first time that intracellular metabolites have been quantified in S. arborariae after xylose consumption. The results indicated that fine control of oxygen levels during fermentation is necessary to optimize ethanol production by S. arborariae. The protocol presented here may be applied to other yeast species and could support yeast genetic engineering to improve second generation ethanol production. [Figure not available: see fulltext.

  19. Secondary metabolite profiling of Alternaria dauci, A. porri, A. solani, and A. tomatophila

    DEFF Research Database (Denmark)

    Andersen, Birgitte; Dongo, Anita; Pryor, Barry M.

    2008-01-01

    Chemotaxonomy (secondary metabolite profiling) has been shown to be of great value in the classification and differentiation in Ascomycota. However, few studies have investigated the use of metabolite production for classification and identification purposes of plant pathogenic Alternaria species....... The purpose of the present study was to describe the methodology behind metabolite profiling in chemotaxonomy using A. dauci, A. porri, A. solani, and A. tomatophila strains as examples of the group. The results confirmed that A. dauci, A. solani, and A. tomatophila are three distinct species each...

  20. Thyroid Hormone and Blood Metabolites Concentration of Gilts Superovulated Prior to Mating

    Directory of Open Access Journals (Sweden)

    RA Mege

    2009-05-01

    Full Text Available An experiment was conducted to study injection of pregnant mare serum gonadotrophin (PMSG and human chorionic gonadotrophin (hCG as superovulation agent in gilts to improve thyroid hormone and blood metabolites concentraton. In this experiment, 48 gilts were assigned into four groups of twelve gilts injected with PMSG dan hCG dose levels of 0, 600, 1200 and 1800 IU/gilt. Injections were conducted three days before estrus. During gestation, gilts were placed in colony pigpen. On days 15, 35, and 70 of gestation blood collected to determine triiodothyronine, tetraiodothyronine, tryglicerides, glucose, protein and bood nitrogen urea concentration. The resuts showed that superovulation dose levels of 600 to 1200 IU/gilt increased concentration of thyroid hormone (triiodothyronine and tetraiodothyronine/thyroxin and blood metabolite (triglycerides, glucose, and protein, but decreased blood urea nitrogen in gestation ages 15, 35, and 70 days. It is concluded that superovulation with dose of 600 to 1200 IU can improve of gilts metabolite hormone and blood metabolites. (Animal Production 11(2: 88-95 (2009Key Words: gilts, superovulation, metabolite hormone, blood metabolites

  1. Global Prioritization of Disease Candidate Metabolites Based on a Multi-omics Composite Network

    Science.gov (United States)

    Yao, Qianlan; Xu, Yanjun; Yang, Haixiu; Shang, Desi; Zhang, Chunlong; Zhang, Yunpeng; Sun, Zeguo; Shi, Xinrui; Feng, Li; Han, Junwei; Su, Fei; Li, Chunquan; Li, Xia

    2015-01-01

    The identification of disease-related metabolites is important for a better understanding of metabolite pathological processes in order to improve human medicine. Metabolites, which are the terminal products of cellular regulatory process, can be affected by multi-omic processes. In this work, we propose a powerful method, MetPriCNet, to predict and prioritize disease candidate metabolites based on integrated multi-omics information. MetPriCNet prioritized candidate metabolites based on their global distance similarity with seed nodes in a composite network, which integrated multi-omics information from the genome, phenome, metabolome and interactome. After performing cross-validation on 87 phenotypes with a total of 602 metabolites, MetPriCNet achieved a high AUC value of up to 0.918. We also assessed the performance of MetPriCNet on 18 disease classes and found that 4 disease classes achieved an AUC value over 0.95. Notably, MetPriCNet can also predict disease metabolites without known disease metabolite knowledge. Some new high-risk metabolites of breast cancer were predicted, although there is a lack of known disease metabolite information. A predicted disease metabolic landscape was constructed and analyzed based on the results of MetPriCNet for 87 phenotypes to help us understand the genetic and metabolic mechanism of disease from a global view. PMID:26598063

  2. Direct detection of glucuronide metabolites of lidocaine in sheep urine.

    Science.gov (United States)

    Doran, Gregory S; Smith, Alistair K; Rothwell, Jim T; Edwards, Scott H

    2018-02-15

    The anaesthetic lidocaine is metabolised quickly to produce a series of metabolites, including several hydroxylated metabolites, which are further metabolised by addition of a glucuronic acid moiety. Analysis of these glucuronide metabolites in urine is performed indirectly by cleaving the glucuronic acid group using β-glucuronidase. However, direct analysis of intact glucuronide conjugates is a more straightforward approach as it negates the need for long hydrolysis incubations, and minimises the oxidation of sensitive hydrolysis products, while also distinguishing between the two forms of hydroxylated metabolites. A method was developed to identify three intact glucuronides of lidocaine in sheep urine using LC-MS/MS, which was further confirmed by the synthesis of glucuronide derivatives of 3OH-MEGX and 4OH-LIDO. Direct analysis of urine allowed the detection of the glucuronide metabolites of hydroxylidocaine (OH-LIDO), hydroxyl-monoethylglycinexylidide (OH-MEGX), and hydroxy-2,6-xylidine (OH-XYL). Analysis of urine before and after β-glucuronidase digestion showed that the efficiency of hydrolysis of these glucuronide metabolites may be underestimated in some studies. Analysis of urine in the current study from three different sheep with similar glucuronide metabolite concentrations resulted in different hydrolysis efficiencies, which may have been a result of different levels of substrate binding by matrix components, preventing enzyme cleavage. The use of direct analysis of intact glucuronides has the benefit of being less influenced by these matrix effects, while also allowing analysis of unstable metabolites like 4OH-XYL, which rapidly oxidises after hydrolysis. Additionally, direct analysis is less expensive and less time consuming, while providing more information about the status of hydroxylated metabolites in urine. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  3. LC-MS-MS identification of drug metabolites obtained by metalloporphyrin mediated oxidation

    Directory of Open Access Journals (Sweden)

    Maurin Andrea J. M.

    2003-01-01

    Full Text Available In this paper we report the application of liquid chromatography-mass spectrometry (LC-MS-MS to the identification of the products formed by oxidation of albendazole and disopyramide with metalloporphyrins in dichloroethane, using iodosylbenzene as an oxygen donor. Our results show that LC-MS-MS is a powerful tool to study the in vitro metabolism of drugs, allowing the identification of known and unknown metabolites. In addition, it was observed that the catalyst system used resulted in the formation of the same metabolites as obtained in vivo, although for disopyramide other products were also observed.

  4. Oxidative metabolites of lycopene and their biological functions

    Science.gov (United States)

    To gain a better understanding of the beneficial biological activities of lycopene on cancer prevention, a greater knowledge of the metabolism of lycopene is needed. In particular, the identification of lycopene metabolites and oxidation products in vivo; the importance of tissue specific lycopene c...

  5. A Panel of Cytochrome P450 BM3 Variants To Produce Drug Metabolites and Diversify Lead Compounds

    Science.gov (United States)

    Sawayama, Andrew M.; Chen, Michael M. Y.; Kulanthaivel, Palaniappan; Kuo, Ming-Shang; Hemmerle, Horst; Arnold, Frances H.

    2011-01-01

    Here we demonstrate that a small panel of variants of cytochrome P450 BM3 from Bacillus megaterium covers the breadth of reactivity of human P450s by producing 12 of 13 mammalian metabolites for two marketed drugs, verapamil and astemizole, and one research compound. The most active enzymes support preparation of individual metabolites for preclinical bioactivity and toxicology evaluations. Underscoring their potential utility in drug lead diversification, engineered P450 BM3 variants also produce novel metabolites by catalyzing reactions at carbon centers beyond those targeted by animal and human P450s. Production of a specific metabolite can be improved by directed evolution of the enzyme catalyst. Some variants are more active on the more hydrophobic parent drug than on its metabolites, which limits production of multiply-hydroxylated species, a preference that appears to depend on the evolutionary history of the P450 variant. PMID:19774562

  6. Secondary metabolite profiling of Alternaria dauci, A. porri, A. solani, and A. tomatophila.

    Science.gov (United States)

    Andersen, Birgitte; Dongo, Anita; Pryor, Barry M

    2008-02-01

    Chemotaxonomy (secondary metabolite profiling) has been shown to be of great value in the classification and differentiation in Ascomycota. However, few studies have investigated the use of metabolite production for classification and identification purposes of plant pathogenic Alternaria species. The purpose of the present study was to describe the methodology behind metabolite profiling in chemotaxonomy using A. dauci, A. porri, A. solani, and A. tomatophila strains as examples of the group. The results confirmed that A. dauci, A. solani, and A. tomatophila are three distinct species each with their own specific metabolite profiles, and that A. solani and A. tomatophila both produce altersolanol A, altertoxin I, and macrosporin. By using automated chemical image analysis and other multivariate statistic analyses, three sets of species-specific metabolites could be selected, one each for A. dauci, A. solani, and A. tomatophila.

  7. Mutagenic azide metabolite is azidoalanine

    International Nuclear Information System (INIS)

    Owais, W.M.; Rosichan, J.L.; Ronald, R.C.; Kleinhofs, A.; Nilan, R.A.

    1981-01-01

    Sodium axide produces high mutation rates in a number of species. Azide mutagenicity is mediated through a metabolite in barley and bacteria. Many studies showed that azide affects the L-cysteine biosynthesis pathway. Cell-free extracts of Salmonella typhimurium convert azide and O-acetylserine to the mutagenic metabolite. O-acetylserine sulfhydrylase was identified as the enzyme responsible for the metabolite biosynthesis. To confirm the conclusion that the azide metabolite is formed through the β-substitution pathway of L-cysteine, we radioactively labeled the azide metabolite using 14 C-labeled precursors. Moreover, the mutagenic azide metabolite was purified and identified as azidoalanine based on mass spectroscopy and elemental analysis. 26 refs., 3 figs., 1 tab

  8. Characterization of metabolites from a strain of Aspergillus flavus accumulating aflatoxin B2

    International Nuclear Information System (INIS)

    Dutton, M.F.

    1985-01-01

    A number of aflatoxins and anthraquinone pigments were isolated from a strain of Aspergillus flavus, several of which were fully characterized. The major metabolites isolated were aflatoxin B 2 and versicolorin C, which are normally only found as minor products from species of the genus Aspergillus. The identification of these products supports the proposal that aflatoxin B 2 can arise independently of aflatoxin B 1 and that, in this case, the branch in the pathway occurs at the versicolorins. Other metabolites charaterized were aflatoxin M 2 , norsolorinic acid, and averufin

  9. Spatial mapping of lichen specialized metabolites using LDI-MSI: chemical ecology issues for Ophioparma ventosa

    Science.gov (United States)

    Le Pogam, Pierre; Legouin, Béatrice; Geairon, Audrey; Rogniaux, Hélène; Lohézic-Le Dévéhat, Françoise; Obermayer, Walter; Boustie, Joël; Le Lamer, Anne-Cécile

    2016-11-01

    Imaging mass spectrometry techniques have become a powerful strategy to assess the spatial distribution of metabolites in biological systems. Based on auto-ionisability of lichen metabolites using LDI-MS, we herein image the distribution of major secondary metabolites (specialized metabolites) from the lichen Ophioparma ventosa by LDI-MSI (Mass Spectrometry Imaging). Such technologies offer tremendous opportunities to discuss the role of natural products through spatial mapping, their distribution patterns being consistent with previous chemical ecology reports. A special attention was dedicated to miriquidic acid, an unexpected molecule we first reported in Ophioparma ventosa. The analytical strategy presented herein offers new perspectives to access the sharp distribution of lichen metabolites from regular razor blade-sectioned slices.

  10. Hypomycetin - an antifungal, tetracyclic metabolite from Hypomyces aurantius: Production, structure and biosynthesis

    DEFF Research Database (Denmark)

    Breinholt, Jens; Jensen, Georg W.; Kjær, Anders

    1997-01-01

    to hypomycetin has been unveiled by feeding experiments with 13C-labelled precursors, followed by extensive NMR analyses. The extent of its relationship to viridicatumtoxin, a known, structurally similar fungal metabolite, and to the tetracyclic Streptomyces antibiotics, such as tetracycline and various...

  11. Comprehensive annotation of secondary metabolite biosynthetic genes and gene clusters of Aspergillus nidulans, A. fumigatus, A. niger and A. oryzae

    Science.gov (United States)

    2013-01-01

    Background Secondary metabolite production, a hallmark of filamentous fungi, is an expanding area of research for the Aspergilli. These compounds are potent chemicals, ranging from deadly toxins to therapeutic antibiotics to potential anti-cancer drugs. The genome sequences for multiple Aspergilli have been determined, and provide a wealth of predictive information about secondary metabolite production. Sequence analysis and gene overexpression strategies have enabled the discovery of novel secondary metabolites and the genes involved in their biosynthesis. The Aspergillus Genome Database (AspGD) provides a central repository for gene annotation and protein information for Aspergillus species. These annotations include Gene Ontology (GO) terms, phenotype data, gene names and descriptions and they are crucial for interpreting both small- and large-scale data and for aiding in the design of new experiments that further Aspergillus research. Results We have manually curated Biological Process GO annotations for all genes in AspGD with recorded functions in secondary metabolite production, adding new GO terms that specifically describe each secondary metabolite. We then leveraged these new annotations to predict roles in secondary metabolism for genes lacking experimental characterization. As a starting point for manually annotating Aspergillus secondary metabolite gene clusters, we used antiSMASH (antibiotics and Secondary Metabolite Analysis SHell) and SMURF (Secondary Metabolite Unknown Regions Finder) algorithms to identify potential clusters in A. nidulans, A. fumigatus, A. niger and A. oryzae, which we subsequently refined through manual curation. Conclusions This set of 266 manually curated secondary metabolite gene clusters will facilitate the investigation of novel Aspergillus secondary metabolites. PMID:23617571

  12. Novel key metabolites reveal further branching of the roquefortine/meleagrin biosynthetic pathway.

    Science.gov (United States)

    Ries, Marco I; Ali, Hazrat; Lankhorst, Peter P; Hankemeier, Thomas; Bovenberg, Roel A L; Driessen, Arnold J M; Vreeken, Rob J

    2013-12-27

    Metabolic profiling and structural elucidation of novel secondary metabolites obtained from derived deletion strains of the filamentous fungus Penicillium chrysogenum were used to reassign various previously ascribed synthetase genes of the roquefortine/meleagrin pathway to their corresponding products. Next to the structural characterization of roquefortine F and neoxaline, which are for the first time reported for P. chrysogenum, we identified the novel metabolite roquefortine L, including its degradation products, harboring remarkable chemical structures. Their biosynthesis is discussed, questioning the exclusive role of glandicoline A as key intermediate in the pathway. The results reveal that further enzymes of this pathway are rather unspecific and catalyze more than one reaction, leading to excessive branching in the pathway with meleagrin and neoxaline as end products of two branches.

  13. Cultivar-Specific Changes in Primary and Secondary Metabolites in Pak Choi (Brassica Rapa, Chinensis Group by Methyl Jasmonate

    Directory of Open Access Journals (Sweden)

    Moo Jung Kim

    2017-05-01

    Full Text Available Glucosinolates, their hydrolysis products and primary metabolites were analyzed in five pak choi cultivars to determine the effect of methyl jasmonate (MeJA on metabolite flux from primary metabolites to glucosinolates and their hydrolysis products. Among detected glucosinolates (total 14 glucosinolates; 9 aliphatic, 4 indole and 1 aromatic glucosinolates, indole glucosinolate concentrations (153–229% and their hydrolysis products increased with MeJA treatment. Changes in the total isothiocyanates by MeJA were associated with epithiospecifier protein activity estimated as nitrile formation. Goitrin, a goitrogenic compound, significantly decreased by MeJA treatment in all cultivars. Changes in glucosinolates, especially aliphatic, significantly differed among cultivars. Primary metabolites including amino acids, organic acids and sugars also changed with MeJA treatment in a cultivar-specific manner. A decreased sugar level suggests that they might be a carbon source for secondary metabolite biosynthesis in MeJA-treated pak choi. The result of the present study suggests that MeJA can be an effective agent to elevate indole glucosinolates and their hydrolysis products and to reduce a goitrogenic compound in pak choi. The total glucosinolate concentration was the highest in “Chinese cabbage” in the control group (32.5 µmol/g DW, but indole glucosinolates increased the greatest in “Asian” when treated with MeJA.

  14. Immune regulation by microbiome metabolites.

    Science.gov (United States)

    Kim, Chang H

    2018-03-22

    Commensal microbes and the host immune system have been co-evolved for mutual regulation. Microbes regulate the host immune system, in part, by producing metabolites. A mounting body of evidence indicates that diverse microbial metabolites profoundly regulate the immune system via host receptors and other target molecules. Immune cells express metabolite-specific receptors such as P2X 7 , GPR41, GPR43, GPR109A, aryl hydrocarbon receptor precursor (AhR), pregnane X receptor (PXR), farnesoid X receptor (FXR), TGR5 and other molecular targets. Microbial metabolites and their receptors form an extensive array of signals to respond to changes in nutrition, health and immunological status. As a consequence, microbial metabolite signals contribute to nutrient harvest from diet, and regulate host metabolism and the immune system. Importantly, microbial metabolites bidirectionally function to promote both tolerance and immunity to effectively fight infection without developing inflammatory diseases. In pathogenic conditions, adverse effects of microbial metabolites have been observed as well. Key immune-regulatory functions of the metabolites, generated from carbohydrates, proteins and bile acids, are reviewed in this article. © 2018 John Wiley & Sons Ltd.

  15. The secondary metabolite bioinformatics portal

    DEFF Research Database (Denmark)

    Weber, Tilmann; Kim, Hyun Uk

    2016-01-01

    . In this context, this review gives a summary of tools and databases that currently are available to mine, identify and characterize natural product biosynthesis pathways and their producers based on ‘omics data. A web portal called Secondary Metabolite Bioinformatics Portal (SMBP at http...... analytical and chemical methods gave access to this group of compounds, nowadays genomics-based methods offer complementary approaches to find, identify and characterize such molecules. This paradigm shift also resulted in a high demand for computational tools to assist researchers in their daily work......Natural products are among the most important sources of lead molecules for drug discovery. With the development of affordable whole-genome sequencing technologies and other ‘omics tools, the field of natural products research is currently undergoing a shift in paradigms. While, for decades, mainly...

  16. Biodegradation of clofibric acid and identification of its metabolites

    Energy Technology Data Exchange (ETDEWEB)

    Salgado, R. [REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); ESTS-IPS, Escola Superior de Tecnologia de Setubal do Instituto Politecnico de Setubal, Rua Vale de Chaves, Campus do IPS, Estefanilha, 2910-761 Setubal (Portugal); Oehmen, A. [REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Carvalho, G. [REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Instituto de Biologia Experimental e Tecnologica (IBET), Av. da Republica (EAN), 2784-505 Oeiras (Portugal); Noronha, J.P. [REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Reis, M.A.M., E-mail: amr@fct.unl.pt [REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal)

    2012-11-30

    Graphical abstract: Metabolites produced during clofibric acid biodegradation. Highlights: Black-Right-Pointing-Pointer Clofibric acid is biodegradable. Black-Right-Pointing-Pointer Mainly heterotrophic bacteria degraded the clofibric acid. Black-Right-Pointing-Pointer Metabolites of clofibric acid biodegradation were identified. Black-Right-Pointing-Pointer The metabolic pathway of clofibric acid biodegradation is proposed. - Abstract: Clofibric acid (CLF) is the pharmaceutically active metabolite of lipid regulators clofibrate, etofibrate and etofyllinclofibrate, and it is considered both environmentally persistent and refractory. This work studied the biotransformation of CLF in aerobic sequencing batch reactors (SBRs) with mixed microbial cultures, monitoring the efficiency of biotransformation of CLF and the production of metabolites. The maximum removal achieved was 51% biodegradation (initial CLF concentration = 2 mg L{sup -1}), where adsorption and abiotic removal mechanisms were shown to be negligible, showing that CLF is indeed biodegradable. Tests showed that the observed CLF biodegradation was mainly carried out by heterotrophic bacteria. Three main metabolites were identified, including {alpha}-hydroxyisobutyric acid, lactic acid and 4-chlorophenol. The latter is known to exhibit higher toxicity than the parent compound, but it did not accumulate in the SBRs. {alpha}-Hydroxyisobutyric acid and lactic acid accumulated for a period, where nitrite accumulation may have been responsible for inhibiting their degradation. A metabolic pathway for the biodegradation of CLF is proposed in this study.

  17. Crude oil metabolites in groundwater at two spill sites

    Science.gov (United States)

    Bekins, Barbara A.; Cozzarelli, Isabelle M.; Erickson, Melinda L.; Steenson, Ross; Thorn, Kevin A.

    2016-01-01

    Two groundwater plumes in north central Minnesota with residual crude oil sources have 20 to 50 mg/L of nonvolatile dissolved organic carbon (NVDOC). These values are over 10 times higher than benzene and two to three times higher than Diesel Range Organics in the same wells. On the basis of previous work, most of the NVDOC consists of partial transformation products from the crude oil. Monitoring data from 1988 to 2015 at one of the sites located near Bemidji, MN show that the plume of metabolites is expanding toward a lakeshore located 335 m from the source zone. Other mass balance studies of the site have demonstrated that the plume expansion is driven by the combined effect of continued presence of the residual crude oil source and depletion of the electron accepting capacity of solid phase iron oxide and hydroxides on the aquifer sediments. These plumes of metabolites are not covered by regulatory monitoring and reporting requirements in Minnesota and other states. Yet, a review of toxicology studies indicates that polar metabolites of crude oil may pose a risk to aquatic and mammalian species. Together the results suggest that at sites where residual sources are present, monitoring of NVDOC may be warranted to evaluate the fates of plumes of hydrocarbon transformation products.

  18. New Methodology for Known Metabolite Identification in Metabonomics/Metabolomics: Topological Metabolite Identification Carbon Efficiency (tMICE).

    Science.gov (United States)

    Sanchon-Lopez, Beatriz; Everett, Jeremy R

    2016-09-02

    A new, simple-to-implement and quantitative approach to assessing the confidence in NMR-based identification of known metabolites is introduced. The approach is based on a topological analysis of metabolite identification information available from NMR spectroscopy studies and is a development of the metabolite identification carbon efficiency (MICE) method. New topological metabolite identification indices are introduced, analyzed, and proposed for general use, including topological metabolite identification carbon efficiency (tMICE). Because known metabolite identification is one of the key bottlenecks in either NMR-spectroscopy- or mass spectrometry-based metabonomics/metabolomics studies, and given the fact that there is no current consensus on how to assess metabolite identification confidence, it is hoped that these new approaches and the topological indices will find utility.

  19. Tilting Plant Metabolism for Improved Metabolite Biosynthesis and Enhanced Human Benefit

    Directory of Open Access Journals (Sweden)

    Bhekumthetho Ncube

    2015-07-01

    Full Text Available The immense chemical diversity of plant-derived secondary metabolites coupled with their vast array of biological functions has seen this group of compounds attract considerable research interest across a range of research disciplines. Medicinal and aromatic plants, in particular, have been exploited for this biogenic pool of phytochemicals for products such as pharmaceuticals, fragrances, dyes, and insecticides, among others. With consumers showing increasing interests in these products, innovative biotechnological techniques are being developed and employed to alter plant secondary metabolism in efforts to improve on the quality and quantity of specific metabolites of interest. This review provides an overview of the biosynthesis for phytochemical compounds with medicinal and other related properties and their associated biological activities. It also provides an insight into how their biosynthesis/biosynthetic pathways have been modified/altered to enhance production.

  20. Production of unusual dispiro metabolites in Pestalotiopsis virgatula endophyte cultures

    DEFF Research Database (Denmark)

    Kesting, Julie Regitze; Olsen, Lars; Stærk, Dan

    2011-01-01

    supported by time-dependent density-functional theory calculations (B3LYP/TZVP level). This work demonstrates that a largely complete structure elucidation of numerous metabolites present in a raw fermentation medium extract can be performed by the HPLC-SPE-NMR technique using only a small amount...

  1. Metabolite coupling in genome-scale metabolic networks

    Directory of Open Access Journals (Sweden)

    Palsson Bernhard Ø

    2006-03-01

    Full Text Available Abstract Background Biochemically detailed stoichiometric matrices have now been reconstructed for various bacteria, yeast, and for the human cardiac mitochondrion based on genomic and proteomic data. These networks have been manually curated based on legacy data and elementally and charge balanced. Comparative analysis of these well curated networks is now possible. Pairs of metabolites often appear together in several network reactions, linking them topologically. This co-occurrence of pairs of metabolites in metabolic reactions is termed herein "metabolite coupling." These metabolite pairs can be directly computed from the stoichiometric matrix, S. Metabolite coupling is derived from the matrix ŜŜT, whose off-diagonal elements indicate the number of reactions in which any two metabolites participate together, where Ŝ is the binary form of S. Results Metabolite coupling in the studied networks was found to be dominated by a relatively small group of highly interacting pairs of metabolites. As would be expected, metabolites with high individual metabolite connectivity also tended to be those with the highest metabolite coupling, as the most connected metabolites couple more often. For metabolite pairs that are not highly coupled, we show that the number of reactions a pair of metabolites shares across a metabolic network closely approximates a line on a log-log scale. We also show that the preferential coupling of two metabolites with each other is spread across the spectrum of metabolites and is not unique to the most connected metabolites. We provide a measure for determining which metabolite pairs couple more often than would be expected based on their individual connectivity in the network and show that these metabolites often derive their principal biological functions from existing in pairs. Thus, analysis of metabolite coupling provides information beyond that which is found from studying the individual connectivity of individual

  2. Preparing the key metabolite of Z-ligustilide in vivo by a specific electrochemical reaction.

    Science.gov (United States)

    Duan, Feipeng; Xu, Wenjuan; Liu, Jie; Jia, Zhixin; Chen, Kuikui; Chen, Yijun; Wang, Mingxia; Ma, Kaiyue; Dong, Jiaojiao; Chen, Lianming; Xiao, Hongbin

    2018-04-16

    The key in vivo metabolites of a drug play an important role in its efficacy and toxicity. However, due to the low content and instability of these metabolites, they are hard to obtain through in vivo methods. Electrochemical reactions can be an efficient alternative to biotransformation in vivo for the preparation of metabolites. Accordingly, in this study, the metabolism of Z-ligustilide was investigated in vitro by electrochemistry coupled online to mass spectrometry. This work showed that five oxidation products of the electrochemical reaction were detected and that two of the oxidation products (senkyunolide I and senkyunolide H) were identified from liver microsomal incubation as well. Furthermore, after intragastric administration of Z-ligustilide in rats, senkyunolide I and senkyunolide H were detected in the rat plasma and liver, while 6,7-epoxyligustilide, a key intermediate metabolite of Z-ligustilide, was difficult to detect in vivo. By contrast, 6,7-epoxyligustilide was obtained from the electrochemical reaction. In addition, for the first time, 6 mg of 6,7-epoxyligustilide was prepared from 120 mg of Z-ligustilide. Therefore, electrochemical reactions represent an efficient laboratory method for preparing key drug metabolites. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Old meets new: using interspecies interactions to detect secondary metabolite production in actinomycetes.

    Science.gov (United States)

    Seyedsayamdost, Mohammad R; Traxler, Matthew F; Clardy, Jon; Kolter, Roberto

    2012-01-01

    Actinomycetes, a group of filamentous, Gram-positive bacteria, have long been a remarkable source of useful therapeutics. Recent genome sequencing and transcriptomic studies have shown that these bacteria, responsible for half of the clinically used antibiotics, also harbor a large reservoir of gene clusters, which have the potential to produce novel secreted small molecules. Yet, many of these clusters are not expressed under common culture conditions. One reason why these clusters have not been linked to a secreted small molecule lies in the way that actinomycetes have typically been studied: as pure cultures in nutrient-rich media that do not mimic the complex environments in which these bacteria evolved. New methods based on multispecies culture conditions provide an alternative approach to investigating the products of these gene clusters. We have recently implemented binary interspecies interaction assays to mine for new secondary metabolites and to study the underlying biology of interactinomycete interactions. Here, we describe the detailed biological and chemical methods comprising these studies. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Microbial products II

    Energy Technology Data Exchange (ETDEWEB)

    Pape, H; Rehm, H J [eds.

    1986-01-01

    The present volume deals mainly with compounds which have been detected as natural microbial products. Part 1 of this volume introduces the general aspects of the overproduction of metabolites and the concepts and genetics of secondary metabolism. Compounds such as nucleosides, nucleotides, coenzymes, vitamins and lipids are dealt with in part 2. Part 3 then is devoted to products and antibiotics with uses im medicine, veterinary medicine, plant protection and metabolites with antitumor activity. Several secondary metabolites have found uses in human and animal health care. With 244 figs., 109 tabs.

  5. Nitrogen Metabolite Repression of Metabolism and Virulence in the Human Fungal Pathogen Cryptococcus neoformans

    Science.gov (United States)

    Lee, I. Russel; Chow, Eve W. L.; Morrow, Carl A.; Djordjevic, Julianne T.; Fraser, James A.

    2011-01-01

    Proper regulation of metabolism is essential to maximizing fitness of organisms in their chosen environmental niche. Nitrogen metabolite repression is an example of a regulatory mechanism in fungi that enables preferential utilization of easily assimilated nitrogen sources, such as ammonium, to conserve resources. Here we provide genetic, transcriptional, and phenotypic evidence of nitrogen metabolite repression in the human pathogen Cryptococcus neoformans. In addition to loss of transcriptional activation of catabolic enzyme-encoding genes of the uric acid and proline assimilation pathways in the presence of ammonium, nitrogen metabolite repression also regulates the production of the virulence determinants capsule and melanin. Since GATA transcription factors are known to play a key role in nitrogen metabolite repression, bioinformatic analyses of the C. neoformans genome were undertaken and seven predicted GATA-type genes were identified. A screen of these deletion mutants revealed GAT1, encoding the only global transcription factor essential for utilization of a wide range of nitrogen sources, including uric acid, urea, and creatinine—three predominant nitrogen constituents found in the C. neoformans ecological niche. In addition to its evolutionarily conserved role in mediating nitrogen metabolite repression and controlling the expression of catabolic enzyme and permease-encoding genes, Gat1 also negatively regulates virulence traits, including infectious basidiospore production, melanin formation, and growth at high body temperature (39°–40°). Conversely, Gat1 positively regulates capsule production. A murine inhalation model of cryptococcosis revealed that the gat1Δ mutant is slightly more virulent than wild type, indicating that Gat1 plays a complex regulatory role during infection. PMID:21441208

  6. Metabolite profiling of microfluidic cell culture conditions for droplet based screening

    DEFF Research Database (Denmark)

    Björk, Sara M.; Sjoström, Staffan L.; Svahn, Helene Andersson

    2015-01-01

    We investigate the impact of droplet culture conditions on cell metabolic state by determining key metabolite concentrations in S. cerevisiae cultures in different microfluidic droplet culture formats. Control of culture conditions is critical for single cell/clone screening in droplets......, such as directed evolution of yeast, as cell metabolic state directly affects production yields from cell factories. Here, we analyze glucose, pyruvate, ethanol, and glycerol, central metabolites in yeast glucose dissimilation to establish culture formats for screening of respiring as well as fermenting yeast...... limited cultures, whereas the metabolite profiles of cells cultured in the alternative wide tube droplet incubation format resemble those from aerobic culture. Furthermore, we demonstrate retained droplet stability and size in the new better oxygenated droplet incubation format....

  7. Exposure of mice to the nitroso metabolite of sulfamethoxazole stimulates interleukin 5 production by CD4+ T-cells

    International Nuclear Information System (INIS)

    Hopkins, Josephine E.; Naisbitt, Dean J.; Humphreys, Neil; Dearman, Rebecca J.; Kimber, Ian; Park, B. Kevin

    2005-01-01

    Sulfamethoxazole hypersensitivity may be caused by production of the protein-reactive metabolite nitroso sulfamethoxazole (SMX-NO) and interaction of SMX-NO with T-cells. We have characterised the nature of the immune response induced by administration of sulfamethoxazole, sulfamethoxazole metabolites and nitrosobenzene to BALB/c mice. Drugs were administered over a 13-day period to induce polarised cytokine secretion profiles. Proliferation was measured by [ 3 H] thymidine incorporation. Cytokine secretion was monitored by ELISA. Results were compared with those provoked by exposure to type 1 and type 2 chemical allergens, 2,4-dinitrochlorobenzene (DNCB) and trimellitic anhydride (TMA). CD4 + or CD8 + T-cells were depleted ex vivo to identify the primary source of cytokines. Lymph node activation was observed following treatment with DNCB, TMA, nitrosobenzene and SMX-NO, but not with sulfamethoxazole or sulfamethoxazole hydroxylamine (SMX-NHOH). DNCB and TMA induced type 1 and type 2 cytokine profiles, respectively. SMX-NO treatment stimulated the production of high levels of IL-5, variable amounts of IFN-γ, and relatively low levels of IL-10 and IL-4. Nitrosobenzene-activated lymph node cells secreted only low levels of IFN-γ and IL-5. Depletion of CD4 + or CD8 + T-cells from SMX-NO stimulated lymph node cells revealed that CD4 + T-cells were the major source of IL-5. In conclusion, the data presented indicates that subcutaneous administration to mice of SMX-NO, but not the parent drug, stimulated the secretion of high levels of IL-5 from activated CD4 + T-cells, which is consistent with the clinical profile of the drug

  8. Regulatory metabolites of vitamin E and their putative relevance for atherogenesis

    Directory of Open Access Journals (Sweden)

    Maria Wallert

    2014-01-01

    Full Text Available Vitamin E is likely the most important antioxidant in the human diet and α-tocopherol is the most active isomer. α-Tocopherol exhibits anti-oxidative capacity in vitro, and inhibits oxidation of LDL. Beside this, α-tocopherol shows anti-inflammatory activity and modulates expression of proteins involved in uptake, transport and degradation of tocopherols, as well as the uptake, storage and export of lipids such as cholesterol. Despite promising anti-atherogenic features in vitro, vitamin E failed to be atheroprotective in clinical trials in humans. Recent studies highlight the importance of long-chain metabolites of α-tocopherol, which are formed as catabolic intermediate products in the liver and occur in human plasma. These metabolites modulate inflammatory processes and macrophage foam cell formation via mechanisms different than that of their metabolic precursor α-tocopherol and at lower concentrations. Here we summarize the controversial role of vitamin E as a preventive agent against atherosclerosis and point the attention to recent findings that highlight a role of these long-chain metabolites of vitamin E as a proposed new class of regulatory metabolites. We speculate that the metabolites contribute to physiological as well as pathophysiological processes.

  9. Building blocks for automated elucidation of metabolites: natural product-likeness for candidate ranking.

    Science.gov (United States)

    Jayaseelan, Kalai Vanii; Steinbeck, Christoph

    2014-07-05

    In metabolomics experiments, spectral fingerprints of metabolites with no known structural identity are detected routinely. Computer-assisted structure elucidation (CASE) has been used to determine the structural identities of unknown compounds. It is generally accepted that a single 1D NMR spectrum or mass spectrum is usually not sufficient to establish the identity of a hitherto unknown compound. When a suite of spectra from 1D and 2D NMR experiments supplemented with a molecular formula are available, the successful elucidation of the chemical structure for candidates with up to 30 heavy atoms has been reported previously by one of the authors. In high-throughput metabolomics, usually 1D NMR or mass spectrometry experiments alone are conducted for rapid analysis of samples. This method subsequently requires that the spectral patterns are analyzed automatically to quickly identify known and unknown structures. In this study, we investigated whether additional existing knowledge, such as the fact that the unknown compound is a natural product, can be used to improve the ranking of the correct structure in the result list after the structure elucidation process. To identify unknowns using as little spectroscopic information as possible, we implemented an evolutionary algorithm-based CASE mechanism to elucidate candidates in a fully automated fashion, with input of the molecular formula and 13C NMR spectrum of the isolated compound. We also tested how filters like natural product-likeness, a measure that calculates the similarity of the compounds to known natural product space, might enhance the performance and quality of the structure elucidation. The evolutionary algorithm is implemented within the SENECA package for CASE reported previously, and is available for free download under artistic license at http://sourceforge.net/projects/seneca/. The natural product-likeness calculator is incorporated as a plugin within SENECA and is available as a GUI client and

  10. Improvement of hairy root cultures and plants by changing biosynthetic pathways leading to pharmaceutical metabolites: strategies and applications.

    Science.gov (United States)

    Ludwig-Müller, Jutta; Jahn, Linda; Lippert, Annemarie; Püschel, Joachim; Walter, Antje

    2014-11-01

    A plethora of bioactive plant metabolites has been explored for pharmaceutical, food chemistry and agricultural applications. The chemical synthesis of these structures is often difficult, so plants are favorably used as producers. While whole plants can serve as a source for secondary metabolites and can be also improved by metabolic engineering, more often cell or organ cultures of relevant plant species are of interest. It should be noted that only in few cases the production for commercial application in such cultures has been achieved. Their genetic manipulation is sometimes faster and the production of a specific metabolite is more reliable, because of less environmental influences. In addition, upscaling in bioreactors is nowadays possible for many of these cultures, so some are already used in industry. There are approaches to alter the profile of metabolites not only by using plant genes, but also by using bacterial genes encoding modifying enzymes. Also, strategies to cope with unwanted or even toxic compounds are available. The need for metabolic engineering of plant secondary metabolite pathways is increasing with the rising demand for (novel) compounds with new bioactive properties. Here, we give some examples of recent developments for the metabolic engineering of plants and organ cultures, which can be used in the production of metabolites with interesting properties. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Oxidative defense metabolites induced by salinity stress in roots of Salicornia herbacea.

    Science.gov (United States)

    Lee, Seung Jae; Jeong, Eun-Mi; Ki, Ah Young; Oh, Kyung-Seo; Kwon, Joseph; Jeong, Jae-Hyuk; Chung, Nam-Jin

    2016-11-01

    High salinity is a major abiotic stress that affects the growth and development of plants. This type of stress can influence flowering, the production of crops, defense mechanisms and other physiological processes. Previous studies have attempted to elucidate salt-tolerance mechanisms to improve plant growth and productivity in the presence of sodium chloride. One such plant that has been studied in detail is Salicornia, a well-known halophyte, which has adapted to grow in the presence of high salt. To further the understanding of how Salicornia grows and develops under high saline conditions, Salicornia herbacea (S. herbacea) was grown under varying saline concentrations (0, 50, 100, 200, 300, and 400mM), and the resulting phenotype, ion levels, and metabolites were investigated. The optimal condition for the growth of S. herbacea was determined to be 100mM NaCl, and increased salt concentrations directly decreased the internal concentrations of other inorganic ions including Ca 2+ , K + , and Mg 2+ . Metabolomics were performed on the roots of the plant as a systematic metabolomics study has not yet been reported for Salicornia roots. Using ethylacetate and methanol extraction followed by high resolution ultra-performance liquid chromatography coupled with mass spectrometry (UPLC-MS), 1793 metabolites were identified at different NaCl levels. Structural and functional analyses demonstrated that the concentration of 53 metabolites increased as the concentration of NaCl increased. These metabolites have been linked to stress responses, primarily oxidative stress responses, which increase under saline stress. Most metabolites can be classified as polyols, alkaloids, and steroids. Functional studies of these metabolites show that shikimic acid, vitamin K1, and indole-3-carboxylic acid are generated as a result of defense mechanisms, including the shikimate pathway, to protect against reactive oxygen species (ROS) generated by salt stress. This metabolite profiling

  12. Isolation and Biological Evaluation of Two Bioactive Metabolites from Aspergillus gorakhpurensis

    Directory of Open Access Journals (Sweden)

    Venkateswarlu Yenamandra

    2009-06-01

    Full Text Available Fungi are known to produce a vast array of secondary metabolites that are gaining importance for their biotechnological applications. Screening of Aspergillus gorakhpurensis for the production of bioactive secondary metabolites results in the production of 4-(N-methyl-N-phenyl amino butan-2-one and itaconic acid. The structure of the known compounds was established by 1H-, 13C-NMR and Mass spectral data. Biological evaluation of the two compounds against test microorganisms showed strong inhibitory activity of 4-(N-methyl-N-phenyl amino butan-2-one towards bacteria and fungi. Only 4-( N -methyl-N- phenyl amino-butan-2-one showed a marked significant activity (LD 50 = 330.69 m g/mL in Spodoptera litura larvicidal bioassay.

  13. Personal Care Product Use in Men and Urinary Concentrations of Select Phthalate Metabolites and Parabens

    DEFF Research Database (Denmark)

    Nassan, Feiby L; Coull, Brent A; Gaskins, Audrey J

    2017-01-01

    : In a prospective cohort, at multiple study visits, men self-reported their use of 14 PCPs and provided a urine sample (2004-2015, Boston, MA). We measured urinary concentrations of 9 phthalate metabolites and methylparaben, propylparaben, and butylparaben. We estimated the covariate-adjusted percent change...... PCP use and concentrations of the other phthalate metabolites were not statistically significant. CONCLUSIONS: We identified 10 PCPs of relevance and demonstrated that their use within 6 h of urine collection strongly predicted MEP and paraben urinary concentrations. https://doi.org/10.1289/EHP1374....

  14. Improved profiling of estrogen metabolites by orbitrap LC/MS

    Science.gov (United States)

    Li, Xingnan; Franke, Adrian A.

    2015-01-01

    Estrogen metabolites are important biomarkers to evaluate cancer risks and metabolic diseases. Due to their low physiological levels, a sensitive and accurate method is required, especially for the quantitation of unconjugated forms of endogenous steroids and their metabolites in humans. Here, we evaluated various derivatives of estrogens for improved analysis by orbitrap LC/MS in human serum samples. A new chemical derivatization reagent was applied modifying phenolic steroids to form 1-methylimidazole-2-sulfonyl adducts. The method significantly improves the sensitivity 2–100 fold by full scan MS and targeted selected ion monitoring MS over other derivatization methods including, dansyl, picolinoyl, and pyridine-3-sulfonyl products. PMID:25543003

  15. 1,8-Dihydroxynaphthalene monoglucoside, a new metabolite of Sclerotinia sclerotiorum, and the effect of tricyclazole on its production.

    Science.gov (United States)

    Starratt, A N; Ross, L M; Lazarovits, G

    2002-04-01

    Isolate SS7 of Sclerotinia sclerotiorum was previously shown to produce and excrete into agar medium copious amounts of the melanin precursor 1,8-dihydroxynaphthalene. Much reduced quantities of this product were produced in the presence of tricyclazole, an inhibitor of pentaketide melanin biosynthesis. In this study, we demonstrate that young cultures of isolate SS7 produce 1,8-dihydroxynaphthalene monoglucoside, a new natural product not previously reported from fungi. When cultured in the presence of tricyclazole, such young cultures also accumulated two new monoglucosides of 1,3,8-trihydroxynaphthalene, which, as well as 1,8-dihydroxynaphthalene monoglucoside, were also obtained from cultures of two other isolates of S. sclerotiorum. It is proposed that rapid glucosylation of 1,3,8-trihydroxynaphthalene in young tricyclazole-inhibited S. sclerotiorum cultures accounts for the failure to observe 2-hydroxyjuglone or other metabolites usually associated with blockage of the pentaketide pathway to melanin in fungi.

  16. Abscisic Acid Induced Changes in Production of Primary and Secondary Metabolites, Photosynthetic Capacity, Antioxidant Capability, Antioxidant Enzymes and Lipoxygenase Inhibitory Activity of Orthosiphon stamineus Benth.

    Directory of Open Access Journals (Sweden)

    Mohd Hafiz Ibrahim

    2013-07-01

    Full Text Available An experiment was conducted to investigate and distinguish the relationships in the production of total phenolics, total flavonoids, soluble sugars, H2O2, O2−, phenylalanine ammonia lyase (PAL activity, leaf gas exchange, antioxidant activity, antioxidant enzyme activity [ascorbate peroxidase (APX, catalase (CAT, superoxide dismutase (SOD and Lipoxygenase inhibitory activity (LOX] under four levels of foliar abscisic acid (ABA application (0, 2, 4, 6 µM for 15 weeks in Orthosiphon stamineus Benth. It was found that the production of plant secondary metabolites, soluble sugars, antioxidant activity, PAL activity and LOX inhibitory activity was influenced by foliar application of ABA. As the concentration of ABA was increased from 0 to 6 µM the production of total phenolics, flavonoids, sucrose, H2O2, O2−, PAL activity and LOX inhibitory activity was enhanced. It was also observed that the antioxidant capabilities (DPPH and ORAC were increased. This was followed by increases in production of antioxidant enzymes APX, CAT and SOD. Under high application rates of ABA the net photosynthesis and stomatal conductance was found to be reduced. The production of primary and secondary metabolites displayed a significant positive relationship with H2O2 (total phenolics, r2 = 0.877; total flavonoids, r2 = 0.812; p ≤ 0.05 and O2− (total phenolics, r2 = 0.778; total flavonoids, r2 = 0.912; p ≤ 0.05. This indicated that increased oxidative stress at high application rates of ABA, improved the production of phytochemicals.

  17. Determination of flutamide and two major metabolites using HPLC-DAD and HPTLC methods.

    Science.gov (United States)

    Abdelwahab, Nada S; Elshemy, Heba A H; Farid, Nehal F

    2018-01-25

    Flutamide is a potential antineoplastic drug classified as an anti-androgen. It is a therapy for men with advanced prostate cancer, administered orally after which it undergoes extensively first pass metabolism in the liver with the production of several metabolites. These metabolites are predominantly excreted in urine. One of the important metabolites in plasma is 4-nitro-3-(trifluoromethyl)phenylamine (Flu-1), while the main metabolite in urine is 2-amino-5-nitro-4-(trifluoromethyl)phenol (Flu-3). In this work the two metabolites, Flu-1 and Flu-3, have been synthesized, and then structural confirmation has been carried out by HNMR analysis. Efforts were exerted to develop chromatographic methods for resolving Flutamide and its metabolites with the use of acceptable solvents without affecting the efficiency of the methods. The drug along with its metabolites were quantitatively analyzed in pure form, human urine, and plasma samples using two chromatographic methods, HPTLC and HPLC-DAD methods. FDA guidelines for bio-analytical method validation were followed and USP recommendations were used for analytical method validation. Interference from excipients has been tested by application of the methods to pharmaceutical tablets. No significant difference was found between the proposed methods and the official one when they were statistically compared at p value of 0.05%.

  18. Rapid identification of herbal compounds derived metabolites using zebrafish larvae as the biotransformation system.

    Science.gov (United States)

    Wang, Chen; Yin, Ying-Hao; Wei, Ying-Jie; Shi, Zi-Qi; Liu, Jian-Qun; Liu, Li-Fang; Xin, Gui-Zhong

    2017-09-15

    Metabolites derived from herbal compounds are becoming promising sources for discovering new drugs. However, the rapid identification of metabolites from biological matrixes is limited by massive endogenous interference and low abundance of metabolites. Thus, by using zebrafish larvae as the biotransformation system, we herein proposed and validated an integrated strategy for rapid identification of metabolites derived from herbal compounds. Two pivotal steps involved in this strategy are to differentiate metabolites from herbal compounds and match metabolites with their parent compounds. The differentiation step was achieved by cross orthogonal partial least-squares discriminant analysis. Automatic matching analysis was performed on R Project based on a self-developed program, of which the number of matched ionic clusters and its corresponding percentage between metabolite and parent compound were taken into account to assess their similarity. Using this strategy, 46 metabolites screened from incubation water samples of zebrafish treated with total Epimedium flavonoids (EFs) could be matched with their corresponding parent compounds, 37 of them were identified and validated by the known metabolic pathways and fragmentation patterns. Finally, 75% of the identified EFs metabolites were successfully detected in urine samples of rats treated with EFs. These experimental results indicate that the proposed strategy using zebrafish larvae as the biotransformation system will facilitate the rapid identification of metabolites derived from herbal compounds, which shows promising perspectives in providing additional resources for pharmaceutical developments from natural products. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Rationalization and prediction of in vivo metabolite exposures: The role of metabolite kinetics, clearance predictions and in vitro parameters

    Science.gov (United States)

    Lutz, Justin D.; Fujioka, Yasushi; Isoherranen, Nina

    2010-01-01

    Importance of the field Due to growing concerns over toxic or active metabolites, significant efforts have been focused on qualitative identification of potential in vivo metabolites from in vitro data. However, limited tools are available to quantitatively predict their human exposures. Areas covered in this review Theory of clearance predictions and metabolite kinetics is reviewed together with supporting experimental data. In vitro and in vivo data of known circulating metabolites and their parent drugs was collected and the predictions of in vivo exposures of the metabolites were evaluated. What the reader will gain The theory and data reviewed will be useful in early identification of human metabolites that will circulate at significant levels in vivo and help in designing in vivo studies that focus on characterization of metabolites. It will also assist in rationalization of metabolite-to-parent ratios used as markers of specific enzyme activity. Take home message The relative importance of a metabolite in comparison to the parent compound as well as other metabolites in vivo can only be predicted using the metabolites in vitro formation and elimination clearances, and the in vivo disposition of a metabolite can only be rationalized when the elimination pathways of that metabolite are known. PMID:20557268

  20. Metabolite Profiling of Red Sea Corals

    KAUST Repository

    Ortega, Jovhana Alejandra

    2016-12-01

    Looking at the metabolite profile of an organism provides insights into the metabolomic state of a cell and hence also into pathways employed. Little is known about the metabolites produced by corals and their algal symbionts. In particular, corals from the central Red Sea are understudied, but interesting study objects, as they live in one of the warmest and most saline environments and can provide clues as to the adjustment of corals to environmental change. In this study, we applied gas chromatography – mass spectrometry (GC–MS) metabolite profiling to analyze the metabolic profile of four coral species and their associated symbionts: Fungia granulosa, Acropora hemprichii, Porites lutea, and Pocillopora verrucosa. We identified and quantified 102 compounds among primary and secondary metabolites across all samples. F. granulosa and its symbiont showed a total of 59 metabolites which were similar to the 51 displayed by P. verrucosa. P. lutea and A. hemprichii both harbored 40 compounds in conjunction with their respective isolated algae. Comparing across species, 28 metabolites were exclusively present in algae, while 38 were exclusive to corals. A principal component and cluster analyses revealed that metabolite profiles clustered between corals and algae, but each species harbored a distinct catalog of metabolites. The major classes of compounds were carbohydrates and amino acids. Taken together, this study provides a first description of metabolites of Red Sea corals and their associated symbionts. As expected, the metabolites of coral hosts differ from their algal symbionts, but each host and algal species harbor a unique set of metabolites. This corroborates that host-symbiont species pairs display a fine-tuned complementary metabolism that provide insights into the specific nature of the symbiosis. Our analysis also revealed aquatic pollutants, which suggests that metabolite profiling might be used for monitoring pollution levels and assessing

  1. Biological responses of progestogen metabolites in normal and cancerous human breast.

    Science.gov (United States)

    Pasqualini, Jorge R; Chetrite, Gérard S

    2010-12-01

    At present, more than 200 progestogen molecules are available, but their biological response is a function of various factors: affinity to progesterone or other receptors, their structure, the target tissues considered, biological response, experimental conditions, dose, method of administration and metabolic transformations. Metabolic transformation is of huge importance because in various biological processes the metabolic product(s) not only control the activity of the maternal hormone but also have an important activity of its own. In this regard, it was observed that the 20-dihydro derivative of the progestogen dydrogesterone (Duphaston®) is significantly more active than the parent compound in inhibiting sulfatase and 17β-hydroxysteroid dehydrogenase in human breast cancer cells. Estrone sulfatase activity is also inhibited by norelgestromin, a norgestimate metabolite. Interesting information was obtained with a similar progestogen, tibolone, which is rapidly metabolized into the active 3α/3β-hydroxy and 4-ene metabolites. All these metabolites can inhibit sulfatase and 17β-hydroxysteroid dehydrogenase and stimulate sulfotransferase in human breast cancer cells. Another attractive aspect is the metabolic transformation of progesterone itself in human breast tissues. In the normal breast progesterone is mainly converted to 4-ene derivatives, whereas in the tumor tissue it is converted mostly to 5α-pregnane derivatives. 20α-Dihydroprogesterone is found mainly in normal breast tissue and possesses antiproliferative properties as well as the ability to act as an anti-aromatase agent. Consequently, this progesterone metabolite could be involved in the control of estradiol production in the normal breast and therefore implicated in one of the multifactorial mechanisms of the breast carcinogenesis process. In conclusion, a better understanding of both natural and synthetic hormone metabolic transformations and their control could potentially provide

  2. Chemical Diversity and Biological Properties of Secondary Metabolites from Sea Hares of Aplysia Genus

    Directory of Open Access Journals (Sweden)

    Renato B. Pereira

    2016-02-01

    Full Text Available The marine environment is an important source of structurally-diverse and biologically-active secondary metabolites. During the last two decades, thousands of compounds were discovered in marine organisms, several of them having inspired the development of new classes of therapeutic agents. Marine mollusks constitute a successful phyla in the discovery of new marine natural products (MNPs. Over a 50-year period from 1963, 116 genera of mollusks contributed innumerous compounds, Aplysia being the most studied genus by MNP chemists. This genus includes 36 valid species and should be distinguished from all mollusks as it yielded numerous new natural products. Aplysia sea hares are herbivorous mollusks, which have been proven to be a rich source of secondary metabolites, mostly of dietary origin. The majority of secondary metabolites isolated from sea hares of the genus Aplysia are halogenated terpenes; however, these animals are also a source of compounds from other chemical classes, such as macrolides, sterols and alkaloids, often exhibiting cytotoxic, antibacterial, antifungal, antiviral and/or antifeedant activities. This review focuses on the diverse structural classes of secondary metabolites found in Aplysia spp., including several compounds with pronounced biological properties.

  3. Metabolite variability in Caribbean sponges of the genus Aplysina

    Directory of Open Access Journals (Sweden)

    Monica Puyana

    Full Text Available Abstract Sponges of the genus Aplysina are among the most common benthic animals on reefs of the Caribbean, and display a wide diversity of morphologies and colors. Tissues of these sponges lack mineralized skeletal elements, but contain a dense spongin skeleton and an elaborate series of tyrosine-derived brominated alkaloid metabolites that function as chemical defenses against predatory fishes, but do not deter some molluscs. Among the earliest marine natural products to be isolated and identified, these metabolites remain the subject of intense interest for commercial applications because of their activities in various bioassays. In this study, crude organic extracts from 253 sponges from ten morphotypes among the species Aplysina archeri,Aplysina bathyphila,Aplysina cauliformis,Aplysina fistularis,Aplysina fulva,A. insularis, and Aplysina lacunosa were analyzed by liquid chromatography–mass spectrometry (LC–MS to characterize the pattern of intra- and interspecific variabilities of the twelve major secondary metabolites present therein. Patterns across Aplysina species ranged from the presence of mostly a single compound, fistularin-3, in A. cauliformis, to a mixture of metabolites present in the other species. These patterns did not support the biotransformation hypothesis for conversion of large molecular weight molecules to smaller ones for the purpose of enhanced defense. Discriminant analyses of the metabolite data revealed strong taxonomic patterns that support a close relationship between A. fistularis,A. fulva and A. insularis, while two morphotypes of A. cauliformis (lilac creeping vs. brown erect were very distinct. Two morphotypes of A. lacunosa, one with hard tissue consistency, the other soft and thought to belong to a separate genus (Suberea, had very similar chemical profiles. Of the twelve metabolites found among samples, variation in fistularin-3, dideoxyfistularin-3 and hydroxyaerothionin provided the most predictive

  4. Three New and Eleven Known Unusual C25 Steroids: Activated Production of Silent Metabolites in a Marine-Derived Fungus by Chemical Mutagenesis Strategy using Diethyl Sulphate

    Directory of Open Access Journals (Sweden)

    Ming-Wen Xia

    2014-03-01

    Full Text Available Three new (1–3 and 11 known (4–14 C25 steroids with an unusual bicyclo[4.4.1]A/B ring system were isolated by tracing newly produced metabolites in the EtOAc extract of an antitumor mutant AD-1-2 obtained by the diethyl sulphate (DES mutagenesis of a marine-derived Penicillium purpurogenum G59. HPLC-PDAD-UV and HPLC-ESI-MS analyses indicated that the G59 strain did not produce these metabolites and the production of 1–14 in the mutant AD-1-2 extract was caused by the activation of silent metabolites in the original G59 strain by DES mutagenesis. The structures of the new compounds, named antineocyclocitrinols A (1 and B (2 and 23-O-methylantineocyclocitrinol (3, including their absolute configurations were determined by various spectroscopic methods, especially the NMR and Mo2-induced CD analyses. Compounds 1–3 provide the first examples of the C25 bicyclo[4.4.1]A/B ring steroids with the Z-configuration of 20,22-double bond. All of 1–14 weakly inhibited several human cancer cell lines to varying extents. These results provided additional examples for the successful application of the chemical mutagenesis strategy using DES to discover new compounds by activating silent metabolites in fungal isolates and supported also the effectiveness and usefulness of this new strategy.

  5. Phthalate Metabolites, Consumer Habits and Health Effects

    Directory of Open Access Journals (Sweden)

    Peter Wallner

    2016-07-01

    Full Text Available Phthalates are multifunctional chemicals used in a wide variety of consumer products. The aim of this study was to investigate whether levels of urinary phthalate metabolites in urine samples of Austrian mothers and their children were associated with consumer habits and health indicators. Within an Austrian biomonitoring survey, urine samples from 50 mother-child pairs of five communities (two-stage random stratified sampling were analysed. The concentrations of 14 phthalate metabolites were determined, and a questionnaire was administered. Monoethyl phthalate (MEP, mono-n-butyl phthalate (MnBP, mono-isobutyl phthalate (MiBP, monobenzyl phthalate (MBzP, mono-(2-ethylhexyl phthalate (MEHP, mono-(2-ethyl-5-hydroxyhexyl phthalate (5OH-MEHP, mono-(2-ethyl-5-oxohexyl phthalate (5oxo-MEHP, mono-(5-carboxy-2-ethylpentyl phthalate (5cx-MEPP, and 3-carboxy-mono-propyl phthalate (3cx-MPP could be quantified in the majority of samples. Significant correlations were found between the use of hair mousse, hair dye, makeup, chewing gum, polyethylene terephthalate (PET bottles and the diethyl phthalate (DEP metabolite MEP. With regard to health effects, significant associations of MEP in urine with headache, repeated coughing, diarrhoea, and hormonal problems were observed. MBzP was associated with repeated coughing and MEHP was associated with itching.

  6. Phthalate Metabolites, Consumer Habits and Health Effects.

    Science.gov (United States)

    Wallner, Peter; Kundi, Michael; Hohenblum, Philipp; Scharf, Sigrid; Hutter, Hans-Peter

    2016-07-15

    Phthalates are multifunctional chemicals used in a wide variety of consumer products. The aim of this study was to investigate whether levels of urinary phthalate metabolites in urine samples of Austrian mothers and their children were associated with consumer habits and health indicators. Within an Austrian biomonitoring survey, urine samples from 50 mother-child pairs of five communities (two-stage random stratified sampling) were analysed. The concentrations of 14 phthalate metabolites were determined, and a questionnaire was administered. Monoethyl phthalate (MEP), mono-n-butyl phthalate (MnBP), mono-isobutyl phthalate (MiBP), monobenzyl phthalate (MBzP), mono-(2-ethylhexyl) phthalate (MEHP), mono-(2-ethyl-5-hydroxyhexyl) phthalate (5OH-MEHP), mono-(2-ethyl-5-oxohexyl) phthalate (5oxo-MEHP), mono-(5-carboxy-2-ethylpentyl) phthalate (5cx-MEPP), and 3-carboxy-mono-propyl phthalate (3cx-MPP) could be quantified in the majority of samples. Significant correlations were found between the use of hair mousse, hair dye, makeup, chewing gum, polyethylene terephthalate (PET) bottles and the diethyl phthalate (DEP) metabolite MEP. With regard to health effects, significant associations of MEP in urine with headache, repeated coughing, diarrhoea, and hormonal problems were observed. MBzP was associated with repeated coughing and MEHP was associated with itching.

  7. Aleuria aurantia - indole metabolites of fruit bodies, mycelial culture and culture medium

    Directory of Open Access Journals (Sweden)

    Janina Węgiel

    2014-08-01

    Full Text Available The aim of present study was to investigate and compare indole metabolites of fruit bodies, mycelium cultivated in vitro and culture medium of the fungus Aleuria aurantia (Fr. Fuck. By use of a number of chromatographic and spectroscopic methods several indole metabolites have been detected and identified among other the 3-indolebutyric acid was produced and extracted to the culture medium. Furthermore 3-indoleatonitrile and tryptophane degradative products have been found both in fruit bodies and mycelium.

  8. Study on production of useful metabolites by development of advanced cell culture techniques using radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Byung Yeoup; Kim, Jinhong; Lee, Seung Sik; Bai, Hyounwoo; An, Byung Chull; Lee, Eun Mi; Lee, Jae Taek; Kim, Mi Ja

    2010-12-15

    The purpose of this project is improvement of investigation, materialization and evaluation techniques on effectiveness for functional natural compounds throughout development of tissue/cell culture techniques for mass production of useful metabolites using radiation. Research scope includes Development of a technique for radiation tissue and cell culture, Database construction for radiation response in plants and radiation effects, Construction of general-purpose national based techniques of cell culture technique using radiation. Main results are as follow: Isolation and identification of radiation induced basI gene; Determination of stresses sensitivities by transformating basI gene into arabidopsis; Isolation and identification of radiation induced chaperon proteins (PaAhpC and yPrxII) from Pseudomonas and yeast, and structural and functional analysis of the proteins; Determination of oxidative and heat resistance by transformating PaAhpC; Isolation and identification of maysin and its derivatives from centipedgrass; Investigation of enhancement technique for improving maysin and its derivatives production using radiation; Investigation of removing undesirable color in maysin and its derivatives using radiation; Determination of the effect of radiation on physiological functions of centipedgrass extracts; Identification of H{sub 2}O{sub 2} removing enzyme in radiation irradiated plant (Spinach); Determination of the effects of centipedgrass extracts on anti-obesity and anti-cancer activities.

  9. Study on production of useful metabolites by development of advanced cell culture techniques using radiation

    International Nuclear Information System (INIS)

    Chung, Byung Yeoup; Kim, Jinhong; Lee, Seung Sik; Bai, Hyounwoo; An, Byung Chull; Lee, Eun Mi; Lee, Jae Taek; Kim, Mi Ja

    2010-12-01

    The purpose of this project is improvement of investigation, materialization and evaluation techniques on effectiveness for functional natural compounds throughout development of tissue/cell culture techniques for mass production of useful metabolites using radiation. Research scope includes Development of a technique for radiation tissue and cell culture, Database construction for radiation response in plants and radiation effects, Construction of general-purpose national based techniques of cell culture technique using radiation. Main results are as follow: Isolation and identification of radiation induced basI gene; Determination of stresses sensitivities by transformating basI gene into arabidopsis; Isolation and identification of radiation induced chaperon proteins (PaAhpC and yPrxII) from Pseudomonas and yeast, and structural and functional analysis of the proteins; Determination of oxidative and heat resistance by transformating PaAhpC; Isolation and identification of maysin and its derivatives from centipedgrass; Investigation of enhancement technique for improving maysin and its derivatives production using radiation; Investigation of removing undesirable color in maysin and its derivatives using radiation; Determination of the effect of radiation on physiological functions of centipedgrass extracts; Identification of H 2 O 2 removing enzyme in radiation irradiated plant (Spinach); Determination of the effects of centipedgrass extracts on anti-obesity and anti-cancer activities

  10. Rapid generation of recombinant Pseudomonas putida secondary metabolite producers using yTREX

    Directory of Open Access Journals (Sweden)

    Andreas Domröse

    2017-12-01

    Full Text Available Microbial secondary metabolites represent a rich source of valuable compounds with a variety of applications in medicine or agriculture. Effective exploitation of this wealth of chemicals requires the functional expression of the respective biosynthetic genes in amenable heterologous hosts. We have previously established the TREX system which facilitates the transfer, integration and expression of biosynthetic gene clusters in various bacterial hosts. Here, we describe the yTREX system, a new tool adapted for one-step yeast recombinational cloning of gene clusters. We show that with yTREX, Pseudomonas putida secondary metabolite production strains can rapidly be constructed by random targeting of chromosomal promoters by Tn5 transposition. Feasibility of this approach was corroborated by prodigiosin production after yTREX cloning, transfer and expression of the respective biosynthesis genes from Serratia marcescens. Furthermore, the applicability of the system for effective pathway rerouting by gene cluster adaptation was demonstrated using the violacein biosynthesis gene cluster from Chromobacterium violaceum, producing pathway metabolites violacein, deoxyviolacein, prodeoxyviolacein, and deoxychromoviridans. Clones producing both prodigiosin and violaceins could be readily identified among clones obtained after random chromosomal integration by their strong color-phenotype. Finally, the addition of a promoter-less reporter gene enabled facile detection also of phenazine-producing clones after transfer of the respective phenazine-1-carboxylic acid biosynthesis genes from Pseudomonas aeruginosa. All compounds accumulated to substantial titers in the mg range. We thus corroborate here the suitability of P. putida for the biosynthesis of diverse natural products, and demonstrate that the yTREX system effectively enables the rapid generation of secondary metabolite producing bacteria by activation of heterologous gene clusters, applicable for

  11. Role of secondary metabolites biosynthesis in resistance to cotton ...

    African Journals Online (AJOL)

    Secondary metabolites production in healthy and diseased sample of leaves of cotton varieties after the attack of CLCuV found maximum phenolics, carotenoids, chlorophyll a, chlorophyll b and total chlorophyll a and b in healthy sample and minimum contents present in diseased sample. CIM-446 was the best variety to ...

  12. Impact of Brazilian red propolis extract on blood metabolites, milk production, and lamb performance of Santa Inês ewes.

    Science.gov (United States)

    Morsy, Amr S; Soltan, Yosra A; Sallam, Sobhy M A; Alencar, Severino M; Abdalla, Adibe L

    2016-06-01

    Twenty Santa Inês ewes used to evaluate effects of oral administration of Brazilian red propolis extract on blood metabolites, milk production, and lamb performance were randomly grouped (n = 10 ewes/group) to control without propolis administration and propolis treated (3 g red propolis extract/ewe/day) 21 days before expected lambing date. Blood samples were collected weekly, and daily milk yield was recorded twice weekly until 7 weeks postpartum. Propolis administration increased (P lamb birth and weaning weights. The prepartum administration of propolis extract supported positively the transition of ewes from pregnancy to lactation with health benefits achieved for both of ewes and lambs performances.

  13. Post-acquisition data mining techniques for LC-MS/MS-acquired data in drug metabolite identification.

    Science.gov (United States)

    Dhurjad, Pooja Sukhdev; Marothu, Vamsi Krishna; Rathod, Rajeshwari

    2017-08-01

    Metabolite identification is a crucial part of the drug discovery process. LC-MS/MS-based metabolite identification has gained widespread use, but the data acquired by the LC-MS/MS instrument is complex, and thus the interpretation of data becomes troublesome. Fortunately, advancements in data mining techniques have simplified the process of data interpretation with improved mass accuracy and provide a potentially selective, sensitive, accurate and comprehensive way for metabolite identification. In this review, we have discussed the targeted (extracted ion chromatogram, mass defect filter, product ion filter, neutral loss filter and isotope pattern filter) and untargeted (control sample comparison, background subtraction and metabolomic approaches) post-acquisition data mining techniques, which facilitate the drug metabolite identification. We have also discussed the importance of integrated data mining strategy.

  14. Sucrose-enhanced biosynthesis of medicinally important antioxidant secondary metabolites in cell suspension cultures of Artemisia absinthium L.

    Science.gov (United States)

    Ali, Mohammad; Abbasi, Bilal Haider; Ahmad, Nisar; Ali, Syed Shujait; Ali, Shahid; Ali, Gul Shad

    2016-12-01

    Natural products are gaining tremendous importance in pharmaceutical industry and attention has been focused on the applications of in vitro technologies to enhance yield and productivity of such products. In this study, we investigated the accumulation of biomass and antioxidant secondary metabolites in response to different carbohydrate sources (sucrose, maltose, fructose and glucose) and sucrose concentrations (1, 3, 5, 7 and 9 %). Moreover, the effects of 3 % repeated sucrose feeding (day-12, -18 and -24) were also investigated. The results showed the superiority of disaccharides over monosaccharides for maximum biomass and secondary metabolites accumulation. Comparable profiles for maximum biomass were observed in response to sucrose and maltose and initial sucrose concentrations of 3 and 5 %. Maximum total phenolic and total flavonoid contents were displayed by cultures treated with sucrose and maltose; however, initial sucrose concentrations of 5 and 7 % were optimum for both classes of metabolites, respectively. Following 3 % extra sucrose feeding, cultures fed on day-24 (late-log phase) showed higher biomass, total phenolic and total flavonoid contents as compared to control cultures. Highest antioxidant activity was exhibited by maltose-treated cultures. Moreover, sucrose-treated cultures displayed positive correlation of antioxidant activity with total phenolics and total flavonoids production. This work describes the stimulatory role of disaccharides and sucrose feeding strategy for higher accumulation of phenolics and flavonoids, which could be potentially scaled up to bioreactor level for the bulk production of these metabolites in suspension cultures of A. absinthium.

  15. Transportable hyperpolarized metabolites

    Science.gov (United States)

    Ji, Xiao; Bornet, Aurélien; Vuichoud, Basile; Milani, Jonas; Gajan, David; Rossini, Aaron J.; Emsley, Lyndon; Bodenhausen, Geoffrey; Jannin, Sami

    2017-01-01

    Nuclear spin hyperpolarization of 13C-labelled metabolites by dissolution dynamic nuclear polarization can enhance the NMR signals of metabolites by several orders of magnitude, which has enabled in vivo metabolic imaging by MRI. However, because of the short lifetime of the hyperpolarized magnetization (typically <1 min), the polarization process must be carried out close to the point of use. Here we introduce a concept that markedly extends hyperpolarization lifetimes and enables the transportation of hyperpolarized metabolites. The hyperpolarized sample can thus be removed from the polarizer and stored or transported for use at remote MRI or NMR sites. We show that hyperpolarization in alanine and glycine survives 16 h storage and transport, maintaining overall polarization enhancements of up to three orders of magnitude. PMID:28072398

  16. The AreA transcription factor in Fusarium graminearum regulates the use of some nonpreferred nitrogen sources and secondary metabolite production.

    Science.gov (United States)

    Giese, Henriette; Sondergaard, Teis Esben; Sørensen, Jens Laurids

    2013-01-01

    Growth conditions are known to affect the production of secondary metabolites in filamentous fungi. The influence of different nitrogen sources and the transcription factor AreA on the production of mycotoxins in Fusarium graminearum was examined. Growth on glutamine or NH4-sources was poor and asparagine was found to be a preferential nitrogen source for F. graminearum. Deletion of areA led to poor growth on NaNO₃ suggesting its involvement in regulation of the nitrate reduction process. In addition utilization of aspartic acid, histidine, isoleucine, leucine, threonine, tyrosine, and valine as nitrogen sources was shown to depend of a functional AreA. AreA was shown to be required for the production of the mycotoxins deoxynivalenol (DON), zearalenone, and fusarielin H regardless of the nutrient medium. Deletion of nmr, the repressor of AreA under nitrogen sufficient conditions, had little effect on either growth or toxin production. AreA appears to regulate production of some mycotoxins directly or indirectly independent on nitrogen status and plays a role in utilization of certain amino acids. Copyright © 2013 The British Mycological Society. All rights reserved.

  17. Biodegradation of clofibric acid and identification of its metabolites.

    Science.gov (United States)

    Salgado, R; Oehmen, A; Carvalho, G; Noronha, J P; Reis, M A M

    2012-11-30

    Clofibric acid (CLF) is the pharmaceutically active metabolite of lipid regulators clofibrate, etofibrate and etofyllinclofibrate, and it is considered both environmentally persistent and refractory. This work studied the biotransformation of CLF in aerobic sequencing batch reactors (SBRs) with mixed microbial cultures, monitoring the efficiency of biotransformation of CLF and the production of metabolites. The maximum removal achieved was 51% biodegradation (initial CLF concentration=2 mg L(-1)), where adsorption and abiotic removal mechanisms were shown to be negligible, showing that CLF is indeed biodegradable. Tests showed that the observed CLF biodegradation was mainly carried out by heterotrophic bacteria. Three main metabolites were identified, including α-hydroxyisobutyric acid, lactic acid and 4-chlorophenol. The latter is known to exhibit higher toxicity than the parent compound, but it did not accumulate in the SBRs. α-Hydroxyisobutyric acid and lactic acid accumulated for a period, where nitrite accumulation may have been responsible for inhibiting their degradation. A metabolic pathway for the biodegradation of CLF is proposed in this study. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Secondary Metabolites Produced during the Germination of Streptomyces coelicolor

    Directory of Open Access Journals (Sweden)

    Matouš Čihák

    2017-12-01

    Full Text Available Spore awakening is a series of actions that starts with purely physical processes and continues via the launching of gene expression and metabolic activities, eventually achieving a vegetative phase of growth. In spore-forming microorganisms, the germination process is controlled by intra- and inter-species communication. However, in the Streptomyces clade, which is capable of developing a plethora of valuable compounds, the chemical signals produced during germination have not been systematically studied before. Our previously published data revealed that several secondary metabolite biosynthetic genes are expressed during germination. Therefore, we focus here on the secondary metabolite production during this developmental stage. Using high-performance liquid chromatography-mass spectrometry, we found that the sesquiterpenoid antibiotic albaflavenone, the polyketide germicidin A, and chalcone are produced during germination of the model streptomycete, S. coelicolor. Interestingly, the last two compounds revealed an inhibitory effect on the germination process. The secondary metabolites originating from the early stage of microbial growth may coordinate the development of the producer (quorum sensing and/or play a role in competitive microflora repression (quorum quenching in their nature environments.

  19. Metabolite profiling of CHO cells: Molecular reflections of bioprocessing effectiveness

    NARCIS (Netherlands)

    Sellick, C.A.; Croxford, A.S.; Maqsood, A.R.; Stephens, G.M.; Westerhoff, H.V.; Goodacre, R.; Dickson, A.J.

    2015-01-01

    Whilst development of medium and feeds has provided major advances in recombinant protein production in CHO cells, the fundamental understanding is limited. We have applied metabolite profiling with established robust (GC-MS) analytics to define the molecular loci by which two yield-enhancing feeds

  20. Dysbiosis of gut microbiota and microbial metabolites in Parkinson's Disease.

    Science.gov (United States)

    Sun, Meng-Fei; Shen, Yan-Qin

    2018-04-26

    Gut microbial dysbiosis and alteration of microbial metabolites in Parkinson's disease (PD) have been increasingly reported. Dysbiosis in the composition and abundance of gut microbiota can affect both the enteric nervous system and the central nervous system (CNS), indicating the existence of a microbiota-gut-brain axis and thereby causing CNS diseases. Disturbance of the microbiota-gut-brain axis has been linked to specific microbial products that are related to gut inflammation and neuroinflammation. Future directions should therefore focus on the exploration of specific gut microbes or microbial metabolites that contribute to the development of PD. Microbiota-targeted interventions, such as antibiotics, probiotics and fecal microbiota transplantation, have been shown to favorably affect host health. In this review, recent findings regarding alterations and the role of gut microbiota and microbial metabolites in PD are summarized, and potential molecular mechanisms and microbiota-targeted interventions in PD are discussed. Copyright © 2018. Published by Elsevier B.V.

  1. Nutritionally-related blood metabolites and faecal egg counts in ...

    African Journals Online (AJOL)

    Nutritionally-related blood metabolites and faecal egg counts in indigenous Nguni goats of South Africa. ... It, therefore, is imperative to put measures in place to counteract the drop in any of these parameters, with season, if productivity of the indigenous goats is to be maintained. Further studies are required to determine the ...

  2. Fungal Anticancer Metabolites: Synthesis Towards Drug Discovery.

    Science.gov (United States)

    Barbero, Margherita; Artuso, Emma; Prandi, Cristina

    2018-01-01

    Fungi are a well-known and valuable source of compounds of therapeutic relevance, in particular of novel anticancer compounds. Although seldom obtainable through isolation from the natural source, the total organic synthesis still remains one of the most efficient alternatives to resupply them. Furthermore, natural product total synthesis is a valuable tool not only for discovery of new complex biologically active compounds but also for the development of innovative methodologies in enantioselective organic synthesis. We undertook an in-depth literature searching by using chemical bibliographic databases (SciFinder, Reaxys) in order to have a comprehensive insight into the wide research field. The literature has been then screened, refining the obtained results by subject terms focused on both biological activity and innovative synthetic procedures. The literature on fungal metabolites has been recently reviewed and these publications have been used as a base from which we consider the synthetic feasibility of the most promising compounds, in terms of anticancer properties and drug development. In this paper, compounds are classified according to their chemical structure. This review summarizes the anticancer potential of fungal metabolites, highlighting the role of total synthesis outlining the feasibility of innovative synthetic procedures that facilitate the development of fungal metabolites into drugs that may become a real future perspective. To our knowledge, this review is the first effort to deal with the total synthesis of these active fungi metabolites and demonstrates that total chemical synthesis is a fruitful means of yielding fungal derivatives as aided by recent technological and innovative advancements. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Identifying diseases-related metabolites using random walk.

    Science.gov (United States)

    Hu, Yang; Zhao, Tianyi; Zhang, Ningyi; Zang, Tianyi; Zhang, Jun; Cheng, Liang

    2018-04-11

    Metabolites disrupted by abnormal state of human body are deemed as the effect of diseases. In comparison with the cause of diseases like genes, these markers are easier to be captured for the prevention and diagnosis of metabolic diseases. Currently, a large number of metabolic markers of diseases need to be explored, which drive us to do this work. The existing metabolite-disease associations were extracted from Human Metabolome Database (HMDB) using a text mining tool NCBO annotator as priori knowledge. Next we calculated the similarity of a pair-wise metabolites based on the similarity of disease sets of them. Then, all the similarities of metabolite pairs were utilized for constructing a weighted metabolite association network (WMAN). Subsequently, the network was utilized for predicting novel metabolic markers of diseases using random walk. Totally, 604 metabolites and 228 diseases were extracted from HMDB. From 604 metabolites, 453 metabolites are selected to construct the WMAN, where each metabolite is deemed as a node, and the similarity of two metabolites as the weight of the edge linking them. The performance of the network is validated using the leave one out method. As a result, the high area under the receiver operating characteristic curve (AUC) (0.7048) is achieved. The further case studies for identifying novel metabolites of diabetes mellitus were validated in the recent studies. In this paper, we presented a novel method for prioritizing metabolite-disease pairs. The superior performance validates its reliability for exploring novel metabolic markers of diseases.

  4. Tropical biodiversity: has it been a potential source of secondary metabolites useful for medicinal chemistry?

    Energy Technology Data Exchange (ETDEWEB)

    Valli, Marilia; Pivatto, Marcos; Danuello, Amanda; Castro-Gamboa, Ian; Silva, Dulce Helena Siqueira; Cavalheiro, Alberto Jose; Araujo, Angela Regina; Furlan, Maysa; Lopes, Marcia Nasser; Bolzani, Vanderlan da Silva, E-mail: bolzaniv@iq.unesp.br [UNESP, Araraquara, SP (Brazil). Inst. de Quimica. Dept. de Quimica Organica

    2012-07-01

    The use of natural products has definitely been the most successful strategy in the discovery of novel medicines. Secondary metabolites from terrestrial and marine organisms have found considerable use in the treatment of numerous diseases and have been considered lead molecules both in their natural form and as templates for medicinal chemistry. This paper seeks to show the great value of secondary metabolites and emphasize the rich chemical diversity of Brazilian biodiversity. This natural chemical library remains understudied, but can be a useful source of new secondary metabolites with potential application as templates for drug discovery. (author)

  5. Tropical biodiversity: has it been a potential source of secondary metabolites useful for medicinal chemistry?

    Directory of Open Access Journals (Sweden)

    Marilia Valli

    2012-01-01

    Full Text Available The use of natural products has definitely been the most successful strategy in the discovery of novel medicines. Secondary metabolites from terrestrial and marine organisms have found considerable use in the treatment of numerous diseases and have been considered lead molecules both in their natural form and as templates for medicinal chemistry. This paper seeks to show the great value of secondary metabolites and emphasize the rich chemical diversity of Brazilian biodiversity. This natural chemical library remains understudied, but can be a useful source of new secondary metabolites with potential application as templates for drug discovery.

  6. Tropical biodiversity: has it been a potential source of secondary metabolites useful for medicinal chemistry?

    International Nuclear Information System (INIS)

    Valli, Marilia; Pivatto, Marcos; Danuello, Amanda; Castro-Gamboa, Ian; Silva, Dulce Helena Siqueira; Cavalheiro, Alberto Jose; Araujo, Angela Regina; Furlan, Maysa; Lopes, Marcia Nasser; Bolzani, Vanderlan da Silva

    2012-01-01

    The use of natural products has definitely been the most successful strategy in the discovery of novel medicines. Secondary metabolites from terrestrial and marine organisms have found considerable use in the treatment of numerous diseases and have been considered lead molecules both in their natural form and as templates for medicinal chemistry. This paper seeks to show the great value of secondary metabolites and emphasize the rich chemical diversity of Brazilian biodiversity. This natural chemical library remains understudied, but can be a useful source of new secondary metabolites with potential application as templates for drug discovery. (author)

  7. Estimation of induced secondary metabolites in chickpea tissues in response to elicitor preparation of seaweeds

    International Nuclear Information System (INIS)

    Bi, F.; Iqbal, S.

    2000-01-01

    Disease response of plants in terms of induced browning and phytoalexin (induced secondary metabolites) production were recorded in the tissues of Cicer arietinum (Chick pea) treated with the High Molecular Crude Elicitor Preparations, HMWCEP 'Polysaccharides' of Hypnea musciformis (red algae), Padina tetrastromatica (brown algae) and Ulva lactulus (green algae). A UV-visible spectrophotometric method has been developed for the quantification of induced secondary metabolites with time. (author)

  8. Structural Elucidation of Metabolites of Synthetic Cannabinoid UR-144 by Cunninghamella elegans Using Nuclear Magnetic Resonance (NMR) Spectroscopy.

    Science.gov (United States)

    Watanabe, Shimpei; Kuzhiumparambil, Unnikrishnan; Fu, Shanlin

    2018-03-08

    The number of new psychoactive substances keeps on rising despite the controlling efforts by law enforcement. Although metabolism of the newly emerging drugs is continuously studied to keep up with the new additions, the exact structures of the metabolites are often not identified due to the insufficient sample quantities for techniques such as nuclear magnetic resonance (NMR) spectroscopy. The aim of the study was to characterise several metabolites of the synthetic cannabinoid (1-pentyl-1H-indol-3-yl) (2,2,3,3-tetramethylcyclopropyl) methanone (UR-144) by NMR spectroscopy after the incubation with the fungus Cunninghamella elegans. UR-144 was incubated with C. elegans for 72 h, and the resulting metabolites were chromatographically separated. Six fractions were collected and analysed by NMR spectroscopy. UR-144 was also incubated with human liver microsomes (HLM), and the liquid chromatography-high resolution mass spectrometry analysis was performed on the HLM metabolites with the characterised fungal metabolites as reference standards. Ten metabolites were characterised by NMR analysis including dihydroxy metabolites, carboxy and hydroxy metabolites, a hydroxy and ketone metabolite, and a carboxy and ketone metabolite. Of these metabolites, dihydroxy metabolite, carboxy and hydroxy metabolites, and a hydroxy and ketone metabolite were identified in HLM incubation. The results indicate that the fungus is capable of producing human-relevant metabolites including the exact isomers. The capacity of the fungus C. elegans to allow for NMR structural characterisation by enabling production of large amounts of metabolites makes it an ideal model to complement metabolism studies.

  9. Analysis of Fusarium avenaceum Metabolites Produced during Wet Apple Core Rot

    DEFF Research Database (Denmark)

    Sørensen, Jens Laurids; Phipps, Richard Kerry; Nielsen, Kristian Fog

    2009-01-01

    Wet apple core rot (wACR) is a well-known disease of susceptible apple cultivars such as Gloster, Jona Gold, and Fuji. Investigations in apple orchards in Slovenia identified Fusarium avenaceum, a known producer of several mycotoxins, as the predominant causal agent of this disease. A LC...... and naturally infected apples. Levels of moniliformin, antibiotic Y, aurofusarin, and enniatins A, A1, B, and B1 were quantitatively examined in artificially inoculated and naturally infected apples, whereas the remaining metabolites were qualitatively detected. Metabolite production was examined...... in artificially inoculated apples after 3, 7, 14, and 21 days of incubation. Most metabolites were detected after 3 or 7 days and reached significantly high levels within 14 or 21 days. The highest levels of moniliformin, antibiotic Y, aurofusarin, and the combined sum of enniatins A, A1, B, and B1 were 7.3, 5...

  10. Prioritizing Candidate Disease Metabolites Based on Global Functional Relationships between Metabolites in the Context of Metabolic Pathways

    Science.gov (United States)

    Yang, Haixiu; Xu, Yanjun; Han, Junwei; Li, Jing; Su, Fei; Zhang, Yunpeng; Zhang, Chunlong; Li, Dongguo; Li, Xia

    2014-01-01

    Identification of key metabolites for complex diseases is a challenging task in today's medicine and biology. A special disease is usually caused by the alteration of a series of functional related metabolites having a global influence on the metabolic network. Moreover, the metabolites in the same metabolic pathway are often associated with the same or similar disease. Based on these functional relationships between metabolites in the context of metabolic pathways, we here presented a pathway-based random walk method called PROFANCY for prioritization of candidate disease metabolites. Our strategy not only takes advantage of the global functional relationships between metabolites but also sufficiently exploits the functionally modular nature of metabolic networks. Our approach proved successful in prioritizing known metabolites for 71 diseases with an AUC value of 0.895. We also assessed the performance of PROFANCY on 16 disease classes and found that 4 classes achieved an AUC value over 0.95. To investigate the robustness of the PROFANCY, we repeated all the analyses in two metabolic networks and obtained similar results. Then we applied our approach to Alzheimer's disease (AD) and found that a top ranked candidate was potentially related to AD but had not been reported previously. Furthermore, our method was applicable to prioritize the metabolites from metabolomic profiles of prostate cancer. The PROFANCY could identify prostate cancer related-metabolites that are supported by literatures but not considered to be significantly differential by traditional differential analysis. We also developed a freely accessible web-based and R-based tool at http://bioinfo.hrbmu.edu.cn/PROFANCY. PMID:25153931

  11. Potentially harmful secondary metabolites produced by indoor Chaetomium species on artificially and naturally contaminated building materials

    DEFF Research Database (Denmark)

    Dosen, Ina; Nielsen, Kristian Fog; Clausen, Geo

    2017-01-01

    , have been screened for, and thus detected in buildings. In this study, we used a liquid chromatography-high resolution mass spectrometry approach to screen both artificially and naturally infected building materials for all the Chaetomium metabolites described in the literature. Pure agar cultures were...... also investigated in order to establish differences between metabolite production in vitro and on building materials as well as comparison to non-indoor reference strains. On building materials six different chaetoglobosins were detected in total concentrations of up to 950 mg/m2 from C. globosum along...... with three different chaetoviridins/chaetomugilins in concentrations up to 200 mg/m2. Indoor Chaetomium spp. preferred wood-based materials over gypsum, both in terms of growth rate and metabolite production. Cochliodones were detected for the first time on all building materials infected by both C. globosum...

  12. Dereplication of Natural Products Using GC-TOF Mass Spectrometry: Improved Metabolite Identification By Spectral Deconvolution Ratio Analysis

    Directory of Open Access Journals (Sweden)

    Fausto Carnevale Neto

    2016-09-01

    Full Text Available Dereplication based on hyphenated techniques has been extensively applied in plant metabolomics, avoiding re-isolation of known natural products. However, due to the complex nature of biological samples and their large concentration range, dereplication requires the use of chemometric tools to comprehensively extract information from the acquired data. In this work we developed a reliable GC-MS-based method for the identification of non-targeted plant metabolites by combining the Ratio Analysis of Mass Spectrometry deconvolution tool (RAMSY with Automated Mass Spectral Deconvolution and Identification System software (AMDIS. Plants species from Solanaceae, Chrysobalanaceae and Euphorbiaceae were selected as model systems due to their molecular diversity, ethnopharmacological potential and economical value. The samples were analyzed by GC-MS after methoximation and silylation reactions. Dereplication initiated with the use of a factorial design of experiments to determine the best AMDIS configuration for each sample, considering linear retention indices and mass spectral data. A heuristic factor (CDF, compound detection factor was developed and applied to the AMDIS results in order to decrease the false-positive rates. Despite the enhancement in deconvolution and peak identification, the empirical AMDIS method was not able to fully deconvolute all GC-peaks, leading to low MF values and/or missing metabolites. RAMSY was applied as a complementary deconvolution method to AMDIS to peaks exhibiting substantial overlap, resulting in recovery of low-intensity co-eluted ions. The results from this combination of optimized AMDIS with RAMSY attested to the ability of this approach as an improved dereplication method for complex biological samples such as plant extracts.

  13. Detection of tamoxifen metabolites by GC-MSD.

    Science.gov (United States)

    Báez, H; Camargo, C; Osorio, H; Umpiérrez, F

    2004-01-01

    Tamoxifen is an antiestrogen used in the adjuvant endocrine therapy of early breast cancer and malignant breast disorders. It is also used in women with anovulatory infertility caused by its stimulating effect on the secretion of the pituitary gonadotrophic hormones. In males it could increase the endogenous production of androgens. Because of these properties tamoxifen may be misused in some sports to treat the androgens suppression caused by the extensive abuse of anabolic androgenic steroids. A method for identification and confirmation of tamoxifen metabolites is described. Hydroxymetoxytamoxifen is detected in urine by gas chromatography and mass spectrometry in a selective ion monitoring method followed by the routine postrun in the screening of anabolic steroids. Once the hydroxymetoxytamoxifen is detected, confirmation of reported metabolites could be performed with a 5973 mass selective detector in the scan mode after solid-phase extraction by cationic exchange. This study also reports an excretion profile for a single dose of tamoxifen equivalent to 40 mg administrated orally to two males volunteers.

  14. Acetate and bicarbonate assimilation and metabolite formation in Chlamydomonas reinhardtii: a 13C-NMR study.

    Directory of Open Access Journals (Sweden)

    Himanshu Singh

    Full Text Available Cellular metabolite analyses by (13C-NMR showed that C. reinhardtii cells assimilate acetate at a faster rate in heterotrophy than in mixotrophy. While heterotrophic cells produced bicarbonate and CO2aq, mixotrophy cells produced bicarbonate alone as predominant metabolite. Experiments with singly (13C-labelled acetate ((13CH(3-COOH or CH(3-(13COOH supported that both the (13C nuclei give rise to bicarbonate and CO2(aq. The observed metabolite(s upon further incubation led to the production of starch and triacylglycerol (TAG in mixotrophy, whereas in heterotrophy the TAG production was minimal with substantial accumulation of glycerol and starch. Prolonged incubation up to eight days, without the addition of fresh acetate, led to an increased TAG production at the expense of bicarbonate, akin to that of nitrogen-starvation. However, such TAG production was substantially high in mixotrophy as compared to that in heterotrophy. Addition of mitochondrial un-coupler blocked the formation of bicarbonate and CO2(aq in heterotrophic cells, even though acetate uptake ensued. Addition of PSII-inhibitor to mixotrophic cells resulted in partial conversion of bicarbonate into CO2(aq, which were found to be in equilibrium. In an independent experiment, we have monitored assimilation of bicarbonate via photoautotrophy and found that the cells indeed produce starch and TAG at a much faster rate as compared to that in mixotrophy and heterotrophy. Further, we noticed that the accumulation of starch is relatively more as compared to TAG. Based on these observations, we suggest that acetate assimilation in C. reinhardtii does not directly lead to TAG formation but via bicarbonate/CO2(aq pathways. Photoautotrophic mode is found to be the best growth condition for the production of starch and TAG and starch in C. reinhardtii.

  15. Effects of supplementation with green tea by-products on growth performance, meat quality, blood metabolites and immune cell proliferation in goats.

    Science.gov (United States)

    Ahmed, S T; Lee, J-W; Mun, H-S; Yang, C-J

    2015-12-01

    Forty-eight castrated male goats were used to determine the effects of feeding green tea by-products (GTB) on growth performance, meat quality, blood metabolites and immune cell proliferation. Experimental treatments consisted of basal diets supplemented with four levels of GTB (0%, 0.5%, 1.0% or 2.0%). Four replicate pens were assigned to each treatment with three goats per replicate. Increasing dietary GTB tended to linearly increase the overall average weight gain and feed intake (p = 0.09). Water holding capacity, pH and sensory attributes of meat were not affected by GTB supplementation, while cooking loss was reduced both linearly and quadratically (p goat meat were improved by GTB supplementation. Increasing dietary GTB quadratically increased protein and decreased crude fat (p goat meat. The proportions of monounsaturated fatty acid, polyunsaturated fatty acid (PUFA) and n-6 PUFA increased linearly (p meat were lower in the 2.0% GTB-supplemented group in all storage periods (p meat quality, blood metabolites and immune cell proliferation when supplemented as a feed additive in goat diet. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.

  16. Urinary excretion of phthalate metabolites in 129 healthy Danish children and adolescents: Estimation of daily phthalate intake

    DEFF Research Database (Denmark)

    Frederiksen, Hanne; Aksglaede, Lise; Sørensen, Kaspar

    2011-01-01

    Background Phthalates are a group of chemicals with widespread use in the industrial production of numerous consumer products. They are suspected to be involved in male reproductive health problems and have also been associated with several other health problems in children including obesity...... and asthma. Objectives To study the urinary excretion of phthalate metabolites in Danish children recruited from the general population, and to estimate the daily intake of phthalates in this segment of the population. Method One 24 h urine sample and to consecutive first morning urine samples were collected...... from 129 healthy Danish children and adolescents (range 6–21 yrs). The concentrations of 11 phthalate metabolites of 5 different phthalate diesters were analyzed by liquid chromatography–tandem mass spectrometry. Results The analyzed metabolites were detectable in almost all 24 h urine samples...

  17. Production of trichothecenes and other secondary metabolites by Fusarium culmorum and Fusarium equiseti on common laboratory media and a soil organic matter agar: An ecological interpretation

    DEFF Research Database (Denmark)

    Hestbjerg, H.; Nielsen, Kristian Fog; Thrane, Ulf

    2002-01-01

    trichothecene production was detected for 94 of 102 F culmorum isolates, only 8 of 57 F equiseti isolates were positive. Profiles of secondary metabolites were compared by following growth on yeast extract sucrose agar (YES), potato sucrose agar (PSA), and an agar medium, prepared from soil organic matter (SOM......), which was included to simulate growth, conditions in soil. SOM supported the production of chrysogine by F culmorum. The two species utilized the media differently. F culmorum produced zearalenone (ZEA) on YES, whereas some F. equiseti isolates produced ZEA on PSA. Other F. equiseti isolates produced...

  18. Tiny Microbes with a Big Impact: The Role of Cyanobacteria and Their Metabolites in Shaping Our Future

    Directory of Open Access Journals (Sweden)

    Sophie Mazard

    2016-05-01

    Full Text Available Cyanobacteria are among the first microorganisms to have inhabited the Earth. Throughout the last few billion years, they have played a major role in shaping the Earth as the planet we live in, and they continue to play a significant role in our everyday lives. Besides being an essential source of atmospheric oxygen, marine cyanobacteria are prolific secondary metabolite producers, often despite the exceptionally small genomes. Secondary metabolites produced by these organisms are diverse and complex; these include compounds, such as pigments and fluorescent dyes, as well as biologically-active compounds with a particular interest for the pharmaceutical industry. Cyanobacteria are currently regarded as an important source of nutrients and biofuels and form an integral part of novel innovative energy-efficient designs. Being autotrophic organisms, cyanobacteria are well suited for large-scale biotechnological applications due to the low requirements for organic nutrients. Recent advances in molecular biology techniques have considerably enhanced the potential for industries to optimize the production of cyanobacteria secondary metabolites with desired functions. This manuscript reviews the environmental role of marine cyanobacteria with a particular focus on their secondary metabolites and discusses current and future developments in both the production of desired cyanobacterial metabolites and their potential uses in future innovative projects.

  19. Tiny Microbes with a Big Impact: The Role of Cyanobacteria and Their Metabolites in Shaping Our Future.

    Science.gov (United States)

    Mazard, Sophie; Penesyan, Anahit; Ostrowski, Martin; Paulsen, Ian T; Egan, Suhelen

    2016-05-17

    Cyanobacteria are among the first microorganisms to have inhabited the Earth. Throughout the last few billion years, they have played a major role in shaping the Earth as the planet we live in, and they continue to play a significant role in our everyday lives. Besides being an essential source of atmospheric oxygen, marine cyanobacteria are prolific secondary metabolite producers, often despite the exceptionally small genomes. Secondary metabolites produced by these organisms are diverse and complex; these include compounds, such as pigments and fluorescent dyes, as well as biologically-active compounds with a particular interest for the pharmaceutical industry. Cyanobacteria are currently regarded as an important source of nutrients and biofuels and form an integral part of novel innovative energy-efficient designs. Being autotrophic organisms, cyanobacteria are well suited for large-scale biotechnological applications due to the low requirements for organic nutrients. Recent advances in molecular biology techniques have considerably enhanced the potential for industries to optimize the production of cyanobacteria secondary metabolites with desired functions. This manuscript reviews the environmental role of marine cyanobacteria with a particular focus on their secondary metabolites and discusses current and future developments in both the production of desired cyanobacterial metabolites and their potential uses in future innovative projects.

  20. Identification of hepatic metabolites of two highly carcinogenic polycyclic aza-aromatic compounds, 7,9-dimethylbenz[c]acridine and 7,10-dimethylbenz[c]acridine.

    Science.gov (United States)

    Ye, Y; Duke, C C; Holder, G M

    1995-03-01

    The hepatic microsomal metabolites of the highly carcinogenic dimethylbenzacridines, 7,9-dimethylbenz[c]acridine (7,9-DMBAC), and 7,10-dimethylbenz[c]acridine (7,10-DMBAC) were obtained with preparations from 3-methylcholanthrene-pretreated rats. Metabolites were separated by reversed-phase HPLC and characterized using UV spectral data and chemical ionization-mass spectrometry after trimethylsilylation and GC. Comparisons with products formed in the presence of the epoxide hydrolase inhibitor, 1,1,1-trichloropropane 2,3-oxide and with those formed from the three synthetic alcohol derivatives of each parent compound, aided the assignment of firm or tentative structures to 16 products from 7,9-DMBAC found in 22 reversed-phase chromatographic peaks, and for 17 products of 7,10-DMBAC found in 19 chromatographic peaks. The more abundant metabolites were derived from oxidation of the methyl groups. Other metabolites were dihydrodiols, epoxides, phenols and secondary metabolites. The 9-methyl group prevented dihydrodiol formation at the 8,9-position from 7,9-DMBAC, and for each carcinogen, the 3,4-dihydrodiol was formed. As well, 3,4-dihydrodiols of methyl oxidized compounds were found.

  1. Dead end metabolites--defining the known unknowns of the E. coli metabolic network.

    Directory of Open Access Journals (Sweden)

    Amanda Mackie

    Full Text Available The EcoCyc database is an online scientific database which provides an integrated view of the metabolic and regulatory network of the bacterium Escherichia coli K-12 and facilitates computational exploration of this important model organism. We have analysed the occurrence of dead end metabolites within the database--these are metabolites which lack the requisite reactions (either metabolic or transport that would account for their production or consumption within the metabolic network. 127 dead end metabolites were identified from the 995 compounds that are contained within the EcoCyc metabolic network. Their presence reflects either a deficit in our representation of the network or in our knowledge of E. coli metabolism. Extensive literature searches resulted in the addition of 38 transport reactions and 3 metabolic reactions to the database and led to an improved representation of the pathway for Vitamin B12 salvage. 39 dead end metabolites were identified as components of reactions that are not physiologically relevant to E. coli K-12--these reactions are properties of purified enzymes in vitro that would not be expected to occur in vivo. Our analysis led to improvements in the software that underpins the database and to the program that finds dead end metabolites within EcoCyc. The remaining dead end metabolites in the EcoCyc database likely represent deficiencies in our knowledge of E. coli metabolism.

  2. Differential metabolite profiles during fruit development in high-yielding oil palm mesocarp.

    Directory of Open Access Journals (Sweden)

    Huey Fang Teh

    Full Text Available To better understand lipid biosynthesis in oil palm mesocarp, in particular the differences in gene regulation leading to and including de novo fatty acid biosynthesis, a multi-platform metabolomics technology was used to profile mesocarp metabolites during six critical stages of fruit development in comparatively high- and low-yielding oil palm populations. Significantly higher amino acid levels preceding lipid biosynthesis and nucleosides during lipid biosynthesis were observed in a higher yielding commercial palm population. Levels of metabolites involved in glycolysis revealed interesting divergence of flux towards glycerol-3-phosphate, while carbon utilization differences in the TCA cycle were proven by an increase in malic acid/citric acid ratio. Apart from insights into the regulation of enhanced lipid production in oil palm, these results provide potentially useful metabolite yield markers and genes of interest for use in breeding programmes.

  3. Effects of Selected Dietary Secondary Metabolites on Reactive Oxygen Species Production Caused by Iron(II Autoxidation

    Directory of Open Access Journals (Sweden)

    Vladimir Chobot

    2014-12-01

    Full Text Available Iron is an essential co-factor for many enzymes that catalyze electron transfer reactions. It is well known that so-called “poorly liganded” iron can increase ROS concentrations and trigger oxidative stress that is capable of initiating apoptosis. Conversely, controlled ROS production has been recognized as an integral part of cellular signaling. Elevated ROS concentrations are associated with aging, inflammatory and degenerative diseases. Anti-aging properties have been attributed especially to antioxidant phenolic plant metabolites that represent food additives in our diet. Consequently, this study explores the effects of flavonoids (quercetin and rutin, several phenolic acids (caffeic, chlorogenic, and protocatechuic acid, and the alkaloid caffeine on iron(II autoxidation and ROS production in comparison to the standard antioxidants ascorbic acid and Trolox. The iron(II autoxidation assay was carried out in pH 6.0 (plant apoplast and inflamed human tissue and 7.4 (cell cytoplasm and human blood plasma. The obtained results accentuate phenolic acids as the more specific antioxidants compared to ascorbic acid and Trolox. Flavonoid redox chemistry depends more on the chemical milieu, specifically on pH. In vivo, the presence of iron cannot be ruled out and “wrongly” or “poorly” complexed iron has been pointed out as causative agent of various age-related diseases.

  4. Synthesis of Linezolid Metabolites PNU-142300 and PNU-142586 toward the Exploration of Metabolite-Related Events.

    Science.gov (United States)

    Hanaya, Kengo; Matsumoto, Kazuaki; Yokoyama, Yuta; Kizu, Junko; Shoji, Mitsuru; Sugai, Takeshi

    2017-01-01

    Linezolid (1) is an oxazolidinone antibiotic that is partially metabolized in vivo via ring cleavage of its morpholine moiety to mainly form two metabolites, PNU-142300 (2) and PNU-142586 (3). It is supposed that accumulation of 2 and 3 in patients with renal insufficiency may cause thrombocytopenia, one of the adverse effects of linezolid. However, the poor availability of 2 and 3 has hindered further investigation of the clinical significance of the accumulation of these metabolites. In this paper, we synthesized metabolites 2 and 3 via a common synthetic intermediate, 4; this will encourage further exploration of events related to these metabolites and lead to improved clinical use of linezolid.

  5. In situ proteo-metabolomics reveals metabolite secretion by the acid mine drainage bio-indicator, Euglena mutabilis

    Science.gov (United States)

    Halter, David; Goulhen-Chollet, Florence; Gallien, Sébastien; Casiot, Corinne; Hamelin, Jérôme; Gilard, Françoise; Heintz, Dimitri; Schaeffer, Christine; Carapito, Christine; Van Dorsselaer, Alain; Tcherkez, Guillaume; Arsène-Ploetze, Florence; Bertin, Philippe N

    2012-01-01

    Euglena mutabilis is a photosynthetic protist found in acidic aquatic environments such as peat bogs, volcanic lakes and acid mine drainages (AMDs). Through its photosynthetic metabolism, this protist is supposed to have an important role in primary production in such oligotrophic ecosystems. Nevertheless, the exact contribution of E. mutabilis in organic matter synthesis remains unclear and no evidence of metabolite secretion by this protist has been established so far. Here we combined in situ proteo-metabolomic approaches to determine the nature of the metabolites accumulated by this protist or potentially secreted into an AMD. Our results revealed that the secreted metabolites are represented by a large number of amino acids, polyamine compounds, urea and some sugars but no fatty acids, suggesting a selective organic matter contribution in this ecosystem. Such a production may have a crucial impact on the bacterial community present on the study site, as it has been suggested previously that prokaryotes transport and recycle in situ most of the metabolites secreted by E. mutabilis. Consequently, this protist may have an indirect but important role in AMD ecosystems but also in other ecological niches often described as nitrogen-limited. PMID:22237547

  6. Gene expression and metabolite changes during Tuber magnatum fruiting body storage.

    Science.gov (United States)

    Zampieri, Elisa; Guzzo, Flavia; Commisso, Mauro; Mello, Antonietta; Bonfante, Paola; Balestrini, Raffaella

    2014-11-01

    The aim of this study was to investigate the impact of different 4 °C post-harvest storage periods on the quality of the white truffle Tuber magnatum. The expression of selected genes and the profiles of non-volatile metabolites have been analyzed. The up-regulation of genes related to cell wall metabolism and to a putative laccase points to cell wall modifications and browning events during cold storage. Time course RT-qPCR experiments have demonstrated that such transcription events probably depend on the ripening status, since this is delayed in partially ripe fruiting bodies. Changes in the concentrations of linoleate-derived metabolites occur during the first 3 days of considered cold storage, while the other metabolites, such as the amino acids, do not change. Taken together, the results demonstrate that complex molecular events occur in white truffles in the post-harvest period and before they are used as fresh products.

  7. Microbial Species Diversity, Community Dynamics, and Metabolite Kinetics of Water Kefir Fermentation

    Science.gov (United States)

    Laureys, David

    2014-01-01

    Water kefir is a sour, alcoholic, and fruity fermented beverage of which the fermentation is started with water kefir grains. These water kefir grains consist of polysaccharide and contain the microorganisms responsible for the water kefir fermentation. In this work, a water kefir fermentation process was followed as a function of time during 192 h to unravel the community dynamics, the species diversity, and the kinetics of substrate consumption and metabolite production. The majority of the water kefir ecosystem was found to be present on the water kefir grains. The most important microbial species present were Lactobacillus casei/paracasei, Lactobacillus harbinensis, Lactobacillus hilgardii, Bifidobacterium psychraerophilum/crudilactis, Saccharomyces cerevisiae, and Dekkera bruxellensis. The microbial species diversities in the water kefir liquor and on the water kefir grains were similar and remained stable during the whole fermentation process. The major substrate, sucrose, was completely converted after 24 h of fermentation, which coincided with the production of the major part of the water kefir grain polysaccharide. The main metabolites of the fermentation were ethanol and lactic acid. Glycerol, acetic acid, and mannitol were produced in low concentrations. The major part of these metabolites was produced during the first 72 h of fermentation, during which the pH decreased from 4.26 to 3.45. The most prevalent volatile aroma compounds were ethyl acetate, isoamyl acetate, ethyl hexanoate, ethyl octanoate, and ethyl decanoate, which might be of significance with respect to the aroma of the end product. PMID:24532061

  8. Microbial species diversity, community dynamics, and metabolite kinetics of water kefir fermentation.

    Science.gov (United States)

    Laureys, David; De Vuyst, Luc

    2014-04-01

    Water kefir is a sour, alcoholic, and fruity fermented beverage of which the fermentation is started with water kefir grains. These water kefir grains consist of polysaccharide and contain the microorganisms responsible for the water kefir fermentation. In this work, a water kefir fermentation process was followed as a function of time during 192 h to unravel the community dynamics, the species diversity, and the kinetics of substrate consumption and metabolite production. The majority of the water kefir ecosystem was found to be present on the water kefir grains. The most important microbial species present were Lactobacillus casei/paracasei, Lactobacillus harbinensis, Lactobacillus hilgardii, Bifidobacterium psychraerophilum/crudilactis, Saccharomyces cerevisiae, and Dekkera bruxellensis. The microbial species diversities in the water kefir liquor and on the water kefir grains were similar and remained stable during the whole fermentation process. The major substrate, sucrose, was completely converted after 24 h of fermentation, which coincided with the production of the major part of the water kefir grain polysaccharide. The main metabolites of the fermentation were ethanol and lactic acid. Glycerol, acetic acid, and mannitol were produced in low concentrations. The major part of these metabolites was produced during the first 72 h of fermentation, during which the pH decreased from 4.26 to 3.45. The most prevalent volatile aroma compounds were ethyl acetate, isoamyl acetate, ethyl hexanoate, ethyl octanoate, and ethyl decanoate, which might be of significance with respect to the aroma of the end product.

  9. Comprehensive annotation of secondary metabolite biosynthetic genes and gene clusters of Aspergillus nidulans, A. fumigatus, A. niger and A. oryzae

    OpenAIRE

    Inglis, Diane O; Binkley, Jonathan; Skrzypek, Marek S; Arnaud, Martha B; Cerqueira, Gustavo C; Shah, Prachi; Wymore, Farrell; Wortman, Jennifer R; Sherlock, Gavin

    2013-01-01

    Background Secondary metabolite production, a hallmark of filamentous fungi, is an expanding area of research for the Aspergilli. These compounds are potent chemicals, ranging from deadly toxins to therapeutic antibiotics to potential anti-cancer drugs. The genome sequences for multiple Aspergilli have been determined, and provide a wealth of predictive information about secondary metabolite production. Sequence analysis and gene overexpression strategies have enabled the discovery of novel s...

  10. [Influence of diethyl sulfate (DES) mutagenesis on growth properties and pigment secondary metabolites of Phellinus igniarius].

    Science.gov (United States)

    Wang, Jing; Wu, Xin-yuan; Ma, Wei; Chen, Jing; Liu, Cheng; Wu, Xiu-li

    2015-06-01

    The diethyl sulfate (DES) mutagenesis was chosen for the mutagenic treatment to Phellinus igniarius, and the relationship of mutagenesis time and death rate was investigated with 0.5% DES. The differences of mycelial growth speed, liquid fermentation mycelia biomass, morphology and pigment classes of secondary metabolites production speed and antioxidant activities of metabolite products were discussed. The study displayed that DES mutagenesis could change mycelial morphology without obvious effect on mycelium growth, and the DES mutagenesis improved antioxidant activities of the active ingredients of P. igniarius and had more antioxidant activity of hypoxia/sugar PC12 nerve cells than that of P. igniarius.

  11. Spatial regulation of a common precursor from two distinct genes generates metabolite diversity

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Chun-Jun; Sun, Wei-Wen; Bruno, Kenneth S.; Oakley, Berl R.; Keller, Nancy P.; Wang, Clay C.

    2015-07-13

    In secondary metabolite biosynthesis, core synthetic genes such as polyketide synthase genes or non-ribosomal peptide synthase genes usually encode proteins that generate various backbone precursors. These precursors are modified by other tailoring enzymes to yield a large variety of different secondary metabolites. The number of core synthesis genes in a given species correlates, therefore, with the number of types of secondary metabolites the organism can produce. In our study, heterologous expression of all the A. terreus NRPS-like genes showed that two NRPS-like proteins, encoded by atmelA and apvA, release the same natural product, aspulvinone E. More interestingly, further experiments revealed that the aspulvinone E produced by two different genes accumulates in different fungal compartments. And this spatial control of aspulvinone E production is likely to be regulated by their own specific promoters. Comparative genomics indicates that atmelA and apvA might share a same ancestral gene and the gene apvA is inserted in a highly conserved region in Aspergillus species that contains genes coding for life-essential proteins. The study also identified one trans-prenyltransferase AbpB which is capable of prenylating two different substrates aspulvinones and butyrolactones. In total, our study shows the first example in which the locally distribution of the same natural product could lead to its incorporation into different SM pathways.

  12. Secondary metabolites of Antarctic fungi antagonistic to aquatic pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Zhao Huibin

    2018-03-01

    Full Text Available Polar microbial derived antibiotics have potential as alternatives to traditional antibiotics in treating fish against pathogenic bacteria. In this paper, 23 strains of polar fungi were fermented to detect bacteriostatic products on three aquatic pathogenic bacteria, subsequently the active fungus was identified. It was indicated that secondary metabolites of 23 strains weredistinct; of these, the extract of strain B-7 (belonging to Bjerkandera according to molecular identification demonstrated a strong antibacterial activity to Streptococcus agalactiae, Vibrio anguillarum and Aeromonas hydrophila ATCC7966 by Kirby-Bauerpaper strip method. During one fermentation cycle, the pH curve of the fermentation liquor became lowest (4.0 on the 4th day and rose back to 7.6 finally after 5 days, The residual sugar curve was decreased before stablising on the 6th day. It is presumed that a large amount of alkaline secondary metabolites might have been produced during fermentation. This study focuses on antagonism between aquatic pathogenic bacteria and fermentation metabolites from Antarctic fungi for the first time, which may provide data on research of antibiotics against aquatic pathogenic bacteria.

  13. Identification of drug metabolites in human plasma or serum integrating metabolite prediction, LC-HRMS and untargeted data processing

    NARCIS (Netherlands)

    Jacobs, P.L.; Ridder, L.; Ruijken, M.; Rosing, H.; Jager, N.G.L.; Beijnen, J.H.; Bas, R.R.; Dongen, W.D. van

    2013-01-01

    Background: Comprehensive identification of human drug metabolites in first-in-man studies is crucial to avoid delays in later stages of drug development. We developed an efficient workflow for systematic identification of human metabolites in plasma or serum that combines metabolite prediction,

  14. Increasing carbon availability stimulates growth and secondary metabolites via modulation of phytohormones in winter wheat

    Science.gov (United States)

    Reichelt, Michael; Chowdhury, Somak; Hammerbacher, Almuth; Hartmann, Henrik

    2017-01-01

    Abstract Phytohormones play important roles in plant acclimation to changes in environmental conditions. However, their role in whole-plant regulation of growth and secondary metabolite production under increasing atmospheric CO2 concentrations ([CO2]) is uncertain but crucially important for understanding plant responses to abiotic stresses. We grew winter wheat (Triticum aestivum) under three [CO2] (170, 390, and 680 ppm) over 10 weeks, and measured gas exchange, relative growth rate (RGR), soluble sugars, secondary metabolites, and phytohormones including abscisic acid (ABA), auxin (IAA), jasmonic acid (JA), and salicylic acid (SA) at the whole-plant level. Our results show that, at the whole-plant level, RGR positively correlated with IAA but not ABA, and secondary metabolites positively correlated with JA and JA-Ile but not SA. Moreover, soluble sugars positively correlated with IAA and JA but not ABA and SA. We conclude that increasing carbon availability stimulates growth and production of secondary metabolites via up-regulation of auxin and jasmonate levels, probably in response to sugar-mediated signalling. Future low [CO2] studies should address the role of reactive oxygen species (ROS) in leaf ABA and SA biosynthesis, and at the transcriptional level should focus on biosynthetic and, in particular, on responsive genes involved in [CO2]-induced hormonal signalling pathways. PMID:28159987

  15. Steady-state metabolite concentrations reflect a balance between maximizing enzyme efficiency and minimizing total metabolite load.

    Directory of Open Access Journals (Sweden)

    Naama Tepper

    Full Text Available Steady-state metabolite concentrations in a microorganism typically span several orders of magnitude. The underlying principles governing these concentrations remain poorly understood. Here, we hypothesize that observed variation can be explained in terms of a compromise between factors that favor minimizing metabolite pool sizes (e.g. limited solvent capacity and the need to effectively utilize existing enzymes. The latter requires adequate thermodynamic driving force in metabolic reactions so that forward flux substantially exceeds reverse flux. To test this hypothesis, we developed a method, metabolic tug-of-war (mTOW, which computes steady-state metabolite concentrations in microorganisms on a genome-scale. mTOW is shown to explain up to 55% of the observed variation in measured metabolite concentrations in E. coli and C. acetobutylicum across various growth media. Our approach, based strictly on first thermodynamic principles, is the first method that successfully predicts high-throughput metabolite concentration data in bacteria across conditions.

  16. Diversity of Secondary Metabolites from Marine Bacillus Species: Chemistry and Biological Activity

    Science.gov (United States)

    Mondol, Muhammad Abdul Mojid; Shin, Hee Jae; Islam, Mohammad Tofazzal

    2013-01-01

    Marine Bacillus species produce versatile secondary metabolites including lipopeptides, polypeptides, macrolactones, fatty acids, polyketides, and isocoumarins. These structurally diverse compounds exhibit a wide range of biological activities, such as antimicrobial, anticancer, and antialgal activities. Some marine Bacillus strains can detoxify heavy metals through reduction processes and have the ability to produce carotenoids. The present article reviews the chemistry and biological activities of secondary metabolites from marine isolates. Side by side, the potential for application of these novel natural products from marine Bacillus strains as drugs, pesticides, carotenoids, and tools for the bioremediation of heavy metal toxicity are also discussed. PMID:23941823

  17. Functional metabolite assemblies—a review

    Science.gov (United States)

    Aizen, Ruth; Tao, Kai; Rencus-Lazar, Sigal; Gazit, Ehud

    2018-05-01

    Metabolites are essential for the normal operation of cells and fulfill various physiological functions. It was recently found that in several metabolic disorders, the associated metabolites could self-assemble to generate amyloid-like structures, similar to canonical protein amyloids that have a role in neurodegenerative disorders. Yet, assemblies with typical amyloid characteristics are also known to have physiological function. In addition, many non-natural proteins and peptides presenting amyloidal properties have been used for the fabrication of functional nanomaterials. Similarly, functional metabolite assemblies are also found in nature, demonstrating various physiological roles. A notable example is the structural color formed by guanine crystals or fluorescent crystals in feline eyes responsible for enhanced night vision. Moreover, some metabolites have been used for the in vitro fabrication of functional materials, such as glycine crystals presenting remarkable piezoelectric properties or indigo films used to assemble organic semi-conductive electronic devices. Therefore, we believe that the study of metabolite assemblies is not only important in order to understand their role in normal physiology and in pathology, but also paves a new route in exploring the fabrication of organic, bio-compatible materials.

  18. Strategies to enhance biologically active-secondary metabolites in cell cultures of Artemisia - current trends.

    Science.gov (United States)

    Ali, Mohammad; Abbasi, Bilal Haider; Ahmad, Nisar; Khan, Haji; Ali, Gul Shad

    2017-11-01

    The genus Artemisia has been utilized worldwide due to its immense potential for protection against various diseases, especially malaria. Artemisia absinthium, previously renowned for its utilization in the popular beverage absinthe, is gaining resurgence due to its extensive pharmacological activities. Like A. annua, this species exhibits strong biological activities like antimalarial, anticancer and antioxidant. Although artemisinin was found to be the major metabolite for its antimalarial effects, several flavonoids and terpenoids are considered to possess biological activities when used alone and also to synergistically boost the bioavailability of artemisinin. However, due to the limited quantities of these metabolites in wild plants, in vitro cultures were established and strategies have been adopted to enhance medicinally important secondary metabolites in these cultures. This review elaborates on the traditional medicinal uses of Artemisia species and explains current trends to establish cell cultures of A. annua and A. absinthium for enhanced production of medicinally important secondary metabolites.

  19. Intracellular metabolites of mercaptopurine in children with lymphoblastic leukaemia: a possible indicator of non-compliance?

    OpenAIRE

    Lennard, L.; Welch, J.; Lilleyman, J. S.

    1995-01-01

    As part of a programme assessing the pharmacokinetics of oral thiopurines given for lymphoblastic leukaemia, we assayed intracellular metabolites of mercaptopurine in children from all over the United Kingdom who were given a standard dose of the drug. The metabolites we measured, thioguanine nucleotides and methylmercaptopurines, are products of two competing metabolic pathways and would be expected to show an inverse correlation. A total of 327 children from 17 centres in the UK were studie...

  20. An Overview of Herbal Products and Secondary Metabolites Used for Management of Type Two Diabetes.

    Science.gov (United States)

    Ota, Ajda; Ulrih, Nataša P

    2017-01-01

    Diabetes mellitus is a common effect of uncontrolled high blood sugar and it is associated with long-term damage, dysfunction, and failure of various organs. In the adult population, the global prevalence of diabetes has nearly doubled since 1980. Without effective prevention and management programs, the continuing significant rise in diabetes will have grave consequences on the health and lifespan of the world population, and also on the world economy. Supplements can be used to correct nutritional deficiencies or to maintain an adequate intake of certain nutrients. These are often used as treatments for diabetes, sometimes because they have lower costs, or are more accessible or "natural" compared to prescribed medications. Several vitamins, minerals, botanicals, and secondary metabolites have been reported to elicit beneficial effects in hypoglycemic actions in vivo and in vitro ; however, the data remain conflicting. Many pharmaceuticals commonly used today are structurally derived from natural compounds from traditional medicinal plants. Botanicals that are most frequently used to help manage blood glucose include: bitter melon ( Momordica charantia ), fenugreek ( Trigonella foenum graecum ), gurmar ( Gymnema sylvestre ), ivy gourd ( Coccinia indica ), nopal ( Opuntia spp.), ginseng, Russian tarragon ( Artemisia dracunculus ), cinnamon ( Cinnamomum cassia ), psyllium ( Plantago ovata ), and garlic ( Allium sativum ). In majority of the herbal products and secondary metabolites used in treating diabetes, the mechanisms of action involve regulation of insulin signaling pathways, translocation of GLUT-4 receptor and/or activation the PPARγ. Several flavonoids inhibit glucose absorption by inhibiting intestinal α-amylase and α-glucosidase. In-depth studies to validate the efficacies and safeties of extracts of these traditional medicinal plants are needed, and large, well designed, clinical studies need to be carried out before the use of such preparations can

  1. An Overview of Herbal Products and Secondary Metabolites Used for Management of Type Two Diabetes

    Directory of Open Access Journals (Sweden)

    Ajda Ota

    2017-07-01

    Full Text Available Diabetes mellitus is a common effect of uncontrolled high blood sugar and it is associated with long-term damage, dysfunction, and failure of various organs. In the adult population, the global prevalence of diabetes has nearly doubled since 1980. Without effective prevention and management programs, the continuing significant rise in diabetes will have grave consequences on the health and lifespan of the world population, and also on the world economy. Supplements can be used to correct nutritional deficiencies or to maintain an adequate intake of certain nutrients. These are often used as treatments for diabetes, sometimes because they have lower costs, or are more accessible or “natural” compared to prescribed medications. Several vitamins, minerals, botanicals, and secondary metabolites have been reported to elicit beneficial effects in hypoglycemic actions in vivo and in vitro; however, the data remain conflicting. Many pharmaceuticals commonly used today are structurally derived from natural compounds from traditional medicinal plants. Botanicals that are most frequently used to help manage blood glucose include: bitter melon (Momordica charantia, fenugreek (Trigonella foenum graecum, gurmar (Gymnema sylvestre, ivy gourd (Coccinia indica, nopal (Opuntia spp., ginseng, Russian tarragon (Artemisia dracunculus, cinnamon (Cinnamomum cassia, psyllium (Plantago ovata, and garlic (Allium sativum. In majority of the herbal products and secondary metabolites used in treating diabetes, the mechanisms of action involve regulation of insulin signaling pathways, translocation of GLUT-4 receptor and/or activation the PPARγ. Several flavonoids inhibit glucose absorption by inhibiting intestinal α-amylase and α-glucosidase. In-depth studies to validate the efficacies and safeties of extracts of these traditional medicinal plants are needed, and large, well designed, clinical studies need to be carried out before the use of such preparations can be

  2. Spectral lights trigger biomass accumulation and production of antioxidant secondary metabolites in adventitious root cultures of Stevia rebaudiana (Bert.).

    Science.gov (United States)

    Idrees, Muhammad; Sania, Bibi; Hafsa, Bibi; Kumari, Sana; Khan, Haji; Fazal, Hina; Ahmad, Ishfaq; Akbar, Fazal; Ahmad, Naveed; Ali, Sadeeq; Ahmad, Nisar

    2018-05-30

    Stevia rebaudiana (S. rebaudiana) is the most important therapeutic plant species and has been accepted as such worldwide. It has a tendency to accumulate steviol glycosides, which are 300 times sweeter than marketable sugar. Recently, diabetic patients commonly use this plant as a sugar substitute for sweet taste. In the present study, the effects of different spectral lights were investigated on biomass accumulation and production of secondary metabolites in adventitious root cultures of S. rebaudiana. For callus development, leaf explants were excised from seed-derived plantlets and inoculated on a Murashige and Skoog (MS) medium containing the combination of 2,4-dichlorophenoxy acetic acid (2, 4-D, 2.0mg/l) and 6-benzyladenine (BA, 2.0mg/l), while 0.5mg/l naphthalene acetic acid (NAA) was used for adventitious root culture. Adventitious root cultures were exposed to different spectral lights (blue, green, violet, red and yellow) for a 30-day period. White light was used as control. The growth kinetics was studied for 30days with 3-day intervals. In this study, the violet light showed the maximum accumulation of fresh biomass (2.495g/flask) as compared to control (1.63g/flask), while red light showed growth inhibition (1.025g/flask) as compared to control. The blue light enhanced the highest accumulation of phenolic content (TPC; 6.56mg GAE/g DW), total phenolic production (TPP; 101mg/flask) as compared to control (5.44mg GAE/g DW; 82.2mg GAE/g DW), and exhibited a strong correlation with dry biomass. Blue light also improved the accumulation of total flavonoid content (TFC; 4.33mg RE/g DW) and total flavonoid production (TFP; 65mg/flask) as compared to control. The violet light showed the highest DPPH inhibition (79.72%), while the lowest antioxidant activity was observed for control roots (73.81%). Hence, we concluded that the application of spectral lights is an auspicious strategy for the enhancement of the required antioxidant secondary metabolites in

  3. Diuron metabolites and urothelial cytotoxicity: In vivo, in vitro and molecular approaches

    International Nuclear Information System (INIS)

    Da Rocha, Mitscheli S.; Arnold, Lora L.; Dodmane, Puttappa R.; Pennington, Karen L.; Qiu, Fang; De Camargo, João Lauro V.; Cohen, Samuel M.

    2013-01-01

    Diuron is carcinogenic to the rat urinary bladder at high dietary levels. The proposed mode of action (MOA) for diuron is urothelial cytotoxicity and necrosis followed by regenerative urothelial hyperplasia. Diuron-induced urothelial cytotoxicity is not due to urinary solids. Diuron is extensively metabolized, and in rats, N-(3,4-dichlorophenyl)urea (DCPU) and 4,5-dichloro-2-hydroxyphenyl urea (2-OH-DCPU) were the predominant urinary metabolites; lesser metabolites included N-(3,4-dichlorophenyl)-3-methylurea (DCPMU) and trace levels of 3,4-dichloroaniline (DCA). In humans, DCPMU and DCPU have been found in the urine after a case of product abuse. To aid in elucidating the MOA of diuron and to evaluate the metabolites that are responsible for the diuron toxicity in the bladder epithelium, we investigated the urinary concentrations of metabolites in male Wistar rats treated with 2500 ppm of diuron, the urothelial cytotoxicity in vitro of the metabolites and their gene expression profiles. DCPU was found in rat urine at concentrations substantially greater than the in vitro IC50 and induced more gene expression alterations than the other metabolites tested. 2-OH-DCPU was present in urine at a concentration approximately half of the in vitro IC50, whereas DCPMU and DCA were present in urine at concentrations well below the IC50. For the diuron-induced MOA for the rat bladder, we suggest that DCPU is the primary metabolite responsible for the urothelial cytotoxicity with some contribution also by 2-OH-DCPU. This study supports a MOA for diuron-induced bladder effects in rats consisting of metabolism to DCPU (and 2-OH-DCPU to a lesser extent), concentration and excretion in urine, urothelial cytotoxicity, and regenerative proliferation

  4. Diuron metabolites and urothelial cytotoxicity: in vivo, in vitro and molecular approaches.

    Science.gov (United States)

    Da Rocha, Mitscheli S; Arnold, Lora L; Dodmane, Puttappa R; Pennington, Karen L; Qiu, Fang; De Camargo, João Lauro V; Cohen, Samuel M

    2013-12-15

    Diuron is carcinogenic to the rat urinary bladder at high dietary levels. The proposed mode of action (MOA) for diuron is urothelial cytotoxicity and necrosis followed by regenerative urothelial hyperplasia. Diuron-induced urothelial cytotoxicity is not due to urinary solids. Diuron is extensively metabolized, and in rats, N-(3,4-dichlorophenyl)urea (DCPU) and 4,5-dichloro-2-hydroxyphenyl urea (2-OH-DCPU) were the predominant urinary metabolites; lesser metabolites included N-(3,4-dichlorophenyl)-3-methylurea (DCPMU) and trace levels of 3,4-dichloroaniline (DCA). In humans, DCPMU and DCPU have been found in the urine after a case of product abuse. To aid in elucidating the MOA of diuron and to evaluate the metabolites that are responsible for the diuron toxicity in the bladder epithelium, we investigated the urinary concentrations of metabolites in male Wistar rats treated with 2500ppm of diuron, the urothelial cytotoxicity in vitro of the metabolites and their gene expression profiles. DCPU was found in rat urine at concentrations substantially greater than the in vitro IC50 and induced more gene expression alterations than the other metabolites tested. 2-OH-DCPU was present in urine at a concentration approximately half of the in vitro IC50, whereas DCPMU and DCA were present in urine at concentrations well below the IC50. For the diuron-induced MOA for the rat bladder, we suggest that DCPU is the primary metabolite responsible for the urothelial cytotoxicity with some contribution also by 2-OH-DCPU. This study supports a MOA for diuron-induced bladder effects in rats consisting of metabolism to DCPU (and 2-OH-DCPU to a lesser extent), concentration and excretion in urine, urothelial cytotoxicity, and regenerative proliferation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. Photoprotective potential of metabolites isolated from algae-associated fungi Annulohypoxylon stygium.

    Science.gov (United States)

    Maciel, Olívia Maria Campanini; Tavares, Renata Spagolla Napoleão; Caluz, Daniela Ricardo Engracia; Gaspar, Lorena Rigo; Debonsi, Hosana Maria

    2018-01-01

    Natural products, or secondary metabolites, obtained from fungal species associated with marine algae have been widely used in sunscreens due to their antioxidant activity and protective potential against solar radiation. The endophytic fungus isolated from Bostrychia radicans algae collected in the Rio Escuro mangrove, São Paulo State, Brazil, Annulohypoxylon stygium (Xylariaceae family) was studied to evaluate the photoprotective potential of its metabolites. The Annulohypoxylon genus can produce secondary metabolites with interesting cytotoxic, antibacterial and antioxidant properties and was never isolated before from a marine alga or had its metabolites studied for UV protection. The fungal culture (code As) extracted with dichloromethane: methanol (2:1) yielded 9 fractions (Asa to Asi) which were submitted to different chromatographic methodologies to obtain pure compounds, and to spectroscopic methodologies to elucidate their structures. Also, a screening was conducted to evaluate the qualitative production of the metabolites, besides the absorption in the UVA/UVB range, their photostability and phototoxicity potential using the 3T3 NRU phototoxicity test (OECD TG 432). This study led to the isolation of a novel compound, 3-benzylidene-2-methylhexahydropyrrolo [1,2-α] pyrazine-1,4-dione (1), from fractions Ase3 and Asf3; Ase1 was identified as 1-(1,3-Benzodioxol-5-yl)-1,2-propanediol (2), two metabolites were isolated as diastereomers (1S,2R)-1-phenyl-1,2-propanediol (3) from Asd2 and (1R,2R)-1-phenyl-1,2-propanediol (4) from Asd3, and Ase1 and 1,3-benzodioxole-5-methanol (5) from Asc1. The results obtained showed a great potential source of new molecules to be used as UVB filters in sunscreens, since substances 1-2 presented UVB absorption, had no phototoxic potential and were considered photostable. In conclusion, these compounds can be considered as a potential new class of molecules for photoprotection, since their photosafety and non-cytotoxicity were

  6. PECULIARITIES OF SECONDARY METABOLITES BIOSYNTHESIS IN PLANT CELL CULTURES

    Directory of Open Access Journals (Sweden)

    A.M. NOSOV

    2014-06-01

    Full Text Available metabolites formation in plant cell cultures of Panax spp., (ginsenosides; Dioscorea deltoidea (steroid glycosides; Ajuga reptans, Serratula coronata, Rhaponticum carthamoides (ecdisteroids; Polyscias spp., (triterpene glycosides, Taxus spp. (taxoids, Stevia rebaudiana (diterpene steviol-glycosides, Stephania glabra (alkaloids. They are some regular trends of secondary metabolites synthesis in the plant cell culture:It can be noted the stable synthesis of the compound promoting cell proliferation. Indeed, cell cultures of Dioscorea deltoidea were demonstrated to accumulate only furostanol glycosides, which promoted cell division. Furostanol glycoside content of Dioscorea strain DM-0.5 was up to 6 - 12% by dry biomass.Panax ginseng and P. japonicus plant cell cultures synthesize as minimum seven triterpene glycosides (ginsenosides, the productivity of these compounds was up to 6.0 - 8.0% on dry biomass.By contrast, the detectable synthesis of diterpene steviol-glycosides in cultivated cells of Stevia rebaudiana initiated in the mixotrophic cultures during chloroplast formation only.Despite these differences, or mainly due to them, plant cell cultures have become an attractive source of phytochemicals in alternative to collecting wild plants. It provides a guideline to bioreactor-based production of isoprenoids using undifferentiated plant cell cultures. 

  7. Anthelmintic residues in goat and sheep dairy products

    Directory of Open Access Journals (Sweden)

    Jedziniak Piotr

    2015-12-01

    Full Text Available A multiresidue method (LC-MS/MS for determination of wide range of anthelmintics was developed. The method covered benzimidazoles: albendazole (and metabolites, cambendazole, fenbendazol (and metabolites, flubendazole (and metabolites, mebendazole (and metabolites, oxibendazole, thiabendazole (and metabolites, triclabendazole (and metabolites; macrocyclic lactones: abamectin, doramectin, emamectin, eprinomectin, ivermectin, moxidectin; salicylanilides: closantel, ioxynil, nitroxynil, oxyclosamide, niclosamide, rafoxanid and others: clorsulon, derquantel, imidocarb, monepantel (and metabolites, morantel, praziquantel, and pyrantel. The method was used to examine the potential presence of anthelmintics in goat and sheep milk and dairy products from the Polish market. A total of 120 samples of milk, yoghurt, cottage cheese, cream cheese, and curd were analysed. None of the samples were found positive above CCα (1-10 μg/kg except for one cottage cheese in which traces of albendazole sulfone were detected (5.2 ug/kg and confirmed. The results of the study showed negligible anthelmintic residues in the goat and sheep milk and dairy products and confirm their good quality.

  8. Analysis of blood clearance and labeled metabolites for the estrogen receptor tracer [F-18]-16α-fluorestradiol (FES)

    International Nuclear Information System (INIS)

    Mankoff, David A.; Tewson, Timothy J.; Eary, Janet F.

    1997-01-01

    [F-18] 16α-Fluoroestradiol (FES) has been shown to be a tracer of estrogen receptor content in breast tumors; however, quantitative analysis of FES images is complicated by the rapid metabolism of the tracer in vivo. To optimize FES PET imaging studies and to provide an input function for the quantitative analysis of the tracer FES uptake in breast tumors, we studied the clearance and metabolism of FES in 15 breast cancer patients. FES clearance, protein binding, and metabolite production and limited assays to determine the identity of labeled metabolites were performed. These studies show that FES was rapidly cleared from the blood and metabolized; at 20 min only 20% of the circulating radioactivity was unmetabolized FES, and much of this was protein bound. The detectable metabolites in either blood or urine are conjugation products, largely the glucuronide and the sulfate of FES, and these are excreted through the kidneys at a rate comparable to their introduction into the circulation. After 20 min postinjection the blood levels of radioactivity remain fairly constant. Our results, the first report on human metabolites, are in close agreement with previous animal studies of FES metabolism. These studies show that because FES clearance is rapid and metabolite background is nearly constant, imaging starting at 20 to 30 min after injection may provide good visualization of estrogen-containing tissues. Labeled metabolites need to be accounted for in quantifying FES uptake

  9. Urinary excretion of androgen metabolites, comparison with excretion of radioactive metabolites after injection of [4-14C]testosterone

    International Nuclear Information System (INIS)

    Deslypere, J.P.; Sayed, A.; Vermeulen, A.; Wiers, P.W.

    1981-01-01

    The influence of age on the metabolic pattern of [4- 14 C]testosterone was studied in 20 young and 8 elderly males and compared to the metabolic pattern of endogenous androgens; the latter was also studied in 16 young and 8 elderly women. In both young and elderly males, androsterone and aetiocholanolone glucuronide represent 65% of [4- 14 C]testosterone metabolites: together with their suephoconjugates as well as with 5α- and 5β-androstane-3α, 17β-diol they represent even more than 75% of total urinary metabolites. The 5α/5β ratio of metabolites of [4- 14 C]testosterone was significantly (P 14 C]testosterone metabolites was generally higher than the ratio of metabolites of endogenous androgens, suggesting that the transformation of T to ring A saturated metabolites occurs at least partially in another compartment than the transformation of DHEA to these metabolites. For both [4- 14 C]testosterone and endogenous androgen metabolites we observed a statistically significant reduction of the 5α/5β ratio with age, a general phenomenon in both males and females. This reduction concern also 11-OH-androst-4-ene-3.17-dione metabolism. Neither sex hormone levels, nor specific binding seems to determine this age dependent shift; neither is there convincing evidence for latent hypothyroisism or liver dysfunction in the elderly. An age associated primary decrease of the 5α-reductase activity seems the most likely explanation. (author)

  10. water stress mediated changes in growth, physiology and secondary metabolites of desi ajwain (trachyspermum ammi l.)

    International Nuclear Information System (INIS)

    Azhar, N.; Hussain, B.; Abbasi, K.Y.

    2011-01-01

    Biotic and abiotic stresses exert a considerable influence on the production of several secondary metabolites in plants; water stress is one of the most important abiotic stress factors. This study was carried out to elucidate the effect of drought stress on growth, physiology and secondary metabolite production in desi ajwain (Trachyspermum ammi L.). Plants were grown in pots and three drought levels (100%, 80% and 60%) of field capacity were created. The experiment was laid out in complete randomized design (CRD) with three replicates. Data on growth, physiological and biochemical parameters were recorded and analyzed statistically. Physiological parameters like transpiration rate and stomatal conductance decreased concentration increased. The photosynthetic rate showed significantly with increasing water stress levels, but internal CO/sub 2/ non-significant reduction from 100% field capacity to 80% field capacity but increased at 60% field capacity. Growth parameters including plant height, herb fresh and dry weights were reduced significantly with increasing stress levels, while total phenolic contents and chlorophyll contents increased under water stress conditions. These results suggest that cultivation of medicinal plants like desi ajwain under drought stress could enhance the production of secondary metabolites. (author)

  11. SPE-NMR metabolite sub-profiling of urine

    NARCIS (Netherlands)

    Jacobs, D.M.; Spiesser, L.; Garnier, M.; Roo, de N.; Dorsten, van F.; Hollebrands, B.; Velzen, van E.; Draijer, R.; Duynhoven, van J.P.M.

    2012-01-01

    NMR-based metabolite profiling of urine is a fast and reproducible method for detection of numerous metabolites with diverse chemical properties. However, signal overlap in the (1)H NMR profiles of human urine may hamper quantification and identification of metabolites. Therefore, a new method has

  12. MetRxn: a knowledgebase of metabolites and reactions spanning metabolic models and databases

    Directory of Open Access Journals (Sweden)

    Kumar Akhil

    2012-01-01

    Full Text Available Abstract Background Increasingly, metabolite and reaction information is organized in the form of genome-scale metabolic reconstructions that describe the reaction stoichiometry, directionality, and gene to protein to reaction associations. A key bottleneck in the pace of reconstruction of new, high-quality metabolic models is the inability to directly make use of metabolite/reaction information from biological databases or other models due to incompatibilities in content representation (i.e., metabolites with multiple names across databases and models, stoichiometric errors such as elemental or charge imbalances, and incomplete atomistic detail (e.g., use of generic R-group or non-explicit specification of stereo-specificity. Description MetRxn is a knowledgebase that includes standardized metabolite and reaction descriptions by integrating information from BRENDA, KEGG, MetaCyc, Reactome.org and 44 metabolic models into a single unified data set. All metabolite entries have matched synonyms, resolved protonation states, and are linked to unique structures. All reaction entries are elementally and charge balanced. This is accomplished through the use of a workflow of lexicographic, phonetic, and structural comparison algorithms. MetRxn allows for the download of standardized versions of existing genome-scale metabolic models and the use of metabolic information for the rapid reconstruction of new ones. Conclusions The standardization in description allows for the direct comparison of the metabolite and reaction content between metabolic models and databases and the exhaustive prospecting of pathways for biotechnological production. This ever-growing dataset currently consists of over 76,000 metabolites participating in more than 72,000 reactions (including unresolved entries. MetRxn is hosted on a web-based platform that uses relational database models (MySQL.

  13. Trophic transfer of pyrene metabolites between aquatic invertebrates

    International Nuclear Information System (INIS)

    Carrasco Navarro, V.; Leppänen, M.T.; Kukkonen, J.V.K.; Godoy Olmos, S.

    2013-01-01

    The trophic transfer of pyrene metabolites was studied using Gammarus setosus as a predator and the invertebrates Lumbriculus variegatus and Chironomus riparius as prey. The results obtained by liquid scintillation counting confirmed that the pyrene metabolites produced by the aquatic invertebrates L. variegatus and C. riparius were transferred to G. setosus through the diet. More detailed analyses by liquid chromatography discovered that two of the metabolites produced by C. riparius appeared in the chromatograms of G. setosus tissue extracts, proving their trophic transfer. These metabolites were not present in chromatograms of G. setosus exclusively exposed to pyrene. The present study supports the trophic transfer of PAH metabolites between benthic macroinvertebrates and common species of an arctic amphipod. As some PAH metabolites are more toxic than the parent compounds, the present study raises concerns about the consequences of their trophic transfer and the fate and effects of PAHs in natural environments. - Highlights: ► The trophic transfer of pyrene metabolites between invertebrates was evaluated. ► Biotransformation of pyrene by L. variegatus and C. riparius is different. ► Metabolites produced by L. variegatus and C. riparius are transferred to G. setosus. ► Specifically, two metabolites produced by C. riparius were transferred. - Some of the pyrene metabolites produced by the model invertebrates L. variegatus and C. riparius are transferred to G. setosus through the diet, proving their trophic transfer.

  14. Acute toxicity and mutagenesis of three metabolites mixture of nitrobenzene in mice.

    Science.gov (United States)

    Wang, Guixia; Zhang, Xiuying; Yao, Chunzhu; Tian, Meizhan

    2011-03-01

    Nitrobenzene is a synthetic compound, more than 95% of which is used in the production of aniline. Nitrobenzene has been demonstrated to be substantially metabolized to p-Nitrophenol, p-Aminophenol and p-Nitroaniline in food animals (e.g., bovines, fowls). There have been no studies on the acute toxicity and the mutagenesis of the mixture of the three metabolites mentioned above. The aim of the present study is to testify the acute toxicity and the mutagenesis of the three metabolites mixture. Seventy Kunming mice (half male, half female) received an intragastric administration exposure to metabolites-containing suspension of 750, 638, 542, 461, 392, 333 mg kg(-1) body weight and 0.5% sodium carboxymethyl cellulose (control), followed by a 14-day observation. The medial lethal dose (LD(50)) concentration for nitrobenzene metabolites mixture in this study was 499.92 mg/kg. Their mutagenic toxicology was studied through micronucleus and sperm abnormality test. Kunming mice were twice intragastrically exposed to 1/5 LD(50), 1/10 LD(50), 1/20 LD(50) mg kg(-1) nitrobenzene metabolites-containing suspension spaced 24-h apart. Cyclophosphamide, pure water and sodium carboxymethyl cellulose served as doses of the positive group, the negative group and the solvent control group, respectively. The incidence of micronucleus and sperm abnormality increased significantly in the 1/5 LD(50) and 1/10 LD(50) group compared with the negative and solvent control group. A dose-related increase in the incidence of micronucleus and sperm abnormality was noted. In conclusion, the three metabolites mixture of nitrobenzene was secondary toxicity and mutagenic substances in mice.

  15. Impact of Phosphate, Potassium, Yeast Extract, and Trace Metals on Chitosan and Metabolite Production by Mucor indicus.

    Science.gov (United States)

    Safaei, Zahra; Karimi, Keikhosro; Zamani, Akram

    2016-08-30

    In this study the effects of phosphate, potassium, yeast extract, and trace metals on the growth of Mucor indicus and chitosan, chitin, and metabolite production by the fungus were investigated. Maximum yield of chitosan (0.32 g/g cell wall) was obtained in a phosphate-free medium. Reversely, cell growth and ethanol formation by the fungus were positively affected in the presence of phosphate. In a phosphate-free medium, the highest chitosan content (0.42 g/g cell wall) and cell growth (0.66 g/g sugar) were obtained at 2.5 g/L of KOH. Potassium concentration had no significant effect on ethanol and glycerol yields. The presence of trace metals significantly increased the chitosan yield at an optimal phosphate and potassium concentration (0.50 g/g cell wall). By contrast, production of ethanol by the fungus was negatively affected (0.33 g/g sugars). A remarkable increase in chitin and decrease in chitosan were observed in the absence of yeast extract and concentrations lower than 2 g/L. The maximum chitosan yield of 51% cell wall was obtained at 5 g/L of yeast extract when the medium contained no phosphate, 2.5 g/L KOH, and 1 mL/L trace metal solution.

  16. Primary, Secondary Metabolites, H2O2, Malondialdehyde and Photosynthetic Responses of Orthosiphon stimaneus Benth. to Different Irradiance Levels

    Directory of Open Access Journals (Sweden)

    Mohd Hafiz Ibrahim

    2012-01-01

    Full Text Available The resource availability hypothesis predicts an increase in the allocation to secondary metabolites when carbon gain is improved relative to nutrient availability, which normally occurs during periods of low irradiance. The present work was carried out to confirm this hypothesis by investigating the effects of decreasing irradiance on the production of plant secondary metabolites (flavonoids and phenolics in the herbal plant Orthosiphon stamineus, and to characterize this production by carbohydrate, H2O2, and malondialdehyde (MDA levels, net photosynthesis, leaf chlorophyll content and carbon to nitrogen ratio (C/N. Four levels of irradiance (225, 500, 625 and 900 µmol/m2/s were imposed onto two-week old seedlings for 12 weeks in a randomized complete block design experiment. Peak production of total flavonoids, phenolics, soluble sugar, starch and total non-structural carbohydrate ocurred under low irradiance of 225 µmol/m2/s, and decreased with increasing irradiance. The up-regulation of secondary metabolites could be explained by the concomitant increases in H2O2 and MDA activities under low irradiance. This condition also resulted in enhanced C/N ratio signifying a reduction in nitrogen levels, which had established significant negative correlations with net photosynthesis, total biomass and total chlorophyll content, indicating the possible existence of a trade-off between growth and secondary metabolism under low irradiance with reduced nitrogen content. The competition between total chlorophyll and secondary metabolites production, as exhibited by the negative correlation coefficient under low irradiance, also suggests a sign of gradual switch of investment from chlorophyll to polyphenols production.

  17. Secondary metabolites from Ganoderma.

    Science.gov (United States)

    Baby, Sabulal; Johnson, Anil John; Govindan, Balaji

    2015-06-01

    Ganoderma is a genus of medicinal mushrooms. This review deals with secondary metabolites isolated from Ganoderma and their biological significance. Phytochemical studies over the last 40years led to the isolation of 431 secondary metabolites from various Ganoderma species. The major secondary compounds isolated are (a) C30 lanostanes (ganoderic acids), (b) C30 lanostanes (aldehydes, alcohols, esters, glycosides, lactones, ketones), (c) C27 lanostanes (lucidenic acids), (d) C27 lanostanes (alcohols, lactones, esters), (e) C24, C25 lanostanes (f) C30 pentacyclic triterpenes, (g) meroterpenoids, (h) farnesyl hydroquinones (meroterpenoids), (i) C15 sesquiterpenoids, (j) steroids, (k) alkaloids, (l) prenyl hydroquinone (m) benzofurans, (n) benzopyran-4-one derivatives and (o) benzenoid derivatives. Ganoderma lucidum is the species extensively studied for its secondary metabolites and biological activities. Ganoderma applanatum, Ganoderma colossum, Ganoderma sinense, Ganoderma cochlear, Ganoderma tsugae, Ganoderma amboinense, Ganoderma orbiforme, Ganoderma resinaceum, Ganoderma hainanense, Ganoderma concinna, Ganoderma pfeifferi, Ganoderma neo-japonicum, Ganoderma tropicum, Ganoderma australe, Ganoderma carnosum, Ganoderma fornicatum, Ganoderma lipsiense (synonym G. applanatum), Ganoderma mastoporum, Ganoderma theaecolum, Ganoderma boninense, Ganoderma capense and Ganoderma annulare are the other Ganoderma species subjected to phytochemical studies. Further phytochemical studies on Ganoderma could lead to the discovery of hitherto unknown biologically active secondary metabolites. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Antimycobacterial Metabolites from Marine Invertebrates.

    Science.gov (United States)

    Daletos, Georgios; Ancheeva, Elena; Chaidir, Chaidir; Kalscheuer, Rainer; Proksch, Peter

    2016-10-01

    Marine organisms play an important role in natural product-based drug research due to accumulation of structurally unique and bioactive metabolites. The exploration of marine-derived compounds may significantly extend the scientific knowledge of potential scaffolds for antibiotic drug discovery. Development of novel antitubercular agents is especially significant as the emergence of drug-resistant Mycobacterium tuberculosis strains remains threateningly high. Marine invertebrates (i.e., sponges, corals, gorgonians) as a source of new chemical entities are the center of research for several scientific groups, and the wide spectrum of biological activities of marine-derived compounds encourages scientists to carry out investigations in the field of antibiotic research, including tuberculosis treatment. The present review covers published data on antitubercular natural products from marine invertebrates grouped according to their biogenetic origin. Studies on the structure-activity relationships of these important leads are highlighted as well. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Rhizosphere Protists Change Metabolite Profiles in Zea mays

    Directory of Open Access Journals (Sweden)

    Anke Kuppardt

    2018-05-01

    Full Text Available Plant growth and productivity depend on the interactions of the plant with the associated rhizosphere microbes. Rhizosphere protists play a significant role in this respect: considerable efforts have been made in the past to reveal the impact of protist-bacteria interactions on the remobilization of essential nutrients for plant uptake, or the grazing induced changes on plant-growth promoting bacteria and the root-architecture. However, the metabolic responses of plants to the presence of protists or to protist-bacteria interactions in the rhizosphere have not yet been analyzed. Here we studied in controlled laboratory experiments the impact of bacterivorous protists in the rhizosphere on maize plant growth parameters and the bacterial community composition. Beyond that we investigated the induction of plant biochemical responses by separately analyzing above- and below-ground metabolite profiles of maize plants incubated either with a soil bacterial inoculum or with a mixture of soil bacteria and bacterivorous protists. Significantly distinct leaf and root metabolite profiles were obtained from plants which grew in the presence of protists. These profiles showed decreased levels of a considerable number of metabolites typical for the plant stress reaction, such as polyols, a number of carbohydrates and metabolites connected to phenolic metabolism. We assume that this decrease in plant stress is connected to the grazing induced shifts in rhizosphere bacterial communities as shown by distinct T-RFLP community profiles. Protist grazing had a clear effect on the overall bacterial community composition, richness and evenness in our microcosms. Given the competition of plant resource allocation to either defense or growth, we propose that a reduction in plant stress levels caused directly or indirectly by protists may be an additional reason for corresponding positive effects on plant growth.

  20. Rhizosphere Protists Change Metabolite Profiles in Zea mays.

    Science.gov (United States)

    Kuppardt, Anke; Fester, Thomas; Härtig, Claus; Chatzinotas, Antonis

    2018-01-01

    Plant growth and productivity depend on the interactions of the plant with the associated rhizosphere microbes. Rhizosphere protists play a significant role in this respect: considerable efforts have been made in the past to reveal the impact of protist-bacteria interactions on the remobilization of essential nutrients for plant uptake, or the grazing induced changes on plant-growth promoting bacteria and the root-architecture. However, the metabolic responses of plants to the presence of protists or to protist-bacteria interactions in the rhizosphere have not yet been analyzed. Here we studied in controlled laboratory experiments the impact of bacterivorous protists in the rhizosphere on maize plant growth parameters and the bacterial community composition. Beyond that we investigated the induction of plant biochemical responses by separately analyzing above- and below-ground metabolite profiles of maize plants incubated either with a soil bacterial inoculum or with a mixture of soil bacteria and bacterivorous protists. Significantly distinct leaf and root metabolite profiles were obtained from plants which grew in the presence of protists. These profiles showed decreased levels of a considerable number of metabolites typical for the plant stress reaction, such as polyols, a number of carbohydrates and metabolites connected to phenolic metabolism. We assume that this decrease in plant stress is connected to the grazing induced shifts in rhizosphere bacterial communities as shown by distinct T-RFLP community profiles. Protist grazing had a clear effect on the overall bacterial community composition, richness and evenness in our microcosms. Given the competition of plant resource allocation to either defense or growth, we propose that a reduction in plant stress levels caused directly or indirectly by protists may be an additional reason for corresponding positive effects on plant growth.

  1. Identification, quantification, and relative concentrations of carotenoids and their metabolites in human milk and serum.

    Science.gov (United States)

    Khachik, F; Spangler, C J; Smith, J C; Canfield, L M; Steck, A; Pfander, H

    1997-05-15

    Thirty-four carotenoids, including 13 geometrical isomers and eight metabolites, in breast milk and serum of three lactating mothers have been separated, identified, quantified, and compared by high-performance liquid chromatography (HPLC)-photodiode array (PDA) detection-mass spectrometry (MS). Among the metabolites were two oxidation products of lycopene and four of lutein/ zeaxanthin. In addition, two metabolites of lutein, formed as a result of dehydration of this dihydroxycarotenoid under acidic conditions similar to those of the stomach, have also been identified in plasma and breast milk. The oxidative metabolites of lycopene with a novel five-membered-ring end group have been identified as epimeric 2,6-cyclolycopene-1,5-diols by comparison of their HPLC-UV/visible-MS profiles with those of fully characterized (1H- and 13C-NMR spectroscopy) synthetic compounds. The HPLC procedures employed also detected vitamin A, two forms of vitamin E (gamma- and alpha-tocopherol), and two non-carotenoid food components, i.e., piperine and caffeine, in serum and breast milk.

  2. Effect of Solid Biological Waste Compost on the Metabolite Profile of Brassica rapa ssp. chinensis

    Directory of Open Access Journals (Sweden)

    Susanne Neugart

    2018-03-01

    Full Text Available Large quantities of biological waste are generated at various steps within the food production chain and a great utilization potential for this solid biological waste exists apart from the current main usage for the feedstuff sector. It remains unclear how the usage of biological waste as compost modulates plant metabolites. We investigated the effect of biological waste of the processing of coffee, aronia, and hop added to soil on the plant metabolite profile by means of liquid chromatography in pak choi sprouts. Here we demonstrate that the solid biological waste composts induced specific changes in the metabolite profiles and the changes are depending on the type of the organic residues and its concentration in soil. The targeted analysis of selected plant metabolites, associated with health beneficial properties of the Brassicaceae family, revealed increased concentrations of carotenoids (up to 3.2-fold and decreased amounts of glucosinolates (up to 4.7-fold as well as phenolic compounds (up to 1.5-fold.

  3. Detection of a reactive metabolite of misonidazole in human urine

    International Nuclear Information System (INIS)

    Varghese, A.J.; Whitmore, G.F.

    1984-01-01

    Chemical studies have indicated that, following reduction of misonidazole to the hydroxylamine derivative, reaction with guanosine leads to the formation of a 2-carbon addition product of guanosine. In this study, the formation of the guanosine product is used to detect the presence of a reactive metabolite of misonidazole in the urine of patients treated with misonidazole. Urine samples were incubated with [ 14 C]guanosine and the guanosine product was separated by HPLC analysis. The quantities of product vary as much as 10-fold from patient to patient and it is suggested that the assay be useful as a predictor of patients susceptible to the development of peripheral neuropathy or other effects of misonidazole

  4. Regulation of specialised metabolites in Actinobacteria – expanding the paradigms

    Science.gov (United States)

    Hoskisson, Paul A.

    2018-01-01

    Summary The increase in availability of actinobacterial whole genome sequences has revealed huge numbers of specialised metabolite biosynthetic gene clusters, encoding a range of bioactive molecules such as antibiotics, antifungals, immunosuppressives and anticancer agents. Yet the majority of these clusters are not expressed under standard laboratory conditions in rich media. Emerging data from studies of specialised metabolite biosynthesis suggest that the diversity of regulatory mechanisms is greater than previously thought and these act at multiple levels, through a range of signals such as nutrient limitation, intercellular signalling and competition with other organisms. Understanding the regulation and environmental cues that lead to the production of these compounds allows us to identify the role that these compounds play in their natural habitat as well as provide tools to exploit this untapped source of specialised metabolites for therapeutic uses. Here, we provide an overview of novel regulatory mechanisms that act in physiological, global and cluster‐specific regulatory manners on biosynthetic pathways in Actinobacteria and consider these alongside their ecological and evolutionary implications. PMID:29457705

  5. Regulation of specialised metabolites in Actinobacteria - expanding the paradigms.

    Science.gov (United States)

    Hoskisson, Paul A; Fernández-Martínez, Lorena T

    2018-06-01

    The increase in availability of actinobacterial whole genome sequences has revealed huge numbers of specialised metabolite biosynthetic gene clusters, encoding a range of bioactive molecules such as antibiotics, antifungals, immunosuppressives and anticancer agents. Yet the majority of these clusters are not expressed under standard laboratory conditions in rich media. Emerging data from studies of specialised metabolite biosynthesis suggest that the diversity of regulatory mechanisms is greater than previously thought and these act at multiple levels, through a range of signals such as nutrient limitation, intercellular signalling and competition with other organisms. Understanding the regulation and environmental cues that lead to the production of these compounds allows us to identify the role that these compounds play in their natural habitat as well as provide tools to exploit this untapped source of specialised metabolites for therapeutic uses. Here, we provide an overview of novel regulatory mechanisms that act in physiological, global and cluster-specific regulatory manners on biosynthetic pathways in Actinobacteria and consider these alongside their ecological and evolutionary implications. © 2018 The Authors. Environmental Microbiology published by Society for Applied Microbiology and JohnWiley & Sons Ltd.

  6. A new species of Trichoderma hypoxylon harbours abundant secondary metabolites.

    Science.gov (United States)

    Sun, Jingzu; Pei, Yunfei; Li, Erwei; Li, Wei; Hyde, Kevin D; Yin, Wen-Bing; Liu, Xingzhong

    2016-11-21

    Some species of Trichoderma are fungicolous on fungi and have been extensively studied and commercialized as biocontrol agents. Multigene analyses coupled with morphology, resulted in the discovery of T. hypoxylon sp. nov., which was isolated from surface of the stroma of Hypoxylon anthochroum. The new taxon produces Trichoderma- to Verticillium-like conidiophores and hyaline conidia. Phylogenetic analyses based on combined ITS, TEF1-α and RPB2 sequence data indicated that T. hypoxylon is a well-distinguished species with strong bootstrap support in the polysporum group. Chemical assessment of this species reveals a richness of secondary metabolites with trichothecenes and epipolythiodiketopiperazines as the major compounds. The fungicolous life style of T. hypoxylon and the production of abundant metabolites are indicative of the important ecological roles of this species in nature.

  7. Ecotoxicological effects of selected cyanobacterial secondary metabolites a short review

    International Nuclear Information System (INIS)

    Wiegand, C.; Pflugmacher, S.

    2005-01-01

    Cyanobacteria are one of the most diverse groups of gram-negative photosynthetic prokaryotes. Many of them are able to produce a wide range of toxic secondary metabolites. These cyanobacterial toxins can be classified in five different groups: hepatotoxins, neurotoxins, cytotoxins, dermatotoxins, and irritant toxins (lipopolysaccharides). Cyanobacterial blooms are hazardous due to this production of secondary metabolites and endotoxins, which could be toxic to animals and plants. Many of the freshwater cyanobacterial blooms include species of the toxigenic genera Microcystis, Anabaena, or Plankthotrix. These compounds differ in mechanisms of uptake, affected organs, and molecular mode of action. In this review, the main focus is the aquatic environment and the effects of these toxins to the organisms living there. Some basic toxic mechanisms will be discussed in comparison to the mammalian system

  8. Microbial diversity and metabolite composition of Belgian red-brown acidic ales.

    Science.gov (United States)

    Snauwaert, Isabel; Roels, Sanne P; Van Nieuwerburg, Filip; Van Landschoot, Anita; De Vuyst, Luc; Vandamme, Peter

    2016-03-16

    Belgian red-brown acidic ales are sour and alcoholic fermented beers, which are produced by mixed-culture fermentation and blending. The brews are aged in oak barrels for about two years, after which mature beer is blended with young, non-aged beer to obtain the end-products. The present study evaluated the microbial community diversity of Belgian red-brown acidic ales at the end of the maturation phase of three subsequent brews of three different breweries. The microbial diversity was compared with the metabolite composition of the brews at the end of the maturation phase. Therefore, mature brew samples were subjected to 454 pyrosequencing of the 16S rRNA gene (bacteria) and the internal transcribed spacer region (yeasts) and a broad range of metabolites was quantified. The most important microbial species present in the Belgian red-brown acidic ales investigated were Pediococcus damnosus, Dekkera bruxellensis, and Acetobacter pasteurianus. In addition, this culture-independent analysis revealed operational taxonomic units that were assigned to an unclassified fungal community member, Candida, and Lactobacillus. The main metabolites present in the brew samples were L-lactic acid, D-lactic acid, and ethanol, whereas acetic acid was produced in lower quantities. The most prevailing aroma compounds were ethyl acetate, isoamyl acetate, ethyl hexanoate, and ethyl octanoate, which might be of impact on the aroma of the end-products. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Control of Chinese-kale damping-off caused by Pythium aphanidermatum by antifungal metabolites of Trichoderma virens

    Directory of Open Access Journals (Sweden)

    Chiradej Chamswarng

    2007-07-01

    Full Text Available Seven strains of Trichoderma virens were isolated from Chinese-kale planting soil in Nakhon Si Thammarat province. Efficacy of those isolates to inhibit mycelial growth and overgrow on mycelia ofPythium aphanidermatum, a causal agent of damping-off on Chinese-kale, were determined by a dual culture test. All strains significantly inhibited growth and overgrew on mycelia of P. aphanidermatum on potato dextrose agar (PDA as compared with the control. Strains T-NST-01, T-NST-05 and T-NST-07 gave high values of inhibition by 85.5, 82.5 and 78.5%, respectively. For efficacy to overgrow on mycelia of pathogen test, strains T-NST-05, T-NST-07 and T-NST-01 provided 48.3, 47.0 and 46.1% of mycelial overgrowth, respectively. Antifungal metabolites were extracted from three promising strains and tested against mycelial growth and sporangium production of P. aphanidermatum. The results showed that 1,000 mg/L of all metabolites completely inhibited mycelial growth and sporangium production. Under laboratory condition, all metabolites (1,000 mg/L significantly increased the number of Chinese-kale seedling germination, especially the metabolites from T-NST-01 and T-NST-07 provided germination of 92.5 and 87.5%, respectively. Under glasshouse conditions, Chinese-kale seedlings treated with 1,000 mg/L of metabolites from strains T-NST-01 and T-NST-07 survived by 90.5 and 87.5%, respectively, while the control 1 (sterile water and control 2 (2% methanol had 19.0 and 18.5% of survived seedlings, respectively. In P. aphanidermatum viability test, mycelia of P. aphanidermatum treated with antifungal metabolites from three strains of T. virens showed no visible growth, while the control with 2% methanol or sterile water, mycelia of P. aphanidermatum rapidly grew and covered whole surface of PDA in of the Petri dish within 4 days.

  10. Monitoring of thiopurine metabolites in patients with inflammatory bowel disease-what is actually measured?

    Science.gov (United States)

    Vikingsson, Svante; Carlsson, Björn; Almer, Sven H C; Peterson, Curt

    2009-06-01

    Azathioprine and 6-mercaptopurine are often used in the treatment of patients with inflammatory bowel disease (IBD). They are prodrugs and undergo a complex metabolism to active and inactive metabolites. Thiopurine treatment is monitored in many laboratories by measuring metabolite concentrations in erythrocytes (red blood cells). The metabolites of interest are not measured directly but as hydrolysis products, which can be produced from several metabolites. The aim of this study was to examine which metabolites are actually measured during routine monitoring. Samples from 18 patients treated with a thiopurine were analyzed by a typical routine high-performance liquid chromatography method for therapeutic drug monitoring and by a newly developed specific method measuring thioguanosine monophosphate (TGMP), thioguanosine diphosphate (TGDP), and thioguanosine triphosphate (TGTP), as well as methylthioinosine monophosphate (meTIMP), and the results were compared. 6-Thioguanine nucleotide (TGN) values detected by the routine method were 69% (range 40%-90%) of the sum of TGMP, TGDP, and TGTP measured by the specific method. TGTP and TGDP contributed 85% (range 78%-90%) and 14% (range 10%-21%) of the TGN total, respectively. Thioguanosine was not found in any patient sample. The concentration of meTIMP obtained by the routine method was 548% of the value obtained by the specific method (range 340%-718%). The difference in TGN measurements between the routine and specific methods can be explained by low hydrolysis efficiency in the routine method, although the most likely explanation for the difference in meTIMP values is that not yet identified metabolites are codetermined in the routine high-performance liquid chromatography method. Concentrations reported as TGN during therapeutic drug monitoring of thiopurine metabolites consist of TGDP and TGTP with a minor contribution of the TGMP. Concentrations reported as meTIMP or methyl mercaptopurine consist in part of me

  11. The effect of dose, dose rate, route of administration, and species on tissue and blood levels of benzene metabolites

    International Nuclear Information System (INIS)

    Henderson, R.F.; Sabourin, P.J.; Bechtold, W.E.; Griffith, W.C.; Medinsky, M.A.; Birnbaum, L.S.; Lucier, G.W.

    1989-01-01

    Studies were completed in F344/N rats and B6C3F 1 mice to determine the effect of dose, dose rate, route of administration, and rodent species on formation of total and individual benzene metabolites. Oral doses of 50 mg/kg or higher saturated the capacity for benzene metabolism in both rats and mice, resulting in an increased proportion of the administered dose being exhaled as benzene. The saturating air concentration for benzene metabolism during 6-hr exposures was between 130 and 900 ppm. At the highest exposure concentration, rats exhaled approximately half of the internal dose retained at the end of the 6-hr exposure as benzene; mice exhaled only 15% as benzene. Mice were able to convert more of the inhaled benzene to metabolites than were rats. In addition, mice metabolized more of the benzene by pathways leading to the putative toxic metabolites, benzoquinone and muconaldehyde, than did rats. In both rats and mice, the effect of increasing dose, administered orally or by inhalation, was to increase the proportion of the total metabolites that were the products of detoxification pathways relative to the products of pathways leading to putative toxic metabolites. This indicates low-affinity, high-capacity pathways for detoxification and high-affinity, low-capacity pathways leading to putative toxic metabolites. If the results of rodent studied performed at high doses were used to assess the health risk at low-dose exposures to benzene, the toxicity of benzene would be underestimated

  12. Effect of high pressure treatment on metabolite profile of marinated meat in soy sauce.

    Science.gov (United States)

    Yang, Yang; Ye, Yangfang; Wang, Ying; Sun, Yangying; Pan, Daodong; Cao, Jinxuan

    2018-02-01

    Marinated meat in soy sauce was produced using hind leg by washing, rubbing salt, marinating with soy sauce and spices, and air dry-ripening for 15d. The effect of high pressure (HP) (150 and 300MPa for 15min) on the metabolite profiles of products was characterized using 1 H NMR and multivariate data analysis. The results showed that the metabonome was dominated by 26 metabolites, including amino acids, sugars, organic acids, nucleic aides and their derivatives. PC1 and PC2 explained a total of 75.4 and 11.9% of variables, respectively. HP treatments increased most of the metabolites, especially PC1, glutamate, sugars, nucleotides, anserine, lactate and creatine compared to the control. The increase of metabolites under HP was not dependent on pressure level except for alanine, lactate, acetate, formate, fumarate, glucose and 5'-IMP. These findings demonstrated that HP treatment at 150MPa was economical to improve the taste of marinated meat in soy sauce. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Study on Production of Useful Metabolites by Development of Advanced Cell Culture Techniques Using Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Byung Yeoup; Kim, J. H.; Lee, S. S.; Shyamkumar, B.; An, B. C.; Moon, Y. R.; Lee, E. M.; Lee, M. H.

    2009-02-15

    The purpose of this project is improvement of investigation, materialization and evaluation techniques on effectiveness for functional natural compounds throughout development of tissue/cell culture techniques for mass production of useful metabolites using radiation. Research scope includes 1) Development of a technique for radiation tissue and cell culture, 2) Database construction for radiation response in plants and radiation effects, 3) Construction of general-purpose national based techniques of cell culture technique using radiation. Main results are as follow: Establishment of a tissue culture system (Rubus sp., Lithospermum erythrorhizon, and Rhodiola rosea); characterization of radiation activated gene expression from cultivated bokbunja (Rubus sp.) and Synechocystis sp., identification of gamma-ray induced color change in plants; identification of sensitivity to gamma-ray from Omija (Schisandra chinensis) extract; identification of the response of thylakoid proteins to gamma-ray in spinach and Arabidopsis; identification of gamma-ray induced gene relating to pigment metabolism; characterization of different NPQ changes to gamma-irradiated plants; verification of the effects of rare earth element including anti-bacterial and anti-fungal properties and as a growth enhancer; identification of changes in the growth of gamma-irradiated Synechocystis; and investigation of liquid cell culture conditions from Rhodiola rosea

  14. Study on Production of Useful Metabolites by Development of Advanced Cell Culture Techniques Using Radiation

    International Nuclear Information System (INIS)

    Chung, Byung Yeoup; Kim, J. H.; Lee, S. S.; Shyamkumar, B.; An, B. C.; Moon, Y. R.; Lee, E. M.; Lee, M. H.

    2009-02-01

    The purpose of this project is improvement of investigation, materialization and evaluation techniques on effectiveness for functional natural compounds throughout development of tissue/cell culture techniques for mass production of useful metabolites using radiation. Research scope includes 1) Development of a technique for radiation tissue and cell culture, 2) Database construction for radiation response in plants and radiation effects, 3) Construction of general-purpose national based techniques of cell culture technique using radiation. Main results are as follow: Establishment of a tissue culture system (Rubus sp., Lithospermum erythrorhizon, and Rhodiola rosea); characterization of radiation activated gene expression from cultivated bokbunja (Rubus sp.) and Synechocystis sp., identification of gamma-ray induced color change in plants; identification of sensitivity to gamma-ray from Omija (Schisandra chinensis) extract; identification of the response of thylakoid proteins to gamma-ray in spinach and Arabidopsis; identification of gamma-ray induced gene relating to pigment metabolism; characterization of different NPQ changes to gamma-irradiated plants; verification of the effects of rare earth element including anti-bacterial and anti-fungal properties and as a growth enhancer; identification of changes in the growth of gamma-irradiated Synechocystis; and investigation of liquid cell culture conditions from Rhodiola rosea

  15. Identification of the principal biliary metabolite of 4'-(9-acridinylamino)methanesulfon-m-anisidide in rats

    International Nuclear Information System (INIS)

    Shoemaker, D.D.; Cysyk, R.L.; Padmanabhan, S.; Bhat, H.B.; Malspeis, L.

    1982-01-01

    m-AMSA [4'-(9-acridinylamino)methanesulfon-m-anisidide] labeled in either the acridine or anilino portion was used to investigate the disposition of this antitumor agent in rats. The principal biliary metabolite, which accounts for approximately 80% of the total biliary radioactivity for 90 min after administration and greater than 50% of the administered dose by 180 min after administration, had both the acridine and the anilino portions intact. Isolation and purification of the principal metabolite was achieved by preparative thin-layer chromatography on silica gel and column chromatography on Amberlite XAD-2 resin. A nuclear magnetic resonance (NMR) spectrum of the CID salt in D 2 O showed that the metabolite is the m-AMSA-glutathione conjugate in which the thioether linkage occurs at the 5'-position of the anilino ring. Synthesis of the metabolite was achieved by oxidizing m-AMSA with active MnO 2 to -methanesulfonyl - - (9-acridinyl)-3'-methoxy - 2',5' - cyclohexadiene-1',4'-diimine (m-AQDI) followed by reaction of m-AQDI with glutathione. The 1 H-NMR spectrum of the synthetic product proved identical with that of the isolated metabolite. The demonstration that the principal biliary metabolite on m-AMSA involves glutathione bound to the 9-anilino ring suggests that m-AMSA may be bioactivated in vivo to the quinoidal diimine, m-AQDI

  16. Reproduction impact of mancozeb on rainbow trout (Oncorhynchus mykiss W. and accumulation of its carcinogen metabolite, ethylene thiourea in fish products

    Directory of Open Access Journals (Sweden)

    Milena TZANOVA

    2017-06-01

    Full Text Available Pesticides can be taken up from the water and accumulated in tissues of hydrobionts, often becoming multiplied thousands of times higher in the organism than in the surrounding water. The dithiocarbamate mancozeb is applied in plant protection as fungicide. In recent years the amount of mancozeb used in Europe significantly increased. It is carcinogen due to its metabolite - ethylene thiourea (ETU, which causes thyroid and pituitary tumors. The purpose of this study is to determinate the quantity of ethylene thiourea in products of rainbow trout (Oncorhynchus mykiss W., reared in environment containing permissible, according to the European law, amount of mancozeb. Seeking an answer to the question: is this concentration limit really safe for the reproduction of rainbow trout and can the more toxic metabolite - ETU, be accumulated in the fish eggs and fillet and afterwards make them harmful to the consumers? The study included 3 stages: feeding, analysis of ethylene thiourea in fish eggs and fillet by a new developed and validated HPLC (high performance liquid chromatography method and study of the reproductive indicators. The assays of ETU in all analyzed samples (fish and water were below the limit of quantification of the method, 0.05 mg*l-1, so fish do not accumulate the carcinogen degradation product of mancozeb and the maximum residue level of mancozeb is really safe for the humans as consumers. But these environmental conditions caused reproductive disorders. They can be partly compensated by using sperm activation medium for artificial insemination of trout eggs, but successful fertilization does not guarantee successful hatching, especially of eggs in trout farms with presence of mancozeb in water, even in allowable concentration. The presented results confirm previous investigation, that Salmonidae are very sensitive fish species, react to the lowest deviations in concentration levels of xenobiotics and are used for indicator of non

  17. Placental vitamin D metabolism and its associations with circulating vitamin D metabolites in pregnant women.

    Science.gov (United States)

    Park, Heyjun; Wood, Madeleine R; Malysheva, Olga V; Jones, Sara; Mehta, Saurabh; Brannon, Patsy M; Caudill, Marie A

    2017-12-01

    Background: Little is known about placental vitamin D metabolism and its impact on maternal circulating vitamin D concentrations in humans. Objective: This study sought to advance the current understanding of placental vitamin D metabolism and its role in modulating maternal circulating vitamin D metabolites during pregnancy. Design: Nested within a feeding study, 24 healthy pregnant women (26-29 wk of gestation) consumed a single amount of vitamin D (511 IU/d from diet and a cholecalciferol supplement) for 10 wk. Concentrations of placental and blood vitamin D metabolites and placental messenger RNA (mRNA) abundance of vitamin D metabolic pathway components were quantified. In addition, cultured human trophoblasts were incubated with 13 C-cholecalciferol to examine the intracellular generation and secretion of vitamin D metabolites along with the regulation of target genes. Results: In placental tissue, 25-hydroxyvitamin D 3 [25(OH)D 3 ] was strongly correlated ( r = 0.83, P D 3 Moreover, these placental metabolites were strongly correlated ( r ≤ 0.85, P ≤ 0.04) with their respective metabolites in maternal circulation. Positive associations ( P ≤ 0.045) were also observed between placental mRNA abundance of vitamin D metabolic components and circulating vitamin D metabolites [i.e., LDL-related protein 2 ( LRP2 , also known as megalin) with 25(OH)D 3 and the C3 epimer of 25(OH)D 3 [3-epi-25(OH)D 3 ]; cubilin ( CUBN ) with 25(OH)D 3 ; 25-hydroxylase ( CYP2R1 ) with 3-epi-25(OH)D 3 ; 24-hydroxylase ( CYP24A1 ) with 25(OH)D 3 , 3-epi-25(OH)D 3 , and 1,25-dihydroxyvitamin D 3 [1,25(OH) 2 D 3 ]; and 1α-hydroxylase [( CYP27B1 ) with 3-epi-25(OH)D 3 and 1,25(OH) 2 D 3 ]. Notably, in vitro experiments with trophoblasts showed increased production and secretion of 25(OH)D 3 and higher CYP24A1 gene transcript abundance in response to cholecalciferol treatment. Conclusions: The numerous associations of many of the placental biomarkers of vitamin D metabolism with

  18. Identification of metabolites of the tryptase inhibitor CRA-9249: observation of a metabolite derived from an unexpected hydroxylation pathway.

    Science.gov (United States)

    Yu, Walter; Dener, Jeffrey M; Dickman, Daniel A; Grothaus, Paul; Ling, Yun; Liu, Liang; Havel, Chris; Malesky, Kimberly; Mahajan, Tania; O'Brian, Colin; Shelton, Emma J; Sperandio, David; Tong, Zhiwei; Yee, Robert; Mordenti, Joyce J

    2006-08-01

    The metabolites of the tryptase inhibitor CRA-9249 were identified after exposure to liver microsomes. CRA-9249 was found to be degraded rapidly in liver microsomes from rabbit, dog, cynomolgus monkey, and human, and less rapidly in microsomes from rat. The key metabolites included cleavage of an aryl ether, in addition to an unexpected hydroxylation of the amide side chain adjacent to the amide nitrogen. The chemical structures of both metabolites were confirmed by synthesis and comparison to material isolated from the liver microsomes. Several suspected hydroxylated metabolites were also synthesized and analyzed as part of the structure identification process.

  19. Systems biology and biotechnology of Streptomyces species for the production of secondary metabolites

    DEFF Research Database (Denmark)

    Hwang, Kyu-Sang; Kim, Hyun Uk; Charusanti, Pep

    2014-01-01

    Streptomyces species continue to attract attention as a source of novel medicinal compounds. Despite a long history of studies on these microorganisms, they still have many biochemical mysteries to be elucidated. Investigations of novel secondary metabolites and their biosynthetic gene clusters...... collected in the form of databases and knowledgebases, providing predictive information and enabling one to explore experimentally unrecognized biological spaces of secondary metabolism. Herein, we review recent trends in the systems biology and biotechnology of Streptomyces species....

  20. Hydrophobicity and charge shape cellular metabolite concentrations.

    Directory of Open Access Journals (Sweden)

    Arren Bar-Even

    2011-10-01

    Full Text Available What governs the concentrations of metabolites within living cells? Beyond specific metabolic and enzymatic considerations, are there global trends that affect their values? We hypothesize that the physico-chemical properties of metabolites considerably affect their in-vivo concentrations. The recently achieved experimental capability to measure the concentrations of many metabolites simultaneously has made the testing of this hypothesis possible. Here, we analyze such recently available data sets of metabolite concentrations within E. coli, S. cerevisiae, B. subtilis and human. Overall, these data sets encompass more than twenty conditions, each containing dozens (28-108 of simultaneously measured metabolites. We test for correlations with various physico-chemical properties and find that the number of charged atoms, non-polar surface area, lipophilicity and solubility consistently correlate with concentration. In most data sets, a change in one of these properties elicits a ~100 fold increase in metabolite concentrations. We find that the non-polar surface area and number of charged atoms account for almost half of the variation in concentrations in the most reliable and comprehensive data set. Analyzing specific groups of metabolites, such as amino-acids or phosphorylated nucleotides, reveals even a higher dependence of concentration on hydrophobicity. We suggest that these findings can be explained by evolutionary constraints imposed on metabolite concentrations and discuss possible selective pressures that can account for them. These include the reduction of solute leakage through the lipid membrane, avoidance of deleterious aggregates and reduction of non-specific hydrophobic binding. By highlighting the global constraints imposed on metabolic pathways, future research could shed light onto aspects of biochemical evolution and the chemical constraints that bound metabolic engineering efforts.

  1. New metabolites of hongdenafil, homosildenafil and hydroxyhomosildenafil.

    Science.gov (United States)

    Yeo, Miseon; Park, Yujin; Lee, Heesang; Choe, Sanggil; Baek, Seung-Hoon; Kim, Hye Kyung; Pyo, Jae Sung

    2018-02-05

    Recently, illegal sildenafil analogues have emerged, causing serious social issues. In spite of the importance of sildenafil analogues, their metabolic profiles or clinical effects have not been reported yet. In this study, new metabolites of illegal sildenafil analogues such as hongdenafil, homosildenafil, and hydroxyhomosildenafil were determined using liquid chromatography quadrupole-time of flight mass spectrometry (LC-Q-TOF-MS) and tandem mass spectrometry (LC-Q-TOF-MS/MS). To prepare metabolic samples, in vitro and in vivo studies were performed. For in vivo metabolites analysis, urine and feces samples of rats treated with sildenafil analogues were analyzed. For in vitro metabolites analysis, human liver microsomes incubated with sildenafil analogues were extracted and analyzed. All metabolites were characterized by LC-Q-TOF-MS and LC-Q-TOF-MS/MS. As a result, five, six, and seven metabolites were determined in hongdenafil, homosildenafil, and hydroxyhomosildenafil treated samples, respectively. These results could be applied to forensic science and other analytical fields. Moreover, these newly identified metabolites could be used as fundamental data to determine the side effect and toxicity of illegal sildenafil analogues. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Intracellular metabolite profiling of Saccharomyces cerevisiae evolved under furfural

    OpenAIRE

    Jung, Young Hoon; Kim, Sooah; Yang, Jungwoo; Seo, Jin?Ho; Kim, Kyoung Heon

    2016-01-01

    Summary Furfural, one of the most common inhibitors in pre?treatment hydrolysates, reduces the cell growth and ethanol production of yeast. Evolutionary engineering has been used as a selection scheme to obtain yeast strains that exhibit furfural tolerance. However, the response of Saccharomyces cerevisiae to furfural at the metabolite level during evolution remains unknown. In this study, evolutionary engineering and metabolomic analyses were applied to determine the effects of furfural on y...

  3. Metabolites of the phenylurea herbicides chlorotoluron, diuron, isoproturon and linuron produced by the soil fungus Mortierella sp

    International Nuclear Information System (INIS)

    Badawi, Nora; Ronhede, Stig; Olsson, Stefan; Kragelund, Birthe B.; Johnsen, Anders H.; Jacobsen, Ole Stig; Aamand, Jens

    2009-01-01

    Phenylurea herbicides are used worldwide, and often pollute surface- and groundwater in concentrations exceeding the limit value for drinking water (0.1 μg l -1 ). Bacteria degrade phenylurea herbicides by successive N-dealkylation to substituted aniline products. Little is known about the corresponding fungal pathways, however. We here report degradation of chlorotoluron, diuron, isoproturon and linuron by the soil fungus Mortierella sp. Gr4. Degradation was fastest with linuron and resulted in successively dealkylated metabolites and 3,4-dichloroaniline. A major new metabolite was detected that has not yet been fully identified. Thin layer chromatography and nuclear magnetic resonance spectroscopy indicate that it is a non-aromatic diol. Degradation of isoproturon, chlorotoluron and diuron involved successive N-demethylation and, in the case of isoproturon and chlorotoluron, additional hydroxylation. A new hydroxylated isoproturon metabolite was detected. The study thus shows that the fungal pathways differ from the bacterial pathways and yield new metabolites of possible environmental concern. - Fungal degradation of phenylurea herbicides results in the formation of hydroxylated metabolites and 3,4-dichloroaniline.

  4. Metabolites of the phenylurea herbicides chlorotoluron, diuron, isoproturon and linuron produced by the soil fungus Mortierella sp

    Energy Technology Data Exchange (ETDEWEB)

    Badawi, Nora; Ronhede, Stig [Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Ostervoldgade 10, DK-1350 Copenhagen K (Denmark); Olsson, Stefan [Section of Genetics and Microbiology, Department of Agriculture and Ecology, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C (Denmark); Kragelund, Birthe B. [Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N (Denmark); Johnsen, Anders H. [Department of Clinical Biochemistry, Copenhagen University Hospital, Blegdamsvej 9, DK-2100 Copenhagen O (Denmark); Jacobsen, Ole Stig [Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Ostervoldgade 10, DK-1350 Copenhagen K (Denmark); Aamand, Jens, E-mail: jeaa@geus.d [Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Ostervoldgade 10, DK-1350 Copenhagen K (Denmark)

    2009-10-15

    Phenylurea herbicides are used worldwide, and often pollute surface- and groundwater in concentrations exceeding the limit value for drinking water (0.1 mug l{sup -1}). Bacteria degrade phenylurea herbicides by successive N-dealkylation to substituted aniline products. Little is known about the corresponding fungal pathways, however. We here report degradation of chlorotoluron, diuron, isoproturon and linuron by the soil fungus Mortierella sp. Gr4. Degradation was fastest with linuron and resulted in successively dealkylated metabolites and 3,4-dichloroaniline. A major new metabolite was detected that has not yet been fully identified. Thin layer chromatography and nuclear magnetic resonance spectroscopy indicate that it is a non-aromatic diol. Degradation of isoproturon, chlorotoluron and diuron involved successive N-demethylation and, in the case of isoproturon and chlorotoluron, additional hydroxylation. A new hydroxylated isoproturon metabolite was detected. The study thus shows that the fungal pathways differ from the bacterial pathways and yield new metabolites of possible environmental concern. - Fungal degradation of phenylurea herbicides results in the formation of hydroxylated metabolites and 3,4-dichloroaniline.

  5. Identification of ionic chloroacetanilide-herbicide metabolites in surface water and groundwater by HPLC/MS using negative ion spray

    Science.gov (United States)

    Ferrer, I.; Thurman, E.M.; Barcelo, D.

    1997-01-01

    Solid-phase extraction (SPE) was combined with high-performance liquid chromatography/high-flow pneumatically assisted electrospray mass spectrometry (HPLC/ESP/MS) for the trace analysis of oxanilic and sulfonic acids of acetochlor, alachlor, and metolachlor. The isolation procedure separated the chloroacetanilide metabolites from the parent herbicides during the elution from C18 cartridges using ethyl acetate for parent compounds, followed by methanol for the anionic metabolites. The metabolites were separated chromatographically using reversed-phase HPLC and analyzed by negative-ion MS using electrospray ionization in selected ion mode. Quantitation limits were 0.01 ??g/L for both the oxanilic and sulfonic acids based on a 100-mL water sample. This combination of methods represents an important advance in environmental analysis of chloroacetanilide-herbicide metabolites in surface water and groundwater for two reasons. First, anionic chloroacetanilide metabolites are a major class of degradation products that are readily leached to groundwater in agricultural areas. Second, anionic metabolites, which are not able to be analyzed by conventional methods such as liquid extraction and gas chromatography/mass spectrometry, are effectively analyzed by SPE and high-flow pneumatically assisted electrospray mass spectrometry. This paper reports the first HPLC/MS identification of these metabolites in surface water and groundwater.

  6. Metabolite Depletion Affects Flux Profiling of Cell Lines

    DEFF Research Database (Denmark)

    Nilsson, A.; Haanstra, J. R.; Teusink, B.

    2018-01-01

    Quantifying the rate of consumption and release of metabolites (i.e., flux profiling) has become integral to the study of cancer. The fluxes as well as the growth of the cells may be affected by metabolite depletion during cultivation.......Quantifying the rate of consumption and release of metabolites (i.e., flux profiling) has become integral to the study of cancer. The fluxes as well as the growth of the cells may be affected by metabolite depletion during cultivation....

  7. Role of the phosphopantetheinyltransferase enzyme, PswP, in the biosynthesis of antimicrobial secondary metabolites by Serratia marcescens Db10.

    Science.gov (United States)

    Gerc, Amy J; Stanley-Wall, Nicola R; Coulthurst, Sarah J

    2014-08-01

    Phosphopantetheinyltransferase (PPTase) enzymes fulfil essential roles in primary and secondary metabolism in prokaryotes, archaea and eukaryotes. PPTase enzymes catalyse the essential modification of the carrier protein domain of fatty acid synthases, polyketide synthases (PKSs) and non-ribosomal peptide synthetases (NRPSs). In bacteria and fungi, NRPS and PKS enzymes are often responsible for the biosynthesis of secondary metabolites with clinically relevant properties; these secondary metabolites include a variety of antimicrobial peptides. We have previously shown that in the Gram-negative bacterium Serratia marcescens Db10, the PPTase enzyme PswP is essential for the biosynthesis of an NRPS-PKS dependent antibiotic called althiomycin. In this work we utilize bioinformatic analyses to classify PswP as belonging to the F/KES subfamily of Sfp type PPTases and to putatively identify additional NRPS substrates of PswP, in addition to the althiomycin NRPS-PKS, in Ser. marcescens Db10. We show that PswP is required for the production of three diffusible metabolites by this organism, each possessing antimicrobial activity against Staphylococcus aureus. Genetic analyses identify the three metabolites as althiomycin, serrawettin W2 and an as-yet-uncharacterized siderophore, which may be related to enterobactin. Our results highlight the use of an individual PPTase enzyme in multiple biosynthetic pathways, each contributing to the ability of Ser. marcescens to inhibit competitor bacteria by the production of antimicrobial secondary metabolites. © 2014 The Authors.

  8. Intracellular metabolite profiling of Saccharomyces cerevisiae evolved under furfural.

    Science.gov (United States)

    Jung, Young Hoon; Kim, Sooah; Yang, Jungwoo; Seo, Jin-Ho; Kim, Kyoung Heon

    2017-03-01

    Furfural, one of the most common inhibitors in pre-treatment hydrolysates, reduces the cell growth and ethanol production of yeast. Evolutionary engineering has been used as a selection scheme to obtain yeast strains that exhibit furfural tolerance. However, the response of Saccharomyces cerevisiae to furfural at the metabolite level during evolution remains unknown. In this study, evolutionary engineering and metabolomic analyses were applied to determine the effects of furfural on yeasts and their metabolic response to continuous exposure to furfural. After 50 serial transfers of cultures in the presence of furfural, the evolved strains acquired the ability to stably manage its physiological status under the furfural stress. A total of 98 metabolites were identified, and their abundance profiles implied that yeast metabolism was globally regulated. Under the furfural stress, stress-protective molecules and cofactor-related mechanisms were mainly induced in the parental strain. However, during evolution under the furfural stress, S. cerevisiae underwent global metabolic allocations to quickly overcome the stress, particularly by maintaining higher levels of metabolites related to energy generation, cofactor regeneration and recovery from cellular damage. Mapping the mechanisms of furfural tolerance conferred by evolutionary engineering in the present study will be led to rational design of metabolically engineered yeasts. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  9. Mapping of Saccharomyces cerevisiae metabolites in fermenting wheat straight-dough reveals succinic acid as pH-determining factor.

    Science.gov (United States)

    Jayaram, Vinay B; Cuyvers, Sven; Lagrain, Bert; Verstrepen, Kevin J; Delcour, Jan A; Courtin, Christophe M

    2013-01-15

    Fermenting yeast does not merely cause dough leavening, but also contributes to the bread aroma and might alter dough rheology. Here, the yeast carbon metabolism was mapped during bread straight-dough fermentation. The concentration of most metabolites changed quasi linearly as a function of fermentation time. Ethanol and carbon dioxide concentrations reached up to 60 mmol/100g flour. Interestingly, high levels of glycerol (up to 10 mmol/100g flour) and succinic acid (up to 1.6 mmol/100g flour) were produced during dough fermentation. Further tests showed that, contrary to current belief, the pH decrease in fermenting dough is primarily caused by the production of succinic acid by the yeast instead of carbon dioxide dissolution or bacterial organic acids. Together, our results provide a comprehensive overview of metabolite production during dough fermentation and yield insight into the importance of some of these metabolites for dough properties. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Taxonomic Characterization and Secondary Metabolite Profiling of Aspergillus Section Aspergillus Contaminating Feeds and Feedstuffs

    Science.gov (United States)

    Greco, Mariana; Kemppainen, Minna; Pose, Graciela; Pardo, Alejandro

    2015-01-01

    Xerophilic fungal species of the genus Aspergillus are economically highly relevant due to their ability to grow on low water activity substrates causing spoilage of stored goods and animal feeds. These fungi can synthesize a variety of secondary metabolites, many of which show animal toxicity, creating a health risk for food production animals and to humans as final consumers, respectively. Animal feeds used for rabbit, chinchilla and rainbow trout production in Argentina were analysed for the presence of xerophilic Aspergillus section Aspergillus species. High isolation frequencies (>60%) were detected in all the studied rabbit and chinchilla feeds, while the rainbow trout feeds showed lower fungal charge (25%). These section Aspergillus contaminations comprised predominantly five taxa. Twenty isolates were subjected to taxonomic characterization using both ascospore SEM micromorphology and two independent DNA loci sequencing. The secondary metabolite profiles of the isolates were determined qualitatively by HPLC-MS. All the isolates produced neoechinulin A, 17 isolates were positive for cladosporin and echinulin, and 18 were positive for neoechinulin B. Physcion and preechinulin were detected in a minor proportion of the isolates. This is the first report describing the detailed species composition and the secondary metabolite profiles of Aspergillus section Aspergillus contaminating animal feeds. PMID:26364643

  11. Taxonomic Characterization and Secondary Metabolite Profiling of Aspergillus Section Aspergillus Contaminating Feeds and Feedstuffs

    Directory of Open Access Journals (Sweden)

    Mariana Greco

    2015-09-01

    Full Text Available Xerophilic fungal species of the genus Aspergillus are economically highly relevant due to their ability to grow on low water activity substrates causing spoilage of stored goods and animal feeds. These fungi can synthesize a variety of secondary metabolites, many of which show animal toxicity, creating a health risk for food production animals and to humans as final consumers, respectively. Animal feeds used for rabbit, chinchilla and rainbow trout production in Argentina were analysed for the presence of xerophilic Aspergillus section Aspergillus species. High isolation frequencies (>60% were detected in all the studied rabbit and chinchilla feeds, while the rainbow trout feeds showed lower fungal charge (25%. These section Aspergillus contaminations comprised predominantly five taxa. Twenty isolates were subjected to taxonomic characterization using both ascospore SEM micromorphology and two independent DNA loci sequencing. The secondary metabolite profiles of the isolates were determined qualitatively by HPLC-MS. All the isolates produced neoechinulin A, 17 isolates were positive for cladosporin and echinulin, and 18 were positive for neoechinulin B. Physcion and preechinulin were detected in a minor proportion of the isolates. This is the first report describing the detailed species composition and the secondary metabolite profiles of Aspergillus section Aspergillus contaminating animal feeds.

  12. Taxonomic Characterization and Secondary Metabolite Profiling of Aspergillus Section Aspergillus Contaminating Feeds and Feedstuffs.

    Science.gov (United States)

    Greco, Mariana; Kemppainen, Minna; Pose, Graciela; Pardo, Alejandro

    2015-09-02

    Xerophilic fungal species of the genus Aspergillus are economically highly relevant due to their ability to grow on low water activity substrates causing spoilage of stored goods and animal feeds. These fungi can synthesize a variety of secondary metabolites, many of which show animal toxicity, creating a health risk for food production animals and to humans as final consumers, respectively. Animal feeds used for rabbit, chinchilla and rainbow trout production in Argentina were analysed for the presence of xerophilic Aspergillus section Aspergillus species. High isolation frequencies (>60%) were detected in all the studied rabbit and chinchilla feeds, while the rainbow trout feeds showed lower fungal charge (25%). These section Aspergillus contaminations comprised predominantly five taxa. Twenty isolates were subjected to taxonomic characterization using both ascospore SEM micromorphology and two independent DNA loci sequencing. The secondary metabolite profiles of the isolates were determined qualitatively by HPLC-MS. All the isolates produced neoechinulin A, 17 isolates were positive for cladosporin and echinulin, and 18 were positive for neoechinulin B. Physcion and preechinulin were detected in a minor proportion of the isolates. This is the first report describing the detailed species composition and the secondary metabolite profiles of Aspergillus section Aspergillus contaminating animal feeds.

  13. GMP-compliant radiosynthesis of [18F]altanserin and human plasma metabolite studies

    International Nuclear Information System (INIS)

    Hasler, F.; Kuznetsova, O.F.; Krasikova, R.N.; Cservenyak, T.; Quednow, B.B.; Vollenweider, F.X.; Ametamey, S.M.; Westera, G.

    2009-01-01

    [ 18 F]altanserin is the preferred radiotracer for in-vivo labeling of serotonin 2A receptors by positron emission tomography (PET). We report a modified synthesis procedure suited for reliable production of multi-GBq amounts of [ 18 F]altanserin useful for application in humans. We introduced thermal heating for drying of [ 18 F]fluoride as well as for the reaction instead of microwave heating. We furthermore describe solid phase extraction and HPLC procedures for quantitative determination of [ 18 F]altanserin and metabolites in plasma. The time course of arterial plasma activity with and without metabolite correction was determined. 90 min after bolus injection, 38.4% of total plasma activity derived from unchanged [ 18 F]altanserin. Statistical comparison of kinetic profiles of [ 18 F]altanserin metabolism in plasma samples collected in the course of two ongoing studies employing placebo, the serotonin releaser dexfenfluramine and the hallucinogen psilocybin, revealed the same tracer metabolism. We conclude that metabolite analysis for correction of individual plasma input functions used in tracer modeling is not necessary for [ 18 F]altanserin studies involving psilocybin or dexfenfluramine treatment

  14. Focused Metabolite Profiling for Dissecting Cellular and Molecular Processes of Living Organisms in Space Environments

    Science.gov (United States)

    2008-01-01

    Regulatory control in biological systems is exerted at all levels within the central dogma of biology. Metabolites are the end products of all cellular regulatory processes and reflect the ultimate outcome of potential changes suggested by genomics and proteomics caused by an environmental stimulus or genetic modification. Following on the heels of genomics, transcriptomics, and proteomics, metabolomics has become an inevitable part of complete-system biology because none of the lower "-omics" alone provide direct information about how changes in mRNA or protein are coupled to changes in biological function. The challenges are much greater than those encountered in genomics because of the greater number of metabolites and the greater diversity of their chemical structures and properties. To meet these challenges, much developmental work is needed, including (1) methodologies for unbiased extraction of metabolites and subsequent quantification, (2) algorithms for systematic identification of metabolites, (3) expertise and competency in handling a large amount of information (data set), and (4) integration of metabolomics with other "omics" and data mining (implication of the information). This article reviews the project accomplishments.

  15. Simvastatin (SV) metabolites in mouse tissues

    International Nuclear Information System (INIS)

    Duncan, C.A.; Vickers, S.

    1990-01-01

    SV, a semisynthetic analog of lovastatin, is hydrolyzed in vivo to its hydroxy acid (SVA), a potent inhibitor of HMG CoA reductase (HR). Thus SV lowers plasma cholesterol. SV is a substrate for mixed function oxidases whereas SVA undergoes lactonization and β-oxidation. Male CD-1 mice were dosed orally with a combination of ( 14 C)SV and ( 3 H)SVA at 25 mg/kg of each, bled and killed at 0.5, 2 and 4 hours. Labeled SV, SVA, 6'exomethylene SV (I), 6'CH 2 OH-SV (II), 6'COOH-SV (III) and a β-oxidized metabolite (IV) were assayed in liver, bile, kidneys, testes and plasma by RIDA. Levels of potential and active HR inhibitors in liver were 10 to 40 fold higher than in other tissues. II and III, in which the configuration at 6' is inverted, may be 2 metabolites of I. Metabolites I-III are inhibitors of HR in their hydroxy acid forms. Qualitatively ( 14 C)SV and ( 3 H)SVA were metabolized similarly (consistent with their proposed interconversion). However 3 H-SVA, I-III (including hydroxy acid forms) achieved higher concentrations than corresponding 14 C compounds (except in gall bladder bile). Major radioactive metabolites in liver were II-IV (including hydroxy acid forms). These metabolites have also been reported in rat tissues. In bile a large fraction of either label was unidentified polar metabolites. The presence of IV indicated that mice (like rats) are not good models for SV metabolism in man

  16. Drug repositioning for enzyme modulator based on human metabolite-likeness.

    Science.gov (United States)

    Lee, Yoon Hyeok; Choi, Hojae; Park, Seongyong; Lee, Boah; Yi, Gwan-Su

    2017-05-31

    Recently, the metabolite-likeness of the drug space has emerged and has opened a new possibility for exploring human metabolite-like candidates in drug discovery. However, the applicability of metabolite-likeness in drug discovery has been largely unexplored. Moreover, there are no reports on its applications for the repositioning of drugs to possible enzyme modulators, although enzyme-drug relations could be directly inferred from the similarity relationships between enzyme's metabolites and drugs. We constructed a drug-metabolite structural similarity matrix, which contains 1,861 FDA-approved drugs and 1,110 human intermediary metabolites scored with the Tanimoto similarity. To verify the metabolite-likeness measure for drug repositioning, we analyzed 17 known antimetabolite drugs that resemble the innate metabolites of their eleven target enzymes as the gold standard positives. Highly scored drugs were selected as possible modulators of enzymes for their corresponding metabolites. Then, we assessed the performance of metabolite-likeness with a receiver operating characteristic analysis and compared it with other drug-target prediction methods. We set the similarity threshold for drug repositioning candidates of new enzyme modulators based on maximization of the Youden's index. We also carried out literature surveys for supporting the drug repositioning results based on the metabolite-likeness. In this paper, we applied metabolite-likeness to repurpose FDA-approved drugs to disease-associated enzyme modulators that resemble human innate metabolites. All antimetabolite drugs were mapped with their known 11 target enzymes with statistically significant similarity values to the corresponding metabolites. The comparison with other drug-target prediction methods showed the higher performance of metabolite-likeness for predicting enzyme modulators. After that, the drugs scored higher than similarity score of 0.654 were selected as possible modulators of enzymes for

  17. Linking secondary metabolites to gene clusters through genome sequencing of six diverse Aspergillus species

    DEFF Research Database (Denmark)

    Kjærbølling, Inge; Vesth, Tammi C.; Frisvad, Jens C.

    2018-01-01

    The fungal genus of Aspergillus is highly interesting, containing everything from industrial cell factories, model organisms, and human pathogens. In particular, this group has a prolific production of bioactive secondary metabolites (SMs). In this work, four diverse Aspergillus species (A...

  18. Structural requirements for bioactivation of anticonvulsants to cytotoxic metabolites in vitro.

    Science.gov (United States)

    Riley, R J; Kitteringham, N R; Park, B K

    1989-01-01

    The formation of cytotoxic metabolites from the anticonvulsants phenytoin and carbamazepine was investigated in vitro using a hepatic microsomal enzyme system and human mononuclear leucocytes as target cells. Both drugs were metabolised to cytotoxic products. In order to assess the structural requirements for this bioactivation, a series of structurally related compounds was investigated. It was found that molecules which contain either an amide function or an aryl ring may undergo activation in vitro, but only the metabolism-dependent toxicity of the latter is potentiated by pre-treatment of the target cells with an epoxide hydrolase inhibitor. Taken collectively, these data are consistent with the concept that reactive epoxide metabolites of both phenytoin and carbamazepine may produce toxicity in individuals with an inherited deficiency in epoxide hydrolase. PMID:2590607

  19. Systematics of Penicillium simplicissimum based on rDNA sequences, morphology and secondary metabolites

    DEFF Research Database (Denmark)

    Tuthill, D.E.; Frisvad, Jens Christian; Christensen, M.

    2001-01-01

    supported by differences in micromorphological characters, particularly of the conidia and phialides, and the production of distinct profiles of secondary metabolites by each species. Group-I introns, located in the SSU rDNA, were identified in six of the 21 isolates; their presence was used to test...

  20. General unknown screening procedure for the characterization of human drug metabolites in forensic toxicology: applications and constraints.

    Science.gov (United States)

    Sauvage, François-Ludovic; Picard, Nicolas; Saint-Marcoux, Franck; Gaulier, Jean-Michel; Lachâtre, Gérard; Marquet, Pierre

    2009-09-01

    LC coupled to single (LC-MS) and tandem (LC-MS/MS) mass spectrometry is recognized as the most powerful analytical tools for metabolic studies in drug discovery. In this article, we describe five cases illustrating the utility of screening xenobiotic metabolites in routine analysis of forensic samples using LC-MS/MS. Analyses were performed using a previously published LC-MS/MS general unknown screening (GUS) procedure developed using a hybrid linear IT-tandem mass spectrometer. In each of the cases presented, the presence of metabolites of xenobiotics was suspected after analyzing urine samples. In two cases, the parent drug was also detected and the metabolites were merely useful to confirm drug intake, but in three other cases, metabolite detection was of actual forensic interest. The presented results indicate that: (i) the GUS procedure developed is useful to detect a large variety of drug metabolites, which would have been hardly detected using targeted methods in the context of clinical or forensic toxicology; (ii) metabolite structure can generally be inferred from their "enhanced" product ion scan spectra; and (iii) structure confirmation can be achieved through in vitro metabolic experiments or through the analysis of urine samples from individuals taking the parent drug.

  1. Metabolic Networks and Metabolites Underlie Associations Between Maternal Glucose During Pregnancy and Newborn Size at Birth.

    Science.gov (United States)

    Scholtens, Denise M; Bain, James R; Reisetter, Anna C; Muehlbauer, Michael J; Nodzenski, Michael; Stevens, Robert D; Ilkayeva, Olga; Lowe, Lynn P; Metzger, Boyd E; Newgard, Christopher B; Lowe, William L

    2016-07-01

    Maternal metabolites and metabolic networks underlying associations between maternal glucose during pregnancy and newborn birth weight and adiposity demand fuller characterization. We performed targeted and nontargeted gas chromatography/mass spectrometry metabolomics on maternal serum collected at fasting and 1 h following glucose beverage consumption during an oral glucose tolerance test (OGTT) for 400 northern European mothers at ∼28 weeks' gestation in the Hyperglycemia and Adverse Pregnancy Outcome Study. Amino acids, fatty acids, acylcarnitines, and products of lipid metabolism decreased and triglycerides increased during the OGTT. Analyses of individual metabolites indicated limited maternal glucose associations at fasting, but broader associations, including amino acids, fatty acids, carbohydrates, and lipids, were found at 1 h. Network analyses modeling metabolite correlations provided context for individual metabolite associations and elucidated collective associations of multiple classes of metabolic fuels with newborn size and adiposity, including acylcarnitines, fatty acids, carbohydrates, and organic acids. Random forest analyses indicated an improved ability to predict newborn size outcomes by using maternal metabolomics data beyond traditional risk factors, including maternal glucose. Broad-scale association of fuel metabolites with maternal glucose is evident during pregnancy, with unique maternal metabolites potentially contributing specifically to newborn birth weight and adiposity. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  2. Concentrations of phthalates and DINCH metabolites in pooled urine from Queensland, Australia.

    Science.gov (United States)

    Gomez Ramos, M J; Heffernan, A L; Toms, L M L; Calafat, A M; Ye, X; Hobson, P; Broomhall, S; Mueller, J F

    2016-03-01

    Dialkyl phthalate esters (phthalates) are ubiquitous chemicals used extensively as plasticizers, solvents and adhesives in a range of industrial and consumer products. 1,2-Cyclohexane dicarboxylic acid, diisononyl ester (DINCH) is a phthalate alternative introduced due to a more favourable toxicological profile, but exposure is largely uncharacterised. The aim of this study was to provide the first assessment of exposure to phthalates and DINCH in the general Australian population. De-identified urine specimens stratified by age and sex were obtained from a community-based pathology laboratory and pooled (n=24 pools of 100). Concentrations of free and total species were measured using online solid phase extraction isotope dilution high performance liquid chromatography tandem mass spectrometry. Concentrations ranged from 2.4 to 71.9ng/mL for metabolites of di(2-ethylhexyl)phthalate, and from <0.5 to 775ng/mL for all other metabolites. Our data suggest that phthalate metabolites concentrations in Australia were at least two times higher than in the United States and Germany; and may be related to legislative differences among countries. DINCH metabolite concentrations were comparatively low and consistent with the limited data available. Ongoing biomonitoring among the general Australian population may help assess temporal trends in exposure and assess the effectiveness of actions aimed at reducing exposures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Diclofenac hypersensitivity: antibody responses to the parent drug and relevant metabolites.

    Directory of Open Access Journals (Sweden)

    Andrea Harrer

    2010-10-01

    Full Text Available Hypersensitivity reactions against nonsteroidal antiinflammatory drugs (NSAIDs like diclofenac (DF can manifest as Type I-like allergic reactions including systemic anaphylaxis. However, except for isolated case studies experimental evidence for an IgE-mediated pathomechanism of DF hypersensitivity is lacking. In this study we aimed to investigate the possible involvement of drug- and/or metabolite-specific antibodies in selective DF hypersensitivity.DF, an organochemically synthesized linkage variant, and five major Phase I metabolites were covalently coupled to carrier proteins. Drug conjugates were analyzed for coupling degree and capacity to crosslink receptor-bound IgE antibodies from drug-sensitized mice. With these conjugates, the presence of hapten-specific IgE antibodies was investigated in patients' samples by ELISA, mediator release assay, and basophil activation test. Production of sulfidoleukotrienes by drug conjugates was determined in PBMCs from DF-hypersensitive patients. All conjugates were shown to carry more than two haptens per carrier molecule. Immunization of mice with drug conjugates induced drug-specific IgE antibodies capable of triggering mediator release. Therefore, the conjugates are suitable tools for detection of drug-specific antibodies and for determination of their anaphylactic activity. Fifty-nine patients were enrolled and categorized as hypersensitive either selectively to DF or to multiple NSAIDs. In none of the patients' samples evidence for drug/metabolite-specific IgE in serum or bound to allergic effector cells was found. In contrast, a small group of patients (8/59, 14% displayed drug/metabolite-specific IgG.We found no evidence for an IgE-mediated effector mechanism based on haptenation of protein carriers in DF-hypersensitive patients. Furthermore, a potential involvement of the most relevant metabolites in DF hypersensitivity reactions could be excluded.

  4. Detection of Pesticides and Pesticide Metabolites Using the Cross Reactivity of Enzyme Immunoassays

    Science.gov (United States)

    Thurman, E.M.; Aga, D.S.

    2001-01-01

    Enzyme immunoassay is an important environmental analysis method that may be used to identify many pesticide analytes in water samples. Because of similarities in chemical structure between various members of a pesticide class, there often may be an unwanted response that is characterized by a percentage of cross reactivity. Also, there may be cross reactivity caused by degradation products of the target analyte that may be present in the sample. In this paper, the concept of cross reactivity caused by degradation products or by nontarget analytes is explored as a tool for identification of metabolites or structurally similar compounds not previously known to be present in water samples. Two examples are examined in this paper from various water quality studies. They are alachlor and its metabolite, alachlor ethane sulfonic acid, and atrazine and its class members, prometryn and propazine. A method for using cross reactivity for the detection of these compounds is explained in this paper.

  5. Multicomponent Analysis of the Differential Induction of Secondary Metabolite Profiles in Fungal Endophytes

    Directory of Open Access Journals (Sweden)

    Víctor González-Menéndez

    2016-02-01

    Full Text Available Small molecule histone deacetylase (HDAC and DNA methyltransferase (DNMT inhibitors are commonly used to perturb the production of fungal metabolites leading to the induction of the expression of silent biosynthetic pathways. Several reports have described the variable effects observed in natural product profiles in fungi treated with HDAC and DNMT inhibitors, such as enhanced chemical diversity and/or the induction of new molecules previously unknown to be produced by the strain. Fungal endophytes are known to produce a wide variety of secondary metabolites (SMs involved in their adaptation and survival within higher plants. The plant-microbe interaction may influence the expression of some biosynthetic pathways, otherwise cryptic in these fungi when grown in vitro. The aim of this study was to setup a systematic approach to evaluate and identify the possible effects of HDAC and DNMT inhibitors on the metabolic profiles of wild type fungal endophytes, including the chemical identification and characterization of the most significant SMs induced by these epigenetic modifiers.

  6. Morphine metabolites

    DEFF Research Database (Denmark)

    Christrup, Lona Louring

    1997-01-01

    , morphine-3-glucuronide (M3G) and morphine-6-glucuronide (M6G) are the major metabolites of morphine. The metabolism of morphine occurs not only in the liver, but may also take place in the brain and the kidneys. The glucuronides are mainly eliminated via bile and urine. Glucuronides as a rule...... are considered as highly polar metabolites unable to cross the blood-brain barrier. Although morphine glucuronidation has been demonstrated in human brain tissue, the capacity is very low compared to that of the liver, indicating that the M3G and M6G concentrations observed in the cerebrospinal fluid (CSF) after...... systemic administration reflect hepatic metabolism of morphine and that the morphine glucuronides, despite their high polarity, can penetrate into the brain. Like morphine, M6G has been shown to be relatively more selective for mu-receptors than for delta- and kappa-receptors while M3G does not appear...

  7. The utility of QSARs in predicting acute fish toxicity of pesticide metabolites: A retrospective validation approach.

    Science.gov (United States)

    Burden, Natalie; Maynard, Samuel K; Weltje, Lennart; Wheeler, James R

    2016-10-01

    The European Plant Protection Products Regulation 1107/2009 requires that registrants establish whether pesticide metabolites pose a risk to the environment. Fish acute toxicity assessments may be carried out to this end. Considering the total number of pesticide (re-) registrations, the number of metabolites can be considerable, and therefore this testing could use many vertebrates. EFSA's recent "Guidance on tiered risk assessment for plant protection products for aquatic organisms in edge-of-field surface waters" outlines opportunities to apply non-testing methods, such as Quantitative Structure Activity Relationship (QSAR) models. However, a scientific evidence base is necessary to support the use of QSARs in predicting acute fish toxicity of pesticide metabolites. Widespread application and subsequent regulatory acceptance of such an approach would reduce the numbers of animals used. The work presented here intends to provide this evidence base, by means of retrospective data analysis. Experimental fish LC50 values for 150 metabolites were extracted from the Pesticide Properties Database (http://sitem.herts.ac.uk/aeru/ppdb/en/atoz.htm). QSAR calculations were performed to predict fish acute toxicity values for these metabolites using the US EPA's ECOSAR software. The most conservative predicted LC50 values generated by ECOSAR were compared with experimental LC50 values. There was a significant correlation between predicted and experimental fish LC50 values (Spearman rs = 0.6304, p < 0.0001). For 62% of metabolites assessed, the QSAR predicted values are equal to or lower than their respective experimental values. Refined analysis, taking into account data quality and experimental variation considerations increases the proportion of sufficiently predictive estimates to 91%. For eight of the nine outliers, there are plausible explanation(s) for the disparity between measured and predicted LC50 values. Following detailed consideration of the robustness of

  8. Comparative Pharmacokinetics of Chlorpyrifos versus its Major Metabolites Following Oral Administration in the Rat

    Energy Technology Data Exchange (ETDEWEB)

    Busby-Hjerpe, Andrea L.; Campbell, James A.; Smith, Jordan N.; Lee, Sookwang; Poet, Torka S.; Barr, Dana; Timchalk, Charles

    2010-01-31

    Chlorpyrifos (CPF) is a commonly used diethylphosphorothionate organophosphorus (OP) insecticide. Diethylphosphate (DEP), diethylthiophosphate (DETP) and 3,5,6-trichloro-2-pyridinol (TCPy) are products of in vivo metabolism and environmental degradation of CPF and are routinely measured in urine as biomarkers of exposure. Hence, urinary biomonitoring of TCPy, DEP and DETP may be reflective of an individual’s contact with both the parent pesticide and exposure to these metabolites. In the current study, simultaneous dosing of 13C- or 2H- isotopically labeled CPF (13Clabeled CPF, 5 13C on the TCPy ring; or 2H-labeled CPF, diethyl-D10 (deuterium labeled) on the side chain) were exploited to directly compare the pharmacokinetics and metabolism of CPF with TCPy, and DETP. Individual metabolites were co-administered (oral gavage) with the parent compound at equal molar doses (14 μmol/kg; ~5mg/kg CPF). The key objective in the current study was to quantitatively evaluate the pharmacokinetics of the individual metabolites relative to their formation following a dose of CPF. Major differences in the pharmacokinetics between CPF and metabolites doses were observed within the first 3 h of exposure, due to the required metabolism of CPF to initially form TCPy and DETP. Nonetheless, once a substantial amount of CPF has been metabolized (≥ 3 h post-dosing) pharmacokinetics for both treatment groups and metabolites were very comparable. Urinary excretion rates for orally administered TCPy and DETP relative to 13C-CPF or 2H-CPF derived 13C-TCPy and 2H-DETP were consistent with blood pharmacokinetics, and the urinary clearance of metabolite dosed groups were comparable with the results for the 13C- and 2H-CPF groups. Since the pharmacokinetics of the individual metabolites were not modified by co-exposure to 3 CPF; it suggests that environmental exposure to low dose mixtures of pesticides and metabolites will not impact the pharmacokinetics of either.

  9. Modules of co-regulated metabolites in turmeric (Curcuma longa) rhizome suggest the existence of biosynthetic modules in plant specialized metabolism.

    Science.gov (United States)

    Xie, Zhengzhi; Ma, Xiaoqiang; Gang, David R

    2009-01-01

    Turmeric is an excellent example of a plant that produces large numbers of metabolites from diverse metabolic pathways or networks. It is hypothesized that these metabolic pathways or networks contain biosynthetic modules, which lead to the formation of metabolite modules-groups of metabolites whose production is co-regulated and biosynthetically linked. To test whether such co-regulated metabolite modules do exist in this plant, metabolic profiling analysis was performed on turmeric rhizome samples that were collected from 16 different growth and development treatments, which had significant impacts on the levels of 249 volatile and non-volatile metabolites that were detected. Importantly, one of the many co-regulated metabolite modules that were indeed readily detected in this analysis contained the three major curcuminoids, whereas many other structurally related diarylheptanoids belonged to separate metabolite modules, as did groups of terpenoids. The existence of these co-regulated metabolite modules supported the hypothesis that the 3-methoxyl groups on the aromatic rings of the curcuminoids are formed before the formation of the heptanoid backbone during the biosynthesis of curcumin and also suggested the involvement of multiple polyketide synthases with different substrate selectivities in the formation of the array of diarylheptanoids detected in turmeric. Similar conclusions about terpenoid biosynthesis could also be made. Thus, discovery and analysis of metabolite modules can be a powerful predictive tool in efforts to understand metabolism in plants.

  10. Intracellular metabolites of mercaptopurine in children with lymphoblastic leukaemia: a possible indicator of non-compliance?

    Science.gov (United States)

    Lennard, L; Welch, J; Lilleyman, J S

    1995-10-01

    As part of a programme assessing the pharmacokinetics of oral thiopurines given for lymphoblastic leukaemia, we assayed intracellular metabolites of mercaptopurine in children from all over the United Kingdom who were given a standard dose of the drug. The metabolites we measured, thioguanine nucleotides and methylmercaptopurines, are products of two competing metabolic pathways and would be expected to show an inverse correlation. A total of 327 children from 17 centres in the UK were studied. All were on the same therapeutic schedule of mercaptopurine. All had been on an unattenuated full protocol-directed dose (at least 75 mg m-2) for a minimum of 7 days before assay. There was a very wide variation in the concentration of the two metabolites measured; the thioguanine nucleotides ranged from 0 to 1255 pmol per 8 x 10(8) red cells (median 289, lower quartile 210, upper quartile 377) and the methylmercaptopurine metabolites ranged from 0 to 46.3 nmol per 8 x 10(8) red cells (median 5.18, lower quartile 2.31, upper quartile 11.59). The anticipated negative correlation was not apparent, but the ratio between the two was not randomly distributed. No child had both metabolite concentrations in the upper quartiles, but in 32 (10%) children the concentration of both metabolites was in the lower quartile. Of the 32, only one metabolite was detected in four and none at all in six. The most likely explanation for these findings is that a minority of children with lymphoblastic leukaemia fail to take oral mercaptopurine either totally or intermittently. The extent of the problem is unknown, but we suspect it may be clinically important in at least 10% of patients.

  11. Personal Care Product Use in Men and Urinary Concentrations of Select Phthalate Metabolites and Parabens: Results from the Environment And Reproductive Health (EARTH) Study.

    Science.gov (United States)

    Nassan, Feiby L; Coull, Brent A; Gaskins, Audrey J; Williams, Michelle A; Skakkebaek, Niels E; Ford, Jennifer B; Ye, Xiaoyun; Calafat, Antonia M; Braun, Joseph M; Hauser, Russ

    2017-08-18

    Personal care products (PCPs) are exposure sources to phthalates and parabens; however, their contribution to men's exposure is understudied. We examined the association between PCP use and urinary concentrations of phthalate metabolites and parabens in men. In a prospective cohort, at multiple study visits, men self-reported their use of 14 PCPs and provided a urine sample (2004-2015, Boston, MA). We measured urinary concentrations of 9 phthalate metabolites and methylparaben, propylparaben, and butylparaben. We estimated the covariate-adjusted percent change in urinary concentrations associated with PCP use using linear mixed and Tobit mixed regressions. We also estimated weights for each PCP in a weighted binary score regression and modeled the resulting composite weighted PCP use. Four hundred men contributed 1,037 urine samples (mean of 3/man). The largest percent increase in monoethyl phthalate (MEP) was associated with use of cologne/perfume (83%, p -value<0.01) and deodorant (74%, p -value<0.01). In contrast, the largest percent increase for parabens was associated with the use of suntan/sunblock lotion (66-156%) and hand/body lotion (79-147%). Increases in MEP and parabens were generally greater with PCP use within 6 h of urine collection. A subset of 10 PCPs that were used within 6 h of urine collection contributed to at least 70% of the weighted score and predicted a 254-1,333% increase in MEP and parabens concentrations. Associations between PCP use and concentrations of the other phthalate metabolites were not statistically significant. We identified 10 PCPs of relevance and demonstrated that their use within 6 h of urine collection strongly predicted MEP and paraben urinary concentrations. https://doi.org/10.1289/EHP1374.

  12. Study on production of useful metabolites by development of advanced cell culture techniques using radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Byung Yeoup; Lee, Seung Sik; Bai, Hyounwoo; Singh, Sudhir; Lee, Eun Mi; Hong, Sung Hyun; Park, Chul Hong; Srilatha, B.; Kim, Mi Ja; Lee, Ohchul

    2012-01-15

    The purpose of this project is improvement of investigation, materialization and evaluation techniques on effectiveness for functional natural compounds throughout development of tissue/cell culture techniques for mass production of useful metabolites using radiation. Research scope includes Development of a technique for radiation tissue and cell culture, Database construction for radiation response in plants and radiation effects, Construction of general-purpose national based techniques of cell culture technique using radiation. Main results are as follow: Development of a technique for radiation tissue and cell culture for Erigeron breviscapus (Vant.) Hand. Mazz.; Identification and functional analysis of AtTDX (chaperone and peroxidase activities); Functional analysis of radiation(gamma ray, electron beam, and proton beam) induced chaperon protein activities (AtTDX); Determine the action mechanism of yPrx2; Development of transgenic plant with bas I gene from Arabidopsis; Development of transgenic plant with EoP gene from centipedegrass; Identification of radiation induced multi functional compounds from Aloe; Determination of the effects of radiation on removing undesirable color and physiological activities (Schizandra chinensis baillon, centipedegrass); Determine the action mechanism of transgenic plant with 2-Cys Prx for heat stress resistance; Determination of the effects of centipedegrass extracts on anti-cancer activities; Functional analysis of centipedegrass extracts (anti-virus effects)

  13. Qualitative profiling and quantification of neonicotinoid metabolites in human urine by liquid chromatography coupled with mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Kumiko Taira

    Full Text Available Neonicotinoid pesticides have been widely applied for the production of fruits and vegetables, and occasionally detected in conventionally grown produce. Thus oral exposure to neonicotinoid pesticides may exist in the general population; however, neonicotinoid metabolites in human body fluids have not been investigated comprehensively. The purpose of this study is the qualitative profiling and quantitative analysis of neonicotinoid metabolites in the human spot urine by liquid chromatography coupled with mass spectrometry (LC/MS. Human urine samples were collected from three patients suspected of subacute exposure to neonicotinoid pesticides. A qualitative profiling of urinary metabolites was performed using liquid chromatography/time-of-flight mass spectrometry (LC/TOFMS with a database of nominal molecular weights of 57 known metabolites of three neonicotinoid pesticides (acetamiprid, Imidacloprid, and clothianidin, as well as the parent compounds. Then a quantitative analysis of selected urinary metabolites was performed using liquid chromatography/tandem mass spectrometry (LC/MS/MS with a standard pesticide and metabolite, which were detected by the qualitative profiling. The result of qualitative profiling showed that seven metabolites, i.e. an acetamiprid metabolite, N-desmethyl-acetamiprid; three Imidacloprid metabolites, 5-hydroxy-Imidacloprid, 4,5-dihydroxy-imidacloprid, 4,5-dehydro-Imidacloprid; a common metabolite of acetamiprid and Imidacloprid, N-(6-chloronicotinoyl-glycine; and two clothianidin metabolites, N-desmethyl-clothianidin, N-(2-(methylsulfanylthiazole-5-carboxyl-glycine, as well as acetamiprid, were detected in the urine of three cases. The result of the quantitative analysis showed N-desmethyl-acetamiprid was determined in the urine of one case, which had been collected on the first visit, at a concentration of 3.2 ng/mL. This is the first report on the qualitative and quantitative detection of N-desmethyl-acetamiprid in

  14. Comprehensive Secondary Metabolite Profiling Toward Delineating the Solid and Submerged-State Fermentation of Aspergillus oryzae KCCM 12698

    Directory of Open Access Journals (Sweden)

    Su Y. Son

    2018-05-01

    Full Text Available Aspergillus oryzae has been commonly used to make koji, meju, and soy sauce in traditional food fermentation industries. However, the metabolic behaviors of A. oryzae during fermentation in various culture environments are largely uncharacterized. Thus, we performed time resolved (0, 4, 8, 12, 16 day secondary metabolite profiling for A. oryzae KCCM 12698 cultivated on malt extract agar and broth (MEA and MEB under solid-state fermentation (SSF and submerged fermentation (SmF conditions using the ultrahigh performance liquid chromatography-linear trap quadrupole-ion trap-mass spectrometry (UHPLC-LTQ-IT-MS/MS followed by multivariate analyses. We observed the relatively higher proportions of coumarins and oxylipins in SSF, whereas the terpenoids were abundant in SmF. Moreover, we investigated the antimicrobial efficacy of metabolites that were extracted from SSF and SmF. The SSF extracts showed higher antimicrobial activities as compared to SmF, with higher production rates of bioactive secondary metabolites viz., ketone-citreoisocoumarin, pentahydroxy-anthraquinone, hexylitaconic acid, oxylipins, and saturated fatty acids. The current study provides the underpinnings of a metabolomic framework regarding the growth and bioactive compound production for A. oryzae under the primarily employed industrial cultivation states. Furthermore, the study holds the potentials for rapid screening and MS-characterization of metabolites helpful in determining the consumer safety implications of fermented foods involving Koji mold.

  15. (1) H-MRS processing parameters affect metabolite quantification

    DEFF Research Database (Denmark)

    Bhogal, Alex A; Schür, Remmelt R; Houtepen, Lotte C

    2017-01-01

    investigated the influence of model parameters and spectral quantification software on fitted metabolite concentration values. Sixty spectra in 30 individuals (repeated measures) were acquired using a 7-T MRI scanner. Data were processed by four independent research groups with the freedom to choose their own...... + NAAG/Cr + PCr and Glu/Cr + PCr, respectively. Metabolite quantification using identical (1) H-MRS data was influenced by processing parameters, basis sets and software choice. Locally preferred processing choices affected metabolite quantification, even when using identical software. Our results......Proton magnetic resonance spectroscopy ((1) H-MRS) can be used to quantify in vivo metabolite levels, such as lactate, γ-aminobutyric acid (GABA) and glutamate (Glu). However, there are considerable analysis choices which can alter the accuracy or precision of (1) H-MRS metabolite quantification...

  16. Does Osmotic Stress Affect Natural Product Expression in Fungi?

    Science.gov (United States)

    Overy, David; Correa, Hebelin; Roullier, Catherine; Chi, Wei-Chiung; Pang, Ka-Lai; Rateb, Mostafa; Ebel, Rainer; Shang, Zhuo; Capon, Rob; Bills, Gerald; Kerr, Russell

    2017-08-13

    The discovery of new natural products from fungi isolated from the marine environment has increased dramatically over the last few decades, leading to the identification of over 1000 new metabolites. However, most of the reported marine-derived species appear to be terrestrial in origin yet at the same time, facultatively halo- or osmotolerant. An unanswered question regarding the apparent chemical productivity of marine-derived fungi is whether the common practice of fermenting strains in seawater contributes to enhanced secondary metabolism? To answer this question, a terrestrial isolate of Aspergillus aculeatus was fermented in osmotic and saline stress conditions in parallel across multiple sites. The ex-type strain of A. aculeatus was obtained from three different culture collections. Site-to-site variations in metabolite expression were observed, suggesting that subculturing of the same strain and subtle variations in experimental protocols can have pronounced effects upon metabolite expression. Replicated experiments at individual sites indicated that secondary metabolite production was divergent between osmotic and saline treatments. Titers of some metabolites increased or decreased in response to increasing osmolite (salt or glycerol) concentrations. Furthermore, in some cases, the expression of some secondary metabolites in relation to osmotic and saline stress was attributed to specific sources of the ex-type strains.

  17. Non-enzymatic lipid oxidation products in biological systems: assessment of the metabolites from polyunsaturated fatty acids.

    Science.gov (United States)

    Vigor, Claire; Bertrand-Michel, Justine; Pinot, Edith; Oger, Camille; Vercauteren, Joseph; Le Faouder, Pauline; Galano, Jean-Marie; Lee, Jetty Chung-Yung; Durand, Thierry

    2014-08-01

    Metabolites of non-enzymatic lipid peroxidation of polyunsaturated fatty acids notably omega-3 and omega-6 fatty acids have become important biomarkers of lipid products. Especially the arachidonic acid-derived F2-isoprostanes are the classic in vivo biomarker for oxidative stress in biological systems. In recent years other isoprostanes from eicosapentaenoic, docosahexaenoic, adrenic and α-linolenic acids have been evaluated, namely F3-isoprostanes, F4-neuroprostanes, F2-dihomo-isoprostanes and F1-phytoprostanes, respectively. These have been gaining interest as complementary specific biomarkers in human diseases. Refined extraction methods, robust analysis and elucidation of chemical structures have improved the sensitivity of detection in biological tissues and fluids. Previously the main reliable instrumentation for measurement was gas chromatography-mass spectrometry (GC-MS), but now the use of liquid chromatography-tandem mass spectrometry (LC-MS/MS) and immunological techniques is gaining much attention. In this review, the types of prostanoids generated from non-enzymatic lipid peroxidation of some important omega-3 and omega-6 fatty acids and biological samples that have been determined by GC-MS and LC-MS/MS are discussed. Copyright © 2014. Published by Elsevier B.V.

  18. Metabolites of the phenylurea herbicides chlorotoluron, diuron, isoproturon and linuron produced by the soil fungus Mortierella sp.

    Science.gov (United States)

    Badawi, Nora; Rønhede, Stig; Olsson, Stefan; Kragelund, Birthe B; Johnsen, Anders H; Jacobsen, Ole Stig; Aamand, Jens

    2009-10-01

    Phenylurea herbicides are used worldwide, and often pollute surface- and groundwater in concentrations exceeding the limit value for drinking water (0.1 microg l(-1)). Bacteria degrade phenylurea herbicides by successive N-dealkylation to substituted aniline products. Little is known about the corresponding fungal pathways, however. We here report degradation of chlorotoluron, diuron, isoproturon and linuron by the soil fungus Mortierella sp. Gr4. Degradation was fastest with linuron and resulted in successively dealkylated metabolites and 3,4-dichloroaniline. A major new metabolite was detected that has not yet been fully identified. Thin layer chromatography and nuclear magnetic resonance spectroscopy indicate that it is a non-aromatic diol. Degradation of isoproturon, chlorotoluron and diuron involved successive N-demethylation and, in the case of isoproturon and chlorotoluron, additional hydroxylation. A new hydroxylated isoproturon metabolite was detected. The study thus shows that the fungal pathways differ from the bacterial pathways and yield new metabolites of possible environmental concern.

  19. Metabolite profiling of bendamustine in urine of cancer patients after administration of [14C]bendamustine.

    Science.gov (United States)

    Dubbelman, Anne-Charlotte; Jansen, Robert S; Rosing, Hilde; Darwish, Mona; Hellriegel, Edward; Robertson, Philmore; Schellens, Jan H M; Beijnen, Jos H

    2012-07-01

    Bendamustine is an alkylating agent consisting of a mechlorethamine derivative, a benzimidazole group, and a butyric acid substituent. A human mass balance study showed that bendamustine is extensively metabolized and subsequently excreted in urine. However, limited information is available on the metabolite profile of bendamustine in human urine. The objective of this study was to elucidate the metabolic pathways of bendamustine in humans by identification of its metabolites excreted in urine. Human urine samples were collected up to 168 h after an intravenous infusion of 120 mg/m(2) (80-95 μCi) [(14)C]bendamustine. Metabolites of [(14)C]bendamustine were identified using liquid chromatography (high-resolution)-tandem mass spectrometry with off-line radioactivity detection. Bendamustine and a total of 25 bendamustine-related compounds were detected. Observed metabolic conversions at the benzimidazole and butyric acid moiety were N-demethylation and γ-hydroxylation. In addition, various other combinations of these conversions with modifications at the mechlorethamine moiety were observed, including hydrolysis (the primary metabolic pathway), cysteine conjugation, and subsequent biotransformation to mercapturic acid and thiol derivatives, N-dealkylation, oxidation, and conjugation with phosphate, creatinine, and uric acid. Bendamustine-derived products containing phosphate, creatinine, and uric acid conjugates were also detected in control urine incubated with bendamustine. Metabolites that were excreted up to 168 h after the infusion included products of dihydrolysis and cysteine conjugation of bendamustine and γ-hydroxybendamustine. The range of metabolic reactions is generally consistent with those reported for rat urine and bile, suggesting that the overall processes involved in metabolic elimination are qualitatively the same in rats and humans.

  20. Changes of Enzymes Activity and Production of Secondary Metabolites of Artemisia aucheri in Different Altitudes and Its Relation to Adaptation

    Directory of Open Access Journals (Sweden)

    Hassan Zare-maivan

    2014-08-01

    Full Text Available Artemisia plants are the most abundant plants species in Iran which contain strong antioxidant properties and as such, have medicinal and economic value. Despite wide distribution of Artemisisa species, ecophysiology of its adaptation to changes in altitude and soil property had not been investigated. In this study, the relationships between ecophysiological and adaptation capabilities of A. aucheri to altitude changes through measuring changes in the activity of its antioxidant enzymes and secondary metabolites in situ was investigated based on a completely randomized experiment. The enzyme activities of superoxide dismutase, catalase, peroxidase, and the amount of total phenolics, flavonoids, anthocyanins, malondialdehyde and chlorophylls A and B were measured in A. aucheri plants growing in three different altitudes at and above the 36° latitude on the southern slopes of Eastern Alborz Mountain ranges in triplicate 10*10 m quadrates. Statistical analysis of data showed that soil type was loamy significantly becoming more sandy- loam with lowering in altitude and the soil contained greater amounts of oxides of silicone, aluminum, magnesium, sodium, potassium and phosphorus in upper altitude except calcium which was present in greater quantity in lower altitude. With increasing altitude, activity of superoxide dismutase and quantities of chlorophylls and total phenols in leaves increased. Some biochemical factors in A. aucheri showed significant positive correlation(P ≤ 0.05 between them. Adaptation of A. aucheri to changes in altitude occurred through changing its antioxidant enzymes activity and production of secondary metabolites in response to factors related to the altitude including soil type and texture, moisture level, temperature and most importantly radiation

  1. A Decade in the MIST: Learnings from Investigations of Drug Metabolites in Drug Development under the "Metabolites in Safety Testing" Regulatory Guidance.

    Science.gov (United States)

    Schadt, Simone; Bister, Bojan; Chowdhury, Swapan K; Funk, Christoph; Hop, Cornelis E C A; Humphreys, W Griffith; Igarashi, Fumihiko; James, Alexander D; Kagan, Mark; Khojasteh, S Cyrus; Nedderman, Angus N R; Prakash, Chandra; Runge, Frank; Scheible, Holger; Spracklin, Douglas K; Swart, Piet; Tse, Susanna; Yuan, Josh; Obach, R Scott

    2018-06-01

    Since the introduction of metabolites in safety testing (MIST) guidance by the Food and Drug Administration in 2008, major changes have occurred in the experimental methods for the identification and quantification of metabolites, ways to evaluate coverage of metabolites, and the timing of critical clinical and nonclinical studies to generate this information. In this cross-industry review, we discuss how the increased focus on human drug metabolites and their potential contribution to safety and drug-drug interactions has influenced the approaches taken by industry for the identification and quantitation of human drug metabolites. Before the MIST guidance was issued, the method of choice for generating comprehensive metabolite profile was radio chromatography. The MIST guidance increased the focus on human drug metabolites and their potential contribution to safety and drug-drug interactions and led to changes in the practices of drug metabolism scientists. In addition, the guidance suggested that human metabolism studies should also be accelerated, which has led to more frequent determination of human metabolite profiles from multiple ascending-dose clinical studies. Generating a comprehensive and quantitative profile of human metabolites has become a more urgent task. Together with technological advances, these events have led to a general shift of focus toward earlier human metabolism studies using high-resolution mass spectrometry and to a reduction in animal radiolabel absorption/distribution/metabolism/excretion studies. The changes induced by the MIST guidance are highlighted by six case studies included herein, reflecting different stages of implementation of the MIST guidance within the pharmaceutical industry. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  2. Arachidonic acid metabolites in normal and autoimmune mice do not influence lymphocyte-high endothelial venule interactions.

    Science.gov (United States)

    Manolios, N; Bakiera, B; Geczy, C L; Schrieber, L

    1991-02-01

    In peripheral lymphoid organs the number of lymphocytes and the proportion of functional lymphocyte subsets are regulated by multiple factors including the control of lymphocyte migration by selective lymphocyte-high endothelial venule (HEV) interactions. In this study, prostaglandin E2 (PGE2) levels from normal and autoimmune mouse lymph node cells were measured. The contribution of eicosanoids to lymphocyte-HEV interactions in normal (CBA/T6) and autoimmune (MRL/n) mice was examined. There was no association between PGE2 production in normal or autoimmune mice and the age of onset of disease activity in the latter strains. Arachidonic acid metabolites, in particular PGE2 and leukotriene B4 (LTB4), did not have any effects on lymphocyte-HEV binding. Likewise, lymphocytes treated in vivo and/or in vitro with arachidonic acid metabolite inhibitors (acetyl salicylic acid, indomethacin, BW755C) did not alter lymphocyte-HEV binding interactions in both normal and autoimmune mice. No clinical significance could be attributed to lymph node PGE2 production and the age of onset of autoimmune disease. In summary, these findings cast doubt on the role of arachidonic acid metabolites in lymphocyte-HEV binding interactions.

  3. Rapid Quantification of Major Volatile Metabolites in Fermented Food and Beverages Using Gas Chromatography-Mass Spectrometry.

    Science.gov (United States)

    Pinu, Farhana R; Villas-Boas, Silas G

    2017-07-26

    Here we present a method for the accurate quantification of major volatile metabolites found in different food and beverages, including ethanol, acetic acid and other aroma compounds, using gas chromatography coupled to mass spectrometry (GC-MS). The method is combined with a simple sample preparation procedure using sodium chloride and anhydrous ethyl acetate. The GC-MS analysis was accomplished within 4.75 min, and over 80 features were detected, of which 40 were positively identified using an in-house and a commercialmass spectrometry (MS) library. We determined different analytical parameters of these metabolites including the limit of detection (LOD), limit of quantitation (LOQ) and range of quantification. In order to validate the method, we also determined detailed analytical characteristics of five major fermentation end products including ethanol, acetic acid, isoamyl alcohol, ethyl-L-lactate and, acetoin. The method showed very low technical variability for the measurements of these metabolites in different matrices (<3%) with an excellent accuracy (100% ± 5%), recovery (100% ± 10%), reproducibility and repeatability [Coefficient of variation (CV) 1-10%)]. To demonstrate the applicability of the method, we analysed different fermented products including balsamic vinegars, sourdough, distilled (whisky) and non-distilled beverages (wine and beer).

  4. GPCR-Mediated Signaling of Metabolites

    DEFF Research Database (Denmark)

    Husted, Anna Sofie; Trauelsen, Mette; Rudenko, Olga

    2017-01-01

    microbiota target primarily enteroendocrine, neuronal, and immune cells in the lamina propria of the gut mucosa and the liver and, through these tissues, the rest of the body. In contrast, metabolites from the intermediary metabolism act mainly as metabolic stress-induced autocrine and paracrine signals...... and obesity. The concept of key metabolites as ligands for specific GPCRs has broadened our understanding of metabolic signaling significantly and provides a number of novel potential drug targets....

  5. Antioxidant properties and global metabolite screening of the probiotic yeast Saccharomyces cerevisiae var. boulardii.

    Science.gov (United States)

    Datta, Suprama; Timson, David J; Annapure, Uday S

    2017-07-01

    Saccharomyces cerevisiae var. boulardii is the only yeast species with probiotic properties. It is considered to have therapeutic significance in gastrointestinal disorders. In the present study, a comparative physiological study between this yeast and Saccharomyces cerevisiae (BY4742) was performed by evaluating two prominent traits of probiotic species, responses to different stress conditions and antioxidant capacity. A global metabolite profile was also developed aiming to identify which therapeutically important secondary metabolites are produced. Saccharomyces cerevisiae var. boulardii showed no significant difference in growth patterns but greater stress tolerance compared to S. cerevisiae. It also demonstrated a six- to 10-fold greater antioxidant potential (judged by the 1,1-diphenyl-2-picrylhydrazyl assay), with a 70-fold higher total phenolic content and a 20-fold higher total flavonoid content in the extracellular fraction. These features were clearly differentiated by principal component analysis and further indicated by metabolite profiling. The extracellular fraction of the S. cerevisiae var. boulardii cultures was found to be rich in polyphenolic metabolites: vanillic acid, cinnamic acid, phenyl ethyl alcohol (rose oil), erythromycin, amphetamine and vitamin B 6 , which results in the antioxidant capacity of this strain. The present study presents a new perspective for differentiating the two genetically related strains of yeast, S. cerevisiae and S. cerevisiae var. boulardii by assessing their metabolome fingerprints. In addition to the correlation of the phenotypic properties with the secretory metabolites of these two yeasts, the present study also emphasizes the potential to exploit S. cerevisiae var. boulardii in the industrial production of these metabolites. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  6. 13C-NMR reveals glycerol as an unexpected major metabolite of the protozoan parasite Trichomonas vaginalis

    International Nuclear Information System (INIS)

    Chapman, A.; Lloyd, D.; Linstead, D.J.; Williams, J.

    1985-01-01

    13 C-NMR has been used to study the kinetics of the formation of metabolites from [l- 13 C]glucose in intact cells of Trichomonas vaginalis during anaerobic incubation. As well as the expected metabolites lactate and acetate, this technique revealed glycerol as an additional major product, present in amounts equimolar with acetate. The formation of glycerol is readily explained in terms of the need to maintain redox balance. This protozoan now joins the small group of organisms which are known to produce glycerol as a result of normal metabolic activities. (Auth.)

  7. Importance of microbial pest control agents and their metabolites In relation to the natural microbiota on strawberry

    DEFF Research Database (Denmark)

    Jensen, Birgit; Knudsen, Inge M. B.; Jensen, Dan Funck

    control. A series of laboratory, growth chamber, semi-field and field experiments using strawberry as a model plant focusing on commercial microbial pest control products (MPCPs) or laboratory MPCAs expected to be on the market within 10 years served as our experimental platform. Initially the background...... level of indigenous microbial communities and their mycotoxins/metabolites on strawberries was examined in a field survey with 4 conventional and 4 organic growers with different production practise and geographic distribution. Culturable bacteria, yeasts and filamentous fungi were isolated...... and identified using both chemotaxonomy (fatty acids and metabolite profiling) and morphological characteristics. Microbial communities on strawberries were complex including potential plant pathogens, opportunistic human pathogens, plant disease biocontrol agents and mycotoxin producers. Bacteria were the most...

  8. 21 CFR 862.3250 - Cocaine and cocaine metabolite test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cocaine and cocaine metabolite test system. 862... Test Systems § 862.3250 Cocaine and cocaine metabolite test system. (a) Identification. A cocaine and cocaine metabolite test system is a device intended to measure cocaine and a cocaine metabolite...

  9. Urinary excretion of androgen metabolites, comparison with excretion of radioactive metabolites after injection of (4-/sup 14/C)testosterone. Influence of age

    Energy Technology Data Exchange (ETDEWEB)

    Deslypere, J P; Sayed, A; Vermeulen, A [Department of Internal Medicine, Section of Endocrinology, State University Academic Hospital, De Pintelaan, 135, Ghent, Belgium; Wiers, P W [Department of Internal Medicine, Section of Pneumology, State University Academic Hospital, The Netherlands

    1981-01-01

    The influence of age on the metabolic pattern of (4-/sup 14/C)testosterone was studied in 20 young and 8 elderly males and compared to the metabolic pattern of endogenous androgens; the latter was also studied in 16 young and 8 elderly women. In both young and elderly males, androsterone and aetiocholanolone glucuronide represent 65% of (4-/sup 14/C)testosterone metabolites: together with their suephoconjugates as well as with 5..cap alpha..- and 5..beta..-androstane-3..cap alpha.., 17..beta..-diol they represent even more than 75% of total urinary metabolites. The 5..cap alpha../5..beta.. ratio of metabolites of (4-/sup 14/C)testosterone was significantly (P<0.01) correlated with the 5..cap alpha../5..beta.. ratio of the metabolites of the endogenous androgens, mainly dehydroepiandrosterone and androstenedione. The 5..cap alpha../5..beta.. ratio of (4-/sup 14/C)testosterone metabolites was generally higher than the ratio of metabolites of endogenous androgens, suggesting that the transformation of T to ring A saturated metabolites occurs at least partially in another compartment than the transformation of DHEA to these metabolites. For both (4-/sup 14/C)testosterone and endogenous androgen metabolites we observed a statistically significant reduction of the 5..cap alpha../5..beta.. ratio with age, a general phenomenon in both males and females. This reduction concern also 11-OH-androst-4-ene-3.17-dione metabolism. Neither sex hormone levels, nor specific binding seems to determine this age dependent shift; neither is there convincing evidence for latent hypothyroisism or liver dysfunction in the elderly. An age associated primary decrease of the 5..cap alpha..-reductase activity seems the most likely explanation.

  10. Levels of infants' urinary arsenic metabolites related to formula feeding and weaning with rice products exceeding the EU inorganic arsenic standard.

    Directory of Open Access Journals (Sweden)

    Antonio J Signes-Pastor

    Full Text Available Early childhood inorganic arsenic (i-As exposure is of particular concern since it may adversely impact on lifetime health outcomes. Infants' urinary arsenic (As metabolites were analysed in 79 infants by inductively coupled plasma-mass spectrometric detection (IC-ICP-MS to evaluate i-As exposure pre- and post-weaning. Levels of i-As in rice-based weaning and infants' foods were also determined to relate to urinary As levels. Higher As levels, especially of monomethylarsonic acid (MMA and dimethylarsinic acid (DMA, were found in urine from formula fed infants compared to those breastfed. Urine from infants post-weaning consuming rice-products resulted in higher urinary MMA and DMA compared to the paired pre-weaning urine samples. The European Union (EU has regulated i-As in rice since 1st January 2016. Comparing infants' rice-based foods before and after this date, little change was found. Nearly ¾ of the rice-based products specifically marketed for infants and young children contained i-As over the 0.1 mg/kg EU limit. Efforts should be made to provide low i-As rice and rice-based products consumed by infants and young children that do not exceed the maximum i-As level to protect this vulnerable subpopulation.

  11. Plant metabolites and nutritional quality of vegetables.

    Science.gov (United States)

    Hounsome, N; Hounsome, B; Tomos, D; Edwards-Jones, G

    2008-05-01

    Vegetables are an important part of the human diet and a major source of biologically active substances such as vitamins, dietary fiber, antioxidants, and cholesterol-lowering compounds. Despite a large amount of information on this topic, the nutritional quality of vegetables has not been defined. Historically, the value of many plant nutrients and health-promoting compounds was discovered by trial and error. By the turn of the century, the application of chromatography, mass spectrometry, infrared spectrometry, and nuclear magnetic resonance allowed quantitative and qualitative measurements of a large number of plant metabolites. Approximately 50000 metabolites have been elucidated in plants, and it is predicted that the final number will exceed 200000. Most of them have unknown function. Metabolites such as carbohydrates, organic and amino acids, vitamins, hormones, flavonoids, phenolics, and glucosinolates are essential for plant growth, development, stress adaptation, and defense. Besides the importance for the plant itself, such metabolites determine the nutritional quality of food, color, taste, smell, antioxidative, anticarcinogenic, antihypertension, anti-inflammatory, antimicrobial, immunostimulating, and cholesterol-lowering properties. This review is focused on major plant metabolites that characterize the nutritional quality of vegetables, and methods of their analysis.

  12. β-Orcinol Metabolites from the Lichen Hypotrachyna revoluta

    Directory of Open Access Journals (Sweden)

    Panagiota Papadopoulou

    2007-05-01

    Full Text Available Four new β-orcinol metabolites, hypotrachynic acid (1, deoxystictic acid (2, cryptostictinolide (3 and 8 ́-methylconstictic acid (4 along with the metabolites 8 ́-methylstictic acid (5, 8 ́-methylmenegazziaic acid (6, stictic acid (7, 8 ́-ethylstictic acid (8 and atranorin (9, that have been previously described, were isolated for the first time from the tissue extracts of the lichen Hypotrachyna revoluta (Flörke Hale. The structures of the new metabolites were elucidated on the basis of extensive spectroscopic analyses. Radical scavenging activity (RSA of the metabolites isolated in adequate amounts, was evaluated using luminol chemiluminescence and comparison with Trolox®.

  13. Analysis of Intracellular Metabolites from Microorganisms: Quenching and Extraction Protocols.

    Science.gov (United States)

    Pinu, Farhana R; Villas-Boas, Silas G; Aggio, Raphael

    2017-10-23

    Sample preparation is one of the most important steps in metabolome analysis. The challenges of determining microbial metabolome have been well discussed within the research community and many improvements have already been achieved in last decade. The analysis of intracellular metabolites is particularly challenging. Environmental perturbations may considerably affect microbial metabolism, which results in intracellular metabolites being rapidly degraded or metabolized by enzymatic reactions. Therefore, quenching or the complete stop of cell metabolism is a pre-requisite for accurate intracellular metabolite analysis. After quenching, metabolites need to be extracted from the intracellular compartment. The choice of the most suitable metabolite extraction method/s is another crucial step. The literature indicates that specific classes of metabolites are better extracted by different extraction protocols. In this review, we discuss the technical aspects and advancements of quenching and extraction of intracellular metabolite analysis from microbial cells.

  14. Comparative evaluation of two Trichoderma harzianum strains for major secondary metabolite production and antifungal activity.

    Science.gov (United States)

    Ahluwalia, Vivek; Kumar, Jitendra; Rana, Virendra S; Sati, Om P; Walia, S

    2015-01-01

    This investigation was undertaken to identify the major secondary metabolite, produced by two Trichoderma harzianum strains (T-4 and T-5) with their antifungal activity against phytopathogenic fungi using poison food technique. The ethyl acetate extract was subjected to column chromatography using n-hexane, ethyl acetate and methanol gradually. Chromatographic separation of ethyl acetate extract of T. harzianum (T-4) resulted in the isolation and identification of palmitic acid (1), 1,8-dihydroxy-3-methylanthraquinone (2), 6-pentyl-2H-pyran-2-one (3), 2(5H)-furanone (4), stigmasterol (5) and β-sitosterol (6), while T. harzianum (T-5) gave palmitic acid (1), 1-hydroxy-3-methylanthraquinone (7), δ-decanolactone (8), 6-pentyl-2H-pyran-2-one (3), ergosterol (9), harzianopyridone (10) and 6-methyl-1,3,8-trihydroxyanthraquinone (11) as major metabolites. Among compounds screened for antifungal activity, compound 10 was found to be most active (EC50 35.9-50.2 μg mL(-1)). In conclusion, the present investigation provided significant information about antifungal activity and compounds isolated from two different strains of T. harzianum obtained from two different Himalayan locations.

  15. Early phenylpropanoid biosynthetic steps in Cannabis sativa: link between genes and metabolites.

    Science.gov (United States)

    Docimo, Teresa; Consonni, Roberto; Coraggio, Immacolata; Mattana, Monica

    2013-06-28

    Phenylalanine ammonia-lyase (PAL), Cinnamic acid 4-hydroxylase (C4H) and 4-Coumarate: CoA ligase (4CL) catalyze the first three steps of the general phenylpropanoid pathway whereas chalcone synthase (CHS) catalyzes the first specific step towards flavonoids production. This class of specialized metabolites has a wide range of biological functions in plant development and defence and a broad spectrum of therapeutic activities for human health. In this study, we report the isolation of hemp PAL and 4CL cDNA and genomic clones. Through in silico analysis of their deduced amino acid sequences, more than an 80% identity with homologues genes of other plants was shown and phylogenetic relationships were highlighted. Quantitative expression analysis of the four above mentioned genes, PAL and 4CL enzymatic activities, lignin content and NMR metabolite fingerprinting in different Cannabis sativa tissues were evaluated. Furthermore, the use of different substrates to assay PAL and 4CL enzymatic activities indicated that different isoforms were active in different tissues. The diversity in secondary metabolites content observed in leaves (mainly flavonoids) and roots (mainly lignin) was discussed in relation to gene expression and enzymatic activities data.

  16. Early Phenylpropanoid Biosynthetic Steps in Cannabis sativa: Link between Genes and Metabolites

    Directory of Open Access Journals (Sweden)

    Immacolata Coraggio

    2013-06-01

    Full Text Available Phenylalanine ammonia-lyase (PAL, Cinnamic acid 4-hydroxylase (C4H and 4-Coumarate: CoA ligase (4CL catalyze the first three steps of the general phenylpropanoid pathway whereas chalcone synthase (CHS catalyzes the first specific step towards flavonoids production. This class of specialized metabolites has a wide range of biological functions in plant development and defence and a broad spectrum of therapeutic activities for human health. In this study, we report the isolation of hemp PAL and 4CL cDNA and genomic clones. Through in silico analysis of their deduced amino acid sequences, more than an 80% identity with homologues genes of other plants was shown and phylogenetic relationships were highlighted. Quantitative expression analysis of the four above mentioned genes, PAL and 4CL enzymatic activities, lignin content and NMR metabolite fingerprinting in different Cannabis sativa tissues were evaluated. Furthermore, the use of different substrates to assay PAL and 4CL enzymatic activities indicated that different isoforms were active in different tissues. The diversity in secondary metabolites content observed in leaves (mainly flavonoids and roots (mainly lignin was discussed in relation to gene expression and enzymatic activities data.

  17. Marine metabolites: The sterols of soft coral

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, N.S.; Krishna, M.S.; Pasha, Sk.G.; Rao, T.S.P.; Venkateswarlu, Y.; Parameswaran, P.S.

    Sterols constitute a major group of secondary metabolites of soft corals. Several of these compounds have the 'usual' 3 beta-hydroxy, delta sup(5) (or delta sup(0)) cholestane skeleton, a large number of these metabolites are polar sterols...

  18. Characterization of forsythoside A metabolites in rats by a combination of UHPLC-LTQ-Orbitrap mass spectrometer with multiple data processing techniques.

    Science.gov (United States)

    Wang, Fei; Cao, Guang-Shang; Li, Yun; Xu, Lu-Lu; Wang, Zhi-Bin; Liu, Ying; Lu, Jian-Qiu; Zhang, Jia-Yu

    2018-05-01

    Forsythoside A (FTA), the main active constituent isolated from Fructus Forsythiae, has various biological functions including anti-oxidant, anti-viral and anti-microbial activities. However, while research on FTA has been mainly focused on the treatment of diseases on a material basis, FTA metabolites in vivo have not been comprehensively evaluated. Here, a rapid and sensitive method using a UHPLC-LTQ-Orbitrap mass spectrometer with multiple data processing techniques including high-resolution extracted ion chromatograms, multiple mass defect filters and diagnostic product ions was developed for the screening and identification of FTA metabolites in rats. As the result, a total of 43 metabolites were identified in biological samples including 42 metabolites in urine, 22 metabolites in plasma and 15 metabolites in feces. These results demonstrated that FTA underwent a series of in vivo metabolic reactions including methylation, dimethylation, sulfation, glucuronidation, diglucuronidation, cysteine conjugation and their composite reactions. The research enhanced our understanding of FTA metabolism and built a foundation for further toxicity and safety studies. Copyright © 2017 John Wiley & Sons, Ltd.

  19. MIDAS: a database-searching algorithm for metabolite identification in metabolomics.

    Science.gov (United States)

    Wang, Yingfeng; Kora, Guruprasad; Bowen, Benjamin P; Pan, Chongle

    2014-10-07

    A database searching approach can be used for metabolite identification in metabolomics by matching measured tandem mass spectra (MS/MS) against the predicted fragments of metabolites in a database. Here, we present the open-source MIDAS algorithm (Metabolite Identification via Database Searching). To evaluate a metabolite-spectrum match (MSM), MIDAS first enumerates possible fragments from a metabolite by systematic bond dissociation, then calculates the plausibility of the fragments based on their fragmentation pathways, and finally scores the MSM to assess how well the experimental MS/MS spectrum from collision-induced dissociation (CID) is explained by the metabolite's predicted CID MS/MS spectrum. MIDAS was designed to search high-resolution tandem mass spectra acquired on time-of-flight or Orbitrap mass spectrometer against a metabolite database in an automated and high-throughput manner. The accuracy of metabolite identification by MIDAS was benchmarked using four sets of standard tandem mass spectra from MassBank. On average, for 77% of original spectra and 84% of composite spectra, MIDAS correctly ranked the true compounds as the first MSMs out of all MetaCyc metabolites as decoys. MIDAS correctly identified 46% more original spectra and 59% more composite spectra at the first MSMs than an existing database-searching algorithm, MetFrag. MIDAS was showcased by searching a published real-world measurement of a metabolome from Synechococcus sp. PCC 7002 against the MetaCyc metabolite database. MIDAS identified many metabolites missed in the previous study. MIDAS identifications should be considered only as candidate metabolites, which need to be confirmed using standard compounds. To facilitate manual validation, MIDAS provides annotated spectra for MSMs and labels observed mass spectral peaks with predicted fragments. The database searching and manual validation can be performed online at http://midas.omicsbio.org.

  20. Reduced metabolites of nitroaromatics are distributed in the environment via the food chain.

    Science.gov (United States)

    Nisar, Numrah; Cheema, Kausar J; Powell, Glen; Bennett, Mark; Chaudhary, Safee Ullah; Qadri, Rashad; Yang, Yaodong; Azam, Muhammad; Rossiter, John T

    2018-05-15

    Increased industrial processes have introduced emerging toxic pollutants into the environment. Phytoremediation is considered to be a very useful, economical and ecofriendly way of controlling these pollutants, however, certain pollutants can potentially travel through the food chain and accumulate at hazardous levels. Four isomers of dinitrotoluenes (DNT) were investigated and observed their potential toxicity towards A. thaliana. Two different aphid species (generalist and specialist) were allowed to feed on plants treated with DNTs and toxicity to aphids determined. Reduced metabolites of DNT (in both plant and aphids) were recovered and quantified through GC-MS analyses. 2,6-DNT was observed to be the toxic of the DNTs tested. Complete metabolism of DNTs to their reduced products was never achieved for higher concentrations. Regioselectivity was observed in the case of 2,4-DNT, with 4A2NT as the dominant isomer. Feeding aphids showed a similar toxicity pattern for DNT isomers as host plants. Metabolites were recovered from the body of aphids, demonstrating the potential transport of metabolites through the food chain. Plants show varied toxicity responses towards the DNT isomers. Aphids fed on A. thaliana plants treated with DNTs were shown to have ANTs present, which reflects the propagation of DNT metabolites through the food chain. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. ESTRATEGIAS PARA INCREMENTAR LA PRODUCCIÓN DE METABOLITOS SECUNDARIOS EN CULTIVOS DE CÉLULAS VEGETALES STRATEGIES FOR THE IMPROVEMENT OF SECONDARY METABOLITES PRODUCTION IN PLAN CELL CULTURES

    Directory of Open Access Journals (Sweden)

    Mario Arias Zabala

    2009-06-01

    Full Text Available El cultivo de células vegetales ha surgido como una alternativa para la obtención de metabolitos de alto valor agregado, producidos en las plantas en bajas concentraciones y para los cuales, no existen procesos de síntesis química conocidos; sin embargo, para la implementación de esta tecnología es necesario el desarrollo de estrategias que permitan incrementar la productividad de los cultivos in vitro. En este trabajo se discuten diferentes alternativas planteadas para lograr este objetivo: en la primera parte se presentan las formas para obtener líneas celulares sobreproductoras, abordando las estrategias clásicas de selección y la ingeniería genética; posteriormente se discuten los efectos que sobre el crecimiento y la producción de metabolitos secundarios pueden tener la composición química del medio de cultivo y las condiciones físicas en las que se conduce el proceso; finalmente, se presenta la elicitación como alternativa para inducir la síntesis de metabolitos secundarios en cultivos de células vegetales.The strategy of plant cell culture has become an alternative for the production of high value metabolites that are normally produced in low levels in plants and for which there is not chemical synthesis processes known. However, for the implementation of this technology it is necessary to develop strategies that let us improve the productivity of the in vitro cultures. In this work, different alternatives in order to fulfill that objective are presented: in the first part, the strategies to obtain overproducer cell lines are discussed, showing the clasic strategies for cell line selection and genetic engineering as alternatives; after that, the efect over the growth and secondary metabolite productition of the chemical medium composition and physical conditions of the process are reviewed; finally, the elicitation is presented as an alternative to induce the synthesis of secondary metabolites in plant cell cultures.

  2. Identification of metabolites of Helicid in vivo using ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Diao, Xinpeng; Liao, Man; Cheng, Xiaoye; Liang, Caijuan; Sun, Yupeng; Zhang, Xia; Zhang, Lantong

    2018-04-18

    Helicid is an active natural aromatic phenolic glycoside ingredient originating from well-known traditional Chinese herb medicine and has the significant effects of sedative hypnosis, anti-inflammatory analgesia and antidepressant. In this study, we analyzed the potential metabolites of Helicid in rats by multiple mass defect filter (MMDF)and dynamic background subtraction (DBS)in ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS). Moreover, we used a novel data processing method 'key product ions (KPIs)' to rapidly detect and identifymetabolites as an assistant tool. MetabolitePilot TM 2.0 software and PeakView TM 2.2 software were used for analyzing metabolites. Twenty metabolites of Helicid (including 15 phase I metabolites and 5 phase II metabolites) were detected by comparing with the blank samples, respectively. Thebiotransformationroute of Helicid was identified as demethylation, oxidation, dehydroxylation, hydrogenation, decarbonylation,glucuronide conjugation and methylation.This is the first study of simultaneously detecting and identifying Helicid metabolism in rats by employing UHPLC-Q-TOF-MS technology. This experiment not only proposed a method for rapidly detecting and identifying metabolites, but also provided useful information for further study of the pharmacology and mechanism of Helicid in vivo. Furthermore, it provided an effective method for the analysis of other aromatic phenolic glycosides metabolic components in vivo. This article is protected by copyright. All rights reserved.

  3. Bioactive Secondary Metabolites from a Thai Collection of Soil and Marine-Derived Fungi of the Genera Neosartorya and Aspergillus.

    Science.gov (United States)

    Zin, War War May; Prompanya, Chadaporn; Buttachon, Suradet; Kijjoa, Anake

    2016-01-01

    Fungi are microorganisms which can produce interesting secondary metabolites with structural diversity. Although terrestrial fungi have been extensively investigated for their bioactive secondary metabolites such as antibiotics, marine-derived fungi have only recently attracted attention of Natural Products chemists. Our group has been working on the secondary metabolites produced by the cultures of the fungi of the genera Neosartorya and Aspergillus, collected from soil and marine environments from the tropical region for the purpose of finding new leads for anticancer and antibacterial drugs. This review covers only the secondary metabolites of four soil and six marine-derived species of Neosarorya as well as a new species of marine-derived Aspergillus, investigated by our group. In total, we have isolated fifty three secondary metabolites which can be categorized as polyketides (two), isocoumarins (six), terpenoids (two), meroterpenes (fourteen), alkaloids (twenty eight) and cyclic peptide (one). The anticancer and antibacterial activities of these fungal metabolites are also discussed. Among fifty three secondary metabolites isolated, only the alkaloid eurochevalierine and the cadinene sesquiterpene, isolated from the soil fungus N. pseudofisheri, showed relevant in vitro cytostatic activity against glioblastoma (U373) and non-small cell lung cancer (A549) cell lines while the meroditerpene aszonapyrone A exhibited strong antibacterial activity against multidrug-resistant Gram-positive bacteria and also strong antibiofilm activity in these isolates.

  4. 40 CFR 159.179 - Metabolites, degradates, contaminants, and impurities.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Metabolites, degradates, contaminants.../Benefit Information § 159.179 Metabolites, degradates, contaminants, and impurities. (a) Metabolites and... degradation of less than 10 percent in a 30-day period. (b) Contaminants and impurities. The presence in any...

  5. Analysis of Intracellular Metabolites from Microorganisms: Quenching and Extraction Protocols

    Directory of Open Access Journals (Sweden)

    Farhana R. Pinu

    2017-10-01

    Full Text Available Sample preparation is one of the most important steps in metabolome analysis. The challenges of determining microbial metabolome have been well discussed within the research community and many improvements have already been achieved in last decade. The analysis of intracellular metabolites is particularly challenging. Environmental perturbations may considerably affect microbial metabolism, which results in intracellular metabolites being rapidly degraded or metabolized by enzymatic reactions. Therefore, quenching or the complete stop of cell metabolism is a pre-requisite for accurate intracellular metabolite analysis. After quenching, metabolites need to be extracted from the intracellular compartment. The choice of the most suitable metabolite extraction method/s is another crucial step. The literature indicates that specific classes of metabolites are better extracted by different extraction protocols. In this review, we discuss the technical aspects and advancements of quenching and extraction of intracellular metabolite analysis from microbial cells.

  6. Identification of di- and tri-substituted hydroxy and ketone metabolites of delta1-tetrahydrocannabinol in mouse liver.

    Science.gov (United States)

    Harvey, D J; Martin, B R; Paton, W D

    1977-08-01

    In vivo liver metabolites of delta1-tetrahydrocannabinol (delta1-THC) were examined with a gas chromatograph--mass spectrometer--computer system as trimethylsilyl (TMS), [2H9]TMS and methyloxime-TMS derivatives. In addition to the reported monohydroxy, acid, and hydroxyacid metabolites, the following multiply substituted metabolites were identified: 2'',7-, 3'', 7-, and 6beta,7-dihydroxy-delta1-THC; 2'',6alpha,7-, and 3'',6alpha,7-trihydroxy-delta1-THC; 2''-, 3''-, and 7-hydroxy-6-oxo-delta1-THC, and 2'',7- and 3'',7-dihydroxy-6-oxo-delta1-THC. The ketones and hydroxyacids were reduced to common alcohols with lithium aluminium deuteride and the number of deuterium atoms in the product was used to distinguish the metabolic alcohols from those produced by reduction.

  7. Investigation of metabolites for estimating blood deposition time.

    Science.gov (United States)

    Lech, Karolina; Liu, Fan; Davies, Sarah K; Ackermann, Katrin; Ang, Joo Ern; Middleton, Benita; Revell, Victoria L; Raynaud, Florence J; Hoveijn, Igor; Hut, Roelof A; Skene, Debra J; Kayser, Manfred

    2018-01-01

    Trace deposition timing reflects a novel concept in forensic molecular biology involving the use of rhythmic biomarkers for estimating the time within a 24-h day/night cycle a human biological sample was left at the crime scene, which in principle allows verifying a sample donor's alibi. Previously, we introduced two circadian hormones for trace deposition timing and recently demonstrated that messenger RNA (mRNA) biomarkers significantly improve time prediction accuracy. Here, we investigate the suitability of metabolites measured using a targeted metabolomics approach, for trace deposition timing. Analysis of 171 plasma metabolites collected around the clock at 2-h intervals for 36 h from 12 male participants under controlled laboratory conditions identified 56 metabolites showing statistically significant oscillations, with peak times falling into three day/night time categories: morning/noon, afternoon/evening and night/early morning. Time prediction modelling identified 10 independently contributing metabolite biomarkers, which together achieved prediction accuracies expressed as AUC of 0.81, 0.86 and 0.90 for these three time categories respectively. Combining metabolites with previously established hormone and mRNA biomarkers in time prediction modelling resulted in an improved prediction accuracy reaching AUCs of 0.85, 0.89 and 0.96 respectively. The additional impact of metabolite biomarkers, however, was rather minor as the previously established model with melatonin, cortisol and three mRNA biomarkers achieved AUC values of 0.88, 0.88 and 0.95 for the same three time categories respectively. Nevertheless, the selected metabolites could become practically useful in scenarios where RNA marker information is unavailable such as due to RNA degradation. This is the first metabolomics study investigating circulating metabolites for trace deposition timing, and more work is needed to fully establish their usefulness for this forensic purpose.

  8. Determination of Microbial Nitrogen Production by Using Urinary Allantoin and Blood Metabolite Concentrate in Growing Brahman Cattle Fed the Different Proportion of Roughage and Concentrate in Diets

    International Nuclear Information System (INIS)

    Suthikrai, Wanvipa; Usawang, Sungwon; Kijsamrej, Suriya; Sophon, Sunpetch; Jetana, Thongsuk

    2003-06-01

    Determination of microbial nitrogen synthesis by using urinary allantoin and blood metabolite for evaluating the efficiency of feed utilization, in this study was conducted by using four Brahman bulls (about 1 year old). Animals were fed ad libitum with 4 fixed diets of four combinations of pineapple fibre (P) and concentrate (C) in the proportions, on dry matter basis of 0.8:0.2 (P80:C20), 0.6:0.04(P60:C40), 0.4:0.6(P40:C60) and 0.2:0.8 (P20:C80). The experiment was designed as a 4x4 Latin square design The Results showed that increasing in the proportion of concentrate linearly increased the rumen microbial nitrogen production (p<0.001), the concentrations of Insulin and urea-N in plasma and the concentration of urea-N in the urine, but not affected on the concentrations of glucose and creatinine in plasma. In conclusion, the using of allantoin urinary associated with blood metabolite can evaluate the accuracy in evaluation of feed utilization in Brahman cattle

  9. Screening of Aspergillus nidulans metabolites from habitat mimicking media using LC-DAD-TOFMS system

    DEFF Research Database (Denmark)

    Klitgaard, Andreas; Holm, Dorte Koefoed; Frisvad, Jens Christian

    2012-01-01

    Fungi are a valuable source of metabolites and other bioactive compounds. These compounds are essential for human society, and it is estimated that around 49% of the drugs used to treat cancer are natural products or derived therefrom. Six different wild types of Aspergillus nidulans have been cu...

  10. Discovery of Bioactive Metabolites in Biofuel Microalgae That Offer Protection against Predatory Bacteria

    Directory of Open Access Journals (Sweden)

    Christopher eBagwell

    2016-04-01

    Full Text Available Microalgae could become an important resource for addressing increasing global demand for food, energy, and commodities while helping to reduce atmospheric greenhouse gases. Even though Chlorophytes are generally regarded safe for human consumption, there is still much we do not understand about the metabolic and biochemical potential of microscopic algae. The aim of this study was to evaluate biofuel candidate strains of Chlorella and Scenedesmus for the potential to produce bioactive metabolites when grown under nutrient depletion regimes intended to stimulate production of triacylglycerides (TAG. Strain specific combinations of macro- and micro-nutrient restricted growth media did stimulate neutral lipid accumulation by microalgal cultures. However, cultures that were restricted for iron consistently and reliably tested positive for cytotoxicity by in vivo bioassays. The addition of iron back to these cultures resulted in the disappearance of the bioactive components by LC/MS fingerprinting and loss of cytotoxicity by in vivo bioassay. Incomplete NMR characterization of the most abundant cytotoxic fractions suggested that small molecular weight peptides and glycosides could be responsible for Chlorella cytotoxicity. Experiments were conducted to determine if the bioactive metabolites induced by Fe-limitation in Chlorella sp. cultures would elicit protection against Vampirovibrio chlorellavorus, an obligate predator of Chlorella. Introduction of V. chlorellavorus resulted in a 72% decrease in algal biomass in the experimental controls after 7 days. Conversely, only slight losses of algal biomass were measured for the iron limited Chlorella cultures (0 - 9 %. This study demonstrates a causal linkage between iron bioavailability and bioactive metabolite production in strains of Chlorella and Scenedesmus. Further study of this phenomenon could contribute to the development of new strategies to extend algal production cycles in open, outdoor

  11. Formation of reactive metabolites from benzene

    International Nuclear Information System (INIS)

    Snyder, R.; Jowa, L.; Witz, G.; Kalf, G.; Rushmore, T.

    1986-01-01

    Rat liver mitoplasts were incubated first with [ 3 H]dGTP, to form DNA labeled in G, and then with [ 14 C]benzene. The DNA was isolated and upon isopycnic density gradient centrifugation in CsCl yielded a single fraction of DNA labeled with both [ 3 H] and [ 14 C]. These data are consistent with the covalent binding of one or more metabolites of benzene to DNA. The DNA was enzymatically hydrolyzed to deoxynucleosides and chromatographed to reveal at least seven deoxyguanosine adducts. Further studies with labeled deoxyadenine revealed one adduct on deoxyadenine. [ 3 H]Deoxyguanosine was reacted with [ 14 C]hydroquinone or benzoquinone. The product was characterized using uv, fluorescence, mass and NMR spectroscopy. A proposed structure is described. (orig.)

  12. Ruta graveolens Extracts and Metabolites against Spodoptera frugiperda.

    Science.gov (United States)

    Ayil-Gutiérrez, Benjamin A; Villegas-Mendoza, Jesús M; Santes-Hernndez, Zuridai; Paz-González, Alma D; Mireles-Martínez, Maribel; Rosas-García, Ninfa M; Rivera, Gildardo

    2015-11-01

    The biological activity of Ruta graveolens leaf tissue extracts obtained with different solvents (ethyl acetate, ethanol, and water) and metabolites (psoralen, 2- undecanone and rutin) against Spodoptera frugiperda was evaluated. Metabolites levels in extracts were quantified by HPLC and GC. Ethyl acetate and ethanol extracts showed 94% and 78% mortality, respectively. Additionally, psoralen metabolite showed a high mortality as cypermethrin. Metabolite quantification in extracts shows the presence of 2-undecanone (87.9 µmoles mg(-1) DW), psoralen (3.6 µmoles mg(-1) DW) and rutin (0.001 pmoles mg(-1) DW). We suggest that these concentrations of 2-undecanone and psoralen in R. graveolens leaf tissue extracts could be responsible for S. frugiperda mortality.

  13. Late-onset Rise of 6-MMP Metabolites in IBD Patients on Azathioprine or Mercaptopurine.

    Science.gov (United States)

    Munnig-Schmidt, Erik; Zhang, Mei; Mulder, Chris J; Barclay, Murray L

    2018-03-19

    The thiopurines azathioprine and mercaptopurine remain pivotal maintenance treatments in inflammatory bowel disease (IBD); however, up to 15%-20% of patients preferentially produce the hepatotoxic metabolite 6-methylmercaptopurine (6MMP) at the expense of the therapeutic 6-thioguanine nucleotides (6TGN). This metabolic shunting usually begins within 3 months of therapy. We noted patients developing shunting many months or years after starting treatment and aimed to determine how often this late shunting occurs and whether this could be explained by patient factors or concomitant medications. The New Zealand database of thiopurine metabolite results from 2002 to 2016 (19085 6TGN/6MMP pairs from 7130 patients) was interrogated to identify patients developing a 6MMP/6TGN ratio >20 after at least 4 months treatment. Dosing history, concomitant therapy, and comorbidity data were assessed. Fifteen percent of database patients developed preferential 6-MMP production, and of these, 29 patients had late-onset shunting with sufficient data available for validation. This extrapolates to 90 patients in total, representing 1.7% of IBD patients on thiopurines, or 10% of all those with preferential 6-MMP production. Time from starting therapy to shunting was 5 months to 10.4 years (median, 21 months). Eleven patients had abnormal liver function when shunting was recognized, all with 6MMP >5900 pmol/8 × 108 red blood cells. No common factors were found to explain the late onset. Some IBD patients develop preferential 6MMP production many months or years after commencing therapy. This is important when considering frequency of metabolite monitoring, failure of therapy, or abnormal liver function. 10.1093/ibd/izx081_video1izx081.video15746667546001.

  14. 'Nothing of chemistry disappears in biology': the Top 30 damage-prone endogenous metabolites.

    Science.gov (United States)

    Lerma-Ortiz, Claudia; Jeffryes, James G; Cooper, Arthur J L; Niehaus, Thomas D; Thamm, Antje M K; Frelin, Océane; Aunins, Thomas; Fiehn, Oliver; de Crécy-Lagard, Valérie; Henry, Christopher S; Hanson, Andrew D

    2016-06-15

    Many common metabolites are intrinsically unstable and reactive, and hence prone to chemical (i.e. non-enzymatic) damage in vivo Although this fact is widely recognized, the purely chemical side-reactions of metabolic intermediates can be surprisingly hard to track down in the literature and are often treated in an unprioritized case-by-case way. Moreover, spontaneous chemical side-reactions tend to be overshadowed today by side-reactions mediated by promiscuous ('sloppy') enzymes even though chemical damage to metabolites may be even more prevalent than damage from enzyme sloppiness, has similar outcomes, and is held in check by similar biochemical repair or pre-emption mechanisms. To address these limitations and imbalances, here we draw together and systematically integrate information from the (bio)chemical literature, from cheminformatics, and from genome-scale metabolic models to objectively define a 'Top 30' list of damage-prone metabolites. A foundational part of this process was to derive general reaction rules for the damage chemistries involved. The criteria for a 'Top 30' metabolite included predicted chemical reactivity, essentiality, and occurrence in diverse organisms. We also explain how the damage chemistry reaction rules ('operators') are implemented in the Chemical-Damage-MINE (CD-MINE) database (minedatabase.mcs.anl.gov/#/top30) to provide a predictive tool for many additional potential metabolite damage products. Lastly, we illustrate how defining a 'Top 30' list can drive genomics-enabled discovery of the enzymes of previously unrecognized damage-control systems, and how applying chemical damage reaction rules can help identify previously unknown peaks in metabolomics profiles. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  15. Gut microbial metabolites of polyunsaturated fatty acids correlate with specific fecal bacteria and serum markers of metabolic syndrome in obese women.

    Science.gov (United States)

    Druart, Céline; Dewulf, Evelyne M; Cani, Patrice D; Neyrinck, Audrey M; Thissen, Jean-Paul; Delzenne, Nathalie M

    2014-04-01

    The aim of this human study was to assess the influence of prebiotic-induced gut microbiota modulation on PUFA-derived bacterial metabolites production. Therefore, we analyzed the circulating fatty acid profile including CLA/CLnA in obese women treated during 3 months with inulin-type fructan prebiotics. In these patients, we had already determined gut microbiota composition by phylogenetic microarray and qPCR analysis of 16S rDNA. Some PUFA-derived bacterial metabolites were detected in the serum of obese patients. Despite the prebiotic-induced modulation of gut microbiota, including changes in CLA/CLnA-producing bacteria, the treatment did not impact significantly on the circulating level of these metabolites. However, some PUFA-derived bacterial metabolites were positively correlated with specific fecal bacteria (Bifidobacterium spp., Eubacterium ventriosum and Lactobacillus spp.) and inversely correlated with serum cholesterol (total, LDL, HDL). These correlations suggest a potential beneficial effect of some of these metabolites but this remains to be confirmed by further investigation.

  16. Effect of pH and dilution rate on specific production rate of extra cellular metabolites by Lactobacillus salivarius UCO_979C in continuous culture.

    Science.gov (United States)

    Valenzuela, Javier Ferrer; Pinuer, Luis; Cancino, Apolinaria García; Yáñez, Rodrigo Bórquez

    2015-08-01

    The effect of pH and dilution rate on the production of extracellular metabolites of Lactobacillus salivarius UCO_979 was studied. The experiments were carried out in continuous mode, with chemically defined culture medium at a temperature of 37 °C, 200 rpm agitation and synthetic air flow of 100 ml/min. Ethanol, acetic acid, formic acid, lactic acid and glucose were quantified through HPLC, while exopolysaccharide (EPS) was extracted with ethanol and quantified through the Dubois method. The results showed no linear trends for the specific production of lactic acid, EPS, acetic acid and ethanol, while the specific glucose consumption and ATP production rates showed linear trends. There was a metabolic change of the strain for dilution rates below 0.3 h(-1). The pH had a significant effect on the metabolism of the strain, which was evidenced by a higher specific glucose consumption and increased production of ATP at pH 6 compared with that obtained at pH 7. This work shows not only the metabolic capabilities of L. salivarius UCO_979C, but also shows that it is possible to quantify some molecules associated with its current use as gastrointestinal probiotic, especially regarding the production of organic acids and EPS.

  17. Microbial transformation of (+)-nootkatone and the antiproliferative activity of its metabolites.

    Science.gov (United States)

    Gliszczyńska, Anna; Łysek, Agnieszka; Janeczko, Tomasz; Świtalska, Marta; Wietrzyk, Joanna; Wawrzeńczyk, Czesław

    2011-04-01

    Six metabolites were obtained as a result of microbial transformation of (+)-nootkatone (1) by the fungal strains: Botrytis, Didymosphaeria, Aspergillus, Chaetomium and Fusarium. Their structure were established as (+)-(4R,5S,7R,9R)-9α-hydroxynootkatone (2), (+)-(4R,5S,7R)-13-hydroxynootkatone (3) and (+)-(4R,5S,7R,9R,11S)-11,12-epoxy-9α-hydroxynootkatone (4), (+)-(4R,5S,7R,11S)-11,12-epoksynootkatone (5), (+)-(4R,5S,7R)-11,12-dihydroxynootkatone (6) and (+)-(4R,5S,7R)-7,11,12-trihydroxynootkatone (7) on the basis of their spectral data. Two products: (4) and (7) were not previously reported in the literature. The antiproliferative activity of (+)-nootkatone (1) and isolated metabolites (2-7) of its biotransformation has been evaluated. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Biochemical and secondary metabolites changes under moisture ...

    African Journals Online (AJOL)

    The study showed the importance of carbohydrate and nitrogen cycle related metabolites in mediating tolerance in cassava by affecting their phenotypic expression in the plant. Keywords: Hydrothermal stress, bio-chemicals, pigments, secondary metabolites, cassava. African Journal of Biotechnology, Vol 13(31) 3173-3186 ...

  19. Estimation of genetic parameters and detection of quantitative trait loci for metabolites in Danish Holstein milk

    DEFF Research Database (Denmark)

    Buitenhuis, Albert Johannes; Sundekilde, Ulrik; Poulsen, Nina Aagaard

    2013-01-01

    Small components and metabolites in milk are significant for the utilization of milk, not only in dairy food production but also as disease predictors in dairy cattle. This study focused on estimation of genetic parameters and detection of quantitative trait loci for metabolites in bovine milk. F...... for lactic acid to >0.8 for orotic acid and β-hydroxybutyrate. A single SNP association analysis revealed 7 genome-wide significant quantitative trait loci [malonate: Bos taurus autosome (BTA)2 and BTA7; galactose-1-phosphate: BTA2; cis-aconitate: BTA11; urea: BTA12; carnitine: BTA25...

  20. Determination of urinary 2- and 3-dechloroethylated metabolites of ifosfamide by high-performance liquid chromatography.

    Science.gov (United States)

    Goren, M P

    1991-10-04

    In vivo oxidation of chloroethyl side-chains on ifosfamide produces the toxin chloroacetaldehyde. Production of this labile metabolite can be indirectly quantitated by monitoring the excretion of the residual 2- and 3-dechloroethylated ifosfamide. Urinary ifosfamide and the two dechloroethylated metabolites were extracted into chloroform from alkalinized salt-saturated urine, followed by high-performance liquid chromatographic separation using an acetonitrile gradient on a reversed-phase column and ultraviolet detection at 190 nm. In five patients given 1.6 g/m2 ifosfamide, 11-30% of the dose was excreted over 24 h as unchanged drug, 11-21% as 3-dechloroethylated and 3-10% as 2-dechloroethylated ifosfamide.

  1. Elicitation Based Enhancement of Secondary Metabolites in Rauwolfia serpentina and Solanum khasianum Hairy Root Cultures.

    Science.gov (United States)

    Srivastava, Mrinalini; Sharma, Swati; Misra, Pratibha

    2016-05-01

    Rauwolfia serpentina and Solanum khasianum are well-known medicinally important plants contained important alkaloids in their different parts. Elicitation of these alkaloids is important because of associated pharmaceutical properties. Targeted metabolites were ajmaline and ajmalicine in R. serpentina; solasodine and α-solanine in S. khasianum. Enhancement of secondary metabolites through biotic and abiotic elicitors in hairy root cultures of R. serpentina and S. khasianum. In this report, hairy root cultures of these two plants were established through Agrobacterium rhizogenes mediated transformation by optimizing various parameters as age of explants, duration of preculture, and co-cultivation period. NaCl was used as abiotic elicitors in these two plants. Cellulase from Aspergillus niger was used as biotic elicitor in S. khasianum and mannan from Saccharomyces cerevisiae was used in R. serpentina. First time we have reported the effect of biotic and abiotic elicitors on the production of important metabolites in hairy root cultures of these two plants. Ajmalicine production was stimulated up to 14.8-fold at 100 mM concentration of NaCl after 1 week of treatment. Ajmaline concentration was also increased 2.9-fold at 100 mg/l dose of mannan after 1 week. Solasodine content was enhanced up to 4.0-fold and 3.6-fold at 100 mM and 200 mM NaCl, respectively, after 6 days of treatments. This study explored the potential of the elicitation strategy in A. rhizogenes transformed cell cultures and this potential further used for commercial production of these pharmaceutically important secondary metabolites. Hairy roots of Rauwolfia serpentina were subjected to salt (abiotic stress) and mannan (biotic stress) treatment for 1 week. Ajmaline and ajmalicine secondary metabolites were quantified before and after stress treatmentAjmalicine yield was enhanced up to 14.8-fold at 100 mM concentration of NaCl. Ajmaline content was also stimulated 2.9-fold at 100 mg/l dose of mannan

  2. Insights into the Anaerobic Biodegradation Pathway of n-Alkanes in Oil Reservoirs by Detection of Signature Metabolites

    Science.gov (United States)

    Bian, Xin-Yu; Maurice Mbadinga, Serge; Liu, Yi-Fan; Yang, Shi-Zhong; Liu, Jin-Feng; Ye, Ru-Qiang; Gu, Ji-Dong; Mu, Bo-Zhong

    2015-01-01

    Anaerobic degradation of alkanes in hydrocarbon-rich environments has been documented and different degradation strategies proposed, of which the most encountered one is fumarate addition mechanism, generating alkylsuccinates as specific biomarkers. However, little is known about the mechanisms of anaerobic degradation of alkanes in oil reservoirs, due to low concentrations of signature metabolites and lack of mass spectral characteristics to allow identification. In this work, we used a multidisciplinary approach combining metabolite profiling and selective gene assays to establish the biodegradation mechanism of alkanes in oil reservoirs. A total of twelve production fluids from three different oil reservoirs were collected and treated with alkali; organic acids were extracted, derivatized with ethanol to form ethyl esters and determined using GC-MS analysis. Collectively, signature metabolite alkylsuccinates of parent compounds from C1 to C8 together with their (putative) downstream metabolites were detected from these samples. Additionally, metabolites indicative of the anaerobic degradation of mono- and poly-aromatic hydrocarbons (2-benzylsuccinate, naphthoate, 5,6,7,8-tetrahydro-naphthoate) were also observed. The detection of alkylsuccinates and genes encoding for alkylsuccinate synthase shows that anaerobic degradation of alkanes via fumarate addition occurs in oil reservoirs. This work provides strong evidence on the in situ anaerobic biodegradation mechanisms of hydrocarbons by fumarate addition. PMID:25966798

  3. Prospective study of blood metabolites associated with colorectal cancer risk.

    Science.gov (United States)

    Shu, Xiang; Xiang, Yong-Bing; Rothman, Nathaniel; Yu, Danxia; Li, Hong-Lan; Yang, Gong; Cai, Hui; Ma, Xiao; Lan, Qing; Gao, Yu-Tang; Jia, Wei; Shu, Xiao-Ou; Zheng, Wei

    2018-02-26

    Few prospective studies, and none in Asians, have systematically evaluated the relationship between blood metabolites and colorectal cancer risk. We conducted a nested case-control study to search for risk-associated metabolite biomarkers for colorectal cancer in an Asian population using blood samples collected prior to cancer diagnosis. Conditional logistic regression was performed to assess associations of metabolites with cancer risk. In this study, we included 250 incident cases with colorectal cancer and individually matched controls nested within two prospective Shanghai cohorts. We found 35 metabolites associated with risk of colorectal cancer after adjusting for multiple comparisons. Among them, 12 metabolites were glycerophospholipids including nine associated with reduced risk of colorectal cancer and three with increased risk [odds ratios per standard deviation increase of transformed metabolites: 0.31-1.98; p values: 0.002-1.25 × 10 -10 ]. The other 23 metabolites associated with colorectal cancer risk included nine lipids other than glycerophospholipid, seven aromatic compounds, five organic acids and four other organic compounds. After mutual adjustment, nine metabolites remained statistically significant for colorectal cancer. Together, these independently associated metabolites can separate cancer cases from controls with an area under the curve of 0.76 for colorectal cancer. We have identified that dysregulation of glycerophospholipids may contribute to risk of colorectal cancer. © 2018 UICC.

  4. A Derivative Method with Free Radical Oxidation to Predict Resveratrol Metabolites by Tandem Mass Spectrometry.

    Science.gov (United States)

    Liu, Wangta; Shiue, Yow-Ling; Lin, Yi-Reng; Lin, Hugo You-Hsien; Liang, Shih-Shin

    2015-10-01

    In this study, we demonstrated an oxidative method with free radical to generate 3,5,4'-trihydroxy- trans -stilbene ( trans -resveratrol) metabolites and detect sequentially by an autosampler coupling with liquid chromatography electrospray ionization tandem mass spectrometer (LC-ESI-MS/MS). In this oxidative method, the free radical initiator, ammonium persulfate (APS), was placed in a sample bottle containing resveratrol to produce oxidative derivatives, and the reaction progress was tracked by autosampler sequencing. Resveratrol, a natural product with purported cancer preventative qualities, produces metabolites including dihydroresveratrol, 3,4'-dihydroxy- trans -stilbene, lunularin, resveratrol monosulfate, and dihydroresveratrol monosulfate by free radical oxidation. Using APS free radical, the concentrations of resveratrol derivatives differ as a function of time. Besides simple, convenient and time- and labor saving, the advantages of free radical oxidative method of its in situ generation of oxidative derivatives followed by LC-ESI-MS/MS can be utilized to evaluate different metabolites in various conditions.

  5. Integrated circuit-based electrochemical sensor for spatially resolved detection of redox-active metabolites in biofilms.

    Science.gov (United States)

    Bellin, Daniel L; Sakhtah, Hassan; Rosenstein, Jacob K; Levine, Peter M; Thimot, Jordan; Emmett, Kevin; Dietrich, Lars E P; Shepard, Kenneth L

    2014-01-01

    Despite advances in monitoring spatiotemporal expression patterns of genes and proteins with fluorescent probes, direct detection of metabolites and small molecules remains challenging. A technique for spatially resolved detection of small molecules would benefit the study of redox-active metabolites that are produced by microbial biofilms and can affect their development. Here we present an integrated circuit-based electrochemical sensing platform featuring an array of working electrodes and parallel potentiostat channels. 'Images' over a 3.25 × 0.9 mm(2) area can be captured with a diffusion-limited spatial resolution of 750 μm. We demonstrate that square wave voltammetry can be used to detect, identify and quantify (for concentrations as low as 2.6 μM) four distinct redox-active metabolites called phenazines. We characterize phenazine production in both wild-type and mutant Pseudomonas aeruginosa PA14 colony biofilms, and find correlations with fluorescent reporter imaging of phenazine biosynthetic gene expression.

  6. Microbial-Host Co-metabolites Are Prodromal Markers Predicting Phenotypic Heterogeneity in Behavior, Obesity, and Impaired Glucose Tolerance

    Directory of Open Access Journals (Sweden)

    Marc-Emmanuel Dumas

    2017-07-01

    Full Text Available The influence of the gut microbiome on metabolic and behavioral traits is widely accepted, though the microbiome-derived metabolites involved remain unclear. We carried out untargeted urine 1H-NMR spectroscopy-based metabolic phenotyping in an isogenic C57BL/6J mouse population (n = 50 and show that microbial-host co-metabolites are prodromal (i.e., early markers predicting future divergence in metabolic (obesity and glucose homeostasis and behavioral (anxiety and activity outcomes with 94%–100% accuracy. Some of these metabolites also modulate disease phenotypes, best illustrated by trimethylamine-N-oxide (TMAO, a product of microbial-host co-metabolism predicting future obesity, impaired glucose tolerance (IGT, and behavior while reducing endoplasmic reticulum stress and lipogenesis in 3T3-L1 adipocytes. Chronic in vivo TMAO treatment limits IGT in HFD-fed mice and isolated pancreatic islets by increasing insulin secretion. We highlight the prodromal potential of microbial metabolites to predict disease outcomes and their potential in shaping mammalian phenotypic heterogeneity.

  7. Employing immuno-affinity for the analysis of various microbial metabolites of the mycotoxin deoxynivalenol.

    Science.gov (United States)

    Zhu, Yan; Hassan, Yousef I; Shao, Suqin; Zhou, Ting

    2018-06-29

    Deoxynivalenol (DON) is a type B trichothecene mycotoxin that is commonly detected in grains infested with Fusarium species. The maximum tolerated levels of DON in the majority of world's countries are restricted to 0.75 mg kg -1 within the human food chain and to less than 1-5 mg kg -1 in animal feed depending on the feed material and/or animal species due to DON's short and long-term adverse effects on human health and animal productivity. The ability to accurately analyze DON and some of its fungal/bacterial metabolites is increasingly gaining a paramount importance in food/feed analysis and research. In this study, we used the immuno-affinity approach to enrich and detect DON and three of its bacterial metabolites, namely 3-epi-DON, 3-keto-DON, and deepoxy-DON (DOM-1). The optimized enrichment step coupled with high performance liquid chromatography can accurately and reproducibly quantify the aforementioned metabolites in feed matrixes (silage extract as an example in this case). It minimizes any background interface and provides a fast and easy-to-operate protocol for the analytical determination of such metabolites. More importantly, the presented data demonstrates the ability of the utilized monoclonal antibody, generated originally to capture DON in Enzyme-Linked Immunosorbent Assays (ELISA), to cross react with three less/non-toxic DON metabolites. This raises the concerns about the genuine need to account for such cross-reactivity when DON contamination is assessed through an immuno-affinity based analyses using the investigated antibody. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  8. Rapid Quantification of Major Volatile Metabolites in Fermented Food and Beverages Using Gas Chromatography-Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Farhana R. Pinu

    2017-07-01

    Full Text Available Here we present a method for the accurate quantification of major volatile metabolites found in different food and beverages, including ethanol, acetic acid and other aroma compounds, using gas chromatography coupled to mass spectrometry (GC-MS. The method is combined with a simple sample preparation procedure using sodium chloride and anhydrous ethyl acetate. The GC-MS analysis was accomplished within 4.75 min, and over 80 features were detected, of which 40 were positively identified using an in-house and a commercialmass spectrometry (MS library. We determined different analytical parameters of these metabolites including the limit of detection (LOD, limit of quantitation (LOQ and range of quantification. In order to validate the method, we also determined detailed analytical characteristics of five major fermentation end products including ethanol, acetic acid, isoamyl alcohol, ethyl-L-lactate and, acetoin. The method showed very low technical variability for the measurements of these metabolites in different matrices (<3% with an excellent accuracy (100% ± 5%, recovery (100% ± 10%, reproducibility and repeatability [Coefficient of variation (CV 1–10%]. To demonstrate the applicability of the method, we analysed different fermented products including balsamic vinegars, sourdough, distilled (whisky and non-distilled beverages (wine and beer.

  9. Induction of phenolic metabolites and physiological changes in chamomile plants in relation to nitrogen nutrition.

    Science.gov (United States)

    Kováčik, Jozef; Klejdus, Bořivoj

    2014-01-01

    Alternative tools, such as the manipulation of mineral nutrition, may affect secondary metabolite production and thus the nutritional value of food/medicinal plants. We studied the impact of nitrogen (N) nutrition (nitrate/NO3(-) or ammonium/NH4(+) nitrogen) and subsequent nitrogen deficit on phenolic metabolites and physiology in Matricaria chamomilla plants. NH4(+)-fed plants revealed a strong induction of selected phenolic metabolites but, at the same time, growth, Fv/Fm, tissue water content and soluble protein depletion occurred in comparison with NO3(-)-fed ones. On the other hand, NO3(-)-deficient plants also revealed an increase in phenolic metabolites but growth depression was not observed after the given exposure period. Free amino acids were more accumulated in NH4(+)-fed shoots (strong increase in arginine and proline mainly), while the pattern of roots' accumulation was independent of N form. Among phenolic acids, NH4(+) strongly elevated mainly the accumulation of chlorogenic acid. Within flavonoids, flavonols decreased while flavones strongly increased in response to N deficiency. Coumarin-related metabolites revealed a similar increase in herniarin glucosidic precursor in response to N deficiency, while herniarin was more accumulated in NO3(-)- and umbelliferone in NH4(+)-cultured plants. These data indicate a negative impact of NH4(+) as the only source of N on physiology, but also a higher stimulation of some valuable phenols. Nitrogen-induced changes in comparison with other food/crop plants are discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. MARSI: metabolite analogues for rational strain improvement

    DEFF Research Database (Denmark)

    Cardoso, João G. R.; Zeidan, Ahmad A; Jensen, Kristian

    2018-01-01

    reactions in an organism can be used to predict effects of MAs on cellular phenotypes. Here, we present the Metabolite Analogues for Rational Strain Improvement (MARSI) framework. MARSI provides a rational approach to strain improvement by searching for metabolites as targets instead of genes or reactions...

  11. Dissipation, half-lives, and mass spectrometric identification of chlorpyrifos and its two metabolites on field-grown collard and kale.

    Science.gov (United States)

    Antonious, George F; Turley, Eric T; Abubakari, Mutari; Snyder, John C

    2017-04-03

    The persistence and fate of chlorpyrifos and its two metabolites, chlorpyrifos-oxon and the 3, 5, 6-trichloro-2-pyridinol (TCP) break-down product were investigated on kale and collard leaves under field conditions. A simultaneous extraction and quantification procedure was developed for chrorpyrifos and its two main metabolites. Residues of chlorpyrifos, chlorpyrifos oxon, and TCP were determined using a gas chromatograph (GC) equipped with an electron capture detector (GC/ECD). Chlorpyrifos metabolites were detectable up to 23 days following application. Residues were confirmed using a GC equipped with a mass selective detector (GC/MSD) in total ion mode. Initial residues of chlorpyrifos were greater on collard (14.5 µg g -1 ) than kale (8.2 µg g -1 ) corresponding to half-lives (T 1/2 ) values of 7.4 and 2.2 days, respectively. TCP, the hydrolysis product, was more persistent on collards with an estimated T 1/2 of 6.5 days compared to kale (T 1/2 of 1.9 days).

  12. Extraction and Identification of Secondary Metabolites Produced by Trichoderma atroviridae (6022 and Evaluating of their Antifungal Effects

    Directory of Open Access Journals (Sweden)

    M. Shahiri Tabarestani

    2017-08-01

    Full Text Available Introduction: Fungi release wide spectrum of secondary metabolites that belong to several chemical groups with different biochemical origins. These materials produce as intermediate and end products of diverse metabolic pathways. The profile of the secondary metabolites for a known species or strain will vary depending on the substrate, the duration of incubation, the type of nutrients, temperature and other environmental parameters. Trichoderma spp. are well-known producers of secondary metabolites with different biological activities. The secondary metabolites with antibiotic activity can be classified into two main types. Low molecular weight and volatile metabolites which are involved in complex Trichoderma plant-pathogen interactions. They belong to various structure classes such as alcohols, ketones, alkanes, furans, simple aromatic compounds, isocyanate compounds, volatile terpenes, some polyketides, butenolides, and pyrones. All of them are relatively nonpolar compounds with a significant vapor pressure. These volatile organic compounds (VOCs in the soil environment could be traveled over distance and affect the physiology of the pathogens. They also enhance growth and systemic resistance in plants. These VOCs have been evaluated for T. atroviride, T. harzianum, T. viride, T. longibrachiatum, T. pseudokoningii and T. aureoviride. High molecular weight metabolites (like peptaibols are polar metabolites which act directly by contact between Trichoderma species and competitor organisms. Due to potent separation and highly sensitive detection, gas chromatography-mass spectrometry (GC-MS is the main method for detection of the fungal VOCs. Mass spectrometric detection offers the possibility to identify individual volatiles from complex mixtures. Structure characterization and confirmation of identity are usually achieved by comparison of mass spectra with library spectra and the determination of chromatographic retention indices. Due to the

  13. Heme-dependent Metabolite Switching Regulates H2S Synthesis in Response to Endoplasmic Reticulum (ER) Stress.

    Science.gov (United States)

    Kabil, Omer; Yadav, Vinita; Banerjee, Ruma

    2016-08-05

    Substrate ambiguity and relaxed reaction specificity underlie the diversity of reactions catalyzed by the transsulfuration pathway enzymes, cystathionine β-synthase (CBS) and γ-cystathionase (CSE). These enzymes either commit sulfur metabolism to cysteine synthesis from homocysteine or utilize cysteine and/or homocysteine for synthesis of H2S, a signaling molecule. We demonstrate that a kinetically controlled heme-dependent metabolite switch in CBS regulates these competing reactions where by cystathionine, the product of CBS, inhibits H2S synthesis by the second enzyme, CSE. Under endoplasmic reticulum stress conditions, induction of CSE and up-regulation of the CBS inhibitor, CO, a product of heme oxygenase-1, flip the operating preference of CSE from cystathionine to cysteine, transiently stimulating H2S production. In contrast, genetic deficiency of CBS leads to chronic stimulation of H2S production. This metabolite switch from cystathionine to cysteine and/or homocysteine renders H2S synthesis by CSE responsive to the known modulators of CBS: S-adenosylmethionine, NO, and CO. Used acutely, it regulates H2S synthesis; used chronically, it might contribute to disease pathology. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Metabolite identification through multiple kernel learning on fragmentation trees.

    Science.gov (United States)

    Shen, Huibin; Dührkop, Kai; Böcker, Sebastian; Rousu, Juho

    2014-06-15

    Metabolite identification from tandem mass spectrometric data is a key task in metabolomics. Various computational methods have been proposed for the identification of metabolites from tandem mass spectra. Fragmentation tree methods explore the space of possible ways in which the metabolite can fragment, and base the metabolite identification on scoring of these fragmentation trees. Machine learning methods have been used to map mass spectra to molecular fingerprints; predicted fingerprints, in turn, can be used to score candidate molecular structures. Here, we combine fragmentation tree computations with kernel-based machine learning to predict molecular fingerprints and identify molecular structures. We introduce a family of kernels capturing the similarity of fragmentation trees, and combine these kernels using recently proposed multiple kernel learning approaches. Experiments on two large reference datasets show that the new methods significantly improve molecular fingerprint prediction accuracy. These improvements result in better metabolite identification, doubling the number of metabolites ranked at the top position of the candidates list. © The Author 2014. Published by Oxford University Press.

  15. Glutamine and glutamate as vital metabolites

    Directory of Open Access Journals (Sweden)

    Newsholme P.

    2003-01-01

    Full Text Available Glucose is widely accepted as the primary nutrient for the maintenance and promotion of cell function. This metabolite leads to production of ATP, NADPH and precursors for the synthesis of macromolecules such as nucleic acids and phospholipids. We propose that, in addition to glucose, the 5-carbon amino acids glutamine and glutamate should be considered to be equally important for maintenance and promotion of cell function. The functions of glutamine/glutamate are many, i.e., they are substrates for protein synthesis, anabolic precursors for muscle growth, they regulate acid-base balance in the kidney, they are substrates for ureagenesis in the liver and for hepatic and renal gluconeogenesis, they act as an oxidative fuel for the intestine and cells of the immune system, provide inter-organ nitrogen transport, and act as precursors of neurotransmitter synthesis, of nucleotide and nucleic acid synthesis and of glutathione production. Many of these functions are interrelated with glucose metabolism. The specialized aspects of glutamine/glutamate metabolism of different glutamine-utilizing cells are discussed in the context of glucose requirements and cell function.

  16. Metabolism of (phenyl-U-14C)-parathion and its metabolite p-nitrophenol in the rat

    International Nuclear Information System (INIS)

    Schmidt-Sonnenschein, B.

    1977-08-01

    (Phenyl-U- 14 C)-parathion was orally given to rats in doses of 2.7 or 3.5 mg per kg body weight. Within 24 h, more than 95 % of the dose applied had left the body renally and about 7 % faecally. Resorption of the agent started early. Most of it was resorbed between 2 and 4 h after application. 2 h after application, there were still 85 % 14 C residues in the gastrointestinal tract, but only about 10 % was left 8 h later. Radioactivity contents in the blood and the internal organs, on the other hand, never exceeded 1 % of the applied dose. With radioactivity displacement into deeper intestinal sections, the fraction of water-soluble metabolites increased from about 1-3 % in the stomach to about 60 % in the large intestine. Using thin film chromatography and autoradiography, the following compounds were detected in the urine and tissues: The initial agent parathion, its oxidation product paraoxon and the hydrolysis product p-nitrophenol as organic-soluble compounds, and deethyl-paraoxon, p-nitrophenyl glucuronide and p-nitrophenyl sulphate as water-soluble metabolites. In urine, 65-80% of the radioactivity content was represented by a substance which may be the sulphate ester of p-nitrophenol. A total of 58 % of the applied dose was excreted in the form of this metabolite within 8 h. (orig./MG) [de

  17. Taxonomic Characterization and Secondary Metabolite Profiling of Aspergillus Section Aspergillus Contaminating Feeds and Feedstuffs

    OpenAIRE

    Greco, Mariana; Kemppainen, Minna; Pose, Graciela; Pardo, Alejandro

    2015-01-01

    Xerophilic fungal species of the genus Aspergillus are economically highly relevant due to their ability to grow on low water activity substrates causing spoilage of stored goods and animal feeds. These fungi can synthesize a variety of secondary metabolites, many of which show animal toxicity, creating a health risk for food production animals and to humans as final consumers, respectively. Animal feeds used for rabbit, chinchilla and rainbow trout production in Argentina were analysed for t...

  18. Do metabolites that are produced during resistance exercise enhance muscle hypertrophy?

    Science.gov (United States)

    Dankel, Scott J; Mattocks, Kevin T; Jessee, Matthew B; Buckner, Samuel L; Mouser, J Grant; Loenneke, Jeremy P

    2017-11-01

    Many reviews conclude that metabolites play an important role with respect to muscle hypertrophy during resistance exercise, but their actual physiologic contribution remains unknown. Some have suggested that metabolites may work independently of muscle contraction, while others have suggested that metabolites may play a secondary role in their ability to augment muscle activation via inducing fatigue. Interestingly, the studies used as support for an anabolic role of metabolites use protocols that are not actually designed to test the importance of metabolites independent of muscle contraction. While there is some evidence in vitro that metabolites may induce muscle hypertrophy, the only study attempting to answer this question in humans found no added benefit of pooling metabolites within the muscle post-exercise. As load-induced muscle hypertrophy is thought to work via mechanotransduction (as opposed to being metabolically driven), it seems likely that metabolites simply augment muscle activation and cause the mechanotransduction cascade in a larger proportion of muscle fibers, thereby producing greater muscle growth. A sufficient time under tension also appears necessary, as measurable muscle growth is not observed after repeated maximal testing. Based on current evidence, it is our opinion that metabolites produced during resistance exercise do not have anabolic properties per se, but may be anabolic in their ability to augment muscle activation. Future studies are needed to compare protocols which produce similar levels of muscle activation, but differ in the magnitude of metabolites produced, or duration in which the exercised muscles are exposed to metabolites.

  19. The role of vitamin D metabolites in the osteomalacia of renal disease

    Energy Technology Data Exchange (ETDEWEB)

    Kanis, J.A.; Brown, C.B.; Cameron, E.C.; Cundy, T.; Platts, M.M.; Paterson, M.; Russell, R.G.

    1981-01-01

    Osteomalacia is commonly found in patients with severe renal impairment. Its aetiology is multifactional and not simply due to deficient production of active metabolites of vitamin D. Decreased availability of calcium and phosphate and the accumulation of aluminium is some dialysis-treated patients are also important aetiological factors. The treatment of osteomalacia depends, in part, upon its accurate diagnosis, and identifying and reversing the underlying cause.

  20. Bioinformatic analysis of xenobiotic reactive metabolite target proteins and their interacting partners

    Directory of Open Access Journals (Sweden)

    Hanzlik Robert P

    2009-06-01

    Full Text Available Abstract Background Protein covalent binding by reactive metabolites of drugs, chemicals and natural products can lead to acute cytotoxicity. Recent rapid progress in reactive metabolite target protein identification has shown that adduction is surprisingly selective and inspired the hope that analysis of target proteins might reveal protein factors that differentiate target- vs. non-target proteins and illuminate mechanisms connecting covalent binding to cytotoxicity. Results Sorting 171 known reactive metabolite target proteins revealed a number of GO categories and KEGG pathways to be significantly enriched in targets, but in most cases the classes were too large, and the "percent coverage" too small, to allow meaningful conclusions about mechanisms of toxicity. However, a similar analysis of the directlyinteracting partners of 28 common targets of multiple reactive metabolites revealed highly significant enrichments in terms likely to be highly relevant to cytotoxicity (e.g., MAP kinase pathways, apoptosis, response to unfolded protein. Machine learning was used to rank the contribution of 211 computed protein features to determining protein susceptibility to adduction. Protein lysine (but not cysteine content and protein instability index (i.e., rate of turnover in vivo were among the features most important to determining susceptibility. Conclusion As yet there is no good explanation for why some low-abundance proteins become heavily adducted while some abundant proteins become only lightly adducted in vivo. Analyzing the directly interacting partners of target proteins appears to yield greater insight into mechanisms of toxicity than analyzing target proteins per se. The insights provided can readily be formulated as hypotheses to test in future experimental studies.

  1. The application of NMR-based milk metabolite analysis in milk authenticity identification.

    Science.gov (United States)

    Li, Qiangqiang; Yu, Zunbo; Zhu, Dan; Meng, Xianghe; Pang, Xiumei; Liu, Yue; Frew, Russell; Chen, He; Chen, Gang

    2017-07-01

    Milk is an important food component in the human diet and is a target for fraud, including many unsafe practices. For example, the unscrupulous adulteration of soymilk into bovine and goat milk or of bovine milk into goat milk in order to gain profit without declaration is a health risk, as the adulterant source and sanitary history are unknown. A robust and fit-for-purpose technique is required to enforce market surveillance and hence protect consumer health. Nuclear magnetic resonance (NMR) is a powerful technique for characterization of food products based on measuring the profile of metabolites. In this study, 1D NMR in conjunction with multivariate chemometrics as well as 2D NMR was applied to differentiate milk types and to identify milk adulteration. Ten metabolites were found which differed among milk types, hence providing characteristic markers for identifying the milk. These metabolites were used to establish mathematical models for milk type differentiation. The limit of quantification (LOQ) of adulteration was 2% (v/v) for soymilk in bovine milk, 2% (v/v) for soymilk in goat milk and 5% (v/v) for bovine milk in goat milk, with relative standard deviation (RSD) less than 10%, which can meet the needs of daily inspection. The NMR method described here is effective for milk authenticity identification, and the study demonstrates that the NMR-based milk metabolite analysis approach provides a means of detecting adulteration at expected levels and can be used for dairy quality monitoring. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  2. Identification of an Epoxide Metabolite of Lycopene in Human Plasma Using 13C-Labeling and QTOF-MS.

    Science.gov (United States)

    Cichon, Morgan J; Moran, Nancy E; Riedl, Ken M; Schwartz, Steven J; Clinton, Steven K

    2018-03-20

    The carotenoid lycopene is a bioactive component of tomatoes and is hypothesized to reduce risk of several chronic diseases, such as prostate cancer. The metabolism of lycopene is only beginning to be understood and some studies suggest that metabolites of lycopene may be partially responsible for bioactivity associated with the parent compound. The detection and characterization of these compounds in vivo is an important step in understanding lycopene bioactivity. The metabolism of lycopene likely involves both chemical and enzymatic oxidation. While numerous lycopene metabolites have been proposed, few have actually been identified in vivo following lycopene intake. Here, LC-QTOF-MS was used along with 13 C-labeling to investigate the post-prandial oxidative metabolism of lycopene in human plasma. Previously reported aldehyde cleavage products were not detected, but a lycopene 1,2-epoxide was identified as a new candidate oxidative metabolite.

  3. Induced sclerotium formation exposes new bioactive metabolites from Aspergillus sclerotiicarbonarius

    DEFF Research Database (Denmark)

    Petersen, Lene Maj; Frisvad, Jens Christian; Knudsen, Peter Boldsen

    2015-01-01

    Sclerotia are known to be fungal survival structures, and induction of sclerotia may prompt production of otherwise undiscovered metabolites. Aspergillus sclerotiicarbonarius (IBT 28362) was investigated under sclerotium producing conditions, which revealed a highly altered metabolic profile. Four...... new compounds were isolated from cultivation under sclerotium formation conditions and their structures elucidated using different analytical techniques (HRMS, UV, 1D and 2D NMR). This included sclerolizine, an alkylated and oxidized pyrrolizine, the new emindole analog emindole SC and two new...

  4. Metabolite Analysis of Toosendanin by an Ultra-High Performance Liquid Chromatography-Quadrupole-Time of Flight Mass Spectrometry Technique

    Directory of Open Access Journals (Sweden)

    Na Li

    2013-09-01

    Full Text Available Toosendanin is the major bioactive component of Melia toosendan Sieb. et Zucc., which is traditionally used for treatment of abdominal pain and as an insecticide. Previous studies reported that toosendanin possesses hepatotoxicity, but the mechanism remains unknown. Its bioavailability in rats is low, which indicates the hepatotoxicity might be induced by its metabolites. In this connection, in the current study, we examined the metabolites obtained by incubating toosendanin with human live microsomes, and then six of these metabolites (M1–M6 were identified for the first time by ultra-high performance liquid chromatography-quadrupole-time of flight mass spectrometry (UHPLC-Q-TOF/MS. Further analysis on the MS spectra showed M1, M2, and M3 are oxidative products and M6 is a dehydrogenation product, while M4 and M5 are oxidative and dehydrogenation products of toosendanin. Moreover, their possible structures were deduced from the MS/MS spectral features. Quantitative analysis demonstrated that M1-M5 levels rapidly increased and reached a plateau at 30 min, while M6 rapidly reached a maximal level at 20 min and then decreased slowly afterwards. These findings have provided valuable data not only for understanding the metabolic fate of toosendanin in liver microsomes, but also for elucidating the possible molecular mechanism of its hepatotoxicity.

  5. Inhibiting effect of bioactive metabolites produced by mushroom cultivation on bacterial quorum sensing-regulated behaviors.

    Science.gov (United States)

    Zhu, Hu; Wang, Shou-Xian; Zhang, Shuai-Shuai; Cao, Chun-Xu

    2011-01-01

    This study aimed to search for novel quorum sensing (QS) inhibitors from mushroom and to analyze their inhibitory activity, with a view to their possible use in controlling detrimental infections. The bioactive metabolites produced by mushroom cultivation were tested for their abilities to inhibit QS-regulated behavior. All mushroom strains were cultivated in potato-dextrose medium by large-scale submerged fermentation. The culture supernatant was condensed into 0.2 vol by freeze-drying. The condensed supernatant was sterilized by filtration through a 0.22-μm membrane filter and added to Chromobacterium violaceum CV026 cultures, which were used to monitor QS inhibition. Inhibitory activity was measured by quantifying violacein production using a microplate reader. The results have revealed that, of 102 mushroom strains, the bioactive metabolites produced by 14 basidiomycetes were found to inhibit violacein production, a QS-regulated behavior in C. violaceum. Higher fungi can produce QS-inhibitory compounds. Copyright © 2011 S. Karger AG, Basel.

  6. Methodological considerations for measuring glucocorticoid metabolites in feathers

    Science.gov (United States)

    Berk, Sara A.; McGettrick, Julie R.; Hansen, Warren K.; Breuner, Creagh W.

    2016-01-01

    In recent years, researchers have begun to use corticosteroid metabolites in feathers (fCORT) as a metric of stress physiology in birds. However, there remain substantial questions about how to measure fCORT most accurately. Notably, small samples contain artificially high amounts of fCORT per millimetre of feather (the small sample artefact). Furthermore, it appears that fCORT is correlated with circulating plasma corticosterone only when levels are artificially elevated by the use of corticosterone implants. Here, we used several approaches to address current methodological issues with the measurement of fCORT. First, we verified that the small sample artefact exists across species and feather types. Second, we attempted to correct for this effect by increasing the amount of methanol relative to the amount of feather during extraction. We consistently detected more fCORT per millimetre or per milligram of feather in small samples than in large samples even when we adjusted methanol:feather concentrations. We also used high-performance liquid chromatography to identify hormone metabolites present in feathers and measured the reactivity of these metabolites against the most commonly used antibody for measuring fCORT. We verified that our antibody is mainly identifying corticosterone (CORT) in feathers, but other metabolites have significant cross-reactivity. Lastly, we measured faecal glucocorticoid metabolites in house sparrows and correlated these measurements with corticosteroid metabolites deposited in concurrently grown feathers; we found no correlation between faecal glucocorticoid metabolites and fCORT. We suggest that researchers should be cautious in their interpretation of fCORT in wild birds and should seek alternative validation methods to examine species-specific relationships between environmental challenges and fCORT. PMID:27335650

  7. Chemical transformations of characteristic hop secondary metabolites in relation to beer properties and the brewing process: a review.

    Science.gov (United States)

    Steenackers, Bart; De Cooman, Luc; De Vos, Dirk

    2015-04-01

    The annual production of hops (Humulus lupulus L.) exceeds 100,000 mt and is almost exclusively consumed by the brewing industry. The value of hops is attributed to their characteristic secondary metabolites; these metabolites are precursors which are transformed during the brewing process into important bittering, aromatising and preservative components with rather low efficiency. By selectively transforming these components off-line, both their utilisation efficiency and functionality can be significantly improved. Therefore, the chemical transformations of these secondary metabolites will be considered with special attention to recent advances in the field. The considered components are the hop alpha-acids, hop beta-acids and xanthohumol, which are components unique to hops, and alpha-humulene and beta-caryophyllene, sesquiterpenes which are highly characteristic of hops. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Secondary metabolites from Eurotium species, Aspergillus calidoustus and A. insuetus common in Canadian homes with a review of their chemistry and biological activities.

    Science.gov (United States)

    Slack, Gregory J; Puniani, Eva; Frisvad, Jens C; Samson, Robert A; Miller, J David

    2009-04-01

    As part of studies of metabolites from fungi common in the built environment in Canadian homes, we investigated metabolites from strains of three Eurotium species, namely E. herbariorum, E. amstelodami, and E. rubrum as well as a number of isolates provisionally identified as Aspergillus ustus. The latter have been recently assigned as the new species A. insuetus and A. calidoustus. E. amstelodami produced neoechinulin A and neoechinulin B, epiheveadride, flavoglaucin, auroglaucin, and isotetrahydroauroglaucin as major metabolites. Minor metabolites included echinulin, preechinulin and neoechinulin E. E. rubrum produced all of these metabolites, but epiheveadride was detected as a minor metabolite. E. herbariorum produced cladosporin as a major metabolite, in addition to those found in E. amstelodami. This species also produced questin and neoechinulin E as minor metabolites. This is the first report of epiheveadride occurring as a natural product, and the first nonadride isolated from Eurotium species. Unlike strains from mainly infection-related samples, largely from Europe, neither ophiobolins G and H nor austins were detected in the Canadian strains of A. insuetus and A. calidoustus tested, all of which had been reported from the latter species. TMC-120 A, B, C and a sesquiterpene drimane are reported with certainty for the first time from indoor isolates, as well as two novel related methyl isoquinoline alkaloids.

  9. In vitro production of secondary metabolite using Atropa komarovii Bline&Shal (Solanaceae hairy root culture via Agrobacterium rhizogenes ATCC15834

    Directory of Open Access Journals (Sweden)

    Ofelia Banihashemi

    2017-07-01

    Full Text Available Background & Aim:A new sustainable tissue-based system is presented by plant hairy roots, preserving all of the several specialized types of cell with critical roles in allowing bioactive secondary molecules to be synthesized more consistently as usual. The system is also essential for studying the production of alkaloid in culture. Experimental: The Atropa komarovii leaves were wounded and infected with soil gram-negative bacterium Agrobacterium rhizogenes ATCC15834. After three weeks, the transformation roots and control roots without infection, appeared, and for confirming that T-DNA Ri plasmid fragments were transformed and integrated to plant genome, the rolB gene region, was amplified using PCR. HPLC method was then used for assaying how two tropane alkaloids such as atropine (hyosciamine and scopolamine (hyoscine were produced in hairy roots,control roots, leaves and roots of plantlet. Results: The data indicated that diagnostic 500bp rol B product amplification was exhibited to be present by all the transformed hairy roots. Scopolamine content in hairy roots was considerably greater than that in control roots but greatest (Hyoscyamine atropine content was observed in control roots. Analysis of DW, FW and root length showed that fresh and dry root weight increased in hairy roots compared with that in non transformed root. Recommended applications/industries: The present study demonstrated that secondary metabolite production using medicinal plants concerns many researchers worldwide today and hairy root culture is a useful method for producing tropane alkaloids in solanaceae.

  10. Characterization of ornidazole metabolites in human bile after intraveneous doses by ultraperformance liquid chromatography/quadrupole time-of-flight mass spectrometry

    Directory of Open Access Journals (Sweden)

    Jiangbo Du

    2012-04-01

    Full Text Available Ultraperformance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF MS was used to characterize ornidazole metabolites in human bile after intravenous doses. A liquid chromatography tandem mass spectrometry (LC–MS/MS assay was developed for the determination of the bile level of ornidazole. Bile samples, collected from four patients with T-tube drainage after biliary tract surgery, were prepared by protein precipitation with acetonitrile before analysis. A total of 12 metabolites, including 10 novel metabolites, were detected and characterized. The metabolites of ornidazole in human bile were the products of hydrochloride (HCl elimination, oxidative dechlorination, hydroxylation, sulfation, diastereoisomeric glucuronation, and substitution of NO2 or Cl atom by cysteine or N-acetylcysteine, and oxidative dechlorination followed by further carboxylation. The bile levels of ornidazole at 12 h after multiple intravenous infusions were well above its minimal inhibitory concentration for common strains of anaerobic bacteria.

  11. GMP-compliant radiosynthesis of [{sup 18}F]altanserin and human plasma metabolite studies

    Energy Technology Data Exchange (ETDEWEB)

    Hasler, F. [University Hospital of Psychiatry, Heffter Research Center, Zurich (Switzerland)], E-mail: fehasler@bli.uzh.ch; Kuznetsova, O.F.; Krasikova, R.N. [Institute of the Human Brain, Russian Academy of Science, St. Petersburg (Russian Federation); Cservenyak, T. [Center for Radiopharmaceutical Sciences of ETH, PSI and University Hospital Zurich (Switzerland); Quednow, B.B.; Vollenweider, F.X. [University Hospital of Psychiatry, Heffter Research Center, Zurich (Switzerland); Ametamey, S.M.; Westera, G. [Center for Radiopharmaceutical Sciences of ETH, PSI and University Hospital Zurich (Switzerland)

    2009-04-15

    [{sup 18}F]altanserin is the preferred radiotracer for in-vivo labeling of serotonin 2A receptors by positron emission tomography (PET). We report a modified synthesis procedure suited for reliable production of multi-GBq amounts of [{sup 18}F]altanserin useful for application in humans. We introduced thermal heating for drying of [{sup 18}F]fluoride as well as for the reaction instead of microwave heating. We furthermore describe solid phase extraction and HPLC procedures for quantitative determination of [{sup 18}F]altanserin and metabolites in plasma. The time course of arterial plasma activity with and without metabolite correction was determined. 90 min after bolus injection, 38.4% of total plasma activity derived from unchanged [{sup 18}F]altanserin. Statistical comparison of kinetic profiles of [{sup 18}F]altanserin metabolism in plasma samples collected in the course of two ongoing studies employing placebo, the serotonin releaser dexfenfluramine and the hallucinogen psilocybin, revealed the same tracer metabolism. We conclude that metabolite analysis for correction of individual plasma input functions used in tracer modeling is not necessary for [{sup 18}F]altanserin studies involving psilocybin or dexfenfluramine treatment.

  12. Pharmaceutically active secondary metabolites of marine actinobacteria.

    Science.gov (United States)

    Manivasagan, Panchanathan; Venkatesan, Jayachandran; Sivakumar, Kannan; Kim, Se-Kwon

    2014-04-01

    Marine actinobacteria are one of the most efficient groups of secondary metabolite producers and are very important from an industrial point of view. Many representatives of the order Actinomycetales are prolific producers of thousands of biologically active secondary metabolites. Actinobacteria from terrestrial sources have been studied and screened since the 1950s, for many important antibiotics, anticancer, antitumor and immunosuppressive agents. However, frequent rediscovery of the same compounds from the terrestrial actinobacteria has made them less attractive for screening programs in the recent years. At the same time, actinobacteria isolated from the marine environment have currently received considerable attention due to the structural diversity and unique biological activities of their secondary metabolites. They are efficient producers of new secondary metabolites that show a range of biological activities including antibacterial, antifungal, anticancer, antitumor, cytotoxic, cytostatic, anti-inflammatory, anti-parasitic, anti-malaria, antiviral, antioxidant, anti-angiogenesis, etc. In this review, an evaluation is made on the current status of research on marine actinobacteria yielding pharmaceutically active secondary metabolites. Bioactive compounds from marine actinobacteria possess distinct chemical structures that may form the basis for synthesis of new drugs that could be used to combat resistant pathogens. With the increasing advancement in science and technology, there would be a greater demand for new bioactive compounds synthesized by actinobacteria from various marine sources in future. Copyright © 2013 Elsevier GmbH. All rights reserved.

  13. Metabolites in vertebrate Hedgehog signaling.

    Science.gov (United States)

    Roberg-Larsen, Hanne; Strand, Martin Frank; Krauss, Stefan; Wilson, Steven Ray

    2014-04-11

    The Hedgehog (HH) signaling pathway is critical in embryonic development, stem cell biology, tissue homeostasis, chemoattraction and synapse formation. Irregular HH signaling is associated with a number of disease conditions including congenital disorders and cancer. In particular, deregulation of HH signaling has been linked to skin, brain, lung, colon and pancreatic cancers. Key mediators of the HH signaling pathway are the 12-pass membrane protein Patched (PTC), the 7-pass membrane protein Smoothened (SMO) and the GLI transcription factors. PTC shares homology with the RND family of small-molecule transporters and it has been proposed that it interferes with SMO through metabolites. Although a conclusive picture is lacking, substantial efforts are made to identify and understand natural metabolites/sterols, including cholesterol, vitamin D3, oxysterols and glucocorticoides, that may be affected by, or influence the HH signaling cascade at the level of PTC and SMO. In this review we will elaborate the role of metabolites in HH signaling with a focus on oxysterols, and discuss advancements in modern analytical approaches in the field. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Formation and Change of Chloroplast-Located Plant Metabolites in Response to Light Conditions

    Directory of Open Access Journals (Sweden)

    Yiyong Chen

    2018-02-01

    Full Text Available Photosynthesis is the central energy conversion process for plant metabolism and occurs within mature chloroplasts. Chloroplasts are also the site of various metabolic reactions involving amino acids, lipids, starch, and sulfur, as well as where the production of some hormones takes place. Light is one of the most important environmental factors, acting as an essential energy source for plants, but also as an external signal influencing their growth and development. Plants experience large fluctuations in the intensity and spectral quality of light, and many attempts have been made to improve or modify plant metabolites by treating them with different light qualities (artificial lighting or intensities. In this review, we discuss how changes in light intensity and wavelength affect the formation of chloroplast-located metabolites in plants.

  15. Phthalate metabolites in urine samples from Danish children and correlations with phthalates in dust samples from their homes and daycare centers

    DEFF Research Database (Denmark)

    Langer, S.; Bekö, Gabriel; Weschler, Charles J.

    2013-01-01

    Around the world humans use products that contain phthalates, and human exposure to certain of these phthalates has been associated with various adverse health effects. The aim of the present study has been to determine the concentrations of the metabolites of diethyl phthalate (DEP), di......(n-butyl) phthalate (DnBP), di(iso-butyl) phthalate (DiBP), butyl benzyl phthalate (BBzP) and di(2-ethylhexyl) phthalate (DEHP) in urine samples from 441 Danish children (3–6 years old). These children were subjects in the Danish Indoor Environment and Children's Health study. As part of each child's medical...... examination, a sample from his or her first morning urination was collected. These samples were subsequently analyzed for metabolites of the targeted phthalates. The measured concentrations of each metabolite were approximately log-normally distributed, and the metabolite concentrations significantly...

  16. Genetic manipulation of longevity-related genes as a tool to regulate yeast life span and metabolite production during winemaking.

    Science.gov (United States)

    Orozco, Helena; Matallana, Emilia; Aranda, Agustín

    2013-01-02

    production profile of metabolites of industrial relevance.

  17. [Identification of saponins from Panax notoginseng in metabolites of rats].

    Science.gov (United States)

    Shen, Wen-Wen; Zhang, Yin; Qiu, Shou-Bei; Zhu, Fen-Xia; Jia, Xiao-Bin; Tang, Dao-Quan; Chen, Bin

    2017-10-01

    UPLC-QTOF-MS/MS was used to identify metabolites in rat blood, urine and feces after the administration of n-butanol extract derived from steamed notoginseng. The metabolic process of saponins came from steamed notoginseng was analyzed. The metabolites were processed by PeakView software, and identified according to the structural characteristics of prototype compounds and the accurate qualitative and quantitative changes of common metabolic pathways. Four saponins metabolites were identified based on MS/MS information of metabolites, namely ginsenoside Rh₄, Rk₃, Rk₁, Rg₅,and their 15 metabolites were verified. The metabolic pathways of the four ginsenosides in n-butanol extract included glucuronidation, desugar, sulfation, dehydromethylation, and branch loss. The metabolites of main active saponin components derived from steamed Panax notoginseng were analyzed from the perspective of qualitative analysis. And the material basis for the efficacy of steamed notoginseng was further clarified. Copyright© by the Chinese Pharmaceutical Association.

  18. InSourcerer: a high-throughput method to search for unknown metabolite modifications by mass spectrometry.

    Science.gov (United States)

    Mrzic, Aida; Lermyte, Frederik; Vu, Trung Nghia; Valkenborg, Dirk; Laukens, Kris

    2017-09-15

    Using mass spectrometry, the analysis of known metabolite structures has become feasible in a systematic high-throughput fashion. Nevertheless, the identification of previously unknown structures remains challenging, partially because many unidentified variants originate from known molecules that underwent unexpected modifications. Here, we present a method for the discovery of unknown metabolite modifications and conjugate metabolite isoforms in a high-throughput fashion. The method is based on user-controlled in-source fragmentation which is used to induce loss of weakly bound modifications. This is followed by the comparison of product ions from in-source fragmentation and collision-induced dissociation (CID). Diagonal MS 2 -MS 3 matching allows the detection of unknown metabolite modifications, as well as substructure similarities. As the method relies heavily on the advantages of in-source fragmentation and its ability to 'magically' elucidate unknown modification, we have named it inSourcerer as a portmanteau of in-source and sorcerer. The method was evaluated using a set of 15 different cytokinin standards. Product ions from in-source fragmentation and CID were compared. Hierarchical clustering revealed that good matches are due to the presence of common substructures. Plant leaf extract, spiked with a mix of all 15 standards, was used to demonstrate the method's ability to detect these standards in a complex mixture, as well as confidently identify compounds already present in the plant material. Here we present a method that incorporates a classic liquid chromatography/mass spectrometry (LC/MS) workflow with fragmentation models and computational algorithms. The assumptions upon which the concept of the method was built were shown to be valid and the method showed that in-source fragmentation can be used to pinpoint structural similarities and indicate the occurrence of a modification. Copyright © 2017 John Wiley & Sons, Ltd.

  19. Secondary metabolite comparison of the species within the Heterobasidion annosum s.l. complex

    DEFF Research Database (Denmark)

    Hansson, David; Wubshet, Sileshi Gizachew; Olson, Åke

    2014-01-01

    The metabolite production of the five members of the fungal species complex Heterobasidion annosum s.l., i.e. H. annosum s.s., H. abietinum, H. parviporum, H. occidentale and H. irregulare, was analyzed by LC–HRMS. The five members are described to have differences in host preferences: H. annosum...

  20. Absolute Configuration Determination by Quantum Mechanical Calculation of Chiroptical Spectra: Basics and Applications to Fungal Metabolites.

    Science.gov (United States)

    Superchi, Stefano; Scafato, Patrizia; Gorecki, Marcin; Pescitelli, Gennaro

    2018-01-01

    Quantum mechanical simulations of chiroptical properties, such as electronic circular dichroism (ECD), optical rotation (OR), and vibrational circular dichroism (VCD), have rapidly become very popular to assign the absolute configuration of novel natural products. We review the application of the ECD/OR/VCD computational methodology to chiral metabolites of fungal origin. First, we summarize the fundamentals of the three spectroscopies; then, we focus on the specific experimental and computational issues allied to the application of their calculations. We surveyed the entire literature describing the use of ECD/OR/VCD computations for fungal metabolites, and catalogued all papers according to the method employed and to the structural family of compounds. Then, we chose several examples to illustrate the use of the techniques and highlight the practical application of the computational approach. Our literature survey demonstrates that the simulation of ECD/OR/VCD spectra is nowadays widespread and accessible also to non-experts, although a good computational practice is necessary to avoid wrong assignments. ECD is still the most common technique used in the context of fungal metabolites. OR and VCD may be profitably employed when the compound of interest lacks chromophoric groups. Our examples illustrate that the combination of two or more chiroptical methods is strongly advisable in some cases, especially in the presence of high conformational flexibility, where a single technique does not lead to a safe conclusion. The ECD/OR/VCD computational approach is a reliable and versatile method to assign the absolute configuration of fungal metabolites and related natural products. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Milk decreases urinary excretion but not plasma pharmacokinetics of cocoa flavan-3-ol metabolites in humans.

    Science.gov (United States)

    Mullen, William; Borges, Gina; Donovan, Jennifer L; Edwards, Christine A; Serafini, Mauro; Lean, Michael E J; Crozier, Alan

    2009-06-01

    Cocoa drinks containing flavan-3-ols are associated with many health benefits, and conflicting evidence exists as to whether milk adversely affects the bioavailability of flavan-3-ols. The objective was to determine the effect of milk on the bioavailability of cocoa flavan-3-ol metabolites. Nine human volunteers followed a low-flavonoid diet for 2 d before drinking 250 mL of a cocoa beverage, made with water or milk, that contained 45 micromol (-)-epicatechin and (-)-catechin. Plasma and urine samples were collected for 24 h, and flavan-3-ol metabolites were analyzed by HPLC with photodiode array and mass spectrometric detection. Milk affected neither gastric emptying nor the transit time through the small intestine. Two flavan-3-ol metabolites were detected in plasma and 4 in urine. Milk had only minor effects on the plasma pharmacokinetics of an (epi)catechin-O-sulfate and had no effect on an O-methyl-(epi)catechin-O-sulfate. However, milk significantly lowered the excretion of 4 urinary flavan-3-ol metabolites from 18.3% to 10.5% of the ingested dose (P = 0.016). Studies that showed protective effects of cocoa and those that showed no effect of milk on bioavailability used products that have a much higher flavan-3-ol content than does the commercial cocoa used in the present study. Most studies of the protective effects of cocoa have used drinks with a very high flavan-3-ol content. Whether similar protective effects are associated with the consumption of many commercial chocolate and cocoa products containing substantially lower amounts of flavan-3-ols, especially when absorption at lower doses is obstructed by milk, remains to be determined.

  2. Benzene: a case study in parent chemical and metabolite interactions.

    Science.gov (United States)

    Medinsky, M A; Kenyon, E M; Schlosser, P M

    1995-12-28

    Benzene, an important industrial solvent, is also present in unleaded gasoline and cigarette smoke. The hematotoxic effects of benzene in humans are well documented and include aplastic anemia and pancytopenia, and acute myelogenous leukemia. A combination of metabolites (hydroquinone and phenol for example) is apparently necessary to duplicate the hematotoxic effect of benzene, perhaps due in part to the synergistic effect of phenol on myeloperoxidase-mediated oxidation of hydroquinone to the reactive metabolite benzoquinone. Since benzene and its hydroxylated metabolites (phenol, hydroquinone and catechol) are substrates for the same cytochrome P450 enzymes, competitive interactions among the metabolites are possible. In vivo data on metabolite formation by mice exposed to various benzene concentrations are consistent with competitive inhibition of phenol oxidation by benzene. In vitro studies of the metabolic oxidation of benzene, phenol and hydroquinone are consistent with the mechanism of competitive interaction among the metabolites. The dosimetry of benzene and its metabolites in the target tissue, bone marrow, depends on the balance of activation processes such as enzymatic oxidation and deactivation processes such as conjugation and excretion. Phenol, the primary benzene metabolite, can undergo both oxidation and conjugation. Thus, the potential exists for competition among various enzymes for phenol. However, zonal localization of Phase I and Phase II enzymes in various regions of the liver acinus regulates this competition. Biologically-based dosimetry models that incorporate the important determinants of benzene flux, including interactions with other chemicals, will enable prediction of target tissue doses of benzene and metabolites at low exposure concentrations relevant for humans.

  3. Bacillus velezensis RC 218 as a biocontrol agent to reduce Fusarium head blight and deoxynivalenol accumulation: Genome sequencing and secondary metabolite cluster profiles.

    Science.gov (United States)

    Palazzini, Juan M; Dunlap, Christopher A; Bowman, Michael J; Chulze, Sofía N

    2016-11-01

    Bacillus subtilis RC 218 was originally isolated from wheat anthers as a potential antagonist of Fusarium graminearum, the causal agent of Fusarium head blight (FHB). It was demonstrated to have antagonist activity against the plant pathogen under in vitro and greenhouse assays. The current study extends characterizing B. subtilis RC 218 with a field study and genome sequencing. The field study demonstrated that B. subtilis RC 218 could reduce disease severity and the associated mycotoxin (deoxynivalenol) accumulation, under field conditions. The genome sequencing allowed us to accurately determine the taxonomy of the strain using a phylogenomic approach, which places it in the Bacillus velezensis clade. In addition, the draft genome allowed us to use bioinformatics to mine the genome for potential metabolites. The genome mining allowed us to identify 9 active secondary metabolites conserved by all B. velezensis strains and one additional secondary metabolite, the lantibiotic ericin, which is unique to this strain. This study represents the first confirmed production of ericin by a B. velezensis strain. The genome also allowed us to do a comparative genomics with its closest relatives and compare the secondary metabolite production of the publically available B. velezensis genomes. The results showed that the diversity in secondary metabolites of strains in the B. velezensis clade is driven by strains making different antibacterials. Copyright © 2016 Elsevier GmbH. All rights reserved.

  4. SistematX, an Online Web-Based Cheminformatics Tool for Data Management of Secondary Metabolites.

    Science.gov (United States)

    Scotti, Marcus Tullius; Herrera-Acevedo, Chonny; Oliveira, Tiago Branquinho; Costa, Renan Paiva Oliveira; Santos, Silas Yudi Konno de Oliveira; Rodrigues, Ricardo Pereira; Scotti, Luciana; Da-Costa, Fernando Batista

    2018-01-03

    The traditional work of a natural products researcher consists in large part of time-consuming experimental work, collecting biota to prepare and analyze extracts and to identify innovative metabolites. However, along this long scientific path, much information is lost or restricted to a specific niche. The large amounts of data already produced and the science of metabolomics reveal new questions: Are these compounds known or new? How fast can this information be obtained? To answer these and other relevant questions, an appropriate procedure to correctly store information on the data retrieved from the discovered metabolites is necessary. The SistematX (http://sistematx.ufpb.br) interface is implemented considering the following aspects: (a) the ability to search by structure, SMILES (Simplified Molecular-Input Line-Entry System) code, compound name and species; (b) the ability to save chemical structures found by searching; (c) compound data results include important characteristics for natural products chemistry; and (d) the user can find specific information for taxonomic rank (from family to species) of the plant from which the compound was isolated, the searched-for molecule, and the bibliographic reference and Global Positioning System (GPS) coordinates. The SistematX homepage allows the user to log into the data management area using a login name and password and gain access to administration pages. In this article, we introduced a modern and innovative web interface for the management of a secondary metabolite database. With its multiplatform design, it is able to be properly consulted via the internet and managed from any accredited computer. The interface provided by SistematX contains a wealth of useful information for the scientific community about natural products, highlighting the locations of species from which compounds are isolated.

  5. Yeast Metabolites of Glycated Amino Acids in Beer.

    Science.gov (United States)

    Hellwig, Michael; Beer, Falco; Witte, Sophia; Henle, Thomas

    2018-06-01

    Glycation reactions (Maillard reactions) during the malting and brewing processes are important for the development of the characteristic color and flavor of beer. Recently, free and protein-bound Maillard reaction products (MRPs) such as pyrraline, formyline, and maltosine were found in beer. Furthermore, these amino acid derivatives are metabolized by Saccharomyces cerevisiae via the Ehrlich pathway. In this study, a method was developed for quantitation of individual Ehrlich intermediates derived from pyrraline, formyline, and maltosine. Following synthesis of the corresponding reference material, the MRP-derived new Ehrlich alcohols pyrralinol (up to 207 μg/L), formylinol (up to 50 μg/L), and maltosinol (up to 6.9 μg/L) were quantitated for the first time in commercial beer samples by reverse phase high performance liquid chromatography tandem mass spectrometry in the multiple reaction monitoring mode. This is equivalent to ca. 20-40% of the concentrations of the parent glycated amino acids. The metabolites were almost absent from alcohol-free beers and malt-based beverages. Two previously unknown valine-derived pyrrole derivatives were characterized and qualitatively identified in beer. The metabolites investigated represent new process-induced alkaloids that may influence brewing yeast performance due to structural similarities to quorum sensing and metal-binding molecules.

  6. Metabolites from roots of Colubrina greggii var. yucatanensis and evaluation of their antiprotozoan, cytotoxic and antiproliferative activities

    International Nuclear Information System (INIS)

    Dominguez-Carmona, Dafne B.; Escalante-Erosa, Fabiola; Garcia-Sosa, Karlina; Pena-Rodriguez, Luis M.

    2011-01-01

    Purification of the root extract of Colubrina greggii var. yucatanensis resulted in the isolation and identification of 3-O-acetyl ceanothic acid as a new natural ceanothane triterpene, together with the known metabolites ceanothic acid, cenothenic acid, betulinic acid, discarine B and chrysophanein. The natural products and the semisynthetic esters acetyl dimethyl ceanothate, dimethyl ceanothate and chrysophanein peracetate showed moderate to low leishmanicidal and trypanocidal activities. None of the metabolites showed cytotoxic or antiproliferative effects. The results also suggested that betulinic acid contributes to the antiplasmodial activity originally detected in the crude root extract of C. greggii var. yucatanensis. (author)

  7. Metabolites from roots of Colubrina greggii var. yucatanensis and evaluation of their antiprotozoan, cytotoxic and antiproliferative activities

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez-Carmona, Dafne B.; Escalante-Erosa, Fabiola; Garcia-Sosa, Karlina; Pena-Rodriguez, Luis M., E-mail: lmanuel@cicy.m [Centro de Investigacion Cientifica de Yucatan (Mexico). Unidad de Biotecnologia; Ruiz-Pinell, Grace; Gutierrez-Yapu, David; Gimenez-Turba, Alberto [Universidad Mayor de San Andres, La Paz (Bolivia, Plurinational State of). Inst. de Investigaciones Farmaco-Bioquimicas; Chan-Bacab, Manuel J. [Universidad Autonoma de Campeche (Mexico). Dept. de Microbiologia Ambiental y Biotecnologia; Moo-Puc, Rosa E. [Centro Medico Ignacio Garcia Tellez, Col. Industrial, Merida, Yucatan (Mexico). Unidad de Investigacion Medica Yucatan y Unidad Medica de Alta Especialidad; Veitch, Nigel C. [Jodrell Laboratory, Richmond, Surrey (United Kingdom)

    2011-07-01

    Purification of the root extract of Colubrina greggii var. yucatanensis resulted in the isolation and identification of 3-O-acetyl ceanothic acid as a new natural ceanothane triterpene, together with the known metabolites ceanothic acid, cenothenic acid, betulinic acid, discarine B and chrysophanein. The natural products and the semisynthetic esters acetyl dimethyl ceanothate, dimethyl ceanothate and chrysophanein peracetate showed moderate to low leishmanicidal and trypanocidal activities. None of the metabolites showed cytotoxic or antiproliferative effects. The results also suggested that betulinic acid contributes to the antiplasmodial activity originally detected in the crude root extract of C. greggii var. yucatanensis. (author)

  8. Secondary metabolites from Eremostachys laciniata

    DEFF Research Database (Denmark)

    Calis, Ihsan; Güvenc, Aysegül; Armagan, Metin

    2008-01-01

    ), and forsythoside B (18), and five flavone derivatives, luteolin (19), luteolin 7-O-β-D-glucopyranoside (20), luteolin 7-O-(6''-O-β-D-apiofuranosyl)-β-D-glucopyranoside (21), apigenin 7-O-β-D-glucopyranoside (22), and apigenin 7-O-(6''-O-p-coumaroyl)-β-D-glucopyranoside (23). The structures of the metabolites were...... elucidated from spectroscopic (UV, IR, 1D- and 2D-NMR) and ESI-MS evidence, as well as from their specific optical rotation. The presence of these metabolites of three different classes strongly supports the close relationship of the genera Eremostachys and Phlomis....

  9. An update on organohalogen metabolites produced by basidiomycetes

    NARCIS (Netherlands)

    Field, J.A.; Wijnberg, J.B.P.A.

    2003-01-01

    Basidiomycetes are an ecologically important group of higher fungi known for their widespread capacity to produce organohalogen metabolites. To date, 100 different organohalogen metabolites (mostly chlorinated) have been identified from strains in 70 genera of Basidiomycetes. This manuscript

  10. Synthesis of testosteron-1,2-T and its metabolites

    International Nuclear Information System (INIS)

    Postolache, Cristian; Matei, Lidia; Barna, Catalina; Condac, Eduard

    2002-01-01

    of labelled testosterone and dehydrotestosterone revealed a radiochemical purity higher than 98 % and a high specific activity. Radiochemical characteristics of the labelled compounds obtained by chemical synthesis are given. Testosterone-T was highly purified by liquid chromatography using a Celite column activated at 600 deg. C and isooctane, then isooctane: toluene as eluant. It was then used as substrate in the biosynthesis of labelled metabolites of testosterone. The enzymatic assay was performed on the prostate tissular homogenate and human skin. The substrates were incubated with the labelled testosterone and NADPH was used as cofactor. After the enzymatic reaction was stopped, the labelled testosterone and its metabolites were extracted with a cyclohexane-ethyl acetate mixture. Labelled products were separated by liquid chromatography using Celite as substrate. Radiochromatogram of testosterone-1,2-T metabolites is shown. The obtained labelled compound can be utilized in molecular biology studies and as labelled antigen (testosterone-T) in RIA kits for dosage of steroids in food products. (authors)

  11. Metabolome analysis - mass spectrometry and microbial primary metabolites

    DEFF Research Database (Denmark)

    Højer-Pedersen, Jesper Juul

    2008-01-01

    , and therefore sample preparation is critical for metabolome analysis. The three major steps in sample preparation for metabolite analysis are sampling, extraction and concentration. These three steps were evaluated for the yeast Saccharomyces cerevisiae with primary focus on analysis of a large number...... of metabolites by one method. The results highlighted that there were discrepancies between different methods. To increase the throughput of cultivation, S. cerevisiae was grown in microtitier plates (MTPs), and the growth was found to be comparable with cultivations in shake flasks. The carbon source was either...... a theoretical metabolome. This showed that in combination with the specificity of MS up to 84% of the metabolites can be identified in a high-accuracy ESI-spectrum. A total of 66 metabolites were systematically analyzed by positive and negative ESI-MS/MS with the aim of initiating a spectral library for ESI...

  12. Influence of natural substrates and co-occurring marine bacteria on the production of secondary metabolites by Photobacterium halotolerans

    DEFF Research Database (Denmark)

    Månsson, Maria; Giobergia, Sonia; Møller, Kirsten A.

    Genome sequences reveal that our current standard laboratory conditions only support a fraction of the potential secondary metabolism in bacteria. Thus, we must rethink cultivation, detection, and isolation strategies for bacterial secondary metabolites in order to explore the huge, so far...

  13. Study on production of useful metabolites by development of advanced cell culture techniques using radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Byung Yeoup; Kim, Jin Hong; Lee, Seung Sik; Kim, Jae Sung; An, Byung Chull; Moon, Yu Ran; Lee, Eun Mi; Lee, Min Hee; Lee, Jae Tack [KAERI, Daejeon (Korea, Republic of)

    2010-02-15

    The purpose of this project is improvement of investigation, materialization and evaluation techniques on effectiveness for functional natural compounds throughout development of tissue/cell culture techniques for mass production of useful metabolites using radiation. Research scope includes 1) Development of a technique for radiation tissue and cell culture, 2) Database construction for radiation response in plants and radiation effects, 3) Construction of general-purpose national based techniques of cell culture technique using radiation. Main results are as follow: mass culture of the adventitious roots of mountain ginseng (Panax ginseng C. A. Meyer) roots using rare earth elements in bioreactor: characterization of a transcription factor EoP gene from centipedegrass and the transcription regulation of LexA from Synechocystis sp PCC6803 and E. coli: identification of gamma-ray induced hydrogenase synthesis in hox gene transformed E. coli: transformation and the selection of the EoP transgene from Arabidopsis, rice and lettuce: Identification of the maysin and maysin derivatives in centipedegrass: characterization of gamma-ray induced color change in Taxus cuspidata: verification of the expression of antioxidant proteins (POD, APX and CAT) to gamma-ray in Arabidopsis: comparison of the response of the expression level to gamma-ray or H{sub 2}O{sub 2} in Arabidopsis; verification of the responses and effects to gamma-ray from plants (analysis of NPQ and ROS levels): the development method for rapidly enhancing maysin content of centipede grass; establishment of mass culture system for red beet

  14. Study on production of useful metabolites by development of advanced cell culture techniques using radiation

    International Nuclear Information System (INIS)

    Chung, Byung Yeoup; Kim, Jin Hong; Lee, Seung Sik; Kim, Jae Sung; An, Byung Chull; Moon, Yu Ran; Lee, Eun Mi; Lee, Min Hee; Lee, Jae Tack

    2010-02-01

    The purpose of this project is improvement of investigation, materialization and evaluation techniques on effectiveness for functional natural compounds throughout development of tissue/cell culture techniques for mass production of useful metabolites using radiation. Research scope includes 1) Development of a technique for radiation tissue and cell culture, 2) Database construction for radiation response in plants and radiation effects, 3) Construction of general-purpose national based techniques of cell culture technique using radiation. Main results are as follow: mass culture of the adventitious roots of mountain ginseng (Panax ginseng C. A. Meyer) roots using rare earth elements in bioreactor: characterization of a transcription factor EoP gene from centipedegrass and the transcription regulation of LexA from Synechocystis sp PCC6803 and E. coli: identification of gamma-ray induced hydrogenase synthesis in hox gene transformed E. coli: transformation and the selection of the EoP transgene from Arabidopsis, rice and lettuce: Identification of the maysin and maysin derivatives in centipedegrass: characterization of gamma-ray induced color change in Taxus cuspidata: verification of the expression of antioxidant proteins (POD, APX and CAT) to gamma-ray in Arabidopsis: comparison of the response of the expression level to gamma-ray or H 2 O 2 in Arabidopsis; verification of the responses and effects to gamma-ray from plants (analysis of NPQ and ROS levels): the development method for rapidly enhancing maysin content of centipede grass; establishment of mass culture system for red beet

  15. Novel urinary metabolite of d-delta-tocopherol in rats

    International Nuclear Information System (INIS)

    Chiku, S.; Hamamura, K.; Nakamura, T.

    1984-01-01

    A novel metabolite of d-delta-tocopherol was isolated from the urine of rats given d-3,4-[ 3 H 2 ]-delta-tocopherol intravenously. The metabolite was collected from the urine of rats given d-delta-tocopherol in the same manner as that of the labeled compound. It was found that the metabolites consisted of sulfate conjugates. The portion of the major metabolite released with sulfatase was determined to be 2,8-dimethyl-2-(2'-carboxyethyl)-6-chromanol by infrared spectra, nuclear magnetic resonance spectra, and mass spectra. The proposed structure was confirmed by comparing the analytical results with those of a synthetically derived compound. As a result of the structural elucidation of this novel metabolite, a pathway for the biological transformation of delta-tocopherol is proposed which is different from that of alpha-tocopherol. A characteristic feature of the pathway is the absence of any opening of the chroman ring throughout the sequence

  16. Circulating prostacyclin metabolites in the dog

    International Nuclear Information System (INIS)

    Taylor, B.M.; Shebuski, R.J.; Sun, F.F.

    1983-01-01

    The present study was designed to determine the concentration of prostacyclin (PGI2) metabolites in the blood of the dog. After a bolus i.v. dose of [11 beta- 3 H]PGI2 (5 micrograms/kg) into each of five dogs, blood samples were withdrawn at 0.33, 0.67, 1, 3, 5, 20, 30, 60 and 120 min postdrug administration. Plasma samples were extracted and the radioactive components were analyzed by two-dimensional thin-layer chromatography with autoradiofluorography and radio-high-performance liquid chromatography. The compounds were identified by comparing their mobility with synthetic standards; only parallel responses observed in both tests constituted positive identification. Seven metabolites were identified by these two techniques: 6-keto-prostaglandin (PG)F1 alpha; 6-keto-PGE1; 2,3-dinor-6-keto-PGF 1 alpha; 2,3-dinor-13,14-dihydro-6,15-diketo-20-carboxyl PGF 1 alpha; and 2,3,18,19-tetranor-13,14-dihydro-6,15-diketo-20-carboxyl PGF 1 alpha. Several additional compounds, both polar and nonpolar in nature, which did not co-chromatograph with any of our standards were also detected. Early samples consisted predominantly of 6-keto-PGF 1 alpha and other 20-carbon metabolites. By 30 min, the predominant metabolites were the 16- and 18-carbon dicarboxylic acids. By 60 min, 85% of the radioactivity was associated with two unidentified polar compounds. The evidence suggests that 6-keto-PGF 1 alpha probably reflects only the transient levels of freshly entering PGI2 in the circulation, whereas levels of the most polar metabolites (e.g., dihydro-diketo-carboxyl tetranor-PGF 2 alpha) may be a better measure of the overall PGI2 presence due to its longer half-life in circulation

  17. Ecotype variability in growth and secondary metabolite profile in Moringa oleifera: impact of sulfur and water availability.

    Science.gov (United States)

    Förster, Nadja; Ulrichs, Christian; Schreiner, Monika; Arndt, Nick; Schmidt, Reinhard; Mewis, Inga

    2015-03-25

    Moringa oleifera is widely cultivated in plantations in the tropics and subtropics. Previous cultivation studies with M. oleifera focused primarily only on leaf yield. In the present study, the content of potentially health-promoting secondary metabolites (glucosinolates, phenolic acids, and flavonoids) were also investigated. Six different ecotypes were grown under similar environmental conditions to identify phenotypic differences that can be traced back to the genotype. The ecotypes TOT4880 (origin USA) and TOT7267 (origin India) were identified as having the best growth performance and highest secondary metabolite production, making them an ideal health-promoting food crop. Furthermore, optimal cultivation conditions-exemplarily on sulfur fertilization and water availability-for achieving high leaf and secondary metabolite yields were investigated for M. oleifera. In general, plant biomass and height decreased under water deficiency compared to normal cultivation conditions, whereas the glucosinolate content increased. The effects depended to a great extent on the ecotype.

  18. Identification of an Epoxide Metabolite of Lycopene in Human Plasma Using 13C-Labeling and QTOF-MS

    Directory of Open Access Journals (Sweden)

    Morgan J. Cichon

    2018-03-01

    Full Text Available The carotenoid lycopene is a bioactive component of tomatoes and is hypothesized to reduce risk of several chronic diseases, such as prostate cancer. The metabolism of lycopene is only beginning to be understood and some studies suggest that metabolites of lycopene may be partially responsible for bioactivity associated with the parent compound. The detection and characterization of these compounds in vivo is an important step in understanding lycopene bioactivity. The metabolism of lycopene likely involves both chemical and enzymatic oxidation. While numerous lycopene metabolites have been proposed, few have actually been identified in vivo following lycopene intake. Here, LC-QTOF-MS was used along with 13C-labeling to investigate the post-prandial oxidative metabolism of lycopene in human plasma. Previously reported aldehyde cleavage products were not detected, but a lycopene 1,2-epoxide was identified as a new candidate oxidative metabolite.

  19. Defensive Metabolites from Antarctic Invertebrates: Does Energetic Content Interfere with Feeding Repellence?

    Directory of Open Access Journals (Sweden)

    Laura Núñez-Pons

    2014-06-01

    Full Text Available Many bioactive products from benthic invertebrates mediating ecological interactions have proved to reduce predation, but their mechanisms of action, and their molecular identities, are usually unknown. It was suggested, yet scarcely investigated, that nutritional quality interferes with defensive metabolites. This means that antifeedants would be less effective when combined with energetically rich prey, and that higher amounts of defensive compounds would be needed for predator avoidance. We evaluated the effects of five types of repellents obtained from Antarctic invertebrates, in combination with diets of different energetic values. The compounds came from soft corals, ascidians and hexactinellid sponges; they included wax esters, alkaloids, a meroterpenoid, a steroid, and the recently described organic acid, glassponsine. Feeding repellency was tested through preference assays by preparing diets (alginate pearls combining different energetic content and inorganic material. Experimental diets contained various concentrations of each repellent product, and were offered along with control compound-free pearls, to the Antarctic omnivore amphipod Cheirimedon femoratus. Meridianin alkaloids were the most active repellents, and wax esters were the least active when combined with foods of distinct energetic content. Our data show that levels of repellency vary for each compound, and that they perform differently when mixed with distinct assay foods. The natural products that interacted the most with energetic content were those occurring in nature at higher concentrations. The bioactivity of the remaining metabolites tested was found to depend on a threshold concentration, enough to elicit feeding repellence, independently from nutritional quality.

  20. Defensive Metabolites from Antarctic Invertebrates: Does Energetic Content Interfere with Feeding Repellence?

    Science.gov (United States)

    Núñez-Pons, Laura; Avila, Conxita

    2014-01-01

    Many bioactive products from benthic invertebrates mediating ecological interactions have proved to reduce predation, but their mechanisms of action, and their molecular identities, are usually unknown. It was suggested, yet scarcely investigated, that nutritional quality interferes with defensive metabolites. This means that antifeedants would be less effective when combined with energetically rich prey, and that higher amounts of defensive compounds would be needed for predator avoidance. We evaluated the effects of five types of repellents obtained from Antarctic invertebrates, in combination with diets of different energetic values. The compounds came from soft corals, ascidians and hexactinellid sponges; they included wax esters, alkaloids, a meroterpenoid, a steroid, and the recently described organic acid, glassponsine. Feeding repellency was tested through preference assays by preparing diets (alginate pearls) combining different energetic content and inorganic material. Experimental diets contained various concentrations of each repellent product, and were offered along with control compound-free pearls, to the Antarctic omnivore amphipod Cheirimedon femoratus. Meridianin alkaloids were the most active repellents, and wax esters were the least active when combined with foods of distinct energetic content. Our data show that levels of repellency vary for each compound, and that they perform differently when mixed with distinct assay foods. The natural products that interacted the most with energetic content were those occurring in nature at higher concentrations. The bioactivity of the remaining metabolites tested was found to depend on a threshold concentration, enough to elicit feeding repellence, independently from nutritional quality. PMID:24962273

  1. Plant Bioactive Metabolites and Drugs Produced by Endophytic Fungi of Spermatophyta

    Directory of Open Access Journals (Sweden)

    Rosario Nicoletti

    2015-09-01

    Full Text Available It is known that plant-based ethnomedicine represented the foundation of modern pharmacology and that many pharmaceuticals are derived from compounds occurring in plant extracts. This track still stimulates a worldwide investigational activity aimed at identifying novel bioactive products of plant origin. However, the discovery that endophytic fungi are able to produce many plant-derived drugs has disclosed new horizons for their availability and production on a large scale by the pharmaceutical industry. In fact, following the path traced by the blockbuster drug taxol, an increasing number of valuable compounds originally characterized as secondary metabolites of plant species belonging to the Spermatophyta have been reported as fermentation products of endophytic fungal strains. Aspects concerning sources and bioactive properties of these compounds are reviewed in this paper.

  2. Profiling of secondary metabolite gene clusters regulated by LaeA in Aspergillus niger FGSC A1279 based on genome sequencing and transcriptome analysis.

    Science.gov (United States)

    Wang, Bin; Lv, Yangyong; Li, Xuejie; Lin, Yiying; Deng, Hai; Pan, Li

    The global regulator LaeA controls the production of many fungal secondary metabolites, possibly via chromatin remodeling. Here we aimed to survey the secondary metabolite profile regulated by LaeA in Aspergillus niger FGSC A1279 by genome sequencing and comparative transcriptomics between the laeA deletion (ΔlaeA) and overexpressing (OE-laeA) mutants. Genome sequencing revealed four putative polyketide synthase genes specific to FGSC A1279, suggesting that the corresponding polyketide compounds might be unique to FGSC A1279. RNA-seq data revealed 281 putative secondary metabolite genes upregulated in the OE-laeA mutants, including 22 secondary metabolite backbone genes. LC-MS chemical profiling illustrated that many secondary metabolites were produced in OE-laeA mutants compared to wild type and ΔlaeA mutants, providing potential resources for drug discovery. KEGG analysis annotated 16 secondary metabolite clusters putatively linked to metabolic pathways. Furthermore, 34 of 61 Zn 2 Cys 6 transcription factors located in secondary metabolite clusters were differentially expressed between ΔlaeA and OE-laeA mutants. Three secondary metabolite clusters (cluster 18, 30 and 33) containing Zn 2 Cys 6 transcription factors that were upregulated in OE-laeA mutants were putatively linked to KEGG pathways, suggesting that Zn 2 Cys 6 transcription factors might play an important role in synthesizing secondary metabolites regulated by LaeA. Taken together, LaeA dramatically influences the secondary metabolite profile in FGSC A1279. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  3. Quantification of fecal estradiol and progesterone metabolites in Syrian hamsters (Mesocricetus auratus

    Directory of Open Access Journals (Sweden)

    Chelini M.O.M.

    2005-01-01

    Full Text Available Alternative methods to the utilization of laboratory animal blood and its by-products are particularly attractive, especially regarding hamsters due to their small size and difficulties in obtaining serial blood samples. Steroid hormone metabolite quantification in feces, widely used in studies of free-ranging or intractable animals, is a non-invasive, non-stressor, economical, and animal saving technique which allows longitudinal studies by permitting frequent sampling of the same individual. The present study was undertaken to determine the suitability of this method for laboratory animals. Estradiol and progesterone metabolites were quantified by radioimmunoassay in feces of intact, sexually mature female Syrian hamsters during the estrous cycle (control and in feces of superovulated females. Metabolites were extracted by fecal dilution in ethanol and quantified by solid phase radioimmunoassay. Median estrogen and progesterone concentrations were 9.703 and 180.74 ng/g feces in the control group, respectively. Peaks of estrogen (22.44 ± 4.54 ng/g feces and progesterone (655.95 ± 129.93 ng/g feces mean fecal concentrations respectively occurred 12 h before and immediately after ovulation, which is easily detected in this species by observation of a characteristic vaginal postovulatory discharge. Median estrogen and progesterone concentrations (28.159 and 586.57 ng/g feces, respectively were significantly higher in superovulated animal feces (P < 0.0001. The present study demonstrated that it is possible to monitor ovarian activity in Syrian hamsters non-invasively by measuring fecal estradiol and progesterone metabolites. This technique appears to be a quite encouraging method for the development of new endocrinologic studies on laboratory animals.

  4. Pharmacokinetics of ifosfamide and some metabolites in children

    NARCIS (Netherlands)

    Kaijser, G. P.; de Kraker, J.; Bult, A.; Underberg, W. J.; Beijnen, J. H.

    1998-01-01

    The pharmacokinetics of ifosfamide and some metabolites in children was investigated. The patients received various doses of ifosfamide, mostly by continuous infusion, over several days. The penetration of ifosfamide and its metabolites into the cerebrospinal fluid was also studied in four cases.

  5. Antifungal metabolites (monorden, monocillin IV, and cerebrosides) from Humicola fuscoatra traaen NRRL 22980, a mycoparasite of Aspergillus flavus sclerotia.

    Science.gov (United States)

    Wicklow, D T; Joshi, B K; Gamble, W R; Gloer, J B; Dowd, P F

    1998-11-01

    The mycoparasite Humicola fuscoatra NRRL 22980 was isolated from a sclerotium of Aspergillus flavus that had been buried in a cornfield near Tifton, Ga. When grown on autoclaved rice, this fungus produced the antifungal metabolites monorden, monocillin IV, and a new monorden analog. Each metabolite produced a clear zone of inhibition surrounding paper assay disks on agar plates seeded with conidia of A. flavus. Monorden was twice as inhibitory to A. flavus mycelium extension (MIC > 28 microg/ml) as monocillin IV (MIC > 56 microg/ml). Cerebrosides C and D, metabolites known to potentiate the activity of cell wall-active antibiotics, were separated from the ethyl acetate extract but were not inhibitory to A. flavus when tested as pure compounds. This is the first report of natural products from H. fuscoatra.

  6. Novel pyrazine metabolites found in polymyxin biosynthesis by Paenibacillus polymyxa

    DEFF Research Database (Denmark)

    Beck, Hans Christian; Hansen, Anne M; Lauritsen, Frants R

    2003-01-01

    A complex mixture of methyl-branched alkyl-substituted pyrazines was found in the growth medium of the polymyxin-producing bacterium Paenibacillus polymyxa, and of these, seven are new natural compounds. A total of 19 pyrazine metabolites were identified. The dominant metabolite was 2,5-diisoprop......A complex mixture of methyl-branched alkyl-substituted pyrazines was found in the growth medium of the polymyxin-producing bacterium Paenibacillus polymyxa, and of these, seven are new natural compounds. A total of 19 pyrazine metabolites were identified. The dominant metabolite was 2...

  7. Application of ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry in identification of three isoflavone glycosides and their corresponding metabolites.

    Science.gov (United States)

    Xu, Xiafen; Li, Xinhui; Liang, Xianrui

    2018-02-15

    Metabolites of isoflavones have attracted much attention in recent years due to their potential bioactivities. However, the complex constituents of the metabolic system and the low level of metabolites make them difficult to analyze. A mass spectrometry (MS) method was applied in our identification of metabolites and study of their fragmentation pathways due to the advantages of rapidity, sensitivity, and low level of sample consumption. Three isoflavone glycosides and their metabolites were identified using ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC/QTOF-MS). These metabolites were obtained by anaerobically incubating three isoflavone glycosides with human intestinal flora. The characteristic fragments of isoflavone glycosides and their metabolites were used for the identification work. Two metabolites from ononin, three metabolites from irilone-4'-O-β-D-glucoside, and five metabolites from sissotrin were identified respectively by the retention time (RT), accurate mass, and mass spectral fragmentation patterns. The losses of the glucosyl group, CO from the [M+H] + ion were observed for all the three isoflavone glycosides. The characteristic retro-Diels-Alder (RDA) fragmentation patterns were used to differentiate the compounds. The metabolic pathways of the three isoflavone glycosides were proposed according to the identified chemical structures of the metabolites. A selective, sensitive and rapid method was established for detecting and identifying three isoflavone glycosides and their metabolites using UPLC/QTOF-MS. The established method can be used for further rapid structural identification studies of metabolites and natural products. Furthermore, the proposed metabolic pathways will be helpful for understanding the in vivo metabolic process of isoflavone. Copyright © 2017 John Wiley & Sons, Ltd.

  8. Assessing the associations of blood metabolites with osteoporosis: a Mendelian randomization study.

    Science.gov (United States)

    Liu, Li; Wen, Yan; Zhang, Lei; Xu, Peng; Liang, Xiao; Du, Yanan; Li, Ping; He, Awen; Fan, QianRui; Hao, Jingcan; Wang, Wenyu; Guo, Xiong; Shen, Hui; Tian, Qing; Zhang, Feng; Deng, Hong-Wen

    2018-03-01

    Osteoporosis is a metabolic bone disease. The impact of blood metabolites on the development of osteoporosis remains elusive now. To explore the relationship between blood metabolites and osteoporosis. We used 2,286 unrelated Caucasian subjects as discovery samples and 3,143 unrelated Caucasian subjects from the Framingham heart study (FHS) as replication samples. Bone mineral density (BMD) were measured using dual-energy X-ray absorptiometry. Genome-wide SNP genotyping was performed using Affymetrix Human SNP Array 6.0 (for discovery samples) and Affymetrix SNP 500K and 50K array (for FHS replication samples). The SNP sets significantly associated with blood metabolites were obtained from a published whole-genome sequencing study. For each subject, the genetic risk score (GRS) of metabolite was calculated from the genotype data of metabolite associated SNP sets. Pearson correlation analysis was conducted to evaluate the potential impact of blood metabolites on the variations bone phenotypes. 10,000 permutations were conducted to calculate the empirical P value and false discovery rate (FDR). 481 blood metabolites were analyzed in this study. We identified multiple blood metabolites associated with hip BMD, such as 1,5-anhydroglucitol(1,5-AG) (Pdiscovery metabolites on the variations of BMD, and identified several candidate blood metabolites for osteoporosis.

  9. Metabolites of alectinib in human: their identification and pharmacological activity

    Directory of Open Access Journals (Sweden)

    Mika Sato-Nakai

    2017-07-01

    Full Text Available Two metabolites (M4 and M1b in plasma and four metabolites (M4, M6, M1a and M1b in faeces were detected through the human ADME study following a single oral administration of [14C]alectinib, a small-molecule anaplastic lymphoma kinase inhibitor, to healthy subjects. In the present study, M1a and M1b, which chemical structures had not been identified prior to the human ADME study, were identified as isomers of a carboxylate metabolite oxidatively cleaved at the morpholine ring. In faeces, M4 and M1b were the main metabolites, which shows that the biotransformation to M4 and M1b represents two main metabolic pathways for alectinib. In plasma, M4 was a major metabolite and M1b was a minor metabolite. The contribution to in vivo pharmacological activity of these circulating metabolites was assessed from their in vitro pharmacological activity and plasma protein binding. M4 had a similar cancer cell growth inhibitory activity and plasma protein binding to that of alectinib, suggesting its contribution to the antitumor activity of alectinib, whereas the pharmacological activity of M1b was insignificant.

  10. Metabolomics and Cheminformatics Analysis of Antifungal Function of Plant Metabolites.

    Science.gov (United States)

    Cuperlovic-Culf, Miroslava; Rajagopalan, NandhaKishore; Tulpan, Dan; Loewen, Michele C

    2016-09-30

    Fusarium head blight (FHB), primarily caused by Fusarium graminearum , is a devastating disease of wheat. Partial resistance to FHB of several wheat cultivars includes specific metabolic responses to inoculation. Previously published studies have determined major metabolic changes induced by pathogens in resistant and susceptible plants. Functionality of the majority of these metabolites in resistance remains unknown. In this work we have made a compilation of all metabolites determined as selectively accumulated following FHB inoculation in resistant plants. Characteristics, as well as possible functions and targets of these metabolites, are investigated using cheminformatics approaches with focus on the likelihood of these metabolites acting as drug-like molecules against fungal pathogens. Results of computational analyses of binding properties of several representative metabolites to homology models of fungal proteins are presented. Theoretical analysis highlights the possibility for strong inhibitory activity of several metabolites against some major proteins in Fusarium graminearum , such as carbonic anhydrases and cytochrome P450s. Activity of several of these compounds has been experimentally confirmed in fungal growth inhibition assays. Analysis of anti-fungal properties of plant metabolites can lead to the development of more resistant wheat varieties while showing novel application of cheminformatics approaches in the analysis of plant/pathogen interactions.

  11. Metabolite Profiling of Candidatus Liberibacter Infection in Hamlin Sweet Oranges.

    Science.gov (United States)

    Hung, Wei-Lun; Wang, Yu

    2018-04-18

    Huanglongbing (HLB), also known as citrus greening disease, caused by Candidatus Liberibacter asiaticus (CLas), is considered the most serious citrus disease in the world. CLas infection has been shown to greatly affect metabolite profiles in citrus fruits. However, because of uneven distribution of CLas throughout the tree and a minimum bacterial titer requirement for polymerase chain reaction (PCR) detection, the infected trees may test false negative. To prevent this, metabolites of healthy Hamlin oranges (CLas-) obtained from the citrus undercover protection systems (CUPS) were investigated. Comparison of the metabolite profile of juice obtained from CLas- and CLas+ (asymptomatic and symptomatic) trees revealed significant differences in both volatile and nonvolatile metabolites. However, no consistent pattern could be observed in alcohols, esters, sesquiterpenes, sugars, flavanones, and limonoids as compared to previous studies. These results suggest that CLas may affect metabolite profiles of citrus fruits earlier than detecting infection by PCR. Citric acid, nobiletin, malic acid, and phenylalanine were identified as the metabolic biomarkers associated with the progression of HLB. Thus, the differential metabolites found in this study may serve as the biomarkers of HLB in its early stage, and the metabolite signature of CLas infection may provide useful information for developing a potential treatment strategy.

  12. Dung-inhabiting fungi: a potential reservoir of novel secondary metabolites for the control of plant pathogens.

    Science.gov (United States)

    Sarrocco, Sabrina

    2016-04-01

    Coprophilous fungi are a large group of saprotrophic fungi mostly found in herbivore dung. The number of these fungi undergoing investigation is continually increasing, and new species and genera continue to be described. Dung-inhabiting fungi play an important ecological role in decomposing and recycling nutrients from animal dung. They produce a large array of bioactive secondary metabolites and have a potent enzymatic arsenal able to utilise even complex molecules. Bioactive secondary metabolites are actively involved in interaction with and defence against other organisms whose growth can be inhibited, resulting in an enhanced ecological fitness of producer strains. Currently, these antibiotics and bioactive secondary metabolites are of interest in medicine in particular, while very little information is available concerning their potential use in agriculture. This review introduces the ecology of dung-inhabiting fungi, with particular emphasis on the production of antibiotic compounds as a means to compete with other microorganisms. Owing to the fast pace of technological progress, new approaches to predicting the biosynthesis of bioactive metabolites are proposed. Coprophilous fungi should be considered as elite candidate organisms for the discovery of novel antifungal compounds, above all in view of their exploitation for crop protection. © 2015 Society of Chemical Industry.

  13. Relation between microbiological quality, metabolite production and sensory quality of equilibrium modified atmosphere packaged fresh-cut produce.

    Science.gov (United States)

    Jacxsens, L; Devlieghere, F; Ragaert, P; Vanneste, E; Debevere, J

    2003-06-25

    The quality of four types of fresh-cut produce, packaged in consumer-sized packages under an equilibrium modified atmosphere and stored at 7 degrees C, was assessed by establishing the relation between the microbial outgrowth and the corresponding production of nonvolatile compounds and related sensory disorders. In vitro experiments, performed on a lettuce-juice-agar, demonstrated the production of nonvolatile compounds by spoilage causing lactic acid bacteria and Enterobacteriaceae. Pseudomonas fluorescens and yeasts, however, were not able to produce detectable amounts of nonvolatile metabolites. The type of spoilage and quality deterioration in vivo depended on the type of vegetable. Mixed lettuce and chicory endives, leafy tissues, containing naturally low concentrations of sugars, showed a spoilage dominated by Gram-negative microorganisms, which are not producing nonvolatile compounds. Sensory problems were associated with visual properties and the metabolic activity of the plant tissue. Mixed bell peppers and grated celeriac, on the other hand, demonstrated a fast and intense growth of spoilage microorganisms, dominated by lactic acid bacteria and yeasts. This proliferation resulted in detectable levels of organic acids and the rejection by the trained sensory panel was based on the negative perception of the organoleptical properties (off-flavour, odour and taste). The applied microbiological criteria corresponded well with detectable changes in sensory properties and measurable concentrations of nonvolatile compounds, surely in the cases where lactic acid bacteria and yeasts were provoking spoilage. Consequently, the freshness of minimally processed vegetables, sensitive for outgrowth of lactic acid bacteria and yeasts (e.g., carrots, celeriac, bell peppers, mixtures with non-leafy vegetables) can be evaluated via analysis of the produced nonvolatile compounds.

  14. Protozoan growth rates on secondary-metabolite-producing Pseudomonas spp. correlate with high-level protozoan taxonomy

    DEFF Research Database (Denmark)

    Pedersen, Annette L.; Winding, Anne; Altenburger, Andreas

    2011-01-01

    Different features can protect bacteria against protozoan grazing, for example large size, rapid movement, and production of secondary metabolites. Most papers dealing with these matters focus on bacteria. Here, we describe protozoan features that affect their ability to grow on secondary-metabol...

  15. Characterization of metabolites of leonurine (SCM-198) in rats after oral administration by liquid chromatography/tandem mass spectrometry and NMR spectrometry.

    Science.gov (United States)

    Zhu, Qing; Zhang, Jinlian; Yang, Ping; Tan, Bo; Liu, Xinhua; Zheng, Yuanting; Cai, Weimin; Zhu, Yizhun

    2014-01-01

    Leonurine, a major bioactive component from Herba Leonuri, shows therapeutic potential for cardiovascular disease and stroke prevention in some preclinical experiments. The aim of this study is to characterize metabolites of leonurine in rats using high performance liquid chromatography coupled with tandem mass spectrometry (HPLC/MS/MS). The chromatographic separation was performed on an Agilent ZORBAX SB-C18 column using a gradient elution with acetonitrile/ammonium acetate buffer (10 mM, pH 4.0) solvent system. An information dependent acquisition (IDA) method was developed for screening and identifying metabolites of leonurine under positive ion mode. Compared with control, the interesting compound in the extracted ion chromatogram (XIC) of the in vivo samples was chosen and further identified by analyzing their retention times, changes in observed mass (Δm/z), and spectral patterns of product ion utilizing advanced software tool. For the first time, a total of three metabolites were identified, including two phase II metabolites generated by glucuronidation (M1) and sulfation (M2) and one phase I metabolite formed by O-demethylation (M3). Finally, the lead metabolite M1 was isolated from urine and its structure was characterized as leonurine-10-O- β-D-glucuronide by NMR spectroscopy (¹H, ¹³C, HMBC, and HSQC).

  16. Aspergillus flavus secondary metabolites: more than just aflatoxins

    Science.gov (United States)

    Aspergillus flavus is best known for producing the family of potent carcinogenic secondary metabolites known as aflatoxins. However, this opportunistic plant and animal pathogen also produces numerous other secondary metabolites, many of which have also been shown to be toxic. While about forty of t...

  17. Screening Senyawa Metabolit Sekunder Pada Fungi Laut Emericella Nidulans

    Directory of Open Access Journals (Sweden)

    Irah Namirah

    2016-01-01

    Full Text Available Abstract: Investigation bioactive secondary metabolite previously, Research Center for Marine and Fisheries Product Processing and Biotechnology found anticancer properties to Emericella nidulans marine fungi strain MFW39 isolated from ascidia Aplidium longithorax collected from Wakatobi Marine National Park. Emestrin was a compound with an ETP (epipolithiodioxopiperazine group that found in Emericella nidulans marine fungi have cytotoxicity properties. Emestrin show cytotoxic activity to breast cancer cell line [T47D], cancer cervic cell line [HeLa], colon cancer cell line [WiDr] and liver cancer cell line (HepG2. The aim of the research to investigated other derivative of emestrin compound. The screening with UPLC (Ultra Performance Liquid Chromatography mass analysis q-TOF/MS (quadrupole-Time of Flight/Mass spectra positif mode (ES+.. Monoisotopic ion Derivative compound of emestrin that detected from (ES+ UPLC-ESI-qTOF-MS spectrum are emestrin B, emestrin C. Another compound that detected are cytochalasin B dan C.Keywords: Emericella nidulans, Emestrin, Emestrin derivative, UPLC- q-TOF/MS spectrum Abstrak: Pada penelitian pencarian metabolit sekunder bioaktif sebelumnya, Balai Besar Riset Pengolahan Produk dan Bioteknologi Kelautan dan Perikanan menemukan fungi Emericella nidulans strain MFW39 yang diisolasi dari ascidia Aplidium longithorax dari Taman Nasional Laut Wakatobi, Sulawesi tenggara memiliki aktivitas sitotoksik terhadap beberapa sel kanker, diantaranya sel turunan kanker payudara (T47D, liver (HepG2, kanker usus (C28 dan serviks (HeLa. Senyawa yang berkontribusi terhadap sifat sitotoksik adalah senyawa emestrin yang memiliki gugus ETP (epipolithiodioxopiperazine. Hasil isolasi dan karakterisasi senyawa bioaktif yang ditemukan pada fungi Emericella nidulans strain MFW39 adalah senyawa emestrin. Penelitian ini bertujuan mencari derivat senyawa emestrin lain. Proses screening dilakukan dengan mencari puncak monoisotopik senyawa

  18. Metabolite characterization in serum samples from normal healthy ...

    African Journals Online (AJOL)

    Metabolite characterization in serum samples from normal healthy human subjects by 1H and 13C NMR spectroscopy. D Misra, U Bajpai. Abstract. One and two dimensional NMR spectroscopy has been employed to characterize the various metabolites of serum control healthy samples. Two dimensional heteronuclear ...

  19. UV-guided isolation of fungal metabolites by HSCCC

    DEFF Research Database (Denmark)

    Dalsgaard, P.W.; Nielsen, K.F.; Larsen, Thomas Ostenfeld

    2005-01-01

    Analytical standardised reversed phase liquid chromatography (RPLC) data can be helpful in finding a suitable solvent combination for isolation of fungal metabolites by high-speed counter current chromatography. Analysis of the distribution coefficient (K-D) of fungal metabolites in a series...... peptides from a crude fungal extract....

  20. Effect of metabolites produced by Trichoderma species against ...

    African Journals Online (AJOL)

    Metabolites released from Trichoderma viride, T. polysporum, T. hamatum and T. aureoviride were tested in culture medium against Ceratocystis paradoxa, which causes black seed rot in oil palm sprouted seeds. The Trichoderma metabolites had similar fungistatic effects on the growth of C. paradoxa except those from T.

  1. Choline and Choline Metabolite Patterns and Associations in Blood and Milk during Lactation in Dairy Cows

    Science.gov (United States)

    Artegoitia, Virginia M.; Middleton, Jesse L.; Harte, Federico M.; Campagna, Shawn R.; de Veth, Michael J.

    2014-01-01

    Milk and dairy products are an important source of choline, a nutrient essential for human health. Infant formula derived from bovine milk contains a number of metabolic forms of choline, all contribute to the growth and development of the newborn. At present, little is known about the factors that influence the concentrations of choline metabolites in milk. The objectives of this study were to characterize and then evaluate associations for choline and its metabolites in blood and milk through the first 37 weeks of lactation in the dairy cow. Milk and blood samples from twelve Holstein cows were collected in early, mid and late lactation and analyzed for acetylcholine, free choline, betaine, glycerophosphocholine, lysophosphatidylcholine, phosphatidylcholine, phosphocholine and sphingomyelin using hydrophilic interaction liquid chromatography-tandem mass spectrometry, and quantified using stable isotope-labeled internal standards. Total choline concentration in plasma, which was almost entirely phosphatidylcholine, increased 10-times from early to late lactation (1305 to 13,535 µmol/L). In milk, phosphocholine was the main metabolite in early lactation (492 µmol/L), which is a similar concentration to that found in human milk, however, phosphocholine concentration decreased exponentially through lactation to 43 µmol/L in late lactation. In contrast, phosphatidylcholine was the main metabolite in mid and late lactation (188 µmol/L and 659 µmol/L, respectively), with the increase through lactation positively correlated with phosphatidylcholine in plasma (R 2 = 0.78). Unlike previously reported with human milk we found no correlation between plasma free choline concentration and milk choline metabolites. The changes in pattern of phosphocholine and phosphatidylcholine in milk through lactation observed in the bovine suggests that it is possible to manufacture infant formula that more closely matches these metabolites profile in human milk. PMID:25157578

  2. Choline and choline metabolite patterns and associations in blood and milk during lactation in dairy cows.

    Directory of Open Access Journals (Sweden)

    Virginia M Artegoitia

    Full Text Available Milk and dairy products are an important source of choline, a nutrient essential for human health. Infant formula derived from bovine milk contains a number of metabolic forms of choline, all contribute to the growth and development of the newborn. At present, little is known about the factors that influence the concentrations of choline metabolites in milk. The objectives of this study were to characterize and then evaluate associations for choline and its metabolites in blood and milk through the first 37 weeks of lactation in the dairy cow. Milk and blood samples from twelve Holstein cows were collected in early, mid and late lactation and analyzed for acetylcholine, free choline, betaine, glycerophosphocholine, lysophosphatidylcholine, phosphatidylcholine, phosphocholine and sphingomyelin using hydrophilic interaction liquid chromatography-tandem mass spectrometry, and quantified using stable isotope-labeled internal standards. Total choline concentration in plasma, which was almost entirely phosphatidylcholine, increased 10-times from early to late lactation (1305 to 13,535 µmol/L. In milk, phosphocholine was the main metabolite in early lactation (492 µmol/L, which is a similar concentration to that found in human milk, however, phosphocholine concentration decreased exponentially through lactation to 43 µmol/L in late lactation. In contrast, phosphatidylcholine was the main metabolite in mid and late lactation (188 µmol/L and 659 µmol/L, respectively, with the increase through lactation positively correlated with phosphatidylcholine in plasma (R2 = 0.78. Unlike previously reported with human milk we found no correlation between plasma free choline concentration and milk choline metabolites. The changes in pattern of phosphocholine and phosphatidylcholine in milk through lactation observed in the bovine suggests that it is possible to manufacture infant formula that more closely matches these metabolites profile in human milk.

  3. Enhanced photo(geno)toxicity of demethylated chlorpromazine metabolites

    Energy Technology Data Exchange (ETDEWEB)

    Palumbo, Fabrizio [Instituto de Tecnología Química UPV-CSIC/Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia (Spain); Garcia-Lainez, Guillermo [Instituto de Investigación Sanitaria (IIS) La Fe, Hospital Universitari i Politècnic La Fe, Avenida de Fernando Abril Martorell 106, 46026 Valencia (Spain); Limones-Herrero, Daniel [Instituto de Tecnología Química UPV-CSIC/Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia (Spain); Coloma, M. Dolores; Escobar, Javier [Instituto de Investigación Sanitaria (IIS) La Fe, Hospital Universitari i Politècnic La Fe, Avenida de Fernando Abril Martorell 106, 46026 Valencia (Spain); Jiménez, M. Consuelo [Instituto de Tecnología Química UPV-CSIC/Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia (Spain); Miranda, Miguel A., E-mail: mmiranda@qim.upv.es [Instituto de Tecnología Química UPV-CSIC/Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia (Spain); and others

    2016-12-15

    Chlorpromazine (CPZ) is an anti-psychotic drug widely used to treat disorders such as schizophrenia or manic-depression. Unfortunately, CPZ exhibits undesirable side effects such as phototoxic and photoallergic reactions in humans. In general, the influence of drug metabolism on this type of reactions has not been previously considered in photosafety testing. Thus, the present work aims to investigate the possible photo(geno)toxic potential of drug metabolites, using CPZ as an established reference compound. In this case, the metabolites selected for the study are demethylchlorpromazine (DMCPZ), didemethylchlorpromazine (DDMCPZ) and chlorpromazine sulfoxide (CPZSO). The demethylated CPZ metabolites DMCPZ and DDMCPZ maintain identical chromophore to the parent drug. In this work, it has been found that the nature of the aminoalkyl side chain modulates the hydrophobicity and the photochemical properties (for instance, the excited state lifetimes), but it does not change the photoreactivity pattern, which is characterized by reductive photodehalogenation, triggered by homolytic carbon-chlorine bond cleavage with formation of highly reactive aryl radical intermediates. Accordingly, these metabolites are phototoxic to cells, as revealed by the 3T3 NRU assay; their photo-irritation factors are even higher than that of CPZ. The same trend is observed in photogenotoxicity studies, both with isolated and with cellular DNA, where DMCPZ and DDMCPZ are more active than CPZ itself. In summary, side-chain demethylation of CPZ, as a consequence of Phase I biotransformation, does not result a photodetoxification. Instead, it leads to metabolites that exhibit in an even enhanced photo(geno)toxicity. - Highlights: • Demethylated CPZ metabolites are phototoxic to cells, as revealed by the NRU assay. • Single cell electrophoresis (Comet Assay) confirms the photodamage to cellular DNA. • DNA single strand breaks formation is observed on agarose gel electrophoresis.

  4. Enhanced photo(geno)toxicity of demethylated chlorpromazine metabolites

    International Nuclear Information System (INIS)

    Palumbo, Fabrizio; Garcia-Lainez, Guillermo; Limones-Herrero, Daniel; Coloma, M. Dolores; Escobar, Javier; Jiménez, M. Consuelo; Miranda, Miguel A.

    2016-01-01

    Chlorpromazine (CPZ) is an anti-psychotic drug widely used to treat disorders such as schizophrenia or manic-depression. Unfortunately, CPZ exhibits undesirable side effects such as phototoxic and photoallergic reactions in humans. In general, the influence of drug metabolism on this type of reactions has not been previously considered in photosafety testing. Thus, the present work aims to investigate the possible photo(geno)toxic potential of drug metabolites, using CPZ as an established reference compound. In this case, the metabolites selected for the study are demethylchlorpromazine (DMCPZ), didemethylchlorpromazine (DDMCPZ) and chlorpromazine sulfoxide (CPZSO). The demethylated CPZ metabolites DMCPZ and DDMCPZ maintain identical chromophore to the parent drug. In this work, it has been found that the nature of the aminoalkyl side chain modulates the hydrophobicity and the photochemical properties (for instance, the excited state lifetimes), but it does not change the photoreactivity pattern, which is characterized by reductive photodehalogenation, triggered by homolytic carbon-chlorine bond cleavage with formation of highly reactive aryl radical intermediates. Accordingly, these metabolites are phototoxic to cells, as revealed by the 3T3 NRU assay; their photo-irritation factors are even higher than that of CPZ. The same trend is observed in photogenotoxicity studies, both with isolated and with cellular DNA, where DMCPZ and DDMCPZ are more active than CPZ itself. In summary, side-chain demethylation of CPZ, as a consequence of Phase I biotransformation, does not result a photodetoxification. Instead, it leads to metabolites that exhibit in an even enhanced photo(geno)toxicity. - Highlights: • Demethylated CPZ metabolites are phototoxic to cells, as revealed by the NRU assay. • Single cell electrophoresis (Comet Assay) confirms the photodamage to cellular DNA. • DNA single strand breaks formation is observed on agarose gel electrophoresis.

  5. Reparation and Immunomodulating Properties of Bacillus sp. Metabolites from Permafrost.

    Science.gov (United States)

    Kalenova, L F; Melnikov, V P; Besedin, I M; Bazhin, A S; Gabdulin, M A; Kolyvanova, S S

    2017-09-01

    An ointment containing metabolites of Bacillus sp. microorganisms isolated from permafrost samples was applied onto the skin wound of BALB/c mice. Metabolites isolated during culturing of Bacillus sp. at 37°C produced a potent therapeutic effect and promoted wound epithelialization by 30% in comparison with the control (ointment base) and by 20% in comparison with Solcoseryl. Treatment with Bacillus sp. metabolites stimulated predominantly humoral immunity, reduced the time of wound contraction and the volume of scar tissue, and promoted complete hair recovery. These metabolites can be considered as modulators of the wound process with predominance of regeneration mechanisms.

  6. Quantification of Stable Isotope Traces Close to Natural Enrichment in Human Plasma Metabolites Using Gas Chromatography-Mass Spectrometry.

    Science.gov (United States)

    Krämer, Lisa; Jäger, Christian; Trezzi, Jean-Pierre; Jacobs, Doris M; Hiller, Karsten

    2018-02-14

    Currently, changes in metabolic fluxes following consumption of stable isotope-enriched foods are usually limited to the analysis of postprandial kinetics of glucose. Kinetic information on a larger diversity of metabolites is often lacking, mainly due to the marginal percentage of fully isotopically enriched plant material in the administered food product, and hence, an even weaker 13 C enrichment in downstream plasma metabolites. Therefore, we developed an analytical workflow to determine weak 13 C enrichments of diverse plasma metabolites with conventional gas chromatography-mass spectrometry (GC-MS). The limit of quantification was increased by optimizing (1) the metabolite extraction from plasma, (2) the GC-MS measurement, and (3) most importantly, the computational data processing. We applied our workflow to study the catabolic dynamics of 13 C-enriched wheat bread in three human subjects. For that purpose, we collected time-resolved human plasma samples at 16 timepoints after the consumption of 13 C-labeled bread and quantified 13 C enrichment of 12 metabolites (glucose, lactate, alanine, glycine, serine, citrate, glutamate, glutamine, valine, isoleucine, tyrosine, and threonine). Based on isotopomer specific analysis, we were able to distinguish catabolic profiles of starch and protein hydrolysis. More generally, our study highlights that conventional GC-MS equipment is sufficient to detect isotope traces below 1% if an appropriate data processing is integrated.

  7. Quantification of Stable Isotope Traces Close to Natural Enrichment in Human Plasma Metabolites Using Gas Chromatography-Mass Spectrometry

    Science.gov (United States)

    Krämer, Lisa; Jäger, Christian; Jacobs, Doris M.; Hiller, Karsten

    2018-01-01

    Currently, changes in metabolic fluxes following consumption of stable isotope-enriched foods are usually limited to the analysis of postprandial kinetics of glucose. Kinetic information on a larger diversity of metabolites is often lacking, mainly due to the marginal percentage of fully isotopically enriched plant material in the administered food product, and hence, an even weaker 13C enrichment in downstream plasma metabolites. Therefore, we developed an analytical workflow to determine weak 13C enrichments of diverse plasma metabolites with conventional gas chromatography-mass spectrometry (GC-MS). The limit of quantification was increased by optimizing (1) the metabolite extraction from plasma, (2) the GC-MS measurement, and (3) most importantly, the computational data processing. We applied our workflow to study the catabolic dynamics of 13C-enriched wheat bread in three human subjects. For that purpose, we collected time-resolved human plasma samples at 16 timepoints after the consumption of 13C-labeled bread and quantified 13C enrichment of 12 metabolites (glucose, lactate, alanine, glycine, serine, citrate, glutamate, glutamine, valine, isoleucine, tyrosine, and threonine). Based on isotopomer specific analysis, we were able to distinguish catabolic profiles of starch and protein hydrolysis. More generally, our study highlights that conventional GC-MS equipment is sufficient to detect isotope traces below 1% if an appropriate data processing is integrated. PMID:29443915

  8. Quantification of Stable Isotope Traces Close to Natural Enrichment in Human Plasma Metabolites Using Gas Chromatography-Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Lisa Krämer

    2018-02-01

    Full Text Available Currently, changes in metabolic fluxes following consumption of stable isotope-enriched foods are usually limited to the analysis of postprandial kinetics of glucose. Kinetic information on a larger diversity of metabolites is often lacking, mainly due to the marginal percentage of fully isotopically enriched plant material in the administered food product, and hence, an even weaker 13C enrichment in downstream plasma metabolites. Therefore, we developed an analytical workflow to determine weak 13C enrichments of diverse plasma metabolites with conventional gas chromatography-mass spectrometry (GC-MS. The limit of quantification was increased by optimizing (1 the metabolite extraction from plasma, (2 the GC-MS measurement, and (3 most importantly, the computational data processing. We applied our workflow to study the catabolic dynamics of 13C-enriched wheat bread in three human subjects. For that purpose, we collected time-resolved human plasma samples at 16 timepoints after the consumption of 13C-labeled bread and quantified 13C enrichment of 12 metabolites (glucose, lactate, alanine, glycine, serine, citrate, glutamate, glutamine, valine, isoleucine, tyrosine, and threonine. Based on isotopomer specific analysis, we were able to distinguish catabolic profiles of starch and protein hydrolysis. More generally, our study highlights that conventional GC-MS equipment is sufficient to detect isotope traces below 1% if an appropriate data processing is integrated.

  9. Selection, isolation, and identification of fungi for bioherbicide production

    Directory of Open Access Journals (Sweden)

    Angélica Rossana Castro de Souza

    Full Text Available Abstract Production of a bioherbicide for biological control of weeds requires a series of steps, from selection of a suitable microbial strain to final formulation. Thus, this study aimed to select fungi for production of secondary metabolites with herbicidal activity using biological resources of the Brazilian Pampa biome. Phytopathogenic fungi were isolated from infected tissues of weeds in the Pampa biome. A liquid synthetic culture medium was used for production of metabolites. The phytotoxicity of fungal metabolites was assessed via biological tests using the plant Cucumis sativus L., and the most promising strain was identified by molecular analysis. Thirty-nine fungi were isolated, and 28 presented some phytotoxic symptoms against the target plant. Fungus VP51 belonging to the genus Diaporthe showed the most pronounced herbicidal activity. The Brazilian Pampa biome is a potential resource for the development of new and sustainable chemical compounds for modern agriculture.

  10. GanedenBC30 cell wall and metabolites: anti-inflammatory and immune modulating effects in vitro.

    Science.gov (United States)

    Jensen, Gitte S; Benson, Kathleen F; Carter, Steve G; Endres, John R

    2010-03-24

    This study was performed to evaluate anti-inflammatory and immune modulating properties of the probiotic, spore-forming bacterial strain: Bacillus coagulans: GBI-30, (PTA-6086, GanedenBC30TM). In addition, cell wall and metabolite fractions were assayed separately to address whether biological effects were due to cell wall components only, or whether secreted compounds from live bacteria had additional biological properties. The spores were heat-activated, and bacterial cultures were grown. The culture supernatant was harvested as a source of metabolites (MTB), and the bacteria were used to isolate cell wall fragments (CW). Both of these fractions were compared in a series of in vitro assays. Both MTB and CW inhibited spontaneous and oxidative stress-induced ROS formation in human PMN cells and increased the phagocytic activity of PMN cells in response to bacteria-like carboxylated fluorospheres. Both fractions supported random PMN and f-MLP-directed PMN cell migration, indicating a support of immune surveillance and antibacterial defense mechanisms. In contrast, low doses of both fractions inhibited PMN cell migration towards the inflammatory mediators IL-8 and LTB4. The anti-inflammatory activity was strongest for CW, where the PMN migration towards IL-8 was inhibited down to dilutions of 1010.Both MTB and CW induced the expression of the CD69 activation marker on human CD3- CD56+ NK cells, and enhanced the expression of CD107a when exposed to K562 tumor cells in vitro.The fractions directly modulated cytokine production, inducing production of the Th2 cytokines IL-4, IL-6, and IL-10, and inhibiting production of IL-2.Both fractions further modulated mitogen-induced cytokine production in the following manner: Both fractions enhanced the PHA-induced production of IL-6 and reduced the PHA-induced production of TNF-alpha. Both fractions enhanced the PWM-induced production of TNF-alpha and IFN-gamma. In addition, MTB also enhanced both the PHA- and the PWM

  11. The cross-pathway control system regulates production of the secondary metabolite toxin, sirodesmin PL, in the ascomycete, Leptosphaeria maculans

    Directory of Open Access Journals (Sweden)

    Fox Ellen M

    2011-07-01

    Full Text Available Abstract Background Sirodesmin PL is a secondary metabolite toxin made by the ascomycetous plant pathogen, Leptosphaeria maculans. The sirodesmin biosynthetic genes are clustered in the genome. The key genes are a non-ribosomal peptide synthetase, sirP, and a pathway-specific transcription factor, sirZ. Little is known about regulation of sirodesmin production. Results Genes involved in regulation of sirodesmin PL in L. maculans have been identified. Two hundred random insertional T-DNA mutants were screened with an antibacterial assay for ones producing low levels of sirodesmin PL. Three such mutants were isolated and each transcribed sirZ at very low levels. One of the affected genes had high sequence similarity to Aspergillus fumigatus cpcA, which regulates the cross-pathway control system in response to amino acid availability. This gene was silenced in L. maculans and the resultant mutant characterised. When amino acid starvation was artificially-induced by addition of 3-aminotriazole for 5 h, transcript levels of sirP and sirZ did not change in the wild type. In contrast, levels of sirP and sirZ transcripts increased in the silenced cpcA mutant. After prolonged amino acid starvation the silenced cpcA mutant produced much higher amounts of sirodesmin PL than the wild type. Conclusions Production of sirodesmin PL in L. maculans is regulated by the cross pathway control gene, cpcA, either directly or indirectly via the pathway-specific transcription factor, sirZ.

  12. INFLUENCE OF BETAINE ON GOAT MILK YIELD AND BLOOD METABOLITES

    Directory of Open Access Journals (Sweden)

    Carlos Javier Fernandez

    2009-02-01

    Full Text Available Betaine is a natural occurring compound with methyl donor properties which is increasingly being used in animal feeding. Betaine, an oxidative product of choline is able to replace methionine in some physiologically important body processes. The subject of this work was to study the effect of betaine added to the diet on milk production and blood metabolites on Murciano-Granadina dairy goats.  Sixty lactating goats were selected from a commercial Murciano-Granadina goat herd (EXCAMUR S.L. located in Murcia Region (Spain. Goats were selected from a 250 goats herd, taken  into account the age, stage of lactation (2.5 as average, live weight (36 kg as average and type of birth (2 kids. Two homogenous groups of 30 goats were made and fed with 1.5 kg of compound feed and 1 kg of alfalfa hay per day and goat. Goats were fed twice a day and water was provided ad libitum. Both groups received the same diet but for the second group the diet was supplemented with 4 g∙kg-1 betaine (betaine anhydrous, Danisco Animal Nutrition. The feeds, presented in pellets, were formulated in based on recommendations of INRA (2007. The experimental period was 6 months and the experimental diets were provided 15 days before parturition. The herd was machine milked once at day. Chemical composition, milk production and blood metabolites of each goat were recorded and analyzed at the end of the trial. Variance analysis and means comparison were carried out using the general lineal model procedure and Tukey test for mean comparison. Goats fed with betaine diet had higher milk fat than goats fed control diet (4.8 vs. 5.2 % for control and betaine respectively; P

  13. Structure-activity relationships for the fluorescence of ochratoxin A: Insight for detection of ochratoxin A metabolites

    Energy Technology Data Exchange (ETDEWEB)

    Frenette, Christine; Paugh, Robert J. [Departments of Chemistry and Toxicology, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada); Tozlovanu, Mariana; Juzio, Maud [ENSAT, UMR CNRS 5503, 1 Avenue Agrobiopole 31326 Auzeville-Tolosane (France); Pfohl-Leszkowicz, Annie [ENSAT, UMR CNRS 5503, 1 Avenue Agrobiopole 31326 Auzeville-Tolosane (France)], E-mail: leszkowicz@ensat.fr; Manderville, Richard A. [Departments of Chemistry and Toxicology, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada)], E-mail: rmanderv@uoguelph.ca

    2008-06-09

    Ochratoxin A (OTA) is a mycotoxin produced by Aspergillus and Penicillium that is widely found as a contaminant of food products. The toxin is a renal carcinogen in male rats, the cause of mycotoxicoses in pigs and has been associated with chronic human kidney diseases. Bioactivation has been implicated in OTA-mediated toxicity, although inconsistent results have been reported, due, in part, to the difficulty in detecting OTA metabolites in vivo. Liquid chromatography (LC) coupled with fluorescence detection (FLD) is the most widely used analytical detection method for OTA. Under acidic conditions the toxin generates blue fluorescence (465 nm) that is due to an excited state intramolecular proton transfer (ESIPT) process that generates an emissive keto tautomer. Disruption of this ESIPT process quenches fluorescence intensity and causes a blue shift in emission maxima. The aim of the present study was to determine the impact of the C5-chlorine atom, the lactone moiety and the amide bond on OTA fluorescence and derive optical parameters for OTA metabolites that have been detected in vitro. Our results highlight the limitations of LC/FLD for OTA metabolites that do not undergo ESIPT. For emissive derivatives, our absorption and emission data improves the sensitivity of LC/FLD (3-4-fold increase in the limit of detection (LOD)) for OTA analogues bearing a C5-OH group, such as the hydroquinone (OTHQ) metabolite and the glutathione conjugate of OTA (OTA-GSH). This increased sensitivity may facilitate the detection of OTA metabolites bearing a C5-OH group in biological fluids and enhance our understanding of OTA-mediated toxicity.

  14. Metabolites from nematophagous fungi and nematicidal natural products from fungi as alternatives for biological control. Part II: metabolites from nematophagous basidiomycetes and non-nematophagous fungi.

    Science.gov (United States)

    Degenkolb, Thomas; Vilcinskas, Andreas

    2016-05-01

    In this second section of a two-part mini-review article, we introduce 101 further nematicidal and non-nematicidal secondary metabolites biosynthesized by nematophagous basidiomycetes or non-nematophagous ascomycetes and basidiomycetes. Several of these compounds have promising nematicidal activity and deserve further and more detailed analysis. Thermolides A and B, omphalotins, ophiobolins, bursaphelocides A and B, illinitone A, pseudohalonectrins A and B, dichomitin B, and caryopsomycins A-C are excellent candidates or lead compounds for the development of biocontrol strategies for phytopathogenic nematodes. Paraherquamides, clonostachydiol, and nafuredins offer promising leads for the development of formulations against the intestinal nematodes of ruminants.

  15. Identification of Unique Metabolites of the Designer Opioid Furanyl Fentanyl.

    Science.gov (United States)

    Goggin, Melissa M; Nguyen, An; Janis, Gregory C

    2017-06-01

    The illicit drug market has seen an increase in designer opioids, including fentanyl and methadone analogs, and other structurally unrelated opioid agonists. The designer opioid, furanyl fentanyl, is one of many fentanyl analogs clandestinely synthesized for recreational use and contributing to the fentanyl and opioid crisis. A method has been developed and validated for the analysis of furanyl fentanyl and furanyl norfentanyl in urine specimens from pain management programs. Approximately 10% of samples from a set of 500 presumptive heroin-positive urine specimens were found to contain furanyl fentanyl, with an average concentration of 33.8 ng/mL, and ranging from 0.26 to 390 ng/mL. Little to no furanyl norfentanyl was observed; therefore, the furanyl fentanyl specimens were further analyzed by untargeted high-resolution mass spectrometry to identify other metabolites. Multiple metabolites, including a dihydrodiol metabolite, 4-anilino-N-phenethyl-piperidine (4-ANPP) and a sulfate metabolite were identified. The aim of the presented study was to identify the major metabolite(s) of furanyl fentanyl and estimate their concentrations for the purpose of toxicological monitoring. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Loss of metabolites from monkey striatum during PET with FDOPA

    DEFF Research Database (Denmark)

    Cumming, P; Munk, O L; Doudet, D

    2001-01-01

    diffusion of [(18)F]fluorodopamine metabolites from brain. Consequently, time-radioactivity recordings of striatum are progressively influenced by metabolite loss. In linear analyses, the net blood-brain clearance of FDOPA (K(D)(i), ml g(-1) min(-1)) can be corrected for this loss by the elimination rate...... constant k(Lin)(cl) (min(-1)). Similarly, the DOPA decarboxylation rate constant (k(D)(3), min(-1)) calculated by compartmental analysis can also be corrected for metabolite loss by the elimination rate constant k(DA)(9) (min(-1)). To compare the two methods, we calculated the two elimination rate...... of the estimate was substantially improved upon correction for metabolite loss. The rate constants for metabolite loss were higher in MPTP-lesioned monkey striatum than in normal striatum. The high correlation between individual estimates of k(Lin)(cl) and k(DA)(9) suggests that both rate constants reveal loss...

  17. Gene-metabolite profile integration to understand the cause of spaceflight induced immunodeficiency.

    Science.gov (United States)

    Chakraborty, Nabarun; Cheema, Amrita; Gautam, Aarti; Donohue, Duncan; Hoke, Allison; Conley, Carolynn; Jett, Marti; Hammamieh, Rasha

    2018-01-01

    Spaceflight presents a spectrum of stresses very different from those associated with terrestrial conditions. Our previous study (BMC Genom. 15 : 659, 2014) integrated the expressions of mRNAs, microRNAs, and proteins and results indicated that microgravity induces an immunosuppressive state that can facilitate opportunistic pathogenic attack. However, the existing data are not sufficient for elucidating the molecular drivers of the given immunosuppressed state. To meet this knowledge gap, we focused on the metabolite profile of spaceflown human cells. Independent studies have attributed cellular energy deficiency as a major cause of compromised immunity of the host, and metabolites that are closely associated with energy production could be a robust signature of atypical energy fluctuation. Our protocol involved inoculation of human endothelial cells in cell culture modules in spaceflight and on the ground concurrently. Ten days later, the cells in space and on the ground were exposed to lipopolysaccharide (LPS), a ubiquitous membrane endotoxin of Gram-negative bacteria. Nucleic acids, proteins, and metabolites were collected 4 and 8 h post-LPS exposure. Untargeted profiling of metabolites was followed by targeted identification of amino acids and knowledge integration with gene expression profiles. Consistent with the past reports associating microgravity with increased energy expenditure, we identified several markers linked to energy deficiency, including various amino acids such as tryptophan, creatinine, dopamine, and glycine, and cofactors such as lactate and pyruvate. The present study revealed a molecular architecture linking energy metabolism and immunodeficiency in microgravity. The energy-deficient condition potentially cascaded into dysregulation of protein metabolism and impairment of host immunity. This project is limited by a small sample size. Although a strict statistical screening was carefully implemented, the present results further emphasize

  18. Associations between purine metabolites and clinical symptoms in schizophrenia.

    Directory of Open Access Journals (Sweden)

    Jeffrey K Yao

    Full Text Available The antioxidant defense system, which is known to be dysregulated in schizophrenia, is closely linked to the dynamics of purine pathway. Thus, alterations in the homeostatic balance in the purine pathway may be involved in the pathophysiology of schizophrenia.Breakdown products in purine pathway were measured using high-pressure liquid chromatography coupled with a coulometric multi-electrode array system for 25 first-episode neuroleptic-naïve patients with schizophrenia at baseline and at 4-weeks following initiation of treatment with antipsychotic medication. Associations between these metabolites and clinical and neurological symptoms were examined at both time points. The ratio of uric acid and guanine measured at baseline predicted clinical improvement following four weeks of treatment with antipsychotic medication. Baseline levels of purine metabolites also predicted clinical and neurological symtpoms recorded at baseline; level of guanosine was associated with degree of clinical thought disturbance, and the ratio of xanthosine to guanosine at baseline predicted degree of impairment in the repetition and sequencing of actions.Findings suggest an association between optimal levels of purine byproducts and dynamics in clinical symptoms and adjustment, as well as in the integrity of sensory and motor processing. Taken together, alterations in purine catabolism may have clinical relevance in schizophrenia pathology.

  19. Molecular neutron activation analysis of selenium metabolites in urine

    International Nuclear Information System (INIS)

    Blotcky, A.J.; Hansen, G.T.; Ebrahim, A.; Rack, E.P.

    1988-01-01

    Because of the biological importance of selenium in living biological systems, various analytical procedures have been developed for analysis of microquantities of elemental selenium, in urine, serum, and tissue. For urine selenium, these include atomic absorption spectrometry, solution absorption spectrometry, solution fluorescence spectrometry, volumetry, and neutron activation analysis. Of equal or greater importance is the determination of selenium metabolites present in urine for the purpose of describing the biological pathways for the metabolism of selenium in living organisms. While it is known from previous studies that trimethylselenonium ion (TMSe) is a major metabolite in urine, probably the result of reduction and methylation reaction, there are no definitive results in the literature indicating the nature or quantity of other selenium metabolic products in urine. Early techniques to measure TMSe levels in urine involved the use of the radiotracer 75 Se. Because of the long biological half-life of selenium and issues of radiation exposure, its use in humans has been limited. In this paper, the authors report the experimental procedure for the determination of total selenoamino acid concentration in urine and present total selenium values, and, where applicable, TMSe, SeO 2- 3 , and total selenoamino acid concentrations in the urine of normal and diseased subjects

  20. Thermodynamics-based Metabolite Sensitivity Analysis in metabolic networks.

    Science.gov (United States)

    Kiparissides, A; Hatzimanikatis, V

    2017-01-01

    The increasing availability of large metabolomics datasets enhances the need for computational methodologies that can organize the data in a way that can lead to the inference of meaningful relationships. Knowledge of the metabolic state of a cell and how it responds to various stimuli and extracellular conditions can offer significant insight in the regulatory functions and how to manipulate them. Constraint based methods, such as Flux Balance Analysis (FBA) and Thermodynamics-based flux analysis (TFA), are commonly used to estimate the flow of metabolites through genome-wide metabolic networks, making it possible to identify the ranges of flux values that are consistent with the studied physiological and thermodynamic conditions. However, unless key intracellular fluxes and metabolite concentrations are known, constraint-based models lead to underdetermined problem formulations. This lack of information propagates as uncertainty in the estimation of fluxes and basic reaction properties such as the determination of reaction directionalities. Therefore, knowledge of which metabolites, if measured, would contribute the most to reducing this uncertainty can significantly improve our ability to define the internal state of the cell. In the present work we combine constraint based modeling, Design of Experiments (DoE) and Global Sensitivity Analysis (GSA) into the Thermodynamics-based Metabolite Sensitivity Analysis (TMSA) method. TMSA ranks metabolites comprising a metabolic network based on their ability to constrain the gamut of possible solutions to a limited, thermodynamically consistent set of internal states. TMSA is modular and can be applied to a single reaction, a metabolic pathway or an entire metabolic network. This is, to our knowledge, the first attempt to use metabolic modeling in order to provide a significance ranking of metabolites to guide experimental measurements. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier