WorldWideScience

Sample records for metabolite combinations produced

  1. Organic metabolites produced by Vibrio parahaemolyticus strain ...

    Identification and action of several antibacterial metabolites produced by a fish pathogen Vibrio parahaemolyticus strain An3 from marine ecosystem of Goa has been demonstrated. Antibacterial activity of the crude cell extract of the test bacterium has been evaluated against indicator pathogenic bacterial strains such as ...

  2. An update on organohalogen metabolites produced by basidiomycetes

    Field, J.A.; Wijnberg, J.B.P.A.

    2003-01-01

    Basidiomycetes are an ecologically important group of higher fungi known for their widespread capacity to produce organohalogen metabolites. To date, 100 different organohalogen metabolites (mostly chlorinated) have been identified from strains in 70 genera of Basidiomycetes. This manuscript

  3. Cyanobacteria as Cell Factories to Produce Plant Secondary Metabolites

    Xue, Yong; He, Qingfang

    2015-01-01

    Cyanobacteria represent a promising platform for the production of plant secondary metabolites. Their capacity to express plant P450 proteins, which have essential functions in the biosynthesis of many plant secondary metabolites, makes cyanobacteria ideal for this purpose, and their photosynthetic capability allows cyanobacteria to grow with simple nutrient inputs. This review summarizes the advantages of using cyanobacteria to transgenically produce plant secondary metabolites. Some techniq...

  4. Secondary Metabolites Produced during the Germination of Streptomyces coelicolor

    Matouš Čihák

    2017-12-01

    Full Text Available Spore awakening is a series of actions that starts with purely physical processes and continues via the launching of gene expression and metabolic activities, eventually achieving a vegetative phase of growth. In spore-forming microorganisms, the germination process is controlled by intra- and inter-species communication. However, in the Streptomyces clade, which is capable of developing a plethora of valuable compounds, the chemical signals produced during germination have not been systematically studied before. Our previously published data revealed that several secondary metabolite biosynthetic genes are expressed during germination. Therefore, we focus here on the secondary metabolite production during this developmental stage. Using high-performance liquid chromatography-mass spectrometry, we found that the sesquiterpenoid antibiotic albaflavenone, the polyketide germicidin A, and chalcone are produced during germination of the model streptomycete, S. coelicolor. Interestingly, the last two compounds revealed an inhibitory effect on the germination process. The secondary metabolites originating from the early stage of microbial growth may coordinate the development of the producer (quorum sensing and/or play a role in competitive microflora repression (quorum quenching in their nature environments.

  5. Analysis of Fusarium avenaceum Metabolites Produced during Wet Apple Core Rot

    Sørensen, Jens Laurids; Phipps, Richard Kerry; Nielsen, Kristian Fog

    2009-01-01

    Wet apple core rot (wACR) is a well-known disease of susceptible apple cultivars such as Gloster, Jona Gold, and Fuji. Investigations in apple orchards in Slovenia identified Fusarium avenaceum, a known producer of several mycotoxins, as the predominant causal agent of this disease. A LC...... and naturally infected apples. Levels of moniliformin, antibiotic Y, aurofusarin, and enniatins A, A1, B, and B1 were quantitatively examined in artificially inoculated and naturally infected apples, whereas the remaining metabolites were qualitatively detected. Metabolite production was examined...... in artificially inoculated apples after 3, 7, 14, and 21 days of incubation. Most metabolites were detected after 3 or 7 days and reached significantly high levels within 14 or 21 days. The highest levels of moniliformin, antibiotic Y, aurofusarin, and the combined sum of enniatins A, A1, B, and B1 were 7.3, 5...

  6. Effect of metabolites produced by Trichoderma species against ...

    Metabolites released from Trichoderma viride, T. polysporum, T. hamatum and T. aureoviride were tested in culture medium against Ceratocystis paradoxa, which causes black seed rot in oil palm sprouted seeds. The Trichoderma metabolites had similar fungistatic effects on the growth of C. paradoxa except those from T.

  7. Do metabolites that are produced during resistance exercise enhance muscle hypertrophy?

    Dankel, Scott J; Mattocks, Kevin T; Jessee, Matthew B; Buckner, Samuel L; Mouser, J Grant; Loenneke, Jeremy P

    2017-11-01

    Many reviews conclude that metabolites play an important role with respect to muscle hypertrophy during resistance exercise, but their actual physiologic contribution remains unknown. Some have suggested that metabolites may work independently of muscle contraction, while others have suggested that metabolites may play a secondary role in their ability to augment muscle activation via inducing fatigue. Interestingly, the studies used as support for an anabolic role of metabolites use protocols that are not actually designed to test the importance of metabolites independent of muscle contraction. While there is some evidence in vitro that metabolites may induce muscle hypertrophy, the only study attempting to answer this question in humans found no added benefit of pooling metabolites within the muscle post-exercise. As load-induced muscle hypertrophy is thought to work via mechanotransduction (as opposed to being metabolically driven), it seems likely that metabolites simply augment muscle activation and cause the mechanotransduction cascade in a larger proportion of muscle fibers, thereby producing greater muscle growth. A sufficient time under tension also appears necessary, as measurable muscle growth is not observed after repeated maximal testing. Based on current evidence, it is our opinion that metabolites produced during resistance exercise do not have anabolic properties per se, but may be anabolic in their ability to augment muscle activation. Future studies are needed to compare protocols which produce similar levels of muscle activation, but differ in the magnitude of metabolites produced, or duration in which the exercised muscles are exposed to metabolites.

  8. Metabolites inhibiting germination of Orobanche ramosa seeds produced by Myrothecium verrucaria and Fusarium compactum.

    Andolfi, Anna; Boari, Angela; Evidente, Antonio; Vurro, Maurizio

    2005-03-09

    Myrothecium verrucaria and Fusarium compactum were isolated from diseased Orobanche ramosa plants collected in southern Italy to find potential biocontrol agents of this parasitic weed. Both fungi grown in liquid culture produced metabolites that inhibited the germination of O. ramosa seeds at 1-10 muM. Eight metabolites were isolated from M. verrucaria culture extracts. The main metabolite was identified as verrucarin E, a disubstituted pyrrole not belonging to the trichothecene group. Seven compounds were identified by spectroscopic methods as macrocyclic trichothecenes, namely, verrucarins A, B, M, and L acetate, roridin A, isotrichoverrin B, and trichoverrol B. The main metabolite produced by F. compactum was neosoloaniol monoacetate, a trichothecene. All the trichothecenes proved to be potent inhibitors of O. ramosa seed germination and possess strong zootoxic activity when assayed on Artemia salina brine shrimps. Verrucarin E is inactive on both seed germination and zootoxic assay.

  9. Reexamining intra and extracellular metabolites produced by Pseudomonas aeruginosa

    Maria Shuja

    2016-02-01

    Full Text Available Objective: To isolate, screen and analyze bacteria from different areas of Pakistan for the production of antimicrobial compounds, zinc solubilization and bioplastic production. Methods: Isolation and purification was proceeding with streak plate method. Antagonistic assay was completed with well diffusion and thin-layer chromatography. In vivo analysis of bioplastic was analyzed with Nile blue fluorescence under UV and Sudan staining. Results: A total of 18 bacterial strains purified from soil samples while 148 strains form stock cultures were used. Out of 166 only 94 showed antimicrobial activity against each of Grampositive and Gram-negative; cocci and rods. In case of heavy metal (ZnO and Zn3(PO42.4H2O solubilization, 54 strains solubilized ZnO and 23 strains solubilized Zn3(PO42.4H2O, while 127 strains grown on polyhydroxyalkanoate detection meedia supplemented with Nile blue medium showed bioplastic production by producing fluorescence under UV light. Four bacterial strains (coded as 100, 101, 104 and 111 were selected for further characterization. Induction time assay showed that strains 101, 104, and 111 showed inhibitory activity after 4 h of incubation while strain 100 showed after 8 h. All four strains were tolerable to the maximum concentration of ZnO. Amplified products of both 16S rRNA and PhaC gene fragments of strain 111 were sequenced and submitted to GenBank as accession numbers EU781525 and EU781526. Conclusions: Bacterial strain Pseudomonas aeruginosa-111 has potential to utilize as biofertilize and bioplastic producer.

  10. Quantification of a bacterial secondary metabolite by SERS combined with SLM extraction for bioprocess monitoring

    Morelli, Lidia; Andreasen, Sune Zoëga; Jendresen, Christian Bille

    2017-01-01

    and combined it with surface enhanced Raman scattering (SERS) sensing for the screening of a biological process, namely for the quantification of a bacterial secondary metabolite, p-coumaric acid (pHCA), produced by Escherichia coli. The microfluidic device proved to be robust and reusable, enabling efficient...... removal of interfering compounds from the real samples, reaching more than 13-fold up-concentration of the donor at 10 μL min-1 flow rate. With this method, we quantified pHCA directly from the bacterial supernatant, distinguishing between various culture conditions based on the pHCA production yield...

  11. Erinacine C: A novel approach to produce the secondary metabolite by submerged cultivation of Hericium erinaceus.

    Wolters, Niklas; Schembecker, Gerhard; Merz, Juliane

    2015-12-01

    Erinacine C is a cyathane scaffold-based secondary metabolite, which is naturally produced by the filamentous fungus Hericium erinaceus and has a high potential to treat nervous diseases such as Alzheimer's disease. The investigated approach consists of combining an optimised precultivation of H. erinaceus with an enhanced erinacine C production by developing a suitable main cultivation medium enabling the utilisation of high biomass contents. The final erinacine C production medium is buffered by 100 mM HEPES to ensure a stable pH value of 7.5 during main cultivation at inoculation ratios of up to 5:10 (v/v). The medium components, such as 5.0 g L(-1) oatmeal, 1.5 g L(-1) calcium carbonate, and 0.5 g L(-1) Edamin(®) K are crucial for an increased erinacine C production. Besides, different carbon to nitrogen ratios of 25, 64, and 103 do not affect the erinacine C synthesis. The investigated approach enables the production of 2.73 g erinacine C per litre main cultivation broth, which is tenfold higher than published data. In addition, erinacine C biosynthesis is determined to occur mainly in the first six days of main cultivation. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  12. Rapid generation of recombinant Pseudomonas putida secondary metabolite producers using yTREX

    Andreas Domröse

    2017-12-01

    Full Text Available Microbial secondary metabolites represent a rich source of valuable compounds with a variety of applications in medicine or agriculture. Effective exploitation of this wealth of chemicals requires the functional expression of the respective biosynthetic genes in amenable heterologous hosts. We have previously established the TREX system which facilitates the transfer, integration and expression of biosynthetic gene clusters in various bacterial hosts. Here, we describe the yTREX system, a new tool adapted for one-step yeast recombinational cloning of gene clusters. We show that with yTREX, Pseudomonas putida secondary metabolite production strains can rapidly be constructed by random targeting of chromosomal promoters by Tn5 transposition. Feasibility of this approach was corroborated by prodigiosin production after yTREX cloning, transfer and expression of the respective biosynthesis genes from Serratia marcescens. Furthermore, the applicability of the system for effective pathway rerouting by gene cluster adaptation was demonstrated using the violacein biosynthesis gene cluster from Chromobacterium violaceum, producing pathway metabolites violacein, deoxyviolacein, prodeoxyviolacein, and deoxychromoviridans. Clones producing both prodigiosin and violaceins could be readily identified among clones obtained after random chromosomal integration by their strong color-phenotype. Finally, the addition of a promoter-less reporter gene enabled facile detection also of phenazine-producing clones after transfer of the respective phenazine-1-carboxylic acid biosynthesis genes from Pseudomonas aeruginosa. All compounds accumulated to substantial titers in the mg range. We thus corroborate here the suitability of P. putida for the biosynthesis of diverse natural products, and demonstrate that the yTREX system effectively enables the rapid generation of secondary metabolite producing bacteria by activation of heterologous gene clusters, applicable for

  13. Progesterone Metabolites Produced by Cytochrome P450 3A Modulate Uterine Contractility in a Murine Model

    Patil, Avinash S.; Swamy, Geeta K.; Murtha, Amy P.; Heine, R. Phillips; Zheng, Xiaomei; Grotegut, Chad A.

    2015-01-01

    Objective: We seek to characterize the effect of progesterone metabolites on spontaneous and oxytocin-induced uterine contractility. Study Design: Spontaneous contractility was studied in mouse uterine horns after treatment with progesterone, 2α-hydroxyprogesterone, 6β-hydroxyprogesterone (6β-OHP), 16α-hydroxyprogesterone (16α-OHP), or 17-hydroxyprogesterone caproate (17-OHPC) at 10−9 to 10−6 mol/L. Uterine horns were exposed to progestins (10−6 mol/L), followed by increasing concentrations of oxytocin (1-100 nmol/L) to study oxytocin-induced contractility. Contraction parameters were compared for each progestin and matched vehicle control using repeated measures 2-way analysis of variance. In vitro metabolism of progesterone by recombinant cytochrome P450 3A (CYP3A) microsomes (3A5, 3A5, and 3A7) identified major metabolites. Results: Oxytocin-induced contractile frequency was decreased by 16α-OHP (P = .03) and increased by 6β-OHP (P = .05). Progesterone and 17-OHPC decreased oxytocin-induced contractile force (P = .02 and P = .04, respectively) and frequency (P = .02 and P = .03, respectively). Only progesterone decreased spontaneous contractile force (P = .02). Production of 16α-OHP and 6β-OHP metabolites were confirmed in all CYP3A isoforms tested. Conclusion: Progesterone metabolites produced by maternal or fetal CYP3A enzymes influence uterine contractility. PMID:26037300

  14. [Antagonism against Beauveria bassiana by lipopeptide metabolites produced by entophyte Bacillus amyloliquefaciens strain SWB16].

    Wang, Jingjie; Zhao, Dongyang; Liu, Yonggui; Ao, Xiang; Fan, Rui; Duan, Zhengqiao; Liu, Yanping; Chen, Qianqian; Jin, Zhixiong; Wan, Yongji

    2014-07-04

    We screened bacterial strains that have strong antagonism against Beauveria bassiana, an important pathogen of silkworm industry, and detected the antagonistic activity of lipopeptide metabolites. We identified bacterium SWB16 by morphological observation, physiological and biochemical experiments, 16SrRNA, and gyrA gene sequence analysis, tested antagonistic activity of strain SWB16 against Beauveria bassiana by measuring the inhibition zone diameter using filter paper diffusion method (Kirby-Bauer method), obtained lipopeptide metabolites of the strain using methanol extraction and observed the antagonism of strain SWB16 lipopeptide extracts against the conidia and hyphae of Beauveria bassiana, detected main ingredients and genes of lipopeptide metabolites by high-performance liquid chromatography-mass spectrometry and PCR amplification. SWB16 isolated from tissue of plant Dioscorea zingiberensis C. H. Wright belongs to Bacillus amyloliquefaciens and showed high antagonistic activity to Beauveria bassiana, and the lipopeptide extracts of isolate SWB16 exhibited significant inhibition to conidial germination and mycelial growth of Beauveria bassiana. The result of mass spectrometric detection indicated main component of the lipopeptide metabolites were fengcin and iturin, and genes fenB, ituA involved in the synthesis of them were amplified in the genome. Bacillus amyloliquefaciens strain SWB16 could produce lipopeptide antibiotics with strong antagonism to the entomopathogenic fungus Beauveria bassiana, and the results suggested that strain SWB16 has potential application value for controlling white muscardine of economic insects including silkworm.

  15. Production of Secondary Metabolites in Extreme Environments: Food- and Airborne Wallemia spp. Produce Toxic Metabolites at Hypersaline Conditions

    Jančič, Sašo; Frisvad, Jens Christian; Kocev, Dragi

    2016-01-01

    the genome data analysis of W. mellicola (previously W. sebi sensu lato) and W. ichthyophaga revealed a low number of secondary metabolites clusters, a substantial number of secondary metabolites were detected at different conditions. Machine learning analysis of the obtained dataset showed that NaCl has...... of salt or sugar. In relation to food safety, the effect of high salt and sugar concentrations on the production of secondary metabolites by this toxigenic fungus was investigated. The secondary metabolite profiles of 30 strains of the listed species were examined using general growth media, known...... to support the production of secondary metabolites, supplemented with different concentrations of NaCl, glucose and MgCl2. In more than two hundred extracts approximately one hundred different compounds were detected using high-performance liquid chromatography-diode array detection (HPLC-DAD). Although...

  16. Grains colonised by moulds: fungal identification and headspace analysis of produced volatile metabolites

    Maria Paola Tampieri

    2010-01-01

    Full Text Available The aim of this work was to verify if the headspace analysis of fungal volatile compounds produced by some species of Fusarium can be used as a marker of mould presence on maize. Eight samples of maize (four yellow maize from North Italy and four white maize from Hungary, naturally contaminated by Fusarium and positive for the presence of fumonisins, were analyzed to detect moisture content, Aw, volatile metabolites and an enumeration of viable moulds was performed by means of a colony count technique. Headspace samples were analysed using a gas-chromatograph equipped with a capillary column TR-WAX to detect volatile metabolites of moulds. Furthermore macro and microscopic examination of the colonies was performed in order to distinguish, according to their morphology, the genera of the prevalent present moulds. Prevalent mould of eight samples was Fusarium, but other fungi, like Aspergillus, Penicillum and Mucoraceae, were observed. The metabolites produced by F.graminearum and F. moniliforme were Isobutyl-acetate, 3-Methyl-1-butanol and, only at 8 days, 3-Octanone. The incubation time can affect off flavour production in consequence of the presence of other moulds. Further studies on maize samples under different conditions are needed in order to establish the presence of moulds using the count technique and through the identification of volatile compounds.

  17. Structure Elucidation of Unknown Metabolites in Metabolomics by Combined NMR and MS/MS Prediction.

    Boiteau, Rene M; Hoyt, David W; Nicora, Carrie D; Kinmonth-Schultz, Hannah A; Ward, Joy K; Bingol, Kerem

    2018-01-17

    We introduce a cheminformatics approach that combines highly selective and orthogonal structure elucidation parameters; accurate mass, MS/MS (MS²), and NMR into a single analysis platform to accurately identify unknown metabolites in untargeted studies. The approach starts with an unknown LC-MS feature, and then combines the experimental MS/MS and NMR information of the unknown to effectively filter out the false positive candidate structures based on their predicted MS/MS and NMR spectra. We demonstrate the approach on a model mixture, and then we identify an uncatalogued secondary metabolite in Arabidopsis thaliana . The NMR/MS² approach is well suited to the discovery of new metabolites in plant extracts, microbes, soils, dissolved organic matter, food extracts, biofuels, and biomedical samples, facilitating the identification of metabolites that are not present in experimental NMR and MS metabolomics databases.

  18. Isolation and screening of proangiogenic and antiangiogenic metabolites producing rare actinobacteria from soil.

    Azarakhsh, Y; Mohammadipanah, F; Nassiri, S M; Siavashi, V; Hamedi, J

    2017-06-01

    Angiogenesis is a physiological process that has important impacts on the pathology and healing of various diseases, and its induction or inhibition by bioactive actinobacterial metabolites can help the treatment of some diseases. In this study, the effects of actinobacterial extract in the process of angiogenesis have been explored. In this research, proangiogenic and antiangiogenic metabolites producing actinobacteria were isolated from soil samples and their fermentation broth were extracted and after evaluation of their toxicity by MTT assay, antiangiogenic and proangiogenic activities were screened against human umbilical vein endothelial cells (HUVECs) by in vitro tube formation and migration assay. Isolated strains were identified through molecular techniques. The results showed that Nocardiopsis arvandica UTMC 103 and Nonomuraea sp. UTMC 2180 extracts had a high potential of anti-angiogenic activity on HUVECs. For the first time proangiogenic potency of a rare actinobacterium, Kribbella sp. UTMC 522, was reported, and N. arvandica UTMC 103 and Nonomuraea sp. UTMC 2180 extracts inhibits the proliferation, migration and angiogenesis activity of HUVECs with reasonable potency. Metabolites of the introduced rare actinobacteria are potent proangiogenic and angiogenic inhibitors. Identification of angiogenic-antiangiogenic mechanisms and purification of the extracts would be useful in therapeutic angiogenesis. © 2017 The Society for Applied Microbiology.

  19. A Panel of Cytochrome P450 BM3 Variants To Produce Drug Metabolites and Diversify Lead Compounds

    Sawayama, Andrew M.; Chen, Michael M. Y.; Kulanthaivel, Palaniappan; Kuo, Ming-Shang; Hemmerle, Horst; Arnold, Frances H.

    2011-01-01

    Here we demonstrate that a small panel of variants of cytochrome P450 BM3 from Bacillus megaterium covers the breadth of reactivity of human P450s by producing 12 of 13 mammalian metabolites for two marketed drugs, verapamil and astemizole, and one research compound. The most active enzymes support preparation of individual metabolites for preclinical bioactivity and toxicology evaluations. Underscoring their potential utility in drug lead diversification, engineered P450 BM3 variants also produce novel metabolites by catalyzing reactions at carbon centers beyond those targeted by animal and human P450s. Production of a specific metabolite can be improved by directed evolution of the enzyme catalyst. Some variants are more active on the more hydrophobic parent drug than on its metabolites, which limits production of multiply-hydroxylated species, a preference that appears to depend on the evolutionary history of the P450 variant. PMID:19774562

  20. Inhibiting effect of bioactive metabolites produced by mushroom cultivation on bacterial quorum sensing-regulated behaviors.

    Zhu, Hu; Wang, Shou-Xian; Zhang, Shuai-Shuai; Cao, Chun-Xu

    2011-01-01

    This study aimed to search for novel quorum sensing (QS) inhibitors from mushroom and to analyze their inhibitory activity, with a view to their possible use in controlling detrimental infections. The bioactive metabolites produced by mushroom cultivation were tested for their abilities to inhibit QS-regulated behavior. All mushroom strains were cultivated in potato-dextrose medium by large-scale submerged fermentation. The culture supernatant was condensed into 0.2 vol by freeze-drying. The condensed supernatant was sterilized by filtration through a 0.22-μm membrane filter and added to Chromobacterium violaceum CV026 cultures, which were used to monitor QS inhibition. Inhibitory activity was measured by quantifying violacein production using a microplate reader. The results have revealed that, of 102 mushroom strains, the bioactive metabolites produced by 14 basidiomycetes were found to inhibit violacein production, a QS-regulated behavior in C. violaceum. Higher fungi can produce QS-inhibitory compounds. Copyright © 2011 S. Karger AG, Basel.

  1. Neuropharmacological and neuroprotective activities of some metabolites produced by cell suspension culture of Waltheria americana Linn.

    Mundo, Jorge; Villeda-Hernández, Juana; Herrera-Ruiz, Maribel; Gutiérrez, María Del Carmen; Arellano-García, Jesús; León-Rivera, Ismael; Perea-Arango, Irene

    2017-10-01

    Waltheria americana is a plant used in Mexican traditional medicine to treat some nervous system disorders. The aims of the present study were to isolate and determine the neuropharmacological and neurprotective activities of metabolites produced by a cell suspension culture of Waltheria americana. Submerged cultivation of W. americana cells provided biomass. A methanol-soluble extract (WAsc) was obtained from biomass. WAsc was fractionated yielding the chromatographic fractions 4WAsc-H 2 O and WAsc-CH 2 Cl 2 . For the determination of anticonvulsant activity in vivo, seizures were induced in mice by pentylenetetrazol (PTZ). Neuropharmacological activities (release of gamma amino butyric acid (GABA) and neuroprotection) of chromatographic fractions were determined by in vitro histological analysis of brain sections of mice post mortem. Fraction 4WAsc-H 2 O (containing saccharides) did not produce neuronal damage, neurodegeneration, interstitial tissue edema, astrocytic activation, nor cell death. Pretreatment of animals with 4WAsc-H 2 O and WAsc-CH 2 Cl 2 from W. americana cell suspensions induced an increase in: GABA release, seizure latency, survival time, neuroprotection, and a decrease in the degree of severity of tonic/tonic-clonic convulsions, preventing PTZ-induced death of up to 100% of animals of study. Bioactive compounds produced in suspension cell culture of W. americana produce neuroprotective and neuropharmacological activities associated with the GABAergic neurotransmission system. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Plant Bioactive Metabolites and Drugs Produced by Endophytic Fungi of Spermatophyta

    Rosario Nicoletti

    2015-09-01

    Full Text Available It is known that plant-based ethnomedicine represented the foundation of modern pharmacology and that many pharmaceuticals are derived from compounds occurring in plant extracts. This track still stimulates a worldwide investigational activity aimed at identifying novel bioactive products of plant origin. However, the discovery that endophytic fungi are able to produce many plant-derived drugs has disclosed new horizons for their availability and production on a large scale by the pharmaceutical industry. In fact, following the path traced by the blockbuster drug taxol, an increasing number of valuable compounds originally characterized as secondary metabolites of plant species belonging to the Spermatophyta have been reported as fermentation products of endophytic fungal strains. Aspects concerning sources and bioactive properties of these compounds are reviewed in this paper.

  3. Therapeutic potential of secondary metabolites produced in the hairy roots cultures

    Tomasz Kowalczyk

    2015-05-01

    Full Text Available Plants have always been a source of many valuable substances for humans. Growing advancement of methods of modern biotechnology, combined with genetic engineering techniques, gradually increase the variety of compounds obtained, the number of plant species used and the production efficiency. Consequently, there is an undebatable interest in biotechnological production of such compounds, especially those pharmacologically active, that can be used in treatment of neoplastic, viral, and many other types of diseases. Most of these compounds represent a diverse group of secondary metabolites. One of the effective ways of obtaining such molecules is the utilization of hairy roots cultures. The advantages of such systems make them an attractive method of obtaining important plant-derived compounds, creating an interesting alternative to other methods, including the cell suspension cultures or expensive chemical syntheses.

  4. Environmental monitoring and assessment of antibacterial metabolite producing actinobacteria screened from marine sediments in south coastal regions of Karnataka, India.

    Skariyachan, Sinosh; Garka, Shruthi; Puttaswamy, Sushmitha; Shanbhogue, Shobitha; Devaraju, Raksha; Narayanappa, Rajeswari

    2017-06-01

    Assessment of the therapeutic potential of secondary metabolite producing microorganisms from the marine coastal areas imparts scope and application in the field of environmental monitoring. The present study aims to screen metabolites with antibacterial potential from actionbacteria associated with marine sediments collected from south coastal regions of Karnataka, India. The actinobacteria were isolated and characterized from marine sediments by standard protocol. The metabolites were extracted, and antibacterial potential was analyzed against eight hospital associated bacteria. The selected metabolites were partially characterized by proximate analysis, SDS-PAGE, and FTIR-spectroscopy. The antibiogram of the test clinical isolates revealed that they were emerged as multidrug-resistant strains (P ≤ 0.05). Among six actinobacteria (IS1-1S6) screened, 100 μl -1 metabolite from IS1 showed significant antibacterial activities against all the clinical isolates except Pseudomonas aeruginosa. IS2 demonstrated antimicrobial potential towards Proteus mirabilis, Streptococcus pyogenes, and Escherichia coli. The metabolite from IS3 showed activity against Strep. pyogenes and E. coli. The metabolites from IS4, IS5, and IS6 exhibited antimicrobial activities against Ps. aeruginosa (P ≤ 0.05). The two metabolites that depicted highest antibacterial activities against the test strains were suggested to be antimicrobial peptides with low molecular weight. These isolates were characterized and designated as Streptomyces sp. strain mangaluru01 and Streptomyces sp. mangaloreK01 by 16S ribosomal DNA (rDNA) sequencing. This study suggests that south coastal regions of Karnataka, India, are one of the richest sources of antibacterial metabolites producing actinobacteria and monitoring of these regions for therapeutic intervention plays profound role in healthcare management.

  5. Metabolites produced by antagonistic microbes inhibit the principal avocado pathogens in vitro

    Sara Ramírez R.

    2015-04-01

    Full Text Available The demand for Hass avocado in the global market exceeds the supply by over 50%. Colombia has a remarkable advantage as a producer in the region due to its high yields. However, the productivity of this crop can be seriously affected by diseases such as root rot, caused by Phytophthora cinnamomi, postharvest body rot and stem end rot, caused by Colletotrichum sp. and Phomopsis sp., respectively. The potential of 76 bacterial isolates obtained from avocado rhizosphere to produce inhibitory metabolites against avocado's pathogens was evaluated. The antagonistic effect of the rhizobacteria against P. cinnamomi, Colletotrichum sp. and Phomopsis sp. was tested through dual cultures. Thirty-six percent of the tested isolates presented inhibition halos against P. cinnamomi, 36% against Colletotrichum sp. and 67% against Phomopsis sp. Additionally, three isolates were selected for fermentation tests using different broth cultures. The extracts obtained from fermentations in the minimal medium of isolates ARP5.1 and AED06 showed inhibitory activity against the evaluated pathogens, but this effect was not observed with the AED26 extract. The media supplemented with copper chloride did not enhance activity of the extracts. These results suggest that using microbial metabolic extracts is a viable alternative for controlling avocado pathogens in vitro.

  6. Isolation and characterization of bioactive metabolites producing marine Streptomyces parvulus strain sankarensis-A10

    Mobeen Shaik

    2017-06-01

    Full Text Available The significance and frequency of marine microorganisms as producers of bioactive metabolites-a natural source of drug discovery had varied significantly during the last decades, making marine ecosystem a huge treasure trove of novel isolates and novel compounds. Among the twelve actinomycetes isolated from marine sediment sample (Lat. 17°41′962″N, Long. 83°19′633″E, amylase, protease, lipase and cellulase activities were exhibited by 8,7,4,3 isolates respectively. Five isolates exhibited l-asparaginase activity, while 5, 6, 2 isolates exhibited antibacterial, antifungal and antimicrobial activities respectively. One isolate VMS-A10 efficiently producing alpha-amylase (25.53 ± 0.50 U/mL, protease (19.26 ± 0.25 U/mL, lipase (36.25 ± 0.10 U/mL, cellulase (14.43 ± 0.513 U/mL, l-asparaginase (0.125 ± 0.004 U/mL, antimicrobial metabolites against B. subtilis (503.33 ± 5.77 U/mL, S. aureus (536.66 ± 5.77 U/mL, E. coli (533.33 ± 5.77 U/mL, P. aeruginosa (500.00 ± 10.0 U/mL, MRSA (538.33 ± 5.77 U/mL, C. albicans (353.33 ± 11.54 U/mL and A. niger (443.33 ± 15.27 U/mL was selected, identified on the basis of morphological, cultural, physiological, and biochemical properties together with 16S rDNA sequence, designated as Streptomyces parvulus strain sankarensis-A10 and sequencing product (1490 bp was deposited in the GenBank database under accession number KT906299, Culture Deposit No: NCIM-5601. Isolation and characterization of each potential actinobacteria having immense industrial and therapeutic value on an unprecedented scale from marine sediments of Visakhapatnam coast will have a burgeoning effect.

  7. Anti-rheumatoid Activity of Secondary Metabolites Produced by Endophytic Chaetomium globosum

    Abdel-Azeem, Ahmed M.; Zaki, Sherif M.; Khalil, Waleed F.; Makhlouf, Noha A.; Farghaly, Lamiaa M.

    2016-01-01

    The aim of the present study was to investigate the anti-rheumatoid activity of secondary metabolites produced by endophytic mycobiota in Egypt. A total of 27 endophytic fungi were isolated from 10 dominant medicinal plant host species in Wadi Tala, Saint Katherine Protectorate, arid Sinai, Egypt. Of those taxa, seven isolates of Chaetomium globosum (CG1–CG7), being the most frequent taxon, were recovered from seven different host plants and screened for production of active anti-inflammatory metabolites. Isolates were cultivated on half – strength potato dextrose broth for 21 days at 28°C on a rotatory shaker at 180 rpm, and extracted in ethyl acetate and methanol, respectively. The probable inhibitory effects of both extracts against an adjuvant induced arthritis (AIA) rat model were examined and compared with the effects of methotrexate (MTX) as a standard disease-modifying anti-rheumatoid drug. Disease activity and mobility scoring of AIA, histopathology and transmission electron microscopy (TEM) were used to evaluate probable inhibitory roles. A significant reduction (P < 0.05) in the severity of arthritis was observed in both the methanolic extract of CG6 (MCG6) and MTX treatment groups 6 days after treatment commenced. The average arthritis score of the MCG6 treatment group was (10.7 ± 0.82) compared to (13.8 ± 0.98) in the positive control group. The mobility score of the MCG6 treatment group (1.50 ± 0.55) was significantly lower than that of the positive control group (3.33 ± 0.82). In contrast, the ethyl acetate extract of CG6 (EACG6) treatment group showed no improvements in arthritis and mobility scores in AIA model rats. Histopathology and TEM findings confirmed the observation. Isolate CG6 was subjected to sequencing for confirmation of phenotypic identification. The internal transcribed spacer (ITS) 1–5.8 s – ITS2 rDNA sequences obtained were compared with those deposited in the GenBank Database and registered with accession number KC

  8. Halophilic and halotolerant actinomycetes from a marine saltern of Goa, India producing anti-bacterial metabolites.

    Ballav, Shuvankar; Kerkar, Savita; Thomas, Sabu; Augustine, Nimmy

    2015-03-01

    Marine salterns are estuarine ecosystems in Goa, receiving inputs from riverine and marine waters. The Salinity fluctuates between 0 and 300 psu which makes it a conducive niche for salt tolerant and salt loving Actinomycetales. Halotolerant and halophilic Actinomycetales producing anti-bacterial metabolites were studied from crystallizer pond sediments of Ribandar saltern, Goa. Three media viz. Starch casein, R2A and Inorganic salt starch agar at four different salinities (35, 50, 75 and 100 psu) were used for isolation. R2A agar at 35 psu was the most preferred by hypersaline actinomycetes. The dominant group was halotolerant Streptomyces spp. others being rare actinomycetes viz. Nocardiopsis, Micromonospora and Kocuria spp. More than 50% of the isolates showed anti-bacterial activity against one or more of the fifteen human pathogens tested. Eight strains from 4 genera showed consistent anti-bacterial activity and studied in detail. Most halotolerant isolates grew from 0 to 75 psu, with optimum antibiotic production at 35 psu whereas halophiles grew at 20 to 100 psu with optimum antibiotic production at 35 psu. Four Streptomyces strains showed multiple inhibition against test organisms while four rare actinomycetes were specific in their inhibitory activity. This is the first report of a halophilic Kocuria sp., Nocardiopsis sp., and halotolerant Micromonospora sp. producing anti-bacterial compound(s) against Staphylococcus aureus, Staphylococcus citreus, and Vibrio cholerae, respectively. Sequential extraction with varying polarity of organic solvents showed that the extracts inhibited different test pathogens. These results suggest that halophilic and halotolerant actinomycetes from marine salterns are a potential source of anti-bacterial compounds. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. Potentially harmful secondary metabolites produced by indoor Chaetomium species on artificially and naturally contaminated building materials

    Dosen, Ina; Nielsen, Kristian Fog; Clausen, Geo

    2017-01-01

    , have been screened for, and thus detected in buildings. In this study, we used a liquid chromatography-high resolution mass spectrometry approach to screen both artificially and naturally infected building materials for all the Chaetomium metabolites described in the literature. Pure agar cultures were...... also investigated in order to establish differences between metabolite production in vitro and on building materials as well as comparison to non-indoor reference strains. On building materials six different chaetoglobosins were detected in total concentrations of up to 950 mg/m2 from C. globosum along...... with three different chaetoviridins/chaetomugilins in concentrations up to 200 mg/m2. Indoor Chaetomium spp. preferred wood-based materials over gypsum, both in terms of growth rate and metabolite production. Cochliodones were detected for the first time on all building materials infected by both C. globosum...

  10. antiSMASH 2.0-a versatile platform for genome mining of secondary metabolite producers

    Blin, Kai; Medema, Marnix H.; Kazempour, Daniyal; Fischbach, Michael A.; Breitling, Rainer; Takano, Eriko; Weber, Tilmann

    Microbial secondary metabolites are a potent source of antibiotics and other pharmaceuticals. Genome mining of their biosynthetic gene clusters has become a key method to accelerate their identification and characterization. In 2011, we developed antiSMASH, a web-based analysis platform that

  11. Extraction and Identification of Secondary Metabolites Produced by Trichoderma atroviridae (6022 and Evaluating of their Antifungal Effects

    M. Shahiri Tabarestani

    2017-08-01

    Full Text Available Introduction: Fungi release wide spectrum of secondary metabolites that belong to several chemical groups with different biochemical origins. These materials produce as intermediate and end products of diverse metabolic pathways. The profile of the secondary metabolites for a known species or strain will vary depending on the substrate, the duration of incubation, the type of nutrients, temperature and other environmental parameters. Trichoderma spp. are well-known producers of secondary metabolites with different biological activities. The secondary metabolites with antibiotic activity can be classified into two main types. Low molecular weight and volatile metabolites which are involved in complex Trichoderma plant-pathogen interactions. They belong to various structure classes such as alcohols, ketones, alkanes, furans, simple aromatic compounds, isocyanate compounds, volatile terpenes, some polyketides, butenolides, and pyrones. All of them are relatively nonpolar compounds with a significant vapor pressure. These volatile organic compounds (VOCs in the soil environment could be traveled over distance and affect the physiology of the pathogens. They also enhance growth and systemic resistance in plants. These VOCs have been evaluated for T. atroviride, T. harzianum, T. viride, T. longibrachiatum, T. pseudokoningii and T. aureoviride. High molecular weight metabolites (like peptaibols are polar metabolites which act directly by contact between Trichoderma species and competitor organisms. Due to potent separation and highly sensitive detection, gas chromatography-mass spectrometry (GC-MS is the main method for detection of the fungal VOCs. Mass spectrometric detection offers the possibility to identify individual volatiles from complex mixtures. Structure characterization and confirmation of identity are usually achieved by comparison of mass spectra with library spectra and the determination of chromatographic retention indices. Due to the

  12. Combining Metabolite-Based Pharmacophores with Bayesian Machine Learning Models for Mycobacterium tuberculosis Drug Discovery.

    Ekins, Sean; Madrid, Peter B; Sarker, Malabika; Li, Shao-Gang; Mittal, Nisha; Kumar, Pradeep; Wang, Xin; Stratton, Thomas P; Zimmerman, Matthew; Talcott, Carolyn; Bourbon, Pauline; Travers, Mike; Yadav, Maneesh; Freundlich, Joel S

    2015-01-01

    Integrated computational approaches for Mycobacterium tuberculosis (Mtb) are useful to identify new molecules that could lead to future tuberculosis (TB) drugs. Our approach uses information derived from the TBCyc pathway and genome database, the Collaborative Drug Discovery TB database combined with 3D pharmacophores and dual event Bayesian models of whole-cell activity and lack of cytotoxicity. We have prioritized a large number of molecules that may act as mimics of substrates and metabolites in the TB metabolome. We computationally searched over 200,000 commercial molecules using 66 pharmacophores based on substrates and metabolites from Mtb and further filtering with Bayesian models. We ultimately tested 110 compounds in vitro that resulted in two compounds of interest, BAS 04912643 and BAS 00623753 (MIC of 2.5 and 5 μg/mL, respectively). These molecules were used as a starting point for hit-to-lead optimization. The most promising class proved to be the quinoxaline di-N-oxides, evidenced by transcriptional profiling to induce mRNA level perturbations most closely resembling known protonophores. One of these, SRI58 exhibited an MIC = 1.25 μg/mL versus Mtb and a CC50 in Vero cells of >40 μg/mL, while featuring fair Caco-2 A-B permeability (2.3 x 10-6 cm/s), kinetic solubility (125 μM at pH 7.4 in PBS) and mouse metabolic stability (63.6% remaining after 1 h incubation with mouse liver microsomes). Despite demonstration of how a combined bioinformatics/cheminformatics approach afforded a small molecule with promising in vitro profiles, we found that SRI58 did not exhibit quantifiable blood levels in mice.

  13. A combined genetic and multi medium approach revels new secondary metabolites in Aspergillus nidulans

    Klejnstrup, Marie Louise; Nielsen, Morten Thrane; Frisvad, Jens Christian

    Secondary metabolites are a diverse group of metabolites which serve as important natural sources of drugs for treating diseases. The availability of full genome sequences of several filamentous fungi has revealed a large genetic potential for production of secondary metabolites that are not obse......Secondary metabolites are a diverse group of metabolites which serve as important natural sources of drugs for treating diseases. The availability of full genome sequences of several filamentous fungi has revealed a large genetic potential for production of secondary metabolites...... that are not observed under standard laboratory conditions. Genetic approaches have proven a fruitfull strategy towards the production and identification of these unknown metabolites. Examples include deletion of the cclA1 and laeA2 genes in A. nidulans which affects the expression of secondary metabolites including...... monodictyphenone and terrequinone A respectively. We have deleted the cclA gene in A. nidulans and grown the mutants on several complex media to provoke the production of secondary metabolites. This resulted in the production of several metabolites not previously reported from A. nidulans. Some of these have been...

  14. Phyto-oestrogens and their metabolites in milk produced on two pastures with different botanical compositions

    Adler, S. A.; Purup, S.; Hansen-Møller, J.

    2014-01-01

    . The objective of this study was to assess the effects of grazing a recently established pasture containing red clover (Trifolium pratense L.) and an older pasture containing a variety of sown and unsown plant species on milk concentrations of phyto-oestrogens. Sixteen Norwegian Red dairy cows [mean (standard......Phyto-oestrogens are a group of secondary plant metabolites that may bind to oestrogen receptors and exert oestrogenic or anti-oestrogenic effects in humans and can protect against cancer diseases. When ingested by dairy cows, phyto-oestrogens can be metabolised and transferred to the milk...... deviation); body weight 599 (45.1). kg, stage of lactation 73 (15.0) d in milk, milk yield 29.9 (2.90) kg/d at the start of the experiment] were divided into two groups and grazed either a short-term pasture (SP) or a long-term pasture (LP). The SP was representative of organically managed leys in Norway...

  15. Comprehensive analysis of yeast metabolite GC x GC-TOFMS data: combining discovery-mode and deconvolution chemometric software.

    Mohler, Rachel E; Dombek, Kenneth M; Hoggard, Jamin C; Pierce, Karisa M; Young, Elton T; Synovec, Robert E

    2007-08-01

    The first extensive study of yeast metabolite GC x GC-TOFMS data from cells grown under fermenting, R, and respiring, DR, conditions is reported. In this study, recently developed chemometric software for use with three-dimensional instrumentation data was implemented, using a statistically-based Fisher ratio method. The Fisher ratio method is fully automated and will rapidly reduce the data to pinpoint two-dimensional chromatographic peaks differentiating sample types while utilizing all the mass channels. The effect of lowering the Fisher ratio threshold on peak identification was studied. At the lowest threshold (just above the noise level), 73 metabolite peaks were identified, nearly three-fold greater than the number of previously reported metabolite peaks identified (26). In addition to the 73 identified metabolites, 81 unknown metabolites were also located. A Parallel Factor Analysis graphical user interface (PARAFAC GUI) was applied to selected mass channels to obtain a concentration ratio, for each metabolite under the two growth conditions. Of the 73 known metabolites identified by the Fisher ratio method, 54 were statistically changing to the 95% confidence limit between the DR and R conditions according to the rigorous Student's t-test. PARAFAC determined the concentration ratio and provided a fully-deconvoluted (i.e. mathematically resolved) mass spectrum for each of the metabolites. The combination of the Fisher ratio method with the PARAFAC GUI provides high-throughput software for discovery-based metabolomics research, and is novel for GC x GC-TOFMS data due to the use of the entire data set in the analysis (640 MB x 70 runs, double precision floating point).

  16. Analysis of the genomic sequences and metabolites of Serratia surfactantfaciens sp. nov. YD25T that simultaneously produces prodigiosin and serrawettin W2.

    Su, Chun; Xiang, Zhaoju; Liu, Yibo; Zhao, Xinqing; Sun, Yan; Li, Zhi; Li, Lijun; Chang, Fan; Chen, Tianjun; Wen, Xinrong; Zhou, Yidan; Zhao, Furong

    2016-11-03

    Gram-negative bacteria of the genus Serratia are potential producers of many useful secondary metabolites, such as prodigiosin and serrawettins, which have potential applications in environmental bioremediation or in the pharmaceutical industry. Several Serratia strains produce prodigiosin and serrawettin W1 as the main bioactive compounds, and the biosynthetic pathways are co-regulated by quorum sensing (QS). In contrast, the Serratia strain, which can simultaneously produce prodigiosin and serrawettin W2, has not been reported. This study focused on analyzing the genomic sequence of Serratia sp. strain YD25 T isolated from rhizosphere soil under continuously planted burley tobacco collected from Yongding, Fujian province, China, which is unique in producing both prodigiosin and serrawettin W2. A hybrid polyketide synthases (PKS)-non-ribosomal peptide synthetases (NRPS) gene cluster putatively involved in biosynthesis of antimicrobial serrawettin W2 was identified in the genome of YD25 T , and its biosynthesis pathway was proposed. We found potent antimicrobial activity of serrawettin W2 purified from YD25 T against various pathogenic bacteria and fungi as well as antitumor activity against Hela cells. Subsequently, comparative genomic analyses were performed among a total of 133 Serratia species. The prodigiosin biosynthesis gene cluster in YD25 T belongs to the type I pig cluster, which is the main form of pig-encoding genes existing in most of the pigmented Serratia species. In addition, a complete autoinducer-2 (AI-2) system (including luxS, lsrBACDEF, lsrGK, and lsrR) as a conserved bacterial operator is found in the genome of Serratia sp. strain YD25 T . Phylogenetic analysis based on concatenated Lsr and LuxS proteins revealed that YD25 T formed an independent branch and was clearly distant from the strains that solely produce either prodigiosin or serrawettin W2. The Fe (III) ion reduction assay confirmed that strain YD25 T could produce an AI-2 signal

  17. Effect of different in vitro culture extracts of black pepper (Piper nigrum L.) on toxic metabolites-producing strains.

    Ahmad, Nisar; Abbasi, Bilal Haider; Fazal, Hina

    2016-03-01

    In the present study, the effect of different in vitro cultures (callus, in vitro shoots) and commercially available peppercorn extract was investigated for its activity against toxic metabolite-producing strains (Escherichia coli, Pseudomonas aeroginosa, Salmonella typhi, Bacillus subtilis, Bacillus cereus, Staphylococcus aureus, and Candida albicans). These in vitro cultures were extracted with ethanol, hexane, and chloroform, and the antipathogenic activity was determined by well-diffusion method. Hexane extract of callus showed 22 mm zone of inhibition against B. cereus, 23 mm against S. aureus, while regenerated shoots and seeds have shown 24.3 and 26 mm zones of inhibition. The ethanolic extracts of regenerated Piper shoots have shown 25 mm activity against S. aureus, 21 mm against B. cereus, and 16 mm in the case of C. albicans in comparison with standard antibiotics. Peppercorn extracts in chloroform and ethanol had shown activities against B. cereus (23.6 mm) and B. subtilis (23.5 mm). During in vitro organogenesis and morphogenesis, cells and tissues produced a comparable phytochemicals profile like mother plant. Morphogenesis is critically controlled by the application of exogenous plant-growth regulators. Such addition alters the hormonal transduction pathways, and cells under in vitro conditions regenerate tissues, which are dependant on the physiological state of cells, and finally enhance the production of secondary metabolites. To the best of our knowledge, this is the first report to compare the antimicrobial potential of in vitro regenerated tissues and peppercorn with standard antibiotics. In conclusion, most of the extracts showed pronounced activities against all the pathogenic microbes. This is a preliminary work, and the minimum inhibitory concentration values needs to be further explored. Regenerated tissues of P. nigrum are a good source of biologically active metabolites for antimicrobial activities, and callus culture presented itself as

  18. Metabolomics of tomato xylem sap during bacterial wilt reveals Ralstonia solanacearum produces abundant putrescine, a metabolite that accelerates wilt disease.

    Lowe-Power, Tiffany M; Hendrich, Connor G; von Roepenack-Lahaye, Edda; Li, Bin; Wu, Dousheng; Mitra, Raka; Dalsing, Beth L; Ricca, Patrizia; Naidoo, Jacinth; Cook, David; Jancewicz, Amy; Masson, Patrick; Thomma, Bart; Lahaye, Thomas; Michael, Anthony J; Allen, Caitilyn

    2018-04-01

    Ralstonia solanacearum thrives in plant xylem vessels and causes bacterial wilt disease despite the low nutrient content of xylem sap. We found that R. solanacearum manipulates its host to increase nutrients in tomato xylem sap, enabling it to grow better in sap from infected plants than in sap from healthy plants. Untargeted GC/MS metabolomics identified 22 metabolites enriched in R. solanacearum-infected sap. Eight of these could serve as sole carbon or nitrogen sources for R. solanacearum. Putrescine, a polyamine that is not a sole carbon or nitrogen source for R. solanacearum, was enriched 76-fold to 37 µM in R. solanacearum-infected sap. R. solanacearum synthesized putrescine via a SpeC ornithine decarboxylase. A ΔspeC mutant required ≥ 15 µM exogenous putrescine to grow and could not grow alone in xylem even when plants were treated with putrescine. However, co-inoculation with wildtype rescued ΔspeC growth, indicating R. solanacearum produced and exported putrescine to xylem sap. Intriguingly, treating plants with putrescine before inoculation accelerated wilt symptom development and R. solanacearum growth and systemic spread. Xylem putrescine concentration was unchanged in putrescine-treated plants, so the exogenous putrescine likely accelerated disease indirectly by affecting host physiology. These results indicate that putrescine is a pathogen-produced virulence metabolite. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  19. Effects of feeding metabolite combinations from lactobacillus plantarum on plasma and breast meat lipids in Broiler Chickens

    TC Loh

    2013-12-01

    Full Text Available The effects of feeding different doses of metabolite combination of L. plantarum RS5, RI11, RG14 and RG11 strains (Com3456 on cholesterol reduction in plasma and breast meat in broiler chickens and the possible mechanism was studied. A total of 504 male Ross broilers were grouped into 7 treatments and offered with different diets: (i standard corn-soybean based diet (-ve control; (ii standard cornsoybean based diet + neomycin and oxytetracycline (+ve control; (iii standard corn-soybean based diet + 0.1% metabolite combination of L. plantarum RS5, RI11, RG14 and RG11 strains (Com3456; (iv standard corn-soybean based diet + 0.2% of Com3456; (v standard cornsoybean based diet + 0.3% of Com3456 (vi standard corn-soybean based diet + 0.4% of Com3456 and (vii standard corn-soybean based diet + 0.5% of Com3456. The metabolite combinations supplemented in the diet of broilers reduced protein, cholesterol esters concentration in very low-density lipoprotein particles. The present of organic acids and proteinaceous compound in the metabolite combinations as found in previous study also increased lactic acid bacteria count in small intestine digesta and improved bile salts deconjugation ability of lactic acid bacteria.

  20. Metabolite exchange between microbiome members produces compounds that influence Drosophila behavior

    Fischer, Caleb N; Trautman, Eric P; Crawford, Jason M; Stabb, Eric V; Handelsman, Jo; Broderick, Nichole A

    2017-01-01

    Animals host multi-species microbial communities (microbiomes) whose properties may result from inter-species interactions; however, current understanding of host-microbiome interactions derives mostly from studies in which elucidation of microbe-microbe interactions is difficult. In exploring how Drosophila melanogaster acquires its microbiome, we found that a microbial community influences Drosophila olfactory and egg-laying behaviors differently than individual members. Drosophila prefers a Saccharomyces-Acetobacter co-culture to the same microorganisms grown individually and then mixed, a response mainly due to the conserved olfactory receptor, Or42b. Acetobacter metabolism of Saccharomyces-derived ethanol was necessary, and acetate and its metabolic derivatives were sufficient, for co-culture preference. Preference correlated with three emergent co-culture properties: ethanol catabolism, a distinct volatile profile, and yeast population decline. Egg-laying preference provided a context-dependent fitness benefit to larvae. We describe a molecular mechanism by which a microbial community affects animal behavior. Our results support a model whereby emergent metabolites signal a beneficial multispecies microbiome. DOI: http://dx.doi.org/10.7554/eLife.18855.001 PMID:28068220

  1. Secondary metabolites produced by marine streptomyces as antibiofilm and quorum-sensing inhibitor of uropathogen Proteus mirabilis.

    Younis, Khansa Mohammed; Usup, Gires; Ahmad, Asmat

    2016-03-01

    Quorum-sensing regulates bacterial biofilm formation and virulence factors, thereby making it an interesting target for attenuating pathogens. In this study, we investigated anti-biofilm and anti-quorum-sensing compounds from secondary metabolites of halophiles marine streptomyces against urinary catheter biofilm forming Proteus mirabilis without effect on growth viability. A total of 40 actinomycetes were isolated from samples collected from different places in Iraq including marine sediments and soil samples. Fifteen isolates identified as streptomyces and their supernatant screened as anti-quorum-sensing by inhibiting quorum-sensing regulated prodigiosin biosynthesis of Serratia marcescens strain Smj-11 as a reporter strain. Isolate Sediment Lake Iraq (sdLi) showed potential anti-quorum-sensing activity. Out of 35 clinical isolates obtained from Urinary catheter used by patient at the Universiti Kebangsaan Malaysia Medical Center, 22 isolates were characterized and identified as Proteus mirabilis. Isolate Urinary Catheter B4 (UCB4) showed the highest biofilm formation with highest resistance to used antibiotic and was chosen for further studies. Ethyl acetate secondary metabolites extract was produced from sdLi isolate. First, we determined the Minimum Inhibitory Concentration (MIC) of sdLi crude extract against UCB4 isolate, and all further experiments used concentrations below the MIC. Tests of subinhibitory concentrations of sdLi crude extract showed good inhibition against UCB4 isolate biofilm formation on urinary catheter and cover glass using Scanning electron microscopy and light microscopy respectively. The influence of sub-MIC of sdLi crude extract was also found to attenuate the quorum sensing (QS)-dependent factors such as hemolysin activity, urease activity, pH value, and motility of UCB4 isolate. Evidence is presented that these nontoxic secondary metabolites may act as antagonists of bacterial quorum sensing by competing with quorum-sensing signals

  2. The structures of three metabolites of the algal hepatotoxin okadaic acid produced by oxidation with human cytochrome P450

    Liu, Li; Guoa, Fujiang; Crain, Sheila; Quilliam, Michael A.; Wang, Xiaotang; Rein, Kathleen S.

    2012-01-01

    Four metabolites of okadaic acid were generated by incubation with human recombinant cytochrome P450 3A4. The structures of two of the four metabolites have been determined by MS/MS experiments and 1D and 2D NMR methods using 94 and 133 μg of each metabolite. The structure of a third metabolite was determined by oxidation to a metabolite of known structure. Like okadaic acid, the metabolites are inhibitors of protein phosphatase PP2A. Although one of the metabolites does have an α,β unsaturated carbonyl with the potential to form adducts with an active site cysteine, all of the metabolites are reversible inhibitors of PP2A. PMID:22608922

  3. Draft Genome Sequence of Photobacterium halotolerans S2753, Producer of Bioactive Secondary Metabolites

    Machado, Henrique; Månsson, Maria; Gram, Lone

    2014-01-01

    We report here the whole draft genome sequence of marine isolate Photobacterium halotolerans S2753, which produces the known antibiotic holomycin and also ngercheumicins and solonamides A and B, which interfere with virulence of methicillin-resistant Staphylococcus aureus strains by interacting...

  4. Use of solid phase microextraction (SPME) for profiling the volatile metabolites produced by Glomerella cingulata.

    Miyazawa, Mitsuo; Kimura, Minako; Yabe, Yoshito; Tsukamoto, Daisuke; Sakamoto, Masaya; Horibe, Isao; Okuno, Yoshiharu

    2008-01-01

    The profile of volatile organic compounds (VOCs) released from Glomerella cingulata using solid phase microextraction (SPME) with different fibers, Polydimethylsiloxane (PDMS), Polydimethylsiloxane/Divinylbenzene (PDMS/DVB), Carboxen/Polydimethylsiloxane (CAR/PDMS) and Divinylbenzene/Carboxen/Polydimethylsiloxane (DVB/CAR/PDMS), was investigated. C4-C6 aliphatic alcohols were the predominant fraction of VOCs isolated by CAR/PDMS fiber. Sesquiterpene hydrocarbons represented 20.3% of VOCs isolated by PDMS fiber. During the growth phase, Ochracin was produced in the large majority of VOCs. 3-Methylbutanol and phenylethyl alcohol were found in the log phase of it. Alcohols were found in cultures of higher age, while sesquiterpenes were found to be characteristic of initial growth stage of G. cingulata.

  5. Enantioseparation of thalidomide and its hydroxylated metabolites using capillary electrophoresis with various cyclodextrins and their combinations as chiral buffer additives.

    Meyring, M; Chankvetadze, B; Blaschke, G

    1999-09-01

    The separation of thalidomide (TD) and its hydroxylated metabolites including their simultaneous enantioseparation was studied in capillary electrophoresis (CE) using four different randomly substituted charged cyclodextrin (CD) derivatives, the combinations of some of them with each other, and beta-CD. TD, as well as two metabolites recently found in incubations of human liver microsomes and human blood, 5-hydroxythalidomide (5-OH-TD) and one of the diastereomeric 5'-hydroxythalidomides (5'-OH-TD), are neutral compounds. Therefore, they were resolved using charged chiral selectors in CE. Two different separation modes (normal polarity and carrier mode) and two different capillaries (fused-silica and polyacrylamide-coated) were tested. Based on the behavior of the individual CDs, their designed combinations were selected in order to improve the separation selectivity and enantioselectivity. Under optimized conditions all three chiral compounds and their enantiomers were resolved simultaneously.

  6. A universal protocol for the combined isolation of metabolites, DNA, long RNAs, small RNAs, and proteins from plants and microorganisms

    Valledor, Luis; Escandón, M.; Meijón, M.; Nukarinen, E.; Jesús Cañal, M.; Weckwerth, W.

    2014-01-01

    Roč. 79, č. 1 (2014), s. 173-180 ISSN 0960-7412 R&D Projects: GA MŠk(CZ) EE2.3.20.0256 Institutional support: RVO:67179843 Keywords : systems biology * combined isolation * RNA * small RNA * proteins * metabolites * Chlamydomonas reinhardtii * Arabidopsis thaliana * Populus sp. * Pinus sp. * technical advance Subject RIV: EI - Biotechnology ; Bionics Impact factor: 5.972, year: 2014

  7. Relation between microbiological quality, metabolite production and sensory quality of equilibrium modified atmosphere packaged fresh-cut produce.

    Jacxsens, L; Devlieghere, F; Ragaert, P; Vanneste, E; Debevere, J

    2003-06-25

    The quality of four types of fresh-cut produce, packaged in consumer-sized packages under an equilibrium modified atmosphere and stored at 7 degrees C, was assessed by establishing the relation between the microbial outgrowth and the corresponding production of nonvolatile compounds and related sensory disorders. In vitro experiments, performed on a lettuce-juice-agar, demonstrated the production of nonvolatile compounds by spoilage causing lactic acid bacteria and Enterobacteriaceae. Pseudomonas fluorescens and yeasts, however, were not able to produce detectable amounts of nonvolatile metabolites. The type of spoilage and quality deterioration in vivo depended on the type of vegetable. Mixed lettuce and chicory endives, leafy tissues, containing naturally low concentrations of sugars, showed a spoilage dominated by Gram-negative microorganisms, which are not producing nonvolatile compounds. Sensory problems were associated with visual properties and the metabolic activity of the plant tissue. Mixed bell peppers and grated celeriac, on the other hand, demonstrated a fast and intense growth of spoilage microorganisms, dominated by lactic acid bacteria and yeasts. This proliferation resulted in detectable levels of organic acids and the rejection by the trained sensory panel was based on the negative perception of the organoleptical properties (off-flavour, odour and taste). The applied microbiological criteria corresponded well with detectable changes in sensory properties and measurable concentrations of nonvolatile compounds, surely in the cases where lactic acid bacteria and yeasts were provoking spoilage. Consequently, the freshness of minimally processed vegetables, sensitive for outgrowth of lactic acid bacteria and yeasts (e.g., carrots, celeriac, bell peppers, mixtures with non-leafy vegetables) can be evaluated via analysis of the produced nonvolatile compounds.

  8. Hypoxia and Inactivity Related Physiological Changes (Constipation, Inflammation Are Not Reflected at the Level of Gut Metabolites and Butyrate Producing Microbial Community: The PlanHab Study

    Robert Šket

    2017-05-01

    Full Text Available We explored the assembly of intestinal microbiota in healthy male participants during the run-in (5 day and experimental phases [21-day normoxic bed rest (NBR, hypoxic bedrest (HBR], and hypoxic ambulation (HAmb in a strictly controlled laboratory environment, balanced fluid, and dietary intakes, controlled circadian rhythm, microbial ambiental burden, and 24/7 medical surveillance. The fraction of inspired O2 (FiO2 and partial pressure of inspired O2 (PiO2 were 0.209 and 133.1 ± 0.3 mmHg for NBR and 0.141 ± 0.004 and 90.0 ± 0.4 mmHg for both hypoxic variants (HBR and HAmb; ~4,000 m simulated altitude, respectively. A number of parameters linked to intestinal transit spanning Bristol Stool Scale, defecation rates, zonulin, α1-antitrypsin, eosinophil derived neurotoxin, bile acids, reducing sugars, short chain fatty acids, total soluble organic carbon, water content, diet composition, and food intake were measured (167 variables. The abundance, structure, and diversity of butyrate producing microbial community were assessed using the two primary bacterial butyrate synthesis pathways, butyryl-CoA: acetate CoA-transferase (but and butyrate kinase (buk genes. Inactivity negatively affected fecal consistency and in combination with hypoxia aggravated the state of gut inflammation (p < 0.05. In contrast, gut permeability, various metabolic markers, the structure, diversity, and abundance of butyrate producing microbial community were not significantly affected. Rearrangements in the butyrate producing microbial community structure were explained by experimental setup (13.4%, experimentally structured metabolites (12.8%, and gut metabolite-immunological markers (11.9%, with 61.9% remaining unexplained. Many of the measured parameters were found to be correlated and were hence omitted from further analyses. The observed progressive increase in two immunological intestinal markers suggested that the transition from healthy physiological state toward

  9. Reclassification of the Specialized Metabolite Producer Pseudomonas mesoacidophila ATCC 31433 as a Member of the Burkholderia cepacia Complex.

    Loveridge, E Joel; Jones, Cerith; Bull, Matthew J; Moody, Suzy C; Kahl, Małgorzata W; Khan, Zainab; Neilson, Louis; Tomeva, Marina; Adams, Sarah E; Wood, Andrew C; Rodriguez-Martin, Daniel; Pinel, Ingrid; Parkhill, Julian; Mahenthiralingam, Eshwar; Crosby, John

    2017-07-01

    Pseudomonas mesoacidophila ATCC 31433 is a Gram-negative bacterium, first isolated from Japanese soil samples, that produces the monobactam isosulfazecin and the β-lactam-potentiating bulgecins. To characterize the biosynthetic potential of P. mesoacidophila ATCC 31433, its complete genome was determined using single-molecule real-time DNA sequence analysis. The 7.8-Mb genome comprised four replicons, three chromosomal (each encoding rRNA) and one plasmid. Phylogenetic analysis demonstrated that P. mesoacidophila ATCC 31433 was misclassified at the time of its deposition and is a member of the Burkholderia cepacia complex, most closely related to Burkholderia ubonensis The sequenced genome shows considerable additional biosynthetic potential; known gene clusters for malleilactone, ornibactin, isosulfazecin, alkylhydroxyquinoline, and pyrrolnitrin biosynthesis and several uncharacterized biosynthetic gene clusters for polyketides, nonribosomal peptides, and other metabolites were identified. Furthermore, P. mesoacidophila ATCC 31433 harbors many genes associated with environmental resilience and antibiotic resistance and was resistant to a range of antibiotics and metal ions. In summary, this bioactive strain should be designated B. cepacia complex strain ATCC 31433, pending further detailed taxonomic characterization. IMPORTANCE This work reports the complete genome sequence of Pseudomonas mesoacidophila ATCC 31433, a known producer of bioactive compounds. Large numbers of both known and novel biosynthetic gene clusters were identified, indicating that P. mesoacidophila ATCC 31433 is an untapped resource for discovery of novel bioactive compounds. Phylogenetic analysis demonstrated that P. mesoacidophila ATCC 31433 is in fact a member of the Burkholderia cepacia complex, most closely related to the species Burkholderia ubonensis Further investigation of the classification and biosynthetic potential of P. mesoacidophila ATCC 31433 is warranted. Copyright © 2017

  10. Diglycolic acid, the toxic metabolite of diethylene glycol, chelates calcium and produces renal mitochondrial dysfunction in vitro.

    Conrad, Taylor; Landry, Greg M; Aw, Tak Yee; Nichols, Royce; McMartin, Kenneth E

    2016-07-01

    Diethylene glycol (DEG) has caused many cases of acute kidney injury and deaths worldwide. Diglycolic acid (DGA) is the metabolite responsible for the renal toxicity, but its toxic mechanism remains unclear. To characterize the mitochondrial dysfunction produced from DGA by examining several mitochondrial processes potentially contributing to renal cell toxicity. The effect of DGA on mitochondrial membrane potential was examined in normal human proximal tubule (HPT) cells. Isolated rat kidney mitochondria were used to assess the effects of DGA on mitochondrial function, including respiratory parameters (States 3 and 4), electron transport chain complex activities and calcium-induced opening of the mitochondrial permeability transition pore. DGA was compared with ethylene glycol tetraacetic acid (EGTA) to determine calcium chelating ability. DGA cytotoxicity was assessed using lactate dehydrogenase leakage from cultured proximal tubule cells. DGA decreased the mitochondrial membrane potential in HPT cells. In rat kidney mitochondria, DGA decreased State 3 respiration, but did not affect State 4 respiration or the ADP/O ratio. DGA reduced glutamate/malate respiration at lower DGA concentrations (0.5 mmol/L) than succinate respiration (100 mmol/L). DGA inhibited Complex II activity without altering Complex I, III or IV activities. DGA blocked calcium-induced mitochondrial swelling, indicating inhibition of the calcium-dependent mitochondrial permeability transition. DGA and EGTA reduced the free calcium concentration in solution in an equimolar manner. DGA toxicity and mitochondrial dysfunction occurred as similar concentrations. DGA inhibited mitochondrial respiration, but without uncoupling oxidative phosphorylation. The more potent effect of DGA on glutamate/malate respiration and the inhibition of mitochondrial swelling was likely due to its chelation of calcium. These results indicate that DGA produces mitochondrial dysfunction by chelating calcium to

  11. Metabolites of the phenylurea herbicides chlorotoluron, diuron, isoproturon and linuron produced by the soil fungus Mortierella sp.

    Badawi, Nora; Rønhede, Stig; Olsson, Stefan; Kragelund, Birthe B; Johnsen, Anders H; Jacobsen, Ole Stig; Aamand, Jens

    2009-10-01

    Phenylurea herbicides are used worldwide, and often pollute surface- and groundwater in concentrations exceeding the limit value for drinking water (0.1 microg l(-1)). Bacteria degrade phenylurea herbicides by successive N-dealkylation to substituted aniline products. Little is known about the corresponding fungal pathways, however. We here report degradation of chlorotoluron, diuron, isoproturon and linuron by the soil fungus Mortierella sp. Gr4. Degradation was fastest with linuron and resulted in successively dealkylated metabolites and 3,4-dichloroaniline. A major new metabolite was detected that has not yet been fully identified. Thin layer chromatography and nuclear magnetic resonance spectroscopy indicate that it is a non-aromatic diol. Degradation of isoproturon, chlorotoluron and diuron involved successive N-demethylation and, in the case of isoproturon and chlorotoluron, additional hydroxylation. A new hydroxylated isoproturon metabolite was detected. The study thus shows that the fungal pathways differ from the bacterial pathways and yield new metabolites of possible environmental concern.

  12. Combined effects of O3 and UV radiation on secondary metabolites and endogenous hormones of soybean leaves.

    Bing Mao

    Full Text Available Enhanced ultraviolet radiation (UV and elevated tropospheric ozone (O3 may individually cause reductions in the growth and productivity of important agricultural crops. However, research regarding their combined effects on important agricultural crops is still scarce, especially on changes in secondary metabolites and endogenous hormones, which are important protective substances and signal components that control plant responses to environment stresses. In this study, using an experimental setup of open top chambers, we monitored the responses of seed yield per plant, leaf secondary metabolites and leaf endogenous hormones under the stress of elevated O3 and enhanced UV radiation individually, as well as their combined stress. The results indicated that elevated O3 (110 ± 10 nmol mol-1 for 8 hours per day and enhanced UV radiation (1.73 kJ h-1 m-2 significantly decreased seed yield per plant. Concentrations of rutin, queretin and total flavonoids were significantly increased under the elevated O3 treatment or the enhanced UV radiation treatment or the combination treatment at flowering and podding stages, and concentrations of rutin, queretin and total flavonoids showed significant correlations with seed yield per plant. Concentrations of ABA and IAA decreased under the three treatments. There was a significant positive correlation between the ABA concentration and seed yield and a negative correlation between the IAA concentration and seed yield. We concluded that the combined stress of elevated O3 and UV radiation significantly decreased seed yield per plant. Yield reduction was associated with changes in the concentrations of flavonoids, ABA and IAA in soybean leaves. The effects of the combined O3 and UV stress were always greater than those of the individual stresses alone.

  13. Metabolites of the phenylurea herbicides chlorotoluron, diuron, isoproturon and linuron produced by the soil fungus Mortierella sp

    Badawi, Nora; Ronhede, Stig; Olsson, Stefan; Kragelund, Birthe B.; Johnsen, Anders H.; Jacobsen, Ole Stig; Aamand, Jens

    2009-01-01

    Phenylurea herbicides are used worldwide, and often pollute surface- and groundwater in concentrations exceeding the limit value for drinking water (0.1 μg l -1 ). Bacteria degrade phenylurea herbicides by successive N-dealkylation to substituted aniline products. Little is known about the corresponding fungal pathways, however. We here report degradation of chlorotoluron, diuron, isoproturon and linuron by the soil fungus Mortierella sp. Gr4. Degradation was fastest with linuron and resulted in successively dealkylated metabolites and 3,4-dichloroaniline. A major new metabolite was detected that has not yet been fully identified. Thin layer chromatography and nuclear magnetic resonance spectroscopy indicate that it is a non-aromatic diol. Degradation of isoproturon, chlorotoluron and diuron involved successive N-demethylation and, in the case of isoproturon and chlorotoluron, additional hydroxylation. A new hydroxylated isoproturon metabolite was detected. The study thus shows that the fungal pathways differ from the bacterial pathways and yield new metabolites of possible environmental concern. - Fungal degradation of phenylurea herbicides results in the formation of hydroxylated metabolites and 3,4-dichloroaniline.

  14. Metabolites of the phenylurea herbicides chlorotoluron, diuron, isoproturon and linuron produced by the soil fungus Mortierella sp

    Badawi, Nora; Ronhede, Stig [Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Ostervoldgade 10, DK-1350 Copenhagen K (Denmark); Olsson, Stefan [Section of Genetics and Microbiology, Department of Agriculture and Ecology, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C (Denmark); Kragelund, Birthe B. [Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N (Denmark); Johnsen, Anders H. [Department of Clinical Biochemistry, Copenhagen University Hospital, Blegdamsvej 9, DK-2100 Copenhagen O (Denmark); Jacobsen, Ole Stig [Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Ostervoldgade 10, DK-1350 Copenhagen K (Denmark); Aamand, Jens, E-mail: jeaa@geus.d [Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Ostervoldgade 10, DK-1350 Copenhagen K (Denmark)

    2009-10-15

    Phenylurea herbicides are used worldwide, and often pollute surface- and groundwater in concentrations exceeding the limit value for drinking water (0.1 mug l{sup -1}). Bacteria degrade phenylurea herbicides by successive N-dealkylation to substituted aniline products. Little is known about the corresponding fungal pathways, however. We here report degradation of chlorotoluron, diuron, isoproturon and linuron by the soil fungus Mortierella sp. Gr4. Degradation was fastest with linuron and resulted in successively dealkylated metabolites and 3,4-dichloroaniline. A major new metabolite was detected that has not yet been fully identified. Thin layer chromatography and nuclear magnetic resonance spectroscopy indicate that it is a non-aromatic diol. Degradation of isoproturon, chlorotoluron and diuron involved successive N-demethylation and, in the case of isoproturon and chlorotoluron, additional hydroxylation. A new hydroxylated isoproturon metabolite was detected. The study thus shows that the fungal pathways differ from the bacterial pathways and yield new metabolites of possible environmental concern. - Fungal degradation of phenylurea herbicides results in the formation of hydroxylated metabolites and 3,4-dichloroaniline.

  15. Investigation of Figopitant and Its Metabolites in Rat Tissue by Combining Whole-Body Autoradiography with Liquid Extraction Surface Analysis Mass Spectrometry

    Schadt, S.; Kallbach, S.; Almeida, R.

    2012-01-01

    tissue extraction, sample cleanup, and high-performance liquid chromatography analysis. The parent drug and the N-dealkylated metabolite M474(1) (BIIF 1148) in varying ratios were the predominant compounds in all tissues investigated. In addition, several metabolites formed by oxygenation, dealkylation......This article describes the combination of whole-body autoradiography with liquid extraction surface analysis (LESA) and mass spectrometry (MS) to study the distribution of the tachykinin neurokinin-1 antagonist figopitant and its metabolites in tissue sections of rats after intravenous...

  16. Protozoan growth rates on secondary-metabolite-producing Pseudomonas spp. correlate with high-level protozoan taxonomy

    Pedersen, Annette L.; Winding, Anne; Altenburger, Andreas

    2011-01-01

    Different features can protect bacteria against protozoan grazing, for example large size, rapid movement, and production of secondary metabolites. Most papers dealing with these matters focus on bacteria. Here, we describe protozoan features that affect their ability to grow on secondary-metabol...

  17. Mixtures of 3,4-methylenedioxymethamphetamine (ecstasy) and its major human metabolites act additively to induce significant toxicity to liver cells when combined at low, non-cytotoxic concentrations.

    da Silva, Diana Dias; Silva, Elisabete; Carvalho, Félix; Carmo, Helena

    2014-06-01

    Hepatic injury after 3,4-methylenedioxymethamphetamine (MDMA; ecstasy) intoxications is highly unpredictable and does not seem to correlate with either dosage or frequency of use. The mechanisms involved include the drug metabolic bioactivation and the hyperthermic state of the liver triggered by its thermogenic action and exacerbated by the environmental circumstances of abuse at hot and crowded venues. We became interested in understanding the interaction between ecstasy and its metabolites generated in vivo as users are always exposed to mixtures of parent drug and metabolites. With this purpose, Hep G2 cells were incubated with MDMA and its main human metabolites methylenedioxyamphetamine (MDA), α-methyldopamine (α-MeDA) and N-methyl-α-methyldopamine (N-Me-α-MeDA), individually and in mixture (drugs combined in proportion to their individual EC01 ), at normal (37 °C) and hyperthermic (40.5 °C) conditions. After 48 h, viability was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Extensive concentration-response analysis was performed with single drugs and the parameters of the individual non-linear logit fits were used to predict joint effects using the well-founded models of concentration addition (CA) and independent action (IA). Experimental testing revealed that mixture effects on cell viability conformed to CA, for both temperature settings. Additionally, substantial combination effects were attained even when each substance was present at concentrations that individually produced unnoticeable effects. Hyperthermic incubations dramatically increased the toxicity of the tested drug and metabolites, both individually and combined. These outcomes suggest that MDMA metabolism has hazard implications to liver cells even when metabolites are found in low concentrations, as they contribute additively to the overall toxic effect of MDMA. Copyright © 2013 John Wiley & Sons, Ltd.

  18. Characterization of bisphenol A metabolites produced by Portulaca oleracea cv. by liquid chromatography coupled with tandem mass spectrometry.

    Watanabe, Ippei; Harada, Kazuo; Matsui, Takeshi; Miyasaka, Hitoshi; Okuhata, Hiroshi; Tanaka, Satoshi; Nakayama, Hideki; Kato, Ko; Bamba, Takeshi; Hirata, Kazumasa

    2012-01-01

    The garden plant portulaca (Portulaca oleracea cv.) efficiently removes bisphenol A (BPA), an endocrine-disrupting chemical, from a hydroponic solution, but the molecular mechanisms underlying BPA metabolism by portulaca remain unclear. In this study, BPA metabolites converted by portulaca were analyzed by liquid chromatography coupled with tandem mass spectrometry. We observed the hydroxylation of BPA and the oxidization of it to quinone. Polyphenol oxidases are likely to contribute to BPA degradation by portulaca.

  19. Combining proteomics and metabolite analyses to unravel cadmium stress-response in poplar leaves.

    Kieffer, Pol; Planchon, Sébastien; Oufir, Mouhssin; Ziebel, Johanna; Dommes, Jacques; Hoffmann, Lucien; Hausman, Jean-François; Renaut, Jenny

    2009-01-01

    A proteomic analysis of poplar leaves exposed to cadmium, combined with biochemical analysis of pigments and carbohydrates revealed changes in primary carbon metabolism. Proteomic results suggested that photosynthesis was slightly affected. Together with a growth inhibition, photoassimilates were less needed for developmental processes and could be stored in the form of hexoses or complex sugars, acting also as osmoprotectants. Simultaneously, mitochondrial respiration was upregulated, providing energy needs of cadmium-exposed plants.

  20. Bioactive metabolites produced by Penicillium sp. 1 and sp. 2, two endophytes associated with Alibertia macrophylla (Rubiaceae).

    Oliveira, Camila M; Silva, Geraldo H; Regasini, Luis O; Zanardi, Lisinéia M; Evangelista, Alana H; Young, Maria C M; Bolzani, Vanderlan S; Araujo, Angela R

    2009-01-01

    In the course of our continuous search for bioactive metabolites from endophytic fungi living in plants from the Brazilian flora, leaves of Alibertia macrophylla (Rubiaceae) were submitted to isolation of endophytes, and two species of Penicillium were isolated. The acetonitrile fraction obtained in corn from a culture of Penicillium sp. 1 afforded orcinol (1). On the other hand, Penicillium sp. 1 cultivated in potato-dextrose-broth furnished two different compounds, cyclo-(L-Pro-L-Val) (2) and uracil (3). The chromatographic fractionation of the acetonitrile fraction obtained from Penicillium sp. 2 led to three dihydroisocoumarins, 4-hydroxymellein (4), 8-methoxymellein (5) and 5-hydroxymellein (6). Compounds 5 and 6 were obtained from the Penicillium genus for the first time. Additionally, metabolites 1-6 were evaluated for their antifungal and acetylcholinesterase (AChE) inhibitory activities. The most active compounds 1 and 4 exhibited detection limits of 5.00 and 10.0 microg against Cladosporium cladosporioides and C. sphaerospermum, respectively. Compound 2 showed a detection limit of 10.0 microg, displaying potent AChE inhibitory activity.

  1. Some problems of biological effects under the combined action of nitrogen oxides, their metabolites and radiation

    Malenchenko, A.F.

    1985-01-01

    The progress of power engineering envisages the intensive construction of nuclear-energy plants, where an organic or nuclear fuel is used. Nowadays the concept of nuclear-energy plant with the coolant based on dissociating N 2 O 4 is being developed. A great deal of radioactive and chemical products escapes into surroundings as the result of the power plants being in service. Their action on organisms is performed simultaneously, that could have an essential effect on the quantitative and qualitative regularities of response. The estimation of the combined effect of nitrogen oxides, sodium nitrite and nitrate and radiation has been carried out on the base of the investigation into methemoglobin formation, genetic effects and the pathomorphological changes in lungs. The formation of methemoglobin has been studied on rats in 1, 3, 7 and 15 days after the single total irradiation of 300 and 700 R doses at the gamma-installation (UGU-420) using a radioactive 60 Co. Methemoglobin was determined in the interval of 15-180 min after NaNO 2 administration in the dosage of 7.0 mg per 100 g body weight. The irradiation essentially affects the process of methemoglobin formation and its reduction. The methemoglobin content in the blood of radiation exposed animals exceeds the value, that could be expected to obtain by summing up its concentration under the separate effects of nitrite and irradiation. The genetic effects of sodium nitrite and nitrate and X-radiation have been studied on the Drosophila. The one-day flies were exposed to the radiation dose of 1500 R in the medium with the sodium nitrite or nitrate contents of 0.1 or 1.0 g/l, respectively. The combined action estimated through the frequency of the dominant lethal mutation, recessive coupled with a lethal mutation sex, viability and fecundity definitely differs from the expected summing values of the separate effect indices of radiation and toxic factors. The morpho- and functional changes in the rat lungs (the

  2. Role of diamine oxidase during the treatment of tumour-bearing mice with combinations of polyamine anti-metabolites.

    Kallio, A; Jänne, J

    1983-01-01

    Treatment of mice bearing L1210 leukaemia with 2-difluoromethylornithine, a specific inhibitor of ornithine decarboxylase (EC 4.1.1.17), produced a profound depletion of putrescine and spermidine in the tumour cells. Sequential combination of methylglyoxal bis(guanylhydrazone), an inhibitor of adenosylmethionine decarboxylase (EC 4.1.1.50), with difluoromethylornithine largely reversed the polyamine depletion and led to a marked accumulation of cadaverine in the tumour cells. Experiments carried out with the combination of difluoromethylornithine and aminoguanidine, a potent inhibitor of diamine oxidase (EC 1.4.3.6), indicated that the methylglyoxal bis(guanylhydrazone)-induced reversal of polyamine depletion was mediated by the known inhibition of diamine oxidase by the diguanidine. In spite of the normalization of the tumour cell polyamine pattern upon administration of methylglyoxal bis(guanylhydrazone) to difluoromethylornithine-treated animals, the combination of these two drugs produced a growth-inhibitory effect not achievable with either of the compounds alone. PMID:6411077

  3. An antimicrobial alkaloid and other metabolites produced by Penicillium sp. An endophytic fungus isolated from Mauritia flexuosa L.f

    Koolen, Hector Henrique Ferreira; Soares, Elzalina Ribeiro; Silva, Felipe Moura Araujo da; Almeida, Richardson Alves de; Souza, Afonso Duarte Leao de, E-mail: hectorkoolen@gmail.com [Departamento de Quimica, Universidade Federal do Amazonas, Manaus - AM (Brazil); Medeiros, Livia Soman de; Rodrigues Filho, Edson [Departamento de Quimica, Universidade Federal de Sao Carlos, Sao Carlos - SP (Brazil); Souza, Antonia Queiroz Lima de [Escola Superior de Ciencias da Saude, Universidade do Estado do Amazonas, Manaus - AM (Brazil)

    2012-07-01

    The alkaloid glandicoline B (1) and six other compounds: ergosterol (2), brassicasterol (3), ergosterol peroxide (4), cerevisterol (5), mannitol (6) and 1-O-{alpha}-D-glucopyranoside (7) were isolated from Penicillium sp. strain PBR.2.2.2, a fungus from Mauritia flexuosa roots. The structures of the isolated metabolites were established by spectral analysis. MeOH extract of the fungal mycelium at 500 {mu}g mL{sup -1} exhibited antimicrobial activity against Staphylococcus aureus and the compound 1 at 100 {mu}g mL{sup -1} was active against S. aureus, Micrococcus luteus and Escherichia coli. The relationship between the bioactive properties of the fungus PBR.2.2.2 and those achieved for glandicoline B, as well the potential of this substance as bacteriide is discussed. (author)

  4. An antimicrobial alkaloid and other metabolites produced by Penicillium sp. An endophytic fungus isolated from Mauritia flexuosa L. f.

    Hector Henrique Ferreira Koolen

    2012-01-01

    Full Text Available The alkaloid glandicoline B (1 and six other compounds: ergosterol (2, brassicasterol (3, ergosterol peroxide (4, cerevisterol (5, mannitol (6 and 1-O-α-D-glucopyranoside (7 were isolated from Penicillium sp. strain PBR.2.2.2, a fungus from Mauritia flexuosa roots. The structures of the isolated metabolites were established by spectral analysis. MeOH extract of the fungal mycelium at 500 µg mL-1 exhibited antimicrobial activity against Staphylococcus aureus and the compound 1 at 100 µg mL-1 was active against S. aureus, Micrococcus luteus and Escherichia coli. The relationship between the bioactive properties of the fungus PBR.2.2.2 and those achieved for glandicoline B, as well the potential of this substance as bactericide is discussed.

  5. An antimicrobial alkaloid and other metabolites produced by Penicillium sp. An endophytic fungus isolated from Mauritia flexuosa L.f

    Koolen, Hector Henrique Ferreira; Soares, Elzalina Ribeiro; Silva, Felipe Moura Araujo da; Almeida, Richardson Alves de; Souza, Afonso Duarte Leao de; Medeiros, Livia Soman de; Rodrigues Filho, Edson; Souza, Antonia Queiroz Lima de

    2012-01-01

    The alkaloid glandicoline B (1) and six other compounds: ergosterol (2), brassicasterol (3), ergosterol peroxide (4), cerevisterol (5), mannitol (6) and 1-O-α-D-glucopyranoside (7) were isolated from Penicillium sp. strain PBR.2.2.2, a fungus from Mauritia flexuosa roots. The structures of the isolated metabolites were established by spectral analysis. MeOH extract of the fungal mycelium at 500 μg mL -1 exhibited antimicrobial activity against Staphylococcus aureus and the compound 1 at 100 μg mL -1 was active against S. aureus, Micrococcus luteus and Escherichia coli. The relationship between the bioactive properties of the fungus PBR.2.2.2 and those achieved for glandicoline B, as well the potential of this substance as bacteriide is discussed. (author)

  6. Detection of Amide and Aromatic Proton Resonances of Human Brain Metabolites Using Localized Correlated Spectroscopy Combined with Two Different Water Suppression Schemes

    Rajakumar Nagarajan

    2010-01-01

    Full Text Available The purpose of the study was to demonstrate the J-coupling connectivity network between the amide, aliphatic, and aromatic proton resonances of metabolites in human brain using two-dimensional (2D localized correlated spectroscopy (L-COSY. Two different global water suppression techniques were combined with L-COSY, one before and another after localizing the volume of interest (VOI. Phantom solutions containing several cerebral metabolites at physiological concentrations were evaluated initially for sequence optimization. Nine healthy volunteers were scanned using a 3T whole body MRI scanner. The VOI for 2D L-COSY was placed in the right occipital white/gray matter region. The 2D cross and diagonal peak volumes were measured for several metabolites such as N-acetyl aspartate (NAA, creatine (Cr, free choline (Ch, glutamate/glutamine (Glx, aspartate (Asp, myo-inositol (mI, GABA, glutathione (GSH, phosphocholine (PCh, phosphoethanolamine (PE, tyrosine (Tyr, lactate (Lac, macromolecules (MM and homocarnosine (Car. Using the pre-water suppression technique with L-COSY, the above mentioned metabolites were clearly identifiable and the relative ratios of metabolites were calculated. In addition to detecting multitude of aliphatic resonances in the high field region, we have demonstrated that the amide and aromatic resonances can also be detected using 2D L-COSY by pre water suppression more reliably than the post-water suppression.

  7. Aspergillus fumigatus CY018, an endophytic fungus in Cynodon dactylon as a versatile producer of new and bioactive metabolites.

    Liu, J Y; Song, Y C; Zhang, Z; Wang, L; Guo, Z J; Zou, W X; Tan, R X

    2004-11-09

    Aspergillus fumigatus CY018 was recognized as an endophytic fungus for the first time in the leaf of Cynodon dactylon. By bioassay-guided fractionation, the EtOAc extract of a solid-matrix steady culture of this fungus afforded two new metabolites, named asperfumoid (1) and asperfumin (2), together with six known bioactive compounds including monomethylsulochrin, fumigaclavine C, fumitremorgin C, physcion, helvolic acid and 5alpha,8alpha-epidioxy-ergosta-6,22-diene-3beta-ol as well as other four known compounds ergosta-4,22-diene-3beta-ol, ergosterol, cyclo(Ala-Leu) and cyclo(Ala-Ile). Through detailed spectroscopic analyses including HRESI-MS, homo- and hetero-nuclear correlation NMR experiments (HMQC, COSY, NOESY and HMBC), the structures of asperfumoid and asperfumin were established to be spiro-(3-hydroxyl-2,6-dimethoxyl-2,5-diene-4-cyclohexone-(1,3')-5'-methoxyl-7'-methyl-(1'H, 2'H, 4'H)-quinoline-2',4'-dione) and 5-hydroxyl-2-(6-hydroxyl-2-methoxyl-4-methylbenzoyl)-3,6-dimethoxyl-benzoic methyl ester, respectively. All of the 12 isolates were subjected to in vitro bioactive assays against three human pathogenic fungi Candida albicans, Tricophyton rubrum and Aspergillus niger. As a result, asperfumoid, fumigaclavine C, fumitremorgin C, physcion and helvolic acid were shown to inhibit C. albicans with MICs of 75.0, 31.5, 62.5, 125.0 and 31.5 microg/mL, respectively.

  8. Analysis of Phenolic and Cyclic Compounds in Plants Using Derivatization Techniques in Combination with GC-MS-Based Metabolite Profiling

    Jens Rohloff

    2015-02-01

    Full Text Available Metabolite profiling has been established as a modern technology platform for the description of complex chemical matrices and compound identification in biological samples. Gas chromatography coupled with mass spectrometry (GC-MS in particular is a fast and accurate method widely applied in diagnostics, functional genomics and for screening purposes. Following solvent extraction and derivatization, hundreds of metabolites from different chemical groups can be characterized in one analytical run. Besides sugars, acids, and polyols, diverse phenolic and other cyclic metabolites can be efficiently detected by metabolite profiling. The review describes own results from plant research to exemplify the applicability of GC-MS profiling and concurrent detection and identification of phenolics and other cyclic structures.

  9. Metabolite Profiling of 14 Wuyi Rock Tea Cultivars Using UPLC-QTOF MS and UPLC-QqQ MS Combined with Chemometrics

    Si Chen

    2018-01-01

    Full Text Available Wuyi Rock tea, well-recognized for rich flavor and long-lasting fragrance, is a premium subcategory of oolong tea mainly produced in Wuyi Mountain and nearby regions of China. The quality of tea is mainly determined by the chemical constituents in the tea leaves. However, this remains underexplored for Wuyi Rock tea cultivars. In this study, we investigated the leaf metabolite profiles of 14 major Wuyi Rock tea cultivars grown in the same producing region using UPLC-QTOF MS and UPLC-QqQ MS with data processing via principal component analysis and cluster analysis. Relative quantitation of 49 major metabolites including flavan-3-ols, proanthocyanidins, flavonol glycosides, flavone glycosides, flavonone glycosides, phenolic acid derivatives, hydrolysable tannins, alkaloids and amino acids revealed clear variations between tea cultivars. In particular, catechins, kaempferol and quercetin derivatives were key metabolites responsible for cultivar discrimination. Information on the varietal differences in the levels of bioactive/functional metabolites, such as methylated catechins, flavonol glycosides and theanine, offers valuable insights to further explore the nutritional values and sensory qualities of Wuyi Rock tea. It also provides potential markers for tea plant fingerprinting and cultivar identification.

  10. Combination of graph heuristics in producing initial solution of curriculum based course timetabling problem

    Wahid, Juliana; Hussin, Naimah Mohd

    2016-08-01

    The construction of population of initial solution is a crucial task in population-based metaheuristic approach for solving curriculum-based university course timetabling problem because it can affect the convergence speed and also the quality of the final solution. This paper presents an exploration on combination of graph heuristics in construction approach in curriculum based course timetabling problem to produce a population of initial solutions. The graph heuristics were set as single and combination of two heuristics. In addition, several ways of assigning courses into room and timeslot are implemented. All settings of heuristics are then tested on the same curriculum based course timetabling problem instances and are compared with each other in terms of number of population produced. The result shows that combination of saturation degree followed by largest degree heuristic produce the highest number of population of initial solutions. The results from this study can be used in the improvement phase of algorithm that uses population of initial solutions.

  11. Gibberellins producing Bacillus methylotrophicus KE2 supports plant growth and enhances nutritional metabolites and food values of lettuce.

    Radhakrishnan, Ramalingam; Lee, In-Jung

    2016-12-01

    The nutritional quality of green leafy vegetables can be enhanced by application of plant beneficial micro-organisms. The present study was aimed to increase the food values of lettuce leaves by bacterial treatment. We isolated bacterial strain KE2 from Kimchi food and identified as Bacillus methylotrophicus by phylogenetic analysis. The beneficial effect of B. methylotrophicus KE2 on plants was confirmed by increasing the percentage of seed germination of Lactuca sativa L., Cucumis melo L., Glycine max L. and Brassica juncea L. It might be the secretion of array of gibberellins (GA 1 , GA 3 , GA 7 , GA 8 , GA 9 , GA 12 , GA 19 , GA 20 , GA 24 , GA 34 and GA 53 ) and indole-acetic acid from B. methylotrophicus KE2. The mechanism of plant growth promotion via their secreted metabolites was confirmed by a significant increase of GA deficient mutant rice plant growth. Moreover, the bacterial association was favor to enhance shoot length, shoot fresh weight and leaf width of lettuce. The higher concentration of protein, amino acids (Asp, Thr, Ser, Glu, Gly, Ala, Leu, Tyr and His), gama-aminobutric acid and fructose was found in bacterial culture (KE2) applied plants. The macro and micro minerals such as K, Mg, Na, P, Fe, Zn and N were also detected as significantly higher quantities in bacteria treated plants than untreated control plants. In addition, the carotenoids and chlorophyll a were also increased in lettuce at bacterial inoculation. The results of this study suggest that B. methylotrophicus KE2 application to soil helps to increase the plant growth and food values of lettuce. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. A comprehensive high-resolution mass spectrometry approach for characterization of metabolites by combination of ambient ionization, chromatography and imaging methods.

    Berisha, Arton; Dold, Sebastian; Guenther, Sabine; Desbenoit, Nicolas; Takats, Zoltan; Spengler, Bernhard; Römpp, Andreas

    2014-08-30

    An ideal method for bioanalytical applications would deliver spatially resolved quantitative information in real time and without sample preparation. In reality these requirements can typically not be met by a single analytical technique. Therefore, we combine different mass spectrometry approaches: chromatographic separation, ambient ionization and imaging techniques, in order to obtain comprehensive information about metabolites in complex biological samples. Samples were analyzed by laser desorption followed by electrospray ionization (LD-ESI) as an ambient ionization technique, by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging for spatial distribution analysis and by high-performance liquid chromatography/electrospray ionization mass spectrometry (HPLC/ESI-MS) for quantitation and validation of compound identification. All MS data were acquired with high mass resolution and accurate mass (using orbital trapping and ion cyclotron resonance mass spectrometers). Grape berries were analyzed and evaluated in detail, whereas wheat seeds and mouse brain tissue were analyzed in proof-of-concept experiments. In situ measurements by LD-ESI without any sample preparation allowed for fast screening of plant metabolites on the grape surface. MALDI imaging of grape cross sections at 20 µm pixel size revealed the detailed distribution of metabolites which were in accordance with their biological function. HPLC/ESI-MS was used to quantify 13 anthocyanin species as well as to separate and identify isomeric compounds. A total of 41 metabolites (amino acids, carbohydrates, anthocyanins) were identified with all three approaches. Mass accuracy for all MS measurements was better than 2 ppm (root mean square error). The combined approach provides fast screening capabilities, spatial distribution information and the possibility to quantify metabolites. Accurate mass measurements proved to be critical in order to reliably combine data from different MS

  13. Quantification of endogenous metabolites by the postcolumn infused-internal standard method combined with matrix normalization factor in liquid chromatography-electrospray ionization tandem mass spectrometry.

    Liao, Hsiao-Wei; Chen, Guan-Yuan; Wu, Ming-Shiang; Liao, Wei-Chih; Tsai, I-Lin; Kuo, Ching-Hua

    2015-01-02

    Quantification of endogenous metabolites has enabled the discovery of biomarkers for diagnosis and provided for an understanding of disease etiology. The standard addition and stable isotope labeled-internal standard (SIL-IS) methods are currently the most widely used approaches to quantifying endogenous metabolites, but both have some limitations for clinical measurement. In this study, we developed a new approach for endogenous metabolite quantification by the postcolumn infused-internal standard (PCI-IS) method combined with the matrix normalization factor (MNF) method. MNF was used to correct the difference in MEs between standard solution and biofluids, and PCI-IS additionally tailored the correction of the MEs for individual samples. Androstenedione and testosterone were selected as test articles to verify this new approach to quantifying metabolites in plasma. The repeatability (n=4 runs) and intermediate precision (n=3 days) in terms of the peak area of androstenedione and testosterone at all tested concentrations were all less than 11% relative standard deviation (RSD). The accuracy test revealed that the recoveries were between 95.72% and 113.46%. The concentrations of androstenedione and testosterone in fifty plasma samples obtained from healthy volunteers were quantified by the PCI-IS combined with the MNF method, and the quantification results were compared with the results of the SIL-IS method. The Pearson correlation test showed that the correlation coefficient was 0.98 for both androstenedione and testosterone. We demonstrated that the PCI-IS combined with the MNF method is an effective and accurate method for quantifying endogenous metabolites. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. The combination of glutamate receptor antagonist MK-801 with tamoxifen and its active metabolites potentiates their antiproliferative activity in mouse melanoma K1735-M2 cells

    Ribeiro, Mariana P.C.; Nunes-Correia, Isabel; Santos, Armanda E.; Custódio, José B.A.

    2014-01-01

    Recent reports suggest that N-methyl-D-aspartate receptor (NMDAR) blockade by MK-801 decreases tumor growth. Thus, we investigated whether other ionotropic glutamate receptor (iGluR) antagonists were also able to modulate the proliferation of melanoma cells. On the other hand, the antiestrogen tamoxifen (TAM) decreases the proliferation of melanoma cells, and is included in combined therapies for melanoma. As the efficacy of TAM is limited by its metabolism, we investigated the effects of the NMDAR antagonist MK-801 in combination with TAM and its active metabolites, 4-hydroxytamoxifen (OHTAM) and endoxifen (EDX). The NMDAR blockers MK-801 and memantine decreased mouse melanoma K1735-M2 cell proliferation. In contrast, the NMDAR competitive antagonist APV and the AMPA and kainate receptor antagonist NBQX did not affect cell proliferation, suggesting that among the iGluR antagonists only the NMDAR channel blockers inhibit melanoma cell proliferation. The combination of antiestrogens with MK-801 potentiated their individual effects on cell biomass due to diminished cell proliferation, since it decreased the cell number and DNA synthesis without increasing cell death. Importantly, TAM metabolites combined with MK-801 promoted cell cycle arrest in G1. Therefore, the data obtained suggest that the activity of MK-801 and antiestrogens in K1735-M2 cells is greatly enhanced when used in combination. - Highlights: • MK-801 and memantine decrease melanoma cell proliferation. • The combination of MK-801 with antiestrogens inhibits melanoma cell proliferation. • These combinations greatly enhance the effects of the compounds individually. • MK-801 combined with tamoxifen active metabolites induces cell cycle arrest in G1. • The combination of MK-801 and antiestrogens is an innovative strategy for melanoma

  15. Growth on Chitin Impacts the Transcriptome and Metabolite Profiles of Antibiotic-Producing Vibrio coralliilyticus S2052 and Photobacterium galatheae S2753

    Giubergia, Sonia; Phippen, Christopher; Nielsen, Kristian Fog

    2017-01-01

    Members of the Vibrionaceae family are often associated with chitin-containing organisms, and they are thought to play a major role in chitin degradation. The purpose of the present study was to determine how chitin affects the transcriptome and metabolome of two bioactive Vibrionaceae strains...... potentially involved in host colonization and/or infection. The expression of genes involved in secondary metabolism was also significantly affected by growth on chitin, in one case being 34-fold upregulated. This was reflected in the metabolome, where the antibiotics andrimid and holomycin were produced...... and that their secondary metabolites likely play a crucial role during chitin colonization. IMPORTANCE The bacterial family Vibrionaceae (vibrios) is considered a major player in the degradation of chitin, the most abundant polymer in the marine environment; however, the majority of studies on the topic have focused...

  16. Taste aversion learning produced by combined treatment with subthreshold radiation and lithium chloride

    Rabin, B.M.; Hunt, W.A.; Lee, J.

    1987-01-01

    These experiments were designed to determine whether treatment with two subthreshold doses of radiation or lithium chloride, either alone or in combination, could lead to taste aversion learning. The first experiment determined the thresholds for a radiation-induced taste aversion at 15-20 rad and for lithium chloride at 0.30-0.45 mEq/kg. In the second experiment it was shown that exposing rats to two doses of 15 rad separated by up to 3 hr produced a taste aversion. Treatment with two injections of lithium chloride (0.30 mEq/kg) did not produce a significant reduction in preference. Combined treatment with radiation and lithium chloride did produce a taste aversion when the two treatments were administered within 1 hr of each other. The results are discussed in terms of the implications of these findings for understanding the nature of the unconditioned stimuli leading to the acquisition of a conditioned taste aversion

  17. Biological Role of Paenilarvins, Iturin-Like Lipopeptide Secondary Metabolites Produced by the Honey Bee Pathogen Paenibacillus larvae.

    Hertlein, Gillian; Seiffert, Marlene; Gensel, Sebastian; Garcia-Gonzalez, Eva; Ebeling, Julia; Skobalj, Ranko; Kuthning, Anja; Süssmuth, Roderich D; Genersch, Elke

    2016-01-01

    The Gram-positive bacterium Paenibacillus larvae (P. larvae) is the causative agent of a deadly honey bee brood disease called American Foulbrood (AFB). AFB is a notifiable epizootic in most countries and, hence, P. larvae is of considerable relevance for veterinarians and apiculturists alike. Over the last decade, much progress has been made in the understanding of the (patho)biology of P. larvae. Recently, several non-ribosomally produced peptides (NRP) and peptide/polyketide (NRP/PK) hybrids produced by P. larvae were identified. Among these NRPs were iturin-like lipopeptides, the paenilarvins A-C. Iturins are known to exhibit strong anti-fungal activity; for some iturins, cytotoxic activity towards mammalian erythrocytes and human cancer cell lines are described. We here present our results on the analysis of the natural function of the paenilarvins during pathogenesis of P. larvae infections. We demonstrated production of paenilarvins in infected larvae. However, we could neither demonstrate cytotoxicity of paenilarvins towards cultured insect cells nor towards larvae in feeding assays. Accordingly, exposure bioassays performed with larvae infected by wild-type P. larvae and a knockout mutant of P. larvae lacking production of paenilarvins did not substantiate a role for the paenilarvins as virulence factor. Further experiments are necessary to analyze the relevance of the paenilarvins' anti-fungal activity for P. larvae infections in the presence of fungal competitors in the larval midgut or cadaver.

  18. Biological effects of paenilamicin, a secondary metabolite antibiotic produced by the honey bee pathogenic bacterium Paenibacillus larvae.

    Garcia-Gonzalez, Eva; Müller, Sebastian; Hertlein, Gillian; Heid, Nina; Süssmuth, Roderich D; Genersch, Elke

    2014-10-01

    Paenibacillus larvae is the etiological agent of American Foulbrood (AFB) a world-wide distributed devastating disease of the honey bee brood. Previous comparative genome analysis and more recently, the elucidation of the bacterial genome, provided evidence that this bacterium harbors putative functional nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs) and therefore, might produce nonribosomal peptides (NRPs) and polyketides (PKs). Such biosynthesis products have been shown to display a wide-range of biological activities such as antibacterial, antifungal or cytotoxic activity. Herein we present an in silico analysis of the first NRPS/PKS hybrid of P. larvae and we show the involvement of this cluster in the production of a compound named paenilamicin (Pam). For the characterization of its in vitro and in vivo bioactivity, a knock-out mutant strain lacking the production of Pam was constructed and subsequently compared to wild-type species. This led to the identification of Pam by mass spectrometry. Purified Pam-fractions showed not only antibacterial but also antifungal and cytotoxic activities. The latter suggested a direct effect of Pam on honey bee larval death which could, however, not be corroborated in laboratory infection assays. Bee larvae infected with the non-producing Pam strain showed no decrease in larval mortality, but a delay in the onset of larval death. We propose that Pam, although not essential for larval mortality, is a virulence factor of P. larvae influencing the time course of disease. These findings are not only of significance in elucidating and understanding host-pathogen interactions but also within the context of the quest for new compounds with antibiotic activity for drug development. © 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  19. Combined effects of nitrogen to phosphorus ratios and nitrogen speciation on cyanobacterial metabolite concentrations in eutrophic Midwestern USA reservoirs.

    Harris, T.D.; Smith, V.H.; Graham, J.L.; Van de Waal, D.B.; Tedesco, L.P.; Clercin, N.

    2016-01-01

    Recent studies have shown that the total nitrogen to total phosphorus (TN:TP) ratio and nitrogen oxidation state may have substantial effects on secondary metabolite (e.g., microcystins) production in cyanobacteria. We investigated the relationship between the water column TN:TP ratio and the

  20. Manufacturing of golf club using wood-plastic combination produced by γ-irradiation

    Yamagami, Masayuki; Tsujii, Yukio; Ohnishi, Tokuhiro; Miyoshi, Hirofumi; Chubachi, Mitsuo; Takada, Hisatoshi.

    1992-01-01

    Wood-plastic combination (WPC) was produced by γ-irradiation of persimmon impregnated with acrylonitrile and styrene. The hardness and strength of WPC obtained were higher than those of an unmodified wood. Thus, it was found that the WPC is suited for a head of golf club, because the Shore hardness value of WPC is 36% greater than that of unmodified wood. An impregnation method of monomers with some pigments could produce colored WPC without diminishing natural grain. Head of golf club could be manufactured from colored WPC in practice. (auhtor)

  1. Gestational or acute restraint in adulthood reduces levels of 5α-reduced testosterone metabolites in the hippocampus and produces behavioral inhibition of adult male rats

    Alicia A Walf

    2012-12-01

    Full Text Available Stressors, during early life or adulthood, can alter steroid-sensitive behaviors, such as exploration, anxiety, and/or cognitive processes. We investigated if exposure to acute stressors in adulthood may alter behavioral and neuroendocrine responses of male rats that were exposed to gestational stress or not. We hypothesized that rats exposed to gestational and acute stress may show behavioral inhibition, increased corticosterone, and altered androgen levels in the hippocampus. Subjects were adult, male offspring of rat dams that were restrained daily on gestational days 14-20, or did not experience this manipulation. Immediately before testing, rats were restraint-stressed for 20 minutes or not. During week 1, rats were tested in a battery of tasks, including the open field, elevated plus maze, social interaction, tailflick, pawlick, and defensive burying tasks. During week 2, rats were trained and tested 24 hours later in the inhibitory avoidance task. Plasma corticosterone and androgen levels, and hippocampal androgen levels, were measured in all subjects. Gestational and acute restraint stress increased plasma levels of corticosterone, and reduced levels of testosterone’s 5α-reduced metabolites, dihydrotestosterone and 3α-androstanediol, but not the aromatized metabolite, estradiol, in plasma or the hippocampus. Gestational and acute restraint stress reduced central entries made in the open field, and latencies to enter the shock-associated side of the inhibitory avoidance chamber during testing. Gestational stress reduced time spent interacting with a conspecific. These data suggest that gestational and acute restraint stress can have actions to produce behavioral inhibition coincident with increased corticosterone and decreased 5α-reduced androgens of adult male rats. Thus, gestational stress altered neural circuits involved in the neuroendocrine response to acute stress in early adulthood.

  2. Combined Mass Spectrometry-Based Metabolite Profiling of Different Pigmented Rice (Oryza sativa L. Seeds and Correlation with Antioxidant Activities

    Ga Ryun Kim

    2014-09-01

    Full Text Available Nine varieties of pigmented rice (Oryza sativa L. seeds that were black, red, or white were used to perform metabolite profiling by using ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS and gas chromatography (GC TOF-MS, to measure antioxidant activities. Clear grouping patterns determined by the color of the rice seeds were identified in principle component analysis (PCA derived from UPLC-Q-TOF-MS. Cyanidin-3-glucoside, peonidin-3-glucoside, proanthocyanidin dimer, proanthocyanidin trimer, apigenin-6-C-glugosyl-8-C-arabiboside, tricin-O-rhamnoside-O-hexoside, and lipids were identified as significantly different secondary metabolites. In PCA score plots derived from GC-TOF-MS, Jakwangdo (JKD and Ilpoom (IP species were discriminated from the other rice seeds by PC1 and PC2. Valine, phenylalanine, adenosine, pyruvate, nicotinic acid, succinic acid, maleic acid, malonic acid, gluconic acid, xylose, fructose, glucose, maltose, and myo-inositol were significantly different primary metabolites in JKD species, while GABA, asparagine, xylitol, and sucrose were significantly distributed in IP species. Analysis of antioxidant activities revealed that black and red rice seeds had higher activity than white rice seeds. Cyanidin-3-glucoside, peonidin-3-glucoside, proanthocyanidin dimers, proanthocyanidin trimers, and catechin were highly correlated with antioxidant activities, and were more plentiful in black and red rice seeds. These results are expected to provide valuable information that could help improve and develop rice-breeding techniques.

  3. [Determination of lidocaine and its metabolites in human plasma by liquid chromatography in combination with tandem mass spectrometry].

    Xiang, Jin; Zhang, Cheng; Yu, Qin; Liang, Mao-Zhi; Qin, Yong-Ping; Nan, Feng

    2010-07-01

    To establish a liquid chromatography tandem mass spectrometry (HPLC-MS/MS) method for the determination of lidocaine (LDC) and its metabolites, monoethylglycinexylidide (MEGX) and glycinexylidide (GX), in human plasma. METHODS; The assay was conducted with an API 3000 HPLC-MS/MS system consisted of a Ultimate C18 column (50 x 4.6 mm, 5 microm). The mobile phase consisted of methanol: 5 mmol/ L ammonium acetate (50:50, pH was adjusted to 5.0 by formic acid) and the flow rate was set at 0.2 mL/min. The alkalinized sample was extracted with ethyl acetate. After evaporation of the organic layer, the residue was dissolved in mobile phase and the drug was determined by HPLC-MS/MS using electrospray ionization. The calibration curve was linear in a range from 15.625 to 2000 ng/mL for LDC. Linear calibration curves were obtained in the range of 1.5625 to 200 ng/mL for both for MEGX and GX. The limit of quantification for LDC, MEGX and GX was set at 15.625, 1.5625 and 1.5625 ng/mL. This method for the quantitative determination of lidocaine and its metabolites in human plasma is simple, rapid, sensitive and accurate. Therefore it can be used for the determination of lidocaine and its metabolites in clinical practice.

  4. Triple combination antibiotic therapy for carbapenemase-producing Klebsiella pneumoniae: a systematic review.

    Jacobs, David M; Safir, M Courtney; Huang, Dennis; Minhaj, Faisal; Parker, Adam; Rao, Gauri G

    2017-11-25

    The spread of carbapenemase-producing K. pneumoniae (CPKP) has become a significant problem worldwide. Combination therapy for CPKP is encouraging, but polymyxin resistance to many antibiotics is hampering effective treatment. Combination therapy with three or more antibiotics is being increasingly reported, therefore we performed a systematic review of triple combination cases in an effort to evaluate their clinical effectiveness for CPKP infections. The PubMed database was searched to identify all published clinical outcomes of CPKP infections treated with triple combination therapy. Articles were stratified into two tiers depending on the level of clinical detail provided. A tier 1 study included: antibiotic regimen, regimen-specific outcome, patient status at onset of infection, and source of infection. Articles not reaching these criteria were considered tier 2. Thirty-three studies were eligible, 23 tier 1 and ten tier 2. Among tier 1 studies, 53 cases were included in this analysis. The most common infection was pneumonia (31%) followed by primary or catheter-related bacteremia (21%) and urinary tract infection (17%). Different combinations of antibiotic classes were utilized in triple combinations, the most common being a polymyxin (colistin or polymyxin B, 86.8%), tigecycline (73.6%), aminoglycoside (43.4%), or carbapenem (43.4%). Clinical and microbiological failure occurred in 14/39 patients (35.9%) and 22/42 patients (52.4%), respectively. Overall mortality for patients treated with triple combination therapy was 35.8% (19/53 patients). Triple combination therapy is being considered as a treatment option for CPKP. Polymyxin-based therapy is the backbone antibiotic in these regimens, but its effectiveness needs establishing in prospective clinical trials.

  5. Combined derivatization and high-performance liquid chromatography with fluorescence and ultraviolet detection for simultaneous analysis of octreotide and gabexate mesylate metabolite in human pancreatic juice samples.

    Carlucci, Giuseppe; Selvaggi, Federico; Sulpizio, Sara; Bassi, Claudio; Carlucci, Maura; Cotellese, Roberto; Ferrone, Vincenzo; Innocenti, Paolo; Locatelli, Marcello

    2015-06-01

    A simple and sensitive method based on the combination of derivatization and high-performance liquid chromatography with ultraviolet and fluorimetric detection was developed for the simultaneous determination of octreotide and gabexate mesylate metabolite in human pancreatic juice samples. Parameters of the derivatization procedure affecting extraction efficiency were optimized. The developed method was validated according to the International Conference on Harmonization guidelines. The calibration curves were linear over a range of 0.1-15 µg/mL for octreotide and 0.20-15 µg/mL for gabexate mesylate metabolite. Derivatized products of octreotide and gabexate mesylate metabolite were separated on a Luna C18 column (4.6 × 250 mm; 5 µm particle size) using a gradient with a run time of 36 min, without further purification. The limits of detection were 0.025 and 0.05, respectively, for octreotide and gabexate mesylate metabolite. This paper reports the validation of a quantitative high performance liquid chromatography-photodiode array-fluorescence (HPLC-PDA-FL) method for the simultaneous analysis of octreotide and gabexate mesylate metabolite in pancreatic juice by protein precipitation using zinc sulfate-methanol-acetonitrile containing the derivatizing reagent, 4-fluoro-7-nitro-[2,1,3]-benzoxadiazole (NBD-F). Derivatized products of octreotide and gabexate mesylate metabolite were separated on a Luna C18 column (4.6 × 250 mm; 5 µm particle size) using a gradient with a run time of 36 min, without further purification. The method was validated over the concentration ranges 0.1-15 and 0.2-15 µg/mL for octreotide and gabexate mesylate metabolite, respectively, in human pancreatic juice. Biphalin and methyl-p-hydroxybenzoate were used as the internal standards. This method was successfully utilized to support clinical studies in humans. The results from assay validations show that the method is selective, sensitive and robust. The limit

  6. Functional copmponents produced by multi-jet modelling combined with electroforming and machining

    Baier, Oliver

    2014-08-01

    Full Text Available In fuel cell technology, certain components are used that are responsible for guiding liquid media. When these components are produced by conventional manufacturing, there are often sealing issues, and trouble- and maintenance-free deployment cannot be ensured. Against this background, a new process combination has been developed in a joint project between the University of Duisburg-Essen, the Center for Fuel Cell Technology (ZBT, and the company Galvano-T electroplating forming GmbH. The approach is to combine multi-jet modelling (MJM, electroforming and milling in order to produce a defined external geometry. The wax models are generated on copper base plates and copper-coated to a desirable thickness. Following this, the undefined electroplated surfaces are machined to achieve the desired measurement, and the wax is melted out. This paper presents, first, how this process is technically feasible, then describes how the MJM on a 3-D Systems ThermoJet was adapted to stabilise the process.In the AiF-sponsored ZIM project, existing limits and possibilities are shown and different approaches of electroplating are investigated. This paper explores whether or not activation of the wax structure by a conductive initial layer is required. Using the described process chain, different parts were built: a heat exchanger, a vaporiser, and a reformer (in which pellets were integrated in an intermediate step. In addition, multiple-layer parts with different functions were built by repeating the process combination several times.

  7. Opioid Mechanism Involvement in the Synergism Produced by the Combination of Diclofenac and Caffeine in the Formalin Model

    Flores-Ramos, Jos? Mar?a; D?az-Reval, M. Irene

    2013-01-01

    Analgesics can be administered in combination with caffeine for improved analgesic effectiveness in a process known as synergism. The mechanisms by which these combinations produce synergism are not yet fully understood. The aim of this study was to analyze whether the administration of diclofenac combined with caffeine produced antinociceptive synergism and whether opioid mechanisms played a role in this event. The formalin model was used to evaluate the antinociception produced by the oral ...

  8. Population pharmacokinetics of caffeine and its metabolites theobromine, paraxanthine and theophylline after inhalation in combination with diacetylmorphine.

    Zandvliet, Anthe S; Huitema, Alwin D R; de Jonge, Milly E; den Hoed, Rob; Sparidans, Rolf W; Hendriks, Vincent M; van den Brink, Wim; van Ree, Jan M; Beijnen, Jos H

    2005-01-01

    The stimulant effect of caffeine, as an additive in diacetylmorphine preparations for study purposes, may interfere with the pharmacodynamic effects of diacetylmorphine. In order to obtain insight into the pharmacology of caffeine after inhalation in heroin users, the pharmacokinetics of caffeine and its dimethylxanthine metabolites were studied. The objectives were to establish the population pharmacokinetics under these exceptional circumstances and to compare the results to published data regarding intravenous and oral administration in healthy volunteers. Diacetylmorphine preparations containing 100 mg of caffeine were used by 10 persons by inhalation. Plasma concentrations of caffeine, theobromine, paraxanthine and theophylline were measured by high performance liquid chromatography. Non-linear mixed effects modelling was used to estimate population pharmacokinetic parameters. The model was evaluated by the jack-knife procedure. Caffeine was rapidly and effectively absorbed after inhalation. Population pharmacokinetics of caffeine and its dimethylxanthine metabolites could adequately and simultaneously be described by a linear multi-compartment model. The volume of distribution for the central compartment was estimated to be 45.7 l and the apparent elimination rate constant of caffeine at 8 hr after inhalation was 0.150 hr(-1) for a typical individual. The bioavailability was approximately 60%. The presented model adequately describes the population pharmacokinetics of caffeine and its dimethylxanthine metabolites after inhalation of the caffeine sublimate of a 100 mg tablet. Validation proved the stability of the model. Pharmacokinetics of caffeine after inhalation and intravenous administration are to a large extent similar. The bioavailability of inhaled caffeine is approximately 60% in experienced smokers.

  9. Combined administration of MK-801 and cycloheximide produces a delayed potentiation of fear discrimination memory extinction.

    Kochli, Daniel E; Campbell, Tiffany L; Hollingsworth, Ethan W; Lab, Rain S; Postle, Abagail F; Perry, Megan M; Mordzinski, Victoria M; Quinn, Jennifer J

    2018-04-01

    Mixed evidence exists regarding the role of N-methyl-D-aspartate (NMDA) receptors in memory reconsolidation. We provide no evidence that NMDA receptors are involved with memory reconsolidation, but instead demonstrate that prereactivation systemic MK-801 injection, combined with postreactivation intrabasolateral amygdala (BLA) cycloheximide infusion, produces a delayed potentiation of extinction learning. These data suggest that an interaction between NMDA antagonism and protein synthesis inhibition may enhance extinction by exerting effects outside of the intended reconsolidation manipulation window. The present work demonstrates a novel pharmacological enhancement of extinction, and underscores the importance of employing proper control procedures in reconsolidation research. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  10. The Combination of Antidepressant Duloxetine with Piracetam in Mice does not Produce Enhancement of Nootropic Activity.

    Kale, Pravin Popatrao; Addepalli, Veeranjaneyulu; Sarkar, Amrita; Patel, Sonam; Savai, Jay

    2014-09-01

    There is a strong association between depression and memory impairment. The present study aims to assess the nootropic activity of duloxetine and piracetam combination. Male Swiss Albino mice were divided randomly into 4 groups. Treatment of normal saline (10 ml/kg), duloxetine (10 mg/kg), piracetam (100 mg/kg), and duloxetine (5 mg/kg) plus piracetam (50 mg/kg) were given through intra-peritoneal route to group I-IV, respectively. Transfer latency in elevated plus maze (EPM) and time spent in target quadrant in Morris water maze (MWM) were recorded. Estimation of brain monoamines in hippocampus, cerebral cortex, and whole brain were done using HPLC with fluorescence detector. Piracetam treated group showed significant decrease in transfer latency in EPM and increase in time spent in target quadrant recorded in MWM. Combination treated group failed to produce statistically significant nootropic effect in both EPM and MWM. Combination treated group failed to increase brain monoamine levels when compared against duloxetine and piracetam treated groups, separately. But there was exception of significant increase in norepinephrine levels in hippocampi when compared against duloxetine treated group. Results indicate no cognitive benefits with piracetam plus duloxetine combination. These findings can be further probed with the aim of understanding the interaction between duloxetine and piracetam as a future endeavor.

  11. A combined photophysical and computational study on the binding of mycophenolate mofetil and its major metabolite to transport proteins.

    Vendrell-Criado, Victoria; González-Bello, Concepción; Miranda, Miguel A; Jiménez, M Consuelo

    2018-06-15

    Binding of the immunosuppressive agent mycophenolate mofetil (MMP) and its pharmacologically active metabolite mycophenolic acid (MPA) to human serum albumin (HSA) and α 1 -acid glycoprotein (HAAG) has been investigated by means of an integrated approach involving selective excitation of the drug fluorophore, following their UV-A triggered fluorescence and docking studies. The formation of the protein/ligand complexes was evidenced by a dramatic enhancement of the fluorescence intensity and a hypsochromic shift of the emission band. In HSA, competitive studies using oleic acid as site I probe revealed site I as the main binding site of the ligands. Binding constants revealed that the affinity of the active metabolite by HSA is four-fold higher than its proactive form. Moreover, the affinity of MMP by HSA is three-fold higher than by HAAG. Docking studies revealed significant molecular binding differences in the binding of MMP and MPA to sub-domain IIA of HSA (site 1). For MPA, the aromatic moiety would be in close contact to Trp214 with the flexible chain pointing to the other end of the sub-domain; on the contrary, for MMP, the carboxylate group of the chain would be fixed nearby Trp214 through electrostatic interactions with residues Arg218 and Arg222. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Combined effect of ultrasound and essential oils to reduce Listeria monocytogenes on fresh produce.

    Özcan, Gülçin; Demirel Zorba, Nükhet Nilüfer

    2016-06-01

    Salads prepared from contaminated fresh produce have a high risk of causing food-borne illnesses. Essential oils obtained from plants have antimicrobial activity and may provide a natural approach to reduce the pathogens on fresh produce. Additionally, ultrasound treatments have been shown to reduce the microbial counts on different foods. The objective of this study was to investigate the antimicrobial activities of cinnamon and lemon essential oils in vitro and in food applications. Mixtures of lettuce, parsley and dill were inoculated with Listeria monocytogenes and then dip-treated for 5 min in one of the following treatments: sterile tap water, chlorinated water, 1% lemon essential oil, 2% cinnamon essential oil or 2% cinnamon essential oil + ultrasound. The samples were stored at 4 ℃ and collected at d 0, 1, 3, 5, 7 and 9 post inoculation. The 1% lemon (4 log) and 2% cinnamon (2 log) essential oil washes provided partial inhibition against L. monocytogenes by d 1. The combined application of 2% cinnamon oil and ultrasound resulted in only 0.85 log inhibition by d 1; however, the number of L. monocytogenes increased during storage and became nearly equal to the control at d 9. Therefore, different combinations of essential oils with other antimicrobials or novel technologies are required. © The Author(s) 2015.

  13. Yeast synthetic biology for high-value metabolites.

    Dai, Zhubo; Liu, Yi; Guo, Juan; Huang, Luqi; Zhang, Xueli

    2015-02-01

    Traditionally, high-value metabolites have been produced through direct extraction from natural biological sources which are inefficient, given the low abundance of these compounds. On the other hand, these high-value metabolites are usually difficult to be synthesized chemically, due to their complex structures. In the last few years, the discovery of genes involved in the synthetic pathways of these metabolites, combined with advances in synthetic biology tools, has allowed the construction of increasing numbers of yeast cell factories for production of these metabolites from renewable biomass. This review summarizes recent advances in synthetic biology in terms of the use of yeasts as microbial hosts for the identification of the pathways involved in the synthesis, as well as for the production of high-value metabolites. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  14. Ultrasound assisted extraction combined with dispersive liquid-liquid microextraction (US-DLLME)-a fast new approach to measure phthalate metabolites in nails.

    Alves, Andreia; Vanermen, Guido; Covaci, Adrian; Voorspoels, Stefan

    2016-09-01

    A new, fast, and environmentally friendly method based on ultrasound assisted extraction combined with dispersive liquid-liquid microextraction (US-DLLME) was developed and optimized for assessing the levels of seven phthalate metabolites (including the mono(ethyl hexyl) phthalate (MEHP), mono(2-ethyl-5-hydroxyhexyl) phthalate (5-OH-MEHP), mono(2-ethyl-5-oxohexyl) phthalate (5-oxo-MEHP), mono-n-butyl phthalate (MnBP), mono-isobutyl phthalate (MiBP), monoethyl phthalate (MEP), and mono-benzyl phthalate (MBzP)) in human nails by UPLC-MS/MS. The optimization of the US-DLLME method was performed using a Taguchi combinatorial design (L9 array). Several parameters such as extraction solvent, solvent volume, extraction time, acid, acid concentration, and vortex time were studied. The optimal extraction conditions achieved were 180 μL of trichloroethylene (extraction solvent), 2 mL trifluoroacetic acid in methanol (2 M), 2 h extraction and 3 min vortex time. The optimized method had a good precision (6-17 %). The accuracy ranged from 79 to 108 % and the limit of method quantification (LOQm) was below 14 ng/g for all compounds. The developed US-DLLME method was applied to determine the target metabolites in 10 Belgian individuals. Levels of the analytes measured in nails ranged between <12 and 7982 ng/g. The MEHP, MBP isomers, and MEP were the major metabolites and detected in every sample. Miniaturization (low volumes of organic solvents used), low costs, speed, and simplicity are the main advantages of this US-DLLME based method. Graphical Abstract Extraction and phase separation of the US-DLLME procedure.

  15. Durable and mass producible polymer surface structures with different combinations of micro–micro hierarchy

    Jiang, Yu; Suvanto, Mika; Pakkanen, Tapani A

    2016-01-01

    Extensive studies have been performed with the aim of fabricating hierarchical surface structures inspired by nature. However, synthetic hierarchical structures have to sacrifice mechanical resistance to functionality by introducing finer scaled structures. Therefore, surfaces are less durable. Surface micro–micro hierarchy has been proven to be effective in replacing micro–nano hierarchy in the sense of superhydrophobicity. However, less attention has been paid to the combined micro–micro hierarchies with surface pillars and pits incorporated together. The fabrication of this type of hierarchy may be less straightforward, with the possibility of being a complicated multi-step process. In this study, we present a simple yet mass producible fabrication method for hierarchical structures with different combinations of surface pillars and pits. The fabrication was based on only one aluminum (Al) mold with sequential mountings. The fabricated structures exhibit high mechanical durability and structural stabilities with a normal load up to 100 kg. In addition, the theoretical estimation of the wetting state shows a promising way of stabilizing a water droplet on the surface pit structures with a more stable Cassie–Baxter state. (paper)

  16. Pharmacodynamics of colistin and fosfomycin: a 'treasure trove' combination combats KPC-producing Klebsiella pneumoniae.

    Zhao, Miao; Bulman, Zackery P; Lenhard, Justin R; Satlin, Michael J; Kreiswirth, Barry N; Walsh, Thomas J; Marrocco, Amanda; Bergen, Phillip J; Nation, Roger L; Li, Jian; Zhang, Jing; Tsuji, Brian T

    2017-07-01

    KPC-producing Klebsiella pneumoniae are an emerging public health problem around the globe. We defined the combinatorial pharmacodynamics and ability to suppress resistance of two 'old' antibiotics, fosfomycin and colistin, in time-kill experiments and hollow-fibre infection models (HFIM). Two KPC-2-producing K. pneumoniae isolates were used: one susceptible to both colistin and fosfomycin (KPC 9A: MIC colistin 0.25 mg/L and MIC fosfomycin ≤8 mg/L) and the other resistant to colistin and susceptible to fosfomycin (KPC 5A: MIC colistin 64 mg/L and MIC fosfomycin 32 mg/L). Time-kill experiments assessed an array of colistin and fosfomycin concentrations against both isolates. Colistin and fosfomycin pharmacokinetics from critically ill patients were simulated in the HFIM to define the pharmacodynamic activity of humanized regimens over 5 days against KPC 9A. In time-kill experiments, synergy was demonstrated for all colistin/fosfomycin combinations containing >8 mg/L fosfomycin against the double-susceptible KPC strain, 9A. Synergy versus KPC strain 5A was only achieved at the highest concentrations of colistin (4 mg/L) and fosfomycin (512 mg/L) at 48 h. In the HFIM, colistin or fosfomycin monotherapies resulted in rapid proliferation of resistant subpopulations; KPC 9A regrew by 24 h. In contrast to the monotherapies, the colistin/fosfomycin combination resulted in a rapid 6.15 log 10  cfu/mL reduction of KPC 9A by 6 h and complete suppression of resistant subpopulations until 120 h. Colistin and fosfomycin may represent an important treatment option for KPC-producing K. pneumoniae otherwise resistant to traditional antibiotics. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Application of the combinative particle size reduction technology H 42 to produce fast dissolving glibenclamide tablets.

    Salazar, Jaime; Müller, Rainer H; Möschwitzer, Jan P

    2013-07-16

    Standard particle size reduction techniques such as high pressure homogenization or wet bead milling are frequently used in the production of nanosuspensions. The need for micronized starting material and long process times are their evident disadvantages. Combinative particle size reduction technologies have been developed to overcome the drawbacks of the standard techniques. The H 42 combinative technology consists of a drug pre-treatment by means of spray-drying followed by standard high pressure homogenization. In the present paper, spray-drying process parameters influencing the diminution effectiveness, such as drug and surfactant concentration, were systematically analyzed. Subsequently, the untreated and pre-treated drug powders were homogenized for 20 cycles at 1500 bar. For untreated, micronized glibenclamide, the particle size analysis revealed a mean particle size of 772 nm and volume-based size distribution values of 2.686 μm (d50%) and 14.423 μm (d90%). The use of pre-treated material (10:1 glibenclamide/docusate sodium salt ratio spray-dried as ethanolic solution) resulted in a mean particle size of 236 nm and volume-based size distribution values of 0.131 μm (d50%) and 0.285 μm (d90%). These results were markedly improved compared to the standard process. The nanosuspensions were further transferred into tablet formulations. Wet granulation, freeze-drying and spray-drying were investigated as downstream methods to produce dry intermediates. Regarding the dissolution rate, the rank order of the downstream processes was as follows: Spray-drying>freeze-drying>wet granulation. The best drug release (90% within 10 min) was obtained for tablets produced with spray-dried nanosuspension containing 2% mannitol as matrix former. In comparison, the tablets processed with micronized glibenclamide showed a drug release of only 26% after 10 min. The H 42 combinative technology could be successfully applied in the production of small drug nanocrystals. A

  18. On-target labeling of intracellular metabolites combined with chemical mapping of individual hyphae revealing cytoplasmic relocation of isotopologues.

    Hu, Jie-Bi; Chen, Yu-Chie; Urban, Pawel L

    2012-06-05

    A microscale analytical platform integrating microbial cell culture, isotopic labeling, along with visual and mass spectrometric imaging with single-cell resolution has been developed and applied in the monitoring of cellular metabolism in fungal mycelium. The method implements open chips with a two-dimensional surface pattern composed of hydrophobic and hydrophilic zones. Two hydrophilic islands are used as medium reservoirs, while the hydrophobic area constitutes the support for the growing aerial hyphae, which do not have direct contact with the medium. The first island, containing (12)C(6)-glucose medium, was initially inoculated with the mycelium (Neurospora crassa), and following the initial incubation period, the hyphae progressed toward the second medium island, containing an isotopically labeled substrate ((13)C(6)-glucose). The (13)C atoms were gradually incorporated into cellular metabolites, which was revealed by MALDI-MS. The fate of the chitin-biosynthesis precursor, uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), was monitored by recording mass spectra with characteristic isotopic patterns, which indicated the presence of various (12)C/(13)C isotopologues. The method enabled mapping the (13)C-labeled UDP-GlcNAc in fungal mycelium and recording its redistribution in hyphae, directly on the chip.

  19. In Vitro Assessment of Combined Polymyxin B and Minocycline Therapy against Klebsiella pneumoniae Carbapenemase (KPC)-Producing K. pneumoniae.

    Huang, Dennis; Yu, Brenda; Diep, John K; Sharma, Rajnikant; Dudley, Michael; Monteiro, Jussimara; Kaye, Keith S; Pogue, Jason M; Abboud, Cely Saad; Rao, Gauri G

    2017-07-01

    The multidrug resistance profiles of Klebsiella pneumoniae carbapenemase (KPC) producers have led to increased clinical polymyxin use. Combination therapy with polymyxins may improve treatment outcomes, but it is uncertain which combinations are most effective. Clinical successes with intravenous minocycline-based combination treatments have been reported for infections caused by carbapenemase-producing bacteria. The objective of this study was to evaluate the in vitro activity of polymyxin B and minocycline combination therapy against six KPC-2-producing K. pneumoniae isolates (minocycline MIC range, 2 to 32 mg/liter). Polymyxin B monotherapy (0.5, 1, 2, 4, and 16 mg/liter) resulted in a rapid reduction of up to 6 log in bactericidal activity followed by regrowth by 24 h. Minocycline monotherapy (1, 2, 4, 8, and 16 mg/liter) showed no reduction of activity of >1.34 log against all isolates, although concentrations of 8 and 16 mg/liter prolonged the time to regrowth. When the therapies were used in combination, rapid bactericidal activity was followed by slower regrowth, with synergy (60 of 120 combinations at 24 h, 19 of 120 combinations at 48 h) and additivity (43 of 120 combinations at 24 h, 44 of 120 combinations at 48 h) against all isolates. The extent of killing was greatest against the more susceptible polymyxin B isolates (MICs of ≤0.5 mg/liter) regardless of the minocycline MIC. The pharmacodynamic activity of combined polymyxin B-minocycline therapy against KPC-producing K. pneumoniae is dependent on polymyxin B susceptibility. Further in vitro and animal studies must be performed to fully evaluate the efficacy of this drug combination. Copyright © 2017 American Society for Microbiology.

  20. Combined use of the modified Hodge test and carbapenemase inhibition test for detection of carbapenemase-producing Enterobacteriaceae and metallo-β-lactamase-producing Pseudomonas spp.

    Song, Wonkeun; Hong, Seong Geun; Yong, Dongeun; Jeong, Seok Hoon; Kim, Hyun Soo; Kim, Han-Sung; Kim, Jae-Seok; Bae, Il Kwon

    2015-03-01

    We evaluated the combined use of the modified Hodge test (MHT) and carbapenemase inhibition test (CIT) using phenylboronic acid (PBA) and EDTA to detect carbapenemase-producing Enterobacteriaceae (CPE) and metallo-β-lactamase (MBL)-producing Pseudomonas spp. A total of 49 isolates of CPE (15 Klebsiella pneumoniae carbapenemase [KPC], 5 Guiana extended-spectrum β-lactamase [GES]-5, 9 New Delhi metallo-β-lactamase [NDM]-1, 5 Verona integron-encoded metallo-β-lactamase [VIM]-2, 3 imipenem-hydrolyzing β-lactamase [IMP], and 12 oxacillinase [OXA]-48-like), 25 isolates of MBL-producing Pseudomonas spp. (14 VIM-2 and 11 IMP), and 35 carbapenemase-negative controls were included. The MHT was performed for all isolates as recommended by the Clinical and Laboratory Standards Institute. Enhanced growth of the indicator strain was measured in mm with a ruler. The CIT was performed by directly dripping PBA and EDTA solutions onto carbapenem disks that were placed on Mueller-Hinton agar plates seeded with the test strain. Considering the results of the MHT with the ertapenem disk in Enterobacteriaceae and Pseudomonas spp., the CIT with the meropenem disk in Enterobacteriaceae, and the imipenem disk in Pseudomonas spp., three combined disk tests, namely MHT-positive plus PBA-positive, EDTA-positive, and MHT-positive plus PBA-negative plus EDTA-negative, had excellent sensitivity and specificity for the detection of KPC- (100% sensitivity and 100% specificity), MBL- (94% sensitivity and 100% specificity), and OXA-48-like-producing isolates (100% sensitivity and 100% specificity), respectively. Combined use of the MHT and CIT with PBA and EDTA, for the detection of CPE and MBL-producing Pseudomonas spp., is effective in detecting and characterizing carbapenemases in routine laboratories.

  1. Ex Vivo Application of Secreted Metabolites Produced by Soil-Inhabiting Bacillus spp. Efficiently Controls Foliar Diseases Caused by Alternaria spp.

    Ali, Gul Shad; El-Sayed, Ashraf S A; Patel, Jaimin S; Green, Kari B; Ali, Mohammad; Brennan, Mary; Norman, David

    2016-01-15

    Bacterial biological control agents (BCAs) are largely used as live products to control plant pathogens. However, due to variable environmental and ecological factors, live BCAs usually fail to produce desirable results against foliar pathogens. In this study, we investigated the potential of cell-free culture filtrates of 12 different bacterial BCAs isolated from flower beds for controlling foliar diseases caused by Alternaria spp. In vitro studies showed that culture filtrates from two isolates belonging to Bacillus subtilis and Bacillus amyloliquefaciens displayed strong efficacy and potencies against Alternaria spp. The antimicrobial activity of the culture filtrate of these two biological control agents was effective over a wider range of pH (3.0 to 9.0) and was not affected by autoclaving or proteolysis. Comparative liquid chromatography-mass spectrometry (LC-MS) analyses showed that a complex mixture of cyclic lipopeptides, primarily of the fengycin A and fengycin B families, was significantly higher in these two BCAs than inactive Bacillus spp. Interaction studies with mixtures of culture filtrates of these two species revealed additive activity, suggesting that they produce similar products, which was confirmed by LC-tandem MS analyses. In in planta pre- and postinoculation trials, foliar application of culture filtrates of B. subtilis reduced lesion sizes and lesion frequencies caused by Alternaria alternata by 68 to 81%. Taken together, our studies suggest that instead of live bacteria, culture filtrates of B. subtilis and B. amyloliquefaciens can be applied either individually or in combination for controlling foliar diseases caused by Alternaria species. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  2. Discerning Silk Produced by Bombyx mori from Those Produced by Wild Species Using an Enzyme-Linked Immunosorbent Assay Combined with Conventional Methods.

    You, Qiushi; Li, Qingqing; Zheng, Hailing; Hu, Zhiwen; Zhou, Yang; Wang, Bing

    2017-09-06

    Recently, much interest has been paid to the separation of silk produced by Bombyx mori from silk produced by other species and tracing the beginnings of silk cultivation from wild silk exploitation. In this paper, significant differences between silks from Bombyx mori and other species were found by microscopy and spectroscopy, such as morphology, secondary structure, and amino acid composition. For further accurate identification, a diagnostic antibody was designed by comparing the peptide sequences of silks produced by Bombyx mori and other species. The results of the noncompetitive indirect enzyme-linked immunosorbent assay (ELISA) indicated that the antibody that showed good sensitivity and high specificity can definitely discern silk produced by Bombyx mori from silk produced by wild species. Thus, the antibody-based immunoassay has the potential to be a powerful tool for tracing the beginnings of silk cultivation. In addition, combining the sensitive, specific, and convenient ELISA technology with other conventional methods can provide more in-depth and accurate information for species identification.

  3. Mutagenic azide metabolite is azidoalanine

    Owais, W.M.; Rosichan, J.L.; Ronald, R.C.; Kleinhofs, A.; Nilan, R.A.

    1981-01-01

    Sodium axide produces high mutation rates in a number of species. Azide mutagenicity is mediated through a metabolite in barley and bacteria. Many studies showed that azide affects the L-cysteine biosynthesis pathway. Cell-free extracts of Salmonella typhimurium convert azide and O-acetylserine to the mutagenic metabolite. O-acetylserine sulfhydrylase was identified as the enzyme responsible for the metabolite biosynthesis. To confirm the conclusion that the azide metabolite is formed through the β-substitution pathway of L-cysteine, we radioactively labeled the azide metabolite using 14 C-labeled precursors. Moreover, the mutagenic azide metabolite was purified and identified as azidoalanine based on mass spectroscopy and elemental analysis. 26 refs., 3 figs., 1 tab

  4. Porous alumina scaffold produced by sol-gel combined polymeric sponge method

    Hasmaliza, M.; Fazliah, M. N.; Shafinaz, R. J.

    2012-09-01

    Sol gel is a novel method used to produce high purity alumina with nanometric scale. In this study, three-dimensional porous alumina scaffold was produced using sol-gel polymeric sponge method. Briefly, sol gel alumina was prepared by evaporation and polymeric sponge cut to designated sizes were immersed in the sol gel followed by sintering at 1250 and 1550°C. In order to study the cell interaction, the porous alumina scaffold was sterilized using autoclave prior to Human Mesenchymal Stem Cells (HMSCs) seeding on the scaffold and the cell proliferation was assessed by alamarBlue® assay. SEM results showed that during the 21 day period, HMSCs were able to attach on the scaffold surface and the interconnecting pores while maintaining its proliferation. These findings suggested the potential use of the porous alumina produced as a scaffold for implantation procedure.

  5. "Super-Fog"--A Combination of Smoke and Water Vapor That Produces Zero Visibility over Roadways

    Gary L. Achtemeier

    2002-01-01

    Forest and agricultural burning release chemical compounds and particulate matter into the atmosphere. Although most of this material contributes to visibility reductions through haze and provldes chemical constituents available for reactions with other atmospheric pollutants, there are occasions when smoke is entrapped locally and combines with water vapor to...

  6. A gradient surface produced by combined electroplating and incremental frictional sliding

    Yu, Tianbo; Hong, Chuanshi; Kitamura, K.

    2017-01-01

    A Cu plate was first electroplated with a Ni layer, with a thickness controlled to be between 1 and 2 mu m. The coated surface was then deformed by incremental frictional sliding with liquid nitrogen cooling. The combined treatment led to a multifunctional surface with a gradient in strain...

  7. Combined effect of noise and vibration produced by high-speed trains on annoyance in buildings.

    Lee, Pyoung Jik; Griffin, Michael J

    2013-04-01

    The effects of noise and vibration on annoyance in buildings during the passage of a nearby high-speed train have been investigated in a laboratory experiment with recorded train noise and 20 Hz vibration. The noises included the effects of two types of façade: windows-open and windows-closed. Subjects were exposed to six levels of noise and six magnitudes of vibration, and asked to rate annoyance using an 11-point numerical scale. The experiment consisted of four sessions: (1) evaluation of noise annoyance in the absence of vibration, (2) evaluation of total annoyance from simultaneous noise and vibration, (3) evaluation of noise annoyance in the presence of vibration, and (4) evaluation of vibration annoyance in the absence of noise. The results show that vibration did not influence ratings of noise annoyance, but that total annoyance caused by combined noise and vibration was considerably greater than the annoyance caused by noise alone. The noise annoyance and the total annoyance caused by combined noise and vibration were associated with subject self-ratings of noise sensitivity. Two classical models of total annoyance due to combined noise sources (maximum of the single source annoyance or the integration of individual annoyance ratings) provided useful predictions of the total annoyance caused by simultaneous noise and vibration.

  8. Characterization of biomass producer gas as fuel for stationary gas engines in combined heat and power production

    Ahrenfeldt, Jesper

    2008-01-01

    The aim of this project has been the characterization of biomass producer gas as a fuel for stationary gas engines in heat and power production. More than 3200 hours of gas engine operation, with producer gas as fuel, has been conducted at the biomass gasification combined heat and power (CHP...... different measuring methods. Likewise, no particles were detected in the gas. Considerable amounts of NH3 were measured in the produced gas.An analysis of engine operation at varying load has been carried out. Standard emissions, load and efficiency have been measured at varying operating conditions ranging...... from 50% to 90% load. Biomass producer gas is an excellent lean burn engine fuel: Operation of a natural aspirated engine has been achieved for 1.2...

  9. Characterization of forsythoside A metabolites in rats by a combination of UHPLC-LTQ-Orbitrap mass spectrometer with multiple data processing techniques.

    Wang, Fei; Cao, Guang-Shang; Li, Yun; Xu, Lu-Lu; Wang, Zhi-Bin; Liu, Ying; Lu, Jian-Qiu; Zhang, Jia-Yu

    2018-05-01

    Forsythoside A (FTA), the main active constituent isolated from Fructus Forsythiae, has various biological functions including anti-oxidant, anti-viral and anti-microbial activities. However, while research on FTA has been mainly focused on the treatment of diseases on a material basis, FTA metabolites in vivo have not been comprehensively evaluated. Here, a rapid and sensitive method using a UHPLC-LTQ-Orbitrap mass spectrometer with multiple data processing techniques including high-resolution extracted ion chromatograms, multiple mass defect filters and diagnostic product ions was developed for the screening and identification of FTA metabolites in rats. As the result, a total of 43 metabolites were identified in biological samples including 42 metabolites in urine, 22 metabolites in plasma and 15 metabolites in feces. These results demonstrated that FTA underwent a series of in vivo metabolic reactions including methylation, dimethylation, sulfation, glucuronidation, diglucuronidation, cysteine conjugation and their composite reactions. The research enhanced our understanding of FTA metabolism and built a foundation for further toxicity and safety studies. Copyright © 2017 John Wiley & Sons, Ltd.

  10. Single and combined effects of microcystin- and saxitoxin-producing cyanobacteria on the fitness and antioxidant defenses of cladocerans.

    da S Ferrão-Filho, Aloysio; de Abreu S Silva, Daniel; de Oliveira, Taissa A; de Magalhães, Valéria Freitas; Pflugmacher, Stephan; da Silva, Eduardo Mendes

    2017-10-01

    Cyanobacteria produce different toxic compounds that affect animal life, among them hepatotoxins and neurotoxins. Because cyanobacteria are able to produce a variety of toxic compounds at the same time, organisms may be, generally, subjected to their combined action. In the present study, we demonstrate the single and combined effects on cladocerans of cyanobacteria that produce microcystins (hepatotoxins) and saxitoxins (neurotoxins). Animals were exposed (either singly or combined) to 2 strains of cyanobacteria isolated from the same environment (Funil Reservoir, Rio de Janeiro, Brazil). The effects on clearance rate, mobility, survivorship, fecundity, population increase rate (r), and the antioxidant enzymes glutathione-S-transferase (GST) and catalase (CAT) were measured. Cladoceran species showed a variety of responses to cyanobacterial exposures, going from no effect to impairment of swimming movement, lower survivorship, fecundity, and general fitness (r). Animals ingested cyanobacteria in all treatments, although at lower rates than good food (green algae). Antioxidant defense responses were in accordance with fitness responses, suggesting that oxidative stress may be related to such effects. The present study emphasizes the need for testing combined actions of different classes of toxins, because this is often, and most likely, the scenario in a more eutrophic world with global climatic changes. Environ Toxicol Chem 2017;36:2689-2697. © 2017 SETAC. © 2017 SETAC.

  11. The Combination of Antidepressant Duloxetine with Piracetam in Mice does not Produce Enhancement of Nootropic Activity

    Kale, Pravin Popatrao; Addepalli, Veeranjaneyulu; Sarkar, Amrita; Patel, Sonam; Savai, Jay

    2014-01-01

    There is a strong association between depression and memory impairment. The present study aims to assess the nootropic activity of duloxetine and piracetam combination. Male Swiss Albino mice were divided randomly into 4 groups. Treatment of normal saline (10 ml/kg), duloxetine (10 mg/kg), piracetam (100 mg/kg), and duloxetine (5 mg/kg) plus piracetam (50 mg/kg) were given through intra-peritoneal route to group I-IV, respectively. Transfer latency in elevated plus maze (EPM) and time spent i...

  12. Combining gradient structure and TRIP effect to produce austenite stainless steel with high strength and ductility

    Wu, X.L.; Yang, M.X.; Yuan, F.P.; Chen, L.; Zhu, Y.T.

    2016-01-01

    We report a design strategy to combine the benefits from both gradient structure and transformation-induced plasticity (TRIP). The resultant TRIP-gradient steel takes advantage of both mechanisms, allowing strain hardening to last to a larger plastic strain. 304 stainless steel sheets were treated by surface mechanical attrition to synthesize gradient structure with a central coarse-grained layer sandwiched between two grain-size gradient layers. The gradient layer is composed of submicron-sized parallelepiped austenite domains separated by intersecting ε-martensite plates, with increasing domain size along the depth. Significant microhardness heterogeneity exists not only macroscopically between the soft coarse-grained core and the hard gradient layers, but also microscopically between the austenite domain and ε-martensite walls. During tensile testing, the gradient structure causes strain partitioning, which evolves with applied strain, and lasts to large strains. The γ → α′ martensitic transformation is triggered successively with an increase of the applied strain and flow stress. Importantly, the gradient structure prolongs the TRIP effect to large plastic strains. As a result, the gradient structure in the 304 stainless steel provides a new route towards a good combination of high strength and ductility, via the co-operation of both the dynamic strain partitioning and TRIP effect.

  13. Visible and NIR spectral band combination to produce high security ID tags for automatic identification

    Pérez-Cabré, Elisabet; Millán, María S.; Javidi, Bahram

    2006-09-01

    Verification of a piece of information and/or authentication of a given object or person are common operations carried out by automatic security systems that can be applied, for instance, to control the entrance to restricted areas, access to public buildings, identification of cardholders, etc. Vulnerability of such security systems may depend on the ease of counterfeiting the information used as a piece of identification for verification and authentication. To protect data against tampering, the signature that identifies an object is usually encrypted to avoid an easy recognition at human sight and an easy reproduction using conventional devices for imaging or scanning. To make counterfeiting even more difficult, we propose to combine data from visible and near infrared (NIR) spectral bands. By doing this, neither the visible content nor the NIR data by theirselves are sufficient to allow the signature recognition and thus, the identification of a given object. Only the appropriate combination of both signals permits a satisfactory authentication. In addition, the resulting signature is encrypted following a fully-phase encryption technique and the obtained complex-amplitude distribution is encoded on an ID tag. Spatial multiplexing of the encrypted signature allows us to build a distortion-invariant ID tag, so that remote authentication can be achieved even if the tag is captured under rotation or at different distances. We also explore the possibility of using partial information of the encrypted signature to simplify the ID tag design.

  14. Morphine metabolites

    Christrup, Lona Louring

    1997-01-01

    , morphine-3-glucuronide (M3G) and morphine-6-glucuronide (M6G) are the major metabolites of morphine. The metabolism of morphine occurs not only in the liver, but may also take place in the brain and the kidneys. The glucuronides are mainly eliminated via bile and urine. Glucuronides as a rule...... are considered as highly polar metabolites unable to cross the blood-brain barrier. Although morphine glucuronidation has been demonstrated in human brain tissue, the capacity is very low compared to that of the liver, indicating that the M3G and M6G concentrations observed in the cerebrospinal fluid (CSF) after...... systemic administration reflect hepatic metabolism of morphine and that the morphine glucuronides, despite their high polarity, can penetrate into the brain. Like morphine, M6G has been shown to be relatively more selective for mu-receptors than for delta- and kappa-receptors while M3G does not appear...

  15. Tibial slope correction combined with second revision ACL produces good knee stability and prevents graft rupture.

    Dejour, David; Saffarini, Mo; Demey, Guillaume; Baverel, Laurent

    2015-10-01

    Revision ACL reconstruction requires careful analysis of failure causes particularly in cases of two previous graft ruptures. Intrinsic factors as excessive tibial slope or narrow femoral notch increase failure risks but are rarely addressed in revision surgery. The authors report outcomes, at minimum follow-up of 2 years, for second revision ACL reconstructions combined with tibial deflexion osteotomy for correction of excessive slope (>12°). Nine patients that underwent second revision ACL reconstruction combined with tibial deflexion osteotomy were retrospectively studied. The mean age was 30.3 ± 4.4 years (median 28; range 26-37), and mean follow-up was 4.0 ± 2.0 years (median 3.6; range 2.0-7.6). Autografts were harvested from the quadriceps tendon (n = 8) or hamstrings (n = 1), and tibial osteotomy was done by anterior closing wedge, without detachment of the patellar tendon, to obtain a slope of 3° to 5°. All patients had fused osteotomies, stable knees, and there were no intraoperative or postoperative complications. The mean posterior tibial slope decreased from 13.2° ± 2.6° (median 13°; range 12°-18°) preoperatively to 4.4° ± 2.3° (median 4°; range 2°-8°) postoperatively. The mean Lysholm score was 73.8 ± 5.8 (median 74; range 65-82), and the IKDC-SKF was 71.6 ± 6.1 (median 72.8; range 62.2-78.5). The satisfactory results of second revision ACL reconstruction combined with tibial deflexion osteotomy at minimum follow-up of 2 years suggest that tibia slope correction protects reconstructed ACL from fatigue failure in this study. The authors stress the importance of careful analysis failure causes prior to revision ACL reconstruction, and recommend correction of tibial slope if it exceeds 12°, to reduce the risks of graft retear. III.

  16. Production of Metabolites

    2011-01-01

    A recombinant micro-organism such as Saccharomyces cerevisiae which produces and excretes into culture medium a stilbenoid metabolite product when grown under stilbenoid production conditions, which expresses in above native levels a ABC transporter which transports said stilbenoid out of said...... micro-organism cells to the culture medium. The genome of the Saccharomyces cerevisiae produces an auxotrophic phenotype which is compensated by a plasmid which also expresses one or more of said enzymes constituting said metabolic pathway producing said stilbenoid, an expression product of the plasmid...

  17. Combining flagelliform and dragline spider silk motifs to produce tunable synthetic biopolymer fibers.

    Teulé, Florence; Addison, Bennett; Cooper, Alyssa R; Ayon, Joel; Henning, Robert W; Benmore, Chris J; Holland, Gregory P; Yarger, Jeffery L; Lewis, Randolph V

    2012-06-01

    The two Flag/MaSp 2 silk proteins produced recombinantly were based on the basic consensus repeat of the dragline silk spidroin 2 protein (MaSp 2) from the Nephila clavipes orb weaving spider. However, the proline-containing pentapeptides juxtaposed to the polyalanine segments resembled those found in the flagelliform silk protein (Flag) composing the web spiral: (GPGGX(1) GPGGX(2))(2) with X(1) /X(2) = A/A or Y/S. Fibers were formed from protein films in aqueous solutions or extruded from resolubilized protein dopes in organic conditions when the Flag motif was (GPGGX(1) GPGGX(2))(2) with X(1) /X(2) = Y/S or A/A, respectively. Post-fiber processing involved similar drawing ratios (2-2.5×) before or after water-treatment. Structural (ssNMR and XRD) and morphological (SEM) changes in the fibers were compared to the mechanical properties of the fibers at each step. Nuclear magnetic resonance indicated that the fraction of β-sheet nanocrystals in the polyalanine regions formed upon extrusion, increased during stretching, and was maximized after water-treatment. X-ray diffraction showed that nanocrystallite orientation parallel to the fiber axis increased the ultimate strength and initial stiffness of the fibers. Water furthered nanocrystal orientation and three-dimensional growth while plasticizing the amorphous regions, thus producing tougher fibers due to increased extensibility. These fibers were highly hygroscopic and had similar internal network organization, thus similar range of mechanical properties that depended on their diameters. The overall structure of the consensus repeat of the silk-like protein dictated the mechanical properties of the fibers while protein molecular weight limited these same properties. Subtle structural motif re-design impacted protein self-assembly mechanisms and requirements for fiber formation. Copyright © 2011 Wiley Periodicals, Inc.

  18. A modular modulation method for achieving increases in metabolite production.

    Acerenza, Luis; Monzon, Pablo; Ortega, Fernando

    2015-01-01

    Increasing the production of overproducing strains represents a great challenge. Here, we develop a modular modulation method to determine the key steps for genetic manipulation to increase metabolite production. The method consists of three steps: (i) modularization of the metabolic network into two modules connected by linking metabolites, (ii) change in the activity of the modules using auxiliary rates producing or consuming the linking metabolites in appropriate proportions and (iii) determination of the key modules and steps to increase production. The mathematical formulation of the method in matrix form shows that it may be applied to metabolic networks of any structure and size, with reactions showing any kind of rate laws. The results are valid for any type of conservation relationships in the metabolite concentrations or interactions between modules. The activity of the module may, in principle, be changed by any large factor. The method may be applied recursively or combined with other methods devised to perform fine searches in smaller regions. In practice, it is implemented by integrating to the producer strain heterologous reactions or synthetic pathways producing or consuming the linking metabolites. The new procedure may contribute to develop metabolic engineering into a more systematic practice. © 2015 American Institute of Chemical Engineers.

  19. Effect of low-rTMS in combined with edaravone on the inflammatory cytokines and cerebral metabolites in patients with cerebral infarction and aphasia

    Lei Ge

    2017-05-01

    Full Text Available Objective: To explore the effect of low-repetitive transcranial magnetic stimulation (low-rTMS in combined with edaravone on the inflammatory cytokines and cerebral metabolites in patients with cerebral infarction and aphasia. Methods: A total of 70 patients with acute cerebral infarction (ACI and motor aphasia who were admitted in our hospital from March, 2015 to March, 2016 were included in the study and randomized into the observation group and the control group, 35 in each group. The patients in the control group were given blood pressure reduction, intracranial pressure reduction, blood lipid regulation, anti-platelet aggregation, symptomatic and supportive treatments, edaravone (30 mg + normal saline (100 mL, ivdrip, 2 times/d, continuously for 2 weeks. On this basis, the patients in the observation group were given additional rTMS, continuously for 10 d. Hs-CRP, IL-6, IL-8, and TNF-α levels before treatment, 1 week and 2 weeks after treatment in the two groups were detected. MRS was used to detect NAA and Cho in Broca district before treatment, 1 week and 2 weeks after treatment in the two groups. ABC was used to evaluate the linguistic function before treatment, 2 weeks, 3 months, and 6 months in the two groups. Results: Hs-CRP, IL-6, IL-8, and TNF-α levels 1 week and 2 weeks after treatment in the observation group were significantly lower than those in the control group (P<0.05. NAA value on the left side 1 week and 2 weeks after treatment in the observation group was significantly higher than that in the control group (P<0.05, while Cho value was significantly lower than that in the control group (P<0.05. ABC score 2 weeks, 3 months, and 6 months after treatment in the observation group was significantly higher than that in the control group (P<0.05. Conclusions: Edaravone in combined with low-rTMS in the treatment of ACI can effectively inhibit the inflammatory reaction, improve the neurological deficit degree, and promote the

  20. Study on enhancement protease-producing of Bacillus subtilis by combining ribosome engineering and gamma irradiation

    Tran Bang Diep; Nguyen Thi Thom; Hoang Dang Sang; Nguyen Van Binh; Tran Xuan An; Hoang Phuong Thao; Pham Duy Duong; Tran Minh Quynh; Ta Bich Thuan; Vo Thi Thuong Lan

    2017-01-01

    Bacillus subtilis B5, Bacillus subtilis H12 and Bacillus subtilis VI are high protease-producing bacteria selected from various domestic laboratories. The suspensions in logarithmic growth phase and nutrient agar plates inoculated these bacteria were irradiated at dose ranging 0-3000 Gy under gamma Cobalt-60 source at Hanoi Irradiation Center. In both cases of irradiation treatment, the viability of Bacillus subtilis strains was much affected by gamma radiation and the survival rate of bacteria decreases with the increasing dose. The rate of high protease-producing mutation in three kinds of Bacillus strains seems to be greater at the dose range of 700-1500 Gy, at which the survival cells of bacteria was reduced by 3-4 log unit. In this study, the effect of gamma irradiation at different doses to mutation frequency of antibiotic resistance (rifampicin 0.2 µg/ml and streptomycin 20 µg/ml) of Bacillus subtilis strains is also investigated. The results show that the mutation frequency of antibiotic resistance was improved significantly by radiation treatment. The frequency of rifampicin-resistance reached the highest value at dose of 2000 Gy, 0.93-5.46x10 3 times higher than the frequency of spontaneous mutation. On the other hand, the highest streptomycin mutation frequency was obtained by irradiation at 1000 Gy. After the first screening, 82 potential 0.2 µg/ml rifampicin-resistant and 25 potential 20 µg/ml streptomycin-resistant colonies with higher production of protease than original strain were selected from the irradiated Bacillus subtilis B5 and H12. In the subsequent screening, some mutants having 2-2.5 times higher of protease activity than that of parent strain were obtained by using the culture medium containing incrementally higher antibiotic concentrations. The results of PCR, cloning and sequencing techniques proved that the antibiotic-resistance of Bacillus subtilis due to mutate in rpoB gene involved in these bacteria’s protease synthesis

  1. Benefits of combinative application of probiotic, enterocin M-producing strain Enterococcus faecium AL41 and Eleutherococcus senticosus in rabbits.

    Lauková, Andrea; Simonová, Monika Pogány; Chrastinová, Ľubica; Plachá, Iveta; Čobanová, Klaudia; Formelová, Zuzana; Chrenková, Mária; Ondruška, Ľubomír; Strompfová, Viola

    2016-03-01

    This study presents the effects of the probiotic and enterocin M-producing strain Enterococcus faecium AL41 on microbiota, phagocytic activity (PA), oxidative stress, performance and biochemical parameters when applied individually or in combination with Eleutherococcus senticosus in rabbits. The novelty of the study lies in the use of our non-rabbit-derived strain (AL41 = CCM8558) which produces new enterocin M. Ninety-six post-weaned rabbits (Hyplus breed) aged 5 weeks were divided into three experimental groups, 24 in each: E. senticosus (ES, 30 g/100 kg) in feed, E. faecium AL41 (10(9) CFU/mL marked by rifampicin to differentiate it from other enterococci) in water, and ES + AL. AL41 colonized sufficiently in rabbits to reduce coliforms, staphylococci, pseudomonads and clostridia. Slight decrease in bacteria was also found in the caecum and appendix. Phagocytic activity was significantly increased in the experimental groups compared to the control group (CG) (p < 0.001; p < 0.05). Applications did not evoke oxidative stress. Biochemical parameters in blood and caecal organic acids were slightly influenced. Average daily weight gain was slightly higher in ES and AL + ES. Combinative application of E. faecium with E. senticosus can be beneficial in rabbits. AL41 strain alone and in combination with ES produced reduction in spoilage bacteria; the highest stimulation of PA was in the AL41 + ES group.

  2. Combinations of mutant FAD2 and FAD3 genes to produce high oleic acid and low linolenic acid soybean oil.

    Pham, Anh-Tung; Shannon, J Grover; Bilyeu, Kristin D

    2012-08-01

    High oleic acid soybeans were produced by combining mutant FAD2-1A and FAD2-1B genes. Despite having a high oleic acid content, the linolenic acid content of these soybeans was in the range of 4-6 %, which may be high enough to cause oxidative instability of the oil. Therefore, a study was conducted to incorporate one or two mutant FAD3 genes into the high oleic acid background to further reduce the linolenic acid content. As a result, soybean lines with high oleic acid and low linolenic acid (HOLL) content were produced using different sources of mutant FAD2-1A genes. While oleic acid content of these HOLL lines was stable across two testing environments, the reduction of linolenic acid content varied depending on the number of mutant FAD3 genes combined with mutant FAD2-1 genes, on the severity of mutation in the FAD2-1A gene, and on the testing environment. Combination of two mutant FAD2-1 genes and one mutant FAD3 gene resulted in less than 2 % linolenic acid content in Portageville, Missouri (MO) while four mutant genes were needed to achieve the same linolenic acid in Columbia, MO. This study generated non-transgenic soybeans with the highest oleic acid content and lowest linolenic acid content reported to date, offering a unique alternative to produce a fatty acid profile similar to olive oil.

  3. Immune regulation by microbiome metabolites.

    Kim, Chang H

    2018-03-22

    Commensal microbes and the host immune system have been co-evolved for mutual regulation. Microbes regulate the host immune system, in part, by producing metabolites. A mounting body of evidence indicates that diverse microbial metabolites profoundly regulate the immune system via host receptors and other target molecules. Immune cells express metabolite-specific receptors such as P2X 7 , GPR41, GPR43, GPR109A, aryl hydrocarbon receptor precursor (AhR), pregnane X receptor (PXR), farnesoid X receptor (FXR), TGR5 and other molecular targets. Microbial metabolites and their receptors form an extensive array of signals to respond to changes in nutrition, health and immunological status. As a consequence, microbial metabolite signals contribute to nutrient harvest from diet, and regulate host metabolism and the immune system. Importantly, microbial metabolites bidirectionally function to promote both tolerance and immunity to effectively fight infection without developing inflammatory diseases. In pathogenic conditions, adverse effects of microbial metabolites have been observed as well. Key immune-regulatory functions of the metabolites, generated from carbohydrates, proteins and bile acids, are reviewed in this article. © 2018 John Wiley & Sons Ltd.

  4. Selective cultures for the isolation of biosurfactant producing bacteria: comparison of different combinations of environmental inocula and hydrophobic carbon sources.

    Domingues, Patrícia M; Louvado, António; Oliveira, Vanessa; Coelho, Francisco J C R; Almeida, Adelaide; Gomes, Newton C M; Cunha, Angela

    2013-01-01

    The potential of estuarine microniches as reservoirs of biosurfactant-producing bacteria was evaluated by testing different combinations of inocula and hydrophobic carbon sources. Selective cultures using diesel, petroleum, or paraffin as hydrophobic carbon sources were prepared and inoculated with water from the surface microlayer, bulk sediments, and sediment of the rhizosphere of Halimione portulacoides. These inocula were compared regarding the frequency of biosurfactant-producing strains among selected isolates. The community structure of the selective cultures was profiled using denaturing gradient gel electrophoresis (DGGE) of the 16S rRNA gene fragments at the end of the incubation. The DGGE profiles corresponding to the communities established in selective cultures at the end of the incubation revealed that communities were different in terms of structural diversity. The highest diversity was observed in the selective cultures containing paraffin (H (') = 2.5). Isolates were obtained from the selective cultures (66) and tested for biosurfactant production by the atomized oil assay. Biosurfactant production was detected in 17 isolates identified as Microbacterium, Pseudomonas, Rhodococcus, and Serratia. The combination of estuarine surface microlayer (SML) water as inoculum and diesel as carbon source seems promising for the isolation of surfactant-producing bacteria. Supplemental materials are available for this article. Go to the publisher's online edition of Preparative Biochemistry and Biotechnology to view the supplemental file.

  5. Combined effects of CO2 enrichment, changes in diurnal light level and water stress on foliar metabolites of potato plants grown in naturally sunlit controlled environment chambers

    Potato plants (Solanum tuberosum L. cv Kennebec) were grown in outdoor, naturally sunlit, soil-plant-atmosphere research (SPAR) chambers. Drought treatments were imposed at post-tuber initiation stage to assess water stress effects on leaf metabolites, and interactions with enriched CO2 concentrati...

  6. Metabolites identification of harmane in vitro/in vivo in rats by ultra-performance liquid chromatography combined with electrospray ionization quadrupole time-of-flight tandem mass spectrometry.

    Li, Shuping; Liu, Wei; Teng, Liang; Cheng, Xuemei; Wang, Zhengtao; Wang, Changhong

    2014-04-01

    Harmane, a β-carboline alkaloid with a wide spectrum of pharmacological activities, is naturally present in the human diet, in numerous foodstuffs and in hallucinogenic plants such as Peganum harmala, Banisteriopsis caapi and Tribulus terrestris. However, the precise metabolic fate of harmane remains unknown. In order to know whether harmane is extensively metabolized, a rapid and sensitive method using ultra-performance liquid chromatography combined with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UPLC/ESI-QTOF-MS) was used to analyze the metabolic profile of harmane in vitro and in vivo in rats. A total of 21 metabolites were identified from the rat liver microsomes and rat liver S9 (9), rat urine (11), feces (16), bile (16), and plasma (10) after a single oral administration of harmane using MetaboLynx™ and MassFragment ™ software tools. It indicated that the biliary and faecal clearance were the major excretion routes for harmane as well as its metabolites. The specific CLogP values combined with different acidic and alkaline mobile phase were helpful and useful for distinguishing N-oxidation and monohydroxylation metabolites. The metabolic transformation pathways of harmane included monohydroxylation, dihydroxylation, N-oxidation, O-glucuronide conjugation, O-sulphate conjugation, and glutathione conjugation. In conclusion, this study showed an insight into the metabolism of harmane. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Combining protein extraction and anaerobic digestion to produce feed, fuel and fertilizer from green biomass – An organic biorefinery concept

    Fernandez, Maria Santamaria; Salces, Beatriz Molinuevo; Lübeck, Mette

    Organically grown green biomass (red clover, clover grass) was investigated as a resource for organic feed and organic fertilizer by combination of proteins extraction and anaerobic digestion of the residues. Extraction of proteins from both crops revealed very favourable amino acid composition...... for the use as animal feed. The residual 90% of organic matter, leaving the separation as solid press cake and brown juice was subjected to anaerobic digestion to produce biogas and fertilizer. Methane yields of 220-310 and 430-540 ml CH4/g VS were obtained for press cake and brown juice, respectively...

  8. Comparison of online, hands-on, and a combined approach for teaching cautery disbudding technique to dairy producers.

    Winder, Charlotte B; LeBlanc, Stephen J; Haley, Derek B; Lissemore, Kerry D; Godkin, M Ann; Duffield, Todd F

    2018-01-01

    The use of pain control for disbudding and dehorning is important from both an animal and industry perspective. Best practices include the use of local anesthetic, commonly given as a cornual nerve block (CNB), and a nonsteroidal anti-inflammatory drug. The proportion is decreasing, but many dairy producers do not use local anesthesia, perhaps in part due to lack of knowledge of the CNB technique. Although this skill is typically learned in person from a veterinarian, alternative methods may be useful. The objective of this trial was to determine if there were differences in the efficacy of online training (n = 23), hands-on training (n = 20), and a combined approach (n = 23) for teaching producers to successfully administer a CNB and disbud a calf. The primary outcome was block efficacy, defined as a lack of established pain behaviors during iron application. Secondary outcomes were background knowledge (assessed by a written quiz), CNB and disbudding technique (evaluated by rubric scoring), time taken, and self-confidence before and after evaluation. Associations between training group and outcome were assessed with logistic regression, ordered logistic regression, and Cox-proportional hazard models, with a random effect for workshop. Block efficacy was not different between training groups, with 91% successful in both combined and online groups, and 75% in the hands-on trained group. Online learners had poorer technical scores than hands-on trainees. The combined group was not different from hands-on. Time to block completion tended to be longer for the online group (62 ± 11 s), whereas time to disbudding completion was not different between hands-on (41 ± 5 s) or combined trainees (41 ± 5 s). The combined group had the highest pre-evaluation confidence score, and remained higher after evaluation than online but was not different than hands-on. Although we saw some statistical differences between groups, absolute differences were small and block efficacy was

  9. Antioxidant Enzyme Activities and Secondary Metabolite Profiling of Oil Palm Seedlings Treated with Combination of NPK Fertilizers Infected with Ganoderma boninense

    Mohidin, Hasmah; Idris, Abu Seman; Fariz, A.; Abiri, Rambod; Taheri, Sima; Moradpoor, Mehdi

    2018-01-01

    Oil palm (Elaeis guineensis Jacq) is one of the major sources of edible oil. Reducing the effect of Ganoderma, main cause of basal stem rot (BSR) on oil palm, is the main propose of this study. Understanding the oil palm defense mechanism against Ganoderma infection through monitoring changes in the secondary metabolite compounds levels before/after infection by Ganoderma under different fertilizing treatment is required. Oil palm requires macro- and microelements for growth and yield. Manipulating the nutrient for oil palm is a method to control the disease. The 3-4-month-old oil palm seedlings were given different macronutrient treatments to evaluate induction of defense related enzymes and production of secondary metabolite compounds in response to G. boninense inoculation. The observed trend of changes in the infected and uninfected seedlings was a slightly higher activity for β-1,3-glucanases, chitinase, peroxidase, and phenylalanine ammonia-lyase during the process of pathogenesis. It was found that PR proteins gave positive response to the interaction between oil palm seedlings and Ganoderma infection. Although the responses were activated systematically, they were short-lasting as the changes in enzymes activities appeared before the occurrence of visible symptoms. Effect of different nutrients doses was obviously observed among the results of the secondary metabolite compounds. Many identified/unidentified metabolite compounds were presented, of which some were involved in plant cell defense mechanism against pathogens, mostly belonging to alkaloids with bitter-tasting nitrogenous-compounds, and some had the potential to be used as new markers to detect basal stem rot at the initial step of disease. PMID:29721500

  10. Antioxidant Enzyme Activities and Secondary Metabolite Profiling of Oil Palm Seedlings Treated with Combination of NPK Fertilizers Infected with Ganoderma boninense.

    Sahebi, Mahbod; Hanafi, Mohamed M; Mohidin, Hasmah; Rafii, M Y; Azizi, Parisa; Idris, Abu Seman; Fariz, A; Abiri, Rambod; Taheri, Sima; Moradpoor, Mehdi

    2018-01-01

    Oil palm ( Elaeis guineensis Jacq) is one of the major sources of edible oil. Reducing the effect of Ganoderma, main cause of basal stem rot (BSR) on oil palm, is the main propose of this study. Understanding the oil palm defense mechanism against Ganoderma infection through monitoring changes in the secondary metabolite compounds levels before/after infection by Ganoderma under different fertilizing treatment is required. Oil palm requires macro- and microelements for growth and yield. Manipulating the nutrient for oil palm is a method to control the disease. The 3-4-month-old oil palm seedlings were given different macronutrient treatments to evaluate induction of defense related enzymes and production of secondary metabolite compounds in response to G. boninense inoculation. The observed trend of changes in the infected and uninfected seedlings was a slightly higher activity for β -1,3-glucanases, chitinase, peroxidase, and phenylalanine ammonia-lyase during the process of pathogenesis. It was found that PR proteins gave positive response to the interaction between oil palm seedlings and Ganoderma infection. Although the responses were activated systematically, they were short-lasting as the changes in enzymes activities appeared before the occurrence of visible symptoms. Effect of different nutrients doses was obviously observed among the results of the secondary metabolite compounds. Many identified/unidentified metabolite compounds were presented, of which some were involved in plant cell defense mechanism against pathogens, mostly belonging to alkaloids with bitter-tasting nitrogenous-compounds, and some had the potential to be used as new markers to detect basal stem rot at the initial step of disease.

  11. Antioxidant Enzyme Activities and Secondary Metabolite Profiling of Oil Palm Seedlings Treated with Combination of NPK Fertilizers Infected with Ganoderma boninense

    Mahbod Sahebi

    2018-01-01

    Full Text Available Oil palm (Elaeis guineensis Jacq is one of the major sources of edible oil. Reducing the effect of Ganoderma, main cause of basal stem rot (BSR on oil palm, is the main propose of this study. Understanding the oil palm defense mechanism against Ganoderma infection through monitoring changes in the secondary metabolite compounds levels before/after infection by Ganoderma under different fertilizing treatment is required. Oil palm requires macro- and microelements for growth and yield. Manipulating the nutrient for oil palm is a method to control the disease. The 3-4-month-old oil palm seedlings were given different macronutrient treatments to evaluate induction of defense related enzymes and production of secondary metabolite compounds in response to G. boninense inoculation. The observed trend of changes in the infected and uninfected seedlings was a slightly higher activity for β-1,3-glucanases, chitinase, peroxidase, and phenylalanine ammonia-lyase during the process of pathogenesis. It was found that PR proteins gave positive response to the interaction between oil palm seedlings and Ganoderma infection. Although the responses were activated systematically, they were short-lasting as the changes in enzymes activities appeared before the occurrence of visible symptoms. Effect of different nutrients doses was obviously observed among the results of the secondary metabolite compounds. Many identified/unidentified metabolite compounds were presented, of which some were involved in plant cell defense mechanism against pathogens, mostly belonging to alkaloids with bitter-tasting nitrogenous-compounds, and some had the potential to be used as new markers to detect basal stem rot at the initial step of disease.

  12. Secondary metabolites from marine microorganisms.

    Kelecom, Alphonse

    2002-03-01

    After 40 years of intensive research, chemistry of marine natural products has become a mature field. Since 1995, there are signals of decreased interest in the search of new metabolites from traditional sources such as macroalgae and octocorals, and the number of annual reports on marine sponges stabilized. On the contrary, metabolites from microorganisms is a rapidly growing field, due, at least in part, to the suspicion that a number of metabolites obtained from algae and invertebrates may be produced by associated microorganisms. Studies are concerned with bacteria and fungi, isolated from seawater, sediments, algae, fish and mainly from marine invertebrates such as sponges, mollusks, tunicates, coelenterates and crustaceans. Although it is still to early to define tendencies, it may be stated that the metabolites from microorganisms are in most cases quite different from those produced by the invertebrate hosts. Nitrogenated metabolites predominate over acetate derivatives, and terpenes are uncommon. Among the latter, sesquiterpenes, diterpenes and carotenes have been isolated; among nitrogenated metabolites, amides, cyclic peptides and indole alkaloids predominate.

  13. Secondary metabolites from marine microorganisms

    KELECOM ALPHONSE

    2002-01-01

    Full Text Available After 40 years of intensive research, chemistry of marine natural products has become a mature field. Since 1995, there are signals of decreased interest in the search of new metabolites from traditional sources such as macroalgae and octocorals, and the number of annual reports on marine sponges stabilized. On the contrary, metabolites from microorganisms is a rapidly growing field, due, at least in part, to the suspicion that a number of metabolites obtained from algae and invertebrates may be produced by associated microorganisms. Studies are concerned with bacteria and fungi, isolated from seawater, sediments, algae, fish and mainly from marine invertebrates such as sponges, mollusks, tunicates, coelenterates and crustaceans. Although it is still to early to define tendencies, it may be stated that the metabolites from microorganisms are in most cases quite different from those produced by the invertebrate hosts. Nitrogenated metabolites predominate over acetate derivatives, and terpenes are uncommon. Among the latter, sesquiterpenes, diterpenes and carotenes have been isolated; among nitrogenated metabolites, amides, cyclic peptides and indole alkaloids predominate.

  14. Application of water-assisted ultraviolet light in combination of chlorine and hydrogen peroxide to inactivate Salmonella on fresh produce.

    Guo, Shuanghuan; Huang, Runze; Chen, Haiqiang

    2017-09-18

    With the demand for fresh produce increases in recent decades, concerns for microbiological safety of fresh produce are also raised. To identify effective ultraviolet (UV) light treatment for fresh produce decontamination, we first determined the effect of three forms of UV treatment, dry UV (samples were treated by UV directly), wet UV (samples were dipped in water briefly and then exposed to UV), and water-assisted UV (samples were treated by UV while being immersed in agitated water) on inactivation of Salmonella inoculated on tomatoes and fresh-cut lettuce. In general, the water-assisted UV treatment was found to be the most effective for both produce items. Chlorine and hydrogen peroxide were then tested to determine whether they could be used to enhance the decontamination efficacy of water-assisted UV treatment and prevent transfer of Salmonella via wash water by completely eliminating it. Neither of them significantly enhanced water-assisted UV inactivation of Salmonella on tomatoes. Chlorine significantly improved the decontamination effectiveness of the water-assisted UV treatment for baby-cut carrots and lettuce, but not for spinach. In general, the single water-assisted UV treatment and the combined treatment of water-assisted UV and chlorine were similar or more effective than the chlorine washing treatment. In most of the cases, no Salmonella was detected in the wash water when the single water-assisted UV treatment was used to decontaminate tomatoes. In a few cases when Salmonella was detected in the wash water, the populations were very low,≤2CFU/mL, and the wash water contained an extremely high level of organic load and soil level. Therefore, the single water-assisted UV treatment could potentially be used as an environmentally friendly and non-chemical alternative to chlorine washing for tomatoes after validation in industrial scale. For lettuce, spinach and baby-cut carrots, the combined treatment of water-assisted UV treatment and chlorine

  15. Pyriculins A and B, two monosubstituted hex-4-ene-2,3-diols and other phytotoxic metabolites produced by Pyricularia grisea isolated from buffelgrass (Cenchrus ciliaris).

    Masi, Marco; Meyer, Susan; Górecki, Marcin; Mandoli, Alessandro; Di Bari, Lorenzo; Pescitelli, Gennaro; Cimmino, Alessio; Cristofaro, Massimo; Clement, Suzette; Evidente, Antonio

    2017-11-01

    Pyricularia grisea has been identified as a foliar pathogen on buffelgrass (Cenchrus ciliaris) in North America and was studied as a potential source of phytotoxins for buffelgrass control. Two monosubstituted hex-4-ene-2,3-diols, named pyriculins A and B, were isolated from its culture filtrate organic extract together with (10S,11S)-(-)-epipyriculol, trans-3,4-dihydro-3,4,8-trihydroxy-1(2H)-napthalenone, and (4S)-(+)-isosclerone. Pyriculins A and B were characterized by spectroscopic (essentially nuclear magnetic resonance [NMR], High-resolution electrospray ionization mass spectrometry [HRESIMS]) and chemical methods such as (4E)-1-(4-hydroxy-1,3-dihydroisobenzofuran-1-yl)hex-4-ene-2,3-diols. The relative and absolute configuration of these compounds was determined by a combination of spectroscopic (NMR, electronic circular dichroism [ECD]) and computational tools. When bioassayed in a buffelgrass coleoptile and radicle elongation test, (10S,11S)-(-)-epipyriculol proved to be the most toxic compound. Seed germination was much reduced and slowed with respect to the control and radicles failed to elongate. All five compounds delayed germination, but only (10S,11S)-(-)-epipyriculol was able to prevent radicle development of buffelgrass seedlings. It had no effect on coleoptile elongation, while the other four compounds caused significantly increased coleoptile development relative to the control. © 2017 Wiley Periodicals, Inc.

  16. The folic acid combined with 17-β estradiol produces antidepressant-like actions in ovariectomized rats forced to swim.

    Molina-Hernández, Miguel; Téllez-Alcántara, N Patricia; Olivera-López, Jorge I; Jaramillo, M Teresa

    2011-01-15

    Folic acid or 17-β estradiol produces antidepressant effects, either alone or combined with several antidepressants. However, the antidepressant-like actions of folic acid combined with 17-β estradiol in the forced swimming test (FST) have not been tested before. Thus, in the present study, ovariectomized female rats received folic acid (5.0 nmol/i.c.v., Pfluoxetine (20.0mg/kg, Pswimming behavior when they were tested in the FST. Combination of subthreshold doses of folic acid (2.5 nmol/i.c.v.; or 25.0mg/kg, p.o.) with subthreshold doses of 17-β estradiol (5.0 μg/rat, Pfluoxetine (15.0mg/kg, Pfluoxetine in the FST reduced immobility in the FST. These antidepressant-like actions probably were due to modifications of the serotonergic system since swimming behavior was increased and these effects were cancelled by ketanserin. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Combined lesions of hippocampus and subiculum Do not produce deficits in a nonspatial social olfactory memory task.

    Burton, S; Murphy, D; Qureshi, U; Sutton, P; O'Keefe, J

    2000-07-15

    Rats transmit information to each other about which foods are safe to eat. If a rat smells a food odor on the breath of another rat, it is subsequently more likely to eat that food than an alternative. Work by Galef et al. (1988) has shown that the observer rat forms an association between two olfactory stimuli on the breath of the demonstrator rat that has eaten the food, the food odor and carbon disulphide, which is normally present in the rat breath. Bunsey and Eichenbaum (1995) claimed that the hippocampus/subicular region is required for the long-term retention of this nonspatial form of associative memory on the basis that combined lesions of the hippocampus and subiculum produced a deficit, but lesions of either structure alone did not. We report here a failure to repeat this finding. Rats with either combined lesions of the hippocampus and subiculum or with amygdala lesions were tested on their ability to remember this association either immediately (testing short-term memory) or after a 24 hr delay (testing long-term memory). Neither lesion group exhibited significant memory deficits on this nonspatial associative task at either test interval. In contrast, a deficit was observed on a spatial memory task (forced-choice alternation t-maze) for animals with combined lesions of the hippocampus and subiculum. These results contradict the findings of Bunsey and Eichenbaum (1995) and support the idea that the hippocampus/subicular region is not required for this nonspatial associative memory.

  18. 17,20β-P and cortisol are the main in vitro metabolites of 17-hydroxy-progesterone produced by spermiating testes of Micropogonias furnieri (Desmarest, 1823 (Perciformes: Sciaenidae

    Denise Vizziano Cantonnet

    Full Text Available The aim was to investigate the major C21 steroids produced by spermiating white croaker Micropogonias furnieri (Sciaenidae in order to establish the potential mediator of gamete maturation in males of this species. The testes steroid production at the spawning season was identified incubating the 3H-17-hydroxy-4-pregnene-3,20-dione precursor through thin layer chromatography, high pressure liquid chromatography, enzymatic oxydation, acetylation and immunochemistry analyses. 17,20β-Dihydroxy-4-pregnen-3-one (17,20β-P and 11β,17,21-Trihydroxy-4-pregnene-3,20-dione (cortisol were the main metabolites produced. Contrary to what we expected, 17,20β,21-Trihydroxy-4-pregnen-3-one was not detected. Circulating levels of 17,20β-P were undetectable in immature testes and in those at the first spermatogenesis stages, while a clear increase was observed during the whole spermatogenesis and spermiation phases (from undetectable to 1047 pg mL-1. In vitro studies together with plasma detection suggest that 17,20β-P is a good steroid candidate involved in M. furnieri testes maturation. The role of cortisol during late phases of testes development needs further studies.

  19. Energy and Exergy Analyses of a New Combined Cycle for Producing Electricity and Desalinated Water Using Geothermal Energy

    Mehri Akbari

    2014-04-01

    Full Text Available A new combined cogeneration system for producing electrical power and pure water is proposed and analyzed from the viewpoints of thermodynamics and economics. The system uses geothermal energy as a heat source and consists of a Kalina cycle, a LiBr/H2O heat transformer and a water purification system. A parametric study is carried out in order to investigate the effects on system performance of the turbine inlet pressure and the evaporator exit temperature. For the proposed system, the first and second law efficiencies are found to be in the ranges of 16%–18.2% and 61.9%–69.1%, respectively. For a geothermal water stream with a mass flow rate of 89 kg/s and a temperature of 124 °C, the maximum production rate for pure water is found to be 0.367 kg/s.

  20. Examination of dexamethasone sodium sulfate and hyperbaric oxygenation in experimentally produced cerebral edema. With special reference to their combination

    Kanaya, H; Onodera, H; Watanabe, M; Kamata, K [Iwate Medical Coll., Morioka (Japan). School of Medicine

    1975-06-01

    Dexamethasone sodium sulfate and hyperbaric oxygenation were used for experimentally produced cerebral edema for the examination of the water content of the brain and cerebrovascular permeability using /sup 203/Hg as the tracer. Although dexamethasone starts lowering vascular permeability of the edematous brain at one hour after the intravenous injection, a lapse of 24 hours is required until the water content returns to normal. Although hyperbaric oxygenation dose not reduce cerebrovascular permeability, it brings back the water content of the brain to normal immediately after pressurization. Since the combination of dexamethasone and hyperbaric oxygenation maintains the water content of the brain almost normal throughout the entire process, it is ideal for the treatment of cerebral edema.

  1. Combined high-pressure liquid chromatography and radioimmunoassay method for the quantitation of Δ9-tetrahydrocannabinol and some of its metabolites in human plasma

    Williams, P.L.; Moffat, A.C.; King, L.J.

    1978-01-01

    A high-pressure liquid chromatography-radioimmunoassay (HPLC-RIA) method for the measurement of cannabinoid levels in plasma is described. The method is capable of quantifying 0.1 ng of a cannabinoid in 1 ml of plasma. The experimental procedure consists of an initial separation of cannabinoids in a plasma extract by HPLC followed by collection of the HPLC eluate and RIA. A chromatogram consisting of the cross-reacting cannabinoids in plasma may then be constructed. The plasma concentrations of cannabinoids with retention volumes equivalent to those of Δ 9 -terahydrocannabinol, cannabinol and mono-hydroxylated metabolites have been measured by this technique. (Auth.)

  2. Outcome of endoscopic transsphenoidal surgery in combination with somatostatin analogues in patients with growth hormone producing pituitary adenoma.

    Zhou, Tao; Wang, Fuyu; Meng, Xianghui; Ba, Jianmin; Wei, Shaobo; Xu, Bainan

    2014-11-01

    To determine the efficacy of endoscopic surgery in combination with long-acting somatostatin analogues (SSAs) in treating patients with growth hormone (GH)-secreting pituitary tumor. We performed retrospective analysis of 133 patients with GH producing pituitary adenoma who underwent pure endoscopic transsphenoidal surgery in our center from January 2007 to July 2012. Patients were followed up for a range of 3-48 months. The radiological remission, biochemical remission and complication were evaluated. A total of 110 (82.7%) patients achieved radiological complete resection, 11 (8.2%) subtotal resection, and 12 (9.0%) partial resection. Eighty-eight (66.2%) patients showed nadir GH level less than 1 ng/mL after oral glucose administration. No mortality or severe disability was observed during follow up. Preoperative long-acting SSA successfully improved left ventricle ejection fraction (LVEF) and blood glucose in three patients who subsequently underwent success operation. Long-acting SSA (20 mg every 30 days) achieved biochemical remission in 19 out 23 (82.6%) patients who showed persistent high GH level after surgery. Endoscopic transsphenoidal surgery can biochemically cure the majority of GH producing pituitary adenoma. Post-operative use of SSA can improve biochemical remission.

  3. Use of gamma-irradiation technology in combination with edible coating to produce shelf-stable foods

    Ouattara, B.; Sabato, S.F.; Lacroix, M.

    2002-01-01

    This research was undertaken to determine the effectiveness of low-dose gamma-irradiation combined with edible coatings to produce shelf-stable foods. Three types of commercially distributed food products were investigated: precooked shrimps, ready to cook pizzas, and fresh strawberries. Samples were coated with various formulations of protein-based solutions and irradiated at total doses between 0 and 3 kGy. Samples were stored at 4 deg. C and evaluated periodically for microbial growth. Sensorial analysis was also performed using a nine-point hedonic scale to evaluate the organoleptic characteristics (odor, taste and appearance). The results showed significant (p≤0.05) combined effect of gamma-irradiation and coating on microbial growth (APCs and Pseudomonas putida). The shelf-life extension periods ranged from 3 to 10 days for shrimps and from 7 to 20 days for pizzas, compared to uncoated/unirradiated products. No significant (p>0.05) detrimental effect of gamma-irradiation on sensorial characteristics (odor, taste, appearance) was observed. In strawberries, coating with irradiated protein solutions resulted in significant reduction of the percentage of mold contamination

  4. Production of Phytotoxic Metabolite Using Biphasic Fermentation System from Strain C1136 of Lasiodiplodia pseudotheobromae, a Potential Bioherbicidal Agent

    Charles Oluwaseun ADETUNJI

    2017-09-01

    Full Text Available Formulation of effective and environmental friendly bioherbicides depends on the type of fermentation medium used for the production of phytotoxic metabolites. The effect of biomass, colony forming unit and the phytotoxic metabolite produced from the biphasic fermentation was carried out, while the phytotoxic metabolite was tested in vivo and in-vitro on Echinochola crus-galli and dicotyledonous Chromolaena odorata. The mutant strain of Lasiodiplodia pseudotheobromae C1136 (Lp90 produced the highest amount of conidia and the largest necrotic area on the two tested weeds when compared to its wild strain in the different biphasic media combinations. The study revealed that the biphasic system containing PDB + rice produced the highest bioherbicidal activities. Therefore, the phytotoxic metabolites from strain C1136 are suggested for large scale production of bioherbicides for the management of weeds in conventional farming to improve yield and enhance food security.

  5. Anti-Inflammatory and Antioxidant Properties of Casein Hydrolysate Produced Using High Hydrostatic Pressure Combined with Proteolytic Enzymes.

    Bamdad, Fatemeh; Shin, Seulki Hazel; Suh, Joo-Won; Nimalaratne, Chamila; Sunwoo, Hoon

    2017-04-10

    Casein-derived peptides are shown to possess radical scavenging and metal chelating properties. The objective of this study was to evaluate novel anti-inflammatory properties of casein hydrolysates (CH) produced by an eco-friendly process that combines high hydrostatic pressure with enzymatic hydrolysis (HHP-EH). Casein was hydrolysed by different proteases, including flavourzyme (Fla), savinase (Sav), thermolysin (Ther), trypsin (Try), and elastase (Ela) at 0.1, 50, 100, and 200 MPa pressure levels under various enzyme-to-substrate ratios and incubation times. Casein hydrolysates were evaluated for the degree of hydrolysis (DH), molecular weight distribution patterns, and anti-inflammatory properties in chemical and cellular models. Hydrolysates produced using HHP-EH exhibited higher DH values and proportions of smaller peptides compared to atmospheric pressure-enzymatic hydrolysis (AP-EH). Among five enzymes, Fla-digested HHP-EH-CH (HHP-Fla-CH) showed significantly higher antioxidant properties than AP-Fla-CH. The anti-inflammatory properties of HHP-Fla-CH were also observed by significantly reduced nitric oxide and by the suppression of the synthesis of pro-inflammatory cytokines in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. Liquid chromatography with tandem mass spectrometry (LC-MS/MS) revealed that 59% of the amino acids of the peptides in HHP-Fla-CH were composed of proline, valine, and leucine, indicating the potential anti-inflammatory properties. In conclusion, the HHP-EH method provides a promising technology to produce bioactive peptides from casein in an eco-friendly process.

  6. SECONDARY METABOLITES FROM MARINE PENICILLIUM BREVICOMPACTUM

    ROVIROSA, JUANA; DIAZ-MARRERO, ANA; DARIAS, JOSE; PAINEMAL, KARIN; SAN MARTIN, AURELIO

    2006-01-01

    In a screening of Basidiomycete cultures isolated from marine invertebrates collected along the Chilean coastline for the production of antibiotics we identified a Penicillium brevicompactum strain as a producer of metabolites inhibiting the growth of bacteria and fungi. Bioactivity guided purification resulted in the isolation of four known metabolites. Their structures were elucidated by spectroscopic methods.

  7. Combination of Successive Alkalinity Producing System (SAPS) and Aeration for Passive Treatment of Highly Acidic Mine Drainage

    Oh, C.; Ji, S.

    2015-12-01

    Passive treatment system has been widely used for remediation of mine drainage since its advantage of low installation and maintenance cost. The system, however, has also a disadvantage in assuring remediation and management efficiency if the drainage is highly acidic mine drainage. To remediate acid mine drainage (AMD) especially showing high acidity, passive treatment system which consists of successive alkalinity producing system (SAPS) and subsequent aeration pond was proposed and its mechanisms and efficiency was evaluated in this research. Target AMD was obtained from Waryong coal mine and showed typical characteristics of AMD having high metal concentration and low pH (acidity > 300 mg/L as CaCO3). Four experimental cases were conducted; untreated, treated with SAPS, treated with aeration, treated with SAPS and aeration to compare role and mechanism of each unit. Between organic matter and limestone layer which constitute SAPS, the former eliminated most of Fe(III) and Al in the AMD so that the latter was kept from being clogged by precipitates. Net acidity of the AMD rapidly decreased by supplement of alkalinity at the limestone layer. A primary function of SAPS, producing alkalinity constantly without clogging, was attained due to addition a portion of limestone particle into the organic matter layer. The discharge from SAPS had low ORP and DO values because of an anaerobic environment formed at the organic matter layer although its alkalinity was increased. This water quality was unfavorable for Fe(II) to be oxidized. Installation of aeration pond after SAPS, therefore, could be effective way of enhancing oxidation rate of Fe(II). Among the experimental cases, the combination of SAPS and aeration pond was only able to remediate the AMD. This concluded that to remediate highly acidic mine drainage with passive treatment system, three critical conditions were required; pre-precipitation of Fe(III) and Al at organic matter layer in SAPS, constant alkalinity

  8. Thermogenic effects of sibutramine and its metabolites

    Connoley, Ian P; Liu, Yong-Ling; Frost, Ian; Reckless, Ian P; Heal, David J; Stock, Michael J

    1999-01-01

    The thermogenic activity of the serotonin and noradrenaline reuptake inhibitor sibutramine (BTS 54524; Reductil) was investigated by measuring oxygen consumption (VO2) in rats treated with sibutramine or its two pharmacologically-active metabolites. Sibutramine caused a dose-dependent rise in VO2, with a dose of 10 mg kg−1 of sibutramine or its metabolites producing increases of up to 30% that were sustained for at least 6 h, and accompanied by significant increases (0.5–1.0°C) in body temperature. Based on the accumulation in vivo of radiolabelled 2-deoxy-[3H]-glucose, sibutramine had little or no effect on glucose utilization in most tissues, but caused an 18 fold increase in brown adipose tissue (BAT). Combined high, non-selective doses (20 mg kg−1) of the β-adrenoceptor antagonists, atenolol and ICI 118551, inhibited completely the VO2 response to sibutramine, but the response was unaffected by low, β1-adrenoceptor-selective (atenolol) or β2-adrenoceptor-selective (ICI 118551) doses (1 mg kg−1). The ganglionic blocking agent, chlorisondamine (15 mg kg−1), inhibited completely the VO2 response to the metabolites of sibutramine, but had no effect on the thermogenic response to the β3-adrenoceptor-selective agonist BRL 35135. Similar thermogenic responses were produced by simultaneous injection of nisoxetine and fluoxetine at doses (30 mg kg−1) that had no effect on VO2 when injected individually. It is concluded that stimulation of thermogenesis by sibutramine requires central reuptake inhibition of both serotonin and noradrenaline, resulting in increased efferent sympathetic activation of BAT thermogenesis via β3-adrenoceptor, and that this contributes to the compound's activity as an anti-obesity agent. PMID:10217544

  9. Effect of combined treatment with preoperative. gamma. -therapy on function of gastrin producing cells in patients with gastric cancer

    Berdov, B A; Vedzizheva, T B; Bassalyk, L S; Zagrebin, V M [Akademiya Meditsinskikh Nauk SSSR, Obninsk. Nauchno-Issledovatel' skij Inst. Meditsinskoj Radiologii; Akademiya Meditsinskikh Nauk SSSR, Moscow. Onkologicheskij Nauchnyj Tsentr)

    1982-04-01

    It is stated that preoperative irradiation with the dose of 20 Gy doesn't produce any considerable effect on function of the extragastric gastrin producing cells. Despite the decrease of reserve potentialities of gastrin producing cells in patients with stomach cancer the basal level of gastrin in the group of gastric cancer patients on the whole is higher than in practically healthy people. Radiotherapy results in the pronounced inhiibition of gastrin synthesis and secretion of gastrin producing cells.

  10. Determination of acetamiprid, imidacloprid, and spirotetramat and their relevant metabolites in pistachio using modified QuEChERS combined with liquid chromatography-tandem mass spectrometry.

    Faraji, Mohammad; Noorbakhsh, Roya; Shafieyan, Hooshang; Ramezani, Mohammadkazem

    2018-02-01

    A QuEChERS based methodology was developed for the simultaneous identification and quantification of acetamiprid, imidacloprid, and spirotetramat and their relevant metabolites in pistachio by liquid chromatography-tandem mass spectrometry for the first time. First, sample extraction was done with MeCN:citrate buffer:NaHCO 3 followed by phase separation with the addition of MgSO 4 :NaCl. The supernatant was then cleaned by a primary-secondary amine (PSA), GCB, and MgSO 4 . The proposed method provides a linearity in the range of 5-200µgL -1 , and the linear regression coefficients were higher than 0.99. LOD and LOQ were obtained to be 2 and 5µgkg -1 for the studied insecticides, respectively, with the exception of imidacloprid-olefin (5 and 10µgkg -1 ). Acceptable recoveries (91-110%) were obtained for all the analytes with good intra- and inter-precisions (0.4≥RSD ≤11.0). The method was then used for the pistachio samples collected from a field trial to estimate the maximum residue limits (MRLs) in next step. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Metabolite Profiling of Red Sea Corals

    Ortega, Jovhana Alejandra

    2016-12-01

    Looking at the metabolite profile of an organism provides insights into the metabolomic state of a cell and hence also into pathways employed. Little is known about the metabolites produced by corals and their algal symbionts. In particular, corals from the central Red Sea are understudied, but interesting study objects, as they live in one of the warmest and most saline environments and can provide clues as to the adjustment of corals to environmental change. In this study, we applied gas chromatography – mass spectrometry (GC–MS) metabolite profiling to analyze the metabolic profile of four coral species and their associated symbionts: Fungia granulosa, Acropora hemprichii, Porites lutea, and Pocillopora verrucosa. We identified and quantified 102 compounds among primary and secondary metabolites across all samples. F. granulosa and its symbiont showed a total of 59 metabolites which were similar to the 51 displayed by P. verrucosa. P. lutea and A. hemprichii both harbored 40 compounds in conjunction with their respective isolated algae. Comparing across species, 28 metabolites were exclusively present in algae, while 38 were exclusive to corals. A principal component and cluster analyses revealed that metabolite profiles clustered between corals and algae, but each species harbored a distinct catalog of metabolites. The major classes of compounds were carbohydrates and amino acids. Taken together, this study provides a first description of metabolites of Red Sea corals and their associated symbionts. As expected, the metabolites of coral hosts differ from their algal symbionts, but each host and algal species harbor a unique set of metabolites. This corroborates that host-symbiont species pairs display a fine-tuned complementary metabolism that provide insights into the specific nature of the symbiosis. Our analysis also revealed aquatic pollutants, which suggests that metabolite profiling might be used for monitoring pollution levels and assessing

  12. Identification of drug metabolites in human plasma or serum integrating metabolite prediction, LC-HRMS and untargeted data processing

    Jacobs, P.L.; Ridder, L.; Ruijken, M.; Rosing, H.; Jager, N.G.L.; Beijnen, J.H.; Bas, R.R.; Dongen, W.D. van

    2013-01-01

    Background: Comprehensive identification of human drug metabolites in first-in-man studies is crucial to avoid delays in later stages of drug development. We developed an efficient workflow for systematic identification of human metabolites in plasma or serum that combines metabolite prediction,

  13. Dried Blood Spots Combined With Ultra-High-Performance Liquid Chromatography-Mass Spectrometry for the Quantification of the Antipsychotics Risperidone, Aripiprazole, Pipamperone, and Their Major Metabolites.

    Tron, Camille; Kloosterboer, Sanne M; van der Nagel, Bart C H; Wijma, Rixt A; Dierckx, Bram; Dieleman, Gwen C; van Gelder, Teun; Koch, Birgit C P

    2017-08-01

    Risperidone, aripiprazole, and pipamperone are antipsychotic drugs frequently prescribed for the treatment of comorbid behavioral problems in children with autism spectrum disorders. Therapeutic drug monitoring (TDM) could be useful to decrease side effects and to improve patient outcome. Dried blood spot (DBS) sample collection seems to be an attractive technique to develop TDM of these drugs in a pediatric population. The aim of this work was to develop and validate a DBS assay suitable for TDM and home sampling. Risperidone, 9-OH risperidone, aripiprazole, dehydroaripiprazole, and pipamperone were extracted from DBS and analyzed by ultra-high-performance liquid chromatography-tandem mass spectrometry using a C18 reversed-phase column with a mobile phase consisting of ammonium acetate/formic acid in water or methanol. The suitability of DBS for TDM was assessed by studying the influence of specific parameters: extraction solution, EDTA carryover, hematocrit, punching location, spot volume, and hemolysis. The assay was validated with respect to conventional guidelines for bioanalytical methods. The method was linear, specific without any critical matrix effect, and with a mean recovery around 90%. Accuracy and imprecision were within the acceptance criteria in samples with hematocrit values from 30% to 45%. EDTA or hemolysis did not skew the results, and no punching carryover was observed. No significant influence of the spot volume or the punch location was observed. The antipsychotics were all stable in DBS stored 10 days at room temperature and 1 month at 4 or -80°C. The method was successfully applied to quantify the 3 antipsychotics and their metabolites in patient samples. A UHPLC-MS/MS method has been successfully validated for the simultaneous quantification of risperidone, 9-OH risperidone, aripiprazole, dehydroaripiprazole, and pipamperone in DBS. The assay provided good analytical performances for TDM and clinical research applications.

  14. Experimental Investigations of the Energy and Environmental Indices of Operation of a Low-Capacity Combined Gas Producer and Hot-Water Boiler

    Bodnar, L. A.; Stepanov, D. V.; Dovgal‧, A. N.

    2015-07-01

    It has been shown that the introduction of combined gas producers and boilers on renewable energy sources is a pressing issue. A structural diagram of a low-capacity combined gas producer and boiler on renewable energy sources has been given; a bench and procedures for investigation and processing of results have been developed. Experimental investigations of the energy and environmental indices of a 40-kW combined gas producer and hotwater boiler burning wood have been carried out. Results of the experimental investigations have been analyzed. Distinctive features have been established and a procedure of thermal calculation of the double furnace of a lowcapacity combined gas producer and boiler burning solid fuel has been proposed. The calculated coefficients of heat transfer from the gases in the convection bank have been compared with the obtained experimental results. A calculation dependence for the heat transfer from the gases in convection banks of low-capacity hot-water boilers has been proposed. The quantities of harmful emissions from the combined gas producer and boiler on renewable energy sources have been compared with the existing Ukrainian and foreign standards. It has been established that the environmental efficiency of the boiler under study complies with most of the standard requirements of European countries.

  15. Andrastin A and barceloneic acid metabolites, protein farnesyl transferase inhibitors from Penicillium alborcoremium: chemotaxonomic significance and pathological implications

    Overy, David Patrick; Larsen, Thomas Ostenfeld; Dalsgaard, P.W.

    2005-01-01

    A survey of Penicillium albocoremium was undertaken to identify potential taxonomic metabolite markers. One major and four minor metabolites were consistently produced by the 19 strains surveyed on three different media. Following purification and spectral studies, the metabolites were identified...

  16. Fluoxetine, 17-β estradiol or folic acid combined with intra-lateral septal infusions of neuropeptide Y produced antidepressant-like actions in ovariectomized rats forced to swim.

    Molina-Hernández, Miguel; Téllez-Alcántara, N Patricia

    2011-12-01

    Folic acid is antidepressant, either alone or combined with several antidepressant drugs. However, the antidepressant-like actions of folic acid combined with intra-lateral septal (LSN) infusions of neuropeptide Y (NPY) in the forced swimming test (FST) have not been tested before. Thus, systemic injections of fluoxetine (20.0mg/kg, Pfluoxetine (15.0 mg/kg, P<0.05; s.c.) combined with subthreshold doses of NPY (2.5 μg/rat, P<0.05; intra-LSN) and these combinations produced antidepressant-like actions; which were canceled by BIBP 3226 (a NPY-Y1 receptor antagonist). It is concluded that folic acid produced antidepressant-like effects probably through the participation of the NPY Y1 receptors found in the lateral septal nuclei. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Immunomodulatory/inflammatory effects of geopropolis produced by Melipona fasciculata Smith in combination with doxorubicin on THP-1 cells.

    Oliveira, Lucas Pires Garcia; Conte, Fernanda Lopes; Cardoso, Eliza de Oliveira; Conti, Bruno José; Santiago, Karina Basso; Golim, Marjorie de Assis; Cruz, Maria Teresa; Sforcin, José Maurício

    2016-12-01

    Geopropolis (GEO) in combination with doxorubicin (DOX) reduced HEp-2 cells viability compared to GEO and DOX alone. A possible effect of this combination on the innate immunity could take place, and its effects were analysed on THP-1 cell - a human leukaemia monocytic cell line used as a model to study monocyte activity and macrophage activity, assessing cell viability, expression of cell markers and cytokine production. THP-1 cells were incubated with GEO, DOX and their combination. Cell viability was assessed by MTT assay, cell markers expression by flow cytometry and cytokine production by ELISA. GEO + DOX did not affect cell viability. GEO alone or in combination increased TLR-4 and CD80 but not HLA-DR and TLR-2 expression. GEO stimulated TNF-α production while DOX alone or in combination did not affect it. GEO alone or in combination inhibited IL-6 production. GEO exerted a pro-inflammatory profile by increasing TLR-4 and CD80 expression and TNF-α production, favouring the activation of the immune/inflammatory response. GEO + DOX did not affect cell viability and presented an immunomodulatory action. Lower concentrations of DOX combined to GEO could be used in cancer patients, avoiding side effects and benefiting from the biological properties of GEO. © 2016 Royal Pharmaceutical Society.

  18. A new species of Trichoderma hypoxylon harbours abundant secondary metabolites.

    Sun, Jingzu; Pei, Yunfei; Li, Erwei; Li, Wei; Hyde, Kevin D; Yin, Wen-Bing; Liu, Xingzhong

    2016-11-21

    Some species of Trichoderma are fungicolous on fungi and have been extensively studied and commercialized as biocontrol agents. Multigene analyses coupled with morphology, resulted in the discovery of T. hypoxylon sp. nov., which was isolated from surface of the stroma of Hypoxylon anthochroum. The new taxon produces Trichoderma- to Verticillium-like conidiophores and hyaline conidia. Phylogenetic analyses based on combined ITS, TEF1-α and RPB2 sequence data indicated that T. hypoxylon is a well-distinguished species with strong bootstrap support in the polysporum group. Chemical assessment of this species reveals a richness of secondary metabolites with trichothecenes and epipolythiodiketopiperazines as the major compounds. The fungicolous life style of T. hypoxylon and the production of abundant metabolites are indicative of the important ecological roles of this species in nature.

  19. Pharmacogenomic Characterization and Isobologram Analysis of the Combination of Ascorbic Acid and Curcumin-Two Main Metabolites of Curcuma longa-in Cancer Cells.

    Ooko, Edna; Kadioglu, Onat; Greten, Henry J; Efferth, Thomas

    2017-01-01

    Curcuma longa has long been used in China and India as anti-inflammatory agent to treat a wide variety of conditions and also as a spice for varied curry preparations. The chemoprofile of the Curcuma species exhibits the presence of varied phytochemicals with curcumin being present in all three species but AA only being shown in C. longa . This study explored the effect of a curcumin/AA combination on human cancer cell lines. The curcumin/AA combination was assessed by isobologram analysis using the Loewe additivity drug interaction model. The drug combination showed additive cytotoxicity toward CCRF-CEM and CEM/ADR5000 leukemia cell lines and HCT116p53 +/+ and HCT116p53 -/- colon cancer cell line, while the glioblastoma cell lines U87MG and U87MG.ΔEGFR showed additive to supra-additive cytotoxicity. Gene expression profiles predicting sensitivity and resistance of tumor cells to induction by curcumin and AA were determined by microarray-based mRNA expressions, COMPARE, and hierarchical cluster analyses. Numerous genes involved in transcription ( TFAM, TCERG1, RGS13, C11orf31 ), apoptosis-regulation ( CRADD, CDK7, CDK19, CD81, TOM1 ) signal transduction ( NR1D2, HMGN1, ABCA1, DE4ND4B, TRIM27 ) DNA repair ( TOPBP1, RPA2 ), mRNA metabolism ( RBBP4, HNRNPR, SRSF4, NR2F2, PDK1, TGM2 ), and transporter genes ( ABCA1 ) correlated with cellular responsiveness to curcumin and ascorbic acid. In conclusion, this study shows the effect of the curcumin/AA combination and identifies several candidate genes that may regulate the response of varied cancer cells to curcumin and AA.

  20. Pharmacogenomic Characterization and Isobologram Analysis of the Combination of Ascorbic Acid and Curcumin—Two Main Metabolites of Curcuma longa—in Cancer Cells

    Ooko, Edna; Kadioglu, Onat; Greten, Henry J.; Efferth, Thomas

    2017-01-01

    Curcuma longa has long been used in China and India as anti-inflammatory agent to treat a wide variety of conditions and also as a spice for varied curry preparations. The chemoprofile of the Curcuma species exhibits the presence of varied phytochemicals with curcumin being present in all three species but AA only being shown in C. longa. This study explored the effect of a curcumin/AA combination on human cancer cell lines. The curcumin/AA combination was assessed by isobologram analysis using the Loewe additivity drug interaction model. The drug combination showed additive cytotoxicity toward CCRF-CEM and CEM/ADR5000 leukemia cell lines and HCT116p53+/+ and HCT116p53−/− colon cancer cell line, while the glioblastoma cell lines U87MG and U87MG.ΔEGFR showed additive to supra-additive cytotoxicity. Gene expression profiles predicting sensitivity and resistance of tumor cells to induction by curcumin and AA were determined by microarray-based mRNA expressions, COMPARE, and hierarchical cluster analyses. Numerous genes involved in transcription (TFAM, TCERG1, RGS13, C11orf31), apoptosis-regulation (CRADD, CDK7, CDK19, CD81, TOM1) signal transduction (NR1D2, HMGN1, ABCA1, DE4ND4B, TRIM27) DNA repair (TOPBP1, RPA2), mRNA metabolism (RBBP4, HNRNPR, SRSF4, NR2F2, PDK1, TGM2), and transporter genes (ABCA1) correlated with cellular responsiveness to curcumin and ascorbic acid. In conclusion, this study shows the effect of the curcumin/AA combination and identifies several candidate genes that may regulate the response of varied cancer cells to curcumin and AA. PMID:28210221

  1. Trophic transfer of pyrene metabolites between aquatic invertebrates

    Carrasco Navarro, V.; Leppänen, M.T.; Kukkonen, J.V.K.; Godoy Olmos, S.

    2013-01-01

    The trophic transfer of pyrene metabolites was studied using Gammarus setosus as a predator and the invertebrates Lumbriculus variegatus and Chironomus riparius as prey. The results obtained by liquid scintillation counting confirmed that the pyrene metabolites produced by the aquatic invertebrates L. variegatus and C. riparius were transferred to G. setosus through the diet. More detailed analyses by liquid chromatography discovered that two of the metabolites produced by C. riparius appeared in the chromatograms of G. setosus tissue extracts, proving their trophic transfer. These metabolites were not present in chromatograms of G. setosus exclusively exposed to pyrene. The present study supports the trophic transfer of PAH metabolites between benthic macroinvertebrates and common species of an arctic amphipod. As some PAH metabolites are more toxic than the parent compounds, the present study raises concerns about the consequences of their trophic transfer and the fate and effects of PAHs in natural environments. - Highlights: ► The trophic transfer of pyrene metabolites between invertebrates was evaluated. ► Biotransformation of pyrene by L. variegatus and C. riparius is different. ► Metabolites produced by L. variegatus and C. riparius are transferred to G. setosus. ► Specifically, two metabolites produced by C. riparius were transferred. - Some of the pyrene metabolites produced by the model invertebrates L. variegatus and C. riparius are transferred to G. setosus through the diet, proving their trophic transfer.

  2. Metabolite Profiles of Diabetes Risk

    Gerszten, Robert E.

    2013-01-01

    Metabolic diseases present particular difficulty for clinicians because they are often present for years before becoming clinically apparent. We investigated whether metabolite profiles can predict the development of diabetes in the Framingham Heart Study. Five branched-chain and aromatic amino acids had highly-significant associations with future diabetes, while a combination of three amino acids strongly predicted future diabetes by up to 12 years (>5-fold increased risk for individuals in ...

  3. Online restricted-access material combined with high-performance liquid chromatography and tandem mass spectrometry for the simultaneous determination of vanillin and its vanillic acid metabolite in human plasma.

    Li, De-Qiang; Zhang, Zhi-Qing; Yang, Xiu-Ling; Zhou, Chun-Hua; Qi, Jin-Long

    2016-09-01

    An automated online solid-phase extraction with restricted-access material combined with high-performance liquid chromatography and tandem mass spectrometry was developed and validated for the simultaneous quantification of vanillin and its vanillic acid metabolite in human plasma. After protein precipitation by methanol, which contained the internal standards, the supernatant of plasma samples was injected to the system, the endogenous large molecules were flushed out, and target analytes were trapped and enriched on the adsorbent, resulting in a minimization of sample complexity and ion suppression effects. Calibration curves were linear over the concentrations of 5-1000 ng/mL for vanillin and 10-5000 ng/mL for vanillic acid with a coefficient of determination >0.999 for the determined compounds. The lower limits of quantification of vanillin and vanillic acid were 5.0 and 10.0 ng/mL, respectively. The intra- and inter-run precisions expressed as the relative standard deviation were 2.6-8.6 and 3.2-10.2%, respectively, and the accuracies expressed as the relative error were in the range of -6.1 to 7.3%. Extraction recoveries of analytes were between 89.5 and 97.4%. There was no notable matrix effect for any analyte concentration. The developed method was proved to be sensitive, repeatable, and accurate for the quantification of vanillin and its vanillic acid metabolite in human plasma. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Chronic alcohol exposure disturbs lipid homeostasis at the adipose tissue-liver axis in mice: analysis of triacylglycerols using high-resolution mass spectrometry in combination with in vivo metabolite deuterium labeling.

    Xiaoli Wei

    Full Text Available A method of employing high-resolution mass spectrometry in combination with in vivo metabolite deuterium labeling was developed in this study to investigate the effects of alcohol exposure on lipid homeostasis at the white adipose tissue (WAT-liver axis in a mouse model of alcoholic fatty liver. In order to differentiate the liver lipids synthesized from the fatty acids that were transported back from adipose tissue and the lipids synthesized from other sources of fatty acids, a two-stage mouse feeding experiment was performed to incorporate deuterium into metabolites. Hepatic lipids extracted from mouse liver, epididymal white adipose tissue (eWAT and subcutaneous white adipose tissue (sWAT were analyzed. It was found that 13 and 10 triacylglycerols (TGs incorporated with a certain number of deuterium were significantly increased in alcohol induced fatty liver at two and four weeks of alcohol feeding periods, respectively. The concentration changes of these TGs ranged from 1.7 to 6.3-fold increase. A total of 14 deuterated TGs were significantly decreased in both eWAT and sWAT at the two and four weeks and the fold-change ranged from 0.19 to 0.77. The increase of deuterium incorporated TGs in alcohol-induced fatty liver and their decrease in both eWAT and sWAT indicate that alcohol exposure induces hepatic influx of fatty acids which are released from WATs. The results of time course analysis further indicate a mechanistic link between adipose fat loss and hepatic fat gain in alcoholic fatty liver.

  5. A latex metabolite benefits plant fitness under root herbivore attack

    Huber, M.; Epping, J.; Gronover, C.S.; Fricke, J.; Aziz, Z.; Brillatz, T.; Swyers, M.; Köllner, T.G.; Vogel, H.; Hammerbacher, A.; Triebwasser-Freese, D.; Robert, C.A.M.; Verhoeven, K.; Preite, V.; Gershenzon, J.

    2016-01-01

    Plants produce large amounts of secondary metabolites in their shoots and roots and store them in specialized secretory structures. Although secondary metabolites and their secretory structures are commonly assumed to have a defensive function, evidence that they benefit plant fitness under herbivore attack is scarce, especially below ground. Here, we tested whether latex secondary metabolites produced by the common dandelion (Taraxacum officinale agg.) decrease the performance of its major n...

  6. Activity of beta-lactam beta-lactamase inhibitor combinations against extended spectrum beta-lactamase producing enterobacteriaceae in urinary isolates

    Iqbal, F.I.; Farooqi, B.J.

    2012-01-01

    Objective: To determine the susceptibility pattern of beta-lactam beta-lactamase inhibitor combinations against extended-spectrum beta-lactamase (ESBL) producing Enterobacteriaceae in urinary isolates. Study Design: Observational study. Place and Duration of Study: Ziauddin University Hospital, Karachi, from February to October 2008. Methodology: A total of 190 consecutive non-duplicate isolates of ESBL producing Enterobacteriaceae from urine samples of in-patients were included in the study. Urinary samples from out-patients, repeat samples and non-ESBL producing isolates were excluded. Detection of ESBL was carried out by double disk diffusion technique. Antimicrobial susceptibility testing was performed using modified Kirby Bauer's disk diffusion method according to CLSI guidelines. Statistical analysis was performed by SPSS version 10. Results: Of the 190 ESBL isolates tested, 88 cases (46.31%) were sensitive and 6 cases (3.15%) were resistant to all three combinations, the rest 96 cases (50.52%) were resistant to at least one of the combinations. Susceptibility pattern of cefoperazone/sulbactam, piperacillin/tazobactam, and amoxicillin/clavulanic acid was 95.26, 92.10, and 44.31 percent respectively. Conclusion: Cefoperazone/sulbactam exhibited the best activity against ESBL producing Enterobacteriaceae followed by piperacillin/tazobactam. Hospital antibiotic policies should be reviewed periodically to reduce the usage of extended spectrum cephalosporins and replace them with beta-lactam beta-lactamase inhibitor combinations agent for treating urinary tract infections. (author)

  7. Sensitive Determination of Onco-metabolites of D- and L-2-hydroxyglutarate Enantiomers by Chiral Derivatization Combined with Liquid Chromatography/Mass Spectrometry Analysis

    Cheng, Qing-Yun; Xiong, Jun; Huang, Wei; Ma, Qin; Ci, Weimin; Feng, Yu-Qi; Yuan, Bi-Feng

    2015-01-01

    2-hydroxyglutarate (2HG) is a potent competitor of α-ketoglutarate (α-KG) and can inhibit multiple α-KG dependent dioxygenases that function on the epigenetic modifications. The accumulation of 2HG contributes to elevated risk of malignant tumors. 2HG carries an asymmetric carbon atom in its carbon backbone and differentiation between D-2-hydroxyglutarate (D-2HG) and L-2-hydroxyglutarate (L-2HG) is crucially important for accurate diagnosis of 2HG related diseases. Here we developed a strategy by chiral derivatization combined with liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) analysis for highly sensitive determination of D-2HG and L-2HG enantiomers. N-(p-toluenesulfonyl)-L-phenylalanyl chloride (TSPC) was used to derivatize 2HG. The formed diastereomers by TSPC labeling can efficiently improve the chromatographic separation of D-2HG and L-2HG. And derivatization by TSPC could also markedly increase the detection sensitivities by 291 and 346 folds for D-2HG and L-2HG, respectively. Using the developed method, we measured the contents of D-2HG and L-2HG in clear cell renal cell carcinoma (ccRCC) tissues. We observed 12.9 and 29.8 folds increase of D-2HG and L-2HG, respectively, in human ccRCC tissues compared to adjacent normal tissues. The developed chiral derivatization combined with LC-ESI-MS/MS analysis offers sensitive determination of D-2HG and L-2HG enantiomers, which benefits the precise diagnosis of 2HG related metabolic diseases. PMID:26458332

  8. Gas release-based prescreening combined with reversed-phase HPLC quantitation for efficient selection of high-γ-aminobutyric acid (GABA)-producing lactic acid bacteria.

    Wu, Qinglong; Shah, Nagendra P

    2015-02-01

    High γ-aminobutyric acid (GABA)-producing lactobacilli are promising for the manufacture of GABA-rich foods and to synthesize GRAS (generally recognized as safe)-grade GABA. However, common chromatography-based screening is time-consuming and inefficient. In the present study, Korean kimchi was used as a model of lactic acid-based fermented foods, and a gas release-based prescreening of potential GABA producers was developed. The ability to produce GABA by potential GABA producers in de Man, Rogosa, and Sharpe medium supplemented with or without monosodium glutamate was further determined by HPLC. Based on the results, 9 isolates were regarded as high GABA producers, and were further genetically identified as Lactobacillus brevis based on the sequences of 16S rRNA gene. Gas release-based prescreening combined with reversed-phase HPLC confirmation was an efficient and cost-effective method to identify high-GABA-producing LAB, which could be good candidates for probiotics. The GABA that is naturally produced by these high-GABA-producing LAB could be used as a food additive. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Aspergillus flavus secondary metabolites: more than just aflatoxins

    Aspergillus flavus is best known for producing the family of potent carcinogenic secondary metabolites known as aflatoxins. However, this opportunistic plant and animal pathogen also produces numerous other secondary metabolites, many of which have also been shown to be toxic. While about forty of t...

  10. HYDROLYSIS OF AGRICULTURAL BIOMASS BY COMBINED PRETREATMENT AND ENZYMATIC METHODS IN ORDER TO PRODUCE BIOFUELS (ETHANOL, BIOGAS

    STEFANA JURCOANE

    2009-05-01

    Full Text Available The use of energy crops (maize straw, wheat straw, barley straw etc. as substrate for renewable energy production (e.g. biogas is more efficient when it is degraded by different hydrolysis methods. However, fibers contained inside energy crops (e.g. cellulose and hemicellulose are only hardly and slowly degraded by anaerobic bacteria. The slow degradation of these substances can decrease the methane yields of agricultural biogas plants.In the present study, we investigated the efficiency of combined pretreatment (different concentrations H2SO4 + 30 minutes at 1210C followed to enzymatic hydrolysis. Testing different concentration of H2SO4, good results were obtained for maize whole crop when we used combined pretreatment (3% H2SO4 + 30 minutes at 1210C followed to enzymatic hydrolysis (3.9 fold higher and for Gavott Maize Straw when we used combined pretreatment (2% H2SO4 + 30 minutes at 1210C followed to enzymatic hydrolysis (3.6 fold higher comparing with untreated samples.

  11. Effects of dietary combination of chromium and biotin on egg production, serum metabolites, and egg yolk mineral and cholesterol concentrations in heat-distressed laying quails.

    Sahin, K; Onderci, M; Sahin, N; Gursu, M F; Vijaya, J; Kucuk, O

    2004-11-01

    Chromium picolinate is used in the poultry diet because of its antistress effects in addition to the fact that the requirement for it is increased during stress. This study was conducted to determine if the negative effects of high ambient temperature (34 degrees C) on egg production, egg quality, antioxidant status, and cholesterol and mineral content of egg yolk could be alleviated by combination of chromium picolinate and biotin (0.6/2.0; Diachrome, as formulated by Nutrition 21 Inc.), in laying Japanese quails (Coturnix coturnix japanica). Quails (n= 240; 50 d old) were divided into 8 groups, 30 birds per group. The quails were fed either a basal diet or the basal diet supplemented with 2, 4, or 8 mg of Diachrome/kg diet. Birds were kept at 22 degrees C and 53% relative humidity (RH). At 14 wk of age, the thermoneutral (TN) group remained in the same temperature as at the beginning of experiment, whereas the heat stress (HS) group was kept in an environment-controlled room (34 degrees C and 41% RH) for 3 wk. Heat exposure decreased performance when the basal diet was fed (p = 0.001). Diachrome supplementation at 4 and 8 mg/kg diet, increased feed intake (p = 0.05), egg production (p = 0.05), feed efficiency (p = 0.01), egg weight (p = 0.05), and Haugh unit (p = 0.01) in quails reared under heat stress conditions. Heat exposure increased concentrations of serum malondialdehyde (MDA) (p = 0.001), glucose, and cholesterol (p = 0.01), which were elevated by supplemental Diachrome (p < or = 0.05). Egg yolk Cr, Zn, and Fe (p = 0.01) concentrations increased linearly, whereas MDA and cholesterol concentrations decreased (p = 0.05) as dietary Diachrome supplementation increased in HS groups. Similar effects of supplementation on serum levels of glucose and cholesterol (p = 0.05) and egg yolk concentrations of cholesterol (p = 0.05) and Cr (p = 0.01) were observed in TN groups. No significant differences in other values were observed in the TN groups. Results of the

  12. Pneumonia in calves produced with aerosols of Pasteurella multocida alone and in combination with bovine herpesvirus 1.

    Jericho, K W; Carter, G R

    1985-01-01

    Pathological changes in respiratory tracts were studied in 30 calves following exposure to aerosols of Pasteurella multocida or to bovine herpesvirus 1 and P. multocida. Two groups of five calves were exposed to aerosols of one of two types of P. multocida only, which produced lobar pneumonia in one calf of each group. Another five groups of four calves were exposed to aerosols of bovine herpesvirus 1 and four to seven days later to one of the two types or one sub-type of P. multocida. Extens...

  13. Novel pyrazine metabolites found in polymyxin biosynthesis by Paenibacillus polymyxa

    Beck, Hans Christian; Hansen, Anne M; Lauritsen, Frants R

    2003-01-01

    A complex mixture of methyl-branched alkyl-substituted pyrazines was found in the growth medium of the polymyxin-producing bacterium Paenibacillus polymyxa, and of these, seven are new natural compounds. A total of 19 pyrazine metabolites were identified. The dominant metabolite was 2,5-diisoprop......A complex mixture of methyl-branched alkyl-substituted pyrazines was found in the growth medium of the polymyxin-producing bacterium Paenibacillus polymyxa, and of these, seven are new natural compounds. A total of 19 pyrazine metabolites were identified. The dominant metabolite was 2...

  14. A review of producing hard coatings by means of duplex treatments using an electroplated coating–thermochemical treatment combination

    Héctor Cifuentes Aya

    2011-09-01

    Direct deposition by physical vapour deposition (PVD, used for obtaining chromium nitride films on steel substrates, is limited by high production costs, the low thickness obtained and low resistance to corrosion due to the presence of micro pores. Some studies have combined an electroplated chromium with thermochemical treatments made in a controlled atmosphere or vacuum furnaces or by plasma. This kind of duplex treatment allows compounds such as CrxN, CrxCyN and CrxCy to be obtained from chemical and micro structural transformation of chromium with nitrogen and/or carbon, the sealing of cracks in the coating and increasing the magnitude of properties like hardness and density, improving wear and abrasion and corrosion resistance.

  15. Niacin extended-release/simvastatin combination therapy produces larger favorable changes in high-density lipoprotein particles than atorvastatin monotherapy

    Toth PP

    2012-01-01

    Full Text Available Peter P Toth1, Kamlesh M Thakker2, Ping Jiang2, Robert J Padley21University of Illinois College of Medicine, Peoria, and CGH Medical Center, Sterling, 2Abbott, Abbott Park, IL, USABackground: The purpose of this research was to compare the effects of niacin extended-release in combination with simvastatin (NER/S versus atorvastatin monotherapy on high-density lipoprotein (HDL particle number and size in patients with hyperlipidemia or dyslipidemia from the SUPREME study.Methods: This was a post hoc analysis of patients (n = 137 who completed the SUPREME study and who had lipid particle number and size measurements at both baseline and at week 12 by nuclear magnetic resonance spectroscopy. Following ≥4 weeks without lipid-modifying therapy (washout period, the patients received NER/S 1000/40 mg/day for 4 weeks followed by NER/S 2000/40 mg/day for 8 weeks, or atorvastatin 40 mg/day for 12 weeks. Median percent changes in HDL particle number and size from baseline to week 12 were compared between the NER/S and atorvastatin treatment groups using the Wilcoxon rank-sum test. Distribution of HDL particle subclasses at week 12 was compared between the treatment groups using the Cochran–Mantel–Haenszel test.Results: Treatment with NER/S resulted in a significantly greater percent reduction in small HDL particle number at week 12 compared with atorvastatin monotherapy (-1.8% versus 4.2%, P = 0.014, and a numerically greater percent increase in large HDL particle number (102.4% versus 39.2%, P = 0.078 compared with atorvastatin monotherapy. A significantly greater percent increase in HDL particle size from baseline at week 12 was observed with NER/S compared with atorvastatin (6.0% versus 1.3%, P < 0.001. NER/S treatment also resulted in a significant shift in HDL particle size from small and medium at baseline to large at week 12 (P < 0.0001.Conclusion: Treatment with NER/S resulted in larger favorable changes in number and size of HDL particle

  16. Modeling and Optimizing of Producing Recycled PET from Fabrics Waste via Falling Film-Rotating Disk Combined Reactor

    Dan Qin

    2017-01-01

    Full Text Available Recycling and reusing of poly (ethylene terephthalate (PET fabrics waste are essential for reducing serious waste of resources and environmental pollution caused by low utilization rate. The liquid-phase polymerization method has advantages of short process flow, low energy consumption, and low production cost. However, unlike prepolymer, the material characteristics of PET fabrics waste (complex composition, high intrinsic viscosity, and large quality fluctuations make its recycling a technique challenge. In this study, the falling film-rotating disk combined reactor is proposed, and the continuous liquid-phase polymerization is modeled by optimizing and correcting existing models for the final stage of PET polymerization to improve the product quality in plant production. Through modeling and simulation, the weight analysis of indexes closely related to the product quality (intrinsic viscosity, carboxyl end group concentration, and diethylene glycol content was investigated to optimize the production process in order to obtain the desired polymer properties and meet specific product material characteristics. The model could be applied to other PET wastes (e.g., bottles and films and extended to investigate different aspects of the recycling process.

  17. Production of secondary metabolites by some terverticillate penicillia on carbohydrate-rich and meat substrates.

    Núñez, Félix; Westphal, Carmen D; Bermúdez, Elena; Asensio, Miguel A

    2007-12-01

    Most terverticillate penicillia isolated from dry-cured meat products are toxigenic, but their ability to produce hazardous metabolites on meat-based substrates is not well known. The production of extrolites by selected terverticillate penicillia isolated from dry-cured ham has been studied on carbohydrate-rich media (malt extract agar, Czapek yeast autolysate agar, rice extract agar, and rice), meat extract triolein salt agar, and ham slices. Chloroform extracts from the selected strains grown on malt extract agar were toxic for the brine shrimp (Artemia salina) larvae and VERO cells at a concentration of 2 mg/ml, but 0.02 mg/ml produced no toxic effect. Analysis by high-pressure liquid chromatography (HPLC) coupled with photodiode array detection (DAD) or with mass spectrometry (MS) and an atmospheric pressure chemical ionization (APCI) source revealed different biologically active metabolites: cyclopiazonic acid and rugulovasine A from Penicillium commune; verrucosidin, anacine, puberuline, verrucofortine, and viridicatols from Penicillium polonicum; arisugacin and viridicatols from Penicillium echinulatum; and compactin and viridicatols from Penicillium solitum. Most of these metabolites, including the amino acid-derived compounds, were produced in the media containing high levels of carbohydrates. High concentrations of nitrogen compounds in the medium does not imply a greater production of the metabolites studied, not even those derived from the amino acids. However, molds growing on dry-cured ham are able to synthesize limited amounts of some secondary metabolites, a fact not previously reported. The combination of HPLC coupled with DAD and MS-APCI was useful for identification of closely related terverticillate Penicillium species from dry-cured ham. These techniques could be used to characterize the risk associated with the potential production of secondary metabolites in cured meats.

  18. Optimization of Vacuum Frying Parameters in Combination with Osmotic Dehydration of Kiwi Slices to Produce Healthy Product

    Fatemeh Aghabozorg Afjeh Aghabozorg Afjeh

    2014-05-01

    Full Text Available Osmotic dehydration under discontinuous reduced pressure is one of the new methods of preparation fruits and vegetable processing with in view of good health. Processing of foods at high temperatures used to cook them can cause the formation of carcinogenic substances like acrylamide, and this risk remains even if the trans-fat is removed. The low temperatures employed in this method resulted in the products with the desired texture, nutritional, and colour. The purpose of this research was evaluation of the variable effects of osmotic dehydration process (ambient pressure, contact time of product and solution, concentration and temperature of osmotic solution on the quality factors of product (colour changes, texture, moisture, oil uptake, and water loss to solid gain ratio and achieving the optimum process conditions. Studying the quality parameters of the product, the temperature range of osmotic solution, pressure, concentration of the osmotic solution and contact time of product and solution were assumed as 30 to 50°C, 500 to 700 mbar, 30 to 50% and 60 to 180 min, respectively. The test plans involving 31 tests were obtained by using response surface statistical models and central composite design. They were fried at the condition of 108ºC, 8 min and 320 mbar by using statistical correlations, 48.71ºC for the osmotic solution temperature, 592.07 mbar for the pressure, 62.92 min for the time and 34.87% for the osmotic solution. Concentrations were obtained as optimum conditions of osmotic dehydration of kiwi slices under reduced pressure. In summary combination of osmotic dehydration and vacuum frying improved the quality of the final fried kiwi, so this method is recommended for production of healthy products.

  19. Comparison of the bronchodilatation produced by inhalation of ipratropium bromide and salbutamol sequentially and in fixed dose combination in stable bronchial asthma patients

    Mohan A

    2006-01-01

    Full Text Available Objectives : The combination of a 43-2 agonist and an anticholinergic agent is of-ten used to manage bronchial asthma. However, it is unclear whether these drugs should be given separately in sequence or in a fixed dose combination for maximum effect. Methods : 27 patients with stable bronchial asthma were given the above two drugs in two separate sessions one week apart. In one session they were given the above two drugs as a fixed dose combination and in the other session, they were given se-quentially with salbutamol following ipratropium after 30 minutes. Spirometry was performed at baseline and 15, 30 and 60 minutes after inhaling the second drug. Results : Both groups showed significant improvement in forced vital capacity (FVC, forced expiratory time in one second (FEV 1 , peak expiratory flow rate (PEFR and forced expiratory flow (FEF 25-75 from baseline upto one hour. FVC increased initially and then stabilized; however, the increase was more sustained in the group getting combination treatment. This group also showed a higher rise in FEV 1 (p=0.02. Both FEV 1 and FEF 25-75 decreased after 30 minutes in the group that received sequential therapy. PEFR increased continuously till 60 minutes in both groups and there was no significant difference between them (p=0.98. Interpretation and Conclusion: Both methods of drug dosing produce equivalent bronchodilation. Fixed dose combinations produced a more sustained rise in FVC and higher increase in FEV 1 . Hence fixed dose combinations are more effective short-term bronchodilators and give an added advantage of reducing the number of inhalers required, thus improv-ing compliance.

  20. Novel pyrazine metabolites found in polymyxin biosynthesis by Paenibacillus polymyxa

    Beck, Hans Christian; Hansen, Anne M; Lauritsen, Frants R

    2003-01-01

    A complex mixture of methyl-branched alkyl-substituted pyrazines was found in the growth medium of the polymyxin-producing bacterium Paenibacillus polymyxa, and of these, seven are new natural compounds. A total of 19 pyrazine metabolites were identified. The dominant metabolite was 2...... supplementation. The other pyrazine metabolites, all related pyrazines with either one, two or three alkyl substituents, were identified by means of their mass spectral data and/or co-elution with authentic standards....

  1. Pharmaceutically active secondary metabolites of marine actinobacteria.

    Manivasagan, Panchanathan; Venkatesan, Jayachandran; Sivakumar, Kannan; Kim, Se-Kwon

    2014-04-01

    Marine actinobacteria are one of the most efficient groups of secondary metabolite producers and are very important from an industrial point of view. Many representatives of the order Actinomycetales are prolific producers of thousands of biologically active secondary metabolites. Actinobacteria from terrestrial sources have been studied and screened since the 1950s, for many important antibiotics, anticancer, antitumor and immunosuppressive agents. However, frequent rediscovery of the same compounds from the terrestrial actinobacteria has made them less attractive for screening programs in the recent years. At the same time, actinobacteria isolated from the marine environment have currently received considerable attention due to the structural diversity and unique biological activities of their secondary metabolites. They are efficient producers of new secondary metabolites that show a range of biological activities including antibacterial, antifungal, anticancer, antitumor, cytotoxic, cytostatic, anti-inflammatory, anti-parasitic, anti-malaria, antiviral, antioxidant, anti-angiogenesis, etc. In this review, an evaluation is made on the current status of research on marine actinobacteria yielding pharmaceutically active secondary metabolites. Bioactive compounds from marine actinobacteria possess distinct chemical structures that may form the basis for synthesis of new drugs that could be used to combat resistant pathogens. With the increasing advancement in science and technology, there would be a greater demand for new bioactive compounds synthesized by actinobacteria from various marine sources in future. Copyright © 2013 Elsevier GmbH. All rights reserved.

  2. Tri-reforming and combined reforming of methane for producing syngas with desired hydrogen/carbon monoxide ratios

    Pan, Wei

    This dissertation is an exploratory study of a new process concept for direct production of synthesis gas (CO + H2) with desired H 2/CO ratios (1.5--2.0) for methanol synthesis and F-T synthesis, using CO2 together with steam and unconverted O2 in flue gas from fossil fuel-fired electric power plants to react with methane or natural gas. This new process is called tri-reforming, referring to simultaneous CO2-steam-O2 reforming of methane or natural gas. This study included (1) The investigation of carbon formation in the tri-reforming process. For comparison, carbon formation in the combined reforming and CO2 reforming reaction was studied as well. (2) The effect of reaction conditions and feed compositions on equilibrium composition (e.g. H2/CO ratio) and equilibrium conversions in the tri-reforming process. (3) The role of catalysts in the tri-reforming process, especially the effect of catalysts on CO2 conversion in the presence of H 2O and O2. It was clearly evidenced from this study that CO in the product stream is probably the major source of carbon over Ni/Al2O3 in the equimolar CO2-CH4 reforming at 650°C and 1 atm. Addition of either O2 or H2O into the CO 2 reforming reaction system can suppress carbon formation. It was demonstrated that carbon-free operation can be achieved in the tri-reforming process. A thermodynamic comparison of tri-reforming with feed compositions of (H2O+CO2+0.5O2)/CH4 (mol ratio) = 1 showed that O2 improves equilibrium CH4 conversion, yet greatly decreases equilibrium CO2 conversion. H2O in tri-reforming has a significant effect on the H2/CO ratio in the products, while O2 has a minor effect. A kinetic study and catalytic performance tests indicated that the support in a supported catalyst has a significant role in enhancing CO2 conversion to CO in the presence of H2O and O2 in tri-reforming. The Ni/MgO catalyst showed superior performance with close to equilibrium CH4 and CO2 conversions at 850°C, 1 atm, and 32,000 ml

  3. Interactions between amphibians’ symbiotic bacteria cause the production of emergent anti-fungal metabolites

    Andrew Howard Loudon

    2014-08-01

    Full Text Available Amphibians possess beneficial skin bacteria that protect against the disease chytridiomycosis by producing secondary metabolites that inhibit the pathogen Batrachochytrium dendrobatidis (Bd. Metabolite production may be a mechanism of competition between bacterial species that results in host protection as a by-product. We expect that some co-cultures of bacterial species or strains will result in greater Bd inhibition than mono-cultures. To test this, we cultured four bacterial isolates (Bacillus sp., Janthinobacterium sp., Pseudomonas sp. and Chitinophaga arvensicola from red-backed salamanders (Plethodon cinereus and cultured isolates both alone and together to collect their cell-free supernatants (CFS. We challenged Bd with CFSs from four bacterial species in varying combinations. This resulted in three experimental treatments: 1 CFSs of single isolates; 2 combined CFSs of two isolates; and 3 CFSs from co-cultures. Pair-wise combinations of four bacterial isolates CFSs were assayed against Bd and revealed additive Bd inhibition in 42.2% of trials, synergistic inhibition in 42.2% and no effect in 16.6% of trials. When bacteria isolates were grown in co-cultures, complete Bd inhibition was generally observed, and synergistic inhibition occurred in four out of six trials. A metabolite profile of the most potent co-culture, Bacillus sp. and Chitinophaga arvensicola, was determined with LC-MS and compared with the profiles of each isolate in mono-culture. Emergent metabolites appearing in the co-culture were inhibitory to Bd, and the most potent inhibitor was identified as tryptophol. Thus mono-cultures of bacteria cultured from red-backed salamanders interacted synergistically and additively to inhibit Bd, and such bacteria produced emergent metabolites when cultured together, with even greater pathogen inhibition. Knowledge of how bacterial species interact to inhibit Bd can be used to select probiotics to provide amphibians with protection

  4. Pretreatment of 2,4-dinitroanisole (DNAN) producing wastewater using a combined zero-valent iron (ZVI) reduction and Fenton oxidation process

    Shen, Jinyou; Ou, Changjin; Zhou, Zongyuan; Chen, Jun; Fang, Kexiong; Sun, Xiuyun; Li, Jiansheng; Zhou, Lin; Wang, Lianjun

    2013-01-01

    Highlights: • ZVI-Fenton process was conducted for DNAN producing wastewater pretreatment. • Transformation of nitro to amino group by ZVI overcomes the oxidative hindrance. • Subsequent Fenton process is efficient for the removal of aromatic compounds. • ABR-MBBR process is efficient for the polishing of ZVI-Fenton effluent. -- Abstract: A combined zero-valent iron (ZVI) reduction and Fenton oxidation process was tested for the pretreatment of 2,4-dinitroanisole (DNAN) producing wastewater. Operating conditions were optimized and overall performance of the combined process was evaluated. For ZVI process, almost complete reduction of nitroaromatic compounds was observed at empty bed contact time (EBCT) of 8 h. For Fenton process, the optimal pH, H 2 O 2 to Fe(II) molar ratio, H 2 O 2 dosage and hydraulic retention time (HRT) were found to be 3.0, 15, 0.216 mol/L and 5 h, respectively. After pretreatment by the combined ZVI-Fenton process under the optimal conditions, aromatic organic compound removal was as high as 77.2%, while the majority of COD remained to be further treated by sequent biological process. The combined anaerobic-aerobic process consisted of an anaerobic baffled reactor (ABR) and a moving-bed biofilm reactor (MBBR) was operated for 3 months, fed with ZVI-Fenton effluent. The results revealed that the coupled ZVI-Fenton-ABR-MBBR system was significantly efficient in terms of correcting the effluent's main parameters of relevance, mainly aromatic compounds concentration, COD concentration, color and acute toxicity. These results indicate that the combined ZVI-Fenton process offers bright prospects for the pretreatment of wastewater containing nitroaromatic compounds

  5. Investigation on the performance and emission parameters of dual fuel diesel engine with mixture combination of hydrogen and producer gas as secondary fuel

    A. E. Dhole

    2016-06-01

    Full Text Available This study presents experimental investigation in to the effects of using mixture of producer gas and hydrogen in five different proportions as a secondary fuel with diesel as pilot fuel at wide range of load conditions in dual fuel operation of a 4 cylinder turbocharged and intercooled 62.5 kW gen-set diesel engine at constant speed of 1500 RPM. Secondary fuel Substitution is in different percentage of diesel at each load. To generate producer gas, the rice husk was used as source in the downdraft gasifier. The performance and emission characteristics of the dual fuel engine are compared with that of diesel engine at different load conditions. It was found that of all the combinations tested, mixture combination of PG:H2=(60:40% is the most suited one at which the brake thermal efficiency is in good comparison to that of diesel operation. Decreased NOx emissions and increased CO emissions were observed for dual fuel mode for all the fuel combinations compared to diesel fuel operation.

  6. A Latex Metabolite Benefits Plant Fitness under Root Herbivore Attack

    Huber, M.; Epping, Janina; Schulze Gronover, C.; Fricke, Julia; Aziz, Zohra; Brillatz, Théo; Swyers, Michael; Kollner, T.G.; Vogel, H.; Hammerbacher, Almuth; Triebwasser-Freese, Daniella; Robert, Christelle A.M.; Verhoeven, K.J.F.; Preite, V.; Gershenzon, J.; Erb, M.

    2016-01-01

    Plants produce large amounts of secondary metabolites in their shoots and roots and store them in specialized secretory structures. Although secondary metabolites and their secretory structures are commonly assumed to have a defensive function, evidence that they benefit plant fitness under

  7. Identification of the urinary metabolites of 4-bromoaniline and 4-bromo-[carbonyl-13C]-acetanilide in rat.

    Scarfe, G B; Nicholson, J K; Lindon, J C; Wilson, I D; Taylor, S; Clayton, E; Wright, B

    2002-04-01

    1. The urinary excretion of 4-bromoaniline and its [carbonyl-(13)C]-labelled N-acetanilide, together with their corresponding metabolites, have been investigated in the rat following i.p. administration at 50 mg kg(-1). 2. Metabolite profiling was performed by reversed-phase HPLC with UV detection, whilst identification was performed using a combination of enzymic hydrolysis and directly coupled HPLC-NMR-MS analysis. The urinary metabolite profile was quantitatively and qualitatively similar for both compounds with little of either excreted unchanged. 3. The major metabolite present in urine was 2-amino-5-bromophenylsulphate, but, in addition, a number of metabolites with modification of the N-acetyl moiety were identified (from both the [(13)C]-acetanilide or produced following acetylation of the free bromoaniline). 4. For 4-bromoacetanilide, N-deacetylation was a major route of metabolism, but despite the detection of the acetanilide following the administration of the free aniline, there was no evidence of reacetylation (futile deacetylation). 5. Metabolites resulting from the oxidation of the acetyl group included a novel glucuronide of an N-glycolanilide, an unusual N-oxanilic acid and a novel N-acetyl cysteine conjugate.

  8. Combined SEP and anti-PD-L1 antibody produces a synergistic antitumor effect in B16-F10 melanoma-bearing mice.

    Hu, Zhengping; Ye, Liang; Xing, Yingying; Hu, Jinhang; Xi, Tao

    2018-01-09

    The increased PD-L1 induces poorer prognosis in melanoma. The treatment with PD-1/PD-L1 antibodies have a low response rate. The combination immunotherapies are the encouraging drug development strategy to receive maximal therapeutic benefit. In this study, we investigated the enhanced antitumor and immunomodulatory activity of combined SEP and αPD-L1 in B16-F10 melanoma-bearing mice. The results shown that combined SEP and αPD-L1 presented significant synergistic antitumor effects, increased the frequency of CD8 + and CD4 + T cells in spleen and tumor, cytotoxic activity of CTL in spleen, and IL-2 and IFN-γ levels in splenocytes and tumor. The combination treatment also produced synergistic increase in P-ERK1/2 level in spleen. Immunohistochemistry shown that SEP induced the PD-L1 expression in melanoma tissue possibly by promoting IFN-γ excretion, which led to the synergistic anti-tumor effects of aPD-L1 and SEP. Furthermore, in the purified T lymphocyte from the naive mice, the combination of SEP and αPD-L1 had more potent than SEP or αPD-L1 in promoting T lymphocyte proliferation and cytokines secretion including IL-2 and IFN-γ, at least partially by activating MEK/ERK pathway. Our study provides the scientific basis for a clinical trial that would involve combination of anti-PD-L1 mAb and SEP for sustained melanoma control.

  9. Decreased activity of daily living produced by the combination of Alzheimer's disease and lower limb fracture in elderly requiring nursing care.

    Inagawa, Toshimitsu; Hamagishi, Toshio; Takaso, Yuji; Hitomi, Yoshiaki; Kambayashi, Yasuhiro; Hibino, Yuri; Shibata, Aki; Ngoc, Nguyen T M; Okochi, Jiro; Hatta, Kotaro; Takamuku, Kiyoshi; Konoshita, Tadashi; Nakamura, Hiroyuki

    2013-01-01

    Alzheimer's disease (AD) impairs cognitive functions, subsequently decreasing activity of daily living (ADL), and is frequently accompanied by lower limb fracture including hip fracture in the elderly. However, there have been few studies on what kinds of physical functions are affected or what degrees of dysfunction are produced by this combination. This study aims to clarify the relationship between decreased ADL and the combination of AD and lower limb fracture. We examined present illness and ADL in 4340 elderly aged 82.8 ± 9.36 years [average ± standard deviation (SD)] requiring nursing care and compared ADL between elderly with and without AD or lower limb fracture treated with surgery or conservatively using analysis of covariance (ANCOVA), with age and sex as covariants. We recognized that activities of cognitive function (p lower than in those without the disease, even after adjusting for sex and age. Activities of bed mobility (p fracture treated with surgery were significantly lower, which differed from the results of AD. Significant interactions of AD and fracture treated with surgery on the ADL scores for bed mobility (p fracture alone. We obtained almost the same results for fractures treated conservatively as for fractures treated with surgery. These results demonstrated that the combined effects of AD and lower limb fracture were significantly greater than expected additive effects of AD and fracture, suggesting that the combination of AD and lower limb fracture has synergistic effects on almost all types of ADL except cognitive functions.

  10. In vitro activity of SecA inhibitors in combination with carbapenems against carbapenem-hydrolysing class D β-lactamase-producing Acinetobacter baumannii.

    Chiu, Chun-Hsiang; Liu, Yu-Han; Wang, Yung-Chih; Lee, Yi-Tzu; Kuo, Shu-Chen; Chen, Te-Li; Lin, Jung-Chung; Wang, Fu-Der

    2016-12-01

    According to our previous study, OXA-58 translocates to the periplasm via the Sec pathway in carbapenem-resistant Acinetobacter baumannii (CRAb). In the present study, carbapenem-hydrolysing class D β-lactamases (CHDLs) belonging to the OXA-23, OXA-40 and OXA-51 families were examined to determine whether they are also Sec-dependent. Additionally, the effects of SecA inhibitors combined with carbapenems against CHDL-producing CRAb were examined. Cell fractionation and western blot analyses were performed to detect periplasmic His-tagged CHDLs. A chequerboard analysis with pairwise combinations of carbapenems (imipenem or meropenem) and SecA inhibitors (rose bengal, sodium azide or erythrosin B) was performed using six clinical CRAb isolates harbouring different CHDL genes. The fractional inhibitory concentration (FIC) index was determined. The combination with the lowest FIC index was subjected to a time-kill analysis to examine synergistic effects. In an in silico analysis, the CHDLs OXA-23, OXA-40 and OXA-51 were preferentially translocated via the Sec system. The SecA inhibitor rose bengal decreased periplasmic translocation of His-tagged OXA-23 and OXA-83 (belonging to the OXA-51 family), but not OXA-72 (belonging to the OXA-40 family) from ATCC 15151 transformants. Imipenem or meropenem with rose bengal showed synergistic effects (FIC index, ≤0.5) for six and four clinical isolates, respectively. Imipenem or meropenem with sodium azide showed no interactions (FIC index, 0.5-4) against all clinical isolates. Imipenem and rose bengal had the lowest FIC index and showed synergy at 24 h in the time-kill assay. Combinations of SecA inhibitors and carbapenems have synergistic effects against CHDL-producing CRAb. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Reparation and Immunomodulating Properties of Bacillus sp. Metabolites from Permafrost.

    Kalenova, L F; Melnikov, V P; Besedin, I M; Bazhin, A S; Gabdulin, M A; Kolyvanova, S S

    2017-09-01

    An ointment containing metabolites of Bacillus sp. microorganisms isolated from permafrost samples was applied onto the skin wound of BALB/c mice. Metabolites isolated during culturing of Bacillus sp. at 37°C produced a potent therapeutic effect and promoted wound epithelialization by 30% in comparison with the control (ointment base) and by 20% in comparison with Solcoseryl. Treatment with Bacillus sp. metabolites stimulated predominantly humoral immunity, reduced the time of wound contraction and the volume of scar tissue, and promoted complete hair recovery. These metabolites can be considered as modulators of the wound process with predominance of regeneration mechanisms.

  12. UV-guided isolation of fungal metabolites by HSCCC

    Dalsgaard, P.W.; Nielsen, K.F.; Larsen, Thomas Ostenfeld

    2005-01-01

    Analytical standardised reversed phase liquid chromatography (RPLC) data can be helpful in finding a suitable solvent combination for isolation of fungal metabolites by high-speed counter current chromatography. Analysis of the distribution coefficient (K-D) of fungal metabolites in a series...... peptides from a crude fungal extract....

  13. Transportable hyperpolarized metabolites

    Ji, Xiao; Bornet, Aurélien; Vuichoud, Basile; Milani, Jonas; Gajan, David; Rossini, Aaron J.; Emsley, Lyndon; Bodenhausen, Geoffrey; Jannin, Sami

    2017-01-01

    Nuclear spin hyperpolarization of 13C-labelled metabolites by dissolution dynamic nuclear polarization can enhance the NMR signals of metabolites by several orders of magnitude, which has enabled in vivo metabolic imaging by MRI. However, because of the short lifetime of the hyperpolarized magnetization (typically <1 min), the polarization process must be carried out close to the point of use. Here we introduce a concept that markedly extends hyperpolarization lifetimes and enables the transportation of hyperpolarized metabolites. The hyperpolarized sample can thus be removed from the polarizer and stored or transported for use at remote MRI or NMR sites. We show that hyperpolarization in alanine and glycine survives 16 h storage and transport, maintaining overall polarization enhancements of up to three orders of magnitude. PMID:28072398

  14. Ecosystem, location, and climate effects on foliar secondary metabolites of lodgepole pine populations from central British Columbia.

    Wallis, Christopher M; Huber, Dezene P W; Lewis, Kathy J

    2011-06-01

    Lodgepole pines, Pinus contorta Douglas ex Louden var. latifolia Engelm. ex S. Watson, are encountering increased abiotic stress and pest activity due to recent increases in temperature and changes in precipitation throughout their range. This tree species counters these threats by producing secondary metabolites, including phenolics and terpenoids. We examined foliar levels of lignin, soluble phenolics, monoterpenoids, sesquiterpenoids, and diterpenoids in 12 stands in British Columbia, Canada. We used these data to assess associations among foliar secondary metabolite levels and ecosystem, geographic, and climatic variables. Regressions were also performed to observe which combinations of variables best explained secondary metabolite variance. Stands of P. c. latifolia in the Coastal Western Hemlock and Interior Cedar/Hemlock biogeoclimatic zones had consistently greater foliar levels of almost all measured secondary metabolites than did other stands. Lignin was present in greater amounts in Boreal White/Black Spruce ecosystem (i.e., northern) stands than in southern stands, suggesting a role for this metabolite in pine survival in the boreal forest. Attempts to develop regression models with geographic and climatic variables to explain foliar secondary metabolite levels resulted in multiple models with similar predictive capability. Since foliar secondary metabolite levels appeared to vary most between stand ecosystem types and not as much due to geographic and climatic variables, metabolic profiles appeared best matched to the stress levels within local environments. It is unknown if differences in secondary metabolite levels are the result of genetic adaptation or phenotypic plasticity, but results from this and other studies suggest that both are important. These results are interpreted in light of ongoing efforts to assist in the migration of certain populations of P. c. latifolia northward in an effort to counter predicted effects of climate change.

  15. Secondary metabolites from Ganoderma.

    Baby, Sabulal; Johnson, Anil John; Govindan, Balaji

    2015-06-01

    Ganoderma is a genus of medicinal mushrooms. This review deals with secondary metabolites isolated from Ganoderma and their biological significance. Phytochemical studies over the last 40years led to the isolation of 431 secondary metabolites from various Ganoderma species. The major secondary compounds isolated are (a) C30 lanostanes (ganoderic acids), (b) C30 lanostanes (aldehydes, alcohols, esters, glycosides, lactones, ketones), (c) C27 lanostanes (lucidenic acids), (d) C27 lanostanes (alcohols, lactones, esters), (e) C24, C25 lanostanes (f) C30 pentacyclic triterpenes, (g) meroterpenoids, (h) farnesyl hydroquinones (meroterpenoids), (i) C15 sesquiterpenoids, (j) steroids, (k) alkaloids, (l) prenyl hydroquinone (m) benzofurans, (n) benzopyran-4-one derivatives and (o) benzenoid derivatives. Ganoderma lucidum is the species extensively studied for its secondary metabolites and biological activities. Ganoderma applanatum, Ganoderma colossum, Ganoderma sinense, Ganoderma cochlear, Ganoderma tsugae, Ganoderma amboinense, Ganoderma orbiforme, Ganoderma resinaceum, Ganoderma hainanense, Ganoderma concinna, Ganoderma pfeifferi, Ganoderma neo-japonicum, Ganoderma tropicum, Ganoderma australe, Ganoderma carnosum, Ganoderma fornicatum, Ganoderma lipsiense (synonym G. applanatum), Ganoderma mastoporum, Ganoderma theaecolum, Ganoderma boninense, Ganoderma capense and Ganoderma annulare are the other Ganoderma species subjected to phytochemical studies. Further phytochemical studies on Ganoderma could lead to the discovery of hitherto unknown biologically active secondary metabolites. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Towards producing novel fish gelatin films by combination treatments of ultraviolet radiation and sugars (ribose and lactose) as cross-linking agents.

    Bhat, Rajeev; Karim, A A

    2014-07-01

    Developing novel fish gelatin films with better mechanical properties than mammalian gelatin is a challenging but promising endeavor. Studies were undertaken to produce fish gelatin films by combining treatments with different sugars (ribose and lactose) followed 'by' 'and' ultraviolet (UV) radiation, as possible cross-linking agents. Increase in tensile strength and percent elongation at break was recorded, which was more significant in films without sugars that were exposed to UV radiation. Films with added ribose showed decreased solubility after UV treatment and exhibited higher swelling percentage than films with added lactose, which readily dissolved in water. FTIR spectra of all the films showed identical patterns, which indicated no major changes to have occurred in the functional groups as a result of interaction between gelatin, sugars and UV irradiation. The results of this study could be explored for commercial use, depending on industrial needs for either production of edible films or for food packaging purposes.

  17. Detection of Healthcare-Related Extended-Spectrum Beta-Lactamase-Producing Escherichia coli Transmission Events Using Combined Genetic and Phenotypic Epidemiology.

    Anne F Voor In 't Holt

    Full Text Available Since the year 2000 there has been a sharp increase in the prevalence of healthcare-related infections caused by extended-spectrum beta-lactamase (ESBL-producing Escherichia coli. However, the high community prevalence of ESBL-producing E. coli isolates means that many E. coli typing techniques may not be suitable for detecting E. coli transmission events. Therefore, we investigated if High-throughput MultiLocus Sequence Typing (HiMLST and/or Raman spectroscopy were suitable techniques for detecting recent E. coli transmission events.This study was conducted from January until December 2010 at Erasmus University Medical Center, Rotterdam, the Netherlands. Isolates were typed using HiMLST and Raman spectroscopy. A genetic cluster was defined as two or more patients carrying identical isolates. We used predefined definitions for epidemiological relatedness to assess healthcare-related transmission.We included 194 patients; strains of 112 patients were typed using HiMLST and strains of 194 patients were typed using Raman spectroscopy. Raman spectroscopy identified 16 clusters while HiMLST identified 10 clusters. However, no healthcare-related transmission events were detected. When combining data from both typing techniques, we identified eight clusters (n = 34 patients, as well as 78 patients with a non-cluster isolate. However, we could not detect any healthcare-related transmission in these 8 clusters.Although clusters were genetically detected using HiMLST and Raman spectroscopy, no definite epidemiological relationships could be demonstrated which makes the possibility of healthcare-related transmission events highly unlikely. Our results suggest that typing of ESBL-producing E. coli using HiMLST and/or Raman spectroscopy is not helpful in detecting E. coli healthcare-related transmission events.

  18. The secondary metabolite bioinformatics portal

    Weber, Tilmann; Kim, Hyun Uk

    2016-01-01

    . In this context, this review gives a summary of tools and databases that currently are available to mine, identify and characterize natural product biosynthesis pathways and their producers based on ‘omics data. A web portal called Secondary Metabolite Bioinformatics Portal (SMBP at http...... analytical and chemical methods gave access to this group of compounds, nowadays genomics-based methods offer complementary approaches to find, identify and characterize such molecules. This paradigm shift also resulted in a high demand for computational tools to assist researchers in their daily work......Natural products are among the most important sources of lead molecules for drug discovery. With the development of affordable whole-genome sequencing technologies and other ‘omics tools, the field of natural products research is currently undergoing a shift in paradigms. While, for decades, mainly...

  19. Metabolite Damage and Metabolite Damage Control in Plants

    Hanson, Andrew D. [Horticultural Sciences Department and; Henry, Christopher S. [Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois 60439, email:; Computation Institute, University of Chicago, Chicago, Illinois 60637; Fiehn, Oliver [Genome Center, University of California, Davis, California 95616, email:; de Crécy-Lagard, Valérie [Microbiology and Cell Science Department, University of Florida, Gainesville, Florida 32611, email: ,

    2016-04-29

    It is increasingly clear that (a) many metabolites undergo spontaneous or enzyme-catalyzed side reactions in vivo, (b) the damaged metabolites formed by these reactions can be harmful, and (c) organisms have biochemical systems that limit the buildup of damaged metabolites. These damage-control systems either return a damaged molecule to its pristine state (metabolite repair) or convert harmful molecules to harmless ones (damage preemption). Because all organisms share a core set of metabolites that suffer the same chemical and enzymatic damage reactions, certain damage-control systems are widely conserved across the kingdoms of life. Relatively few damage reactions and damage-control systems are well known. Uncovering new damage reactions and identifying the corresponding damaged metabolites, damage-control genes, and enzymes demands a coordinated mix of chemistry, metabolomics, cheminformatics, biochemistry, and comparative genomics. This review illustrates the above points using examples from plants, which are at least as prone to metabolite damage as other organisms.

  20. Combination of liquid chromatography-Fourier transform ion cyclotron resonance-mass spectrometry with 13C-labeling for chemical assignment of sulfur-containing metabolites in onion bulbs.

    Nakabayashi, Ryo; Sawada, Yuji; Yamada, Yutaka; Suzuki, Makoto; Hirai, Masami Yokota; Sakurai, Tetsuya; Saito, Kazuki

    2013-02-05

    Phytochemicals containing heteroatoms (N, O, S, and halogens) often have biological activities that are beneficial to humans. Although targeted profiling methods for such phytochemicals are expected to contribute to rapid chemical assignments, thus making phytochemical genomics and crop breeding much more efficient, there are few profiling methods for the metabolites. Here, as an ultrahigh performance approach, we propose a practical profiling method for S-containing metabolites (S-omics) using onions (Allium cepa) as a representative species and (12)C- and (13)C-based mass spectrometry (MS) and tandem mass spectrometry (MS/MS) analyses by liquid chromatography-Fourier transform ion cyclotron resonance-mass spectrometry (LC-FTICR-MS). Use of the ultrahigh quality data from FTICR-MS enabled simplifying the previous methods to determine specific elemental compositions. MS analysis with a resolution of >250,000 full width at half-maximum and a mass accuracy of ions from other ions on the basis of the natural abundance of (32)S and (34)S and the mass differences among the S isotopes. Comprehensive peak picking using the theoretical mass difference (1.99579 Da) between (32)S-containing monoisotopic ions and their (34)S-substituted counterparts led to the assignment of 67 S-containing monoisotopic ions from the (12)C-based MS spectra, which contained 4693 chromatographic ions. The unambiguous elemental composition of 22 ions was identified through comparative analysis of the (12)C- and (13)C-based MS spectra. Finally, of these, six ions were found to be derived from S-alk(en)ylcysteine sulfoxides and glutathione derivatives. This S-atom-driven approach afforded an efficient chemical assignment of S-containing metabolites, suggesting its potential application for screening not only S but also other heteroatom-containing metabolites in MS-based metabolomics.

  1. Identification of metabolites in human and rat urine after oral administration of Xiao-Qing-Long-Tang granule using ultra high performance liquid chromatography combined with quadrupole time-of-flight mass spectrometry.

    Zhou, Lei; Zhang, Qiang; Qi, Wen; Yan, Shuai; Qu, Jialin; Makino, Toshiaki; Yuan, Dan

    2017-09-01

    Xiao-Qing-Long-Tang is a traditional Chinese formula used for the treatment of cold syndrome, bronchitis, and nasal allergies for thousands of years. However, the in vivo integrated metabolism of its multiple components and the active chemical constituents of Xiao-Qing-Long-Tang remain unknown. In this study, a method using ultra high performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry was established for the detection and identification of the metabolites in human and rat urine after oral administration of Xiao-Qing-Long-Tang. A total of 19 compounds were detected or tentatively identified in human urine samples, including eight prototypes and 11 metabolites. Also, a total of 50 compounds were detected or tentatively identified in rat urine samples, including 15 prototypes and 35 metabolites detected with either a highly sensitive extracted ion chromatogram method or the MS E determination using Mass Fragment software. Our results indicated that phase Ⅱ reactions (e.g. glucuronidation and sulfation) were the main metabolic pathways of flavones, while phase I reactions (e.g. demethylation and hydroxylation) were the major metabolic reaction for alkaloids, lignans, and ginger essential oil. This investigation provided important structural information on the metabolism of Xiao-Qing-Long-Tang and provided evidence to obtain a more comprehensive metabolic profile. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Simvastatin (SV) metabolites in mouse tissues

    Duncan, C.A.; Vickers, S.

    1990-01-01

    SV, a semisynthetic analog of lovastatin, is hydrolyzed in vivo to its hydroxy acid (SVA), a potent inhibitor of HMG CoA reductase (HR). Thus SV lowers plasma cholesterol. SV is a substrate for mixed function oxidases whereas SVA undergoes lactonization and β-oxidation. Male CD-1 mice were dosed orally with a combination of ( 14 C)SV and ( 3 H)SVA at 25 mg/kg of each, bled and killed at 0.5, 2 and 4 hours. Labeled SV, SVA, 6'exomethylene SV (I), 6'CH 2 OH-SV (II), 6'COOH-SV (III) and a β-oxidized metabolite (IV) were assayed in liver, bile, kidneys, testes and plasma by RIDA. Levels of potential and active HR inhibitors in liver were 10 to 40 fold higher than in other tissues. II and III, in which the configuration at 6' is inverted, may be 2 metabolites of I. Metabolites I-III are inhibitors of HR in their hydroxy acid forms. Qualitatively ( 14 C)SV and ( 3 H)SVA were metabolized similarly (consistent with their proposed interconversion). However 3 H-SVA, I-III (including hydroxy acid forms) achieved higher concentrations than corresponding 14 C compounds (except in gall bladder bile). Major radioactive metabolites in liver were II-IV (including hydroxy acid forms). These metabolites have also been reported in rat tissues. In bile a large fraction of either label was unidentified polar metabolites. The presence of IV indicated that mice (like rats) are not good models for SV metabolism in man

  3. Mutant alleles of FAD2-1A and FAD2-1B combine to produce soybeans with the high oleic acid seed oil trait

    Pham Anh-Tung

    2010-09-01

    Full Text Available Abstract Background The alteration of fatty acid profiles in soybean [Glycine max (L. Merr.] to improve soybean oil quality is an important and evolving theme in soybean research to meet nutritional needs and industrial criteria in the modern market. Soybean oil with elevated oleic acid is desirable because this monounsaturated fatty acid improves the nutrition and oxidative stability of the oil. Commodity soybean oil typically contains 20% oleic acid and the target for high oleic acid soybean oil is approximately 80% of the oil; previous conventional plant breeding research to raise the oleic acid level to just 50-60% of the oil was hindered by the genetic complexity and environmental instability of the trait. The objective of this work was to create the high oleic acid trait in soybeans by identifying and combining mutations in two delta-twelve fatty acid desaturase genes, FAD2-1A and FAD2-1B. Results Three polymorphisms found in the FAD2-1B alleles of two soybean lines resulted in missense mutations. For each of the two soybean lines, there was one unique amino acid change within a highly conserved region of the protein. The mutant FAD2-1B alleles were associated with an increase in oleic acid levels, although the FAD2-1B mutant alleles alone were not capable of producing a high oleic acid phenotype. When existing FAD2-1A mutations were combined with the novel mutant FAD2-1B alleles, a high oleic acid phenotype was recovered only for those lines which were homozygous for both of the mutant alleles. Conclusions We were able to produce conventional soybean lines with 80% oleic acid in the oil in two different ways, each requiring the contribution of only two genes. The high oleic acid soybean germplasm developed contained a desirable fatty acid profile, and it was stable in two production environments. The presumed causative sequence polymorphisms in the FAD2-1B alleles were developed into highly efficient molecular markers for tracking the

  4. Mutant alleles of FAD2-1A and FAD2-1B combine to produce soybeans with the high oleic acid seed oil trait.

    Pham, Anh-Tung; Lee, Jeong-Dong; Shannon, J Grover; Bilyeu, Kristin D

    2010-09-09

    The alteration of fatty acid profiles in soybean [Glycine max (L.) Merr.] to improve soybean oil quality is an important and evolving theme in soybean research to meet nutritional needs and industrial criteria in the modern market. Soybean oil with elevated oleic acid is desirable because this monounsaturated fatty acid improves the nutrition and oxidative stability of the oil. Commodity soybean oil typically contains 20% oleic acid and the target for high oleic acid soybean oil is approximately 80% of the oil; previous conventional plant breeding research to raise the oleic acid level to just 50-60% of the oil was hindered by the genetic complexity and environmental instability of the trait. The objective of this work was to create the high oleic acid trait in soybeans by identifying and combining mutations in two delta-twelve fatty acid desaturase genes, FAD2-1A and FAD2-1B. Three polymorphisms found in the FAD2-1B alleles of two soybean lines resulted in missense mutations. For each of the two soybean lines, there was one unique amino acid change within a highly conserved region of the protein. The mutant FAD2-1B alleles were associated with an increase in oleic acid levels, although the FAD2-1B mutant alleles alone were not capable of producing a high oleic acid phenotype. When existing FAD2-1A mutations were combined with the novel mutant FAD2-1B alleles, a high oleic acid phenotype was recovered only for those lines which were homozygous for both of the mutant alleles. We were able to produce conventional soybean lines with 80% oleic acid in the oil in two different ways, each requiring the contribution of only two genes. The high oleic acid soybean germplasm developed contained a desirable fatty acid profile, and it was stable in two production environments. The presumed causative sequence polymorphisms in the FAD2-1B alleles were developed into highly efficient molecular markers for tracking the mutant alleles. The resources described here for the creation

  5. Combined determination of circulating miR-196a and miR-196b levels produces high sensitivity and specificity for early detection of oral cancer.

    Lu, Ya-Ching; Chang, Joseph Tung-Chieh; Huang, Yu-Chen; Huang, Chi-Che; Chen, Wen-Ho; Lee, Li-Yu; Huang, Bing-Shen; Chen, Yin-Ju; Li, Hsiao-Fang; Cheng, Ann-Joy

    2015-02-01

    The aim of this study was to determine whether the oncogenic microRNA family members miR-196a and miR-196b can be circulating biomarkers for the early detection of oral cancer. To determine the stability of circulating miRNA, the blood sample was aliquot and stored at different temperature conditions for analysis. To assess the diagnostic efficacy, we determined the levels of miR-196s in plasma samples, including 53 from healthy individuals, 16 from pre-cancer patients, and 90 from oral cancer patients. In general, circulating miRNA was very stable when storing plasma samples at -20°C or below. In clinical study, both circulating miR-196a and miR-196b were substantially up-regulated in patients with oral pre-cancer lesions (5.9- and 14.8-fold, respectively; P oral cancer patients (9.3- and 17.0-fold, respectively; P cancer patients (AUC = 0.764 or 0.840, miR-196a or miR-196b, respectively), and between normal and cancer patients (AUC = 0.864 or 0.960, miR-196a or miR-196b, respectively). The combined determination of miR-196a and miR-196b levels produces excellent sensitivity and specificity in the diagnosis of patients with oral pre-cancer (AUC = 0.845) or oral cancer (AUC = 0.963), as well as in the prediction of potential malignancy (AUC = 0.950, sensitivity = 91%, specificity = 85%). Combined determination of circulating miR-196a and miR-196b levels may serve as panel plasma biomarkers for the early detection of oral cancer. Copyright © 2014 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  6. Biologically Active Metabolites Synthesized by Microalgae

    Michele Greque de Morais

    2015-01-01

    Full Text Available Microalgae are microorganisms that have different morphological, physiological, and genetic traits that confer the ability to produce different biologically active metabolites. Microalgal biotechnology has become a subject of study for various fields, due to the varied bioproducts that can be obtained from these microorganisms. When microalgal cultivation processes are better understood, microalgae can become an environmentally friendly and economically viable source of compounds of interest, because production can be optimized in a controlled culture. The bioactive compounds derived from microalgae have anti-inflammatory, antimicrobial, and antioxidant activities, among others. Furthermore, these microorganisms have the ability to promote health and reduce the risk of the development of degenerative diseases. In this context, the aim of this review is to discuss bioactive metabolites produced by microalgae for possible applications in the life sciences.

  7. Identification of an antifungal metabolite produced by a potential biocontrol Actinomyces strain A01 Identificação de um metabólito antifúngico produzido pela cepa Actinomyces A01

    Cai Ge Lu

    2008-12-01

    Full Text Available Actinomyces strain A01 was isolated from soil of a vegetable field in the suburb of Beijing, China. According to the morphological, cultural, physiological and biochemical characteristics, and 16S rDNA sequence analysis, strain A01 was identified as Streptomyces lydicus. In the antimicrobial spectrum test strain A01 presented a stable and strong inhibitory activity against several plant pathogenic fungi such as Fusarium oxysporum, Botrytis cinerea, Monilinia laxa, etc. However, no antibacterial activity was found. In pot experiments in greenhouse, the development of tomato gray mold was markedly suppressed by treatment with the fermentation broth of the strain A01, and the control efficacy was higher than those of Pyrimethanil and Polyoxin. A main antifungal compound (purity 99.503% was obtained from the fermentation broth of strain A01 using column chromatography and HPLC. The chemical structural analysis with UV, IR, MS, and NMR confirmed that the compound produced by the strain A01 is natamycin, a polyene antibiotic produced by S. chattanovgensis, S. natalensis, and S. gilvosporeus, widely used as a natural biological preservative for food according to previous reports. The present study revealed a new producing strain of natamycin and its potential application as a biological control agent for fungal plant diseases.A cepa Actinomyces A01 foi isolada do solo de um campo agrícola no subúrbio de Beijing, China. De acordo com as características morfológicas, culturais, fisiológicas e bioquímicas, e análise da sequência 16S rDNA , a cepa A01 foi identificada como Streptomyces lydicus. Nos testes de espectro antimicrobiano, a cepa A01 apresentou atividade inibitória intensa e estável contra vários fungos patogênicos para plantas, como Fusarium oxysporum, Botrytis cinerea, Monilia laxa, etc. Entretanto, não foi encontrada atividade antibacteriana. Em experimentos em estufas, o desenvolvimento do fungo cinza do tomate foi fortemente

  8. Structural Elucidation of Metabolites of Synthetic Cannabinoid UR-144 by Cunninghamella elegans Using Nuclear Magnetic Resonance (NMR) Spectroscopy.

    Watanabe, Shimpei; Kuzhiumparambil, Unnikrishnan; Fu, Shanlin

    2018-03-08

    The number of new psychoactive substances keeps on rising despite the controlling efforts by law enforcement. Although metabolism of the newly emerging drugs is continuously studied to keep up with the new additions, the exact structures of the metabolites are often not identified due to the insufficient sample quantities for techniques such as nuclear magnetic resonance (NMR) spectroscopy. The aim of the study was to characterise several metabolites of the synthetic cannabinoid (1-pentyl-1H-indol-3-yl) (2,2,3,3-tetramethylcyclopropyl) methanone (UR-144) by NMR spectroscopy after the incubation with the fungus Cunninghamella elegans. UR-144 was incubated with C. elegans for 72 h, and the resulting metabolites were chromatographically separated. Six fractions were collected and analysed by NMR spectroscopy. UR-144 was also incubated with human liver microsomes (HLM), and the liquid chromatography-high resolution mass spectrometry analysis was performed on the HLM metabolites with the characterised fungal metabolites as reference standards. Ten metabolites were characterised by NMR analysis including dihydroxy metabolites, carboxy and hydroxy metabolites, a hydroxy and ketone metabolite, and a carboxy and ketone metabolite. Of these metabolites, dihydroxy metabolite, carboxy and hydroxy metabolites, and a hydroxy and ketone metabolite were identified in HLM incubation. The results indicate that the fungus is capable of producing human-relevant metabolites including the exact isomers. The capacity of the fungus C. elegans to allow for NMR structural characterisation by enabling production of large amounts of metabolites makes it an ideal model to complement metabolism studies.

  9. Secondary Metabolites from Higher Fungi: Discovery, Bioactivity, and Bioproduction

    Zhong, Jian-Jiang; Xiao, Jian-Hui

    Medicinal higher fungi such as Cordyceps sinensis and Ganoderma lucidum have been used as an alternative medicine remedy to promote health and longevity for people in China and other regions of the world since ancient times. Nowadays there is an increasing public interest in the secondary metabolites of those higher fungi for discovering new drugs or lead compounds. Current research in drug discovery from medicinal higher fungi involves a multifaceted approach combining mycological, biochemical, pharmacological, metabolic, biosynthetic and molecular techniques. In recent years, many new secondary metabolites from higher fungi have been isolated and are more likely to provide lead compounds for new drug discovery, which may include chemopreventive agents possessing the bioactivity of immunomodulatory, anticancer, etc. However, numerous challenges of secondary metabolites from higher fungi are encountered including bioseparation, identification, biosynthetic metabolism, and screening model issues, etc. Commercial production of secondary metabolites from medicinal mushrooms is still limited mainly due to less information about secondary metabolism and its regulation. Strategies for enhancing secondary metabolite production by medicinal mushroom fermentation include two-stage cultivation combining liquid fermentation and static culture, two-stage dissolved oxygen control, etc. Purification of bioactive secondary metabolites, such as ganoderic acids from G. lucidum, is also very important to pharmacological study and future pharmaceutical application. This review outlines typical examples of the discovery, bioactivity, and bioproduction of secondary metabolites of higher fungi origin.

  10. Producing Distribution Maps for a Spatially-Explicit Ecosystem Model Using Large Monitoring and Environmental Databases and a Combination of Interpolation and Extrapolation

    Arnaud Grüss

    2018-01-01

    Full Text Available To be able to simulate spatial patterns of predator-prey interactions, many spatially-explicit ecosystem modeling platforms, including Atlantis, need to be provided with distribution maps defining the annual or seasonal spatial distributions of functional groups and life stages. We developed a methodology combining extrapolation and interpolation of the predictions made by statistical habitat models to produce distribution maps for the fish and invertebrates represented in the Atlantis model of the Gulf of Mexico (GOM Large Marine Ecosystem (LME (“Atlantis-GOM”. This methodology consists of: (1 compiling a large monitoring database, gathering all the fisheries-independent and fisheries-dependent data collected in the northern (U.S. GOM since 2000; (2 compiling a large environmental database, storing all the environmental parameters known to influence the spatial distribution patterns of fish and invertebrates of the GOM; (3 fitting binomial generalized additive models (GAMs to the large monitoring and environmental databases, and geostatistical binomial generalized linear mixed models (GLMMs to the large monitoring database; and (4 employing GAM predictions to infer spatial distributions in the southern GOM, and GLMM predictions to infer spatial distributions in the U.S. GOM. Thus, our methodology allows for reasonable extrapolation in the southern GOM based on a large amount of monitoring and environmental data, and for interpolation in the U.S. GOM accurately reflecting the probability of encountering fish and invertebrates in that region. We used an iterative cross-validation procedure to validate GAMs. When a GAM did not pass the validation test, we employed a GAM for a related functional group/life stage to generate distribution maps for the southern GOM. In addition, no geostatistical GLMMs were fit for the functional groups and life stages whose depth, longitudinal and latitudinal ranges within the U.S. GOM are not entirely covered by

  11. Identification and analysis of chemical constituents and rat serum metabolites in Suan-Zao-Ren granule using ultra high performance liquid chromatography quadrupole time-of-flight mass spectrometry combined with multiple data processing approaches.

    Du, Yiyang; He, Bosai; Li, Qing; He, Jiao; Wang, Di; Bi, Kaishun

    2017-07-01

    Suan-Zao-Ren granule is widely used to treat insomnia in China. However, because of the complexity and diversity of the chemical compositions in traditional Chinese medicine formula, the comprehensive analysis of constituents in vitro and in vivo is rather difficult. In our study, an ultra high performance liquid chromatography with quadrupole time-of-flight mass spectrometry and the PeakView® software, which uses multiple data processing approaches including product ion filter, neutral loss filter, and mass defect filter, method was developed to characterize the ingredients and rat serum metabolites in Suan-Zao-Ren granule. A total of 101 constituents were detected in vitro. Under the same analysis conditions, 68 constituents were characterized in rat serum, including 35 prototype components and 33 metabolites. The metabolic pathways of main components were also illustrated. Among them, the metabolic pathways of timosaponin AI were firstly revealed. The bioactive compounds mainly underwent the phase I metabolic pathways including hydroxylation, oxidation, hydrolysis, and phase II metabolic pathways including sulfate conjugation, glucuronide conjugation, cysteine conjugation, acetycysteine conjugation, and glutathione conjugation. In conclusion, our results showed that this analysis approach was extremely useful for the in-depth pharmacological research of Suan-Zao-Ren granule and provided a chemical basis for its rational. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. The Profiling and Identification of the Absorbed Constituents and Metabolites of Guizhi Decoction in Rat Plasma and Urine by Rapid Resolution Liquid Chromatography Combined with Quadrupole-Time-of-Flight Mass Spectrometry

    Xiang, Hongjun; Zhang, Lishi; Song, Jiannan; Fan, Bin; Nie, Yinglan; Bai, Dong; Lei, Haimin

    2016-01-01

    Guizhi decoction (GZD), a well-known traditional Chinese medicine (TCM) prescription consisting of Ramulus Cinnamomi, Radix Paeoniae Alba, Radix Glycyrrhizae, Fructus Jujubae and Rhizoma Zingiberis Recens, is usually used for the treatment of common colds, influenza, and other pyretic conditions in the clinic. However, the absorbed ingredients and metabolic compounds of GZD have not been reported. In this paper, a method incorporating rapid resolution liquid chromatography (RRLC) with quadrupole-time-of-flight mass spectrometry (Q-TOF-MS) was used to identify ingredients after oral administration of GZD. Identification of the primary components in GZD, drug-containing serum and urine samples was carried out in order to investigate the assimilation and metabolites of the decoction in vivo. By comparing the total ion chromatograms (TICs) of GZD, a total of 71 constituents were detected or characterized. By comparing TICs of blank and dosed rat plasma, a total of 15 constituents were detected and identified as prototypes according to their retention time (tR) and MS, MS/MS data. Based on this, neutral loss scans of 80 and 176 Da in samples of rat plasma and urine helped us to identify most of the metabolites. Results showed that the predominant metabolic pathways of (epi) catechin and gallic acid were sulfation, methylation, glucuronidation and dehydroxylation; the major metabolic pathways of flavone were hydrolysis, sulfation and glucuronidation. Furthermore, degradation, oxidation and ring fission were found to often occur in the metabolism process of GZD in vivo. PMID:27626411

  13. The economic performance of combined heat and power from biogas produced from manure in Sweden – A comparison of different CHP technologies

    Lantz, Mikael

    2012-01-01

    Highlights: ► Interest in biogas from manure is increasing rapidly due to its climate benefits. ► Farm-scale production of CHP from manure-based biogas is not profitable in Sweden. ► Minor changes in energy prices or suggested production subsidies will make it profitable. ► Profitability is also affected by efficiency of scale and introduction of thermophilic conditions. -- Abstract: Interest in the generation of biogas from agricultural residues is increasing rapidly due to its climate benefits. In this study, an evaluation of the economic feasibility of various technologies, also on different scales, for the production of combined heat and power from manure-based biogas in Sweden is presented. The overall conclusion is that such production is not profitable under current conditions. Thus, the gap between the calculated biogas production cost and the acceptable cost for break-even must be bridged by, for example, different policy instruments. In general, efficiency of scale favors large-scale plants compared to individual farm-scale ones. However, a large, centralized biogas plant, using manure from numerous farms, is not always more cost efficient than a large, farm-scale plant treating manure from a few neighboring farms. The utilization of the produced heat, electricity prices, and political incentives, all have a significant impact on the economic outcome, whereas the value of the digestate as fertilizer is currently having a minor impact. Utilization of heat is, however, often limited by the lack of local heat sinks, in which case the implementation of a biogas process operating under thermophilic conditions could increase the profitability due to a more efficient utilization of reactor volume by using more process heat. The results from this study could be utilized by policy makers when implementing policy instruments considering biogas production from manure as well as companies involved in production and utilization of biogas.

  14. Metabolite Profiling of Peppers of Various Colors Reveals Relationships Between Tocopherol, Carotenoid, and Phytosterol Content.

    Kim, Tae Jin; Choi, Jaehyuk; Kim, Kil Won; Ahn, Soon Kil; Ha, Sun-Hwa; Choi, Yongsoo; Park, Nam Il; Kim, Jae Kwang

    2017-12-01

    Peppers are widely consumed in Korea; the varietal development of peppers with increased content of beneficial plant metabolites is, therefore, of considerable interest. This requires a comprehensive understanding of the metabolic profile of pepper plants and the factors affecting this profile. To this end, we determined the content of various metabolites, such as hydrophilic and lipophilic compounds, phenolic acids, carotenoids, and capsaicinoids in peppers of various colors (green, red, pale green, and violet peppers) and in a high-pungency (green) pepper. We also performed principal component analysis (PCA), Pearson's correlation analysis, and hierarchical clustering analysis (HCA) to determine the relationships among these metabolites in peppers. PCA results indicated no significant variances among the 3 sample replicates. The HCA showed correlations between the metabolites resulting from common or closely linked biosynthesis pathways. Our results showed that carotenoids correlated positively with tocopherols and negatively with phytosterols; our findings also indicated a close relationship between the methylerythritol 4-phosphate and mevalonic acid biosynthesis pathways, providing evidence in favor of an earlier hypothesis regarding crosstalk across the chloroplast membrane. We, thus, demonstrate that metabolic profiling combined with multivariate analysis is a useful tool for analyzing metabolic networks. A total of 71 metabolites were measured in 5 peppers of different colors. The metabolic profiling with multivariate analysis revealed that tocopherol content had a positive correlation with the carotenoid content and a negative correlation with the phytosterol content. The results of this study may help in breeding programs to produce new germplasm with enhanced nutritional quality. © 2017 Institute of Food Technologists®.

  15. Metabolite profiling of Alzheimer's disease cerebrospinal fluid.

    Christian Czech

    Full Text Available Alzheimer's disease (AD is a neurodegenerative disorder characterized by progressive loss of cognitive functions. Today the diagnosis of AD relies on clinical evaluations and is only late in the disease. Biomarkers for early detection of the underlying neuropathological changes are still lacking and the biochemical pathways leading to the disease are still not completely understood. The aim of this study was to identify the metabolic changes resulting from the disease phenotype by a thorough and systematic metabolite profiling approach. For this purpose CSF samples from 79 AD patients and 51 healthy controls were analyzed by gas and liquid chromatography-tandem mass spectrometry (GC-MS and LC-MS/MS in conjunction with univariate and multivariate statistical analyses. In total 343 different analytes have been identified. Significant changes in the metabolite profile of AD patients compared to healthy controls have been identified. Increased cortisol levels seemed to be related to the progression of AD and have been detected in more severe forms of AD. Increased cysteine associated with decreased uridine was the best paired combination to identify light AD (MMSE>22 with specificity and sensitivity above 75%. In this group of patients, sensitivity and specificity above 80% were obtained for several combinations of three to five metabolites, including cortisol and various amino acids, in addition to cysteine and uridine.

  16. Diffusion complex layers of TiC-Ni-Mo type produced on steel during vacuum titanizing process combined with the electrolytic deposition

    Kasprzycka, E.; Krolikowski, A.

    1999-01-01

    Diffusion carbide layers produced on steel surface by means of vacuum titanizing process have been studied. A new technological process combining a vacuum titanizing with an electrolytic deposition of Ni-Mo alloy has been proposed to increase of corrosion resistance of carbide layers. The effect of preliminary electrolytic deposition of Ni-Mo alloy on the NC10 steel surface on the titanized layer structure and its corrosion resistance has ben investigated. As a result, diffusion complex layers of TiC-Ni-Mo type on NC10 steel surface have been obtained. An X-ray structural analysis of titanized surfaces on NC10 steel precovered with an electrolytic Ni-Mo alloy coating (70%Ni+30%Mo) revealed a presence of titanium carbide TiC, NiTi, MoTi and trace quantity of austenite. The image of the TiC-Ni-Mo complex layer on NC10 steel surface obtained by means of joined SEM+TEM method and diagrams of elements distribution in the layer diffusion zone have been shown. Concentration of depth profiles of Ti, Ni, Mo, Cr and Fe in the layer diffusion zone obtained by means of the joined EDS+TEM method are shown. Concentration depth profiles of Ti, Ni, Mo, Cr and Fe in the layer diffusion zone obtained by means of the X r ay microanalysis and microhardness of the layer are shown. An X-ray structural analysis of titanized surfaces on the NC10 steel, without Ni-Mo alloy layer, revealed only a substantial presence of titanium carbide TiC. For corrosion resistance tests the steel samples with various diffusion layers and without layers were used: (i) the TiC-Ni-Mo titanized complex layers on NC10 steel, (ii) the TiC titanized carbide layers on the NC10 steel, (iii) the NC10 steel without layers. Corrosion measurements of sample under test have been performed in 0.1 M H 2 SO 4 by means of potentiodynamic polarization and electrochemical impedance tests. It has been found that the corrosion resistance of titanized steel samples with the TiC and TiC-Ni-Mo layers is higher than for the steel

  17. Identification of human-pathogenic strains of Shiga toxin-producing Escherichia coli from food by a combination of serotyping and molecular typing of Shiga toxin genes.

    Beutin, Lothar; Miko, Angelika; Krause, Gladys; Pries, Karin; Haby, Sabine; Steege, Katja; Albrecht, Nadine

    2007-08-01

    We examined 219 Shiga toxin-producing Escherichia coli (STEC) strains from meat, milk, and cheese samples collected in Germany between 2005 and 2006. All strains were investigated for their serotypes and for genetic variants of Shiga toxins 1 and 2 (Stx1 and Stx2). stx(1) or variant genes were detected in 88 (40.2%) strains and stx(2) and variants in 177 (80.8%) strains. Typing of stx genes was performed by stx-specific PCRs and by analysis of restriction fragment length polymorphisms (RFLP) of PCR products. Major genotypes of the Stx1 (stx(1), stx(1c), and stx(1d)) and the Stx2 (stx(2), stx(2d), stx(2-O118), stx(2e), and stx(2g)) families were detected, and multiple types of stx genes coexisted frequently in STEC strains. Only 1.8% of the STEC strains from food belonged to the classical enterohemorrhagic E. coli (EHEC) types O26:H11, O103:H2, and O157:H7, and only 5.0% of the STEC strains from food were positive for the eae gene, which is a virulence trait of classical EHEC. In contrast, 95 (43.4%) of the food-borne STEC strains carried stx(2) and/or mucus-activatable stx(2d) genes, an indicator for potential high virulence of STEC for humans. Most of these strains belonged to serotypes associated with severe illness in humans, such as O22:H8, O91:H21, O113:H21, O174:H2, and O174:H21. stx(2) and stx(2d) STEC strains were found frequently in milk and beef products. Other stx types were associated more frequently with pork (stx(2e)), lamb, and wildlife meat (stx(1c)). The combination of serotyping and stx genotyping was found useful for identification and for assignment of food-borne STEC to groups with potential lower and higher levels of virulence for humans.

  18. Bioactive Metabolites from Pathogenic and Endophytic Fungi of Forest Trees.

    Masi, Marco; Maddau, Lucia; Linaldeddu, Benedetto Teodoro; Scanu, Bruno; Evidente, Antonio; Cimmino, Alessio

    2018-01-01

    Fungi play an important role in terrestrial ecosystems interacting positively or negatively with plants. These interactions are complex and the outcomes are different depending on the fungal lifestyles, saprotrophic, mutualistic or pathogenic. Furthermore, fungi are well known for producing secondary metabolites, originating from different biosynthetic pathways, which possess biological properties of considerable biotechnological interest. Among the terrestrial ecosystems, temperate forests represent an enormous reservoir of fungal diversity. This review will highlight the goldmine of secondary metabolites produced by pathogenic and endophytic fungi of forest trees with focus on their biological activities. A structured search of bibliographic databases for peer-reviewed research literature was undertaken using a research discovery application providing access to a large and authoritative source of references. The papers selected were examined and the main results were reported and discussed. Two hundred forthy-one papers were included in the review, outlined a large number of secondary metabolites produced by pathogenic and endophiltic fungi and their biological activities, including phytotoxic, antifungal, antioomycetes, antibacterial, brine shrimp lethality, mosquito biting deterrence and larvicidal, cytotoxic, antiproliferative and many other bioactivities. The findings of this review confirm the importance of secondary metabolites produced by pathogenic and endophytic fungi from forest plants growing in temperate regions as an excellent prospects to discover compounds with new bioactivities and mode of actions. In addition, the potential of some metabolites as a source of new drugs and biopesticides is underlined. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Biologically Active Metabolites Produced by the Basidiomycete Quambalaria cyanescens

    Stodůlková, Eva; Císařová, I.; Kolařík, Miroslav; Chudíčková, Milada; Novák, Petr; Man, Petr; Kuzma, Marek; Pavlů, B.; Černý, J.; Flieger, Miroslav

    2015-01-01

    Roč. 10, č. 2 (2015) E-ISSN 1932-6203 R&D Projects: GA ČR GA13-16565S; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61388971 Keywords : ENDOPHYTIC FUNGUS * SP NOV * NAPHTHOQUINONE Subject RIV: EE - Microbiology, Virology Impact factor: 3.057, year: 2015

  20. Secondary Metabolites Produced during the Germination of Streptomyces coelicolor

    Čihák, M.; Kameník, Zdeněk; Šmídová, Klára; Bergman, N.; Benada, Oldřich; Kofroňová, Olga; Petříčková, Kateřina; Bobek, Jan

    2017-01-01

    Roč. 8, DEC 13 (2017), č. článku 2495. ISSN 1664-302X R&D Projects: GA MŠk(CZ) LO1509; GA MŠk(CZ) LM2015055 Institutional support: RVO:61388971 Keywords : spore germination * Streptomyces * cell signaling Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 4.076, year: 2016

  1. Extraction and applications of cyanotoxins and other cyanobacterial secondary metabolites.

    Haque, Fatima; Banayan, Sara; Yee, Josephine; Chiang, Yi Wai

    2017-09-01

    The rapid proliferation of cyanobacteria in bodies of water has caused cyanobacterial blooms, which have become an increasing cause of concern, largely due to the presence of toxic secondary metabolites (or cyanotoxins). Cyanotoxins are the toxins produced by cyanobacteria that may be harmful to surrounding wildlife. They include hepatotoxins, neurotoxins and dermatotoxins, and are classified based on the organs they affect. There are also non-toxic secondary metabolites that include chelators and UV-absorbing compounds. This paper summarizes the optimal techniques for secondary metabolite extraction and the possible useful products that can be obtained from cyanobacteria, with additional focus given to products derived from secondary metabolites. It becomes evident that the potential for their use as biocides, chelators, biofuels, biofertilizers, pharmaceuticals, food and feed, and cosmetics has not yet been comprehensively studied or extensively implemented. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Metabolite identification through multiple kernel learning on fragmentation trees.

    Shen, Huibin; Dührkop, Kai; Böcker, Sebastian; Rousu, Juho

    2014-06-15

    Metabolite identification from tandem mass spectrometric data is a key task in metabolomics. Various computational methods have been proposed for the identification of metabolites from tandem mass spectra. Fragmentation tree methods explore the space of possible ways in which the metabolite can fragment, and base the metabolite identification on scoring of these fragmentation trees. Machine learning methods have been used to map mass spectra to molecular fingerprints; predicted fingerprints, in turn, can be used to score candidate molecular structures. Here, we combine fragmentation tree computations with kernel-based machine learning to predict molecular fingerprints and identify molecular structures. We introduce a family of kernels capturing the similarity of fragmentation trees, and combine these kernels using recently proposed multiple kernel learning approaches. Experiments on two large reference datasets show that the new methods significantly improve molecular fingerprint prediction accuracy. These improvements result in better metabolite identification, doubling the number of metabolites ranked at the top position of the candidates list. © The Author 2014. Published by Oxford University Press.

  3. Direct detection of glucuronide metabolites of lidocaine in sheep urine.

    Doran, Gregory S; Smith, Alistair K; Rothwell, Jim T; Edwards, Scott H

    2018-02-15

    The anaesthetic lidocaine is metabolised quickly to produce a series of metabolites, including several hydroxylated metabolites, which are further metabolised by addition of a glucuronic acid moiety. Analysis of these glucuronide metabolites in urine is performed indirectly by cleaving the glucuronic acid group using β-glucuronidase. However, direct analysis of intact glucuronide conjugates is a more straightforward approach as it negates the need for long hydrolysis incubations, and minimises the oxidation of sensitive hydrolysis products, while also distinguishing between the two forms of hydroxylated metabolites. A method was developed to identify three intact glucuronides of lidocaine in sheep urine using LC-MS/MS, which was further confirmed by the synthesis of glucuronide derivatives of 3OH-MEGX and 4OH-LIDO. Direct analysis of urine allowed the detection of the glucuronide metabolites of hydroxylidocaine (OH-LIDO), hydroxyl-monoethylglycinexylidide (OH-MEGX), and hydroxy-2,6-xylidine (OH-XYL). Analysis of urine before and after β-glucuronidase digestion showed that the efficiency of hydrolysis of these glucuronide metabolites may be underestimated in some studies. Analysis of urine in the current study from three different sheep with similar glucuronide metabolite concentrations resulted in different hydrolysis efficiencies, which may have been a result of different levels of substrate binding by matrix components, preventing enzyme cleavage. The use of direct analysis of intact glucuronides has the benefit of being less influenced by these matrix effects, while also allowing analysis of unstable metabolites like 4OH-XYL, which rapidly oxidises after hydrolysis. Additionally, direct analysis is less expensive and less time consuming, while providing more information about the status of hydroxylated metabolites in urine. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  4. Metabolome analysis - mass spectrometry and microbial primary metabolites

    Højer-Pedersen, Jesper Juul

    2008-01-01

    , and therefore sample preparation is critical for metabolome analysis. The three major steps in sample preparation for metabolite analysis are sampling, extraction and concentration. These three steps were evaluated for the yeast Saccharomyces cerevisiae with primary focus on analysis of a large number...... of metabolites by one method. The results highlighted that there were discrepancies between different methods. To increase the throughput of cultivation, S. cerevisiae was grown in microtitier plates (MTPs), and the growth was found to be comparable with cultivations in shake flasks. The carbon source was either...... a theoretical metabolome. This showed that in combination with the specificity of MS up to 84% of the metabolites can be identified in a high-accuracy ESI-spectrum. A total of 66 metabolites were systematically analyzed by positive and negative ESI-MS/MS with the aim of initiating a spectral library for ESI...

  5. Benzene: a case study in parent chemical and metabolite interactions.

    Medinsky, M A; Kenyon, E M; Schlosser, P M

    1995-12-28

    Benzene, an important industrial solvent, is also present in unleaded gasoline and cigarette smoke. The hematotoxic effects of benzene in humans are well documented and include aplastic anemia and pancytopenia, and acute myelogenous leukemia. A combination of metabolites (hydroquinone and phenol for example) is apparently necessary to duplicate the hematotoxic effect of benzene, perhaps due in part to the synergistic effect of phenol on myeloperoxidase-mediated oxidation of hydroquinone to the reactive metabolite benzoquinone. Since benzene and its hydroxylated metabolites (phenol, hydroquinone and catechol) are substrates for the same cytochrome P450 enzymes, competitive interactions among the metabolites are possible. In vivo data on metabolite formation by mice exposed to various benzene concentrations are consistent with competitive inhibition of phenol oxidation by benzene. In vitro studies of the metabolic oxidation of benzene, phenol and hydroquinone are consistent with the mechanism of competitive interaction among the metabolites. The dosimetry of benzene and its metabolites in the target tissue, bone marrow, depends on the balance of activation processes such as enzymatic oxidation and deactivation processes such as conjugation and excretion. Phenol, the primary benzene metabolite, can undergo both oxidation and conjugation. Thus, the potential exists for competition among various enzymes for phenol. However, zonal localization of Phase I and Phase II enzymes in various regions of the liver acinus regulates this competition. Biologically-based dosimetry models that incorporate the important determinants of benzene flux, including interactions with other chemicals, will enable prediction of target tissue doses of benzene and metabolites at low exposure concentrations relevant for humans.

  6. Distinguishing the Source of Natural Gas Accumulations with a Combined Gas and Co-produced Formation Water Geochemical Approach: a Case Study from the Appalachian Basin

    The purpose of this study is to discuss the use of gas and co-produced formation water geochemistry for identifying the source of natural gas and present gas geochemistry for the northern Appalachian Basin.

  7. A combined stretching-tilting mechanism produces negative, zero and positive linear thermal expansion in a semi-flexible Cd(II)-MOF.

    Lama, Prem; Das, Raj Kumar; Smith, Vincent J; Barbour, Leonard J

    2014-06-21

    A novel semi-flexible Cd(II)-MOF has been synthesized and characterized by variable temperature powder and single-crystal X-ray diffraction. The material displays an unusual combination of thermal expansion (TE) i.e. negative, zero and positive, which is an extremely rare finding, especially for metal-organic frameworks as a result of a combined stretching-tilting mechanism.

  8. Natural metabolites for parasitic weed management.

    Vurro, Maurizio; Boari, Angela; Evidente, Antonio; Andolfi, Anna; Zermane, Nadjia

    2009-05-01

    Compounds of natural origin, such as phytotoxins produced by fungi or natural amino acids, could be used in parasitic weed management strategies by interfering with the early growth stages of the parasites. These metabolites could inhibit seed germination or germ tube elongation, so preventing attachment to the host plant, or, conversely, stimulate seed germination in the absence of the host, contributing to a reduction in the parasite seed bank. Some of the fungal metabolites assayed were very active even at very low concentrations, such as some macrocyclic trichothecenes, which at 0.1 microM strongly suppressed the germination of Orobanche ramosa L. seeds. Interesting results were also obtained with some novel toxins, such as phyllostictine A, highly active in reducing germ tube elongation and seed germination both of O. ramosa and of Cuscuta campestris Yuncker. Among the amino acids tested, methionine and arginine were particularly interesting, as they were able to suppress seed germination at concentrations lower than 1 mM. Some of the fungal metabolites tested were also able to stimulate the germination of O. ramosa seeds. The major findings in this research field are described and discussed.

  9. Bignoniaceae Metabolites as Semiochemicals

    Lucía Castillo

    2010-10-01

    Full Text Available Members of the family Bignoniaceae are mostly found in tropical and neo-tropical regions in America, Asia and Africa, although some of them are cultivated in other regions as ornamentals. Species belonging to this family have been extensively studied in regard to their pharmacological properties (as extracts and isolated compounds. The aim of this review is to summarize the reported scientific evidence about the chemical properties as well as that of the extracts and isolated compounds from species of this family, focusing mainly in insect-plant interactions. As it is known, this family is recognized for the presence of iridoids which are markers of oviposition and feeding preference to species which have became specialist feeders. Some herbivore species have also evolved to the point of been able to sequester iridoids and use them as defenses against their predators. However, iridoids also exhibit anti-insect properties, and therefore they may be good lead molecules to develop botanical pesticides. Other secondary metabolites, such as quinones, and whole extracts have also shown potential as anti-insect agents.

  10. Forecast Combinations

    Timmermann, Allan G

    2005-01-01

    Forecast combinations have frequently been found in empirical studies to produce better forecasts on average than methods based on the ex-ante best individual forecasting model. Moreover, simple combinations that ignore correlations between forecast errors often dominate more refined combination schemes aimed at estimating the theoretically optimal combination weights. In this paper we analyse theoretically the factors that determine the advantages from combining forecasts (for example, the d...

  11. Lightweight expanded clay aggregates (LECA), a new up-scaleable matrix for production of microfungal metabolites

    Nielsen, Kristian Fog; Larsen, Thomas Ostenfeld; Frisvad, Jens Christian

    2004-01-01

    In order to compare the effects of different growth matrices on secondary metabolite production we compared 16 Penicillium species known to produce several families of bioactive compounds. The isolates were grown in rich complex media formulated as semisolid (agar), liquid (still), shake culture,...... for production of sporulation-associated metabolites, such as cyclopenins and viridicatins, for quick up-scaling from agar based media, and as an alternative for production of metabolites that are not induced under submerse conditions....

  12. Deletion of the signalling molecule synthase ScbA has pleiotropic effects on secondary metabolite biosynthesis, morphological differentiation and primary metabolism in Streptomyces coelicolor A3(2)

    D'Alia, Davide; Eggle, D.; Nieselt, K.; Hu, W.-S.; Breitling, R.; Takano, E.

    2011-01-01

    Streptomycetes have high biotechnological relevance as producers of diverse metabolites widely used in medical and agricultural applications. The biosynthesis of these metabolites is controlled by signalling molecules, gamma-butyrolactones, that act as bacterial hormones. In Streptomyces coelicolor,

  13. Identification of Volatile Secondary Metabolites from an Endophytic Microfungus Aspergillus Nomius KUB105

    Lateef Adebola Azeez; Lateef Adebola Azeez; Sepiah Muid; Bolhassan Mohamad Hasnul

    2016-01-01

    Microfungi are a highly diverse group of micro-organisms and important components of the ecosystem with great potential for diverse metabolite production. During a survey of microfungi on leaves in a National Park in Sarawak, an uncommon endophytic microfungus Aspergillus nomius was encountered. The metabolite production of this microfungus was investigated by growing it in a liquid basal medium for 2 weeks. Gas Chromatography - Mass Spectrometry (GC-MS) and Fourier Transform Infrared (FTIR) profiling of the secondary metabolites produced by this microfungus in the liquid medium revealed the presence of 46 different secondary metabolites. The metabolites include saturated hydrocarbons, alkyl halides, alcohols and an unsaturated hydrocarbon. Majority of the metabolites produced were saturated hydrocarbons. Tetracosane, Icosane and 10-Methylicosane were the most abundant metabolites identified while heptadecane and 2,4-dimethylundecane were the least abundant respectively. This study is the first GC-MS and FTIR report of secondary metabolites from A. nomius. The results from this study confirm the ability of microfungi to produce diverse metabolites, including saturated hydrocarbons. (author)

  14. Extracellular Metabolites from Industrial Microalgae and Their Biotechnological Potential

    Lu Liu

    2016-10-01

    Full Text Available Industrial microalgae, as a big family of promising producers of renewable biomass feedstock, have been commercially exploited for functional food, living feed and feed additives, high-value chemicals in nutraceuticals, cosmeceuticals, and chemical reagents. Recently, microalgae have also been considered as a group that might play an important role in biofuel development and environmental protection. Almost all current products of industrial microalgae are derived from their biomass; however, large amounts of spent cell-free media are available from mass cultivation that is mostly unexploited. In this contribution we discuss that these media, which may contain a remarkable diversity of bioactive substances are worthy to be recovered for further use. Obviously, the extracellular metabolites from industrial microalgae have long been neglected in the development of production methods for valuable metabolites. With the advances in the last ten years, more and more structures and properties from extracellular metabolites have been identified, and the potential utilization over wide fields is attracting attention. Some of these extracellular metabolites can be potentially used as drugs, antioxidants, growth regulators or metal chelators. The purpose of this review is to provide an overview of the known extracellular metabolites from industrial microalgae which might be of commercial interest. The attention mainly focuses on the reports of extracellular bioactive metabolites and their potential application in biotechnology.

  15. Quantitative and qualitative determination of CLA produced by bifidobacterium and lactic acid bacteria by combining spectrophotometric and Ag+-HPLC techniques

    Rodríguez-Alcalá, Luis M.; Braga, Teresa; Malcata, F. Xavier; Gomes, Ana; Fontecha, Javier

    2011-01-01

    Bifidobacterium and lactic acid bacteria (LAB), especially from the genera Lactobacillus and Lactococcus, are commonly used in the production of fermented dairy products due to their potential probiotic characteristics. Moreover, some strains of these microorganisms also have the ability to produce conjugated linoleic acid (CLA) from linoleic acid (LA), which has attracted much attention as a novel type of beneficial functional fermented milk. In the present work 22 probiotic bact...

  16. Note on ‘Combining an Improved Multi-delivery Policy into a Single-producer Multi-retailer Integrated Inventory System with Scrap in Production’

    Chung-li Chou; Wen Kuei Wu; Singa W. Chiu

    2014-01-01

    In a recent study, Chiu et al. (2014) employed a mathematical modeling and conventional optimization technique to determine the optimal production-shipment policy for a single-producer multi-retailer integrated inventory system with scrap and an improved product distribution policy. This study replaces their optimization process of using differential calculus with an algebraic derivation. Such a simplified approach enables practitioners, who may have insufficient knowledge of calculus, to man...

  17. Investigation of metabolites for estimating blood deposition time.

    Lech, Karolina; Liu, Fan; Davies, Sarah K; Ackermann, Katrin; Ang, Joo Ern; Middleton, Benita; Revell, Victoria L; Raynaud, Florence J; Hoveijn, Igor; Hut, Roelof A; Skene, Debra J; Kayser, Manfred

    2018-01-01

    Trace deposition timing reflects a novel concept in forensic molecular biology involving the use of rhythmic biomarkers for estimating the time within a 24-h day/night cycle a human biological sample was left at the crime scene, which in principle allows verifying a sample donor's alibi. Previously, we introduced two circadian hormones for trace deposition timing and recently demonstrated that messenger RNA (mRNA) biomarkers significantly improve time prediction accuracy. Here, we investigate the suitability of metabolites measured using a targeted metabolomics approach, for trace deposition timing. Analysis of 171 plasma metabolites collected around the clock at 2-h intervals for 36 h from 12 male participants under controlled laboratory conditions identified 56 metabolites showing statistically significant oscillations, with peak times falling into three day/night time categories: morning/noon, afternoon/evening and night/early morning. Time prediction modelling identified 10 independently contributing metabolite biomarkers, which together achieved prediction accuracies expressed as AUC of 0.81, 0.86 and 0.90 for these three time categories respectively. Combining metabolites with previously established hormone and mRNA biomarkers in time prediction modelling resulted in an improved prediction accuracy reaching AUCs of 0.85, 0.89 and 0.96 respectively. The additional impact of metabolite biomarkers, however, was rather minor as the previously established model with melatonin, cortisol and three mRNA biomarkers achieved AUC values of 0.88, 0.88 and 0.95 for the same three time categories respectively. Nevertheless, the selected metabolites could become practically useful in scenarios where RNA marker information is unavailable such as due to RNA degradation. This is the first metabolomics study investigating circulating metabolites for trace deposition timing, and more work is needed to fully establish their usefulness for this forensic purpose.

  18. Contamination of wheat grain with microscopic fungi and their metabolites in Poland in 2006-2009.

    Stuper-Szablewska, Kinga; Perkowski, Juliusz

    2014-01-01

    Microscopic fungi are microorganisms commonly found in cereal products. Pathogens of cereals colonising kernels are responsible, among other things, for deterioration of the technological value of grain. However, the greatest threat is posed by mycotoxins produced by toxin-forming strains of these microorganisms. The aim of the present study was to determine the level of contamination with microscopic fungi and mycotoxins from the group of trichothecenes in wheat grain from Poland in a 4-year cycle. In the period 2006-2009, studies were conducted on the content of fungal metabolites (ergosterol [ERG] and type A and B trichothecenes) and the content of microscopic fungi expressed in colony-forming units (CFU) in wheat grain. A total of 129 grain samples were examined. Analysed wheat samples had similar contents of both the investigated fungal metabolites and levels of microscopic fungi. Contents of microscopic fungi were low. Concentration of ERG, on average, was 2.64 mg/kg, while in colony forming units this value ranged from 10(1) CFU/g to over 10(3) CFU/g. The total concentration of type A and B trichothecenes was also low and within the 4 years of the investigation did not exceed 0.062 mg/kg. Concentration of DON did not exceed 1,250 µg/kg, established as safe in grain for human consumption, in any of the tested samples. For the results collected in the years 2006-2009 and presented in this paper, correlations were calculated between the amount of mycoflora and analysed metabolites in 3 possible combinations: 0.7096 for ERG/total toxin concentration, 0.6086 for ERG/log CFU/g, and 0.4016 for the concentration of total toxins/log CFU/g. Highly significant correlations between the content of trichothecenes and the concentration of ERG indicate that the level of this metabolite is closely related to the content of mycotoxins in grain.

  19. Genomics-guided discovery of secondary metabolites and their regulation in Pseudomonas protegens Pf-5

    Pseudomonas protegens strain Pf-5 is a well-characterized rhizosphere bacterium known for its production of a diverse spectrum of secondary metabolites and its capacity to suppress plant diseases caused by soilborne fungal, bacterial and oomycete pathogens. Metabolites produced by Pf-5 include 2,4-...

  20. DDT and metabolites

    Mirmigkou, S.; de Boer, J.; Alaee, M.

    2016-01-01

    Dichlorodiphenyltrichloroethane (DDT) is a well-known insecticide that was introduced and widely used during World War II. In total more than 4.5 million tonnes DDT have been produced. Although its use and production stopped worldwide during the 1970s, it was reintroduced in the 2000s as a malaria

  1. Production of Phytotoxic Metabolite Using Biphasic Fermentation System from Strain C1136 of Lasiodiplodia pseudotheobromae, a Potential Bioherbicidal Agent

    Charles Oluwaseun ADETUNJI; Julius Kola OLOKE; Gandham PRASAD; Moses ABALAKA; Emenike Onyebum IROKANULO

    2017-01-01

    Formulation of effective and environmental friendly bioherbicides depends on the type of fermentation medium used for the production of phytotoxic metabolites. The effect of biomass, colony forming unit and the phytotoxic metabolite produced from the biphasic fermentation was carried out, while the phytotoxic metabolite was tested in vivo and in-vitro on Echinochola crus-galli and dicotyledonous Chromolaena odorata. The mutant strain of Lasiodiplodia pseudotheobromae C1136 (Lp90) produced th...

  2. Volatile metabolites profiling of a Chinese mangrove endophytic ...

    Pestalotiopsis JCM2A4, an endophytic fungus originally isolated from leaves of the Chinese mangrove plant Rhizophora mucronata, produces a mixture of volatile metabolites. As determined by gas chromatography and gas chromatography/mass spectrometry (GC/GC-MS), 18 compounds representing all of the hexane ...

  3. Volatile metabolites profiling of a Chinese mangrove endophytic ...

    ufuoma

    plant Rhizophora mucronata, produces a mixture of volatile metabolites. As determined ... screened using 2,2'-diphenyl-b-picrylhydrazyl (DPPH) free radical scavenging method. This is the ... night prior to autoclaving, two flasks) at room temperature under ... stand at room temperature for 30 min in the dark and absorbance.

  4. Towards systems metabolic engineering of streptomycetes for secondary metabolites production

    Robertsen, Helene Lunde; Weber, Tilmann; Kim, Hyun Uk

    2017-01-01

    Streptomycetes are known for their inherent ability to produce pharmaceutically relevant secondary metabolites. Discovery of medically useful, yet novel compounds has become a great challenge due to frequent rediscovery of known compounds and a consequent decline in the number of relevant clinical...

  5. Exometabolomic Analysis of Cross-Feeding Metabolites.

    Lubbe, Andrea; Bowen, Benjamin P; Northen, Trent

    2017-10-04

    Microbial consortia have the potential to perform complex, industrially important tasks. The design of microbial consortia requires knowledge of the substrate preferences and metabolic outputs of each member, to allow understanding of potential interactions such as competition and beneficial metabolic exchange. Here, we used exometabolite profiling to follow the resource processing by a microbial co-culture of two biotechnologically relevant microbes, the bacterial cellulose degrader Cellulomonas fimi, and the oleaginous yeast Yarrowia lipolytica. We characterized the substrate preferences of the two strains on compounds typically found in lignocellulose hydrolysates. This allowed prediction that specific sugars resulting from hemicellulose polysaccharide degradation by C. fimi may serve as a cross-feeding metabolites to Y. lipolytica in co-culture. We also showed that products of ionic liquid-treated switchgrass lignocellulose degradation by C. fimi were channeled to Y. lipolytica in a co-culture. Additionally, we observed metabolites, such as shikimic acid accumulating in the co-culture supernatants, suggesting the potential for producing interesting co-products. Insights gained from characterizing the exometabolite profiles of individual and co-cultures of the two strains can help to refine this interaction, and guide strategies for making this an industrially viable co-culture to produce valuable products from lignocellulose material.

  6. Combined effects of moderately elevated blood glucose and locally produced TGF-beta1 on glomerular morphology and renal collagen production

    Krag, Søren; Nyengaard, Jens R; Wogensen, Lise

    2007-01-01

    BACKGROUND: There is a correlation between renal graft rejection and blood glucose (BG) levels. Furthermore, diabetic patients may develop non-diabetic renal diseases, which in some circumstances progress rapidly. Since transforming growth factor-beta1 (TGF-beta) levels are elevated in many renal...... diseases, the accelerated progression may be due to interactions between glucose and locally produced TGF-beta1. Therefore, we investigated the effect of mild hyperglycaemia on glomerular morphology and collagen production in TGF-beta1 transgenic mice. METHODS: To achieve BG concentrations of approximately...... 15 mmol/l in TGF-beta1 transgenic and non-transgenic mice, we used multiple streptozotocin (STZ) injections, and after 8 weeks, we measured the changes in glomerular morphology and total collagen content. We also analysed extracellular matrix (ECM) and protease mRNA levels using real-time polymerase...

  7. Engineering of secondary metabolite production in streptomycetes

    Robertsen, Helene Lunde; Gram, Lone

    Streptomycetes are known for their ability to produce a range of different secondary metabolites, including antibiotics, immunosuppressive, anti-fungals, and anti-cancer compounds. Of these compounds, antibiotics play an important role in the clinics for treatment of both mild and severe bacterial...... the computational prediction of suitable 20 bp protospacers for the single guide RNAs and a USER-cloning method for construction of the CRISPR plasmids. Additional improvement to the system was achieved through the development of an optimised USER assembly workflow for cheaper and faster plasmid construction....... The workflow was verified by manual knock-down of two biosynthetic gene clusters in model organism Streptomyces coelicolor A3(2), which confirmed the applicability of the system. A second part of the thesis was devoted to engineering of Streptomyces collinus Tü 365, which is a known producer of the narrow...

  8. Evaluating Metabolite-Related DNA Oxidation and Adduct Damage from Aryl Amines Using a Microfluidic ECL Array.

    Bist, Itti; Bhakta, Snehasis; Jiang, Di; Keyes, Tia E; Martin, Aaron; Forster, Robert J; Rusling, James F

    2017-11-21

    Damage to DNA from the metabolites of drugs and pollutants constitutes a major human toxicity pathway known as genotoxicity. Metabolites can react with metal ions and NADPH to oxidize DNA or participate in S N 2 reactions to form covalently linked adducts with DNA bases. Guanines are the main DNA oxidation sites, and 8-oxo-7,8-dihydro-2-deoxyguanosine (8-oxodG) is the initial product. Here we describe a novel electrochemiluminescent (ECL) microwell array that produces metabolites from test compounds and measures relative rates of DNA oxidation and DNA adduct damage. In this new array, films of DNA, metabolic enzymes, and an ECL metallopolymer or complex assembled in microwells on a pyrolytic graphite wafer are housed in dual microfluidic chambers. As reactant solution passes over the wells, metabolites form and can react with DNA in the films to form DNA adducts. These adducts are detected by ECL from a RuPVP polymer that uses DNA as a coreactant. Aryl amines also combine with Cu 2+ and NADPH to form reactive oxygen species (ROS) that oxidize DNA. The resulting 8-oxodG was detected selectively by ECL-generating bis(2,2'-bipyridine)-(4-(1,10-phenanthrolin-6-yl)-benzoic acid)Os(II). DNA/enzyme films on magnetic beads were oxidized similarly, and 8-oxodG determined by LC/MS/MS enabled array standardization. The array limit of detection for oxidation was 720 8-oxodG per 10 6 nucleobases. For a series of aryl amines, metabolite-generated DNA oxidation and adduct formation turnover rates from the array correlated very well with rodent 1/TD 50 and Comet assay results.

  9. Ridge optical waveguide in an Er3+/Yb3+ co-doped phosphate glass produced by He+ ion implantation combined with Ar+ ion beam etching

    Tan Yang; Chen Feng; Hu Lili; Xing Pengfei; Chen Yanxue; Wang Xuelin; Wang Keming

    2007-01-01

    This paper reports on the fabrication and characterization of a ridge optical waveguide in an Er 3+ /Yb 3+ co-doped phosphate glass. The He + ion implantation (at energy of 2.8 MeV) is first applied onto the sample to produce a planar waveguide substrate, and then Ar + ion beam etching (at energy of 500 eV) is carried out to construct rib stripes on the sample surface that has been deposited by a specially designed photoresist mask. According to a reconstructed refractive index profile of the waveguide cross section, the modal distribution of the waveguide is simulated by applying a computer code based on the beam propagation method, which shows reasonable agreement with the experimentally observed waveguide mode by using the end-face coupling method. Simulation of the incident He ions at 2.8 MeV penetrating into the Er 3+ /Yb 3+ co-doped phosphate glass substrate is also performed to provide helpful information on waveguide formation

  10. Laser-produced Sm{sub 1-x}Nd{sub x}NiO{sub 3} plasma dynamic through Langmuir probe and ICCD imaging combined analysis

    Ngom, B.D. [Universite Cheikh Anta Diop de Dakar (UCAD), Laboratoire de Photonique et Nano-Fabrication, Groupe de Physique du Solide et Sciences des Materiaux (GPSSM), Faculte des Sciences et Techniques, Dakar-Fann Dakar (Senegal); University of South Africa, UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, Pretoria (South Africa); National Research Foundation, Nanosciences African Network (NANOAFNET), iThemba LABS, Somerset West, Western Cape (South Africa); Lafane, S.; Abdelli-Messaci, S.; Kerdja, T. [Centre de Developpement des Technologies Avancees, Division des Milieux Ionises et Laser, Baba Hassen (Algeria); Maaza, M. [University of South Africa, UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, Pretoria (South Africa); National Research Foundation, Nanosciences African Network (NANOAFNET), iThemba LABS, Somerset West, Western Cape (South Africa)

    2016-01-15

    The dynamics of laser-produced plasma of Sm{sub 1-x}Nd{sub x}NiO{sub 3} is studied over oxygen pressure ranging from vacuum up to 2 mbar via Langmuir probe, and intensified charge-coupled device-imaging techniques. The analysis of the oxygen pressure dependence of the ion yield points out to four different regimes. More accurately, the specific ionic current shows a first drop at about 2 x 10{sup -2} mbar corresponding to the appearance of two peaks in the profile of the ionic signal. Likewise, this pressure marks the early stage of the plume splitting into two prominent components as observed by the ICCD imaging. Below 2 x 10{sup -2} mbar, the dynamic of the plume is directive (1D), while a quasi-stable behavior on the ionic current signal is observed. In the 0.2- to 0.5-mbar region, a quasi-stationary regime is obtained. More accurately, both the ionic yield and the plume stopping distance vary very slowly in such pressures range. Above 0.5 mbar, the ionic yield is altered again corresponding to the appearance of the diffusion regime. At a pressure of 1.5 mbar we observe a second appearance of an ionic signal peak. A correlation between the results obtained by Langmuir probe and ICCD imaging is made, presented, and discussed within this contribution. (orig.)

  11. Enhancement Performance of Hybrid Membrane Zeolite/PES for Produced Water Treatment With Membrane Modification Using Combination of Ulta Violet Irradiation, Composition of Zeolite and Thermal Annealing

    Djoko Kusworo Tutuk

    2018-01-01

    Full Text Available Produced water is a wastewater from oil production that must be treated well. Membrane is one alternative of water treatments technology based on filtration method. However, in the use of membrane, there’s no exact optimal variable that influences membrane performance.This underlying research to assess factors that influences membrane performance to obtain optimal condition. Therefore, the objectives of this study are determining the effect of variable process in membrane fabrication and several modification techniques on membrane performance. The membranes were fabricated via dry-wet phase inversion method. The process variables of this experiment are varying the Zeolite concentration by low level 1% weight and 3% weight, UV irradiation time low level 2 minutes and high level 6 minutes, thermal annealing temperature low level 160°C and high level 180°C. The experiment runs were designed using central composite design. From the research that has been perfromed, PES/Zeolit membrane has a higher permeability after being irradiated by UV light and denser pore after heating and the longer of annealing time.

  12. Near-Infrared Spectroscopy Combined with Multivariate Calibration to Predict the Yield of Sesame Oil Produced by Traditional Aqueous Extraction Process

    Yong-Dong Xu

    2017-01-01

    Full Text Available Sesame oil produced by the traditional aqueous extraction process (TAEP has been recognized by its pleasant flavor and high nutrition value. This paper developed a rapid and nondestructive method to predict the sesame oil yield by TAEP using near-infrared (NIR spectroscopy. A collection of 145 sesame seed samples was measured by NIR spectroscopy and the relationship between the TAEP oil yield and the spectra was modeled by least-squares support vector machine (LS-SVM. Smoothing, taking second derivatives (D2, and standard normal variate (SNV transformation were performed to remove the unwanted variations in the raw spectra. The results indicated that D2-LS-SVM (4000–9000 cm−1 obtained the most accurate calibration model with root mean square error of prediction (RMSEP of 1.15 (%, w/w. Moreover, the RMSEP was not significantly influenced by different initial values of LS-SVM parameters. The calibration model could be helpful to search for sesame seeds with higher TAEP oil yields.

  13. Tri-membrane nanoparticles produced by combining liposome fusion and a novel patchwork of bicelles to overcome endosomal and nuclear membrane barriers to cargo delivery.

    Yamada, Asako; Mitsueda, Asako; Hasan, Mahadi; Ueda, Miho; Hama, Susumu; Warashina, Shota; Nakamura, Takashi; Harashima, Hideyoshi; Kogure, Kentaro

    2016-03-01

    Membrane fusion is a rational strategy for crossing intracellular membranes that present barriers to liposomal nanocarrier-mediated delivery of plasmid DNA into the nucleus of non-dividing cells, such as dendritic cells. Based on this strategy, we previously developed nanocarriers consisting of a nucleic acid core particle coated with four lipid membranes [Akita, et al., Biomaterials, 2009, 30, 2940-2949]. However, including the endosomal membrane and two nuclear membranes, cells possess three intracellular membranous barriers. Thus, after entering the nucleus, nanoparticles coated with four membranes would still have one lipid membrane remaining, and could impede cargo delivery. Until now, coating a core particle with an odd number of lipid membranes was challenging. To produce nanocarriers with an odd number of lipid membranes, we developed a novel coating method involving lipid nano-discs, also known as bicelles, as a material for packaging DNA in a carrier with an odd number of lipid membranes. In this procedure, bicelles fuse to form an outer coating that resembles a patchwork quilt, which allows the preparation of nanoparticles coated with only three lipid membranes. Moreover, the transfection activity of dendritic cells with these three-membrane nanoparticles was higher than that for nanoparticles coated with four lipid membranes. In summary, we developed novel nanoparticles coated with an odd number of lipid membranes using the novel "patchwork-packaging method" to deliver plasmid DNA into the nucleus via membrane fusion.

  14. Secondary metabolites from Eremostachys laciniata

    Calis, Ihsan; Güvenc, Aysegül; Armagan, Metin

    2008-01-01

    ), and forsythoside B (18), and five flavone derivatives, luteolin (19), luteolin 7-O-β-D-glucopyranoside (20), luteolin 7-O-(6''-O-β-D-apiofuranosyl)-β-D-glucopyranoside (21), apigenin 7-O-β-D-glucopyranoside (22), and apigenin 7-O-(6''-O-p-coumaroyl)-β-D-glucopyranoside (23). The structures of the metabolites were...... elucidated from spectroscopic (UV, IR, 1D- and 2D-NMR) and ESI-MS evidence, as well as from their specific optical rotation. The presence of these metabolites of three different classes strongly supports the close relationship of the genera Eremostachys and Phlomis....

  15. Economic and genetic performance of various combinations of in vitro-produced embryo transfers and artificial insemination in a dairy herd.

    Kaniyamattam, Karun; Block, Jeremy; Hansen, Peter J; De Vries, Albert

    2018-02-01

    The objective of this study was to find the optimal proportions of pregnancies from an in vitro-produced embryo transfer (IVP-ET) system and artificial insemination (AI) so that profitability is maximized over a range of prices for embryos and surplus dairy heifer calves. An existing stochastic, dynamic dairy model with genetic merits of 12 traits was adapted for scenarios where 0 to 100% of the eligible females in the herd were impregnated, in increments of 10%, using IVP-ET (ET0 to ET100, 11 scenarios). Oocytes were collected from the top donors selected for the trait lifetime net merit (NM$) and fertilized with sexed semen to produce IVP embryos. Due to their greater conception rates, first ranked were eligible heifer recipients based on lowest number of unsuccessful inseminations or embryo transfers, and then on age. Next, eligible cow recipients were ranked based on the greatest average estimated breeding values (EBV) of the traits cow conception rate and daughter pregnancy rate. Animals that were not recipients of IVP embryos received conventional semen through AI, except that the top 50% of heifers ranked for EBV of NM$ were inseminated with sexed semen for the first 2 AI. The economically optimal proportions of IVP-ET were determined using sensitivity analysis performed for 24 price sets involving 6 different selling prices of surplus dairy heifer calves at approximately 105 d of age and 4 different prices of IVP embryos. The model was run for 15 yr after the start of the IVP-ET program for each scenario. The mean ± standard error of true breeding values of NM$ of all cows in the herd in yr 15 was greater by $603 ± 2 per cow per year for ET100 when compared with ET0. The optimal proportion of IVP-ET ranged from ET100 (for surplus dairy heifer calves sold for ≥$300 along with an additional premium based on their EBV of NM$ and a ≤$100 embryo price) to as low as ET0 (surplus dairy heifer calves sold at $300 with a $200 embryo price). For the default

  16. Dry syngas purification process for coal gas produced in oxy-fuel type integrated gasification combined cycle power generation with carbon dioxide capturing feature.

    Kobayashi, Makoto; Akiho, Hiroyuki

    2017-12-01

    Electricity production from coal fuel with minimizing efficiency penalty for the carbon dioxide abatement will bring us sustainable and compatible energy utilization. One of the promising options is oxy-fuel type Integrated Gasification Combined Cycle (oxy-fuel IGCC) power generation that is estimated to achieve thermal efficiency of 44% at lower heating value (LHV) base and provide compressed carbon dioxide (CO 2 ) with concentration of 93 vol%. The proper operation of the plant is established by introducing dry syngas cleaning processes to control halide and sulfur compounds satisfying tolerate contaminants level of gas turbine. To realize the dry process, the bench scale test facility was planned to demonstrate the first-ever halide and sulfur removal with fixed bed reactor using actual syngas from O 2 -CO 2 blown gasifier for the oxy-fuel IGCC power generation. Design parameter for the test facility was required for the candidate sorbents for halide removal and sulfur removal. Breakthrough test was performed on two kinds of halide sorbents at accelerated condition and on honeycomb desulfurization sorbent at varied space velocity condition. The results for the both sorbents for halide and sulfur exhibited sufficient removal within the satisfactory short depth of sorbent bed, as well as superior bed conversion of the impurity removal reaction. These performance evaluation of the candidate sorbents of halide and sulfur removal provided rational and affordable design parameters for the bench scale test facility to demonstrate the dry syngas cleaning process for oxy-fuel IGCC system as the scaled up step of process development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Linking dynamic phenotyping with metabolite analysis to study natural variation in drought responses of Brachypodium distachyon

    Lorraine H.C. Fisher

    2016-11-01

    Full Text Available Drought is an important environmental stress limiting the productivity of major crops worldwide. Understanding drought tolerance and possible mechanisms for improving drought resistance is therefore a prerequisite to develop drought-tolerant crops that produce significant yields with reduced amounts of water. Brachypodium distachyon (Brachypodium is a key model species for cereals, forage grasses and energy grasses. In this study, initial screening of a Brachypodium germplasm collection consisting of 138 different ecotypes exposed to progressive drought, highlighted the natural variation in morphology, biomass accumulation and responses to drought stress. A core set of ten ecotypes, classified as being either tolerant, susceptible or intermediate, in response to drought stress, were exposed to mild or severe (respectively 15% and 0% soil water content drought stress and phenomic parameters linked to growth and colour changes were assessed. When exposed to severe drought stress, phenotypic data and metabolite profiling combined with multivariate analysis revealed a remarkable consistency in separating the selected ecotypes into their different pre-defined drought tolerance groups. Increases in several metabolites, including for the phytohormones jasmonic acid and salicylic acid, and TCA-cycle intermediates, were positively correlated with biomass yield and with reduced yellow pixel counts; suggestive of delayed senescence, both key target traits for crop improvement to drought stress. While metabolite analysis also separated ecotypes into the distinct tolerance groupings after exposure to mild drought stress, similar analysis of the phenotypic data failed to do so, confirming the value of metabolomics to investigate early responses to drought stress. The results highlight the potential of combining the analyses of phenotypic and metabolic responses to identify key mechanisms and markers associated with drought tolerance in both the Brachypodium

  18. Emerging New Strategies for Successful Metabolite Identification in Metabolomics

    Bingol, Ahmet K.; Bruschweiler-Li, Lei; Li, Dawei; Zhang, Bo; Xie, Mouzhe; Bruschweiler, Rafael

    2016-02-26

    NMR is a very powerful tool for the identification of known and unknown (or unnamed) metabolites in complex mixtures as encountered in metabolomics. Known compounds can be reliably identified using 2D NMR methods, such as 13C-1H HSQC, for which powerful web servers with databases are available for semi-automated analysis. For the identification of unknown compounds, new combinations of NMR with MS have been developed recently that make synergistic use of the mutual strengths of the two techniques. The use of chemical additives to the NMR tube, such as reactive agents, paramagnetic ions, or charged silica nanoparticles, permit the identification of metabolites with specific physical chemical properties. In the following sections, we give an overview of some of the recent advances in metabolite identification and discuss remaining challenges.

  19. Combining Modeling and Monitoring to Produce a New Paradigm of an Integrated Approach to Providing Long-Term Control of Contaminants

    Fogwell, T. W.

    2009-12-01

    Sir David King, Chief Science Advisor to the British government and Cambridge University Professor, stated in October 2005, "The scientific community is considerably more capable than it has been in the past to assist governments to avoid and reduce risk to their own populations. Prime ministers and presidents ignore the advice from the science community at the peril of their own populations." Some of these greater capabilities can be found in better monitoring techniques applied to better modeling methods. These modeling methods can be combined with the information derived from monitoring data in order to decrease the risk of population exposure to dangerous substances and to promote efficient control or cleanup of the contaminants. An introduction is presented of the types of problems that exist for long-term control of radionuclides at DOE sites. A breakdown of the distributions at specific sites is given, together with the associated difficulties. A paradigm for remediation showing the integration of monitoring with modeling is presented. It is based on a feedback system that allows for the monitoring to act as principal sensors in a control system. The resulting system can be optimized to improve performance. Optimizing monitoring automatically entails linking the monitoring with modeling. If monitoring designs were required to be more efficient, thus requiring optimization, then the monitoring automatically becomes linked to modeling. Records of decision could be written to accommodate revisions in monitoring as better modeling evolves. Currently the establishment of a very prescriptive monitoring program fails to have a mechanism for improving models and improving control of the contaminants. The technical pieces of the required paradigm are already available; they just need to be implemented and applied to solve the long-term control of the contaminants. An integration of the various parts of the system is presented. Each part is described, and examples are

  20. Biodegradation of clofibric acid and identification of its metabolites

    Salgado, R. [REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); ESTS-IPS, Escola Superior de Tecnologia de Setubal do Instituto Politecnico de Setubal, Rua Vale de Chaves, Campus do IPS, Estefanilha, 2910-761 Setubal (Portugal); Oehmen, A. [REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Carvalho, G. [REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Instituto de Biologia Experimental e Tecnologica (IBET), Av. da Republica (EAN), 2784-505 Oeiras (Portugal); Noronha, J.P. [REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Reis, M.A.M., E-mail: amr@fct.unl.pt [REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal)

    2012-11-30

    Graphical abstract: Metabolites produced during clofibric acid biodegradation. Highlights: Black-Right-Pointing-Pointer Clofibric acid is biodegradable. Black-Right-Pointing-Pointer Mainly heterotrophic bacteria degraded the clofibric acid. Black-Right-Pointing-Pointer Metabolites of clofibric acid biodegradation were identified. Black-Right-Pointing-Pointer The metabolic pathway of clofibric acid biodegradation is proposed. - Abstract: Clofibric acid (CLF) is the pharmaceutically active metabolite of lipid regulators clofibrate, etofibrate and etofyllinclofibrate, and it is considered both environmentally persistent and refractory. This work studied the biotransformation of CLF in aerobic sequencing batch reactors (SBRs) with mixed microbial cultures, monitoring the efficiency of biotransformation of CLF and the production of metabolites. The maximum removal achieved was 51% biodegradation (initial CLF concentration = 2 mg L{sup -1}), where adsorption and abiotic removal mechanisms were shown to be negligible, showing that CLF is indeed biodegradable. Tests showed that the observed CLF biodegradation was mainly carried out by heterotrophic bacteria. Three main metabolites were identified, including {alpha}-hydroxyisobutyric acid, lactic acid and 4-chlorophenol. The latter is known to exhibit higher toxicity than the parent compound, but it did not accumulate in the SBRs. {alpha}-Hydroxyisobutyric acid and lactic acid accumulated for a period, where nitrite accumulation may have been responsible for inhibiting their degradation. A metabolic pathway for the biodegradation of CLF is proposed in this study.

  1. Biodegradation of clofibric acid and identification of its metabolites

    Salgado, R.; Oehmen, A.; Carvalho, G.; Noronha, J.P.; Reis, M.A.M.

    2012-01-01

    Graphical abstract: Metabolites produced during clofibric acid biodegradation. Highlights: ► Clofibric acid is biodegradable. ► Mainly heterotrophic bacteria degraded the clofibric acid. ► Metabolites of clofibric acid biodegradation were identified. ► The metabolic pathway of clofibric acid biodegradation is proposed. - Abstract: Clofibric acid (CLF) is the pharmaceutically active metabolite of lipid regulators clofibrate, etofibrate and etofyllinclofibrate, and it is considered both environmentally persistent and refractory. This work studied the biotransformation of CLF in aerobic sequencing batch reactors (SBRs) with mixed microbial cultures, monitoring the efficiency of biotransformation of CLF and the production of metabolites. The maximum removal achieved was 51% biodegradation (initial CLF concentration = 2 mg L −1 ), where adsorption and abiotic removal mechanisms were shown to be negligible, showing that CLF is indeed biodegradable. Tests showed that the observed CLF biodegradation was mainly carried out by heterotrophic bacteria. Three main metabolites were identified, including α-hydroxyisobutyric acid, lactic acid and 4-chlorophenol. The latter is known to exhibit higher toxicity than the parent compound, but it did not accumulate in the SBRs. α-Hydroxyisobutyric acid and lactic acid accumulated for a period, where nitrite accumulation may have been responsible for inhibiting their degradation. A metabolic pathway for the biodegradation of CLF is proposed in this study.

  2. Detection of mastitis pathogens by analysis of volatile bacterial metabolites.

    Hettinga, K A; van Valenberg, H J F; Lam, T J G M; van Hooijdonk, A C M

    2008-10-01

    The ability to detect mastitis pathogens based on their volatile metabolites was studied. Milk samples from cows with clinical mastitis, caused by Staphylococcus aureus, coagulase-negative staphylococci, Streptococcus uberis, Streptococcus dysgalactiae, and Escherichia coli were collected. In addition, samples from cows without clinical mastitis and with low somatic cell count (SCC) were collected for comparison. All mastitis samples were examined by using classical microbiological methods, followed by headspace analysis for volatile metabolites. Milk from culture-negative samples contained a lower number and amount of volatile components compared with cows with clinical mastitis. Because of variability between samples within a group, comparisons between pathogens were not sufficient for classification of the samples by univariate statistics. Therefore, an artificial neural network was trained to classify the pathogen in the milk samples based on the bacterial metabolites. The trained network differentiated milk from uninfected and infected quarters very well. When comparing pathogens, Staph. aureus produced a very different pattern of volatile metabolites compared with the other samples. Samples with coagulase-negative staphylococci and E. coli had enough dissimilarity with the other pathogens, making it possible to separate these 2 pathogens from each other and from the other samples. The 2 streptococcus species did not show significant differences between each other but could be identified as a different group from the other pathogens. Five groups can thus be identified based on the volatile bacterial metabolites: Staph. aureus, coagulase-negative staphylococci, streptococci (Strep. uberis and Strep. dysgalactiae as one group), E. coli, and uninfected quarters.

  3. Primary expectations of secondary metabolites

    My program examines the plant secondary metabolites (i.e. phenolics) important for human health, and which impart the organoleptic properties that are quality indicators for fresh and processed foods. Consumer expectations such as appearance, taste, or texture influence their purchasing decisions; a...

  4. The use of secondary metabolite profiling in chemotaxonomy of filamentous fungi

    Frisvad, Jens Christian; Andersen, Birgitte; Thrane, Ulf

    2008-01-01

    A secondary metabolite is a chemical compound produced by a limited number of fungal species in a genus, an order, or even phylum. A profile of secondary metabolites consists of all the different compounds a fungus can produce on a given substratum and includes toxins, antibiotics and other outwa......, Xylaria and in few basidiomycete genera, but not in Zygomycota and Chytridiomycota. (C) 2007 The British Mycological Society. Published by Elsevier Ltd. All rights reserved....

  5. Validation of a LC-MS/MS method for quantifying urinary nicotine, six nicotine metabolites and the minor tobacco alkaloids--anatabine and anabasine--in smokers' urine.

    James E McGuffey

    Full Text Available Tobacco use is a major contributor to premature morbidity and mortality. The measurement of nicotine and its metabolites in urine is a valuable tool for evaluating nicotine exposure and for nicotine metabolic profiling--i.e., metabolite ratios. In addition, the minor tobacco alkaloids--anabasine and anatabine--can be useful for monitoring compliance in smoking cessation programs that use nicotine replacement therapy. Because of an increasing demand for the measurement of urinary nicotine metabolites, we developed a rapid, low-cost method that uses isotope dilution liquid chromatography-tandem mass spectrometry (LC-MS/MS for simultaneously quantifying nicotine, six nicotine metabolites, and two minor tobacco alkaloids in smokers' urine. This method enzymatically hydrolyzes conjugated nicotine (primarily glucuronides and its metabolites. We then use acetone pretreatment to precipitate matrix components (endogenous proteins, salts, phospholipids, and exogenous enzyme that may interfere with LC-MS/MS analysis. Subsequently, analytes (nicotine, cotinine, hydroxycotinine, norcotinine, nornicotine, cotinine N-oxide, nicotine 1'-N-oxide, anatabine, and anabasine are chromatographically resolved within a cycle time of 13.5 minutes. The optimized assay produces linear responses across the analyte concentrations typically found in urine collected from daily smokers. Because matrix ion suppression may influence accuracy, we include a discussion of conventions employed in this procedure to minimize matrix interferences. Simplicity, low cost, low maintenance combined with high mean metabolite recovery (76-99%, specificity, accuracy (0-10% bias and reproducibility (2-9% C.V. make this method ideal for large high through-put studies.

  6. Effects of Secondary Metabolites of Permafrost Bacillus sp. on Cytokine Synthesis by Human Peripheral Blood Mononuclear Cells.

    Kalenova, L F; Kolyvanova, S S; Bazhin, A S; Besedin, I M; Mel'nikov, V P

    2017-06-01

    We studied the effects of secondary metabolites of Bacillus sp. isolated from late Neogene permafrost on secretion of proinflammatory (TNF-α, IL-1β, IL-8, IL-2, and IFNγ) and antiinflammatory (IL-4 and IL-10) cytokines by human peripheral blood mononuclear cells. It was found that metabolites of Bacillus sp. produced more potent effect on cytokine secretion than mitogen phytohemagglutinin and metabolites of Bacillus cereus, medicinal strain IP5832. Activity of metabolites depended on the temperature of bacteria incubation. "Cold" metabolites of Bacillus sp. (isolated at -5°C) primarily induced Th1-mediated secretion of IFNγ, while "warm" metabolites (obtained at 37°C) induced Th2-mediated secretion of IL-4. The results suggest that Bacillus sp. metabolites are promising material for the development of immunomodulating drugs.

  7. In vitro killing of Escherichia coli, Staphylococcus pseudintermedius and Pseudomonas aeruginosa by enrofloxacin in combination with its active metabolite ciprofloxacin using clinically relevant drug concentrations in the dog and cat.

    Blondeau, J M; Borsos, S; Blondeau, L D; Blondeau, B J

    2012-03-23

    Enrofloxacin is a fluoroquinolone antibacterial agent used to treat infections in companion animals. Enrofloxacin's antimicrobial spectrum includes Gram positive and Gram-negative bacteria and demonstrates concentration-dependent bacteriocidal activity. In dogs and cats, enrofloxacin is partially metabolized to ciprofloxacin and both active agents circulate simultaneously in treated animals at ratios of approximately 60-70% enrofloxacin to 30-40% ciprofloxacin. We were interested in determining the killing of companion animal isolates of Escherichia coli, Staphylococcus pseudintermedius and Pseudomonas aeruginosa by enrofloxacin and ciprofloxacin combined using clinically relevant drug concentrations and ratios. For E. coli isolates exposed to 2.1 and 4.1μg/ml of enrofloxacin/ciprofloxacin at 50:50, 60:40 and 70:30 ratios, a 1.7-2.5log(10) reduction (94-99% kill) was seen following 20min of drug exposure; 0.89-1.7log(10) (92-99% kill) of S. pseudintermedius following 180min of drug exposure; 0.85-3.4log(10) (98-99% kill) of P. aeruginosa following 15min of drug exposure. Killing of S. pseudintermedius was enhanced in the presence of enrofloxacin whereas killing of P. aeruginosa was enhanced in the presence of ciprofloxacin. Antagonism was not seen when enrofloxacin and ciprofloxacin were used in kill assays. The unique feature of partial metabolism of enrofloxacin to ciprofloxacin expands the spectrum of enhanced killing of common companion animal pathogens. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Urinary estrogen metabolites and breast cancer

    Dallal, Cher M; Stone, Roslyn A; Cauley, Jane A

    2013-01-01

    Background: Circulating estrogens are associated with increased breast cancer risk, yet the role of estrogen metabolites in breast carcinogenesis remains unclear. This combined analysis of 5 published studies evaluates urinary 2-hydroxyestrone (2-OHE1), 16a-hydroxyestrone (16a-OHE1......), and their ratio (2:16a-OHE1) in relation to breast cancer risk. ¿Methods: Primary data on 726 premenopausal women (183 invasive breast cancer cases and 543 controls) and 1,108 postmenopausal women (385 invasive breast cancer cases and 723 controls) were analyzed. Urinary estrogen metabolites were measured using...... premenopausal 2:16a-OHE1 was suggestive of reduced breast cancer risk overall (study-adjusted ORIIIvsI=0.80; 95% CI: 0.49-1.32) and for estrogen receptor negative (ER-) subtype (ORIIIvsI=0.33; 95% CI: 0.13-0.84). Among postmenopausal women, 2:16a-OHE1 was unrelated to breast cancer risk (study-adjusted ORIIIvs...

  9. Methods for producing diterpenes

    2015-01-01

    The present invention discloses that by combining different di TPS enzymes of class I and class II different diterpenes may be produced including diterpenes not identified in nature. Surprisingly it is revealed that a di TPS enzyme of class I of one species may be combined with a di TPS enzyme...... of class II from a different species, resulting in a high diversity of diterpenes, which can be produced....

  10. Marine metabolites: The sterols of soft coral

    Sarma, N.S.; Krishna, M.S.; Pasha, Sk.G.; Rao, T.S.P.; Venkateswarlu, Y.; Parameswaran, P.S.

    Sterols constitute a major group of secondary metabolites of soft corals. Several of these compounds have the 'usual' 3 beta-hydroxy, delta sup(5) (or delta sup(0)) cholestane skeleton, a large number of these metabolites are polar sterols...

  11. Familial Resemblance for Serum Metabolite Concentrations

    Draisma, H.H.M.; Beekman, M.; Pool, R.; van Ommen, G.J.B; Vaarhorst, A.A.M.; de Craen, A.J.; Willemsen, G.; Slagboom, P.E.; Boomsma, D.I.

    2013-01-01

    Metabolomics is the comprehensive study of metabolites, which are the substrates, intermediate, and end products of cellular metabolism. The heritability of the concentrations of circulating metabolites bears relevance for evaluating their suitability as biomarkers for disease. We report aspects of

  12. Thermo-stability, dose effects and shelf-life of antifungal compounds produced by the symbiotic bacterium Xenorhabdus szentirmaii

    Xenorhabdus spp bacteria are associated with Steinernematid nematodes and produce antifungal metabolites that protect nematode-infected cadavers from fungal colonization. Previous work demonstrated concentrated or cell-free metabolites of X. szentirmaii were toxic to fungal phytopathogens. We prepar...

  13. Antibiotics produced by Streptomyces.

    Procópio, Rudi Emerson de Lima; Silva, Ingrid Reis da; Martins, Mayra Kassawara; Azevedo, João Lúcio de; Araújo, Janete Magali de

    2012-01-01

    Streptomyces is a genus of Gram-positive bacteria that grows in various environments, and its shape resembles filamentous fungi. The morphological differentiation of Streptomyces involves the formation of a layer of hyphae that can differentiate into a chain of spores. The most interesting property of Streptomyces is the ability to produce bioactive secondary metabolites, such as antifungals, antivirals, antitumorals, anti-hypertensives, immunosuppressants, and especially antibiotics. The production of most antibiotics is species specific, and these secondary metabolites are important for Streptomyces species in order to compete with other microorganisms that come in contact, even within the same genre. Despite the success of the discovery of antibiotics, and advances in the techniques of their production, infectious diseases still remain the second leading cause of death worldwide, and bacterial infections cause approximately 17 million deaths annually, affecting mainly children and the elderly. Self-medication and overuse of antibiotics is another important factor that contributes to resistance, reducing the lifetime of the antibiotic, thus causing the constant need for research and development of new antibiotics. Copyright © 2012 Elsevier Editora Ltda. All rights reserved.

  14. Pharmacologically active plant metabolites as survival strategy products.

    Attardo, C; Sartori, F

    2003-01-01

    The fact that plant organisms produce chemical substances that are able to positively or negatively interfere with the processes which regulate human life has been common knowledge since ancient times. One of the numerous possible examples in the infusion of Conium maculatum, better known as Hemlock, a plant belonging to the family umbelliferae, used by the ancient Egyptians to cure skin diseases. The current official pharmacopoeia includes various chemical substances produced by secondary plant metabolisms. For example, the immunosuppressive drugs used to prevent organ transplant rejection and the majority of antibiotics are metabolites produced by fungal organisms, pilocarpin, digitalis, strophantus, salicylic acid and curare are examples of plant organism metabolites. For this reason, there has been an increase in research into plants, based on information on their medicinal use in the areas where they grow. The study of plants in relation to local culture and traditions is known as "ethnobotany". Careful study of the behaviour of sick animals has also led to the discovery of medicinal plants. The study of this subject is known as "zoopharmacognosy". The aim of this article is to discuss the fact that "ad hoc" production of such chemical substances, defined as "secondary metabolites", is one of the modes in which plant organisms respond to unfavourable environmental stimuli, such as an attack by predatory phytophagous animals or an excessive number of plant individuals, even of the same species, in a terrain. In the latter case, the plant organisms produce toxic substances, called "allelopathic" which limit the growth of other individuals. "Secondary metabolites" are produced by metabolic systems that are shunts of the primary systems which, when required, may be activated from the beginning, or increased to the detriment of others. The study of the manner in which such substances are produced is the subject of a new branch of learning called "ecological

  15. Impact of sowing time, hybrid and environmental conditions on the contamination of maize by emerging mycotoxins and fungal metabolites

    Massimo Blandino

    2017-09-01

    Full Text Available Mycotoxins and other fungal metabolites represent the most insidious safety risks to cereal food and the feed chain. Optimising agronomic practices is one of the main strategies adopted to minimise the contents of these undesirable substances in grain-based commodities. The aim of this study was to investigate the effect of the combination of sowing times and hybrids on the occurrence of emerging mycotoxins and fungal metabolites in maize. Field experiments were carried out in 2 sowing times (early vs late and 3 maize hybrids were compared in the 2014 and 2015 growing seasons. Overall, 37 fungal metabolites produced by Fusarium and Alternaria species were detected. Apart from fumonisins type B (FBs, other metabolites produced by Fusarium verticillioides and F. proliferatum, such as fumonisins type A, fusaric acid, bikaverin and fusaproliferin, were also detected in all of the samples. Fusarin C was found in 61% of the samples. Deoxynivalenol (DON, deoxynivalenol-3-glucoside, culmorin and zearalenone, all of which are produced prevalently by Fusarium graminearum and F. culmorum, were found in all the samples. Their contents were clearly affected by the meteorological trend: the highest contamination was detected in the 2014 growing season, which was characterised by abundant rainfall and lower temperatures from flowering to maize ripening. Among the mycotoxins produced by other Fusarium species, aurofusarin was found to clearly be associated with DON, while moniliformin and beauvericin followed the same behaviour as the FBs. A late sowing time significantly increased the FBs and fumonisin- associated mycotoxins in both growing seasons. The increase in contamination with the delay of sowing was more pronounced in the 2015 growing season, as the environmental conditions were less favourable to the infection of other Fusarium species. The effect of sowing time on DON and DON-associated mycotoxins produced conflicting results for the two growing

  16. Interactions between Plant Metabolites Affect Herbivores: A Study with Pyrrolizidine Alkaloids and Chlorogenic Acid

    Liu, Xiaojie; Vrieling, Klaas; Klinkhamer, Peter G.L.

    2017-01-01

    The high structural diversity of plant metabolites suggests that interactions among them should be common. We investigated the effects of single metabolites and combinations of plant metabolites on insect herbivores. In particular we studied the interacting effects of pyrrolizidine alkaloid (PAs), and chlorogenic acid (CGA), on a generalist herbivore, Frankliniella occidentalis. We studied both the predominantly occurring PA N-oxides and the less frequent PA free bases. We found antagonistic effects between CGA and PA free bases on thrips mortality. In contrast PA N-oxides showed synergistic interactions with CGA. PA free bases caused a higher thrips mortality than PA N-oxides while the reverse was through for PAs in combination with CGA. Our results provide an explanation for the predominate storage of PA N-oxides in plants. We propose that antagonistic interactions represent a constraint on the accumulation of plant metabolites, as we found here for Jacobaea vulgaris. The results show that the bioactivity of a given metabolite is not merely dependent upon the amount and chemical structure of that metabolite, but also on the co-occurrence metabolites in, e.g., plant cells, tissues and organs. The significance of this study is beyond the concerns of the two specific groups tested here. The current study is one of the few studies so far that experimentally support the general conception that the interactions among plant metabolites are of great importance to plant-environment interactions. PMID:28611815

  17. Interactions between Plant Metabolites Affect Herbivores: A Study with Pyrrolizidine Alkaloids and Chlorogenic Acid

    Xiaojie Liu

    2017-05-01

    Full Text Available The high structural diversity of plant metabolites suggests that interactions among them should be common. We investigated the effects of single metabolites and combinations of plant metabolites on insect herbivores. In particular we studied the interacting effects of pyrrolizidine alkaloid (PAs, and chlorogenic acid (CGA, on a generalist herbivore, Frankliniella occidentalis. We studied both the predominantly occurring PA N-oxides and the less frequent PA free bases. We found antagonistic effects between CGA and PA free bases on thrips mortality. In contrast PA N-oxides showed synergistic interactions with CGA. PA free bases caused a higher thrips mortality than PA N-oxides while the reverse was through for PAs in combination with CGA. Our results provide an explanation for the predominate storage of PA N-oxides in plants. We propose that antagonistic interactions represent a constraint on the accumulation of plant metabolites, as we found here for Jacobaea vulgaris. The results show that the bioactivity of a given metabolite is not merely dependent upon the amount and chemical structure of that metabolite, but also on the co-occurrence metabolites in, e.g., plant cells, tissues and organs. The significance of this study is beyond the concerns of the two specific groups tested here. The current study is one of the few studies so far that experimentally support the general conception that the interactions among plant metabolites are of great importance to plant-environment interactions.

  18. Extending metabolome coverage for untargeted metabolite profiling of adherent cultured hepatic cells.

    García-Cañaveras, Juan Carlos; López, Silvia; Castell, José Vicente; Donato, M Teresa; Lahoz, Agustín

    2016-02-01

    MS-based metabolite profiling of adherent mammalian cells comprises several challenging steps such as metabolism quenching, cell detachment, cell disruption, metabolome extraction, and metabolite measurement. In LC-MS, the final metabolome coverage is strongly determined by the separation technique and the MS conditions used. Human liver-derived cell line HepG2 was chosen as adherent mammalian cell model to evaluate the performance of several commonly used procedures in both sample processing and LC-MS analysis. In a first phase, metabolite extraction and sample analysis were optimized in a combined manner. To this end, the extraction abilities of five different solvents (or combinations) were assessed by comparing the number and the levels of the metabolites comprised in each extract. Three different chromatographic methods were selected for metabolites separation. A HILIC-based method which was set to specifically separate polar metabolites and two RP-based methods focused on lipidome and wide-ranging metabolite detection, respectively. With regard to metabolite measurement, a Q-ToF instrument operating in both ESI (+) and ESI (-) was used for unbiased extract analysis. Once metabolite extraction and analysis conditions were set up, the influence of cell harvesting on metabolome coverage was also evaluated. Therefore, different protocols for cell detachment (trypsinization or scraping) and metabolism quenching were compared. This study confirmed the inconvenience of trypsinization as a harvesting technique, and the importance of using complementary extraction solvents to extend metabolome coverage, minimizing interferences and maximizing detection, thanks to the use of dedicated analytical conditions through the combination of HILIC and RP separations. The proposed workflow allowed the detection of over 300 identified metabolites from highly polar compounds to a wide range of lipids.

  19. Comparative metabolite profiling of Solanum tuberosum against six wild Solanum species with Colorado potato beetle resistance.

    Tai, Helen H; Worrall, Kraig; Pelletier, Yvan; De Koeyer, David; Calhoun, Larry A

    2014-09-10

    The Colorado potato beetle Leptinotarsa decemlineata (Say) (CPB) is a coleopteran herbivore that feeds on the foliage on Solanum species, in particular, potato. Six resistant wild Solanum species were identified, and two of these species had low levels of glycoalkaloids. Comparative analysis of the untargeted metabolite profiles of the foliage using UPLC-qTOF-MS was done to find metabolites shared between the wild species but not with Solanum tuberosum (L.) to identify resistance-related metabolites. It was found that only S. tuberosum produced the triose glycoalkaloids solanine and chaconine. Instead, the six wild species produced glycoalkaloids that shared in common tetrose sugar side chains. Additionally, there were non-glycoalkaloid metabolites associated with resistance including hydroxycoumarin and a phenylpropanoid, which were produced in all wild species but not in S. tuberosum.

  20. Detection of 191 Taxifolin Metabolites and Their Distribution in Rats Using HPLC-ESI-IT-TOF-MSn

    Ping Yang

    2016-09-01

    Full Text Available Taxifolin is a ubiquitous bioactive constituent of foods and herbs. To thoroughly explore its metabolism in vivo, an HPLC-ESI-IT-TOF-MSn method combined with specific metabolite detection strategy was used to detect and identify the metabolites of taxifolin in rats. Of the 191 metabolites tentatively identified, 154 were new metabolites, 69 were new compounds and 32 were dimers. This is the first report of the in vivo biotransformation of a single compound into more than 100 metabolites. Furthermore, acetylamination and pyroglutamic acid conjugation were identified as new metabolic reactions. Seventeen metabolites were found to have various taxifolin-related bioactivities. The potential targets of taxifolin and 63 metabolites were predicted using PharmMapper, with results showing that more than 60 metabolites have the same five targets. Metabolites with the same fragment pattern may have the same pharmacophore. Thus these metabolites may exert the same pharmacological effects as taxifolin through an additive effect on the same drug targets. This observation indicates that taxifolin is bioactive not only in the parent form, but also through its metabolites. These findings enhance understanding of the metabolism and effective forms of taxifolin and may provide further insight of the beneficial effects of taxifolin and its derivatives.

  1. Purification of bacteriocins produced by lactic acid bacteria.

    Saavedra, Lucila; Castellano, Patricia; Sesma, Fernando

    2004-01-01

    Bacteriocins are antibacterial substances of a proteinaceous nature that are produced by different bacterial species. Lactic acid bacteria (LAB) produce biologically active peptides or protein complexes that display a bactericidal mode of action almost exclusively toward Gram-positive bacteria and particularly toward closely related species. Generally they are active against food spoilage and foodborne pathogenic microorganisms including Bacillus cereus, Clostridium perfringens, Staphylococcus aureus, and Listeria monocytogenes. There is an increased tendency to use natural occurring metabolites to prevent the growth of undesirable flora in foodstuffs. These metabolites could replace the use of chemical additives such as sorbic acid, sulfur dioxide, nitrite, nitrate, and others. For instance, bacteriocins produced by LAB may be promising for use as bio-preservaties. Bacteriocins of lactic acid bacteria are typically cationic, hydrophobic peptides and differ widely in many characteristics including molecular weight, presence of particular groups of amino acids, pI, net positive charge, and post-translational modifications of certain amino acids. This heterogeneity within the LAB bacteriocins may explain the different procedures for isolation and purification developed so far. The methods most frequently used for isolation, concentration, and purification involve salt precipitation of bacteriocins from culture supernatants, followed by various combinations of gel filtration, ion-exchange chromatography, and reverse-phase high-performance liquid chromatography (RP-HPLC). In this chapter, a protocol is described that combines several methods used in our laboratory for the purification of two cationic bacteriocins, Lactocin 705AL and Enterocin CRL10, produced by Lactobacillus casei CRL705 and Enterococcus mundtii CRL10, respectively.

  2. Measurement of hydroxylated PCB metabolites for Slovakia maternal blood serums

    Park, J.S.; Athanasiadou, M; Bergman, A. [Stockholm Univ., Stockholm (Sweden); Charles, J.; Zhao, G.; Hertz-Picciotto, I. [California Univ., Sacramento, CA (United States); Petrik, J.; Kocan, A; Trnovec, T. [Bratislava Inst. of Preventive and Clinical Medicine, Bratislava (Slovakia)

    2005-07-01

    Although it is known that polychlorinated biphenyls (PCBs) have adverse impacts on human health, it is not clear if human health impacts are caused by the PCBs or their related hydroxylated (OH) PCB metabolite compounds. This study measured OH-PCB metabolites in the maternal blood serum specimens from the Svidnik and Michalovce areas in eastern Slovakia where PCBs were intensively produced and inadequately disposed. The aim of the study was to characterize and quantify levels of specific OH-PCB metabolites in Slovakian maternal serums exposed to high environmental PCB levels. All specimens were analyzed for PCBs, and a subset of the samples was analyzed for OH-PCB metabolites. The Wallenburg blood extraction method was adopted to separate the OH-PCBs from the blood serums. Final eluates and calibration standards were spiked with PCB209 as an injection standard before gas chromatography (GC) analysis. OH-PCBs in the samples range from 75{+-}9 per cent to 101{+-}11 per cent. Median concentrations of OH-PCB metabolites of Michalovce samples were approximately twice as high as for the Svidnik samples. Concentrations of OH-PCBs of Michalovce blood samples were comparable to samples obtained from northern Canadian female Inuit and Faroe Island females, and were considered to be among the highest OH-PCB concentrations obtained in human blood. It was concluded that further research is needed to understand the placental transfer of OH-PCBs to the fetus, as well as epidemiological approaches to determine the relationship between the exposure of OH-PCB metabolites and child development. 12 refs., 2 figs.

  3. Metabolites in vertebrate Hedgehog signaling.

    Roberg-Larsen, Hanne; Strand, Martin Frank; Krauss, Stefan; Wilson, Steven Ray

    2014-04-11

    The Hedgehog (HH) signaling pathway is critical in embryonic development, stem cell biology, tissue homeostasis, chemoattraction and synapse formation. Irregular HH signaling is associated with a number of disease conditions including congenital disorders and cancer. In particular, deregulation of HH signaling has been linked to skin, brain, lung, colon and pancreatic cancers. Key mediators of the HH signaling pathway are the 12-pass membrane protein Patched (PTC), the 7-pass membrane protein Smoothened (SMO) and the GLI transcription factors. PTC shares homology with the RND family of small-molecule transporters and it has been proposed that it interferes with SMO through metabolites. Although a conclusive picture is lacking, substantial efforts are made to identify and understand natural metabolites/sterols, including cholesterol, vitamin D3, oxysterols and glucocorticoides, that may be affected by, or influence the HH signaling cascade at the level of PTC and SMO. In this review we will elaborate the role of metabolites in HH signaling with a focus on oxysterols, and discuss advancements in modern analytical approaches in the field. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Human metabolites of brevetoxin PbTx-2: Identification and confirmation of structure

    Guo, Fujiang; An, Tianying; Rein, Kathleen S.

    2010-01-01

    Four metabolites were identified upon incubation of brevetoxin (PbTx-2) with human liver microsomes. Chemical transformation of PbTx-2 confirmed the structures of three known metabolites BTX-B5, PbTx-9 and 41, 43-dihydro-BTX-B5 and a previously unknown metabolite, 41, 43-dihydro-PbTx-2. These metabolites were also observed upon incubation of PbTx-2 with nine human recombinant cytochrome P450s (1A1, 1A2, 2C8, 2C9, 2C19, 2D6, 2E1, 3A4 and 3A5). Cytochrome P450 3A4 produced oxidized metabolites while other CYPs generated the reduced products. PMID:20600229

  5. Secondary metabolite profiling of Alternaria dauci, A. porri, A. solani, and A. tomatophila.

    Andersen, Birgitte; Dongo, Anita; Pryor, Barry M

    2008-02-01

    Chemotaxonomy (secondary metabolite profiling) has been shown to be of great value in the classification and differentiation in Ascomycota. However, few studies have investigated the use of metabolite production for classification and identification purposes of plant pathogenic Alternaria species. The purpose of the present study was to describe the methodology behind metabolite profiling in chemotaxonomy using A. dauci, A. porri, A. solani, and A. tomatophila strains as examples of the group. The results confirmed that A. dauci, A. solani, and A. tomatophila are three distinct species each with their own specific metabolite profiles, and that A. solani and A. tomatophila both produce altersolanol A, altertoxin I, and macrosporin. By using automated chemical image analysis and other multivariate statistic analyses, three sets of species-specific metabolites could be selected, one each for A. dauci, A. solani, and A. tomatophila.

  6. Thermodynamics-based Metabolite Sensitivity Analysis in metabolic networks.

    Kiparissides, A; Hatzimanikatis, V

    2017-01-01

    The increasing availability of large metabolomics datasets enhances the need for computational methodologies that can organize the data in a way that can lead to the inference of meaningful relationships. Knowledge of the metabolic state of a cell and how it responds to various stimuli and extracellular conditions can offer significant insight in the regulatory functions and how to manipulate them. Constraint based methods, such as Flux Balance Analysis (FBA) and Thermodynamics-based flux analysis (TFA), are commonly used to estimate the flow of metabolites through genome-wide metabolic networks, making it possible to identify the ranges of flux values that are consistent with the studied physiological and thermodynamic conditions. However, unless key intracellular fluxes and metabolite concentrations are known, constraint-based models lead to underdetermined problem formulations. This lack of information propagates as uncertainty in the estimation of fluxes and basic reaction properties such as the determination of reaction directionalities. Therefore, knowledge of which metabolites, if measured, would contribute the most to reducing this uncertainty can significantly improve our ability to define the internal state of the cell. In the present work we combine constraint based modeling, Design of Experiments (DoE) and Global Sensitivity Analysis (GSA) into the Thermodynamics-based Metabolite Sensitivity Analysis (TMSA) method. TMSA ranks metabolites comprising a metabolic network based on their ability to constrain the gamut of possible solutions to a limited, thermodynamically consistent set of internal states. TMSA is modular and can be applied to a single reaction, a metabolic pathway or an entire metabolic network. This is, to our knowledge, the first attempt to use metabolic modeling in order to provide a significance ranking of metabolites to guide experimental measurements. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier

  7. Emerging technologies, recent developments, and novel applications for drug metabolite identification.

    Lu, Wenjie; Xu, Youzhi; Zhao, Yinglan; Cen, Xiaobo

    2014-01-01

    Drug metabolite identification and metabolic characteristics analysis play a crucial role in new drug research and development, because they can lead to varied efficacy, severe adverse reactions, and even toxicity. Classical methodologies for metabolite identification have mainly been based on mass spectrometry (MS) coupled with gas chromatography (GC) or liquid chromatography (LC), and some other techniques are used as complementary approaches, such as nuclear magnetic resonance (NMR). Over the past decade, more and more newly emerging techniques or technologies have been applied to metabolite identification, and are making the procedure easier and more robust, such as LC-NMR-MS, ion mobility MS, ambient ionization techniques, and imaging MS. A novel application of drug metabolite identification based on "omics" known as pharmacometabonomics is discussed, which is an interdisciplinary field that combines pre-dose metabolite profiling and chemometrics methods for data analysis and modeling, aiming to predict the responses of individuals to drugs.

  8. Discovery of Bioactive Metabolites in Biofuel Microalgae That Offer Protection against Predatory Bacteria

    Christopher eBagwell

    2016-04-01

    Full Text Available Microalgae could become an important resource for addressing increasing global demand for food, energy, and commodities while helping to reduce atmospheric greenhouse gases. Even though Chlorophytes are generally regarded safe for human consumption, there is still much we do not understand about the metabolic and biochemical potential of microscopic algae. The aim of this study was to evaluate biofuel candidate strains of Chlorella and Scenedesmus for the potential to produce bioactive metabolites when grown under nutrient depletion regimes intended to stimulate production of triacylglycerides (TAG. Strain specific combinations of macro- and micro-nutrient restricted growth media did stimulate neutral lipid accumulation by microalgal cultures. However, cultures that were restricted for iron consistently and reliably tested positive for cytotoxicity by in vivo bioassays. The addition of iron back to these cultures resulted in the disappearance of the bioactive components by LC/MS fingerprinting and loss of cytotoxicity by in vivo bioassay. Incomplete NMR characterization of the most abundant cytotoxic fractions suggested that small molecular weight peptides and glycosides could be responsible for Chlorella cytotoxicity. Experiments were conducted to determine if the bioactive metabolites induced by Fe-limitation in Chlorella sp. cultures would elicit protection against Vampirovibrio chlorellavorus, an obligate predator of Chlorella. Introduction of V. chlorellavorus resulted in a 72% decrease in algal biomass in the experimental controls after 7 days. Conversely, only slight losses of algal biomass were measured for the iron limited Chlorella cultures (0 - 9 %. This study demonstrates a causal linkage between iron bioavailability and bioactive metabolite production in strains of Chlorella and Scenedesmus. Further study of this phenomenon could contribute to the development of new strategies to extend algal production cycles in open, outdoor

  9. Induced sclerotium formation exposes new bioactive metabolites from Aspergillus sclerotiicarbonarius

    Petersen, Lene Maj; Frisvad, Jens Christian; Knudsen, Peter Boldsen

    2015-01-01

    Sclerotia are known to be fungal survival structures, and induction of sclerotia may prompt production of otherwise undiscovered metabolites. Aspergillus sclerotiicarbonarius (IBT 28362) was investigated under sclerotium producing conditions, which revealed a highly altered metabolic profile. Four...... new compounds were isolated from cultivation under sclerotium formation conditions and their structures elucidated using different analytical techniques (HRMS, UV, 1D and 2D NMR). This included sclerolizine, an alkylated and oxidized pyrrolizine, the new emindole analog emindole SC and two new...

  10. Antimicrobial efficacy of secondary metabolites from Glomerella cingulata

    Hara Kishore, K.; Misra, Sunil; Ramesh Chandra, D.; Prakash, K.V.V. R.; Suryanarayana Murty, U.

    2007-01-01

    Fungi are known to produce a vast array of secondary metabolites that are gaining importance for their biotechnological applications. Early reports suggest that G. cingulata has the capability to transform many compounds by various enzymatic actions. Therefore, the focus of this study was to determine the antibacterial and antifungal activity of crude ethyl acetate extract of G. cingulata using agar cup bioassay method. Crude extract of G. cingulata exhibited remarkable antifungal activity ag...

  11. Exercise and Prebiotics Produce Stress Resistance: Converging Impacts on Stress-Protective and Butyrate-Producing Gut Bacteria.

    Mika, A; Rumian, N; Loughridge, A B; Fleshner, M

    2016-01-01

    The gut microbial ecosystem can mediate the negative health impacts of stress on the host. Stressor-induced disruptions in microbial ecology (dysbiosis) can lead to maladaptive health effects, while certain probiotic organisms and their metabolites can protect against these negative impacts. Prebiotic diets and exercise are feasible and cost-effective strategies that can increase stress-protective bacteria and produce resistance against the detrimental behavioral and neurobiological impacts of stress. The goal of this review is to describe research demonstrating that both prebiotic diets and exercise produce adaptations in gut ecology and the brain that arm the organism against inescapable stress-induced learned helplessness. The results of this research support the novel hypothesis that some of the stress-protective effects of prebiotics and exercise are due to increases in stress-protective gut microbial species and their metabolites. In addition, new evidence also suggests that prebiotic diet or exercise interventions are most effective if given early in life (juvenile-adolescence) when both the gut microbial ecosystem and the brain are plastic. Based on our new understanding of the mechanistic convergence of these interventions, it is feasible to propose that in adults, both interventions delivered in combination may elevate their efficacy to promote a stress-resistant phenotype. © 2016 Elsevier Inc. All rights reserved.

  12. Characterization of rhizobacteria associated to maize crop in IAA, siderophores and salicylic acid metabolite production

    Annia Hernández

    2004-01-01

    Full Text Available It has been demonstrated that rhizobacteria are able to produce metabolites having agricultural interest, including salicylic acid, the siderophores and phytohormones. Indol acetic acid (IAA is the most well-known and studied auxin, playing a governing role in culture growth. The object of this work was to characterise rhizobacteria associated with the maize crop in terms of producing IAA, siderophores and salicylic acid metabolites. Burkholderia cepacia and Pseudomonas fluorescens strains previously isolated from maize Francisco variety rhizosphere were used. Colorimetric and chromatographic techniques for detecting these metabolites were studied; multi-variable analysis of hierarchic conglomerate and complete ligament were used for selecting the best strains for producing metabolites of interest. These results demonstrated that all rhizobacteria strains studied produced IAA, siderophores and salicylic acid metabolites. Burkholderia cepacia MBf21, MBp1, MBp2, MBf22, MBp3, MBf20, MBf 15 and Pseudomonas fluorescens MPp4strains have presented the greatest production of these metabolites, showing that these strains could be used in promoting vegetal growth in economically important cultures. Key words: Pseudomonas fluorescens, Burkholderia cepacia, IAA, siderophore, salicylic acid.

  13. Diglycolic acid is the nephrotoxic metabolite in diethylene glycol poisoning inducing necrosis in human proximal tubule cells in vitro.

    Landry, Greg M; Martin, Sarah; McMartin, Kenneth E

    2011-11-01

    Diethylene glycol (DEG), a solvent and chemical intermediate, can produce an acute toxic syndrome, the hallmark of which is acute renal failure due to cortical tubular degeneration and proximal tubular necrosis. DEG is metabolized to two primary metabolites, 2-hydroxyethoxyacetic acid (2-HEAA) and diglycolic acid (DGA), which are believed to be the proximate toxicants. The precise mechanism of toxicity has yet to be elucidated, so these studies were designed to determine which metabolite was responsible for the proximal tubule cell death. Human proximal tubule (HPT) cells in culture, obtained from normal cortical tissue and passaged 3-6 times, were incubated with increasing concentrations of DEG, 2-HEAA, or DGA separately and in combination for 48 h at pH 6 or 7.4, and various parameters of necrotic and apoptotic cell death were measured. DEG and 2-HEAA did not produce any cell death. DGA produced dose-dependent necrosis at concentrations above 25 mmol/l. DGA did not affect caspase-3 activity and increased annexin V staining only in propidium iodide-stained cells. Hence, DGA induced necrosis, not apoptosis, as corroborated by severe depletion of cellular adenosine triphosphate levels. DGA is structurally similar to citric acid cycle intermediates that are taken up by specific transporters in kidney cells. HPT cells, incubated with N-(p-amylcinnamoyl)anthranilic acid, a sodium dicarboxylate-1 transporter inhibitor showed significantly decreased cell death compared with DGA alone. These studies demonstrate that DGA is the toxic metabolite responsible for DEG-induced proximal tubular necrosis and suggest a possible transporter-mediated uptake of DGA leading to toxic accumulation and cellular dysfunction.

  14. Significance of metabolites in the environmental risk assessment of pharmaceuticals consumed by human.

    Han, Eun Jeong; Lee, Dong Soo

    2017-08-15

    The purpose of this study is to demonstrate the significance of metabolites to the ERA of human pharmaceuticals. The predicted exposure concentrations (PECs) in surface water were estimated for a total of 24 selected active pharmaceutical ingredients (APIs) and their metabolites using a life cycle based emission estimation model combined with a multimedia fate model with Monte-Carlo calculations. With the eco-toxicity data, the hazard quotients (HQs) of the metabolites were compared with those of individual parents alone. The results showed that PEC or toxicity or both of the metabolites was predicted to be higher than that of their parent APIs, which resulted in a total of 18 metabolites (from 12 parents) that have greater HQs than their parents. This result clearly demonstrated that some metabolites may potentially pose greater risk than their parent APIs in the water environment. Therefore, significance of metabolites should be carefully evaluated for monitoring strategy, priority setting, and scoping of the environmental risk assessment of APIs. The method used in the present work may serve as a pragmatic approach for the purpose of preliminary screening or priority setting of environmental risk posed by both APIs and their metabolites. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Engineering Microbial Metabolite Dynamics and Heterogeneity.

    Schmitz, Alexander C; Hartline, Christopher J; Zhang, Fuzhong

    2017-10-01

    As yields for biological chemical production in microorganisms approach their theoretical maximum, metabolic engineering requires new tools, and approaches for improvements beyond what traditional strategies can achieve. Engineering metabolite dynamics and metabolite heterogeneity is necessary to achieve further improvements in product titers, productivities, and yields. Metabolite dynamics, the ensemble change in metabolite concentration over time, arise from the need for microbes to adapt their metabolism in response to the extracellular environment and are important for controlling growth and productivity in industrial fermentations. Metabolite heterogeneity, the cell-to-cell variation in a metabolite concentration in an isoclonal population, has a significant impact on ensemble productivity. Recent advances in single cell analysis enable a more complete understanding of the processes driving metabolite heterogeneity and reveal metabolic engineering targets. The authors present an overview of the mechanistic origins of metabolite dynamics and heterogeneity, why they are important, their potential effects in chemical production processes, and tools and strategies for engineering metabolite dynamics and heterogeneity. The authors emphasize that the ability to control metabolite dynamics and heterogeneity will bring new avenues of engineering to increase productivity of microbial strains. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Automated pathway and reaction prediction facilitates in silico identification of unknown metabolites in human cohort studies.

    Quell, Jan D; Römisch-Margl, Werner; Colombo, Marco; Krumsiek, Jan; Evans, Anne M; Mohney, Robert; Salomaa, Veikko; de Faire, Ulf; Groop, Leif C; Agakov, Felix; Looker, Helen C; McKeigue, Paul; Colhoun, Helen M; Kastenmüller, Gabi

    2017-12-15

    Identification of metabolites in non-targeted metabolomics continues to be a bottleneck in metabolomics studies in large human cohorts. Unidentified metabolites frequently emerge in the results of association studies linking metabolite levels to, for example, clinical phenotypes. For further analyses these unknown metabolites must be identified. Current approaches utilize chemical information, such as spectral details and fragmentation characteristics to determine components of unknown metabolites. Here, we propose a systems biology model exploiting the internal correlation structure of metabolite levels in combination with existing biochemical and genetic information to characterize properties of unknown molecules. Levels of 758 metabolites (439 known, 319 unknown) in human blood samples of 2279 subjects were measured using a non-targeted metabolomics platform (LC-MS and GC-MS). We reconstructed the structure of biochemical pathways that are imprinted in these metabolomics data by building an empirical network model based on 1040 significant partial correlations between metabolites. We further added associations of these metabolites to 134 genes from genome-wide association studies as well as reactions and functional relations to genes from the public database Recon 2 to the network model. From the local neighborhood in the network, we were able to predict the pathway annotation of 180 unknown metabolites. Furthermore, we classified 100 pairs of known and unknown and 45 pairs of unknown metabolites to 21 types of reactions based on their mass differences. As a proof of concept, we then looked further into the special case of predicted dehydrogenation reactions leading us to the selection of 39 candidate molecules for 5 unknown metabolites. Finally, we could verify 2 of those candidates by applying LC-MS analyses of commercially available candidate substances. The formerly unknown metabolites X-13891 and X-13069 were shown to be 2-dodecendioic acid and 9

  17. Effects of progesterone and its metabolites on human granulosa cells.

    Pietrowski, D; Gong, Y; Mairhofer, M; Gessele, R; Sator, M

    2014-02-01

    The corpus luteum (CL) is under control of gonadotrophic hormones and produces progesterone, which is necessary for endometrial receptivity. Recent studies have shown that progesterone and its metabolites are involved in cell proliferation and apoptosis of cancer cells. Here weanalyzed the role of progesterone and its meta-bolites on luteinized granulosa cells (LGC) by FACS analysis and quantitative Real-Time PCR. We detected the mRNA of the progesterone metabolizing genes SRD5A1, AKR1C1, and AKR1C2 in LGC. The stimulation of LGC with progesterone or progesterone metabolites did not show any effect on the mRNA expression of these genes. However, a downregulation of Fas expression was found to be accomplished by progesterone and human chorionic gonadotropin. Our findings do not support the concept of an effect of progesterone metabolites on LGCs. However, it suggests an antiapoptotic effect of hCG and progesterone during corpus luteum development by downregulation of Fas. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Three plasma metabolite signatures for diagnosing high altitude pulmonary edema

    Guo, Li; Tan, Guangguo; Liu, Ping; Li, Huijie; Tang, Lulu; Huang, Lan; Ren, Qian

    2015-10-01

    High-altitude pulmonary edema (HAPE) is a potentially fatal condition, occurring at altitudes greater than 3,000 m and affecting rapidly ascending, non-acclimatized healthy individuals. However, the lack of biomarkers for this disease still constitutes a bottleneck in the clinical diagnosis. Here, ultra-high performance liquid chromatography coupled with Q-TOF mass spectrometry was applied to study plasma metabolite profiling from 57 HAPE and 57 control subjects. 14 differential plasma metabolites responsible for the discrimination between the two groups from discovery set (35 HAPE subjects and 35 healthy controls) were identified. Furthermore, 3 of the 14 metabolites (C8-ceramide, sphingosine and glutamine) were selected as candidate diagnostic biomarkers for HAPE using metabolic pathway impact analysis. The feasibility of using the combination of these three biomarkers for HAPE was evaluated, where the area under the receiver operating characteristic curve (AUC) was 0.981 and 0.942 in the discovery set and the validation set (22 HAPE subjects and 22 healthy controls), respectively. Taken together, these results suggested that this composite plasma metabolite signature may be used in HAPE diagnosis, especially after further investigation and verification with larger samples.

  19. Prediction of metabolites of epoxidation reaction in MetaTox.

    Rudik, A V; Dmitriev, A V; Bezhentsev, V M; Lagunin, A A; Filimonov, D A; Poroikov, V V

    2017-10-01

    Biotransformation is a process of the chemical modifications which may lead to the reactive metabolites, in particular the epoxides. Epoxide reactive metabolites may cause the toxic effects. The prediction of such metabolites is important for drug development and ecotoxicology studies. Epoxides are formed by some oxidation reactions, usually catalysed by cytochromes P450, and represent a large class of three-membered cyclic ethers. Identification of molecules, which may be epoxidized, and indication of the specific location of epoxide functional group (which is called SOE - site of epoxidation) are important for prediction of epoxide metabolites. Datasets from 355 molecules and 615 reactions were created for training and validation. The prediction of SOE is based on a combination of LMNA (Labelled Multilevel Neighbourhood of Atom) descriptors and Bayesian-like algorithm implemented in PASS software and MetaTox web-service. The average invariant accuracy of prediction (AUC) calculated in leave-one-out and 20-fold cross-validation procedures is 0.9. Prediction of epoxide formation based on the created SAR model is included as the component of MetaTox web-service ( http://www.way2drug.com/mg ).

  20. Comparison of Acute Toxicity of Algal Metabolites Using Bioluminescence Inhibition Assay

    Hansa Jeswani

    2015-01-01

    Full Text Available Microalgae are reported to degrade hazardous compounds. However, algae, especially cyanobacteria are known to produce secondary metabolites which may be toxic to flora, fauna and human beings. The aim of this study was selection of an appropriate algal culture for biological treatment of biomass gasification wastewater based on acute toxicity considerations. The three algae that were selected were Spirulina sp., Scenedesmus abundans and a fresh water algal consortium. Acute toxicity of the metabolites produced by these algal cultures was tested at the end of log phase using the standard bioluminescence inhibition assay based on Vibrio fischeri NRRLB 11174. Scenedesmus abundans and a fresh water algal consortium dominated by cyanobacteria such as Phormidium, Chroococcus and Oscillatoria did not release much toxic metabolites at the end of log phase and caused only about 20% inhibition in bioluminescence. In comparison, Spirulina sp. released toxic metabolites and caused 50% bioluminescence inhibition at 3/5 times dilution of the culture supernatant (EC50.

  1. Methionine Metabolites in Patients With Sepsis.

    Wexler, Orren; Gough, Michael S; Morgan, Mary Anne M; Mack, Cynthia M; Apostolakos, Michael J; Doolin, Kathleen P; Mooney, Robert A; Arning, Erland; Bottiglieri, Teodoro; Pietropaoli, Anthony P

    2018-01-01

    Sepsis is characterized by microvascular dysfunction and thrombophilia. Several methionine metabolites may be relevant to this sepsis pathophysiology. S-adenosylmethionine (SAM) serves as the methyl donor for trans-methylation reactions. S-adenosylhomocysteine (SAH) is the by-product of these reactions and serves as the precursor to homocysteine. Relationships between plasma total homocysteine concentrations (tHcy) and vascular disease and thrombosis are firmly established. We hypothesized that SAM, SAH, and tHcy levels are elevated in patients with sepsis and associated with mortality. This was a combined case-control and prospective cohort study consisting of 109 patients with sepsis and 50 control participants without acute illness. The study was conducted in the medical and surgical intensive care units of the University of Rochester Medical Center. Methionine, SAM, SAH, and tHcy concentrations were compared in patients with sepsis versus control participants and in sepsis survivors versus nonsurvivors. Patients with sepsis had significantly higher plasma SAM and SAH concentrations than control participants (SAM: 164 [107-227] vs73 [59-87 nM], P sepsis patients compared to healthy control participants (4 [2-6]) vs 7 [5-9] μM; P = .04). In multivariable analysis, quartiles of SAM, SAH, and tHcy were independently associated with sepsis ( P = .006, P = .05, and P Sepsis nonsurvivors had significantly higher plasma SAM and SAH concentrations than survivors (SAM: 223 [125-260] vs 136 [96-187] nM; P = .01; SAH: 139 [81-197] vs 86 [55-130] nM, P = .006). Plasma tHcy levels were similar in survivors vs nonsurvivors. The associations between SAM or SAH and hospital mortality were no longer significant after adjusting for renal dysfunction. Methionine metabolite concentrations are abnormal in sepsis and linked with clinical outcomes. Further study is required to determine whether these abnormalities have pathophysiologic significance.

  2. Epigenome targeting by probiotic metabolites

    Licciardi Paul V

    2010-12-01

    Full Text Available Abstract Background The intestinal microbiota plays an important role in immune development and homeostasis. A disturbed microbiota during early infancy is associated with an increased risk of developing inflammatory and allergic diseases later in life. The mechanisms underlying these effects are poorly understood but are likely to involve alterations in microbial production of fermentation-derived metabolites, which have potent immune modulating properties and are required for maintenance of healthy mucosal immune responses. Probiotics are beneficial bacteria that have the capacity to alter the composition of bacterial species in the intestine that can in turn influence the production of fermentation-derived metabolites. Principal among these metabolites are the short-chain fatty acids butyrate and acetate that have potent anti-inflammatory activities important in regulating immune function at the intestinal mucosal surface. Therefore strategies aimed at restoring the microbiota profile may be effective in the prevention or treatment of allergic and inflammatory diseases. Presentation of the hypothesis Probiotic bacteria have diverse effects including altering microbiota composition, regulating epithelial cell barrier function and modulating of immune responses. The precise molecular mechanisms mediating these probiotic effects are not well understood. Short-chain fatty acids such as butyrate are a class of histone deacetylase inhibitors important in the epigenetic control of host cell responses. It is hypothesized that the biological function of probiotics may be a result of epigenetic modifications that may explain the wide range of effects observed. Studies delineating the effects of probiotics on short-chain fatty acid production and the epigenetic actions of short-chain fatty acids will assist in understanding the association between microbiota and allergic or autoimmune disorders. Testing the hypothesis We propose that treatment with

  3. Aleuria aurantia - indole metabolites of fruit bodies, mycelial culture and culture medium

    Janina Węgiel

    2014-08-01

    Full Text Available The aim of present study was to investigate and compare indole metabolites of fruit bodies, mycelium cultivated in vitro and culture medium of the fungus Aleuria aurantia (Fr. Fuck. By use of a number of chromatographic and spectroscopic methods several indole metabolites have been detected and identified among other the 3-indolebutyric acid was produced and extracted to the culture medium. Furthermore 3-indoleatonitrile and tryptophane degradative products have been found both in fruit bodies and mycelium.

  4. A reappraisal of fungi producing aflatoxins

    Varga, János; Frisvad, Jens Christian; Samson, Robert A.

    2009-01-01

    Aflatoxins are decaketide-derived secondary metabolites which are produced by a complex biosynthetic pathway. Aflatoxins are among the economically most important mycotoxins. Aflatoxin B1 exhibits hepatocarcinogenic and hepatotoxic properties, and is frequently referred to as the most potent natu...

  5. Producing ergosterol from corn straw hydrolysates using ...

    Ergosterol is an economically important metabolite produced by Saccharomyces cerevisiae. In this study, the production of ergosterol by the strain using corn straw as an inexpensive carbon source was investigated. The total yield of ergosterol was determined by both the biomass and ergosterol content in yeast cells which ...

  6. of Several Organophosphorus Insecticide Metabolites

    Russell L. Carr

    2015-01-01

    Full Text Available Paraoxonase (PON1 is a calcium dependent enzyme that is capable of hydrolyzing organophosphate anticholinesterases. PON1 activity is present in most mammals and previous research established that PON1 activity differs depending on the species. These studies mainly used the organophosphate substrate paraoxon, the active metabolite of the insecticide parathion. Using serum PON1 from different mammalian species, we compared the hydrolysis of paraoxon with the hydrolysis of the active metabolites (oxons of two additional organophosphorus insecticides, methyl parathion and chlorpyrifos. Paraoxon hydrolysis was greater than that of methyl paraoxon, but the level of activity between species displayed a similar pattern. Regardless of the species tested, the hydrolysis of chlorpyrifos-oxon was significantly greater than that of paraoxon or methyl paraoxon. These data indicate that chlorpyrifos-oxon is a better substrate for PON1 regardless of the species. The pattern of species differences in PON1 activity varied with the change in substrate to chlorpyrifos-oxon from paraoxon or methyl paraoxon. For example, the sex difference observed here and reported elsewhere in the literature for rat PON1 hydrolysis of paraoxon was not present when chlorpyrifos-oxon was the substrate.

  7. Differential responses of human dendritic cells to metabolites from the oral/airway microbiome.

    Whiteson, K; Agrawal, S; Agrawal, A

    2017-06-01

    Small molecule metabolites that are produced or altered by host-associated microbial communities are emerging as significant immune response modifiers. However, there is a key gap in our knowledge of how oral microbial metabolites affect the immune response. Here, we examined the effects of metabolites from five bacterial strains found commonly in the oral/airway microbial communities of humans. The five strains, each isolated from cystic fibrosis patient sputum, were Pseudomonas aeruginosa FLR01 non-mucoid (P1) and FLR02 mucoid (P2) forms, Streptococcus pneumoniae (Sp), S. salivarius (Ss) and Rothia mucilaginosa (Rm). The effect of bacterial metabolites on dendritic cell (DC) activation, T cell priming and cytokine secretion was determined by exposing DCs to bacterial supernatants and individual metabolites of interest. Supernatants from P1 and P2 induced high levels of tumour necrosis factor (TNF)-α, interleukin (IL)-12 and IL-6 from DCs and primed T cells to secrete interferon (IFN)-γ, IL-22 compared to supernatants from Sp, Ss and Rm. Investigations into the composition of supernatants using gas chromatography-mass spectroscopy (GC-MS) revealed signature metabolites for each of the strains. Supernatants from P1 and P2 contained high levels of putrescine and glucose, while Sp and Ss contained high levels of 2,3-butanediol. The individual metabolites replicated the results of whole supernatants, although the magnitudes of their effects were reduced significantly. Altogether, our data demonstrate for the first time that the signature metabolites produced by different bacteria have different effects on DC functions. The identification of signature metabolites and their effects on the host immune system can provide mechanistic insights into diseases and may also be developed as biomarkers. © 2017 British Society for Immunology.

  8. Identification of AKB-48 and 5F-AKB-48 Metabolites in Authentic Human Urine Samples Using Human Liver Microsomes and Time of Flight Mass Spectrometry.

    Vikingsson, Svante; Josefsson, Martin; Gréen, Henrik

    2015-01-01

    The occurrence of structurally related synthetic cannabinoids makes the identification of unique markers of drug intake particularly challenging. The aim of this study was to identify unique and abundant metabolites of AKB-48 and 5F-AKB-48 for toxicological screening in urine. Investigations of authentic urine samples from forensic cases in combination with human liver microsome (HLM) experiments were used for identification of metabolites. HLM incubations of AKB-48 and 5F-AKB-48 along with 35 urine samples from authentic cases were analyzed with liquid chromatography quadrupole tandem time of flight mass spectrometry. Using HLMs 41 metabolites of AKB-48 and 37 metabolites of 5F-AKB-48 were identified, principally represented by hydroxylation but also ketone formation and dealkylation. Monohydroxylated metabolites were replaced by di- and trihydroxylated metabolites within 30 min. The metabolites from the HLM incubations accounted for on average 84% (range, 67-100) and 91% (range, 71-100) of the combined area in the case samples for AKB-48 and 5F-AKB-48, respectively. While defluorinated metabolites accounted for on average 74% of the combined area after a 5F-AKB-48 intake only a few identified metabolites were shared between AKB-48 and 5F-AKB-48, illustrating the need for a systematic approach to identify unique metabolites. HLMs in combination with case samples seem suitable for this purpose. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Bioactive metabolite production by Streptomyces albolongus in favourable environment

    Myn Uddin

    2013-06-01

    Full Text Available Objectives: Demand for new antibiotic is rising up due to continuous resistance risk against conventional antibiotic.This attempt was taken to find out a novel antimicrobial metabolite.Methods: Chili field antagonistic actinomycetes Streptomyces albolongus was isolated and tested for optimum antimicrobialmetabolite production. Primary screening was done by selective media and antibiotic assay was done by agarcup plate method. Fermented product was recovered by separating funnel using suitable solvent.Results: Maximum antimicrobial metabolite production was found at temperature 35°C and pH 9.0 and on 6th day ofincubation. The medium consisting of corn steep liquor (0.2%, glucose (1.0%, NaCl (0.5%, K2HPO4 (0.1% was screenedout as suitable medium for maximum antimicrobial production. Sucrose was found as the best carbon source amongfour sources. The antimicrobial metabolite was found to be stable at pH and temperature up to 11.0 and 100°C respectively.The active agent was best extracted with chloroform. The antimicrobial spectrum of the metabolite was wideand shows activity against Shigella dysenteriae (AE14612, Shigella sonnei (CRL, ICDDR, B, Salmonella typhi (AE14296,Vibrio cholerae (AE14748, Pseudomonas aeruginosa (CRL, ICDDR, B, Bacillus cereus (BTCC19, Staphylococcus aureus(ATCC6538, Bacillus subtilis (BTTC17 and Bacillus megaterium (BTTC18.Conclusions: The findings of antibacterial activity of S. albolongus against several species of human pathogens includingboth Gram-positive and Gram-negative bacteria indicated that our produced material might be an alternative antimicrobialsubstance to control human diseases. J Microbiol Infect Dis 2013; 3(2: 75-82Key words: Streptomyces albolongus, antimicrobial metabolite, optimum production, antimicrobial spectrum

  10. High frequencies of chromatid aberrations produced during G/sub 2/ in human lymphocytes by very low doses (0. 025-0. 4 Gy) of X-rays in combination with inhibitors of DNA synthesis

    Andersson, H.C.; Kihlman, B.A. (Uppsala Univ. (Sweden). Dept. of Genetics)

    1984-09-01

    Whole-blood cultures of human lymphocytes were exposed in the G/sub 2/-phase (3.5 h before harvesting) to various doses of X-rays and post-treated for 3 h with inhibitors of DNA synthesis. The inhibitors used were 2'-deoxyadenosine (dAdo), hydroxyurea (HU) and 1-..beta..-D-arabinofuranosylcytosine (ara-C). To prevent deamination of dAdo by adenosine deaminase (ADA), the dAdo treatments were carried out in the presence of the ADA inhibitor coformycin. HU and ara-C were used either alone or in combination. After the 3-h inhibitor treatments, the cultures were harvested and slides prepared and analyzed for chromatid aberrations in metaphase. When the inhibitors were used at concentrations high enough to cause marked chromosome damage by themselves, very low doses of X-rays (0.025-0.2 Gy) were sufficient to produce a dramatic increase in the frequency of chromatid aberrations. High frequencies of chromatid aberrations were also obtained when cultures that had received moderate doses of X-rays (0.4-0.8 Gy) were post-treated with low inhibitor concentrations that produce no or only a few aberrations by themselves.

  11. Rapid and simple method by combining FTA™ card DNA extraction with two set multiplex PCR for simultaneous detection of non-O157 Shiga toxin-producing Escherichia coli strains and virulence genes in food samples.

    Kim, S A; Park, S H; Lee, S I; Ricke, S C

    2017-12-01

    The aim of this research was to optimize two multiplex polymerase chain reaction (PCR) assays that could simultaneously detect six non-O157 Shiga toxin-producing Escherichia coli (STEC) as well as the three virulence genes. We also investigated the potential of combining the FTA™ card-based DNA extraction with the multiplex PCR assays. Two multiplex PCR assays were optimized using six primer pairs for each non-O157 STEC serogroup and three primer pairs for virulence genes respectively. Each STEC strain specific primer pair only amplified 155, 238, 321, 438, 587 and 750 bp product for O26, O45, O103, O111, O121 and O145 respectively. Three virulence genes were successfully multiplexed: 375 bp for eae, 655 bp for stx1 and 477 bp for stx2. When two multiplex PCR assays were validated with ground beef samples, distinctive bands were also successfully produced. Since the two multiplex PCR examined here can be conducted under the same PCR conditions, the six non-O157 STEC and their virulence genes could be concurrently detected with one run on the thermocycler. In addition, all bands clearly appeared to be amplified by FTA card DNA extraction in the multiplex PCR assay from the ground beef sample, suggesting that an FTA card could be a viable sampling approach for rapid and simple DNA extraction to reduce time and labour and therefore may have practical use for the food industry. Two multiplex polymerase chain reaction (PCR) assays were optimized for discrimination of six non-O157 Shiga toxin-producing Escherichia coli (STEC) and identification of their major virulence genes within a single reaction, simultaneously. This study also determined the successful ability of the FTA™ card as an alternative to commercial DNA extraction method for conducting multiplex STEC PCR assays. The FTA™ card combined with multiplex PCR holds promise for the food industry by offering a simple and rapid DNA sample method for reducing time, cost and labour for detection of STEC in

  12. Correcting ligands, metabolites, and pathways

    Vriend Gert

    2006-11-01

    Full Text Available Abstract Background A wide range of research areas in bioinformatics, molecular biology and medicinal chemistry require precise chemical structure information about molecules and reactions, e.g. drug design, ligand docking, metabolic network reconstruction, and systems biology. Most available databases, however, treat chemical structures more as illustrations than as a datafield in its own right. Lack of chemical accuracy impedes progress in the areas mentioned above. We present a database of metabolites called BioMeta that augments the existing pathway databases by explicitly assessing the validity, correctness, and completeness of chemical structure and reaction information. Description The main bulk of the data in BioMeta were obtained from the KEGG Ligand database. We developed a tool for chemical structure validation which assesses the chemical validity and stereochemical completeness of a molecule description. The validation tool was used to examine the compounds in BioMeta, showing that a relatively small number of compounds had an incorrect constitution (connectivity only, not considering stereochemistry and that a considerable number (about one third had incomplete or even incorrect stereochemistry. We made a large effort to correct the errors and to complete the structural descriptions. A total of 1468 structures were corrected and/or completed. We also established the reaction balance of the reactions in BioMeta and corrected 55% of the unbalanced (stoichiometrically incorrect reactions in an automatic procedure. The BioMeta database was implemented in PostgreSQL and provided with a web-based interface. Conclusion We demonstrate that the validation of metabolite structures and reactions is a feasible and worthwhile undertaking, and that the validation results can be used to trigger corrections and improvements to BioMeta, our metabolite database. BioMeta provides some tools for rational drug design, reaction searches, and

  13. MassTRIX reloaded: combined analysis and visualization of transcriptome and metabolome data.

    Brigitte Wägele

    Full Text Available Systems Biology is a field in biological science that focuses on the combination of several or all "omics"-approaches in order to find out how genes, transcripts, proteins and metabolites act together in the network of life. Metabolomics as analog to genomics, transcriptomics and proteomics is more and more integrated into biological studies and often transcriptomic and metabolomic experiments are combined in one setup. At a first glance both data types seem to be completely different, but both produce information on biological entities, either transcripts or metabolites. Both types can be overlaid on metabolic pathways to obtain biological information on the studied system. For the joint analysis of both data types the MassTRIX webserver was updated. MassTRIX is freely available at www.masstrix.org.

  14. Secondary metabolites from the endophytic fungus Talaromyces pinophilus.

    Vinale, F; Nicoletti, R; Lacatena, F; Marra, R; Sacco, A; Lombardi, N; d'Errico, G; Digilio, M C; Lorito, M; Woo, S L

    2017-08-01

    Endophytic fungi have a great influence on plant health and growth, and are an important source of bioactive natural compounds. Organic extracts obtained from the culture filtrate of an endophytic strain of Talaromyces pinophilus isolated from strawberry tree (Arbutus unedo) were studied. Metabolomic analysis revealed the presence of three bioactive metabolites, the siderophore ferrirubin, the platelet-aggregation inhibitor herquline B and the antibiotic 3-O-methylfunicone. The latter was the major metabolite produced by this strain and displayed toxic effects against the pea aphid Acyrthosiphon pisum (Homoptera Aphidiidae). This toxicity represents an additional indication that the widespread endophytic occurrence of T. pinophilus may be related to a possible role in defensive mutualism. Moreover, the toxic activity on aphids could promote further study on 3-O-methylfunicone, or its derivatives, as an alternative to synthetic chemicals in agriculture.

  15. Ecotoxicological effects of selected cyanobacterial secondary metabolites a short review

    Wiegand, C.; Pflugmacher, S.

    2005-01-01

    Cyanobacteria are one of the most diverse groups of gram-negative photosynthetic prokaryotes. Many of them are able to produce a wide range of toxic secondary metabolites. These cyanobacterial toxins can be classified in five different groups: hepatotoxins, neurotoxins, cytotoxins, dermatotoxins, and irritant toxins (lipopolysaccharides). Cyanobacterial blooms are hazardous due to this production of secondary metabolites and endotoxins, which could be toxic to animals and plants. Many of the freshwater cyanobacterial blooms include species of the toxigenic genera Microcystis, Anabaena, or Plankthotrix. These compounds differ in mechanisms of uptake, affected organs, and molecular mode of action. In this review, the main focus is the aquatic environment and the effects of these toxins to the organisms living there. Some basic toxic mechanisms will be discussed in comparison to the mammalian system

  16. Radioimmunossay of hormones and metabolites in blood serum and plasma

    Khare, G.P.

    1978-01-01

    Hormones or metabolites which are capable of producing antibodies can be detected and precisely quantitated by this method. Antibodies, to various hormones or metabolites whose assay is desired, are adsorbed onto commercially available imitation or cultured pearls. These pearls coated with antibody are contacted with a buffered reaction mixture containing blood serum or plasma specimen and respective radioactive antigen. The entire reaction is allowed to proceed for a time sufficient to form antigen (radioactive or non-radioactive)-antibody complex. These complexes on the pearls are washed and the total amount of radioactivity emanating from the complex is measured. This is indicative of the extent of binding of radioactive antigen and provides an indirect correlation of the amount of non-radioactive antigen present in the serum or plasma sample

  17. Effects of fluticasone propionate inhalation on levels of arachidonic acid metabolites in patients with chronic obstructive pulmonary disease

    Gert T. Verhoeven

    2001-01-01

    Full Text Available Background: In smoking COPD patients the bronchoalveolar lavage (BAL fluid contains high numbers of inflammatory cells. These cells might produce arachidonic acid (AA metabolites, which contribute to inflammation and an increased bronchomotor tone.

  18. Antimycobacterial Metabolites from Marine Invertebrates.

    Daletos, Georgios; Ancheeva, Elena; Chaidir, Chaidir; Kalscheuer, Rainer; Proksch, Peter

    2016-10-01

    Marine organisms play an important role in natural product-based drug research due to accumulation of structurally unique and bioactive metabolites. The exploration of marine-derived compounds may significantly extend the scientific knowledge of potential scaffolds for antibiotic drug discovery. Development of novel antitubercular agents is especially significant as the emergence of drug-resistant Mycobacterium tuberculosis strains remains threateningly high. Marine invertebrates (i.e., sponges, corals, gorgonians) as a source of new chemical entities are the center of research for several scientific groups, and the wide spectrum of biological activities of marine-derived compounds encourages scientists to carry out investigations in the field of antibiotic research, including tuberculosis treatment. The present review covers published data on antitubercular natural products from marine invertebrates grouped according to their biogenetic origin. Studies on the structure-activity relationships of these important leads are highlighted as well. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Determinants of Organophosphorus Pesticide Urinary Metabolite Levels in Young Children Living in an Agricultural Community

    Brenda Eskenazi

    2011-04-01

    Full Text Available Organophosphorus (OP pesticides are used in agriculture and several are registered for home use. As young children age they may experience different pesticide exposures due to varying diet, behavior, and other factors. We measured six OP dialkylphosphate (DAP metabolites (three dimethyl alkylphosphates (DMAP and three diethyl alkylphosphates (DEAP in urine samples collected from ~400 children living in an agricultural community when they were 6, 12, and 24 months old. We examined bivariate associations between DAP metabolite levels and determinants such as age, diet, season, and parent occupation. To evaluate independent impacts, we then used generalized linear mixed multivariable models including interaction terms with age. The final models indicated that DMAP metabolite levels increased with age. DMAP levels were also positively associated with daily servings of produce at 6- and 24-months. Among the 6-month olds, DMAP metabolite levels were higher when samples were collected during the summer/spring versus the winter/fall months. Among the 12-month olds, DMAP and DEAP metabolites were higher when children lived ≤60 meters from an agricultural field. Among the 24-month-olds, DEAP metabolite levels were higher during the summer/spring months. Our findings suggest that there are multiple determinants of OP pesticide exposures, notably dietary intake and temporal and spatial proximity to agricultural use. The impact of these determinants varied by age and class of DAP metabolite.

  20. Fate of cyanobacteria and their metabolites during water treatment sludge management processes.

    Ho, Lionel; Dreyfus, Jennifer; Boyer, Justine; Lowe, Todd; Bustamante, Heriberto; Duker, Phil; Meli, Tass; Newcombe, Gayle

    2012-05-01

    Cyanobacteria and their metabolites are an issue for water authorities; however, little is known as to the fate of coagulated cyanobacterial-laden sludge during waste management processes in water treatment plants (WTPs). This paper provides information on the cell integrity of Anabaena circinalis and Cylindrospermopsis raciborskii during: laboratory-scale coagulation/sedimentation processes; direct filtration and backwashing procedures; and cyanobacterial-laden sludge management practices. In addition, the metabolites produced by A. circinalis (geosmin and saxitoxins) and C. raciborskii (cylindrospermopsin) were investigated with respect to their release (and possible degradation) during each of the studied processes. Where sedimentation was used, coagulation effectively removed cyanobacteria (and intracellular metabolites) without any considerable exertion on coagulant demand. During direct filtration experiments, cyanobacteria released intracellular metabolites through a stagnation period, suggesting that more frequent backwashing of filters may be required to prevent floc build-up and metabolite release. Cyanobacteria appeared to be protected within the flocs, with minimal damage during backwashing of the filters. Within coagulant sludge, cyanobacteria released intracellular metabolites into the supernatant after 3d, even though cells remained viable up to 7d. This work has improved the understanding of cyanobacterial metabolite risks associated with management of backwash water and sludge and is likely to facilitate improvements at WTPs, including increased monitoring and the application of treatment strategies and operational practices, with respect to cyanobacterial-laden sludge and/or supernatant recycle management. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Metabolite profiles and the risk of developing diabetes.

    Wang, Thomas J; Larson, Martin G; Vasan, Ramachandran S; Cheng, Susan; Rhee, Eugene P; McCabe, Elizabeth; Lewis, Gregory D; Fox, Caroline S; Jacques, Paul F; Fernandez, Céline; O'Donnell, Christopher J; Carr, Stephen A; Mootha, Vamsi K; Florez, Jose C; Souza, Amanda; Melander, Olle; Clish, Clary B; Gerszten, Robert E

    2011-04-01

    Emerging technologies allow the high-throughput profiling of metabolic status from a blood specimen (metabolomics). We investigated whether metabolite profiles could predict the development of diabetes. Among 2,422 normoglycemic individuals followed for 12 years, 201 developed diabetes. Amino acids, amines and other polar metabolites were profiled in baseline specimens by liquid chromatography-tandem mass spectrometry (LC-MS). Cases and controls were matched for age, body mass index and fasting glucose. Five branched-chain and aromatic amino acids had highly significant associations with future diabetes: isoleucine, leucine, valine, tyrosine and phenylalanine. A combination of three amino acids predicted future diabetes (with a more than fivefold higher risk for individuals in top quartile). The results were replicated in an independent, prospective cohort. These findings underscore the potential key role of amino acid metabolism early in the pathogenesis of diabetes and suggest that amino acid profiles could aid in diabetes risk assessment.

  2. Microsomal metabolism of trenbolone acetate metabolites ...

    Trenbolone acetate (TBA) is a synthetic growth promoter widely used in animal agriculture, and its metabolites are suspected endocrine disrupting compounds in agriculturally impacted receiving waters. However, beyond the three widely recognized TBA metabolites (17-trenbolone, 17-trenbolone and trendione), little is known about other metabolites formed in vivo and subsequently discharged into the environment, with some evidence suggesting these unknown metabolites comprise a majority of the TBA mass dosed to the animal. Here, we explored the metabolism of the three known TBA metabolites using rat liver microsome studies. All TBA metabolites are transformed into a complex mixture of monohydroxylated products. Based on product characterization, the majority are more polar than the parent metabolites but maintain their characteristic trienone backbone. A minor degree of interconversion between known metabolites was also observed, as were higher order hydroxylated products with a greater extent of reaction. Notably, the distribution and yield of products were generally comparable across a series of variably induced rat liver microsomes, as well as during additional studies with human and bovine liver microsomes. Bioassays conducted with mixtures of these transformation products suggest that androgen receptor (AR) binding activity is diminished as a result of the microsomal treatment, suggesting that the transformation products are generally less potent than

  3. Biochemical and secondary metabolites changes under moisture ...

    The study showed the importance of carbohydrate and nitrogen cycle related metabolites in mediating tolerance in cassava by affecting their phenotypic expression in the plant. Keywords: Hydrothermal stress, bio-chemicals, pigments, secondary metabolites, cassava. African Journal of Biotechnology, Vol 13(31) 3173-3186 ...

  4. MARSI: metabolite analogues for rational strain improvement

    Cardoso, João G. R.; Zeidan, Ahmad A; Jensen, Kristian

    2018-01-01

    reactions in an organism can be used to predict effects of MAs on cellular phenotypes. Here, we present the Metabolite Analogues for Rational Strain Improvement (MARSI) framework. MARSI provides a rational approach to strain improvement by searching for metabolites as targets instead of genes or reactions...

  5. A Latex Metabolite Benefits Plant Fitness under Root Herbivore Attack.

    Meret Huber

    2016-01-01

    Full Text Available Plants produce large amounts of secondary metabolites in their shoots and roots and store them in specialized secretory structures. Although secondary metabolites and their secretory structures are commonly assumed to have a defensive function, evidence that they benefit plant fitness under herbivore attack is scarce, especially below ground. Here, we tested whether latex secondary metabolites produced by the common dandelion (Taraxacum officinale agg. decrease the performance of its major native insect root herbivore, the larvae of the common cockchafer (Melolontha melolontha, and benefit plant vegetative and reproductive fitness under M. melolontha attack. Across 17 T. officinale genotypes screened by gas and liquid chromatography, latex concentrations of the sesquiterpene lactone taraxinic acid β-D-glucopyranosyl ester (TA-G were negatively associated with M. melolontha larval growth. Adding purified TA-G to artificial diet at ecologically relevant concentrations reduced larval feeding. Silencing the germacrene A synthase ToGAS1, an enzyme that was identified to catalyze the first committed step of TA-G biosynthesis, resulted in a 90% reduction of TA-G levels and a pronounced increase in M. melolontha feeding. Transgenic, TA-G-deficient lines were preferred by M. melolontha and suffered three times more root biomass reduction than control lines. In a common garden experiment involving over 2,000 T. officinale individuals belonging to 17 different genotypes, high TA-G concentrations were associated with the maintenance of high vegetative and reproductive fitness under M. melolontha attack. Taken together, our study demonstrates that a latex secondary metabolite benefits plants under herbivore attack, a result that provides a mechanistic framework for root herbivore driven natural selection and evolution of plant defenses below ground.

  6. A Latex Metabolite Benefits Plant Fitness under Root Herbivore Attack.

    Huber, Meret; Epping, Janina; Schulze Gronover, Christian; Fricke, Julia; Aziz, Zohra; Brillatz, Théo; Swyers, Michael; Köllner, Tobias G; Vogel, Heiko; Hammerbacher, Almuth; Triebwasser-Freese, Daniella; Robert, Christelle A M; Verhoeven, Koen; Preite, Veronica; Gershenzon, Jonathan; Erb, Matthias

    2016-01-01

    Plants produce large amounts of secondary metabolites in their shoots and roots and store them in specialized secretory structures. Although secondary metabolites and their secretory structures are commonly assumed to have a defensive function, evidence that they benefit plant fitness under herbivore attack is scarce, especially below ground. Here, we tested whether latex secondary metabolites produced by the common dandelion (Taraxacum officinale agg.) decrease the performance of its major native insect root herbivore, the larvae of the common cockchafer (Melolontha melolontha), and benefit plant vegetative and reproductive fitness under M. melolontha attack. Across 17 T. officinale genotypes screened by gas and liquid chromatography, latex concentrations of the sesquiterpene lactone taraxinic acid β-D-glucopyranosyl ester (TA-G) were negatively associated with M. melolontha larval growth. Adding purified TA-G to artificial diet at ecologically relevant concentrations reduced larval feeding. Silencing the germacrene A synthase ToGAS1, an enzyme that was identified to catalyze the first committed step of TA-G biosynthesis, resulted in a 90% reduction of TA-G levels and a pronounced increase in M. melolontha feeding. Transgenic, TA-G-deficient lines were preferred by M. melolontha and suffered three times more root biomass reduction than control lines. In a common garden experiment involving over 2,000 T. officinale individuals belonging to 17 different genotypes, high TA-G concentrations were associated with the maintenance of high vegetative and reproductive fitness under M. melolontha attack. Taken together, our study demonstrates that a latex secondary metabolite benefits plants under herbivore attack, a result that provides a mechanistic framework for root herbivore driven natural selection and evolution of plant defenses below ground.

  7. Seed metabolomic study reveals significant metabolite variations and correlations among different soybean cultivars.

    Lin, Hong; Rao, Jun; Shi, Jianxin; Hu, Chaoyang; Cheng, Fang; Wilson, Zoe A; Zhang, Dabing; Quan, Sheng

    2014-09-01

    Soybean [Glycine max (L.) Merr.] is one of the world's major crops, and soybean seeds are a rich and important resource for proteins and oils. While "omics" studies, such as genomics, transcriptomics, and proteomics, have been widely applied in soybean molecular research, fewer metabolomic studies have been conducted for large-scale detection of low molecular weight metabolites, especially in soybean seeds. In this study, we investigated the seed metabolomes of 29 common soybean cultivars through combined gas chromatography-mass spectrometry and ultra-performance liquid chromatography-tandem mass spectrometry. One hundred sixty-nine named metabolites were identified and subsequently used to construct a metabolic network of mature soybean seed. Among the 169 detected metabolites, 104 were found to be significantly variable in their levels across tested cultivars. Metabolite markers that could be used to distinguish genetically related soybean cultivars were also identified, and metabolite-metabolite correlation analysis revealed some significant associations within the same or among different metabolite groups. Findings from this work may potentially provide the basis for further studies on both soybean seed metabolism and metabolic engineering to improve soybean seed quality and yield. © 2014 Institute of Botany, Chinese Academy of Sciences.

  8. Seed metabolomic study reveals significant metabolite variations and correlations among different soybean cultivars

    Hong Lin; Jun Rao; Jianxin Shi; Chaoyang Hu; Fang Cheng; Zoe AWilson; Dabing Zhang; Sheng Quan

    2014-01-01

    Soybean [Glycine max (L.) Merr.] is one of the world’s major crops, and soybean seeds are a rich and important resource for proteins and oils. While “omics”studies, such as genomics, transcriptomics, and proteomics, have been widely applied in soybean molecular research, fewer metabolomic studies have been conducted for large-scale detection of low molecular weight metabolites, especial y in soybean seeds. In this study, we investigated the seed metabolomes of 29 common soybean cultivars through combined gas chromatography-mass spectrometry and ultra-performance liquid chromatography-tandem mass spectrometry. One hundred sixty-nine named metabolites were identified and subsequently used to construct a metabolic network of mature soybean seed. Among the 169 detected metabolites, 104 were found to be significantly variable in their levels across tested cultivars. Metabolite markers that could be used to distinguish genetical y related soybean cultivars were also identified, and metabolite-metabolite correlation analysis revealed some significant associations within the same or among different metabolite groups. Findings from this work may potentially provide the basis for further studies on both soybean seed metabolism and metabolic engineering to improve soybean seed quality and yield.

  9. The importance of drug metabolites synthesis: the case-study of cardiotoxic anticancer drugs.

    Hrynchak, Ivanna; Sousa, Emília; Pinto, Madalena; Costa, Vera Marisa

    2017-05-01

    Anticancer drugs are presently guarantying more survivors as a result of more powerful drugs or combinations of drugs used in therapy. Thus, it has become more crucial to study and overcome the side effects of these therapies. Cardiotoxicity is one of the most relevant side effects on the long-term cancer survivors, because of its high social and economic impact. Drug metabolism can result in active metabolites or toxic metabolites that can lead to important side effects. The metabolites of anticancer drugs are possible culprits of cardiotoxicity; however, the cardiotoxicity of many of the metabolites in several drug classes was not yet suitably studied so far. On the other hand, the use of prodrugs that are bioactivated through metabolism can be a good alternative to obtain more cardio safe drugs. In this review, the methods to obtain and study metabolites are summarized and their application to the study of a group of anticancer drugs with acknowledged cardiotoxicity is highlighted. In this group of drugs, doxorubicin (DOX, 1), mitoxantrone (MTX, 2), cyclophosphamide (CTX, 3) and 5-fluorouracil (5-FU, 4) are included, as well as the tyrosine kinase inhibitors, such as imatinib (5), sunitinib (6) and sorafenib (7). Only with the synthesis and purification of considerable amounts of the metabolites can reliable studies be performed, either in vitro or in vivo that allow accurate conclusions regarding the cardiotoxicity of anticancer drug metabolites and then pharmacological prevention or treatment of the cardiac side effects can be done.

  10. Antifungal Metabolites (Monorden, Monocillin IV, and Cerebrosides) from Humicola fuscoatra Traaen NRRL 22980, a Mycoparasite of Aspergillus flavus Sclerotia

    Wicklow, Donald T.; Joshi, Biren K.; Gamble, William R.; Gloer, James B.; Dowd, Patrick F.

    1998-01-01

    The mycoparasite Humicola fuscoatra NRRL 22980 was isolated from a sclerotium of Aspergillus flavus that had been buried in a cornfield near Tifton, Ga. When grown on autoclaved rice, this fungus produced the antifungal metabolites monorden, monocillin IV, and a new monorden analog. Each metabolite produced a clear zone of inhibition surrounding paper assay disks on agar plates seeded with conidia of A. flavus. Monorden was twice as inhibitory to A. flavus mycelium extension (MIC > 28 μg/ml) ...

  11. Complicating factors in safety testing of drug metabolites: Kinetic differences between generated and preformed metabolites

    Prueksaritanont, Thomayant; Lin, Jiunn H.; Baillie, Thomas A.

    2006-01-01

    This paper aims to provide a scientifically based perspective on issues surrounding the proposed toxicology testing of synthetic drug metabolites as a means of ensuring adequate nonclinical safety evaluation of drug candidates that generate metabolites considered either to be unique to humans or are present at much higher levels in humans than in preclinical species. We put forward a number of theoretical considerations and present several specific examples where the kinetic behavior of a preformed metabolite given to animals or humans differs from that of the corresponding metabolite generated endogenously from its parent. The potential ramifications of this phenomenon are that the results of toxicity testing of the preformed metabolite may be misleading and fail to characterize the true toxicological contribution of the metabolite when formed from the parent. It is anticipated that such complications would be evident in situations where (a) differences exist in the accumulation of the preformed versus generated metabolites in specific tissues, and (b) the metabolite undergoes sequential metabolism to a downstream product that is toxic, leading to differences in tissue-specific toxicity. Owing to the complex nature of this subject, there is a need to treat drug metabolite issues in safety assessment on a case-by-case basis, in which a knowledge of metabolite kinetics is employed to validate experimental paradigms that entail administration of preformed metabolites to animal models

  12. A new paradigm for known metabolite identification in metabonomics/metabolomics: metabolite identification efficiency.

    Everett, Jeremy R

    2015-01-01

    A new paradigm is proposed for assessing confidence in the identification of known metabolites in metabonomics studies using NMR spectroscopy approaches. This new paradigm is based upon the analysis of the amount of metabolite identification information retrieved from NMR spectra relative to the molecular size of the metabolite. Several new indices are proposed including: metabolite identification efficiency (MIE) and metabolite identification carbon efficiency (MICE), both of which can be easily calculated. These indices, together with some guidelines, can be used to provide a better indication of known metabolite identification confidence in metabonomics studies than existing methods. Since known metabolite identification in untargeted metabonomics studies is one of the key bottlenecks facing the science currently, it is hoped that these concepts based on molecular spectroscopic informatics, will find utility in the field.

  13. A New Paradigm for Known Metabolite Identification in Metabonomics/Metabolomics: Metabolite Identification Efficiency

    Jeremy R. Everett

    2015-01-01

    Full Text Available A new paradigm is proposed for assessing confidence in the identification of known metabolites in metabonomics studies using NMR spectroscopy approaches. This new paradigm is based upon the analysis of the amount of metabolite identification information retrieved from NMR spectra relative to the molecular size of the metabolite. Several new indices are proposed including: metabolite identification efficiency (MIE and metabolite identification carbon efficiency (MICE, both of which can be easily calculated. These indices, together with some guidelines, can be used to provide a better indication of known metabolite identification confidence in metabonomics studies than existing methods. Since known metabolite identification in untargeted metabonomics studies is one of the key bottlenecks facing the science currently, it is hoped that these concepts based on molecular spectroscopic informatics, will find utility in the field.

  14. Robust volcano plot: identification of differential metabolites in the presence of outliers.

    Kumar, Nishith; Hoque, Md Aminul; Sugimoto, Masahiro

    2018-04-11

    The identification of differential metabolites in metabolomics is still a big challenge and plays a prominent role in metabolomics data analyses. Metabolomics datasets often contain outliers because of analytical, experimental, and biological ambiguity, but the currently available differential metabolite identification techniques are sensitive to outliers. We propose a kernel weight based outlier-robust volcano plot for identifying differential metabolites from noisy metabolomics datasets. Two numerical experiments are used to evaluate the performance of the proposed technique against nine existing techniques, including the t-test and the Kruskal-Wallis test. Artificially generated data with outliers reveal that the proposed method results in a lower misclassification error rate and a greater area under the receiver operating characteristic curve compared with existing methods. An experimentally measured breast cancer dataset to which outliers were artificially added reveals that our proposed method produces only two non-overlapping differential metabolites whereas the other nine methods produced between seven and 57 non-overlapping differential metabolites. Our data analyses show that the performance of the proposed differential metabolite identification technique is better than that of existing methods. Thus, the proposed method can contribute to analysis of metabolomics data with outliers. The R package and user manual of the proposed method are available at https://github.com/nishithkumarpaul/Rvolcano .

  15. Dietary Metabolites and Chronic Kidney Disease

    Sho Hasegawa

    2017-04-01

    Full Text Available Dietary contents and their metabolites are closely related to chronic kidney disease (CKD progression. Advanced glycated end products (AGEs are a type of uremic toxin produced by glycation. AGE accumulation is not only the result of elevated glucose levels or reduced renal clearance capacity, but it also promotes CKD progression. Indoxyl sulfate, another uremic toxin derived from amino acid metabolism, accumulates as CKD progresses and induces tubulointerstitial fibrosis and glomerular sclerosis. Specific types of amino acids (d-serine or fatty acids (palmitate are reported to be closely associated with CKD progression. Promising therapeutic targets associated with nutrition include uremic toxin absorbents and inhibitors of AGEs or the receptor for AGEs (RAGE. Probiotics and prebiotics maintain gut flora balance and also prevent CKD progression by enhancing gut barriers and reducing uremic toxin formation. Nrf2 signaling not only ameliorates oxidative stress but also reduces elevated AGE levels. Bardoxolone methyl, an Nrf2 activator and NF-κB suppressor, has been tested as a therapeutic agent, but the phase 3 clinical trial was terminated owing to the high rate of cardiovascular events. However, a phase 2 trial has been initiated in Japan, and the preliminary analysis reveals promising results without an increase in cardiovascular events.

  16. Pulsed cathodoluminescence and Raman spectra of MoS{sub 2} and WS{sub 2} nanocrystals and their combination MoS{sub 2}/WS{sub 2} produced by self-propagating high-temperature synthesis

    Bozheyev, Farabi, E-mail: farabi.bozheyev@gmail.com [Institute of High Technology Physics, National Research Tomsk Polytechnic University, 30 Lenin Ave., 634050 Tomsk (Russian Federation); National Nanolaboratory, al-Farabi Kazakh National University, 71 al-Farabi Ave., 050000 Almaty (Kazakhstan); Nazarbayev University Research and Innovation System, 53 Kabanbay Batyr St., 010000 Astana (Kazakhstan); Valiev, Damir [Institute of High Technology Physics, National Research Tomsk Polytechnic University, 30 Lenin Ave., 634050 Tomsk (Russian Federation); Nemkayeva, Renata [National Nanolaboratory, al-Farabi Kazakh National University, 71 al-Farabi Ave., 050000 Almaty (Kazakhstan)

    2016-02-29

    Molybdenum and tungsten disulfide nanoplates were produced by self-propagating high-temperature synthesis in argon atmosphere. This method provides an easy way to produce MoS{sub 2} and WS{sub 2} from nanoplates up to single- and several layers. The Raman peak intensities corresponding to in-plane E{sup 1}{sub 2g} and out-of-plane A{sub 1g} vibration modes and their shifts strongly depend on the thicknesses of the MoS{sub 2} and WS{sub 2} platelets indicating size-dependent scaling laws and properties. An electron beam irradiation of MoS{sub 2} and WS{sub 2} powders leads to an occurrence of pulsed cathodoluminescence (PCL) spectra at 575 nm (2.15 eV) and 550 nm (2.25 eV) characteristic to their intrinsic band gaps. For the combination of MoS{sub 2} and WS{sub 2} nanopowders, a PCL shoulder at 430 nm (2.88 eV) was observed, which is explained by the radiative electron-hole recombination at the MoS{sub 2}/WS{sub 2} grain boundaries. The luminescence decay kinetics of the MoS{sub 2}/WS{sub 2} nanoplates appears to be slower than for individual MoS{sub 2} and WS{sub 2} platelets due to a spatial separation of electrons and holes at MoS{sub 2}/WS{sub 2} junction resulting in extension of recombination time.

  17. Evaluation of Extraction Protocols for Simultaneous Polar and Non-Polar Yeast Metabolite Analysis Using Multivariate Projection Methods

    Nicolas P. Tambellini

    2013-07-01

    Full Text Available Metabolomic and lipidomic approaches aim to measure metabolites or lipids in the cell. Metabolite extraction is a key step in obtaining useful and reliable data for successful metabolite studies. Significant efforts have been made to identify the optimal extraction protocol for various platforms and biological systems, for both polar and non-polar metabolites. Here we report an approach utilizing chemoinformatics for systematic comparison of protocols to extract both from a single sample of the model yeast organism Saccharomyces cerevisiae. Three chloroform/methanol/water partitioning based extraction protocols found in literature were evaluated for their effectiveness at reproducibly extracting both polar and non-polar metabolites. Fatty acid methyl esters and methoxyamine/trimethylsilyl derivatized aqueous compounds were analyzed by gas chromatography mass spectrometry to evaluate non-polar or polar metabolite analysis. The comparative breadth and amount of recovered metabolites was evaluated using multivariate projection methods. This approach identified an optimal protocol consisting of 64 identified polar metabolites from 105 ion hits and 12 fatty acids recovered, and will potentially attenuate the error and variation associated with combining metabolite profiles from different samples for untargeted analysis with both polar and non-polar analytes. It also confirmed the value of using multivariate projection methods to compare established extraction protocols.

  18. Phase I hydroxylated metabolites of the K2 synthetic cannabinoid JWH-018 retain in vitro and in vivo cannabinoid 1 receptor affinity and activity.

    Lisa K Brents

    Full Text Available K2 products are synthetic cannabinoid-laced, marijuana-like drugs of abuse, use of which is often associated with clinical symptoms atypical of marijuana use, including hypertension, agitation, hallucinations, psychosis, seizures and panic attacks. JWH-018, a prevalent K2 synthetic cannabinoid, is structurally distinct from Δ(9-THC, the main psychoactive ingredient in marijuana. Since even subtle structural differences can lead to differential metabolism, formation of novel, biologically active metabolites may be responsible for the distinct effects associated with K2 use. The present study proposes that K2's high adverse effect occurrence is due, at least in part, to distinct JWH-018 metabolite activity at the cannabinoid 1 receptor (CB1R.JWH-018, five potential monohydroxylated metabolites (M1-M5, and one carboxy metabolite (M6 were examined in mouse brain homogenates containing CB1Rs, first for CB1R affinity using a competition binding assay employing the cannabinoid receptor radioligand [(3H]CP-55,940, and then for CB1R intrinsic efficacy using an [(35S]GTPγS binding assay. JWH-018 and M1-M5 bound CB1Rs with high affinity, exhibiting K(i values that were lower than or equivalent to Δ(9-THC. These molecules also stimulated G-proteins with equal or greater efficacy relative to Δ(9-THC, a CB1R partial agonist. Most importantly, JWH-018, M2, M3, and M5 produced full CB1R agonist levels of activation. CB1R-mediated activation was demonstrated by blockade with O-2050, a CB1R-selective neutral antagonist. Similar to Δ(9-THC, JWH-018 and M1 produced a marked depression of locomotor activity and core body temperature in mice that were both blocked by the CB1R-preferring antagonist/inverse agonist AM251.Unlike metabolites of most drugs, the studied JWH-018 monohydroxylated compounds, but not the carboxy metabolite, retain in vitro and in vivo activity at CB1Rs. These observations, combined with higher CB1R affinity and activity relative to Δ(9

  19. Fate of cyanobacteria and their metabolites during water treatment sludge management processes

    Ho, Lionel, E-mail: lionel.ho@sawater.com.au [Australian Water Quality Centre, SA Water Corporation, 250 Victoria Square, Adelaide, SA 5000 (Australia); Centre for Water Management and Reuse, University of South Australia, Mawson Lakes, SA 5095 (Australia); Dreyfus, Jennifer; Boyer, Justine; Lowe, Todd [Australian Water Quality Centre, SA Water Corporation, 250 Victoria Square, Adelaide, SA 5000 (Australia); Bustamante, Heriberto; Duker, Phil [Sydney Water, PO Box 399, Parramatta, NSW 2124 (Australia); Meli, Tass [TRILITY Pty Ltd, PO Box 86, Appin, NSW 2560 (Australia); Newcombe, Gayle [Australian Water Quality Centre, SA Water Corporation, 250 Victoria Square, Adelaide, SA 5000 (Australia); Centre for Water Management and Reuse, University of South Australia, Mawson Lakes, SA 5095 (Australia)

    2012-05-01

    Cyanobacteria and their metabolites are an issue for water authorities; however, little is known as to the fate of coagulated cyanobacterial-laden sludge during waste management processes in water treatment plants (WTPs). This paper provides information on the cell integrity of Anabaena circinalis and Cylindrospermopsis raciborskii during: laboratory-scale coagulation/sedimentation processes; direct filtration and backwashing procedures; and cyanobacterial-laden sludge management practices. In addition, the metabolites produced by A. circinalis (geosmin and saxitoxins) and C. raciborskii (cylindrospermopsin) were investigated with respect to their release (and possible degradation) during each of the studied processes. Where sedimentation was used, coagulation effectively removed cyanobacteria (and intracellular metabolites) without any considerable exertion on coagulant demand. During direct filtration experiments, cyanobacteria released intracellular metabolites through a stagnation period, suggesting that more frequent backwashing of filters may be required to prevent floc build-up and metabolite release. Cyanobacteria appeared to be protected within the flocs, with minimal damage during backwashing of the filters. Within coagulant sludge, cyanobacteria released intracellular metabolites into the supernatant after 3 d, even though cells remained viable up to 7 d. This work has improved the understanding of cyanobacterial metabolite risks associated with management of backwash water and sludge and is likely to facilitate improvements at WTPs, including increased monitoring and the application of treatment strategies and operational practices, with respect to cyanobacterial-laden sludge and/or supernatant recycle management. - Highlights: Black-Right-Pointing-Pointer Coagulation removed cyanobacteria without an additional exertion on coagulant demand. Black-Right-Pointing-Pointer During a stagnation period in direct filtration intracellular metabolites were

  20. Fate of cyanobacteria and their metabolites during water treatment sludge management processes

    Ho, Lionel; Dreyfus, Jennifer; Boyer, Justine; Lowe, Todd; Bustamante, Heriberto; Duker, Phil; Meli, Tass; Newcombe, Gayle

    2012-01-01

    Cyanobacteria and their metabolites are an issue for water authorities; however, little is known as to the fate of coagulated cyanobacterial-laden sludge during waste management processes in water treatment plants (WTPs). This paper provides information on the cell integrity of Anabaena circinalis and Cylindrospermopsis raciborskii during: laboratory-scale coagulation/sedimentation processes; direct filtration and backwashing procedures; and cyanobacterial-laden sludge management practices. In addition, the metabolites produced by A. circinalis (geosmin and saxitoxins) and C. raciborskii (cylindrospermopsin) were investigated with respect to their release (and possible degradation) during each of the studied processes. Where sedimentation was used, coagulation effectively removed cyanobacteria (and intracellular metabolites) without any considerable exertion on coagulant demand. During direct filtration experiments, cyanobacteria released intracellular metabolites through a stagnation period, suggesting that more frequent backwashing of filters may be required to prevent floc build-up and metabolite release. Cyanobacteria appeared to be protected within the flocs, with minimal damage during backwashing of the filters. Within coagulant sludge, cyanobacteria released intracellular metabolites into the supernatant after 3 d, even though cells remained viable up to 7 d. This work has improved the understanding of cyanobacterial metabolite risks associated with management of backwash water and sludge and is likely to facilitate improvements at WTPs, including increased monitoring and the application of treatment strategies and operational practices, with respect to cyanobacterial-laden sludge and/or supernatant recycle management. - Highlights: ► Coagulation removed cyanobacteria without an additional exertion on coagulant demand. ► During a stagnation period in direct filtration intracellular metabolites were released. ► Cyanobacterial cells were not damaged

  1. Characterization of the radiolabeled metabolite of tau PET tracer 18F-THK5351

    Harada, Ryuichi; Furumoto, Shozo; Tago, Tetsuro; Iwata, Ren; Tashiro, Manabu; Katsutoshi, Furukawa; Ishiki, Aiko; Tomita, Naoki; Arai, Hiroyuki; Yanai, Kazuhiko; Kudo, Yukitsuka; Okamura, Nobuyuki

    2016-01-01

    18 F-THK5351 is a novel radiotracer developed for in vivo imaging of tau pathology in the brain. For the quantitative assessment of tau deposits in the brain, it is important that the radioactive metabolite does not enter the brain and that it does not bind to tau fibrils. The purpose of the study was to identify a radiolabeled metabolite of 18 F-THK5351 in blood samples from human subjects and to characterize its pharmacological properties. Venous blood samples were collected from three human subjects after injection of 18 F-THK5351 and the plasma metabolite was measured by high performance thin layer chromatography. In addition, mass spectrometry analysis and enzymatic assays were used to identify this metabolite. Mice were used to investigate the blood-brain barrier permeability of the radioactive metabolite. Furthermore, the binding ability of the metabolite to tau aggregates was evaluated using autoradiography and binding assays using human brain samples. About 13 % of the unmetabolized radiotracer was detectable in human plasma at 60 min following the injection of 18 F-THK5351. The isolated radiometabolite of 18 F-THK5351 was the sulphoconjugate of THK5351. This metabolite could be produced in vitro by incubating THK5351 with liver but not brain homogenates. The metabolite did not penetrate the blood-brain barrier in mice, and exhibited little binding to tau protein aggregates in post-mortem human brain samples. These results suggest that the sole metabolite detectable in plasma seems to be generated outside the brain and does not cross into the brain, which does not affect quantitative analysis of PET images. (orig.)

  2. Characterization of the radiolabeled metabolite of tau PET tracer {sup 18}F-THK5351

    Harada, Ryuichi [Tohoku University, Division of Neuro-imaging, Institute of Development, Aging and Cancer, Sendai (Japan); Furumoto, Shozo; Tago, Tetsuro; Iwata, Ren; Tashiro, Manabu [Tohoku University, Cyclotron and Radioisotope Center, Sendai (Japan); Katsutoshi, Furukawa; Ishiki, Aiko; Tomita, Naoki; Arai, Hiroyuki [Tohoku University, Department of Geriatrics and Gerontology, Institute of Development, Aging and Cancer, Sendai (Japan); Yanai, Kazuhiko [Tohoku University, Cyclotron and Radioisotope Center, Sendai (Japan); Tohoku University School of Medicine, Department of Pharmacology, Sendai (Japan); Kudo, Yukitsuka [Tohoku University, Division of Neuro-imaging, Institute of Development, Aging and Cancer, Sendai (Japan); Tohoku University, Cyclotron and Radioisotope Center, Sendai (Japan); Okamura, Nobuyuki [Tohoku University, Division of Neuro-imaging, Institute of Development, Aging and Cancer, Sendai (Japan); Tohoku University, Cyclotron and Radioisotope Center, Sendai (Japan); Tohoku Medical and Pharmaceutical University, Division of Pharmacology, Faculty of Medicine, Sendai (Japan)

    2016-11-15

    {sup 18}F-THK5351 is a novel radiotracer developed for in vivo imaging of tau pathology in the brain. For the quantitative assessment of tau deposits in the brain, it is important that the radioactive metabolite does not enter the brain and that it does not bind to tau fibrils. The purpose of the study was to identify a radiolabeled metabolite of {sup 18}F-THK5351 in blood samples from human subjects and to characterize its pharmacological properties. Venous blood samples were collected from three human subjects after injection of {sup 18}F-THK5351 and the plasma metabolite was measured by high performance thin layer chromatography. In addition, mass spectrometry analysis and enzymatic assays were used to identify this metabolite. Mice were used to investigate the blood-brain barrier permeability of the radioactive metabolite. Furthermore, the binding ability of the metabolite to tau aggregates was evaluated using autoradiography and binding assays using human brain samples. About 13 % of the unmetabolized radiotracer was detectable in human plasma at 60 min following the injection of {sup 18}F-THK5351. The isolated radiometabolite of {sup 18}F-THK5351 was the sulphoconjugate of THK5351. This metabolite could be produced in vitro by incubating THK5351 with liver but not brain homogenates. The metabolite did not penetrate the blood-brain barrier in mice, and exhibited little binding to tau protein aggregates in post-mortem human brain samples. These results suggest that the sole metabolite detectable in plasma seems to be generated outside the brain and does not cross into the brain, which does not affect quantitative analysis of PET images. (orig.)

  3. Producing cement

    Stone, E G

    1923-09-12

    A process and apparatus are described for producing Portland cement in which pulverized shale is successively heated in a series of inclined rotary retorts having internal stirrers and oil gas outlets, which are connected to condensers. The partially treated shale is removed from the lowermost retort by a conveyor, then fed separately or conjointly into pipes and thence into a number of vertically disposed retorts. Each of these retorts may be fitted interiorly with vertical arranged conveyors which elevate the shale and discharge it over a lip, from whence it falls to the bottom of the retorts. The lower end of each casing is furnished with an adjustable discharge door through which the spent shale is fed to a hopper, thence into separate trucks. The oil gases generated in the retorts are exhausted through pipes to condensers. The spent shale is conveyed to a bin and mixed while hot with ground limestone. The admixed materials are then ground and fed to a rotary kiln which is fired by the incondensible gases derived from the oil gases obtained in the previous retorting of the shale. The calcined materials are then delivered from the rotary kiln to rotary coolers. The waste gases from the kiln are utilized for heating the retorts in which the ground shale is heated for the purpose of extracting therefrom the contained hydrocarbon oils and gases.

  4. Predicting Hepatotoxicity of Drug Metabolites Via an Ensemble Approach Based on Support Vector Machine

    Lu, Yin; Liu, Lili; Lu, Dong; Cai, Yudong; Zheng, Mingyue; Luo, Xiaomin; Jiang, Hualiang; Chen, Kaixian

    2017-11-20

    Drug-induced liver injury (DILI) is a major cause of drug withdrawal. The chemical properties of the drug, especially drug metabolites, play key roles in DILI. Our goal is to construct a QSAR model to predict drug hepatotoxicity based on drug metabolites. 64 hepatotoxic drug metabolites and 3,339 non-hepatotoxic drug metabolites were gathered from MDL Metabolite Database. Considering the imbalance of the dataset, we randomly split the negative samples and combined each portion with all the positive samples to construct individually balanced datasets for constructing independent classifiers. Then, we adopted an ensemble approach to make prediction based on the results of all individual classifiers and applied the minimum Redundancy Maximum Relevance (mRMR) feature selection method to select the molecular descriptors. Eventually, for the drugs in the external test set, a Bayesian inference method was used to predict the hepatotoxicity of a drug based on its metabolites. The model showed the average balanced accuracy=78.47%, sensitivity =74.17%, and specificity=82.77%. Five molecular descriptors characterizing molecular polarity, intramolecular bonding strength, and molecular frontier orbital energy were obtained. When predicting the hepatotoxicity of a drug based on all its metabolites, the sensitivity, specificity and balanced accuracy were 60.38%, 70.00%, and 65.19%, respectively, indicating that this method is useful for identifying the hepatotoxicity of drugs. We developed an in silico model to predict hepatotoxicity of drug metabolites. Moreover, Bayesian inference was applied to predict the hepatotoxicity of a drug based on its metabolites which brought out valuable high sensitivity and specificity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Diversity of Secondary Metabolites from Marine Bacillus Species: Chemistry and Biological Activity

    Mondol, Muhammad Abdul Mojid; Shin, Hee Jae; Islam, Mohammad Tofazzal

    2013-01-01

    Marine Bacillus species produce versatile secondary metabolites including lipopeptides, polypeptides, macrolactones, fatty acids, polyketides, and isocoumarins. These structurally diverse compounds exhibit a wide range of biological activities, such as antimicrobial, anticancer, and antialgal activities. Some marine Bacillus strains can detoxify heavy metals through reduction processes and have the ability to produce carotenoids. The present article reviews the chemistry and biological activities of secondary metabolites from marine isolates. Side by side, the potential for application of these novel natural products from marine Bacillus strains as drugs, pesticides, carotenoids, and tools for the bioremediation of heavy metal toxicity are also discussed. PMID:23941823

  6. Kynurenine pathway metabolites and enzymes involved in redox reactions.

    González Esquivel, D; Ramírez-Ortega, D; Pineda, B; Castro, N; Ríos, C; Pérez de la Cruz, V

    2017-01-01

    Oxido-reduction reactions are a fundamental part of the life due to support many vital biological processes as cellular respiration and glucose oxidation. In the redox reactions, one substance transfers one or more electrons to another substance. An important electron carrier is the coenzyme NAD + , which is involved in many metabolic pathways. De novo biosynthesis of NAD + is through the kynurenine pathway, the major route of tryptophan catabolism, which is sensitive to redox environment and produces metabolites with redox capacity, able to alter biological functions that are controlled by redox-responsive signaling pathways. Kynurenine pathway metabolites have been implicated in the physiology process and in the physiopathology of many diseases; processes that also share others factors as dysregulation of calcium homeostasis, mitochondrial dysfunction, oxidative stress, inflammation and cell death, which impact the redox environment. This review examines in detail the available evidence in which kynurenine pathway metabolites participate in redox reactions and their effect on cellular redox homeostasis, since the knowledge of the main factors and mechanisms that lead to cell death in many neurodegenative disorders and other pathologies, such as mitochondrial dysfunction, oxidative stress and kynurenines imbalance, will allow to develop therapies using them as targets. This article is part of the Special Issue entitled 'The Kynurenine Pathway in Health and Disease'. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Secondary metabolites of Antarctic fungi antagonistic to aquatic pathogenic bacteria

    Zhao Huibin

    2018-03-01

    Full Text Available Polar microbial derived antibiotics have potential as alternatives to traditional antibiotics in treating fish against pathogenic bacteria. In this paper, 23 strains of polar fungi were fermented to detect bacteriostatic products on three aquatic pathogenic bacteria, subsequently the active fungus was identified. It was indicated that secondary metabolites of 23 strains weredistinct; of these, the extract of strain B-7 (belonging to Bjerkandera according to molecular identification demonstrated a strong antibacterial activity to Streptococcus agalactiae, Vibrio anguillarum and Aeromonas hydrophila ATCC7966 by Kirby-Bauerpaper strip method. During one fermentation cycle, the pH curve of the fermentation liquor became lowest (4.0 on the 4th day and rose back to 7.6 finally after 5 days, The residual sugar curve was decreased before stablising on the 6th day. It is presumed that a large amount of alkaline secondary metabolites might have been produced during fermentation. This study focuses on antagonism between aquatic pathogenic bacteria and fermentation metabolites from Antarctic fungi for the first time, which may provide data on research of antibiotics against aquatic pathogenic bacteria.

  8. Identification of metabolites during biodegradation of pendimethalin in bioslurry reactor

    Ramakrishna, M.; Venkata Mohan, S.; Shailaja, S.; Narashima, R.; Sarma, P.N.

    2008-01-01

    Bioslurry phase reactor was used for the degradation of pendimethalin, a pre-emergence herbicide in the contaminated soil under aerobic environment. More than 91% degradation of pendimethalin was observed for 5 days of reactor operation augmented with sewage from effluent treatment plant (ETP). The performance of the reactor was monitored regularly by measuring pH and colony forming units (CFU). The metabolites of pendimethalin formed during degradation were identified using various analytical techniques, viz., thin layer chromatography (TLC), high performance liquid chromatography (HPLC) and liquid chromatography-mass spectroscopy (LC-MS/MS). Four metabolites were formed and identified as N-(1-ethylpropyl)-3,4-dicarboxy 2,6-dinitrobenzenamine-N-oxide, N-(1-ethylpropyl)-3,4-dimethoxy-2,6-dinitrobenzenamine and benezimadazole-7-carboxyaldehyde. The reactions involved were monohydrolysis of 2-methyl groups followed by dihydrolysis. Further oxidation of amine groups and hydroxylation of propyl groups produced the above said metabolites. Degradation pathway of pendimethalin has been proposed in the bioslurry phase reactor

  9. Importance of Secondary Metabolites for Leaf Beetles (Coleoptera: Chrysomelidae

    A. N. EKİZ

    2014-06-01

    Full Text Available Leaf beetles (Chrysomelidae are one of the most diverse families of herbivorous insects. Many of them are important agricultural pests and cause remarkable loss of crop and money as well. Plant leaves and roots are primary food source of both larva and adults of leaf beetles. Plants produce many secondary metabolites in reaction to herbivore insects. It is a well-known phenomenon that quantity and variety of secondary metabolites in plant leaves may change in response to insect attacks. Herbivore insects have to deal with such defensive secondary chemicals and overcome either by detoxifying or storing them. Accordingly, many specialist herbivores coevolved with their host plant. Certain phenolic glycosides may reduce leaf beetle feeding. Condensed tannins are anti-herbivore defenses against leaf chewing beetles, including leaf beetles. Flavonoid compounds are feeding deterrents for many flea leaf beetles. Cinnamic acid derivatives are other known feeding deterrents for leaf beetles. Secondary metabolites quantity and nutritional quality of host plants are not only important for feeding but also for providing enemy-free space and suitable oviposition sites.

  10. Crude oil metabolites in groundwater at two spill sites

    Bekins, Barbara A.; Cozzarelli, Isabelle M.; Erickson, Melinda L.; Steenson, Ross; Thorn, Kevin A.

    2016-01-01

    Two groundwater plumes in north central Minnesota with residual crude oil sources have 20 to 50 mg/L of nonvolatile dissolved organic carbon (NVDOC). These values are over 10 times higher than benzene and two to three times higher than Diesel Range Organics in the same wells. On the basis of previous work, most of the NVDOC consists of partial transformation products from the crude oil. Monitoring data from 1988 to 2015 at one of the sites located near Bemidji, MN show that the plume of metabolites is expanding toward a lakeshore located 335 m from the source zone. Other mass balance studies of the site have demonstrated that the plume expansion is driven by the combined effect of continued presence of the residual crude oil source and depletion of the electron accepting capacity of solid phase iron oxide and hydroxides on the aquifer sediments. These plumes of metabolites are not covered by regulatory monitoring and reporting requirements in Minnesota and other states. Yet, a review of toxicology studies indicates that polar metabolites of crude oil may pose a risk to aquatic and mammalian species. Together the results suggest that at sites where residual sources are present, monitoring of NVDOC may be warranted to evaluate the fates of plumes of hydrocarbon transformation products.

  11. Serotonergic neurotoxic metabolites of ecstasy identified in rat brain.

    Jones, Douglas C; Duvauchelle, Christine; Ikegami, Aiko; Olsen, Christopher M; Lau, Serrine S; de la Torre, Rafael; Monks, Terrence J

    2005-04-01

    The selective serotonergic neurotoxicity of 3,4-methylenedioxyamphetamine (MDA) and 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) depends on their systemic metabolism. We have recently shown that inhibition of brain endothelial cell gamma-glutamyl transpeptidase (gamma-GT) potentiates the neurotoxicity of both MDMA and MDA, indicating that metabolites that are substrates for this enzyme contribute to the neurotoxicity. Consistent with this view, glutathione (GSH) and N-acetylcysteine conjugates of alpha-methyl dopamine (alpha-MeDA) are selective neurotoxicants. However, neurotoxic metabolites of MDMA or MDA have yet to be identified in brain. Using in vivo microdialysis coupled to liquid chromatography-tandem mass spectroscopy and a high-performance liquid chromatography-coulometric electrode array system, we now show that GSH and N-acetylcysteine conjugates of N-methyl-alpha-MeDA are present in the striatum of rats administered MDMA by subcutaneous injection. Moreover, inhibition of gamma-GT with acivicin increases the concentration of GSH and N-acetylcysteine conjugates of N-methyl-alpha-MeDA in brain dialysate, and there is a direct correlation between the concentrations of metabolites in dialysate and the extent of neurotoxicity, measured by decreases in serotonin (5-HT) and 5-hydroxyindole acetic (5-HIAA) levels. Importantly, the effects of acivicin are independent of MDMA-induced hyperthermia, since acivicin-mediated potentiation of MDMA neurotoxicity occurs in the context of acivicin-mediated decreases in body temperature. Finally, we have synthesized 5-(N-acetylcystein-S-yl)-N-methyl-alpha-MeDA and established that it is a relatively potent serotonergic neurotoxicant. Together, the data support the contention that MDMA-mediated serotonergic neurotoxicity is mediated by the systemic formation of GSH and N-acetylcysteine conjugates of N-methyl-alpha-MeDA (and alpha-MeDA). The mechanisms by which such metabolites access the brain and produce selective

  12. Production of Bioactive Secondary Metabolites by Marine Vibrionaceae

    Lone Gram

    2011-08-01

    Full Text Available Bacteria belonging to the Vibrionaceae family are widespread in the marine environment. Today, 128 species of vibrios are known. Several of them are infamous for their pathogenicity or symbiotic relationships. Despite their ability to interact with eukaryotes, the vibrios are greatly underexplored for their ability to produce bioactive secondary metabolites and studies have been limited to only a few species. Most of the compounds isolated from vibrios so far are non-ribosomal peptides or hybrids thereof, with examples of N-containing compounds produced independent of nonribosomal peptide synthetases (NRPS. Though covering a limited chemical space, vibrios produce compounds with attractive biological activities, including antibacterial, anticancer, and antivirulence activities. This review highlights some of the most interesting structures from this group of bacteria. Many compounds found in vibrios have also been isolated from other distantly related bacteria. This cosmopolitan occurrence of metabolites indicates a high incidence of horizontal gene transfer, which raises interesting questions concerning the ecological function of some of these molecules. This account underlines the pending potential for exploring new bacterial sources of bioactive compounds and the challenges related to their investigation.

  13. Metabolite profiles of common Stemphylium species

    Andersen, Birgitte; Solfrizzo, Michelle; Visconti, Angelo

    1995-01-01

    and identified by their chromatographic and spectroscopic data (Rf values, reflectance spectrum, retention index and ultraviolet spectrum). These metabolites have been used for the chemotaxonomical characterization of Stemphylium botryosum, S. herbarum, S. alfalfae, S. majusculum, S. sarciniforme, S. vesicarium...

  14. Detecting beer intake by unique metabolite patterns

    Gürdeniz, Gözde; Jensen, Morten Georg; Meier, Sebastian

    2016-01-01

    Evaluation of health related effects of beer intake is hampered by the lack of accurate tools for assessing intakes (biomarkers). Therefore, we identified plasma and urine metabolites associated with recent beer intake by untargeted metabolomics and established a characteristic metabolite pattern...... representing raw materials and beer production as a qualitative biomarker of beer intake. In a randomized, crossover, single-blinded meal study (MSt1) 18 participants were given one at a time four different test beverages: strong, regular and non-alcoholic beers and a soft drink. Four participants were...... assigned to have two additional beers (MSt2). In addition to plasma and urine samples, test beverages, wort and hops extract were analyzed by UPLC-QTOF. A unique metabolite pattern reflecting beer metabolome, including metabolites derived from beer raw material (i.e. N-methyl tyramine sulfate and the sum...

  15. METABOLITE CHARACTERIZATION IN SERUM SAMPLES FROM ...

    Preferred Customer

    Metabonomics offers a distinct advantage over other tests as it can be ... Metabolic profiling in heart disease has also been successfully ... resonances of the small metabolites showing fingerprints of serum metabolomic profile (Figure. 3).

  16. Secondary metabolites of cyanobacteria Nostoc sp.

    Kobayashi, Akio; Kajiyama, Shin-Ichiro

    1998-03-01

    Cyanobacteria attracted much attention recently because of their secondary metabolites with potent biological activities and unusual structures. This paper reviews some recent studies on the isolation, structural, elucidation and biological activities of the bioactive compounds from cyanobacteria Nostoc species.

  17. Metabolite Profiling of Red Sea Corals

    Ortega, Jovhana Alejandra

    2016-01-01

    that provide insights into the specific nature of the symbiosis. Our analysis also revealed aquatic pollutants, which suggests that metabolite profiling might be used for monitoring pollution levels and assessing environmental impact.

  18. Hydrophobicity and charge shape cellular metabolite concentrations.

    Arren Bar-Even

    2011-10-01

    Full Text Available What governs the concentrations of metabolites within living cells? Beyond specific metabolic and enzymatic considerations, are there global trends that affect their values? We hypothesize that the physico-chemical properties of metabolites considerably affect their in-vivo concentrations. The recently achieved experimental capability to measure the concentrations of many metabolites simultaneously has made the testing of this hypothesis possible. Here, we analyze such recently available data sets of metabolite concentrations within E. coli, S. cerevisiae, B. subtilis and human. Overall, these data sets encompass more than twenty conditions, each containing dozens (28-108 of simultaneously measured metabolites. We test for correlations with various physico-chemical properties and find that the number of charged atoms, non-polar surface area, lipophilicity and solubility consistently correlate with concentration. In most data sets, a change in one of these properties elicits a ~100 fold increase in metabolite concentrations. We find that the non-polar surface area and number of charged atoms account for almost half of the variation in concentrations in the most reliable and comprehensive data set. Analyzing specific groups of metabolites, such as amino-acids or phosphorylated nucleotides, reveals even a higher dependence of concentration on hydrophobicity. We suggest that these findings can be explained by evolutionary constraints imposed on metabolite concentrations and discuss possible selective pressures that can account for them. These include the reduction of solute leakage through the lipid membrane, avoidance of deleterious aggregates and reduction of non-specific hydrophobic binding. By highlighting the global constraints imposed on metabolic pathways, future research could shed light onto aspects of biochemical evolution and the chemical constraints that bound metabolic engineering efforts.

  19. Urinary metabolites of tetrahydronorharman in the rat

    Greiner, B.; Rommelspacher, H.

    1982-01-01

    The metabolism of THN in the rat was studied in vivo by use of /sup 14/C-radiolabelled compound. Structures of major urinary metabolites were determined by exact spectral data. Their concentrations were measured by liquid scintillation counting. It was found that THN is submitted to endogenous transformation, and that the excreted derivatives form three groups of similar concentration: unchanged substance, hydroxylated/conjugated compounds, and aromatic metabolites. Structures and proposed pathways are summed in diagram.

  20. Urinary metabolites of tetrahydronorharman in the rat

    Greiner, B.; Rommelspacher, H.

    1982-01-01

    The metabolism of THN in the rat was studied in vivo by use of 14 C-radiolabelled compound. Structures of major urinary metabolites were determined by exact spectral data. Their concentrations were measured by liquid scintillation counting. It was found that THN is submitted to endogenous transformation, and that the excreted derivatives form three groups of similar concentration: unchanged substance, hydroxylated/conjugated compounds, and aromatic metabolites. Structures and proposed pathways are summed in diagram

  1. GPCR-Mediated Signaling of Metabolites

    Husted, Anna Sofie; Trauelsen, Mette; Rudenko, Olga

    2017-01-01

    microbiota target primarily enteroendocrine, neuronal, and immune cells in the lamina propria of the gut mucosa and the liver and, through these tissues, the rest of the body. In contrast, metabolites from the intermediary metabolism act mainly as metabolic stress-induced autocrine and paracrine signals...... and obesity. The concept of key metabolites as ligands for specific GPCRs has broadened our understanding of metabolic signaling significantly and provides a number of novel potential drug targets....

  2. Interactions between biosurfactant-producing Pseudomonas and Phytophthora species

    Tran, H.

    2007-01-01

    Fluorescent Pseudomonas bacteria produce a wide variety of antimicrobial metabolites, including soap-like compounds referred to as biosurfactants. The results of this thesis showed that biosurfactant-producing Pseudomonas bacteria are effective in controlling Phytophthora foot rot

  3. New metabolites of hongdenafil, homosildenafil and hydroxyhomosildenafil.

    Yeo, Miseon; Park, Yujin; Lee, Heesang; Choe, Sanggil; Baek, Seung-Hoon; Kim, Hye Kyung; Pyo, Jae Sung

    2018-02-05

    Recently, illegal sildenafil analogues have emerged, causing serious social issues. In spite of the importance of sildenafil analogues, their metabolic profiles or clinical effects have not been reported yet. In this study, new metabolites of illegal sildenafil analogues such as hongdenafil, homosildenafil, and hydroxyhomosildenafil were determined using liquid chromatography quadrupole-time of flight mass spectrometry (LC-Q-TOF-MS) and tandem mass spectrometry (LC-Q-TOF-MS/MS). To prepare metabolic samples, in vitro and in vivo studies were performed. For in vivo metabolites analysis, urine and feces samples of rats treated with sildenafil analogues were analyzed. For in vitro metabolites analysis, human liver microsomes incubated with sildenafil analogues were extracted and analyzed. All metabolites were characterized by LC-Q-TOF-MS and LC-Q-TOF-MS/MS. As a result, five, six, and seven metabolites were determined in hongdenafil, homosildenafil, and hydroxyhomosildenafil treated samples, respectively. These results could be applied to forensic science and other analytical fields. Moreover, these newly identified metabolites could be used as fundamental data to determine the side effect and toxicity of illegal sildenafil analogues. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Metabolites of cannabidiol identified in human urine.

    Harvey, D J; Mechoulam, R

    1990-03-01

    1. Urine from a dystonic patient treated with cannabidiol (CBD) was examined by g.l.c.-mass spectrometry for CBD metabolites. Metabolites were identified as their trimethylsilyl (TMS), [2H9]TMS, and methyl ester/TMS derivatives and as the TMS derivatives of the product of lithium aluminium deuteride reduction. 2. Thirty-three metabolites were identified in addition to unmetabolized CBD, and a further four metabolites were partially characterized. 3. The major metabolic route was hydroxylation and oxidation at C-7 followed by further hydroxylation in the pentyl and propenyl groups to give 1"-, 2"-, 3"-, 4"- and 10-hydroxy derivatives of CBD-7-oic acid. Other metabolites, mainly acids, were formed by beta-oxidation and related biotransformations from the pentyl side-chain and these were also hydroxylated at C-6 or C-7. The major oxidized metabolite was CBD-7-oic acid containing a hydroxyethyl side-chain. 4. Two 8,9-dihydroxy compounds, presumably derived from the corresponding epoxide were identified. 5. Also present were several cyclized cannabinoids including delta-6- and delta-1-tetrahydrocannabinol and cannabinol. 6. This is the first metabolic study of CBD in humans; most observed metabolic routes were typical of those found for CBD and related cannabinoids in other species.

  5. A Derivative Method with Free Radical Oxidation to Predict Resveratrol Metabolites by Tandem Mass Spectrometry.

    Liu, Wangta; Shiue, Yow-Ling; Lin, Yi-Reng; Lin, Hugo You-Hsien; Liang, Shih-Shin

    2015-10-01

    In this study, we demonstrated an oxidative method with free radical to generate 3,5,4'-trihydroxy- trans -stilbene ( trans -resveratrol) metabolites and detect sequentially by an autosampler coupling with liquid chromatography electrospray ionization tandem mass spectrometer (LC-ESI-MS/MS). In this oxidative method, the free radical initiator, ammonium persulfate (APS), was placed in a sample bottle containing resveratrol to produce oxidative derivatives, and the reaction progress was tracked by autosampler sequencing. Resveratrol, a natural product with purported cancer preventative qualities, produces metabolites including dihydroresveratrol, 3,4'-dihydroxy- trans -stilbene, lunularin, resveratrol monosulfate, and dihydroresveratrol monosulfate by free radical oxidation. Using APS free radical, the concentrations of resveratrol derivatives differ as a function of time. Besides simple, convenient and time- and labor saving, the advantages of free radical oxidative method of its in situ generation of oxidative derivatives followed by LC-ESI-MS/MS can be utilized to evaluate different metabolites in various conditions.

  6. Global analysis of biosynthetic gene clusters reveals vast potential of secondary metabolite production in Penicillium species

    Nielsen, Jens Christian; Grijseels, Sietske; Prigent, Sylvain

    2017-01-01

    Filamentous fungi produce a wide range of bioactive compounds with important pharmaceutical applications, such as antibiotic penicillins and cholesterol-lowering statins. However, less attention has been paid to fungal secondary metabolites compared to those from bacteria. In this study, we...... sequenced the genomes of 9 Penicillium species and, together with 15 published genomes, we investigated the secondary metabolism of Penicillium and identified an immense, unexploited potential for producing secondary metabolites by this genus. A total of 1,317 putative biosynthetic gene clusters (BGCs) were......-referenced the predicted pathways with published data on the production of secondary metabolites and experimentally validated the production of antibiotic yanuthones in Penicillia and identified a previously undescribed compound from the yanuthone pathway. This study is the first genus-wide analysis of the genomic...

  7. Bacterial dynamics and metabolite changes in solid-state acetic acid fermentation of Shanxi aged vinegar.

    Li, Sha; Li, Pan; Liu, Xiong; Luo, Lixin; Lin, Weifeng

    2016-05-01

    Solid-state acetic acid fermentation (AAF), a natural or semi-controlled fermentation process driven by reproducible microbial communities, is an important technique to produce traditional Chinese cereal vinegars. Highly complex microbial communities and metabolites are involved in traditional Chinese solid-state AAF, but the association between microbiota and metabolites during this process are still poorly understood. In this study, we performed amplicon 16S rRNA gene sequencing on the Illumina MiSeq platform, PCR-denaturing gradient gel electrophoresis, and metabolite analysis to trace the bacterial dynamics and metabolite changes under AAF process. A succession of bacterial assemblages was observed during the AAF process. Lactobacillales dominated all the stages. However, Acetobacter species in Rhodospirillales were considerably accelerated during AAF until the end of fermentation. Quantitative PCR results indicated that the biomass of total bacteria showed a "system microbe self-domestication" process in the first 3 days, and then peaked at the seventh day before gradually decreasing until the end of AAF. Moreover, a total of 88 metabolites, including 8 organic acids, 16 free amino acids, and 66 aroma compounds were detected during AAF. Principal component analysis and cluster analyses revealed the high correlation between the dynamics of bacterial community and metabolites.

  8. Integrating Multiple Analytical Datasets to Compare Metabolite Profiles of Mouse Colonic-Cecal Contents and Feces.

    Zeng, Huawei; Grapov, Dmitry; Jackson, Matthew I; Fahrmann, Johannes; Fiehn, Oliver; Combs, Gerald F

    2015-09-11

    The pattern of metabolites produced by the gut microbiome comprises a phenotype indicative of the means by which that microbiome affects the gut. We characterized that phenotype in mice by conducting metabolomic analyses of the colonic-cecal contents, comparing that to the metabolite patterns of feces in order to determine the suitability of fecal specimens as proxies for assessing the metabolic impact of the gut microbiome. We detected a total of 270 low molecular weight metabolites in colonic-cecal contents and feces by gas chromatograph, time-of-flight mass spectrometry (GC-TOF) and ultra-high performance liquid chromatography, quadrapole time-of-flight mass spectrometry (UPLC-Q-TOF). Of that number, 251 (93%) were present in both types of specimen, representing almost all known biochemical pathways related to the amino acid, carbohydrate, energy, lipid, membrane transport, nucleotide, genetic information processing, and cancer-related metabolism. A total of 115 metabolites differed significantly in relative abundance between both colonic-cecal contents and feces. These data comprise the first characterization of relationships among metabolites present in the colonic-cecal contents and feces in a healthy mouse model, and shows that feces can be a useful proxy for assessing the pattern of metabolites to which the colonic mucosum is exposed.

  9. Integrating Multiple Analytical Datasets to Compare Metabolite Profiles of Mouse Colonic-Cecal Contents and Feces

    Huawei Zeng

    2015-09-01

    Full Text Available The pattern of metabolites produced by the gut microbiome comprises a phenotype indicative of the means by which that microbiome affects the gut. We characterized that phenotype in mice by conducting metabolomic analyses of the colonic-cecal contents, comparing that to the metabolite patterns of feces in order to determine the suitability of fecal specimens as proxies for assessing the metabolic impact of the gut microbiome. We detected a total of 270 low molecular weight metabolites in colonic-cecal contents and feces by gas chromatograph, time-of-flight mass spectrometry (GC-TOF and ultra-high performance liquid chromatography, quadrapole time-of-flight mass spectrometry (UPLC-Q-TOF. Of that number, 251 (93% were present in both types of specimen, representing almost all known biochemical pathways related to the amino acid, carbohydrate, energy, lipid, membrane transport, nucleotide, genetic information processing, and cancer-related metabolism. A total of 115 metabolites differed significantly in relative abundance between both colonic-cecal contents and feces. These data comprise the first characterization of relationships among metabolites present in the colonic-cecal contents and feces in a healthy mouse model, and shows that feces can be a useful proxy for assessing the pattern of metabolites to which the colonic mucosum is exposed.

  10. MetaboSearch: tool for mass-based metabolite identification using multiple databases.

    Bin Zhou

    Full Text Available Searching metabolites against databases according to their masses is often the first step in metabolite identification for a mass spectrometry-based untargeted metabolomics study. Major metabolite databases include Human Metabolome DataBase (HMDB, Madison Metabolomics Consortium Database (MMCD, Metlin, and LIPID MAPS. Since each one of these databases covers only a fraction of the metabolome, integration of the search results from these databases is expected to yield a more comprehensive coverage. However, the manual combination of multiple search results is generally difficult when identification of hundreds of metabolites is desired. We have implemented a web-based software tool that enables simultaneous mass-based search against the four major databases, and the integration of the results. In addition, more complete chemical identifier information for the metabolites is retrieved by cross-referencing multiple databases. The search results are merged based on IUPAC International Chemical Identifier (InChI keys. Besides a simple list of m/z values, the software can accept the ion annotation information as input for enhanced metabolite identification. The performance of the software is demonstrated on mass spectrometry data acquired in both positive and negative ionization modes. Compared with search results from individual databases, MetaboSearch provides better coverage of the metabolome and more complete chemical identifier information.The software tool is available at http://omics.georgetown.edu/MetaboSearch.html.

  11. Metabolites in Blood for Prediction of Bacteremic Sepsis in the Emergency Room.

    Anna M Kauppi

    Full Text Available A metabolomics approach for prediction of bacteremic sepsis in patients in the emergency room (ER was investigated. In a prospective study, whole blood samples from 65 patients with bacteremic sepsis and 49 ER controls were compared. The blood samples were analyzed using gas chromatography coupled to time-of-flight mass spectrometry. Multivariate and logistic regression modeling using metabolites identified by chromatography or using conventional laboratory parameters and clinical scores of infection were employed. A predictive model of bacteremic sepsis with 107 metabolites was developed and validated. The number of metabolites was reduced stepwise until identifying a set of 6 predictive metabolites. A 6-metabolite predictive logistic regression model showed a sensitivity of 0.91(95% CI 0.69-0.99 and a specificity 0.84 (95% CI 0.58-0.94 with an AUC of 0.93 (95% CI 0.89-1.01. Myristic acid was the single most predictive metabolite, with a sensitivity of 1.00 (95% CI 0.85-1.00 and specificity of 0.95 (95% CI 0.74-0.99, and performed better than various combinations of conventional laboratory and clinical parameters. We found that a metabolomics approach for analysis of acute blood samples was useful for identification of patients with bacteremic sepsis. Metabolomics should be further evaluated as a new tool for infection diagnostics.

  12. Monitoring of thiopurine metabolites in patients with inflammatory bowel disease-what is actually measured?

    Vikingsson, Svante; Carlsson, Björn; Almer, Sven H C; Peterson, Curt

    2009-06-01

    Azathioprine and 6-mercaptopurine are often used in the treatment of patients with inflammatory bowel disease (IBD). They are prodrugs and undergo a complex metabolism to active and inactive metabolites. Thiopurine treatment is monitored in many laboratories by measuring metabolite concentrations in erythrocytes (red blood cells). The metabolites of interest are not measured directly but as hydrolysis products, which can be produced from several metabolites. The aim of this study was to examine which metabolites are actually measured during routine monitoring. Samples from 18 patients treated with a thiopurine were analyzed by a typical routine high-performance liquid chromatography method for therapeutic drug monitoring and by a newly developed specific method measuring thioguanosine monophosphate (TGMP), thioguanosine diphosphate (TGDP), and thioguanosine triphosphate (TGTP), as well as methylthioinosine monophosphate (meTIMP), and the results were compared. 6-Thioguanine nucleotide (TGN) values detected by the routine method were 69% (range 40%-90%) of the sum of TGMP, TGDP, and TGTP measured by the specific method. TGTP and TGDP contributed 85% (range 78%-90%) and 14% (range 10%-21%) of the TGN total, respectively. Thioguanosine was not found in any patient sample. The concentration of meTIMP obtained by the routine method was 548% of the value obtained by the specific method (range 340%-718%). The difference in TGN measurements between the routine and specific methods can be explained by low hydrolysis efficiency in the routine method, although the most likely explanation for the difference in meTIMP values is that not yet identified metabolites are codetermined in the routine high-performance liquid chromatography method. Concentrations reported as TGN during therapeutic drug monitoring of thiopurine metabolites consist of TGDP and TGTP with a minor contribution of the TGMP. Concentrations reported as meTIMP or methyl mercaptopurine consist in part of me

  13. Rapid analysis of fungal cultures and dried figs for secondary metabolites by LC/TOF-MS

    Senyuva, Hamide Z. [Ankara Test and Analysis Laboratory, Scientific and Technological Research Council of Turkey, Ankara 06330 (Turkey)], E-mail: hamide.senyuva@tubitak.gov.tr; Gilbert, John [Central Science Laboratory, Sand Hutton, York YO41 1LZ (United Kingdom); Oztuerkoglu, Sebnem [Ankara Test and Analysis Laboratory, Scientific and Technological Research Council of Turkey, Ankara 06330 (Turkey)

    2008-06-09

    A liquid chromatography-time-of-flight mass spectrometry (LC/TOF-MS) method has been developed for profiling fungal metabolites. The performance of the procedure in terms of mass accuracy, selectivity (specificity) and repeatability was established by spiking aflatoxins, ochratoxins, trichothecenes and other metabolites into blank growth media. After extracting, and carrying out LC/TOF-MS analysis, the standards were correctly identified by searching a specially constructed database of 465 secondary metabolites. To demonstrate the viability of this approach 11 toxigenic and four non-toxigenic fungi from reference collections were grown on various media, for 7-14 days. The method was also applied to two toxigenic fungi, A. flavus (200-138) and A. parasiticus (2999-465) grown on gamma radiation sterilised dried figs, for 7-14 days. The fungal hyphae plus a portion of growth media or portions of dried figs were solvent extracted and analysed by LC/TOF-MS using a rapid resolution microbore LC column. Data processing based on cluster analysis, showed that electrospray ionization (ESI)-TOF-MS could be used to unequivocally identify metabolites in crude extracts. Using the elemental metabolite database, it was demonstrated that from culture collection isolates, anticipated metabolites. The speed and simplicity of the method has meant that levels of these metabolites could be monitored daily in sterilised figs. Over a 14-day period, levels of aflatoxins and kojic acid maximised at 5-6 days, whilst levels of 5-methoxysterigmatocystin remained relatively constant. In addition to the known metabolites expected to be produced by these fungi, roquefortine A, fumagillin, fumigaclavine B, malformins (peptides), aspergillic acid, nigragillin, terrein, terrestric acid and penicillic acid were also identified.

  14. Unambiguous Metabolite Identification in High-Throughput Metabolomics by Hybrid 1H-NMR/ESI-MS1 Approach

    2016-10-18

    The invention improves accuracy of metabolite identification by combining direct infusion ESI-MS with one-dimensional 1H-NMR spectroscopy. First, we apply a standard 1H-NMR metabolite identification protocol by matching the chemical shift, J-coupling and intensity information of experimental NMR signals against the NMR signals of standard metabolites in a metabolomics reference libraries. This generates a list of candidate metabolites. The list contains both false positive and ambiguous identifications. The software tool (the invention) takes the list of candidate metabolites, generated from NMRbased metabolite identification, and then calculates, for each of the candidate metabolites, the monoisotopic mass-tocharge (m/z) ratios for each commonly observed ion, fragment and adduct feature. These are then used to assign m/z ratios in experimental ESI-MS spectra of the same sample. Detection of the signals of a given metabolite in both NMR and MS spectra resolves the ambiguities, and therefore, significantly improves the confidence of the identification.

  15. Development of an updated PBPK model for trichloroethylene and metabolites in mice, and its application to discern the role of oxidative metabolism in TCE-induced hepatomegaly.

    Evans, M V; Chiu, W A; Okino, M S; Caldwell, J C

    2009-05-01

    Trichloroethylene (TCE) is a lipophilic solvent rapidly absorbed and metabolized via oxidation and conjugation to a variety of metabolites that cause toxicity to several internal targets. Increases in liver weight (hepatomegaly) have been reported to occur quickly in rodents after TCE exposure, with liver tumor induction reported in mice after long-term exposure. An integrated dataset for gavage and inhalation TCE exposure and oral data for exposure to two of its oxidative metabolites (TCA and DCA) was used, in combination with an updated and more accurate physiologically-based pharmacokinetic (PBPK) model, to examine the question as to whether the presence of TCA in the liver is responsible for TCE-induced hepatomegaly in mice. The updated PBPK model was used to help discern the quantitative contribution of metabolites to this effect. The update of the model was based on a detailed evaluation of predictions from previously published models and additional preliminary analyses based on gas uptake inhalation data in mice. The parameters of the updated model were calibrated using Bayesian methods with an expanded pharmacokinetic database consisting of oral, inhalation, and iv studies of TCE administration as well as studies of TCE metabolites in mice. The dose-response relationships for hepatomegaly derived from the multi-study database showed that the proportionality of dose to response for TCE- and DCA-induced hepatomegaly is not observed for administered doses of TCA in the studied range. The updated PBPK model was used to make a quantitative comparison of internal dose of metabolized and administered TCA. While the internal dose of TCA predicted by modeling of TCE exposure (i.e., mg TCA/kg-d) showed a linear relationship with hepatomegaly, the slope of the relationship was much greater than that for directly administered TCA. Thus, the degree of hepatomegaly induced per unit of TCA produced through TCE oxidation is greater than that expected per unit of TCA

  16. Development of an updated PBPK model for trichloroethylene and metabolites in mice, and its application to discern the role of oxidative metabolism in TCE-induced hepatomegaly

    Evans, M.V.; Chiu, W.A.; Okino, M.S.; Caldwell, J.C.

    2009-01-01

    Trichloroethylene (TCE) is a lipophilic solvent rapidly absorbed and metabolized via oxidation and conjugation to a variety of metabolites that cause toxicity to several internal targets. Increases in liver weight (hepatomegaly) have been reported to occur quickly in rodents after TCE exposure, with liver tumor induction reported in mice after long-term exposure. An integrated dataset for gavage and inhalation TCE exposure and oral data for exposure to two of its oxidative metabolites (TCA and DCA) was used, in combination with an updated and more accurate physiologically-based pharmacokinetic (PBPK) model, to examine the question as to whether the presence of TCA in the liver is responsible for TCE-induced hepatomegaly in mice. The updated PBPK model was used to help discern the quantitative contribution of metabolites to this effect. The update of the model was based on a detailed evaluation of predictions from previously published models and additional preliminary analyses based on gas uptake inhalation data in mice. The parameters of the updated model were calibrated using Bayesian methods with an expanded pharmacokinetic database consisting of oral, inhalation, and iv studies of TCE administration as well as studies of TCE metabolites in mice. The dose-response relationships for hepatomegaly derived from the multi-study database showed that the proportionality of dose to response for TCE- and DCA-induced hepatomegaly is not observed for administered doses of TCA in the studied range. The updated PBPK model was used to make a quantitative comparison of internal dose of metabolized and administered TCA. While the internal dose of TCA predicted by modeling of TCE exposure (i.e., mg TCA/kg-d) showed a linear relationship with hepatomegaly, the slope of the relationship was much greater than that for directly administered TCA. Thus, the degree of hepatomegaly induced per unit of TCA produced through TCE oxidation is greater than that expected per unit of TCA

  17. Secondary metabolites from Eurotium species, Aspergillus calidoustus and A. insuetus common in Canadian homes with a review of their chemistry and biological activities.

    Slack, Gregory J; Puniani, Eva; Frisvad, Jens C; Samson, Robert A; Miller, J David

    2009-04-01

    As part of studies of metabolites from fungi common in the built environment in Canadian homes, we investigated metabolites from strains of three Eurotium species, namely E. herbariorum, E. amstelodami, and E. rubrum as well as a number of isolates provisionally identified as Aspergillus ustus. The latter have been recently assigned as the new species A. insuetus and A. calidoustus. E. amstelodami produced neoechinulin A and neoechinulin B, epiheveadride, flavoglaucin, auroglaucin, and isotetrahydroauroglaucin as major metabolites. Minor metabolites included echinulin, preechinulin and neoechinulin E. E. rubrum produced all of these metabolites, but epiheveadride was detected as a minor metabolite. E. herbariorum produced cladosporin as a major metabolite, in addition to those found in E. amstelodami. This species also produced questin and neoechinulin E as minor metabolites. This is the first report of epiheveadride occurring as a natural product, and the first nonadride isolated from Eurotium species. Unlike strains from mainly infection-related samples, largely from Europe, neither ophiobolins G and H nor austins were detected in the Canadian strains of A. insuetus and A. calidoustus tested, all of which had been reported from the latter species. TMC-120 A, B, C and a sesquiterpene drimane are reported with certainty for the first time from indoor isolates, as well as two novel related methyl isoquinoline alkaloids.

  18. Bioactive Secondary Metabolites from a Thai Collection of Soil and Marine-Derived Fungi of the Genera Neosartorya and Aspergillus.

    Zin, War War May; Prompanya, Chadaporn; Buttachon, Suradet; Kijjoa, Anake

    2016-01-01

    Fungi are microorganisms which can produce interesting secondary metabolites with structural diversity. Although terrestrial fungi have been extensively investigated for their bioactive secondary metabolites such as antibiotics, marine-derived fungi have only recently attracted attention of Natural Products chemists. Our group has been working on the secondary metabolites produced by the cultures of the fungi of the genera Neosartorya and Aspergillus, collected from soil and marine environments from the tropical region for the purpose of finding new leads for anticancer and antibacterial drugs. This review covers only the secondary metabolites of four soil and six marine-derived species of Neosarorya as well as a new species of marine-derived Aspergillus, investigated by our group. In total, we have isolated fifty three secondary metabolites which can be categorized as polyketides (two), isocoumarins (six), terpenoids (two), meroterpenes (fourteen), alkaloids (twenty eight) and cyclic peptide (one). The anticancer and antibacterial activities of these fungal metabolites are also discussed. Among fifty three secondary metabolites isolated, only the alkaloid eurochevalierine and the cadinene sesquiterpene, isolated from the soil fungus N. pseudofisheri, showed relevant in vitro cytostatic activity against glioblastoma (U373) and non-small cell lung cancer (A549) cell lines while the meroditerpene aszonapyrone A exhibited strong antibacterial activity against multidrug-resistant Gram-positive bacteria and also strong antibiofilm activity in these isolates.

  19. The effects of types of media on uranium leaching using metabolite of Aspergillus niger

    Li Guangyue; Ding Dexin; Wang Yongdong; Hu Nan

    2012-01-01

    To investigate the influences of different media to uranium leaching applying with metabolite of Aspergillus niger, PSA and glucose-steepwater medium were used for the culture of Aspergillus niger, and the metabolite of Aspergillus niger with different pH value produced in the diverse culture temperature were obtained which was applied on the tests of uranium leaching as leaching agent. The test results show that the maximum leaching rate is 83.05% when the leaching agent is the metabolite of Aspergillus niger produced by PSA, as for the glucose- steepwater medium, the maximum leaching rate is 68.20%. The pH value of the metabolite of Aspergillus niger of the two kinds of media has a significant effect on the leaching rate. When PSA is adopted, the best leaching rate appears at the pH value of metabolite ranging from 2.0 to 2.5, and as for the glucose-steepwater medium, the pH value is below 2.1. (authors)

  20. Identification of ionic chloroacetanilide-herbicide metabolites in surface water and groundwater by HPLC/MS using negative ion spray

    Ferrer, I.; Thurman, E.M.; Barcelo, D.

    1997-01-01

    Solid-phase extraction (SPE) was combined with high-performance liquid chromatography/high-flow pneumatically assisted electrospray mass spectrometry (HPLC/ESP/MS) for the trace analysis of oxanilic and sulfonic acids of acetochlor, alachlor, and metolachlor. The isolation procedure separated the chloroacetanilide metabolites from the parent herbicides during the elution from C18 cartridges using ethyl acetate for parent compounds, followed by methanol for the anionic metabolites. The metabolites were separated chromatographically using reversed-phase HPLC and analyzed by negative-ion MS using electrospray ionization in selected ion mode. Quantitation limits were 0.01 ??g/L for both the oxanilic and sulfonic acids based on a 100-mL water sample. This combination of methods represents an important advance in environmental analysis of chloroacetanilide-herbicide metabolites in surface water and groundwater for two reasons. First, anionic chloroacetanilide metabolites are a major class of degradation products that are readily leached to groundwater in agricultural areas. Second, anionic metabolites, which are not able to be analyzed by conventional methods such as liquid extraction and gas chromatography/mass spectrometry, are effectively analyzed by SPE and high-flow pneumatically assisted electrospray mass spectrometry. This paper reports the first HPLC/MS identification of these metabolites in surface water and groundwater.

  1. Diclofenac toxicity in human intestine ex vivo is not related to the formation of intestinal metabolites

    Niu, Xiaoyu; de Graaf, Inge A. M.; Langelaar-Makkinje, Miriam; Horvatovich, Peter; Groothuis, Geny M. M.

    The use of diclofenac (DCF), a nonsteroidal anti-inflammatory drug, is associated with a high prevalence of gastrointestinal side effects. In vivo studies in rodents suggested that reactive metabolites of DCF produced by the liver or the intestine might be responsible for this toxicity. In the

  2. Quorum quenchers and sensors as possible roles for mycotoxins and other secondary metabolites of fungi

    The assumed role for mycotoxins is to act as defensive metabolites thus serving as protection for fungi from biotic antagonisms and as such do not interact with the daily metabolic requirements of the producing fungus. Preventive strategies are devoted to reducing the accumulation of mycotoxins bas...

  3. The antiSMASH database, a comprehensive database of microbial secondary metabolite biosynthetic gene clusters

    Blin, Kai; Medema, Marnix H.; Kottmann, Renzo

    2017-01-01

    Secondary metabolites produced by microorganisms are the main source of bioactive compounds that are in use as antimicrobial and anticancer drugs, fungicides, herbicides and pesticides. In the last decade, the increasing availability of microbial genomes has established genome mining as a very...

  4. Distribution of secondary metabolite biosynthetic gene clusters in 343 Fusarium genomes

    Fusarium consists of over 200 phylogenetically distinct species, many of which cause important crop diseases and/or produce mycotoxins and other secondary metabolites (SMs). Some fusaria also cause opportunistic infections in humans and other animals. To investigate the distribution of biosynthetic ...

  5. Interactions Between a Belowground Herbivore and Primary and Secondary Root Metabolites in Wild Cabbage

    Van Geem, Moniek; Harvey, J.A.; Cortesero, A.M.; Raaijmakers, C.E.; Gols, R.

    2015-01-01

    Plants are attacked by both above- and belowground herbivores. Toxic secondary compounds are part of the chemical defense arsenal of plants against a range of antagonists, and are subject to genetic variation. Plants also produce primary metabolites (amino acids, nutrients, sugars) that function as

  6. Characterization of D-3-hydroxybutyrylcarnitine (ketocarnitine): an identified ketosis-induced metabolite

    Soeters, Maarten R.; Serlie, Mireille J.; Sauerwein, Hans P.; Duran, Marinus; Ruiter, Jos P.; Kulik, Willem; Ackermans, Mariëtte T.; Minkler, Paul E.; Hoppel, Charles L.; Wanders, Ronald J. A.; Houten, Sander M.

    2012-01-01

    Hydroxybutyrylcarnitine (HB-carnitine) is a metabolite that has been associated with insulin resistance and type 2 diabetes mellitus. It is currently unknown whether HB-carnitine can be produced from D-3-hydroxybutyrate (D-3HB), a ketone body; but its formation from L-3-HB-CoA, a fatty acid

  7. Microbial Metabolism. Part 10. Metabolites of 7,8 Dimethoxyflavone and 5-Methoxyflavone

    Microbial transformation of 7, 8-dimethoxyflavone (1) by Mucor ramannianus (ATCC 9628) produced five metabolites: 7, 8-dimethoxy-4'-hydroxyflavone (2), 3', 4'-dihydroxy-7, 8-dimethoxyflavone (3), 7, 3'-dihydroxy-8-methoxyflavone (4), 7, 4'-dihydroxy-8-methoxyflavone (5) and 8-methoxy-7, 3', 4'-trihy...

  8. Biosynthesis, localization and ecological role of pyrethrins and linked secondary metabolites in pyrethrum

    Jongsma, M.A.; Ramirez, A.

    2017-01-01

    The perennial herbaceous plant Tanacetum cinerariifolium, also known as pyrethrum, is a daisy-like flower with an inherent ability to produce considerable amounts of biologically active metabolites, especially pyrethrins, probably intended for self-defence. The discovery of pyrethrin toxicity

  9. Plant protein and secondary metabolites influence diet selection in a mammalian specialist herbivore

    Amy C. Ulappa; Rick G. Kelsey; Graham G. Frye; Janet L. Rachlow; LIsa A. Shipley; Laura Bond; Xinzhu Pu; Jennifer Sorensen. Forbey

    2014-01-01

    For herbivores, nutrient intake is limited by the relatively low nutritional quality of plants and high concentrations of potentially toxic defensive compounds (plant secondary metabolites [PSMs]) produced by many plants. In response to phytochemical challenges, some herbivores selectively forage on plants with higher nutrient and lower PSM concentrations relative to...

  10. Effects of 3,4-methylenedioxymethamphetamine (MDMA) and its main metabolites on cardiovascular function in conscious rats.

    Schindler, Charles W; Thorndike, Eric B; Blough, Bruce E; Tella, Srihari R; Goldberg, Steven R; Baumann, Michael H

    2014-01-01

    The cardiovascular effects produced by 3,4-methylenedioxymethamphetamine (MDMA; 'Ecstasy') contribute to its acute toxicity, but the potential role of its metabolites in these cardiovascular effects is not known. Here we examined the effects of MDMA metabolites on cardiovascular function in rats. Radiotelemetry was employed to evaluate the effects of s.c. administration of racemic MDMA and its phase I metabolites on BP, heart rate (HR) and locomotor activity in conscious male rats. MDMA (1-20 mg·kg(-1)) produced dose-related increases in BP, HR and activity. The peak effects on HR occurred at a lower dose than peak effects on BP or activity. The N-demethylated metabolite, 3,4-methylenedioxyamphetamine (MDA), produced effects that mimicked those of MDMA. The metabolite 3,4-dihydroxymethamphetamine (HHMA; 1-10 mg·kg(-1)) increased HR more potently and to a greater extent than MDMA, whereas 3,4-dihydroxyamphetamine (HHA) increased HR, but to a lesser extent than HHMA. Neither dihydroxy metabolite altered motor activity. The metabolites 4-hydroxy-3-methoxymethamphetamine (HMMA) and 4-hydroxy-3-methoxyamphetamine (HMA) did not affect any of the parameters measured. The tachycardia produced by MDMA and HHMA was blocked by the β-adrenoceptor antagonist propranolol. Our results demonstrate that HHMA may contribute significantly to the cardiovascular effects of MDMA in vivo. As such, determining the molecular mechanism of action of HHMA and the other hydroxyl metabolites of MDMA warrants further study. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  11. Deuterium labelling of tryptamine, serotonin and their N-methylated metabolites using solvent exchange reactions

    Raeisaenen, M; Kaerkkaeinen, J [Helsinki Univ. (Finland). Dept. of Medical Chemistry

    1979-01-01

    Technically uncomplicated methods based on catalytic isotope exchange in deuterated solvents are described for the deuteration of tryptamine, serotonin and their N-methylated metabolites. Heterogeneous platinum catalysis, homogeneous acid catalysis and their combination have been employed. The properties of the labelled derivatives prepared with each technique as well as their use in mass spectrometric work are discussed.

  12. Deuterium labelling of tryptamine, serotonin and their N-methylated metabolites using solvent exchange reactions

    Raeisaenen, M.; Kaerkkaeinen, J.

    1979-01-01

    Technically uncomplicated methods based on catalytic isotope exchange in deuterated solvents are described for the deuteration of tryptamine, serotonin and their N-methylated metabolites. Heterogeneous platinum catalysis, homogeneous acid catalysis and their combination have been employed. The properties of the labelled derivatives prepared with each technique as well as their use in mass spectrometric work are discussed. (author)

  13. Detecting Beer Intake by Unique Metabolite Patterns.

    Gürdeniz, Gözde; Jensen, Morten Georg; Meier, Sebastian; Bech, Lene; Lund, Erik; Dragsted, Lars Ove

    2016-12-02

    Evaluation of the health related effects of beer intake is hampered by the lack of accurate tools for assessing intakes (biomarkers). Therefore, we identified plasma and urine metabolites associated with recent beer intake by untargeted metabolomics and established a characteristic metabolite pattern representing raw materials and beer production as a qualitative biomarker of beer intake. In a randomized, crossover, single-blinded meal study (MSt1), 18 participants were given, one at a time, four different test beverages: strong, regular, and nonalcoholic beers and a soft drink. Four participants were assigned to have two additional beers (MSt2). In addition to plasma and urine samples, test beverages, wort, and hops extract were analyzed by UPLC-QTOF. A unique metabolite pattern reflecting beer metabolome, including metabolites derived from beer raw material (i.e., N-methyl tyramine sulfate and the sum of iso-α-acids and tricyclohumols) and the production process (i.e., pyro-glutamyl proline and 2-ethyl malate), was selected to establish a compliance biomarker model for detection of beer intake based on MSt1. The model predicted the MSt2 samples collected before and up to 12 h after beer intake correctly (AUC = 1). A biomarker model including four metabolites representing both beer raw materials and production steps provided a specific and accurate tool for measurement of beer consumption.

  14. Plant metabolites and nutritional quality of vegetables.

    Hounsome, N; Hounsome, B; Tomos, D; Edwards-Jones, G

    2008-05-01

    Vegetables are an important part of the human diet and a major source of biologically active substances such as vitamins, dietary fiber, antioxidants, and cholesterol-lowering compounds. Despite a large amount of information on this topic, the nutritional quality of vegetables has not been defined. Historically, the value of many plant nutrients and health-promoting compounds was discovered by trial and error. By the turn of the century, the application of chromatography, mass spectrometry, infrared spectrometry, and nuclear magnetic resonance allowed quantitative and qualitative measurements of a large number of plant metabolites. Approximately 50000 metabolites have been elucidated in plants, and it is predicted that the final number will exceed 200000. Most of them have unknown function. Metabolites such as carbohydrates, organic and amino acids, vitamins, hormones, flavonoids, phenolics, and glucosinolates are essential for plant growth, development, stress adaptation, and defense. Besides the importance for the plant itself, such metabolites determine the nutritional quality of food, color, taste, smell, antioxidative, anticarcinogenic, antihypertension, anti-inflammatory, antimicrobial, immunostimulating, and cholesterol-lowering properties. This review is focused on major plant metabolites that characterize the nutritional quality of vegetables, and methods of their analysis.

  15. Secondary metabolites in fungus-plant interactions

    Pusztahelyi, Tünde; Holb, Imre J.; Pócsi, István

    2015-01-01

    Fungi and plants are rich sources of thousands of secondary metabolites. The genetically coded possibilities for secondary metabolite production, the stimuli of the production, and the special phytotoxins basically determine the microscopic fungi-host plant interactions and the pathogenic lifestyle of fungi. The review introduces plant secondary metabolites usually with antifungal effect as well as the importance of signaling molecules in induced systemic resistance and systemic acquired resistance processes. The review also concerns the mimicking of plant effector molecules like auxins, gibberellins and abscisic acid by fungal secondary metabolites that modulate plant growth or even can subvert the plant defense responses such as programmed cell death to gain nutrients for fungal growth and colonization. It also looks through the special secondary metabolite production and host selective toxins of some significant fungal pathogens and the plant response in form of phytoalexin production. New results coming from genome and transcriptional analyses in context of selected fungal pathogens and their hosts are also discussed. PMID:26300892

  16. Functional metabolite assemblies—a review

    Aizen, Ruth; Tao, Kai; Rencus-Lazar, Sigal; Gazit, Ehud

    2018-05-01

    Metabolites are essential for the normal operation of cells and fulfill various physiological functions. It was recently found that in several metabolic disorders, the associated metabolites could self-assemble to generate amyloid-like structures, similar to canonical protein amyloids that have a role in neurodegenerative disorders. Yet, assemblies with typical amyloid characteristics are also known to have physiological function. In addition, many non-natural proteins and peptides presenting amyloidal properties have been used for the fabrication of functional nanomaterials. Similarly, functional metabolite assemblies are also found in nature, demonstrating various physiological roles. A notable example is the structural color formed by guanine crystals or fluorescent crystals in feline eyes responsible for enhanced night vision. Moreover, some metabolites have been used for the in vitro fabrication of functional materials, such as glycine crystals presenting remarkable piezoelectric properties or indigo films used to assemble organic semi-conductive electronic devices. Therefore, we believe that the study of metabolite assemblies is not only important in order to understand their role in normal physiology and in pathology, but also paves a new route in exploring the fabrication of organic, bio-compatible materials.

  17. The secondary metabolite bioinformatics portal: Computational tools to facilitate synthetic biology of secondary metabolite production

    Tilmann Weber

    2016-06-01

    Full Text Available Natural products are among the most important sources of lead molecules for drug discovery. With the development of affordable whole-genome sequencing technologies and other ‘omics tools, the field of natural products research is currently undergoing a shift in paradigms. While, for decades, mainly analytical and chemical methods gave access to this group of compounds, nowadays genomics-based methods offer complementary approaches to find, identify and characterize such molecules. This paradigm shift also resulted in a high demand for computational tools to assist researchers in their daily work. In this context, this review gives a summary of tools and databases that currently are available to mine, identify and characterize natural product biosynthesis pathways and their producers based on ‘omics data. A web portal called Secondary Metabolite Bioinformatics Portal (SMBP at http://www.secondarymetabolites.org is introduced to provide a one-stop catalog and links to these bioinformatics resources. In addition, an outlook is presented how the existing tools and those to be developed will influence synthetic biology approaches in the natural products field.

  18. Chemical ecology of insect-plant interactions: ecological significance of plant secondary metabolites.

    Nishida, Ritsuo

    2014-01-01

    Plants produce a diverse array of secondary metabolites as chemical barriers against herbivores. Many phytophagous insects are highly adapted to these allelochemicals and use such unique substances as the specific host-finding cues, defensive substances of their own, and even as sex pheromones or their precursors by selectively sensing, incorporating, and/or processing these phytochemicals. Insects also serve as pollinators often effectively guided by specific floral fragrances. This review demonstrates the ecological significance of such plant secondary metabolites in the highly diverse interactions between insects and plants.

  19. Tests of biological activity of metabolites from Penicillium expansum (Link Thom various isolates

    Halina Borecka

    2013-12-01

    Full Text Available Aqrobacterium tumefaciens and cucumber, mustard and linseeds were compared as test organisms for evaluation of the biological activity of patulin. It was found that the reaction of cucumber seeds and linseed to the patulin concentrations was more pronounced than that of mustard and Aqrobacterium tumefaciens. The activity of metabolites produced by Penicillium expansum was investigated with the use of cucumber seeds. As measure of activity served the percentage of radicule growth inhibition was compared with the growth in control seeds. The biological activity of the metabolites was specific for the isolates, those from apples being more active. Thirty two isolates from pears and 34 from apples were examined.

  20. Approach for detecting mutagenicity of biodegraded and ozonated pharmaceuticals, metabolites and transformation products from a drinking water perspective.

    Gartiser, Stefan; Hafner, Christoph; Kronenberger-Schäfer, Kerstin; Happel, Oliver; Trautwein, Christoph; Kümmerer, Klaus

    2012-09-01

    Many pharmaceuticals and related metabolites are not efficiently removed in sewage treatment plants and enter into surface water. There, they might be subject of drinking water abstraction and treatment by ozonation. In this study, a systematic approach for producing and effect-based testing of transformation products (TPs) during the drinking water ozonation process is proposed. For this, two pharmaceutical parent substances, three metabolites and one environmental degradation product were investigated with respect to their biodegradability and fate during drinking water ozonation. The Ames test (TA98, TA100) was used for the identification of mutagenic activity present in the solutions after testing inherent biodegradability and/or after ozonation of the samples. Suspicious results were complemented with the umu test. Due to the low substrate concentration required for ozonation, all ozonated samples were concentrated via solid phase extraction (SPE) before performing the Ames test. With the exception of piracetam, all substances were only incompletely biodegradable, suggesting the formation of stable TPs. Metformin, piracetam and guanylurea could not be removed completely by the ozonation process. We received some evidence that technical TPs are formed by ozonation of metformin and piracetam, whereas all tested metabolites were not detectable by analytical means after ozonation. In the case of guanylurea, one ozonation TP was identified by LC/MS. None of the experiments showed an increase of mutagenic effects in the Ames test. However, the SPE concentration procedure might lead to false-positive results due to the generation of mutagenic artefacts or might lead to false-negative results by missing adequate recovery efficiency. Thus, these investigations should always be accompanied by process blank controls that are carried out along the whole ozonation and SPE procedure. The study presented here is a first attempt to investigate the significance of

  1. Uranium leaching by fungal metabolite

    Wang Yongdong; Li Guangyue; Ding Dexin; Hu Nan

    2012-01-01

    To explore new means of bioleaching, one strain of high-yielding fungi-Aspergillus niger which could produce organic acids was separated and purified from soil samples of uranium mine. The influence of cultural temperature, initial pH value, inoculum sizes on its growth characteristics were carried out. And the tests of uranium leaching of metabolin of Aspergillus niger were operated. On these tests, the effects of metabolin of Aspergillus niger with different pH value produced in the diverse culture temperature on uranium leaching were investigated. The results show that this strain of Aspergillus niger can grow best under the following conditions: the temperature is 37℃, the initial pH value is 7.0, the inoculum sizes is 2% (the OD value of the spores solution is 0.06). The uranium extraction effects relative to the final pH value of the cultures. and the maximum leaching rates is 83.05% when the pH value is 2.3. (authors)

  2. Metabolite production by species of Stemphylium

    Olsen, Kresten Jon Kromphardt; Rossman, Amy; Andersen, Birgitte

    2018-01-01

    metabolites were found to be important for distinguishing species, while some unknown metabolites were also found to have important roles in distinguishing species of Stemphylium. This study is the first of its kind to investigate the chemical potential of Stemphylium across the whole genus.......Morphology and phylogeny has been used to distinguish members of the plant pathogenic fungal genus Stemphylium. A third method for distinguishing species is by chemotaxonomy. The main goal of the present study was to investigate the chemical potential of Stemphylium via HPLC-UV-MS analysis, while...

  3. Animal bioavailability of defined xenobiotic lignin metabolites

    Sandermann, H. Jr.; Arjmand, M.; Gennity, I.; Winkler, R.; Struble, C.B.; Aschbacher, P.W.

    1990-01-01

    Lignin has been recognized as a major component of bound pesticide residues in plants and is thought to be undigestible in animals. Two defined ring-U- 14 C-labeled chloroaniline/lignin metabolites have now been fed to rats, where a release of ∼66% of the bound xenobiotic occurred in the form of simple chloroaniline derivatives. The observed high degree of bioavailability indicates that bound pesticidal residues may possess ecotoxicological significance. In parallel studies, the white-rot fungus Phanerochaete chrysosporium was more efficient, and a soil system was much less efficient, in the degradation of the [ring-U- 14 C]chloroaniline/lignin metabolites

  4. Interactions between biosurfactant-producing Pseudomonas and Phytophthora species

    Tran, H.

    2007-01-01

    Fluorescent Pseudomonas bacteria produce a wide variety of antimicrobial metabolites, including soap-like compounds referred to as biosurfactants. The results of this thesis showed that biosurfactant-producing Pseudomonas bacteria are effective in controlling Phytophthora foot rot disease of black pepper in Vietnam and promote root and shoot development of the ‘King of Spices’. Biosurfactant-producing P. fluorescens strain SS101 was also effective in controlling tomato late blight caused by P...

  5. Insights into the mechanisms of Promysalin, a secondary metabolite with genus-specific antibacterial activity against Pseudomonas

    Promysalin, a secondary metabolite produced by Pseudomonas putida RW10S1, has antibacterial activity against a wide variety of Pseudomonas sp., including both human and plant pathogens. Promysalin induces swarming and biofilm formation in the producing species, and inhibits growth of susceptible sp...

  6. Production of fungal and bacterial growth modulating secondary metabolites is widespread among mycorrhiza-associated streptomycetes

    2012-01-01

    Background Studies on mycorrhiza associated bacteria suggest that bacterial-fungal interactions play important roles during mycorrhiza formation and affect plant health. We surveyed Streptomyces Actinobacteria, known as antibiotic producers and antagonists of fungi, from Norway spruce mycorrhizas with predominantly Piloderma species as the fungal partner. Results Fifteen Streptomyces isolates exhibited substantial variation in inhibition of tested mycorrhizal and plant pathogenic fungi (Amanita muscaria, Fusarium oxysporum, Hebeloma cylindrosporum, Heterobasidion abietinum, Heterobasidion annosum, Laccaria bicolor, Piloderma croceum). The growth of the mycorrhiza-forming fungus Laccaria bicolor was stimulated by some of the streptomycetes, and Piloderma croceum was only moderately affected. Bacteria responded to the streptomycetes differently than the fungi. For instance the strain Streptomyces sp. AcM11, which inhibited most tested fungi, was less inhibitory to bacteria than other tested streptomycetes. The determined patterns of Streptomyces-microbe interactions were associated with distinct patterns of secondary metabolite production. Notably, potentially novel metabolites were produced by strains that were less antagonistic to fungi. Most of the identified metabolites were antibiotics (e.g. cycloheximide, actiphenol) and siderophores (e.g. ferulic acid, desferroxiamines). Plant disease resistance was activated by a single streptomycete strain only. Conclusions Mycorrhiza associated streptomycetes appear to have an important role in inhibiting the growth of fungi and bacteria. Additionally, our study indicates that the Streptomyces strains, which are not general antagonists of fungi, may produce still un-described metabolites. PMID:22852578

  7. Production of fungal and bacterial growth modulating secondary metabolites is widespread among mycorrhiza-associated streptomycetes

    Schrey Silvia D

    2012-08-01

    Full Text Available Abstract Background Studies on mycorrhiza associated bacteria suggest that bacterial-fungal interactions play important roles during mycorrhiza formation and affect plant health. We surveyed Streptomyces Actinobacteria, known as antibiotic producers and antagonists of fungi, from Norway spruce mycorrhizas with predominantly Piloderma species as the fungal partner. Results Fifteen Streptomyces isolates exhibited substantial variation in inhibition of tested mycorrhizal and plant pathogenic fungi (Amanita muscaria, Fusarium oxysporum, Hebeloma cylindrosporum, Heterobasidion abietinum, Heterobasidion annosum, Laccaria bicolor, Piloderma croceum. The growth of the mycorrhiza-forming fungus Laccaria bicolor was stimulated by some of the streptomycetes, and Piloderma croceum was only moderately affected. Bacteria responded to the streptomycetes differently than the fungi. For instance the strain Streptomyces sp. AcM11, which inhibited most tested fungi, was less inhibitory to bacteria than other tested streptomycetes. The determined patterns of Streptomyces-microbe interactions were associated with distinct patterns of secondary metabolite production. Notably, potentially novel metabolites were produced by strains that were less antagonistic to fungi. Most of the identified metabolites were antibiotics (e.g. cycloheximide, actiphenol and siderophores (e.g. ferulic acid, desferroxiamines. Plant disease resistance was activated by a single streptomycete strain only. Conclusions Mycorrhiza associated streptomycetes appear to have an important role in inhibiting the growth of fungi and bacteria. Additionally, our study indicates that the Streptomyces strains, which are not general antagonists of fungi, may produce still un-described metabolites.

  8. Secondary Metabolites Production by Solid-State Fermentation

    Barrios-González, J.

    2005-01-01

    Full Text Available Microbial secondary metabolites are useful high value products with an enormous range of biological activities. Moreover, the past two decades have been a phase of rapid discovery of new activities and development of major compounds for use in different industrial fields, mainly pharmaceuticals, cosmetics, food, agriculture and farming. Many of these metabolites could be produced advantageously in industry by solid–state fermentation (SSF. Two types of SSF can be distinguished, depending on the nature of the solid phase used: 1 Solid cultures of one support-substrate phase in which solid phase is constituted by a material that assumes, simultaneously, the functions of support and of nutrients source; and 2 Solid cultures of two substrate-support phases: solid phase is constituted by an inert support impregnated with a liquid medium. Besides good production performance, two phases systems have provided a convenient model for basic studies. Studies in our laboratory, as well as in others, have shown that physiology of idiophase (production phase in SSF share several similarities with the physiology in liquid medium, so similar strategies must be adapted for efficient production processes. However, our studies indicate the need to develop special strains for SSF since overproducing strains, generated for liquid fermentation, cannot be relied upon to perform well in SSF. On the other hand, there are important parameters, specific for SSF, that have to be optimized (pretreatment, initial moisture content, medium concentration and aeration. Respiration studies of secondary metabolites SSF, performed in our laboratory, have shown more subtle aspects of efficient production in SSF. This indicates that there are certain particularities of physiology in SSF that represent the point that needs a better understanding, and that promise to generate knowledge that will be the basis for efficient processes development and control strategies, as well as for

  9. Deciphering the Cryptic Genome: Genome-wide Analyses of the Rice Pathogen Fusarium fujikuroi Reveal Complex Regulation of Secondary Metabolism and Novel Metabolites

    Studt, Lena; Niehaus, Eva-Maria; Espino, Jose J.; Huß, Kathleen; Michielse, Caroline B.; Albermann, Sabine; Wagner, Dominik; Bergner, Sonja V.; Connolly, Lanelle R.; Fischer, Andreas; Reuter, Gunter; Kleigrewe, Karin; Bald, Till; Wingfield, Brenda D.; Ophir, Ron; Freeman, Stanley; Hippler, Michael; Smith, Kristina M.; Brown, Daren W.; Proctor, Robert H.; Münsterkötter, Martin; Freitag, Michael; Humpf, Hans-Ulrich; Güldener, Ulrich; Tudzynski, Bettina

    2013-01-01

    The fungus Fusarium fujikuroi causes “bakanae” disease of rice due to its ability to produce gibberellins (GAs), but it is also known for producing harmful mycotoxins. However, the genetic capacity for the whole arsenal of natural compounds and their role in the fungus' interaction with rice remained unknown. Here, we present a high-quality genome sequence of F. fujikuroi that was assembled into 12 scaffolds corresponding to the 12 chromosomes described for the fungus. We used the genome sequence along with ChIP-seq, transcriptome, proteome, and HPLC-FTMS-based metabolome analyses to identify the potential secondary metabolite biosynthetic gene clusters and to examine their regulation in response to nitrogen availability and plant signals. The results indicate that expression of most but not all gene clusters correlate with proteome and ChIP-seq data. Comparison of the F. fujikuroi genome to those of six other fusaria revealed that only a small number of gene clusters are conserved among these species, thus providing new insights into the divergence of secondary metabolism in the genus Fusarium. Noteworthy, GA biosynthetic genes are present in some related species, but GA biosynthesis is limited to F. fujikuroi, suggesting that this provides a selective advantage during infection of the preferred host plant rice. Among the genome sequences analyzed, one cluster that includes a polyketide synthase gene (PKS19) and another that includes a non-ribosomal peptide synthetase gene (NRPS31) are unique to F. fujikuroi. The metabolites derived from these clusters were identified by HPLC-FTMS-based analyses of engineered F. fujikuroi strains overexpressing cluster genes. In planta expression studies suggest a specific role for the PKS19-derived product during rice infection. Thus, our results indicate that combined comparative genomics and genome-wide experimental analyses identified novel genes and secondary metabolites that contribute to the evolutionary success of F

  10. Metabolites Identified during Varied Doses of Aspergillus Species in Zea mays Grains, and Their Correlation with Aflatoxin Levels

    Titilayo D. O. Falade

    2018-05-01

    Full Text Available Aflatoxin contamination is associated with the development of aflatoxigenic fungi such as Aspergillus flavus and A. parasiticus on food grains. This study was aimed at investigating metabolites produced during fungal development on maize and their correlation with aflatoxin levels. Maize cobs were harvested at R3 (milk, R4 (dough, and R5 (dent stages of maturity. Individual kernels were inoculated in petri dishes with four doses of fungal spores. Fungal colonisation, metabolite profile, and aflatoxin levels were examined. Grain colonisation decreased with kernel maturity: milk-, dough-, and dent-stage kernels by approximately 100%, 60%, and 30% respectively. Aflatoxin levels increased with dose at dough and dent stages. Polar metabolites including alanine, proline, serine, valine, inositol, iso-leucine, sucrose, fructose, trehalose, turanose, mannitol, glycerol, arabitol, inositol, myo-inositol, and some intermediates of the tricarboxylic acid cycle (TCA—also known as citric acid or Krebs cycle were important for dose classification. Important non-polar metabolites included arachidic, palmitic, stearic, 3,4-xylylic, and margaric acids. Aflatoxin levels correlated with levels of several polar metabolites. The strongest positive and negative correlations were with arabitol (R = 0.48 and turanose and (R = −0.53, respectively. Several metabolites were interconnected with the TCA; interconnections of the metabolites with the TCA cycle varied depending upon the grain maturity.

  11. lumpGEM: Systematic generation of subnetworks and elementally balanced lumped reactions for the biosynthesis of target metabolites.

    Meric Ataman

    2017-07-01

    Full Text Available In the post-genomic era, Genome-scale metabolic networks (GEMs have emerged as invaluable tools to understand metabolic capabilities of organisms. Different parts of these metabolic networks are defined as subsystems/pathways, which are sets of functional roles to implement a specific biological process or structural complex, such as glycolysis and TCA cycle. Subsystem/pathway definition is also employed to delineate the biosynthetic routes that produce biomass building blocks. In databases, such as MetaCyc and SEED, these representations are composed of linear routes from precursors to target biomass building blocks. However, this approach cannot capture the nested, complex nature of GEMs. Here we implemented an algorithm, lumpGEM, which generates biosynthetic subnetworks composed of reactions that can synthesize a target metabolite from a set of defined core precursor metabolites. lumpGEM captures balanced subnetworks, which account for the fate of all metabolites along the synthesis routes, thus encapsulating reactions from various subsystems/pathways to balance these metabolites in the metabolic network. Moreover, lumpGEM collapses these subnetworks into elementally balanced lumped reactions that specify the cost of all precursor metabolites and cofactors. It also generates alternative subnetworks and lumped reactions for the same metabolite, accounting for the flexibility of organisms. lumpGEM is applicable to any GEM and any target metabolite defined in the network. Lumped reactions generated by lumpGEM can be also used to generate properly balanced reduced core metabolic models.

  12. Metabolite Biometrics for the Differentiation of Individuals.

    Hair, Mindy E; Mathis, Adrianna I; Brunelle, Erica K; Halámková, Lenka; Halámek, Jan

    2018-04-17

    as the fields of homeland security and cybersecurity for personal authentication via unlocking mechanisms in smart devices that monitor metabolites. Through further development and analysis, this concept also has the potential to be clinically applicable in monitoring the health of individuals based on particular biomarker combinations.

  13. Effects of different hydroponic substrate combinations and watering ...

    Background: Production of medicinal plants in controlled environments, particularly hydroponic technology, provides opportunities for high quality biomass accumulation and optimizes production of secondary metabolites. Applying special watering regimes in combination with efficient soil draining is an encouraging new ...

  14. Nontargeted metabolite profiles and sensory properties of strawberry cultivars grown both organically and conventionally.

    Kårlund, Anna; Hanhineva, Kati; Lehtonen, Marko; Karjalainen, Reijo O; Sandell, Mari

    2015-01-28

    Strawberry (Fragaria × ananassa Duch.) contains many secondary metabolites potentially beneficial for human health, and several of these compounds contribute to strawberry sensory properties, as well. In this study, three strawberry cultivars grown both conventionally and organically were subjected to nontargeted metabolite profiling analysis with LC-qTOF-ESI-MS and to descriptive sensory evaluation by a trained panel. Combined metabolome and sensory data (PLS model) revealed that 79% variation in the metabolome explained 88% variation in the sensory profiles. Flavonoids and condensed and hydrolyzable tannins determined the orosensory properties, and fatty acids contributed to the odor attributes of strawberry. Overall, the results indicated that the chemical composition and sensory quality of strawberries grown in different cultivation systems vary mostly according to cultivar. Organic farming practices may enhance the accumulation of some plant metabolites in specific strawberry genotypes. Careful cultivar selection is a key factor for the improvement of nutritional quality and marketing value of organic strawberries.

  15. The determination of quizalofop-p-tefuryl, Pantera, and metabolites in soils using GC/MSD

    Parkins, M.D. [Uniroyal Chemical Co. Inc., Middlebury, CT (United States); Bruns, G. [EnviroTest Labs., Inc., Edmonton, Alberta (Canada)

    1995-12-01

    A published procedure for the analysis of herbicides in soil and sediment was adapted for determining residues of Pantera, quizalofop-p-tefuryl, and its metabolites. Soil is extracted by shaking with a solvent mixture of acetone/0.05N HCL, followed by 0.1 N KOH. The extracts are combined, acidified and then partitioned with methylene chloride. The organic phase is concentrated to 1.0 mL. One half the sample is reacted with diazomethane and analyzed for parent compound and the methyl derivative of the acid metabolite, quizalofop, by GC/MSD with no further workup. The other half is reacted with diazomethane using an elevated temperature, to form volatile methyl derivatives of the metabolites; chlorohydroxyquinoxaline, and chloroquinoxaline phenol. Recoveries were determined at 0.02 ppm, the level of detection, and at 0.20 ppm. The average recovery value for all analytes was greater than 90%.

  16. Correlation between species-specific metabolite profiles and bioactivities of blueberries (Vaccinium spp.).

    Lee, Sarah; Jung, Eun Sung; Do, Seon-Gil; Jung, Ga-Young; Song, Gwanpil; Song, Jung-Min; Lee, Choong Hwan

    2014-03-05

    Metabolite profiling of three blueberry species (Vaccinium bracteatum Thunb., V. oldhamii Miquel., and V. corymbosum L.) was performed using gas chromatography-time-of-flight-mass spectrometry (GC-TOF-MS) and ultraperformance liquid chromatography-quadrupole-time-of-flight-mass spectrometry (UPLC-Q-TOF-MS) combined multivariate analysis. Partial least-squares discriminant analysis clearly showed metabolic differences among species. GC-TOF-MS analysis revealed significant differences in amino acids, organic acids, fatty acids, sugars, and phenolic acids among the three blueberry species. UPLC-Q-TOF-MS analysis indicated that anthocyanins were the major metabolites distinguishing V. bracteatum from V. oldhamii. The contents of anthocyanins such as glycosides of cyanidin were high in V. bracteatum, while glycosides of delphinidin, petunidin, and malvidin were high in V. oldhamii. Antioxidant activities assessed using ABTS and DPPH assays showed the greatest activity in V. oldhamii and revealed the highest correlation with total phenolic, total flavonoid, and total anthocyanin contents and their metabolites.

  17. A sex-specific metabolite identified in a marine invertebrate utilizing phosphorus-31 nuclear magnetic resonance.

    Robert A Kleps

    Full Text Available Hormone level differences are generally accepted as the primary cause for sexual dimorphism in animal and human development. Levels of low molecular weight metabolites also differ between men and women in circulating amino acids, lipids and carbohydrates and within brain tissue. While investigating the metabolism of blue crab tissues using Phosphorus-31 Nuclear Magnetic Resonance, we discovered that only the male blue crab (Callinectes sapidus contained a phosphorus compound with a chemical shift well separated from the expected phosphate compounds. Spectra obtained from male gills were readily differentiated from female gill spectra. Analysis from six years of data from male and female crabs documented that the sex-specificity of this metabolite was normal for this species. Microscopic analysis of male and female gills found no differences in their gill anatomy or the presence of parasites or bacteria that might produce this phosphorus compound. Analysis of a rare gynandromorph blue crab (laterally, half male and half female proved that this sex-specificity was an intrinsic biochemical process and was not caused by any variations in the diet or habitat of male versus female crabs. The existence of a sex-specific metabolite is a previously unrecognized, but potentially significant biochemical phenomenon. An entire enzyme system has been synthesized and activated only in one sex. Unless blue crabs are a unique species, sex-specific metabolites are likely to be present in other animals. Would the presence or absence of a sex-specific metabolite affect an animal's development, anatomy and biochemistry?

  18. [Determination of the profiles of secondary metabolites characteristic of Alternaria strains isolated from tomato].

    Benavidez Rozo, Martha Elizabeth; Patriarca, Andrea; Cabrera, Gabriela; Fernández Pinto, Virginia E

    2014-01-01

    Many Alternaria species have been studied for their ability to produce bioactive secondary metabolites, such as tentoxin (TEN), some of which have toxic properties. The main food contaminant toxins are tenuazonic acid, alternariol (AOH), alternariol monomethyl ether (AME), altenuene, and altertoxins i, ii and iii. To determine the profiles of secondary metabolites characteristic of Alternaria strains isolated from tomato for their chemotaxonomic classification. The profiles of secondary metabolites were determined by HPLC MS. The Alternaria isolates obtained from spoiled tomatoes belong, according to their morphological characteristics, to the species groups Alternaria alternata, Alternaria tenuissima and Alternaria arborescens, with A. tenuissima being the most frequent. The most frequent profiles of secondary metabolites belonging to the species groups A. alternata (AOH, AME, TEN), A. tenuissima (AOH, AME, TEN, tenuazonic acid) and A. arborescens (AOH, AME, TEN, tenuazonic acid) were determined, with some isolates of the latter being able to synthesize AAL toxins. Secondary metabolite profiles are a useful tool for the differentiation of small spored Alternaria isolates not easily identifiable by their morphological characteristics. Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  19. Can Some Marine-Derived Fungal Metabolites Become Actual Anticancer Agents?

    Nelson G. M. Gomes

    2015-06-01

    Full Text Available Marine fungi are known to produce structurally unique secondary metabolites, and more than 1000 marine fungal-derived metabolites have already been reported. Despite the absence of marine fungal-derived metabolites in the current clinical pipeline, dozens of them have been classified as potential chemotherapy candidates because of their anticancer activity. Over the last decade, several comprehensive reviews have covered the potential anticancer activity of marine fungal-derived metabolites. However, these reviews consider the term “cytotoxicity” to be synonymous with “anticancer agent”, which is not actually true. Indeed, a cytotoxic compound is by definition a poisonous compound. To become a potential anticancer agent, a cytotoxic compound must at least display (i selectivity between normal and cancer cells (ii activity against multidrug-resistant (MDR cancer cells; and (iii a preferentially non-apoptotic cell death mechanism, as it is now well known that a high proportion of cancer cells that resist chemotherapy are in fact apoptosis-resistant cancer cells against which pro-apoptotic drugs have more than limited efficacy. The present review thus focuses on the cytotoxic marine fungal-derived metabolites whose ability to kill cancer cells has been reported in the literature. Particular attention is paid to the compounds that kill cancer cells through non-apoptotic cell death mechanisms.

  20. Identification, quantification, spatiotemporal distribution and genetic variation of major latex secondary metabolites in the common dandelion (Taraxacum officinale agg.).

    Huber, Meret; Triebwasser-Freese, Daniella; Reichelt, Michael; Heiling, Sven; Paetz, Christian; Chandran, Jima N; Bartram, Stefan; Schneider, Bernd; Gershenzon, Jonathan; Erb, Matthias

    2015-07-01

    The secondary metabolites in the roots, leaves and flowers of the common dandelion (Taraxacum officinale agg.) have been studied in detail. However, little is known about the specific constituents of the plant's highly specialized laticifer cells. Using a combination of liquid and gas chromatography, mass spectrometry and nuclear magnetic resonance spectrometry, we identified and quantified the major secondary metabolites in the latex of different organs across different growth stages in three genotypes, and tested the activity of the metabolites against the generalist root herbivore Diabrotica balteata. We found that common dandelion latex is dominated by three classes of secondary metabolites: phenolic inositol esters (PIEs), triterpene acetates (TritAc) and the sesquiterpene lactone taraxinic acid β-D-glucopyranosyl ester (TA-G). Purification and absolute quantification revealed concentrations in the upper mgg(-1) range for all compound classes with up to 6% PIEs, 5% TritAc and 7% TA-G per gram latex fresh weight. Contrary to typical secondary metabolite patterns, concentrations of all three classes increased with plant age. The highest concentrations were measured in the main root. PIE profiles differed both quantitatively and qualitatively between plant genotypes, whereas TritAc and TA-G differed only quantitatively. Metabolite concentrations were positively correlated within and between the different compound classes, indicating tight biosynthetic co-regulation. Latex metabolite extracts strongly repelled D. balteata larvae, suggesting that the latex constituents are biologically active. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Radicinols and radicinin phytotoxins produced by Alternaria radicina on carrots.

    Solfrizzo, Michele; Vitti, Carolina; De Girolamo, Annalisa; Visconti, Angelo; Logrieco, Antonio; Fanizzi, Francesco P

    2004-06-02

    The phytotoxin epi-radicinol, a diastereomer of radicinol, was isolated from large cultures of Alternaria radicina grown on carrot slices and identified by GC-MS, LC-MS, (1)H NMR, and (13)C NMR. Four strains of A. radicina isolated from rotted carrot produced epi-radicinol as the major metabolite (up to 39414 microg/g) together with radicinol (up to 2423 microg/g), and, to a lesser extent, radicinin when cultured on carrot slices, whereas on rice they mainly produced radicinin (2486-53800 microg/g). Radicinin and epi-radicinol reduced root elongation of germinating carrot seeds at concentrations of 10-20 microg/mL. Carrot samples naturally infected by A. radicina contained detectable quantities of epi-radicinol also in combination with lower levels of radicinin or radicinol. Accumulation of radicinols and radicinin in stored carrots, either naturally contaminated or artificially inoculated with A. radicina, was stimulated by successive temperature rises from 1 to 10 degrees C and from 10 to 20 degrees C, reaching maximum levels of 60 microg/g epi-radicinol and 26 microg/g radicinin. This is the first report on the production of radicinols by A. radicina and its natural occurrence in carrots in association with radicinin.

  2. Chemical composition, secondary metabolites, in vitro gas ...

    Chemical composition, secondary metabolites, in vitro gas production characteristics and acceptability study of some forage for ruminant feeding in South-Western Nigeria. ... Chemical composition and qualitative analysis of saponins, phenol and steroids of the plants were determined. In vitro gas production (IVGP) was ...

  3. Secondary metabolites from Scorzonera latifolia roots

    Acikara, O. B.; Šmejkal, K.; Cvačka, Josef; Buděšínský, Miloš; Dračínský, Martin; Saltan, G.

    2015-01-01

    Roč. 81, č. 16 (2015), PM167 ISSN 0032-0943. [GA 2015. International Congress and Annual Meeting of the Society for Medicinal Plant and Natural Product Research /63./. 23.08.2015-27.08.2015, Budapest] Institutional support: RVO:61388963 Keywords : medical plant * metabolites * Asteraceae Subject RIV: CB - Analytical Chemistry, Separation

  4. Antibacterial activity of secondary metabolites isolated from ...

    Aghomotsegin

    2015-10-28

    Oct 28, 2015 ... Alternaria spp. are cosmopolitan mould fungi and can be found in soils ... the secondary metabolites products from A. alternata and ..... Zone of inhibition (mm) of test bacterial strains to fungal products and standard antibiotics. Fungal ... marine actinomycetes from pulicat, Muttukadu, and Ennore estuaries.

  5. Identification of a new metabolite of GHB

    Petersen, Ida Nymann; Tortzen, Christian; Kristensen, Jesper Langgaard

    2013-01-01

    Gamma-hydroxybutyric acid (GHB) is an important analyte in clinical and forensic toxicology with a narrow detection window of 3-6 h. In the search of improved detection methods, the existence in vivo of a glucuronated GHB metabolite (GHB-GLUC) was hypothesized. Chemically pure standards of GHB...

  6. Streptopyrrole: An antimicrobial metabolite from Streptomyces armeniacus

    Breinholt, J.; Gürtler, Hanne; Kjær, Anders

    1998-01-01

    A colourless, crystalline metabolite, C14H12ClNO4, named streptopyrrole, has been isolated from submerged fermentation cultures of Streptomyces armeniacus by extraction, followed by chromatographic purification. Its tricyclic molecular framework, seemingly without natural product precedents. as w...

  7. Microbial metabolism part 13 metabolites of hesperetin

    The fungal culture, Mucor ramannianus (ATCC 2628) transformed hesperitin to four metabolites: 4'-methoxy -5, 7, 8, 3'-tetrahydroxyflavanone (8-hydroxyhesperetin), 5, 7, 3', 4'-tetrahydroxyflavanone (eriodictyol), 4'-methoxy-5, 3'-dihydroxyflavanone 7-sulfate (hesperetin 7-sulfate) and 5, 7, 3'-tri...

  8. Human pharmacokinetics of proguanil and its metabolites

    Bygbjerg, Ib Christian; Ravn, P; Rønn, A

    1987-01-01

    The pharmacokinetics of proguanil and its metabolites cycloguanil and p-chlorophenylbiguanide were studied in five healthy volunteers taking 200 mg orally for 14 days. A highly sensitive and specific high-performance liquid chromatographic assay was applied, clearly identifying all three compounds...

  9. Effects of Nicotine Metabolites on Nicotine Withdrawal Behaviors in Mice.

    Elhassan, Sagi; Bagdas, Deniz; Damaj, M Imad

    2017-06-01

    Rodent studies suggest that nicotine metabolites and minor tobacco alkaloids such as nornicotine and cotinine may promote cigarette smoking by enhancing nicotine rewarding and reinforcing effects. However, there is little information on the effects of these minor tobacco alkaloids on nicotine withdrawal. The present studies were conducted to determine whether the minor tobacco alkaloids nornicotine and cotinine exhibit nicotine-like behavioral effects in a mouse model of spontaneous nicotine withdrawal. Mice were infused with nicotine or saline for 14 days. Experiments were conducted on day 15, 18-24 hours after minipump removal. Ten minutes prior to testing, nicotine-dependent ICR male mice received an acute injection of nicotine (0.05 and 0.5 mg/kg), nornicotine (2.5 and 25 mg/kg), or cotinine (5 and 50 mg/kg) to determine effects on somatic signs, anxiety-like behaviors, and hyperalgesia spontaneous signs of withdrawal. Nicotine and the minor tobacco alkaloid nornicotine, but not cotinine, produced dose-dependent reversal of nicotine withdrawal signs in the mouse. The minor tobacco alkaloid and nicotine metabolite nornicotine at high doses have nicotinic like effects that may contribute to tobacco consumption and dependence. © The Author 2017. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Lichen Secondary Metabolite, Physciosporin, Inhibits Lung Cancer Cell Motility

    Yang, Yi; Park, So-Yeon; Nguyen, Thanh Thi; Yu, Young Hyun; Nguyen, Tru Van; Sun, Eun Gene; Udeni, Jayalal; Jeong, Min-Hye; Pereira, Iris; Moon, Cheol; Ha, Hyung-Ho; Kim, Kyung Keun; Hur, Jae-Seoun; Kim, Hangun

    2015-01-01

    Lichens produce various unique chemicals that can be used for pharmaceutical purposes. To screen for novel lichen secondary metabolites showing inhibitory activity against lung cancer cell motility, we tested acetone extracts of 13 lichen samples collected in Chile. Physciosporin, isolated from Pseudocyphellaria coriacea (Hook f. & Taylor) D.J. Galloway & P. James, was identified as an effective compound and showed significant inhibitory activity in migration and invasion assays against human lung cancer cells. Physciosporin treatment reduced both protein and mRNA levels of N-cadherin with concomitant decreases in the levels of epithelial-mesenchymal transition markers such as snail and twist. Physciosporin also suppressed KITENIN (KAI1 C-terminal interacting tetraspanin)-mediated AP-1 activity in both the absence and presence of epidermal growth factor stimulation. Quantitative real-time PCR analysis showed that the expression of the metastasis suppressor gene, KAI1, was increased while that of the metastasis enhancer gene, KITENIN, was dramatically decreased by physciosporin. Particularly, the activity of 3’-untranslated region of KITENIN was decreased by physciosporin. Moreover, Cdc42 and Rac1 activities were decreased by physciosporin. These results demonstrated that the lichen secondary metabolite, physciosporin, inhibits lung cancer cell motility through novel mechanisms of action. PMID:26371759

  11. Medicinal Plants: A Source of Anti-Parasitic Secondary Metabolites

    Michael Wink

    2012-10-01

    Full Text Available This review summarizes human infections caused by endoparasites, including protozoa, nematodes, trematodes, and cestodes, which affect more than 30% of the human population, and medicinal plants of potential use in their treatment. Because vaccinations do not work in most instances and the parasites have sometimes become resistant to the available synthetic therapeutics, it is important to search for alternative sources of anti-parasitic drugs. Plants produce a high diversity of secondary metabolites with interesting biological activities, such as cytotoxic, anti-parasitic and anti-microbial properties. These drugs often interfere with central targets in parasites, such as DNA (intercalation, alkylation, membrane integrity, microtubules and neuronal signal transduction. Plant extracts and isolated secondary metabolites which can inhibit protozoan parasites, such as Plasmodium, Trypanosoma, Leishmania, Trichomonas and intestinal worms are discussed. The identified plants and compounds offer a chance to develop new drugs against parasitic diseases. Most of them need to be tested in more detail, especially in animal models and if successful, in clinical trials.

  12. Circulating prostacyclin metabolites in the dog

    Taylor, B.M.; Shebuski, R.J.; Sun, F.F.

    1983-01-01

    The present study was designed to determine the concentration of prostacyclin (PGI2) metabolites in the blood of the dog. After a bolus i.v. dose of [11 beta- 3 H]PGI2 (5 micrograms/kg) into each of five dogs, blood samples were withdrawn at 0.33, 0.67, 1, 3, 5, 20, 30, 60 and 120 min postdrug administration. Plasma samples were extracted and the radioactive components were analyzed by two-dimensional thin-layer chromatography with autoradiofluorography and radio-high-performance liquid chromatography. The compounds were identified by comparing their mobility with synthetic standards; only parallel responses observed in both tests constituted positive identification. Seven metabolites were identified by these two techniques: 6-keto-prostaglandin (PG)F1 alpha; 6-keto-PGE1; 2,3-dinor-6-keto-PGF 1 alpha; 2,3-dinor-13,14-dihydro-6,15-diketo-20-carboxyl PGF 1 alpha; and 2,3,18,19-tetranor-13,14-dihydro-6,15-diketo-20-carboxyl PGF 1 alpha. Several additional compounds, both polar and nonpolar in nature, which did not co-chromatograph with any of our standards were also detected. Early samples consisted predominantly of 6-keto-PGF 1 alpha and other 20-carbon metabolites. By 30 min, the predominant metabolites were the 16- and 18-carbon dicarboxylic acids. By 60 min, 85% of the radioactivity was associated with two unidentified polar compounds. The evidence suggests that 6-keto-PGF 1 alpha probably reflects only the transient levels of freshly entering PGI2 in the circulation, whereas levels of the most polar metabolites (e.g., dihydro-diketo-carboxyl tetranor-PGF 2 alpha) may be a better measure of the overall PGI2 presence due to its longer half-life in circulation

  13. Modules of co-regulated metabolites in turmeric (Curcuma longa) rhizome suggest the existence of biosynthetic modules in plant specialized metabolism.

    Xie, Zhengzhi; Ma, Xiaoqiang; Gang, David R

    2009-01-01

    Turmeric is an excellent example of a plant that produces large numbers of metabolites from diverse metabolic pathways or networks. It is hypothesized that these metabolic pathways or networks contain biosynthetic modules, which lead to the formation of metabolite modules-groups of metabolites whose production is co-regulated and biosynthetically linked. To test whether such co-regulated metabolite modules do exist in this plant, metabolic profiling analysis was performed on turmeric rhizome samples that were collected from 16 different growth and development treatments, which had significant impacts on the levels of 249 volatile and non-volatile metabolites that were detected. Importantly, one of the many co-regulated metabolite modules that were indeed readily detected in this analysis contained the three major curcuminoids, whereas many other structurally related diarylheptanoids belonged to separate metabolite modules, as did groups of terpenoids. The existence of these co-regulated metabolite modules supported the hypothesis that the 3-methoxyl groups on the aromatic rings of the curcuminoids are formed before the formation of the heptanoid backbone during the biosynthesis of curcumin and also suggested the involvement of multiple polyketide synthases with different substrate selectivities in the formation of the array of diarylheptanoids detected in turmeric. Similar conclusions about terpenoid biosynthesis could also be made. Thus, discovery and analysis of metabolite modules can be a powerful predictive tool in efforts to understand metabolism in plants.

  14. Urinary concentrations of PAH and VOC metabolites in marijuana users.

    Wei, Binnian; Alwis, K Udeni; Li, Zheng; Wang, Lanqing; Valentin-Blasini, Liza; Sosnoff, Connie S; Xia, Yang; Conway, Kevin P; Blount, Benjamin C

    2016-03-01

    Marijuana is seeing increased therapeutic use, and is the world's third most-popular recreational drug following alcohol and tobacco. This widening use poses increased exposure to potentially toxic combustion by-products from marijuana smoke and the potential for public health concerns. To compare urinary metabolites of polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs) among self-reported recent marijuana users and nonusers, while accounting for tobacco smoke exposure. Measurements of PAH and VOC metabolites in urine samples were combined with questionnaire data collected from participants in the National Health and Nutrition Examination Surveys (NHANES) from 2005 to 2012 in order to categorize participants (≥18years) into exclusive recent marijuana users and nonusers. Adjusted geometric means (GMs) of urinary concentrations were computed for these groups using multiple regression analyses to adjust for potential confounders. Adjusted GMs of many individual monohydroxy PAHs (OH-PAHs) were significantly higher in recent marijuana users than in nonusers (pmarijuana users than in nonusers. We found elevated levels of biomarkers for potentially harmful chemicals among self-identified, recent marijuana users compared with nonusers. These findings suggest that further studies are needed to evaluate the potential health risks to humans from the exposure to these agents when smoking marijuana. Published by Elsevier Ltd.

  15. Metabolite Profiling and Classification of DNA-Authenticated Licorice Botanicals

    Simmler, Charlotte; Anderson, Jeffrey R.; Gauthier, Laura; Lankin, David C.; McAlpine, James B.; Chen, Shao-Nong; Pauli, Guido F.

    2015-01-01

    Raw licorice roots represent heterogeneous materials obtained from mainly three Glycyrrhiza species. G. glabra, G. uralensis, and G. inflata exhibit marked metabolite differences in terms of flavanones (Fs), chalcones (Cs), and other phenolic constituents. The principal objective of this work was to develop complementary chemometric models for the metabolite profiling, classification, and quality control of authenticated licorice. A total of 51 commercial and macroscopically verified samples were DNA authenticated. Principal component analysis and canonical discriminant analysis were performed on 1H NMR spectra and area under the curve values obtained from UHPLC-UV chromatograms, respectively. The developed chemometric models enable the identification and classification of Glycyrrhiza species according to their composition in major Fs, Cs, and species specific phenolic compounds. Further key outcomes demonstrated that DNA authentication combined with chemometric analyses enabled the characterization of mixtures, hybrids, and species outliers. This study provides a new foundation for the botanical and chemical authentication, classification, and metabolomic characterization of crude licorice botanicals and derived materials. Collectively, the proposed methods offer a comprehensive approach for the quality control of licorice as one of the most widely used botanical dietary supplements. PMID:26244884

  16. Medicinal plants and secondary metabolites for diabetes mellitus control

    Mahmoud Bahmani

    2014-09-01

    Full Text Available Diabetes mellitus is one of the most common and complex problems of modern societies which has caused many economic and social problems. Because diabetes has no definite treatment, the use of traditional medicine seems to be an appropriate solution to control and manage it. Studies revealed that Vaccinium Arctostaphylos L., Securigera securidaca L., Gymnema sylvestre L., Atriplex halimus L., Camellia sinensis L., Ginkgo biloba L., Mamordica charantia L., Citrullus colocynthis (L. Schrad., Allium cepa L., Allium sativum L., Silybum marianum (L., Gaertn and Trigonella foenum graecum L. are effective against diabetes. Flavonoids, quercin, metformin, quinolizidine, anthocyanin, catechin and flavone, phenylpropanoids, lipoic acid and coumarin metabolites were introduced major impact on diabetes. With regard to the study of plants and their metabolites and the mechanisms of their influence, it is clear that these plants have the potential to reduce blood sugar and diabetes and be considered as candidates for preparing new drugs. Combination of plants extracts or their components may also have synergistic effects to better act on diabetes.

  17. Evaluating bionanoparticle infused fungal metabolites as a novel antimicrobial agent

    Kartikeya Rajpal

    2016-01-01

    Full Text Available Therapeutic properties of fungal metabolites and silver nanoparticles have been well documented. While fungal metabolites have been used for centuries as medicinal drugs, potential of biogenic silver nanoparticles has recently received attention. We have evaluated the antimicrobial potential of Aspergillus terreus crude extract, silver nanoparticles and an amalgamation of both against four pathogenic bacterial strains. Antimicrobial activity of the following was evaluated – A. terreus extract, biogenic silver nanoparticles, and a mixture containing extract and nanoparticles. Four pathogenic bacteria - Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus, and Bacillus cereus were used as test organisms. Phenol, flavonoid, and alkaloid content of extract were determined to understand the chemical profile of the fungus. The extract contained significantly high amounts of phenols, flavonoids, and alkaloids. The extract and biogenic silver nanoparticle exhibited significant antibacterial activity at concentrations of 10 μg/ml and 1 μg/ml, respectively. When used in combination, the extract-nanoparticle mixture showed equally potent antibacterial activity at a much lower concentration of 2.5 μg/ml extract + 0.5 μg/ml nanoparticle. Given its high antibacterial potential, the fungal extract can be a promising source of novel drug lead compounds. The extract – silver nanoparticle mixture exhibited synergism in their antibacterial efficacy. This property can be further used to formulate new age drugs.

  18. Metagenomic and PCR-Based Diversity Surveys of [FeFe]-Hydrogenases Combined with Isolation of Alkaliphilic Hydrogen-Producing Bacteria from the Serpentinite-Hosted Prony Hydrothermal Field, New Caledonia.

    Mei, Nan; Postec, Anne; Monnin, Christophe; Pelletier, Bernard; Payri, Claude E; Ménez, Bénédicte; Frouin, Eléonore; Ollivier, Bernard; Erauso, Gaël; Quéméneur, Marianne

    2016-01-01

    High amounts of hydrogen are emitted in the serpentinite-hosted hydrothermal field of the Prony Bay (PHF, New Caledonia), where high-pH (~11), low-temperature (< 40°C), and low-salinity fluids are discharged in both intertidal and shallow submarine environments. In this study, we investigated the diversity and distribution of potentially hydrogen-producing bacteria in Prony hyperalkaline springs by using metagenomic analyses and different PCR-amplified DNA sequencing methods. The retrieved sequences of hydA genes, encoding the catalytic subunit of [FeFe]-hydrogenases and, used as a molecular marker of hydrogen-producing bacteria, were mainly related to those of Firmicutes and clustered into two distinct groups depending on sampling locations. Intertidal samples were dominated by new hydA sequences related to uncultured Firmicutes retrieved from paddy soils, while submarine samples were dominated by diverse hydA sequences affiliated with anaerobic and/or thermophilic submarine Firmicutes pertaining to the orders Thermoanaerobacterales or Clostridiales. The novelty and diversity of these [FeFe]-hydrogenases may reflect the unique environmental conditions prevailing in the PHF (i.e., high-pH, low-salt, mesothermic fluids). In addition, novel alkaliphilic hydrogen-producing Firmicutes (Clostridiales and Bacillales) were successfully isolated from both intertidal and submarine PHF chimney samples. Both molecular and cultivation-based data demonstrated the ability of Firmicutes originating from serpentinite-hosted environments to produce hydrogen by fermentation, potentially contributing to the molecular hydrogen balance in situ.

  19. Yield improvement strategies for the production of secondary metabolites in plant tissue culture: silymarin from Silybum marianum tissue culture.

    AbouZid, S

    2014-01-01

    Plant cell culture can be a potential source for the production of important secondary metabolites. This technology bears many advantages over conventional agricultural methods. The main problem to arrive at a cost-effective process is the low productivity. This is mainly due to lack of differentiation in the cultured cells. Many approaches have been used to maximise the yield of secondary metabolites produced by cultured plant cells. Among these approaches: choosing a plant with a high biosynthetic capacity, obtaining efficient cell line for growth and production of metabolite of interest, manipulating culture conditions, elicitation, metabolic engineering and organ culture. This article gives an overview of the various approaches used to maximise the production of pharmaceutically important secondary metabolites in plant cell cultures. Examples of using these different approaches are shown for the production of silymarin from Silybum marianum tissue culture.

  20. Comparison of expression of secondary metabolite biosynthesis cluster genes in Aspergillus flavus, A. parasiticus, and A. oryzae.

    Ehrlich, Kenneth C; Mack, Brian M

    2014-06-23

    Fifty six secondary metabolite biosynthesis gene clusters are predicted to be in the Aspergillus flavus genome. In spite of this, the biosyntheses of only seven metabolites, including the aflatoxins, kojic acid, cyclopiazonic acid and aflatrem, have been assigned to a particular gene cluster. We used RNA-seq to compare expression of secondary metabolite genes in gene clusters for the closely related fungi A. parasiticus, A. oryzae, and A. flavus S and L sclerotial morphotypes. The data help to refine the identification of probable functional gene clusters within these species. Our results suggest that A. flavus, a prevalent contaminant of maize, cottonseed, peanuts and tree nuts, is capable of producing metabolites which, besides aflatoxin, could be an underappreciated contributor to its toxicity.

  1. Rationalization and prediction of in vivo metabolite exposures: The role of metabolite kinetics, clearance predictions and in vitro parameters

    Lutz, Justin D.; Fujioka, Yasushi; Isoherranen, Nina

    2010-01-01

    Importance of the field Due to growing concerns over toxic or active metabolites, significant efforts have been focused on qualitative identification of potential in vivo metabolites from in vitro data. However, limited tools are available to quantitatively predict their human exposures. Areas covered in this review Theory of clearance predictions and metabolite kinetics is reviewed together with supporting experimental data. In vitro and in vivo data of known circulating metabolites and their parent drugs was collected and the predictions of in vivo exposures of the metabolites were evaluated. What the reader will gain The theory and data reviewed will be useful in early identification of human metabolites that will circulate at significant levels in vivo and help in designing in vivo studies that focus on characterization of metabolites. It will also assist in rationalization of metabolite-to-parent ratios used as markers of specific enzyme activity. Take home message The relative importance of a metabolite in comparison to the parent compound as well as other metabolites in vivo can only be predicted using the metabolites in vitro formation and elimination clearances, and the in vivo disposition of a metabolite can only be rationalized when the elimination pathways of that metabolite are known. PMID:20557268

  2. Metabolite coupling in genome-scale metabolic networks

    Palsson Bernhard Ø

    2006-03-01

    Full Text Available Abstract Background Biochemically detailed stoichiometric matrices have now been reconstructed for various bacteria, yeast, and for the human cardiac mitochondrion based on genomic and proteomic data. These networks have been manually curated based on legacy data and elementally and charge balanced. Comparative analysis of these well curated networks is now possible. Pairs of metabolites often appear together in several network reactions, linking them topologically. This co-occurrence of pairs of metabolites in metabolic reactions is termed herein "metabolite coupling." These metabolite pairs can be directly computed from the stoichiometric matrix, S. Metabolite coupling is derived from the matrix ŜŜT, whose off-diagonal elements indicate the number of reactions in which any two metabolites participate together, where Ŝ is the binary form of S. Results Metabolite coupling in the studied networks was found to be dominated by a relatively small group of highly interacting pairs of metabolites. As would be expected, metabolites with high individual metabolite connectivity also tended to be those with the highest metabolite coupling, as the most connected metabolites couple more often. For metabolite pairs that are not highly coupled, we show that the number of reactions a pair of metabolites shares across a metabolic network closely approximates a line on a log-log scale. We also show that the preferential coupling of two metabolites with each other is spread across the spectrum of metabolites and is not unique to the most connected metabolites. We provide a measure for determining which metabolite pairs couple more often than would be expected based on their individual connectivity in the network and show that these metabolites often derive their principal biological functions from existing in pairs. Thus, analysis of metabolite coupling provides information beyond that which is found from studying the individual connectivity of individual

  3. Identification of phase-II metabolites of flavonoids by liquid chromatography-ion-mobility spectrometry-mass spectrometry.

    Chalet, Clément; Hollebrands, Boudewijn; Janssen, Hans-Gerd; Augustijns, Patrick; Duchateau, Guus

    2018-01-01

    Flavonoids are a class of natural compounds with a broad range of potentially beneficial health properties. They are subjected to an extensive intestinal phase-II metabolism, i.e., conjugation to glucuronic acid, sulfate, and methyl groups. Flavonoids and their metabolites can interact with drug transporters and thus interfere with drug absorption, causing food-drug interactions. The site of metabolism plays a key role in the activity, but the identification of the various metabolites remains a challenge. Here, we developed an analytical method to identify the phase-II metabolites of structurally similar flavonoids. We used liquid chromatography-ion-mobility spectrometry-mass spectrometry (LC-IMS-MS) analysis to identify phase-II metabolites of flavonols, flavones, and catechins produced by HT29 cells. We showed that IMS could bring valuable structural information on the different positional isomers of the flavonols and flavones. The position of the glucuronide moiety had a strong influence on the collision cross section (CCS) of the metabolites, with only minor contribution of hydroxyl and methyl moieties. For the catechins, fragmentation data obtained from MS/MS analysis appeared more useful than IMS to determine the structure of the metabolites, mostly due to the high number of metabolites formed. Nevertheless, CCS information as a molecular fingerprint proved to be useful to identify peaks from complex mixtures. LC-IMS-MS thus appears as a valuable tool for the identification of phase-II metabolites of flavonoids. Graphical abstract Structural identification of phase-II metabolites of flavonoids using LC-IMS-MS.

  4. Metabolite Depletion Affects Flux Profiling of Cell Lines

    Nilsson, A.; Haanstra, J. R.; Teusink, B.

    2018-01-01

    Quantifying the rate of consumption and release of metabolites (i.e., flux profiling) has become integral to the study of cancer. The fluxes as well as the growth of the cells may be affected by metabolite depletion during cultivation.......Quantifying the rate of consumption and release of metabolites (i.e., flux profiling) has become integral to the study of cancer. The fluxes as well as the growth of the cells may be affected by metabolite depletion during cultivation....

  5. Untargeted metabolomic profiling plasma samples of patients with lung cancer for searching significant metabolites by HPLC-MS method

    Dementeva, N.; Ivanova, K.; Kokova, D.; Kurzina, I.; Ponomaryova, A.; Kzhyshkowska, J.

    2017-09-01

    Lung cancer is one of the most common types of cancer leading to death. Consequently, the search and the identification of the metabolites associated with the risk of developing cancer are very valuable. For the purpose, untargeted metabolic profiling of the plasma samples collected from the patients with lung cancer (n = 100) and the control group (n = 100) was conducted. After sample preparation, the plasma samples were analyzed using LC-MS method. Biostatistics methods were applied to pre-process the data for elicitation of dominating metabolites which responded to the difference between the case and the control groups. At least seven significant metabolites were evaluated and annotated. The most part of identified metabolites are connected with lipid metabolism and their combination could be useful for follow-up studies of lung cancer pathogenesis.

  6. Production of Metabolites as Bacterial Responses to the Marine Environment

    Pedro Fernandes

    2010-03-01

    hydrocarbon-contaminated sites. Siderophores are necessary e.g., in the treatment of diseases with metal ion imbalance, while antifouling compounds could be used to treat man-made surfaces that are used in marine environments. New classes of antibiotics could efficiently combat bacteria resistant to the existing antibiotics. The present work aims to provide a comprehensive review of the metabolites produced by marine bacteria in order to cope with intrusive environments, and to illustrate how such metabolites can be advantageously used in several relevant areas, from bioremediation to health and pharmaceutical sectors.

  7. Metabolites of Trichoderma species isolated from damp building materials.

    McMullin, David R; Renaud, Justin B; Barasubiye, Tharcisse; Sumarah, Mark W; Miller, J David

    2017-07-01

    Buildings that have been flooded often have high concentrations of Trichoderma spores in the air while drying. Inhaled spores and spore and mycelial fragments contain large amounts of fungal glucan and natural products that contribute to the symptoms associated with indoor mould exposures. In this study, we considered both small molecules and peptaibol profiles of T. atroviride, T. koningiopsis, T. citrinoviride, and T. harzianum strains obtained from damp buildings in eastern Canada. Twenty-residue peptaibols and sorbicillin-derived metabolites (1-6) including a new structure, (R)-vertinolide (1), were characterized from T. citrinoviride. Trichoderma koningiopsis produced several koninginins (7-10), trikoningin KA V, and the 11-residue lipopeptaibols trikoningin KB I and trikoningin KB II. Trichoderma atroviride biosynthesized a mixture of 19-residue trichorzianine-like peptaibols, whereas T. harzianum produced 18-residue trichokindin-like peptaibols and the 11-residue harzianin HB I that was subsequently identified from the studied T. citrinoviride strain. Two α-pyrones, 6-pentyl-pyran-2-one (11) and an oxidized analog (12), were produced by both T. atroviride and T. harzianum. Aside from exposure to low molecular weight natural products, inhalation of Trichoderma spores and mycelial fragments may result in exposure to membrane-disrupting peptaibols. This investigation contributes to a more comprehensive understanding of the biologically active natural products produced by fungi commonly found in damp buildings.

  8. Identification of a new reactive metabolite of pyrrolizidine alkaloid retrorsine: (3H-pyrrolizin-7-yl)methanol.

    Fashe, Muluneh M; Juvonen, Risto O; Petsalo, Aleksanteri; Rahnasto-Rilla, Minna; Auriola, Seppo; Soininen, Pasi; Vepsäläinen, Jouko; Pasanen, Markku

    2014-11-17

    Pyrrolizidine alkaloids (PAs) such as retrorsine are common food contaminants that are known to be bioactivated by cytochrome P450 enzymes to putative hepatotoxic, genotoxic, and carcinogenic metabolites known as dehydropyrrolizidine alkaloids (DHPs). We compared how both electrochemical (EC) and human liver microsomal (HLM) oxidation of retrorsine could produce short-lived intermediate metabolites; we also characterized a toxicologically important metabolite, (3H-pyrrolizin-7-yl)methanol. The EC cell was coupled online or offline to a liquid chromatograph/mass spectrometer (LC/MS), whereas the HLM oxidation was performed in 100 mM potassium phosphate (pH 7.4) in the presence of NADPH at 37 °C. The EC cell oxidation of retrorsine produced 12 metabolites, including dehydroretrorsine (m/z 350, [M + H(+)]), which was degraded to a new reactive metabolite at m/z 136 ([M + H(+)]). The molecular structure of this small metabolite was determined using high-resolution mass spectrometry and NMR spectroscopy followed by chemical synthesis. In addition, we also identified another minor but reactive metabolite at m/z 136, an isomer of (3H-pyrrolizin-7-yl)methanol. Both (3H-pyrrolizin-7-yl)methanol and its minor isomer were also observed after HLM oxidation of retrorsine and other hepatotoxic PAs such as lasiocarpine and senkirkin. In the presence of reduced glutathione (GSH), each isomer formed identical GSH conjugates at m/z 441 and m/z 730 in the negative ESI-MS. Because (3H-pyrrolizine-7-yl)methanol) and its minor isomer subsequently reacted with GSH, it is concluded that (3H-pyrrolizin-7-yl)methanol may be a common toxic metabolite arising from PAs.

  9. Identifying diseases-related metabolites using random walk.

    Hu, Yang; Zhao, Tianyi; Zhang, Ningyi; Zang, Tianyi; Zhang, Jun; Cheng, Liang

    2018-04-11

    Metabolites disrupted by abnormal state of human body are deemed as the effect of diseases. In comparison with the cause of diseases like genes, these markers are easier to be captured for the prevention and diagnosis of metabolic diseases. Currently, a large number of metabolic markers of diseases need to be explored, which drive us to do this work. The existing metabolite-disease associations were extracted from Human Metabolome Database (HMDB) using a text mining tool NCBO annotator as priori knowledge. Next we calculated the similarity of a pair-wise metabolites based on the similarity of disease sets of them. Then, all the similarities of metabolite pairs were utilized for constructing a weighted metabolite association network (WMAN). Subsequently, the network was utilized for predicting novel metabolic markers of diseases using random walk. Totally, 604 metabolites and 228 diseases were extracted from HMDB. From 604 metabolites, 453 metabolites are selected to construct the WMAN, where each metabolite is deemed as a node, and the similarity of two metabolites as the weight of the edge linking them. The performance of the network is validated using the leave one out method. As a result, the high area under the receiver operating characteristic curve (AUC) (0.7048) is achieved. The further case studies for identifying novel metabolites of diabetes mellitus were validated in the recent studies. In this paper, we presented a novel method for prioritizing metabolite-disease pairs. The superior performance validates its reliability for exploring novel metabolic markers of diseases.

  10. 40 CFR 159.179 - Metabolites, degradates, contaminants, and impurities.

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Metabolites, degradates, contaminants.../Benefit Information § 159.179 Metabolites, degradates, contaminants, and impurities. (a) Metabolites and... degradation of less than 10 percent in a 30-day period. (b) Contaminants and impurities. The presence in any...

  11. SPE-NMR metabolite sub-profiling of urine

    Jacobs, D.M.; Spiesser, L.; Garnier, M.; Roo, de N.; Dorsten, van F.; Hollebrands, B.; Velzen, van E.; Draijer, R.; Duynhoven, van J.P.M.

    2012-01-01

    NMR-based metabolite profiling of urine is a fast and reproducible method for detection of numerous metabolites with diverse chemical properties. However, signal overlap in the (1)H NMR profiles of human urine may hamper quantification and identification of metabolites. Therefore, a new method has

  12. An in silico platform for the design of heterologous pathways in nonnative metabolite production

    Chatsurachai Sunisa

    2012-05-01

    Full Text Available Abstract Background Microorganisms are used as cell factories to produce valuable compounds in pharmaceuticals, biofuels, and other industrial processes. Incorporating heterologous metabolic pathways into well-characterized hosts is a major strategy for obtaining these target metabolites and improving productivity. However, selecting appropriate heterologous metabolic pathways for a host microorganism remains difficult owing to the complexity of metabolic networks. Hence, metabolic network design could benefit greatly from the availability of an in silico platform for heterologous pathway searching. Results We developed an algorithm for finding feasible heterologous pathways by which nonnative target metabolites are produced by host microorganisms, using Escherichia coli, Corynebacterium glutamicum, and Saccharomyces cerevisiae as templates. Using this algorithm, we screened heterologous pathways for the production of all possible nonnative target metabolites contained within databases. We then assessed the feasibility of the target productions using flux balance analysis, by which we could identify target metabolites associated with maximum cellular growth rate. Conclusions This in silico platform, designed for targeted searching of heterologous metabolic reactions, provides essential information for cell factory improvement.

  13. Metagenomic and PCR-based diversity surveys of [FeFe]-hydrogenases combined with isolation of alkaliphilic hydrogen-producing bacteria from the serpentinite-hosted Prony hydrothermal field, New Caledonia

    Nan Mei

    2016-08-01

    Full Text Available High amounts of hydrogen are emitted in the serpentinite-hosted hydrothermal field of the Prony Bay (PHF, New Caledonia, where high-pH (~11, low-temperature (<40°C and low-salinity fluids are discharged in both intertidal and shallow submarine environments. In this study, we investigated the diversity and distribution of potentially hydrogen-producing bacteria in Prony hyperalkaline springs by using metagenomic analyses and different PCR-amplified DNA sequencing methods. The retrieved sequences of hydA genes, encoding the catalytic subunit of [FeFe]-hydrogenases and, used as a molecular marker of hydrogen-producing bacteria, were mainly related to those of Firmicutes and clustered into two distinct groups depending on sampling locations. Intertidal samples were dominated by new hydA sequences related to uncultured Firmicutes retrieved from paddy soils, while submarine samples were dominated by diverse hydA sequences affiliated with anaerobic and/or thermophilic submarine Firmicutes pertaining to the orders Thermoanaerobacterales or Clostridiales. The novelty and diversity of these [FeFe]-hydrogenases may reflect the unique environmental conditions prevailing in the PHF (i.e. high-pH, low-salt, mesothermic fluids. In addition, novel alkaliphilic hydrogen-producing Firmicutes (Clostridiales and Bacillales were successfully isolated from both intertidal and submarine PHF chimney samples. Both molecular and cultivation-based data demonstrated the ability of Firmicutes originating from serpentinite-hosted environments to produce hydrogen by fermentation, potentially contributing to the molecular hydrogen balance in situ.

  14. Liquid chromatography mass spectrometry for analysis of microbial metabolites

    Klitgaard, Andreas

    to human health. Because of this, methods for detection and analysis of these compounds are vital. Estimates suggest that there are around 1.5 million different fungal species on Earth, dwarfing the number of plants estimated to 300,000, meaning that there potentially are many more interesting compounds...... is of large commercial interest for production of the bioactive compounds of the future. One part of my study focused on identification and elucidation of the biosynthesis of a nonribosomal peptide (NRP) nidulanin A from Aspergillus nidulans. Although the study was successful several analogs were......Filamentous fungi serve a very important role in Nature where they break down organic matter, releasing nutrients that can be used by other organisms. Fungi and other microorganisms also produce a wide array of bioactive compounds, the secondary metabolites( SMs), used for such diverse roles...

  15. Treatment of Donor Cells and Reconstructed Embryos with a Combination of Trichostatin-A and 5-aza-2'-Deoxycytidine Improves the Developmental Competence and Quality of Buffalo Embryos Produced by Handmade Cloning and Alters Their Epigenetic Status and Gene Expression.

    Saini, Monika; Selokar, Naresh L; Agrawal, Himanshu; Singla, Suresh Kumar; Chauhan, Manmohan Singh; Manik, Radheysham S; Palta, Prabhat

    2017-06-01

    The application of cloning technology on a large scale is limited by very low offspring rate primarily due to aberrant or incomplete epigenetic reprogramming. Trichostatin A (TSA), a histone deacetylase inhibitor, and 5-aza-2'-deoxycytidine (5-aza-dC), an inhibitor of DNA methyltransferases, are widely used for altering the epigenetic status of cloned embryos. We optimized the doses of these epigenetic modifiers for production of buffalo embryos by handmade cloning and examined whether combined treatment with these epigenetic modifiers offered any advantage over treatment with the individual epigenetic modifier. Irrespective of whether donor cells or reconstructed embryos or both were treated with 50 nM TSA +7.5 nM 5-aza-dC, (1) the blastocyst rate was significantly higher (71.6 ± 3.5, 68.3 ± 2.6, and 71.8 ± 2.4, respectively, vs. 43.1 ± 3.4 for controls, p cells or reconstructed embryos or both with the combination of TSA +5-aza-dC. Therefore, there is no advantage in treating both donor cells and reconstructed embryos when the combination of TSA and 5-aza-dC is used.

  16. Blood sampling and hemolysis affect concentration of plasma metabolites

    Theil, Peter Kappel; Pedersen, Lene Juul; Jensen, Margit Bak

    2012-01-01

    design and blood was collected after restraint via vein puncture 1, 4, 11, and 23 h after morning feeding. Plasma samples were categorized as without or with minor or major hemolysis [clear (n = 218), yellow (n = 97), or red (n = 37)] upon centrifugation. Plasma NEFA (P ...Two experiments were carried out to reveal and quantify plasma metabolites that are sensitive to hemolysis and animal stress due to the blood sampling procedure (vein puncture vs. catheter). In Exp. 1, 48 sows were fed 4 diets either once (0800 h) or twice daily (0800 h and 1500 h) in a crossover......, a subset of samples from 24 sows fed twice daily in Exp. 1 was combined with data obtained from 30 sows sampled using jugular vein catheters. All sows in Exp. 2 were fed twice daily (0800 h and 1500 h) and blood samples collected repeatedly 1, 4, 11, and 23 h after morning feeding (other conditions were...

  17. The neurotoxicity of pyridinium metabolites of haloperidol

    Agnieszka Górska

    2015-10-01

    Full Text Available Haloperydol is a butyrophenone, typical neuroleptic agent characterized as a high antipsychotics effects in the treatment of schizophrenia and in palliative care to alleviation many syndromes, such as naursea, vomiting and delirium. Clinical problems occurs during and after administration of the drug are side effects, particularly extrapyrramidal symptoms (EPS. The neurotoxicity of haloperydol may be initiated by the cationic metabolites of haloperydol, HPP+, RHPP+, formed by oxidation and reduction pathways. These metabolites are transported by human organic cation transporters (hOCT to several brain structures for exapmle, in substantia nigra, striatum, caudate nucleus, hippocampus. After reaching the dopaminergic neurons inhibits mitochondrial complex I, evidence for free radical involvement, thus leading to neurodegeneration.

  18. Vitamin D metabolites in human milk

    Weisman, Y.; Bawnik, J.C.; Eisenberg, Z.; Spirer, Z.

    1982-01-01

    The concentrations of unconjugated 25-OHD, 24, 25(OH)2D, and 1,25(OH)2D were measured in human milk by competitive protein-binding radioassays following successive preparative Sephadex LH-20 chromatography and HPLC. The mean (+/- SE) concentration of 25-OHD was 0.37 +/- 0.03 ng/ml, of 24,25(OH)2D was 24.8 +/- 1.9 pg/ml, and of 1,25(OH)2D was 2.2 +/-0.1 pg/ml. The concentration of 25-OHD3 in milk as determined by HPLC and UV detection at 254 nm was 0.27 +/- 0.08 ng/ml. The milk concentrations of vitamin D metabolites did not correlate with the maternal serum 25-OHD levels. The total amounts of unconjugated vitamin D metabolites correspond to the known low bioassayable vitamin D antirachitic activity in human milk

  19. Role of metabolites of cyclophosphamide in cardiotoxicity

    Kurauchi, Koichiro; Nishikawa, Takuro; Miyahara, Emiko; Okamoto, Yasuhiro; Kawano, Yoshifumi

    2017-01-01

    Background The dose-limiting toxic effect of cyclophosphamide (CY) is cardiotoxicity. The pathogenesis of myocardial damage is poorly understood, and there is no established means of prevention. In previous studies, we suggested that for CY-induced cardiotoxicity, whereas acrolein is the key toxic metabolite, carboxyethylphosphoramide mustard (CEPM) is protective. We sought to verify that acrolein is the main cause of cardiotoxicity and to investigate whether aldehyde dehydrogenase (ALDH), wh...

  20. Fungal Anticancer Metabolites: Synthesis Towards Drug Discovery.

    Barbero, Margherita; Artuso, Emma; Prandi, Cristina

    2018-01-01

    Fungi are a well-known and valuable source of compounds of therapeutic relevance, in particular of novel anticancer compounds. Although seldom obtainable through isolation from the natural source, the total organic synthesis still remains one of the most efficient alternatives to resupply them. Furthermore, natural product total synthesis is a valuable tool not only for discovery of new complex biologically active compounds but also for the development of innovative methodologies in enantioselective organic synthesis. We undertook an in-depth literature searching by using chemical bibliographic databases (SciFinder, Reaxys) in order to have a comprehensive insight into the wide research field. The literature has been then screened, refining the obtained results by subject terms focused on both biological activity and innovative synthetic procedures. The literature on fungal metabolites has been recently reviewed and these publications have been used as a base from which we consider the synthetic feasibility of the most promising compounds, in terms of anticancer properties and drug development. In this paper, compounds are classified according to their chemical structure. This review summarizes the anticancer potential of fungal metabolites, highlighting the role of total synthesis outlining the feasibility of innovative synthetic procedures that facilitate the development of fungal metabolites into drugs that may become a real future perspective. To our knowledge, this review is the first effort to deal with the total synthesis of these active fungi metabolites and demonstrates that total chemical synthesis is a fruitful means of yielding fungal derivatives as aided by recent technological and innovative advancements. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. New antitumour fungal metabolites from Alternaria porri.

    Phuwapraisirisan, Preecha; Rangsan, Jakaphan; Siripong, Pongpan; Tip-Pyang, Santi

    2009-01-01

    Chemical investigation of the onion pathogenic fungus Alternaria porri resulted in the isolation of two new phthalides named zinnimide (2) and deprenylzinnimide (8), along with a new bianthraquinone, alterporriol F (10). The structures of the new metabolites were characterised by spectroscopic analysis and chemical degradation. Of the new compounds isolated, alterporriol F was highly cytotoxic towards HeLa and KB cells, with IC(50) values of 6.5 and 7.0 microg mL(-1).

  2. Secondary metabolites from Bacillus amyloliquefaciens isolated from soil can kill Burkholderia pseudomallei.

    Boottanun, Patcharaporn; Potisap, Chotima; Hurdle, Julian G; Sermswan, Rasana W

    2017-12-01

    Bacillus species are Gram-positive bacteria found in abundance in nature and their secondary metabolites were found to possess various potential activities, notably antimicrobial. In this study, Bacillus amyloliquefaciens N2-4 and N3-8 were isolated from soil and their metabolites could kill Burkholderia pseudomallei, a Gram-negative pathogenic bacterium also found in soil in its endemic areas. Moreover, the metabolites were able to kill drug resistant isolates of B. pseudomallei and also inhibit other pathogenic bacteria such as Staphylococcus aureus, Escherichia coli and Acinetobacter baumannii but not the non-pathogenic Burkholderia thailandensis, which is closely related to B. pseudomallei. Since the antimicrobial activity of N3-8 was not partially decreased or abolished when treated with proteolytic enzymes or autoclaved, but N2-4 was, these two strains should have produced different compounds. The N3-8 metabolites with antimicrobial activity consisted of both protein and non-protein compounds. The inhibition spectrum of the precipitated proteins compared to the culture supernatant indicated a possible synergistic effect of the non-protein and peptide compounds of N3-8 isolates against other pathogens. When either N2-4 or N3-8 isolates was co-cultured with B. pseudomallei the numbers of the bacteria decreased by 5 log 10 within 72 h. Further purification and characterization of the metabolites is required for future use of the bacteria or their metabolites as biological controls of B. pseudomallei in the environment or for development as new drugs for problematic pathogenic bacteria.

  3. Non-equilibrium method for the radioimmunoassay of clozapine in the presence of metabolites

    Rosenthaler, J.; Nimmerfall, F.; Sigrist, R.; Munzer, H.

    1977-01-01

    Cross-reactions with metabolites are an ever-recurring problem encountered in the use of radioimmunoassay techniques to determine active compounds in biological material. Metabolites may interfere with the assay of the parent drug to a variable extent. Taking 8-chloro-11-(4-methyl-1-piperazinyl)-5H-dibenzo[b,e][1,4]diazepine (clozapine) as an example, it was shown that the extent to which the antiserum produced interacts with the parent drug and the metabolites can be estimated by determining the equilibrium constants and the kinetics. In the present case, therefore, it was advantageous to carry out the radioimmunoassay in disequilibrium, i.e. in order to differentiate the metabolites from the parent drug, the sample was incubated with the antiserum for 10 min, after which the labelled antigen was added and the reaction mixture again incubated for a brief, exactly timed interval. It was shown that cross-reactions did not occur in mixtures of clozapine and its N-demethyl and N-oxide metabolites in the proportions 1 : 1 : 2 over a range of concentration of 1.5-48 ng clozapine per 100 μl human plasma. The equilibrium constants measured with the clozapine goat antiserum were as follows: clozapine 1.2 x 10 8 M -1 , the N-demethyl metabolite 4.6 x 10 7 M -1 and the N-oxide 3.7 x 10 7 M -1 (pH 7.5 and 20 0 C). (orig.) [de

  4. Antioxidant properties and global metabolite screening of the probiotic yeast Saccharomyces cerevisiae var. boulardii.

    Datta, Suprama; Timson, David J; Annapure, Uday S

    2017-07-01

    Saccharomyces cerevisiae var. boulardii is the only yeast species with probiotic properties. It is considered to have therapeutic significance in gastrointestinal disorders. In the present study, a comparative physiological study between this yeast and Saccharomyces cerevisiae (BY4742) was performed by evaluating two prominent traits of probiotic species, responses to different stress conditions and antioxidant capacity. A global metabolite profile was also developed aiming to identify which therapeutically important secondary metabolites are produced. Saccharomyces cerevisiae var. boulardii showed no significant difference in growth patterns but greater stress tolerance compared to S. cerevisiae. It also demonstrated a six- to 10-fold greater antioxidant potential (judged by the 1,1-diphenyl-2-picrylhydrazyl assay), with a 70-fold higher total phenolic content and a 20-fold higher total flavonoid content in the extracellular fraction. These features were clearly differentiated by principal component analysis and further indicated by metabolite profiling. The extracellular fraction of the S. cerevisiae var. boulardii cultures was found to be rich in polyphenolic metabolites: vanillic acid, cinnamic acid, phenyl ethyl alcohol (rose oil), erythromycin, amphetamine and vitamin B 6 , which results in the antioxidant capacity of this strain. The present study presents a new perspective for differentiating the two genetically related strains of yeast, S. cerevisiae and S. cerevisiae var. boulardii by assessing their metabolome fingerprints. In addition to the correlation of the phenotypic properties with the secretory metabolites of these two yeasts, the present study also emphasizes the potential to exploit S. cerevisiae var. boulardii in the industrial production of these metabolites. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  5. A hybrid approach identifies metabolic signatures of high-producers for chinese hamster ovary clone selection and process optimization.

    Popp, Oliver; Müller, Dirk; Didzus, Katharina; Paul, Wolfgang; Lipsmeier, Florian; Kirchner, Florian; Niklas, Jens; Mauch, Klaus; Beaucamp, Nicola

    2016-09-01

    In-depth characterization of high-producer cell lines and bioprocesses is vital to ensure robust and consistent production of recombinant therapeutic proteins in high quantity and quality for clinical applications. This requires applying appropriate methods during bioprocess development to enable meaningful characterization of CHO clones and processes. Here, we present a novel hybrid approach for supporting comprehensive characterization of metabolic clone performance. The approach combines metabolite profiling with multivariate data analysis and fluxomics to enable a data-driven mechanistic analysis of key metabolic traits associated with desired cell phenotypes. We applied the methodology to quantify and compare metabolic performance in a set of 10 recombinant CHO-K1 producer clones and a host cell line. The comprehensive characterization enabled us to derive an extended set of clone performance criteria that not only captured growth and product formation, but also incorporated information on intracellular clone physiology and on metabolic changes during the process. These criteria served to establish a quantitative clone ranking and allowed us to identify metabolic differences between high-producing CHO-K1 clones yielding comparably high product titers. Through multivariate data analysis of the combined metabolite and flux data we uncovered common metabolic traits characteristic of high-producer clones in the screening setup. This included high intracellular rates of glutamine synthesis, low cysteine uptake, reduced excretion of aspartate and glutamate, and low intracellular degradation rates of branched-chain amino acids and of histidine. Finally, the above approach was integrated into a workflow that enables standardized high-content selection of CHO producer clones in a high-throughput fashion. In conclusion, the combination of quantitative metabolite profiling, multivariate data analysis, and mechanistic network model simulations can identify metabolic

  6. Antiviral activity of A771726, the active metabolite of leflunomide, against Junín virus.

    Sepúlveda, Claudia S; García, Cybele C; Damonte, Elsa B

    2018-05-01

    The aim of this study was to investigate the effect of A771726, the active metabolite of leflunomide, (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad against the infection with Junín virus (JUNV), agent of Argentine hemorrhagic fever (AHF). The treatment with non-cytotoxic concentrations of A771726 of Vero and A549 cells infected with JUNV inhibited virus replication in a dose-dependent manner, as determined by virus yield reduction assay. The antiviral effectiveness of A771726 was not importantly affected by the multiplicity of infection and the virus strain. Moreover, the combination of A771726 and ribavirin had a significantly more potent antiviral activity than each single drug treatment. Mechanistic studies showed that the main action of A771726 is exerted before 6 h of JUNV infection. Accordingly, inhibition of viral RNA synthesis was detected in treated infected cells by real time RT-PCR. The exogenous addition of uridine or orotic acid produced a partial reversal of the inhibitory effect of A771726 on infective virus production whereas a total reversion was detected on JUNV RNA synthesis, probably by restoration of the enzymatic activity of dihydroorotate dehydrogenase (DHODH) and the intracellular pyrimidine pools. In conclusion, these results suggest that the antiviral target would be viral RNA synthesis through pyrimidine depletion, but any other effect of the compound on JUNV infection cannot be excluded. This study opens the possibility of the therapeutic application of a wide spectrum host-targeted compound alone or in combination with ribavirin to combat AHF as well as other human pathogenic arenaviruses. © 2018 Wiley Periodicals, Inc.

  7. Phthalate Metabolites, Consumer Habits and Health Effects

    Peter Wallner

    2016-07-01

    Full Text Available Phthalates are multifunctional chemicals used in a wide variety of consumer products. The aim of this study was to investigate whether levels of urinary phthalate metabolites in urine samples of Austrian mothers and their children were associated with consumer habits and health indicators. Within an Austrian biomonitoring survey, urine samples from 50 mother-child pairs of five communities (two-stage random stratified sampling were analysed. The concentrations of 14 phthalate metabolites were determined, and a questionnaire was administered. Monoethyl phthalate (MEP, mono-n-butyl phthalate (MnBP, mono-isobutyl phthalate (MiBP, monobenzyl phthalate (MBzP, mono-(2-ethylhexyl phthalate (MEHP, mono-(2-ethyl-5-hydroxyhexyl phthalate (5OH-MEHP, mono-(2-ethyl-5-oxohexyl phthalate (5oxo-MEHP, mono-(5-carboxy-2-ethylpentyl phthalate (5cx-MEPP, and 3-carboxy-mono-propyl phthalate (3cx-MPP could be quantified in the majority of samples. Significant correlations were found between the use of hair mousse, hair dye, makeup, chewing gum, polyethylene terephthalate (PET bottles and the diethyl phthalate (DEP metabolite MEP. With regard to health effects, significant associations of MEP in urine with headache, repeated coughing, diarrhoea, and hormonal problems were observed. MBzP was associated with repeated coughing and MEHP was associated with itching.

  8. Phthalate Metabolites, Consumer Habits and Health Effects.

    Wallner, Peter; Kundi, Michael; Hohenblum, Philipp; Scharf, Sigrid; Hutter, Hans-Peter

    2016-07-15

    Phthalates are multifunctional chemicals used in a wide variety of consumer products. The aim of this study was to investigate whether levels of urinary phthalate metabolites in urine samples of Austrian mothers and their children were associated with consumer habits and health indicators. Within an Austrian biomonitoring survey, urine samples from 50 mother-child pairs of five communities (two-stage random stratified sampling) were analysed. The concentrations of 14 phthalate metabolites were determined, and a questionnaire was administered. Monoethyl phthalate (MEP), mono-n-butyl phthalate (MnBP), mono-isobutyl phthalate (MiBP), monobenzyl phthalate (MBzP), mono-(2-ethylhexyl) phthalate (MEHP), mono-(2-ethyl-5-hydroxyhexyl) phthalate (5OH-MEHP), mono-(2-ethyl-5-oxohexyl) phthalate (5oxo-MEHP), mono-(5-carboxy-2-ethylpentyl) phthalate (5cx-MEPP), and 3-carboxy-mono-propyl phthalate (3cx-MPP) could be quantified in the majority of samples. Significant correlations were found between the use of hair mousse, hair dye, makeup, chewing gum, polyethylene terephthalate (PET) bottles and the diethyl phthalate (DEP) metabolite MEP. With regard to health effects, significant associations of MEP in urine with headache, repeated coughing, diarrhoea, and hormonal problems were observed. MBzP was associated with repeated coughing and MEHP was associated with itching.

  9. LC-MS based analysis of secondary metabolites from Chaetomium and Stachybotrys growth in indoor environments

    Dosen, Ina

    of causing negative health impact. With this in mind, a prime goal of this PhD study was to develop and optimize methods for qualitative and semi-quantitative analysis of secondary metabolites and bioactive compounds produced by Stachybotrys spp. and Chaetomium spp. The main analytical technique used...... and not included in the library, as well as tentatively identified compounds. Metabolite profiling of Stachybotrys spp. and Chaetomium spp. was performed in pure agar cultures. Thereafter, mapped secondary metabolites were screened for in extracts of artificially inoculated building materials and materials from...... analytical tools were applied to the analysis of naturally contaminated building materials, where presence of all previously mapped metabolites was confirmed. Work done on Stachybotrys spp showed no significant difference in metabolite profiles obtained in vitro and in vivo. Concurrently the study...

  10. Analysis of Intracellular Metabolites from Microorganisms: Quenching and Extraction Protocols.

    Pinu, Farhana R; Villas-Boas, Silas G; Aggio, Raphael

    2017-10-23

    Sample preparation is one of the most important steps in metabolome analysis. The challenges of determining microbial metabolome have been well discussed within the research community and many improvements have already been achieved in last decade. The analysis of intracellular metabolites is particularly challenging. Environmental perturbations may considerably affect microbial metabolism, which results in intracellular metabolites being rapidly degraded or metabolized by enzymatic reactions. Therefore, quenching or the complete stop of cell metabolism is a pre-requisite for accurate intracellular metabolite analysis. After quenching, metabolites need to be extracted from the intracellular compartment. The choice of the most suitable metabolite extraction method/s is another crucial step. The literature indicates that specific classes of metabolites are better extracted by different extraction protocols. In this review, we discuss the technical aspects and advancements of quenching and extraction of intracellular metabolite analysis from microbial cells.

  11. Analysis of Intracellular Metabolites from Microorganisms: Quenching and Extraction Protocols

    Farhana R. Pinu

    2017-10-01

    Full Text Available Sample preparation is one of the most important steps in metabolome analysis. The challenges of determining microbial metabolome have been well discussed within the research community and many improvements have already been achieved in last decade. The analysis of intracellular metabolites is particularly challenging. Environmental perturbations may considerably affect microbial metabolism, which results in intracellular metabolites being rapidly degraded or metabolized by enzymatic reactions. Therefore, quenching or the complete stop of cell metabolism is a pre-requisite for accurate intracellular metabolite analysis. After quenching, metabolites need to be extracted from the intracellular compartment. The choice of the most suitable metabolite extraction method/s is another crucial step. The literature indicates that specific classes of metabolites are better extracted by different extraction protocols. In this review, we discuss the technical aspects and advancements of quenching and extraction of intracellular metabolite analysis from microbial cells.

  12. The cardiovascular and cardiac actions of ecstasy and its metabolites.

    Shenouda, S K; Carvalho, F; Varner, K J

    2010-08-01

    The recreational use of 3, 4 methylenedioxymethamphetamine (ecstasy or MDMA) has increased dramatically over the past thirty years due to its ability to increase stamina and produce feelings of emotional closeness and wellbeing. In spite of the popular perception that MDMA is a safe drug, there is a large literature documenting that the drug can produce significant neurotoxicity, especially in serotonergic and catecholaminergic systems. There are also experimental and clinical data which document that MDMA can alter cardiovascular function and produce cardiac toxicity, including rhythm disturbances, infarction and sudden death. This manuscript will review the literature documenting the cardiovascular responses elicited by MDMA in humans and experimental animals and will examine the underlying mechanisms mediating these responses. We will also review the available clinical, autopsy and experimental data linking MDMA with cardiac toxicity. Most available data indicate that oxidative stress plays an important role in the cardiotoxic actions of MDMA. Moreover, new data indicates that redox active metabolites of MDMA may play especially important roles in MDMA induced toxicity.

  13. Marine actinomycetes: an ongoing source of novel bioactive metabolites.

    Subramani, Ramesh; Aalbersberg, William

    2012-12-20

    Actinomycetes are virtually unlimited sources of novel compounds with many therapeutic applications and hold a prominent position due to their diversity and proven ability to produce novel bioactive compounds. There are more than 22,000 known microbial secondary metabolites, 70% of which are produced by actinomycetes, 20% from fungi, 7% from Bacillus spp. and 1-2% by other bacteria. Among the actinomycetes, streptomycetes group are considered economically important because out of the approximately more than 10,000 known antibiotics, 50-55% are produced by this genus. The ecological role of actinomycetes in the marine ecosystem is largely neglected and various assumptions meant there was little incentive to isolate marine strains for search and discovery of new drugs. The search for and discovery of rare and new actinomycetes is of significant interest to drug discovery due to a growing need for the development of new and potent therapeutic agents. Modern molecular technologies are adding strength to the target-directed search for detection and isolation of bioactive actinomycetes, and continued development of improved cultivation methods and molecular technologies for accessing the marine environment promises to provide access to this significant new source of chemical diversity with novel/rare actinomycetes including new species of previously reported actinomycetes. Copyright © 2012 Elsevier GmbH. All rights reserved.

  14. Metabolite profiling of tomato (Lycopersicon esculentum) using 1H NMR spectroscopy as a tool to detect potential unintended effects following a genetic modification.

    Le Gall, Gwénaëlle; Colquhoun, Ian J; Davis, Adrienne L; Collins, Geoff J; Verhoeyen, Martine E

    2003-04-23

    The maize transcription factors LC and C1 were simultaneously overexpressed in tomato with the aim of producing lines with increased amounts of flavonols. The metabolite composition of these genetically modified tomatoes has been compared with that of azygous (nonmodified) controls grown side-by-side under the same conditions. It has been possible to observe metabolic changes in both types at different stages of maturity. (1)H NMR spectra showed that the levels of glutamic acid, fructose, and some nucleosides and nucleotides gradually increase from the immature to the ripe stage, whereas some amino acids such as valine and gamma-aminobutyric acid were present in higher amounts in unripe tomatoes. Apart from the significantly increased content of six main flavonoid glycosides (mainly kaempferol-3-O-rutinoside, with additional increases in kaempferol-3,7-di-O-glucoside (1), kaempferol-3-O-rutinoside-7-O-glucoside (2), kaempferol-3-O-glucoside, a dihydrokaempferol-O-hexoside (3), and naringenin-7-O-glucoside), the levels of at least 15 other metabolites were found to be different between the two types of red tomato. Among them were citric acid, sucrose, phenylalanine, and trigonelline. However, although statistically significant, these changes in mean values were relatively minor (less than 3-fold) and within the natural variation that would be observed in a field-grown crop. Nevertheless, this study clearly showed that NMR combined with chemometrics and univariate statistics can successfully trace even small differences in metabolite levels between plants and therefore represents a powerful tool to detect potential unintended effects in genetically modified crops.

  15. Production of cyathane type secondary metabolites by submerged cultures of Hericium erinaceus and evaluation of their antibacterial activity by direct bioautography.

    Shen, T; Morlock, G; Zorn, H

    2015-01-01

    Fungi of the phylum Basidiomycota are well-known to form a broad spectrum of biologically active secondary metabolites, especially low molecular weight compounds such as terpenoids. Hericium erinaceus produces various cyathane type diterpenoids including erinacines. However, no quantitative data and production kinetics have been reported on the biosynthesis of the erinacines C and P in submerged cultures. In the present study, the production of erinacine C was optimized, and the product formation kinetics as well as the antimicrobial activity were studied by high-performance liquid chromatography (HPLC), high-performance thin-layer chromatography (HPTLC) and direct bioautography. Oatmeal and Edamin ® K were identified to be crucial media components for an efficient production of erinacine C. The highest concentrations of erinacine C were obtained in the optimized culture medium on the 9 th culture day (approximately 260 mg L -1 ). The production of erinacine P was strongly time dependent. The maximum concentration of erinacine P of 184 mg L -1 was observed on the third culture day. Afterwards, the concentrations of erinacine P decreased while the concentrations of erinacine C steadily increased. Comparable results were obtained by HPTLC with UV detection and HPLC with diode-array detection (DAD) analyses. Direct bioautography allowed for an additional analysis of the antimicrobial activity of the secondary metabolites. The C and N sources oatmeal and Edamin ® K induced the formation of erinacine C. Detailed product formation kinetics of the erinacines C and P have been reported for the first time. HPTLC combined with the Aliivibrio fischeri bioassay allowed for an instant detection of cyathane diterpenoids in crude extracts and for an evaluation of the antimicrobial activity of the secondary metabolites directly on the plate.

  16. Antifungal metabolites (monorden, monocillin IV, and cerebrosides) from Humicola fuscoatra traaen NRRL 22980, a mycoparasite of Aspergillus flavus sclerotia.

    Wicklow, D T; Joshi, B K; Gamble, W R; Gloer, J B; Dowd, P F

    1998-11-01

    The mycoparasite Humicola fuscoatra NRRL 22980 was isolated from a sclerotium of Aspergillus flavus that had been buried in a cornfield near Tifton, Ga. When grown on autoclaved rice, this fungus produced the antifungal metabolites monorden, monocillin IV, and a new monorden analog. Each metabolite produced a clear zone of inhibition surrounding paper assay disks on agar plates seeded with conidia of A. flavus. Monorden was twice as inhibitory to A. flavus mycelium extension (MIC > 28 microg/ml) as monocillin IV (MIC > 56 microg/ml). Cerebrosides C and D, metabolites known to potentiate the activity of cell wall-active antibiotics, were separated from the ethyl acetate extract but were not inhibitory to A. flavus when tested as pure compounds. This is the first report of natural products from H. fuscoatra.

  17. Identification of fipronil metabolites by time-of-flight mass spectrometry for application in a human exposure study.

    McMahen, Rebecca L; Strynar, Mark J; Dagnino, Sonia; Herr, David W; Moser, Virginia C; Garantziotis, Stavros; Andersen, Erik M; Freeborn, Danielle L; McMillan, Larry; Lindstrom, Andrew B

    2015-05-01

    Fipronil is a phenylpyrazole insecticide commonly used in residential and agricultural applications. To understand more about the potential risks for human exposure associated with fipronil, urine and serum from dosed Long Evans adult rats (5 and 10mg/kg bw) were analyzed to identify metabolites as potential biomarkers for use in human biomonitoring studies. Urine from treated rats was found to contain seven unique metabolites, two of which had not been previously reported-M4 and M7 which were putatively identified as a nitroso compound and an imine, respectively. Fipronil sulfone was confirmed to be the primary metabolite in rat serum. The fipronil metabolites identified in the respective matrices were then evaluated in matched human urine (n=84) and serum (n=96) samples from volunteers with no known pesticide exposures. Although no fipronil or metabolites were detected in human urine, fipronil sulfone was present in the serum of approximately 25% of the individuals at concentrations ranging from 0.1 to 4ng/mL. These results indicate that many fipronil metabolites are produced following exposures in rats and that fipronil sulfone is a useful biomarker in human serum. Furthermore, human exposure to fipronil may occur regularly and require more extensive characterization. Published by Elsevier Ltd.

  18. Improvement of hairy root cultures and plants by changing biosynthetic pathways leading to pharmaceutical metabolites: strategies and applications.

    Ludwig-Müller, Jutta; Jahn, Linda; Lippert, Annemarie; Püschel, Joachim; Walter, Antje

    2014-11-01

    A plethora of bioactive plant metabolites has been explored for pharmaceutical, food chemistry and agricultural applications. The chemical synthesis of these structures is often difficult, so plants are favorably used as producers. While whole plants can serve as a source for secondary metabolites and can be also improved by metabolic engineering, more often cell or organ cultures of relevant plant species are of interest. It should be noted that only in few cases the production for commercial application in such cultures has been achieved. Their genetic manipulation is sometimes faster and the production of a specific metabolite is more reliable, because of less environmental influences. In addition, upscaling in bioreactors is nowadays possible for many of these cultures, so some are already used in industry. There are approaches to alter the profile of metabolites not only by using plant genes, but also by using bacterial genes encoding modifying enzymes. Also, strategies to cope with unwanted or even toxic compounds are available. The need for metabolic engineering of plant secondary metabolite pathways is increasing with the rising demand for (novel) compounds with new bioactive properties. Here, we give some examples of recent developments for the metabolic engineering of plants and organ cultures, which can be used in the production of metabolites with interesting properties. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. New Methodology for Known Metabolite Identification in Metabonomics/Metabolomics: Topological Metabolite Identification Carbon Efficiency (tMICE).

    Sanchon-Lopez, Beatriz; Everett, Jeremy R

    2016-09-02

    A new, simple-to-implement and quantitative approach to assessing the confidence in NMR-based identification of known metabolites is introduced. The approach is based on a topological analysis of metabolite identification information available from NMR spectroscopy studies and is a development of the metabolite identification carbon efficiency (MICE) method. New topological metabolite identification indices are introduced, analyzed, and proposed for general use, including topological metabolite identification carbon efficiency (tMICE). Because known metabolite identification is one of the key bottlenecks in either NMR-spectroscopy- or mass spectrometry-based metabonomics/metabolomics studies, and given the fact that there is no current consensus on how to assess metabolite identification confidence, it is hoped that these new approaches and the topological indices will find utility.

  20. Opposite Regulation of Ghrelin and Glucagon-like Peptide-1 by Metabolite G-Protein-Coupled Receptors

    Engelstoft, M S; Schwartz, T W

    2016-01-01

    Gut hormones send information about incoming nutrients to the rest of the body and thereby control many aspects of metabolism. The secretion of ghrelin and glucagon-like protein (GLP)-1, two hormones with opposite secretory patterns and opposite actions on multiple targets, is controlled by a lim......Gut hormones send information about incoming nutrients to the rest of the body and thereby control many aspects of metabolism. The secretion of ghrelin and glucagon-like protein (GLP)-1, two hormones with opposite secretory patterns and opposite actions on multiple targets, is controlled...... by a limited number of G-protein coupled receptors (GPCRs); half of which recognize and bind dietary nutrient metabolites, metabolites generated by gut microbiota, and metabolites of the host's intermediary metabolism. Most metabolite GPCRs controlling ghrelin secretion are inhibitory, whereas all metabolite...... receptors controlling GLP-1 secretion are stimulatory. This dichotomy in metabolite sensor function, which is obtained through a combination of differential expression and cell-dependent signaling bias, offers pharmacological targets to stimulate GLP-1 and inhibit ghrelin through the same mechanism....

  1. Chemical ecology of insect-plant interactions: ecological significance of plant secondary metabolites.

    Nishida, Ritsuo

    2014-01-01

    Plants produce a diverse array of secondary metabolites as chemical barriers against herbivores. Many phytophagous insects are highly adapted to these allelochemicals and use such unique substances as the specific host-finding cues, defensive substances of their own, and even as sex pheromones or their precursors by selectively sensing, incorporating, and/or processing these phytochemicals. Insects also serve as pollinators often effectively guided by specific floral fragrances. This review d...

  2. Primary and secondary metabolites production in signal grass around the year under nitrogen fertilizer

    Syeda Maryam Hussain

    2016-01-01

    Plants produce a number of substances and products and primary and secondary metabolites (SM) are amongst them with many benefits but limitation as well. Usually, the fodder are not considered toxic to animals or as a source having higher SM. The Brachiaria decumbens has a considerable nutritional value, but it is considered as a toxic grass for causing photosensitization in animals, if the grass is not harvested for more than 30 days or solely. The absence of detailed information in the lite...

  3. Metabolite damage and repair in metabolic engineering design.

    Sun, Jiayi; Jeffryes, James G; Henry, Christopher S; Bruner, Steven D; Hanson, Andrew D

    2017-11-01

    The necessarily sharp focus of metabolic engineering and metabolic synthetic biology on pathways and their fluxes has tended to divert attention from the damaging enzymatic and chemical side-reactions that pathway metabolites can undergo. Although historically overlooked and underappreciated, such metabolite damage reactions are now known to occur throughout metabolism and to generate (formerly enigmatic) peaks detected in metabolomics datasets. It is also now known that metabolite damage is often countered by dedicated repair enzymes that undo or prevent it. Metabolite damage and repair are highly relevant to engineered pathway design: metabolite damage reactions can reduce flux rates and product yields, and repair enzymes can provide robust, host-independent solutions. Herein, after introducing the core principles of metabolite damage and repair, we use case histories to document how damage and repair processes affect efficient operation of engineered pathways - particularly those that are heterologous, non-natural, or cell-free. We then review how metabolite damage reactions can be predicted, how repair reactions can be prospected, and how metabolite damage and repair can be built into genome-scale metabolic models. Lastly, we propose a versatile 'plug and play' set of well-characterized metabolite repair enzymes to solve metabolite damage problems known or likely to occur in metabolic engineering and synthetic biology projects. Copyright © 2017 International Metabolic Engineering Society. All rights reserved.

  4. Metabolite damage and repair in metabolic engineering design

    Sun, Jiayi; Jeffryes, James G.; Henry, Christopher S.; Bruner, Steven D.; Hanson, Andrew D.

    2017-11-01

    The necessarily sharp focus of metabolic engineering and metabolic synthetic biology on pathways and their fluxes has tended to divert attention from the damaging enzymatic and chemical side-reactions that pathway metabolites can undergo. Although historically overlooked and underappreciated, such metabolite damage reactions are now known to occur throughout metabolism and to generate (formerly enigmatic) peaks detected in metabolomics datasets. It is also now known that metabolite damage is often countered by dedicated repair enzymes that undo or prevent it. Metabolite damage and repair are highly relevant to engineered pathway design: metabolite damage reactions can reduce flux rates and product yields, and repair enzymes can provide robust, host-independent solutions. Herein, after introducing the core principles of metabolite damage and repair, we use case histories to document how damage and repair processes affect efficient operation of engineered pathways - particularly those that are heterologous, non-natural, or cell-free. We then review how metabolite damage reactions can be predicted, how repair reactions can be prospected, and how metabolite damage and repair can be built into genome-scale metabolic models. Lastly, we propose a versatile 'plug and play' set of well-characterized metabolite repair enzymes to solve metabolite damage problems known or likely to occur in metabolic engineering and synthetic biology projects.

  5. New Metabolites and Bioactive Chlorinated Benzophenone Derivatives Produced by a Marine-Derived Fungus Pestalotiopsis heterocornis

    Hui Lei

    2017-03-01

    Full Text Available Four new compounds, including two isocoumarins, pestaloisocoumarins A and B (1, 2, one sesquiterpenoid degradation, isopolisin B (4, and one furan derivative, pestalotiol A (5, together with one known isocoumarin, gamahorin (3, and three chlorinated benzophenone derivatives, pestalachloride B (6, pestalachloride E (7 and a mixture of pestalalactone atropisomers (8a/8b, were isolated from a culture of the fungus Pestalotiopsis heterocornis associated with sponge Phakellia fusca. These new chemical structures were established using NMR and MS spectroscopic data, as well as single-crystal X-ray crystallographic analysis and CD Cotton effects. All of the isolated compounds were evaluated for their antimicrobial and cytotoxic activities. Isocoumarins 1–3, showed antibacterial activities against Gram-positive bacteria Staphylococcus aureus and Bacillus subtilis with MIC values ranging from 25 to 100 μg/mL and weak antifungal activities. Chlorinated benzophenone derivatives 6–8 exhibited antibacterial activities against S. aureus and B. subtilis with MIC values ranging from 3.0 to 50 μg/mL and cytotoxicities against four human cancer cell lines with IC50 values of 6.8–87.8 μM.

  6. Silkworm (Bombyx mori) hemocytes do not produce reactive oxygen metabolites as a part of defense mechanisms

    Hyršl, P.; Číž, Milan; Kubala, Lukáš; Lojek, Antonín

    2004-01-01

    Roč. 49, č. 3 (2004), s. 315-319 ISSN 0015-5632 R&D Projects: GA AV ČR IBS5004009 Institutional research plan: CEZ:AV0Z5004920 Keywords : hemocytes * Bombyx mori * reactive oxygen species Subject RIV: BO - Biophysics Impact factor: 1.034, year: 2004

  7. Glucosylglycerate Is an Osmotic Solute and an Extracellular Metabolite Produced by Streptomyces caelestis

    Pospíšil, Stanislav; Halada, Petr; Petříček, Miroslav; Sedmera, Petr

    2007-01-01

    Roč. 52, č. 5 (2007), s. 451-456 ISSN 0015-5632 R&D Projects: GA AV ČR IAA600660607 Institutional research plan: CEZ:AV0Z50200510 Keywords : streptomyces caelestis * mass spectrometry Subject RIV: EE - Microbiology, Virology Impact factor: 0.989, year: 2007

  8. Impact of Saccharomyces cerevisiae metabolites produced during fermentation on bread quality parameters: A review.

    Heitmann, Mareile; Zannini, Emanuele; Arendt, Elke

    2018-05-03

    Although bread making with the use of Baker's yeast has a long tradition in human history, little attention has been paid to the connection between yeast addition and the final bread quality. Nowadays, bakers mainly use different flour additives such as enzymes (amylases, hemicellulases, and proteases) to change and improve dough properties and/or bread quality. Another strategy is the use of modified industrial Baker's yeast. To date, there is no yeast strain used in the baking industry, which is genetically modified, despite some studies demonstrating that the application of recombinant DNA technology is a possibility for improved strains suitable for baking. However, due to the fact that the majority of consumers in Europe highly reject the use of genetically modified microorganisms in the production of food, other strategies to improve bread quality must be investigated. Such a strategy would be a reconsideration of the selection of yeast strains used for the baking process. Next to the common criteria, the requirement for adequate gas production, more attention should be paid on how yeast impacts flavor, shelf life, color, and the nutritional value of baked products, in a similar way to which yeast strains are selected in the wine and brewing industries.

  9. A proteomic approach to investigating gene cluster expression and secondary metabolite functionality in Aspergillus fumigatus.

    Owens, RA; Hammel, S; Sheridan, KJ; Jones, GW; Doyle, S

    2014-01-01

    A combined proteomics and metabolomics approach was utilised to advance the identification and characterisation of secondary metabolites in Aspergillus fumigatus. Here, implementation of a shotgun proteomic strategy led to the identification of non-redundant mycelial proteins (n = 414) from A. fumigatus including proteins typically under-represented in 2-D proteome maps: proteins with multiple transmembrane regions, hydrophobic proteins and proteins with extremes of molecular mass and pI. Ind...

  10. Accumulation of metabolites during bacterial degradation of PAH-mixtures

    Vila, J.; Lopez, Z.; Bauza, J.I. [Universitat de Barcelona (Spain). Department de Microbiologia; Minguillon, C. [Parc Cientific de Barcelona (ES). Institut de Recerca de Barcelona (IRB-PCB); Grifoll, M.

    2003-07-01

    In a previous work we identified a number of metabolites accumulated during growth in pyrene by Mycobacterium sp. AP1, and proposed a metabolic pathway for pyrene utilization. In order to confirm and complete this pathway we have isolated and identified the pyrene-degrading strains Mycobacterium sp. PGP2, CP1 and CP2. During growth on pyrene, strains AP1, PGP2, CP1 and CP2 accumulated 4,5-cis-pyrene-dihydrodiol, 4,5-phenanthrene dicarboxylic acid, 4-phenanthrene carboxylic acid, 3,4-dihydroxy-3-hydrophenanthrene-4-carboxylic acid, phthalic acid, and 6,6'-dihydroxy-2,2'-biphenyl dicarboxylic acid. Strains AP1, PGP2, CP1 and CP2 also grew on fluoranthene accumulating acenaphthenone, naphthalene-1,8-dicarboxylic acid, 9-fluorenone-1-carboxylic acid, Z-9-carboxymethylenefluorene-1-carboxylic acid and benzene-1,2,3-tricarboxylic acid. Similar metabolites were produced during growth onf fluoranthene by the Gram-positive strains CFt2 and CFt6, isolated by their capability of using this PAH as a sole source of carbon and energy. These fluoranthene-degrading strains also accumulated cis-1,9a-dihydroxy-1-hydrofluorene-9-one-8-carboxylic acid. In addition to pyrene and fluoranthene, all pyrene-degrading utilized phenanthrene as a sole source of carbon and energy, while the fluoranthene-degrading strains were unable to utilize pyrene or phenanthrene. Mycobacterium sp. AP1 acted on a wide range of PAHs, accumulating aromatic dicarboxylic acids, hydroxyacids, and ketones resulting from dioxygenation and ortho-cleavage, dioxygenation and meta-cleavage, and monooxygenation reactions. In cultures of strains AP1 and CP1 with a defined PAH-mixture only 20% removal of the parent compounds was observed. Analysis of acidic extracts showed the accumulation of the anticipated aromatic acids, suggesting that accumulation of acidic compounds could prevent further degradation of the mixture. Those results led us to isolation of strains DF11 and OH3, able to grow on the selected

  11. Secondary metabolites from Penicillium roqueforti, a starter for the production of Gorgonzola cheese

    Lisa Vallone

    2014-09-01

    Full Text Available The presence of mold in food, although necessary for production, can involve the presence of secondary metabolites, which are sometimes toxic. Penicillium roqueforti is a common saprophytic fungus but it is also the essential fungus used in the production of Roquefort cheese and other varieties of blue cheese containing internal mold. The study was conducted on industrial batches of Penicillium roqueforti starters used in the production of the Gorgonzola cheese, with the aim to verify the production of secondary metabolites. Nine Penicillium roqueforti strains were tested. The presence of roquefortine C, PR toxin and mycophenolic acid was tested first in vitro, then on bread-like substrate and lastly in vivo in nine cheese samples produced with the same starters and ready to market. In vitro, only Penicillium out of nine produced roquefortine C, four starters showed mycophenolic acid production, while no significant amounts of PR toxin were detected. In the samples grown on bread-like substrate, Penicillium did not produce secondary metabolites, likewise with each cheese samples tested. To protect consumers’ health and safety, the presence of mycotoxins needs to be verified in food which is widely consumed, above all for products protected by the protected denomination of origin (DOP label (i.e. a certificate guaranteeing the geographic origin of the product, such as Gorgonzola cheese.

  12. Effect of high pressure treatment on metabolite profile of marinated meat in soy sauce.

    Yang, Yang; Ye, Yangfang; Wang, Ying; Sun, Yangying; Pan, Daodong; Cao, Jinxuan

    2018-02-01

    Marinated meat in soy sauce was produced using hind leg by washing, rubbing salt, marinating with soy sauce and spices, and air dry-ripening for 15d. The effect of high pressure (HP) (150 and 300MPa for 15min) on the metabolite profiles of products was characterized using 1 H NMR and multivariate data analysis. The results showed that the metabonome was dominated by 26 metabolites, including amino acids, sugars, organic acids, nucleic aides and their derivatives. PC1 and PC2 explained a total of 75.4 and 11.9% of variables, respectively. HP treatments increased most of the metabolites, especially PC1, glutamate, sugars, nucleotides, anserine, lactate and creatine compared to the control. The increase of metabolites under HP was not dependent on pressure level except for alanine, lactate, acetate, formate, fumarate, glucose and 5'-IMP. These findings demonstrated that HP treatment at 150MPa was economical to improve the taste of marinated meat in soy sauce. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. In vitro antifungal activity of bacteria against Mycosphaerella fijiensis mediated by diffused and volatile metabolites

    Mileidy Cruz-Martín

    2012-07-01

    Full Text Available Antagonistic microorganisms do not have a unique mode of action. Multiplicity of these is an important feature for selection as biological control agents. Black Sigatoka is considered the foliar disease with most economic impact for the banana industry worldwide. New strategies to control it are required to reduce the use of fungicides. That is why an increasing interest to find biological alternatives, such as the use of antagonistic bacteria, has risen. Assays wer e carr ied ou t to determine whether in v it r o ant if ungal ac ti vity of 20 bacterial str ai ns against My cosphaer ella fijiensis was caused by metabolites diffused into the culture medium or volatile. Results demonstrated that 80.0% of bacterial strains tested showed in vitro antifungal activity by diffused metabolites in the culture medium and 60.0% by producing volatile metabolites. The 55.0% of strains showed both mechanisms. This feature makes these bacteria the best candidate for its selection as biological control agent. Keywords: antagonistic, biocontrol, volatile compounds, diffused metabolites.

  14. Identification of N-acyl-fumonisin B1 as new cytotoxic metabolites of fumonisin mycotoxins.

    Harrer, Henning; Laviad, Elad L; Humpf, Hans Ulrich; Futerman, Anthony H

    2013-03-01

    Fumonisins are mycotoxins produced by Fusarium species. The predominant derivative, fumonisin B1 (FB1), occurs in food and feed and is of health concern due to its hepatotoxic and carcinogenic effects. However, the role of FB1 metabolites on the mechanism of the toxicity, the inhibition of the ceramide synthesis, is unknown. The aim of this study was to identify new fumonisin metabolites and to evaluate their cytotoxic potential. MS, molecular biology, and in vitro enzyme assays were used to investigate fumonisin metabolism in mammalian cells overexpressing human ceramide synthase (CerS) genes. N-acyl-FB1 derivatives were detected as new metabolites in cultured cells at levels of up to 10 pmol/mg of protein. The N-acylation of FB1 and hydrolyzed FB1 was analyzed in several cell lines, including cells overexpressing CerS. The acyl-chain length of the N-acyl fumonisins depends on the CerS isoform acylating them. The N-acyl fumonisins are more cytotoxic than the parent fumonisin B1. The identification of N-acyl fumonisins with various acyl chain lengths together with the observed cytotoxicity of these compounds is a new aspect of fumonisin-related toxicity. Therefore, these new metabolites might play an important role in the mode of action of fumonisins. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. A High-Resolution LC-MS-Based Secondary Metabolite Fingerprint Database of Marine Bacteria

    Lu, Liang

    2014-10-09

    © 2014 Macmillan Publishers Limited. All rights reserved. Marine bacteria are the most widely distributed organisms in the ocean environment and produce a wide variety of secondary metabolites. However, traditional screening for bioactive natural compounds is greatly hindered by the lack of a systematic way of cataloguing the chemical profiles of bacterial strains found in nature. Here we present a chemical fingerprint database of marine bacteria based on their secondary metabolite profiles, acquired by high-resolution LC-MS. Till now, 1,430 bacterial strains spanning 168 known species collected from different marine environments were cultured and profiled. Using this database, we demonstrated that secondary metabolite profile similarity is approximately, but not always, correlated with taxonomical similarity. We also validated the ability of this database to find species-specific metabolites, as well as to discover known bioactive compounds from previously unknown sources. An online interface to this database, as well as the accompanying software, is provided freely for the community to use.

  16. Flagella-Driven Flows Circumvent Diffusive Bottlenecks that Inhibit Metabolite Exchange

    Short, Martin; Solari, Cristian; Ganguly, Sujoy; Kessler, John; Goldstein, Raymond; Powers, Thomas

    2006-03-01

    The evolution of single cells to large and multicellular organisms requires matching the organisms' needs to the rate of exchange of metabolites with the environment. This logistic problem can be a severe constraint on development. For organisms with a body plan that approximates a spherical shell, such as colonies of the volvocine green algae, the required current of metabolites grows quadratically with colony radius whereas the rate at which diffusion can exchange metabolites grows only linearly with radius. Hence, there is a bottleneck radius beyond which the diffusive current cannot keep up with metabolic demands. Using Volvox carteri as a model organism, we examine experimentally and theoretically the role that advection of fluid by surface-mounted flagella plays in enhancing nutrient uptake. We show that fluid flow driven by the coordinated beating of flagella produces a convective boundary layer in the concentration of a diffusing solute which in turn renders the metabolite exchange rate quadratic in the colony radius. This enhanced transport circumvents the diffusive bottleneck, allowing increase in size and thus evolutionary transitions to multicellularity in the Volvocales.

  17. Synthesis and characterization of N-demethylated metabolites of malachite green and leucomalachite green.

    Cho, Bongsup P; Yang, Tianle; Blankenship, Lonnie R; Moody, Joanna D; Churchwell, Mona; Beland, Frederick A; Culp, Sandra J

    2003-03-01

    Malachite green (MG), a triphenylmethane dye used to treat fungal and protozoan infections in fish, undergoes sequential oxidation to produce various N-demethylated derivatives (monodes-, dides(sym)-, dides(unsym)-, trides-, and tetrades-) both before and after reduction to leucomalachite green (LMG). The close structure resemblance of the metabolites with aromatic amine carcinogens implicates a potential genotoxicity from exposure to MG. The availability of the synthetic standards is important for metabolic and DNA adduct studies of MG. This paper describes a simple and versatile method for the synthesis of MG, LMG, and their N-demethylated metabolites. The synthesis involves a coupling of 4-(dimethylamino)benzophenone or 4-nitrobenzophenone with the aryllithium reagents derived from appropriately substituted 4-bromoaniline derivatives, followed by treatment with HCl in methanol. The resulting cationic MG and their leuco analogues showed systematic UV/vis spectral and tandem mass fragmentation patterns consistent with sequential N-demethylation. The extensive (1)H and (13)C spectral assignments of the metabolites were aided by the availability of (13)C(7)-labeled MG and LMG. The results indicate the existence of a resonance structure with the cationic charge located in the central methane carbon (C(7)). The synthetic procedure is general in scope so that it can be extended to the preparation of N-demethylated metabolites of other structurally related N-methylated triphenylmethane dyes.

  18. A High-Resolution LC-MS-Based Secondary Metabolite Fingerprint Database of Marine Bacteria

    Lu, Liang; Wang, Jijie; Xu, Ying; Wang, Kailing; Hu, Yingwei; Tian, Renmao; Yang, Bo; Lai, Qiliang; Li, Yongxin; Zhang, Weipeng; Shao, Zongze; Lam, Henry; Qian, Pei-Yuan

    2014-01-01

    © 2014 Macmillan Publishers Limited. All rights reserved. Marine bacteria are the most widely distributed organisms in the ocean environment and produce a wide variety of secondary metabolites. However, traditional screening for bioactive natural compounds is greatly hindered by the lack of a systematic way of cataloguing the chemical profiles of bacterial strains found in nature. Here we present a chemical fingerprint database of marine bacteria based on their secondary metabolite profiles, acquired by high-resolution LC-MS. Till now, 1,430 bacterial strains spanning 168 known species collected from different marine environments were cultured and profiled. Using this database, we demonstrated that secondary metabolite profile similarity is approximately, but not always, correlated with taxonomical similarity. We also validated the ability of this database to find species-specific metabolites, as well as to discover known bioactive compounds from previously unknown sources. An online interface to this database, as well as the accompanying software, is provided freely for the community to use.

  19. Qualitative profiling and quantification of neonicotinoid metabolites in human urine by liquid chromatography coupled with mass spectrometry.

    Kumiko Taira

    Full Text Available Neonicotinoid pesticides have been widely applied for the production of fruits and vegetables, and occasionally detected in conventionally grown produce. Thus oral exposure to neonicotinoid pesticides may exist in the general population; however, neonicotinoid metabolites in human body fluids have not been investigated comprehensively. The purpose of this study is the qualitative profiling and quantitative analysis of neonicotinoid metabolites in the human spot urine by liquid chromatography coupled with mass spectrometry (LC/MS. Human urine samples were collected from three patients suspected of subacute exposure to neonicotinoid pesticides. A qualitative profiling of urinary metabolites was performed using liquid chromatography/time-of-flight mass spectrometry (LC/TOFMS with a database of nominal molecular weights of 57 known metabolites of three neonicotinoid pesticides (acetamiprid, Imidacloprid, and clothianidin, as well as the parent compounds. Then a quantitative analysis of selected urinary metabolites was performed using liquid chromatography/tandem mass spectrometry (LC/MS/MS with a standard pesticide and metabolite, which were detected by the qualitative profiling. The result of qualitative profiling showed that seven metabolites, i.e. an acetamiprid metabolite, N-desmethyl-acetamiprid; three Imidacloprid metabolites, 5-hydroxy-Imidacloprid, 4,5-dihydroxy-imidacloprid, 4,5-dehydro-Imidacloprid; a common metabolite of acetamiprid and Imidacloprid, N-(6-chloronicotinoyl-glycine; and two clothianidin metabolites, N-desmethyl-clothianidin, N-(2-(methylsulfanylthiazole-5-carboxyl-glycine, as well as acetamiprid, were detected in the urine of three cases. The result of the quantitative analysis showed N-desmethyl-acetamiprid was determined in the urine of one case, which had been collected on the first visit, at a concentration of 3.2 ng/mL. This is the first report on the qualitative and quantitative detection of N-desmethyl-acetamiprid in

  20. Tiny Microbes with a Big Impact: The Role of Cyanobacteria and Their Metabolites in Shaping Our Future

    Sophie Mazard

    2016-05-01

    Full Text Available Cyanobacteria are among the first microorganisms to have inhabited the Earth. Throughout the last few billion years, they have played a major role in shaping the Earth as the planet we live in, and they continue to play a significant role in our everyday lives. Besides being an essential source of atmospheric oxygen, marine cyanobacteria are prolific secondary metabolite producers, often despite the exceptionally small genomes. Secondary metabolites produced by these organisms are diverse and complex; these include compounds, such as pigments and fluorescent dyes, as well as biologically-active compounds with a particular interest for the pharmaceutical industry. Cyanobacteria are currently regarded as an important source of nutrients and biofuels and form an integral part of novel innovative energy-efficient designs. Being autotrophic organisms, cyanobacteria are well suited for large-scale biotechnological applications due to the low requirements for organic nutrients. Recent advances in molecular biology techniques have considerably enhanced the potential for industries to optimize the production of cyanobacteria secondary metabolites with desired functions. This manuscript reviews the environmental role of marine cyanobacteria with a particular focus on their secondary metabolites and discusses current and future developments in both the production of desired cyanobacterial metabolites and their potential uses in future innovative projects.