WorldWideScience

Sample records for metabolism neurological functions

  1. Neurological disorders of purine and pyrimidine metabolism.

    Science.gov (United States)

    Micheli, Vanna; Camici, Marcella; Tozzi, Maria G; Ipata, Piero L; Sestini, Sylvia; Bertelli, Matteo; Pompucci, Giuseppe

    2011-01-01

    Purines and pyrimidines, regarded for a long time only as building blocks for nucleic acid synthesis and intermediates in the transfer of metabolic energy, gained increasing attention since genetically determined aberrations in their metabolism were associated clinically with various degrees of mental retardation and/or unexpected and often devastating neurological dysfunction. In most instances the molecular mechanisms underlying neurological symptoms remain undefined. This suggests that nucleotides and nucleosides play fundamental but still unknown roles in the development and function of several organs, in particular central nervous system. Alterations of purine and pyrimidine metabolism affecting brain function are spread along both synthesis (PRPS, ADSL, ATIC, HPRT, UMPS, dGK, TK), and breakdown pathways (5NT, ADA, PNP, GCH, DPD, DHPA, TP, UP), sometimes also involving pyridine metabolism. Explanations for the pathogenesis of disorders may include both cellular and mitochondrial damage: e.g. deficiency of the purine salvage enzymes hypoxanthine-guanine phosphoribosyltransferase and deoxyguanosine kinase are associated to the most severe pathologies, the former due to an unexplained adverse effect exerted on the development and/or differentiation of dopaminergic neurons, the latter due to impairment of mitochondrial functions. This review gathers the presently known inborn errors of purine and pyrimidine metabolism that manifest neurological syndromes, reporting and commenting on the available hypothesis on the possible link between specific enzymatic alterations and brain damage. Such connection is often not obvious, and though investigated for many years, the molecular basis of most dysfunctions of central nervous system associated to purine and pyrimidine metabolism disorders are still unexplained.

  2. Metabolic syndrome as a risk factor for neurological disorders.

    Science.gov (United States)

    Farooqui, Akhlaq A; Farooqui, Tahira; Panza, Francesco; Frisardi, Vincenza

    2012-03-01

    The metabolic syndrome is a cluster of common pathologies: abdominal obesity linked to an excess of visceral fat, insulin resistance, dyslipidemia and hypertension. At the molecular level, metabolic syndrome is accompanied not only by dysregulation in the expression of adipokines (cytokines and chemokines), but also by alterations in levels of leptin, a peptide hormone released by white adipose tissue. These changes modulate immune response and inflammation that lead to alterations in the hypothalamic 'bodyweight/appetite/satiety set point,' resulting in the initiation and development of metabolic syndrome. Metabolic syndrome is a risk factor for neurological disorders such as stroke, depression and Alzheimer's disease. The molecular mechanism underlying the mirror relationship between metabolic syndrome and neurological disorders is not fully understood. However, it is becoming increasingly evident that all cellular and biochemical alterations observed in metabolic syndrome like impairment of endothelial cell function, abnormality in essential fatty acid metabolism and alterations in lipid mediators along with abnormal insulin/leptin signaling may represent a pathological bridge between metabolic syndrome and neurological disorders such as stroke, Alzheimer's disease and depression. The purpose of this review is not only to describe the involvement of brain in the pathogenesis of metabolic syndrome, but also to link the pathogenesis of metabolic syndrome with neurochemical changes in stroke, Alzheimer's disease and depression to a wider audience of neuroscientists with the hope that this discussion will initiate more studies on the relationship between metabolic syndrome and neurological disorders. © Springer Basel AG 2011

  3. Clinical neurogenetics: neurologic presentations of metabolic disorders.

    Science.gov (United States)

    Kwon, Jennifer M; D'Aco, Kristin E

    2013-11-01

    This article reviews aspects of the neurologic presentations of selected treatable inborn errors of metabolism within the category of small molecule disorders caused by defects in pathways of intermediary metabolism. Disorders that are particularly likely to be seen by neurologists include those associated with defects in amino acid metabolism (organic acidemias, aminoacidopathies, urea cycle defects). Other disorders of small molecule metabolism are discussed as additional examples in which early treatments have the potential for better outcomes. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Outline of metabolic diseases in adult neurology.

    Science.gov (United States)

    Mochel, F

    2015-01-01

    Inborn errors of metabolism (IEM) are traditionally defined by enzymatic deficiencies or defects in proteins involved in cellular metabolism. Historically discovered and characterized in children, a growing number of IEM are described in adults, and especially in the field of neurology. In daily practice, it is important to recognize emergency situations as well as neurodegenerative diseases for which a metabolic disease is likely, especially when therapeutic interventions are available. Here, the goal is to provide simple clinical, imaging and biochemical tools that can first orientate towards and then confirm the diagnosis of IEM. General guidelines are presented to treat the most common IEM during metabolic crises - acute encephalopathies with increased plasma ammonia, lactate or homocystein, as well as rhabdomyolysis. Examples of therapeutic strategies currently applied to chronic neurometabolic diseases are also provided - GLUT1 deficiency, adrenoleukodystrophy, cerebrotendinous xanthomatosis, Niemann-Pick type C and Wilson disease. Genetic counseling is mandatory in some X-linked diseases - ornithine transcarbamylase deficiency and adrenoleukodystrophy - and recommended in maternally inherited mitochondrial diseases - mutations of mitochondrial DNA. Besides these practical considerations, the contribution of metabolism to the field of adult neurology and neurosciences is much greater: first, with the identification of blood biomarkers that are progressively changing our diagnostic strategies thanks to lipidomic approaches, as illustrated in the field of spastic paraplegia and atypical psychiatric presentations; and second, through the understanding of pathophysiological mechanisms involved in common neurological diseases thanks to the study of these rare diseases. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  5. [Nutritional and metabolic aspects of neurological diseases].

    Science.gov (United States)

    Planas Vilà, Mercè

    2014-01-01

    The central nervous system regulates food intake, homoeostasis of glucose and electrolytes, and starts the sensations of hunger and satiety. Different nutritional factors are involved in the pathogenesis of several neurological diseases. Patients with acute neurological diseases (traumatic brain injury, cerebral vascular accident hemorrhagic or ischemic, spinal cord injuries, and cancer) and chronic neurological diseases (Alzheimer's Disease and other dementias, amyotrophic lateral sclerosis, Parkinson's Disease) increase the risk of malnutrition by multiple factors related to nutrient ingestion, abnormalities in the energy expenditure, changes in eating behavior, gastrointestinal changes, and by side effects of drugs administered. Patients with acute neurological diseases have in common the presence of hyper metabolism and hyper catabolism both associated to a period of prolonged fasting mainly for the frequent gastrointestinal complications, many times as a side effect of drugs administered. During the acute phase, spinal cord injuries presented a reduction in the energy expenditure but an increase in the nitrogen elimination. In order to correct the negative nitrogen balance increase intakes is performed with the result of a hyper alimentation that should be avoided due to the complications resulting. In patients with chronic neurological diseases and in the acute phase of cerebrovascular accident, dysphagia could be present which also affects intakes. Several chronic neurological diseases have also dementia, which lead to alterations in the eating behavior. The presence of malnutrition complicates the clinical evolution, increases muscular atrophy with higher incidence of respiratory failure and less capacity to disphagia recuperation, alters the immune response with higher rate of infections, increases the likelihood of fractures and of pressure ulcers, increases the incapacity degree and is an independent factor to increase mortality. The periodic nutritional

  6. Functional MRT in psychiatry and neurology

    International Nuclear Information System (INIS)

    Schneider, F.; Fink, G.R.

    2007-01-01

    Almost no other method has reach such an interest as the functional imaging in psychiatric and neurological science; it is fascinating to observe the brain at work. The fundamentals of functional magnetic resonance tomography (fMRT) and the interpretation of MRT images are explained; the state-of-the-art is discussed. The book is focussed on the functional imaging within psychiatry and neurology. The book contains 45 contributions within the following chapters: fundamentals, higher brain accomplishments, disease pattern, examinatory examples, perspectives

  7. Rett syndrome: a neurological disorder with metabolic components

    Science.gov (United States)

    Kyle, Stephanie M.

    2018-01-01

    Rett syndrome (RTT) is a neurological disorder caused by mutations in the X-linked gene methyl-CpG-binding protein 2 (MECP2), a ubiquitously expressed transcriptional regulator. Despite remarkable scientific progress since its discovery, the mechanism by which MECP2 mutations cause RTT symptoms is largely unknown. Consequently, treatment options for patients are currently limited and centred on symptom relief. Thought to be an entirely neurological disorder, RTT research has focused on the role of MECP2 in the central nervous system. However, the variety of phenotypes identified in Mecp2 mutant mouse models and RTT patients implicate important roles for MeCP2 in peripheral systems. Here, we review the history of RTT, highlighting breakthroughs in the field that have led us to present day. We explore the current evidence supporting metabolic dysfunction as a component of RTT, presenting recent studies that have revealed perturbed lipid metabolism in the brain and peripheral tissues of mouse models and patients. Such findings may have an impact on the quality of life of RTT patients as both dietary and drug intervention can alter lipid metabolism. Ultimately, we conclude that a thorough knowledge of MeCP2's varied functional targets in the brain and body will be required to treat this complex syndrome. PMID:29445033

  8. Hypnosis as therapy for functional neurologic disorders.

    Science.gov (United States)

    Deeley, Q

    2016-01-01

    Suggestion in hypnosis has been applied to the treatment of functional neurologic symptoms since the earliest descriptions of hypnosis in the 19th century. Suggestion in this sense refers to an intentional communication of beliefs or ideas, whether verbally or nonverbally, to produce subjectively convincing changes in experience and behavior. The recognition of suggestion as a psychologic process with therapeutic applications was closely linked to the derivation of hypnosis from earlier healing practices. Animal magnetism, the immediate precursor of hypnosis, arrived at a psychologic concept of suggestion along with other ideas and practices which were then incorporated into hypnosis. Before then, other forms of magnetism and ritual healing practices such as exorcism involved unintentionally suggestive verbal and nonverbal stimuli. We consider the derivation of hypnosis from these practices not only to illustrate the range of suggestive processes, but also the consistency with which suggestion has been applied to the production and removal of dissociative and functional neurologic symptoms over many centuries. Nineteenth-century practitioners treated functional symptoms with induction of hypnosis per se; imperative suggestions, or commands for specific effects; "medical clairvoyance" in hypnotic trance, in which patients diagnosed their own condition and predicted the time and manner of their recovery; and suggestion without prior hypnosis, known as "fascination" or "psychotherapeutics." Modern treatments largely involve different types of imperative suggestion with or without hypnosis. However, the therapeutic application of suggestion in hypnosis to functional and other symptoms waned in the first half of the 20th century under the separate pressures of behaviorism and psychoanalysis. In recent decades suggestion in hypnosis has been more widely applied to treating functional neurologic symptoms. Suggestion is typically applied within the context of other

  9. Sparring And Neurological Function In Professional Boxers

    Directory of Open Access Journals (Sweden)

    John W Stiller

    2014-07-01

    Full Text Available AbstractDespite increased interest regarding the potentially long-term negative impact of chronic traumatic brain injury (CTBI, limited research had been conducted regarding such injuries and neurological outcomes in real world settings. To increase understanding regarding the relationship between sparring (e.g., number of years actively training for professional boxing and neurological functioning, professional boxers (n = 237 who competed in Maryland between 2003 to 2008 completed measures regarding sparring exposure (Cumulative Sparring Index; CSI and performance on tests of cognition (Symbol Digit Modalities Test; SDMT and balance (Sharpened Romberg Test; SRT. Measures were completed prior to boxing matches. Higher scores on the CSI (increased sparring exposure were associated with poorer performance on both tests of cognition (SDMT and balance (SRT. A threshold effect was noted regarding performance on the SDMT, with those reporting CSI values greater than about 150 experiencing a decline in cognition. A history of frequent and/or intense sparring may pose a significant risk for developing boxing associated neurological sequelae. Implementing administration of clinically meaningful tests before bouts, such as the CSI, SDMT, and/or the SRT, as well as documentation of results into the boxer’s physicals or medical profiles may be an important step for improving boxing safety.

  10. Update on 3-iodothyronamine and its neurological and metabolic actions

    Directory of Open Access Journals (Sweden)

    Riccardo eZucchi

    2014-10-01

    Full Text Available 3-iodothyronamine (T1AM is an endogenous amine, that has been detected many rodent tissues, and in human blood. It has been hypothesized to derive from thyroid hormone metabolism, but this hypothesis still requires validation. T1AM is not a ligand for nuclear thyroid hormone receptors, but stimulates with nanomolar affinity trace amine-associated receptor 1 (TAAR1, a G protein-coupled membrane receptor. With a lower affinity it interacts with alpha2A adrenergic receptors. Additional targets are represented by apolipoprotein B100, mitochondrial ATP synthase, and membrane monoamine transporters, but the functional relevance of these interactions is still uncertain. Among the effects reported after administration of exogenous T1AM to experimental animals, metabolic and neurological responses deserve special attention, because they were obtained at low dosages, which increased endogenous tissue concentration by about one order of magnitude. Systemic T1AM administration favored fatty acid over glucose catabolism, increased ketogenesis and increased blood glucose. Similar responses were elicited by intracerebral infusion, which inhibited insulin secretion and stimulated glucagon secretion. However, T1AM administration increased ketogenesis and gluconeogenesis also in hepatic cell lines and in perfused liver preparations, providing evidence for a peripheral action, as well. In the central nervous system, T1AM behaved as a neuromodulator, affecting adrenergic and/or histaminergic neurons. Intracerebral T1AM administration favoured learning and memory, modulated sleep and feeding, and decreased the pain threshold. In conclusion T1AM should be considered as a component of thyroid hormone signalling and might play a significant physiological and/or pathophysiological role. T1AM analogues have already been synthetized and their therapeutical potential is currently under investigation.

  11. Psychologic theories in functional neurologic disorders.

    Science.gov (United States)

    Carson, A; Ludwig, L; Welch, K

    2016-01-01

    In this chapter we review key psychologic theories that have been mooted as possible explanations for the etiology of functional neurologic symptoms, conversion disorder, and hysteria. We cover Freudian psychoanalysis and later object relations and attachment theories, social theories, illness behavior, classic and operant conditioning, social learning theory, self-regulation theory, cognitive-behavioral theories, and mindfulness. Dissociation and modern cognitive neuroscience theories are covered in other chapters in this series and, although of central importance, are omitted from this chapter. Our aim is an overview with the emphasis on breadth of coverage rather than depth. © 2016 Elsevier B.V. All rights reserved.

  12. Crosstalk of metabolic factors and neurogenic signaling in adult neurogenesis: Implication of metabolic regulation for mental and neurological diseases.

    Science.gov (United States)

    Gao, Chong; Wang, Qi; Chung, Sookja K; Shen, Jiangang

    2017-06-01

    Metabolic disorders like diabetes and obesity are commonly companied with neurological diseases and psychiatric disorders. Accumulating evidences indicated that cellular metabolic factors affect adult neurogenesis and have modulating effects on neurodegenerative disorders and psychiatric diseases. Adult neurogenesis contains multiple steps including proliferation of neural stem cells, lineage commitments of neural progenitor cells, maturation into functional neurons, and integration into neuronal network. Many intrinsic and extrinsic factors produced from neural stem/progenitor cells and their microenvironment or neurogenic niche take roles in modulating neurogenesis and contribute to the brain repair and functional recoveries in many neurological diseases and psychiatric disorders. In this article, we review current progress about how different growth factors, neurotrophin, neurotransmitters and transcriptional factors work on regulating neurogenic process. In particular, we emphasize the roles of the cellular metabolic factors, such as insulin/IGF signaling, incretins, and lipid metabolic signaling molecules in modulating adult neurogenesis, and discuss their impacts on neurological behaviors. We propose that the metabolic factors could be the new therapeutic targets for adult neurogenesis. Plus, the metabolism-regulating drugs have the potentials for treatment of neurodegenerative diseases and mental disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Neurophysiologic studies of functional neurologic disorders.

    Science.gov (United States)

    Hallett, M

    2016-01-01

    Functional neurologic disorders are largely genuine and represent conversion disorders, where the dysfunction is unconscious, but there are some that are factitious, where the abnormality is feigned and conscious. Malingering, which can have the same manifestations, is similarly feigned, but not considered a genuine disease. There are no good methods for differentiating these three entities at the present time. Physiologic studies of functional weakness and sensory loss reveal normal functioning of primary motor and sensory cortex, but abnormalities of premotor cortex and association cortices. This suggests a top-down influence creating the dysfunction. Studies of functional tremor and myoclonus show that these disorders utilize normal voluntary motor structures to produce the involuntary movements, again suggesting a higher-level abnormality. Agency is abnormal and studies shows that dysfunction of the temporoparietal junction may be a correlate. The limbic system is overactive and might initiate involuntary movements, but the mechanism for this is not known. The limbic system would then be the source of top-down dysfunction. It can be speculated that the involuntary movements are involuntary due to lack of proper feedforward signaling. © 2016 Elsevier B.V. All rights reserved.

  14. Functional Neuroanatomy and Neurophysiology of Functional Neurological Disorders (Conversion Disorder).

    Science.gov (United States)

    Voon, Valerie; Cavanna, Andrea E; Coburn, Kerry; Sampson, Shirlene; Reeve, Alya; LaFrance, W Curt

    2016-01-01

    Much is known regarding the physical characteristics, comorbid symptoms, psychological makeup, and neuropsychological performance of patients with functional neurological disorders (FNDs)/conversion disorders. Gross neurostructural deficits do not account for the patients' deficits or symptoms. This review describes the literature focusing on potential neurobiological (i.e. functional neuroanatomic/neurophysiological) findings among individuals with FND, examining neuroimaging and neurophysiological studies of patients with the various forms of motor and sensory FND. In summary, neural networks and neurophysiologic mechanisms may mediate "functional" symptoms, reflecting neurobiological and intrapsychic processes.

  15. Relationships among neurological functioning, intelligence quotients, and physical anomalies.

    Science.gov (United States)

    Marcus, J; Hans, S L; Byhouwer, B; Norem, J

    1985-01-01

    The relationships among IQ, neurological signs, and minor physical anomalies--all measures of central nervous system status--were assessed in the index and control children of the study. The strongest correlation was found between neurological functioning and IQ; the relationship between anomalies and neurological functioning was less strong; and no relationship was found between anomalies and IQ. Consistently, the most poorly functioning children tended to be offspring of schizophrenic patients (index cases), although the same children did not always perform poorly on all tests. What emerges is a set of clusters of individuals with varying combinations of functional/developmental problems.

  16. Arsenic exposure at low-to-moderate levels and skin lesions, arsenic metabolism, neurological functions, and biomarkers for respiratory and cardiovascular diseases: Review of recent findings from the Health Effects of Arsenic Longitudinal Study (HEALS) in Bangladesh

    International Nuclear Information System (INIS)

    Chen Yu; Parvez, Faruque; Gamble, Mary; Islam, Tariqul; Ahmed, Alauddin; Argos, Maria; Graziano, Joseph H.; Ahsan, Habibul

    2009-01-01

    The contamination of groundwater by arsenic in Bangladesh is a major public health concern affecting 35-75 million people. Although it is evident that high levels (> 300 μg/L) of arsenic exposure from drinking water are related to adverse health outcomes, health effects of arsenic exposure at low-to-moderate levels (10-300 μg/L) are not well understood. We established the Health Effects of Arsenic Longitudinal Study (HEALS) with more than 20,000 men and women in Araihazar, Bangladesh, to prospectively investigate the health effects of arsenic predominately at low-to-moderate levels (0.1 to 864 μg/L, mean 99 μg/L) of arsenic exposure. Findings to date suggest adverse effects of low-to-moderate levels of arsenic exposure on the risk of pre-malignant skin lesions, high blood pressure, neurological dysfunctions, and all-cause and chronic disease mortality. In addition, the data also indicate that the risk of skin lesion due to arsenic exposure is modifiable by nutritional factors, such as folate and selenium status, lifestyle factors, including cigarette smoking and body mass index, and genetic polymorphisms in genes related to arsenic metabolism. The analyses of biomarkers for respiratory and cardiovascular functions support that there may be adverse effects of arsenic on these outcomes and call for confirmation in large studies. A unique strength of the HEALS is the availability of outcome data collected prospectively and data on detailed individual-level arsenic exposure estimated using water, blood and repeated urine samples. Future prospective analyses of clinical endpoints and related host susceptibility will enhance our knowledge on the health effects of low-to-moderate levels of arsenic exposure, elucidate disease mechanisms, and give directions for prevention.

  17. Hematopoietic Gene Therapies for Metabolic and Neurologic Diseases.

    Science.gov (United States)

    Biffi, Alessandra

    2017-10-01

    Increasingly, patients affected by metabolic diseases affecting the central nervous system and neuroinflammatory disorders receive hematopoietic cell transplantation (HCT) in the attempt to slow the course of their disease, delay or attenuate symptoms, and improve pathologic findings. The possible replacement of brain-resident myeloid cells by the transplanted cell progeny contributes to clinical benefit. Genetic engineering of the cells to be transplanted (hematopoietic stem cell) may endow the brain myeloid progeny of these cells with enhanced or novel functions, contributing to therapeutic effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Head Impact Exposure and Neurologic Function of Youth Football Players.

    Science.gov (United States)

    Munce, Thayne A; Dorman, Jason C; Thompson, Paul A; Valentine, Verle D; Bergeron, Michael F

    2015-08-01

    Football players are subjected to repetitive impacts that may lead to brain injury and neurologic dysfunction. Knowledge about head impact exposure (HIE) and consequent neurologic function among youth football players is limited. This study aimed to measure and characterize HIE of youth football players throughout one season and explore associations between HIE and changes in selected clinical measures of neurologic function. Twenty-two youth football players (11-13 yr) wore helmets outfitted with a head impact telemetry (HIT) system to quantify head impact frequency, magnitude, duration, and location. Impact data were collected for each practice (27) and game (9) in a single season. Selected clinical measures of balance, oculomotor performance, reaction time, and self-reported symptoms were assessed before and after the season. The median individual head impacts per practice, per game, and throughout the entire season were 9, 12, and 252, respectively. Approximately 50% of all head impacts (6183) had a linear acceleration between 10g and 20g, but nearly 2% were greater than 80g. Overall, the head impact frequency distributions in this study population were similar in magnitude and location as in high school and collegiate football, but total impact frequency was lower. Individual changes in neurologic function were not associated with cumulative HIE. This study provides a novel examination of HIE and associations with short-term neurologic function in youth football and notably contributes to the limited HIE data currently available for this population. Whereas youth football players can experience remarkably similar head impact forces as high school players, cumulative subconcussive HIE throughout one youth football season may not be detrimental to short-term clinical measures of neurologic function.

  19. The Markers of Glutamate Metabolism in Peripheral Blood Mononuclear Cells and Neurological Complications in Lung Cancer Patients

    Directory of Open Access Journals (Sweden)

    Slawomir Michalak

    2016-01-01

    Full Text Available Objective. To evaluate the involvement of glutamate metabolism in peripheral blood mononuclear cells (PBMC in the development of neurological complications in lung cancer and during chemotherapy. Methods. The prospective study included 221 lung cancer patients treated with chemotherapeutics. Neurological status and cognitive functions were evaluated at baseline and after 6-month follow-up. Glutamate level, the activities of glutaminase- (GLS- glutamate synthetizing enzyme, glutamate dehydrogenase (GDH, and glutamate decarboxylase catalyzing glutamate degradation were analyzed in PBMC and in sera of lung cancer patients by means of spectrophotometric and colorimetric methods. Results. Chemotherapy of lung neoplasms induced increase of glutamate content in PBMC and its concentration in serum increased the activity of GDH in PBMC and decreased activity of glutaminase in PBMC. The changes in glutamate metabolism markers were associated with initial manifestation of neurological deficit in lung cancer patients and with new symptoms, which appear as a complication of chemotherapy. Moreover, the analyzed parameters of glutamate control correlated with a spectrum of cognitive functions measures in lung cancer patients. Conclusion. We have demonstrated dysregulation in glutamate and glutamate metabolism controlling enzymes as promising indicators of risk for chemotherapy-induced neurological complications in lung cancer patients with particular emphasis on cognitive impairment.

  20. Diagnosis and management of functional neurological symptoms: The Dutch experience

    NARCIS (Netherlands)

    de Schipper, L.J.; Vermeulen, M; Eeckhout, A.M.; Foncke, E.M.J.

    2014-01-01

    Objectives Functional neurological symptoms (FNS) were considered as a psychiatric disorder at the beginning of the 20th century (conversion disorder). Psychiatrists performed diagnosis and treatment throughout most of the past century in the Netherlands, but in the latest decades patients were

  1. Diagnosis and management of functional neurological symptoms: The Dutch experience

    NARCIS (Netherlands)

    de Schipper, Laura J.; Vermeulen, Marinus; Eeckhout, Augustinus M.; Foncke, Elisabeth M. J.

    2014-01-01

    Functional neurological symptoms (FNS) were considered as a psychiatric disorder at the beginning of the 20th century (conversion disorder). Psychiatrists performed diagnosis and treatment throughout most of the past century in the Netherlands, but in the latest decades patients were usually firstly

  2. Rett syndrome: disruption of epigenetic control of postnatal neurological functions.

    Science.gov (United States)

    Pohodich, Amy E; Zoghbi, Huda Y

    2015-10-15

    Loss-of-function mutations in the X-linked gene Methyl-CpG-binding protein 2 (MECP2) cause a devastating pediatric neurological disorder called Rett syndrome. In males, these mutations typically result in severe neonatal encephalopathy and early lethality. On the other hand, owing to expression of the normal allele in ∼50% of cells, females do not suffer encephalopathy but instead develop Rett syndrome. Typically females with Rett syndrome exhibit a delayed onset of neurologic dysfunction that manifests around the child's first birthday and progresses over the next few years. Features of this disorder include loss of acquired language and motor skills, intellectual impairment and hand stereotypies. The developmental regression observed in patients with Rett syndrome arises from altered neuronal function and is not the result of neurodegeneration. Maintenance of an appropriate level of MeCP2 appears integral to the function of healthy neurons as patients with increased levels of MeCP2, owing to duplication of the Xq28 region encompassing the MECP2 locus, also present with intellectual disability and progressive neurologic symptoms. Despite major efforts over the past two decades to elucidate the molecular functions of MeCP2, the mechanisms underlying the delayed appearance of symptoms remain unclear. In this review, we will highlight recent findings that have expanded our knowledge of MeCP2's functions, and we will discuss how epigenetic regulation, chromatin organization and circuit dynamics may contribute to the postnatal onset of Rett syndrome. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Functional neurologic recovery in two dogs diagnosed with severe

    Directory of Open Access Journals (Sweden)

    Mônica Vicky Bahr Arias

    2015-04-01

    Full Text Available Traumatic injuries to the vertebral column, spinal cord, and cauda equina nerve roots occur frequently in human and veterinary medicine and lead to devastating consequences. Complications include partial or complete loss of motor, sensory, and visceral functions, which are among the main causes of euthanasia in dogs. The present case report describes neurological functional recovery in two dogs that were treated surgically for severe spinal fracture and vertebral luxation. In the first case, a stray, mixed breed puppy was diagnosed with thoracolumbar syndrome and Schiff-Scherrington posture, as well as a T13 caudal epiphyseal fracture with 100% luxation between vertebrae T13 and L1; despite these injuries, the animal did show deep pain sensation in the pelvic limbs. Decompression through hemilaminectomy and spinal stabilization with vertebral body pins and bone cement were performed, and the treatment was supplemented with physiotherapy and acupuncture . In the second case, a mixed breed dog was diagnosed with a vertebral fracture and severe luxation between L6 and L7 after a vehicular trauma, but maintained nociception and perineal reflex. Surgical stabilization of the spine was performed using a modified dorsal segmental fixation technique Both patients showed significant recovery of neurological function. Complete luxation of the spinal canal observed radiographically does not mean a poor prognosis, and in some cases, motor, sensory, and visceral functions all have the potential for recovery. In the first case the determining factor for good prognosis was the presence of deep pain perception, and in the second case the prognosis was determined by the presence of sensitivity and anal sphincter tone during the initial neurological examination

  4. [Spinal cord injury: potential for neurologic and functional recovery].

    Science.gov (United States)

    al-Khodairy, A

    2001-06-01

    Since antiquity, spinal cord injury was recognised mortal. At the beginning of the 19th century, the situation had hardly changed and the mortality rate remained high. Since the Second World War the care of the spinal man evolved considerably. Over the last past years, promising experiments on the neurological recovery in animals were achieved. While waiting for their application to the human being, global rehabilitation in specialised centres offers to spinal cord injured patient the possibility of functional recovery with social and professional reinsertion.

  5. Hypnosis as a model of functional neurologic disorders.

    Science.gov (United States)

    Deeley, Q

    2016-01-01

    In the 19th century it was recognized that neurologic symptoms could be caused by "morbid ideation" as well as organic lesions. The subsequent observation that hysteric (now called "functional") symptoms could be produced and removed by hypnotic suggestion led Charcot to hypothesize that suggestion mediated the effects of ideas on hysteric symptoms through as yet unknown effects on brain activity. The advent of neuroimaging 100 years later revealed strikingly similar neural correlates in experiments matching functional symptoms with clinical analogs created by suggestion. Integrative models of suggested and functional symptoms regard these alterations in brain function as the endpoint of a broader set of changes in information processing due to suggestion. These accounts consider that suggestions alter experience by mobilizing representations from memory systems, and altering causal attributions, during preconscious processing which alters the content of what is provided to our highly edited subjective version of the world. Hypnosis as a model for functional symptoms draws attention to how radical alterations in experience and behavior can conform to the content of mental representations through effects on cognition and brain function. Experimental study of functional symptoms and their suggested counterparts in hypnosis reveals the distinct and shared processes through which this can occur. © 2016 Elsevier B.V. All rights reserved.

  6. Functional polarization of neuroglia: Implications in neuroinflammation and neurological disorders.

    Science.gov (United States)

    Jha, Mithilesh Kumar; Lee, Won-Ha; Suk, Kyoungho

    2016-03-01

    Recent neuroscience research has established the adult brain as a dynamic organ having a unique ability to undergo changes with time. Neuroglia, especially microglia and astrocytes, provide dynamicity to the brain. Activation of these glial cells is a major component of the neuroinflammatory responses underlying brain injury and neurodegeneration. Glial cells execute functional reaction programs in response to diverse microenvironmental signals manifested by neuropathological conditions. Activated microglia exist along a continuum of two functional states of polarization namely M1-type (classical/proinflammatory activation) and M2-type (alternative/anti-inflammatory activation) as in macrophages. The balance between classically and alternatively activated microglial phenotypes influences disease progression in the CNS. The classically activated state of microglia drives the neuroinflammatory response and mediates the detrimental effects on neurons, whereas in their alternative activation state, which is apparently a beneficial activation state, the microglia play a crucial role in tissue maintenance and repair. Likewise, in response to immune or inflammatory microenvironments astrocytes also adopt neurotoxic or neuroprotective phenotypes. Reactive astrocytes exhibit two distinctive functional phenotypes defined by pro- or anti-inflammatory gene expression profile. In this review, we have thoroughly covered recent advances in the understanding of the functional polarization of brain and peripheral glia and its implications in neuroinflammation and neurological disorders. The identifiable phenotypes adopted by neuroglia in response to specific insult or injury can be exploited as promising diagnostic markers of neuroinflammatory diseases. Furthermore, harnessing the beneficial effects of the polarized glia could undoubtedly pave the way for the formulation of novel glia-based therapeutic strategies for diverse neurological disorders. Copyright © 2015 Elsevier Inc

  7. Endocannabinoids and endocannabinoid-related mediators: Targets, metabolism and role in neurological disorders.

    Science.gov (United States)

    Iannotti, Fabio Arturo; Di Marzo, Vincenzo; Petrosino, Stefania

    2016-04-01

    The endocannabinoid system (ECS) is composed of two G protein-coupled receptors (GPCRs), the cannabinoid CB1 and CB2 receptors, and the two main endogenous lipid ligands of such receptors (also known as the "endocannabinoids"), anandamide and 2-arachidonoyl-glycerol. The ECS is a pleiotropic signalling system involved in all aspects of mammalian physiology and pathology, and for this reason it represents a potential target for the design and development of new therapeutic drugs. However, the endocannabinoids as well as some of their congeners also interact with a much wider range of receptors, including members of the Transient Receptor Potential (TRP) channels, Peroxisome Proliferator-Activated Receptors (PPARs), and other GPCRs. Indeed, following the discovery of the endocannabinoids, endocannabinoid-related lipid mediators, which often share the same metabolic pathways of the endocannabinoids, have also been identified or rediscovered. In this review article, we discuss the role of endocannabinoids and related lipids during physiological functions, as well as their involvement in some of the most common neurological disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Compensatory recombination phenomena of neurological functions in central dysphagia patients

    Directory of Open Access Journals (Sweden)

    Xiao-dong Yuan

    2015-01-01

    Full Text Available We speculate that cortical reactions evoked by swallowing activity may be abnormal in patients with central infarction with dysphagia. The present study aimed to detect functional imaging features of cerebral cortex in central dysphagia patients by using blood oxygen level-dependent functional magnetic resonance imaging techniques. The results showed that when normal controls swallowed, primary motor cortex (BA4, insula (BA13, premotor cortex (BA6/8, supramarginal gyrus (BA40, and anterior cingulate cortex (BA24/32 were activated, and that the size of the activated areas were larger in the left hemisphere compared with the right. In recurrent cerebral infarction patients with central dysphagia, BA4, BA13, BA40 and BA6/8 areas were activated, while the degree of activation in BA24/32 was decreased. Additionally, more areas were activated, including posterior cingulate cortex (BA23/31, visual association cortex (BA18/19, primary auditory cortex (BA41 and parahippocampal cortex (BA36. Somatosensory association cortex (BA7 and left cerebellum in patients with recurrent cerebral infarction with central dysphagia were also activated. Experimental findings suggest that the cerebral cortex has obvious hemisphere lateralization in response to swallowing, and patients with recurrent cerebral infarction with central dysphagia show compensatory recombination phenomena of neurological functions. In rehabilitative treatment, using the favorite food of patients can stimulate swallowing through visual, auditory, and other nerve conduction pathways, thus promoting compensatory recombination of the central cortex functions.

  9. Neurología funcional del blefaroespasmo Functional neurology of blepharospasm

    Directory of Open Access Journals (Sweden)

    Fidias E. León-Sarmiento

    2008-08-01

    blink reflex. It consists of three responses called non-nociceptive (R1, nociceptive (R2 and ultranociceptive (R3. Such blink reflexes, mostly the ultranociceptive response (R3, seem to be very useful to understand more deeply the pathophysiology of this focal dystonia, to perform the functional endophenotyping and to do a more appropriate follow-up of this complex neurological problem.

  10. Nutritional status and metabolic profile in neurologically impaired pediatric surgical patients.

    Science.gov (United States)

    Pelizzo, Gloria; Calcaterra, Valeria; Carlini, Veronica; Fusillo, Mario; Manuelli, Matteo; Klersy, Catherine; Pasqua, Noemi; Luka, Elona; Albertini, Riccardo; De Amici, Mara; Cena, Hellas

    2017-03-01

    Malnutrition is reported in pediatric neuromotor disability and impacts the child's health. We described the nutritional and metabolic status in neurologically impaired (NI) children undergoing surgery. Anthropometry, body composition, hormonal and nutritional evaluations were performed in 44 NI subjects (13.7±8.0 years). Energy needs were calculated by Krick's formula. Metabolic syndrome (MS) was defined applying the following criteria (≥3 defined MS): fasting blood glucose >100 mg/dL and/or homeostasis model assessment for insulin resistance (HOMA-IR) >97.5th percentile, trygliceride level >95th percentile, high-density lipoprotein (HDL)-cholesterol level 95th percentile; whilebody mass index - standard deviation score (BMI-SDS) Nutritional and metabolic monitoring of disabled children and young adults is recommended to prevent adverse outcomes associated with malnutrition.

  11. Functional neurological symptoms modulate processing of emotionally salient stimuli.

    Science.gov (United States)

    Fiess, Johanna; Rockstroh, Brigitte; Schmidt, Roger; Wienbruch, Christian; Steffen, Astrid

    2016-12-01

    Dysfunctional emotion processing has been discussed as a contributing factor to functional neurological symptoms (FNS) in the context of conversion disorder, and refers to blunted recognition and the expression of one's own feelings. However, the emotion processing components characteristic for FNS and/or relevant for conversion remain to be specified. With this goal, the present study targeted the initial, automatic discrimination of emotionally salient stimuli. The magnetoencephalogram (MEG) was monitored in 21 patients with functional weakness and/or sensory disturbance subtypes of FNS and 21 healthy comparison participants (HC) while they passively watched 600 emotionally arousing, pleasant, unpleasant or neutral stimuli in a rapid serial visual presentation (RSVP) design. Neuromagnetic activity was analyzed 110-330ms following picture onset in source space for prior defined posterior and central regions of interest. As early as 110ms and across presentation interval, posterior neural activity modulation by picture category was similar in both groups, despite smaller initial (110-150ms) overall and posterior power in patients with FNS. The initial activity modulation by picture category was also evident in the left sensorimotor area in patients with FNS, but not significant in HC. Similar activity modulation by emotional picture category in patients with FNS and HC suggests that the fast, automatic detection of emotional salience is unchanged in patients with FNS, but involves an emotion-processing network spanning posterior and sensorimotor areas. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. The influence of fish oil on neurological development and function.

    Science.gov (United States)

    Abu-Ouf, Noran M; Jan, Mohammed M

    2014-01-01

    Fish oil originates from fish tissue rich in omega-3 fatty acids. These include eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). Healthy individuals are advised to consume foods rich in fish oil at least twice a week. However, such intake varies depending on cultural or personal preference, and socio-economic status. Many families and patients with chronic neurological conditions consume supplements containing omega-3 fatty acids. We are frequently requested to give advice and recommendations on using such agents to help improve neurological developmental and cognitive functions. The objective of this review is to discuss the available literature supporting the role of fish oils on brain development and function. There is a growing body of literature suggesting a potential benefit of long chain polyunsaturated fatty acids; however it is still unclear if there are response variations according to the developmental stage, age, and dose. L'influence de l'huile de poisson sur le développement et la fonction neurologique. L'huile de poisson provient de tissus de poisson riches en acides gras oméga-3, l'acide eicosapentaéno&IUque (EPA) et l'acide docosahexaénoïque (DHA). On conseille aux individus en bonne santé de consommer des aliments riches en huiles de poisson au moins deux fois par semaine. Cependant, leur consommation varie selon les préférences culturelles ou personnelles ainsi que selon le statut socio-économique. Plusieurs familles et plusieurs patients atteints de maladies neurologiques chroniques consomment des suppléments contenant des acides gras oméga-3. On nous demande souvent des conseils et des recommandations sur l'utilisation de ces agents pour aider à améliorer le développement neurologique et les fonctions cognitives. L'objectif de cette revue est de discuter de la littérature disponible en faveur du rôle des huiles de poisson dans le développement et le fonctionnement du cerveau. Il existe une documentation de plus en

  13. Cortical arousal in children and adolescents with functional neurological symptoms during the auditory oddball task

    Directory of Open Access Journals (Sweden)

    Kasia Kozlowska, MBBS., PhD. FRANZCP

    2017-01-01

    Conclusions: Our findings add to a growing literature indicating that a baseline state of high arousal may be a precondition for generating functional neurological symptoms, a finding that helps explain why a range of psychological and physiological stressors can trigger functional neurological symptoms in some patients. Interventions that target cortical arousal may be central to the treatment of paediatric patients with functional neurological symptom disorder.

  14. Differential item functioning of the functional independence measure in higher performing neurological patients

    NARCIS (Netherlands)

    Dallmeijer, AJ; Dekker, J; Roorda, LD; Knol, DL; van Baalen, B; de Groot, [No Value; Schepers, VPM; Lankhorst, GJ

    2005-01-01

    Objective: When comparing outcomes of the Functional Independence Measure (FIM(TM)) between patient groups, item characteristics of the FIM(TM) should be consistent across groups. The purpose of this study was to compare item difficulty of the FIM(TM) in 3 patient groups with neurological disorders.

  15. Neurological abnormalities and neurocognitive functions in healthy elder people: A structural equation modeling analysis

    Directory of Open Access Journals (Sweden)

    Chan Raymond CK

    2011-08-01

    Full Text Available Abstract Background/Aims Neurological abnormalities have been reported in normal aging population. However, most of them were limited to extrapyramidal signs and soft signs such as motor coordination and sensory integration have received much less attention. Very little is known about the relationship between neurological soft signs and neurocognitive function in healthy elder people. The current study aimed to examine the underlying relationships between neurological soft signs and neurocognition in a group of healthy elderly. Methods One hundred and eighty healthy elderly participated in the current study. Neurological soft signs were evaluated with the subscales of Cambridge Neurological Inventory. A set of neurocognitive tests was also administered to all the participants. Structural equation modeling was adopted to examine the underlying relationship between neurological soft signs and neurocognition. Results No significant differences were found between the male and female elder people in neurocognitive function performances and neurological soft signs. The model fitted well in the elderly and indicated the moderate associations between neurological soft signs and neurocognition, specifically verbal memory, visual memory and working memory. Conclusions The neurological soft signs are more or less statistically equivalent to capture the similar information done by conventional neurocognitive function tests in the elderly. The implication of these findings may serve as a potential neurological marker for the early detection of pathological aging diseases or related mental status such as mild cognitive impairment and Alzheimer's disease.

  16. CD163 promotes hematoma absorption and improves neurological functions in patients with intracerebral hemorrhage

    Directory of Open Access Journals (Sweden)

    Wen-jing Xie

    2016-01-01

    Full Text Available Clinical outcomes are positively associated with hematoma absorption. The monocyte-macrophage scavenger receptor, CD163, plays an important role in the metabolism of hemoglobin, and a soluble form of CD163 is present in plasma and other tissue fluids; therefore, we speculated that serum CD163 affects hematoma absorption after intracerebral hemorrhage. Patients with intracerebral hemorrhage were divided into high- and low-level groups according to the average CD163 level (1,977.79 ± 832.91 ng/mL. Compared with the high-level group, the low-level group had a significantly slower hematoma absorption rate, and significantly increased National Institutes of Health Stroke Scale scores and modified Rankin Scale scores. These results suggest that CD163 promotes hematoma absorption and the recovery of neurological function in patients with intracerebral hemorrhage.

  17. Neurological and neurocognitive function of HIV-infected children ...

    African Journals Online (AJOL)

    Aim: To describe neurological and neurocognitive deficits in HIV-infected children and the short-term effect of highly active antiretroviral therapy (HAART) on the observed deficits. Methods: In this prospective study, 39 children (15 females) were evaluated before the start of HAART and 30 reassessed 6 months later.

  18. Fetal endoscopic myelomeningocele closure preserves segmental neurological function

    NARCIS (Netherlands)

    Verbeek, Renate J.; Heep, Axel; Maurits, Natalia M.; Cremer, Reinhold; Hoving, Eelco W.; Brouwer, Oebele F.; Van der Hoeven, Johannes H.; Sival, Deborah A.

    AIM:   Our aim was to compare the effect of prenatal endoscopic with postnatal myelomeningocele closure (fetally operated spina bifida aperta [fSBA]) versus neonatally operated spina bifida aperta [nSBA]) on segmental neurological leg condition. METHOD:   Between 2003 and 2009, the fetal surgical

  19. Neurological soft signs in children with attention deficit hyperactivity disorder: Their relationship to executive function and parental neurological soft signs.

    Science.gov (United States)

    Gong, Jingbo; Xie, Jingtao; Chen, Gui; Zhang, Yajie; Wang, Suhong

    2015-07-30

    The correlations between neurological soft signs (NSS) in children with attention deficit hyperactivity disorder (ADHD) and their executive function, symptoms of inattention, and hyperactivity-impulsivity and the NSS of their parents remain unclear. This study aimed to examine: (1) the prevalence of NSS in children with ADHD and their parents; (2) the correlation between the NSS of children with ADHD and the NSS of their parents; and (3) the correlation between the NSS of children with ADHD and their executive function and symptoms. NSS were assessed with the Cambridge Neurological Inventory (CNI) in 57 children with ADHD (and 80 parents) and 60 healthy children (and 75 parents). Executive function was measured with the Behavioral Rating Inventory of Executive Function (BRIEF). Children with ADHD and their parents had significantly higher NSS than normal children and their parents, respectively, and the NSS of children with ADHD were correlated more strongly with the NSS of their fathers than their mothers. No correlation was found between NSS and BRIEF executive function, but Disinhibition in children with ADHD was significantly correlated with hyperactivity-impulsivity symptoms. Paternal and maternal NSS provided different predictions for child NSS. It may be that NSS are more likely to be genetically transmitted by fathers. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Cognitive and motor function of neurologically impaired extremely low birth weight children.

    Science.gov (United States)

    Bernardo, Janine; Friedman, Harriet; Minich, Nori; Taylor, H Gerry; Wilson-Costello, Deanne; Hack, Maureen

    2015-01-01

    Rates of neurological impairment among extremely low birth weight children (ELBW [<1 kg]) have decreased since 2000; however, their functioning is unexamined. To compare motor and cognitive functioning of ELBW children with neurological impairment, including cerebral palsy and severe hypotonia/hypertonia, between two periods: 1990 to 1999 (n=83) and 2000 to 2005 (n=34). Measures of function at 20 months corrected age included the Mental and Psychomotor Developmental Indexes of the Bayley Scales of Infant Development and the Gross Motor Functional Classification System as primary outcomes and individual motor function items as secondary outcomes. Analysis failed to reveal significant differences for the primary outcomes, although during 2000 to 2005, sitting significantly improved in children with neurological impairment (P=0.003). Decreases in rates of neurological impairment among ELBW children have been accompanied by a suggestion of improved motor function, although cognitive function has not changed.

  1. Cerebral metabolic changes in neurologically presymptomatic patients undergoing haemodialysis: in vivo proton MR spectroscopic findings

    International Nuclear Information System (INIS)

    Chiu, Ming-Lun; Chiang, I. Chan; Li, Chun-Wei; Chang, Jer-Ming; Ko, Chih-Hung; Chuang, Hung-Yi; Sheu, Reu-Sheng; Lee, Chen-Chang; Hsieh, Tsyh-Jyi

    2010-01-01

    To prospectively investigate and detect early cerebral metabolic changes in patients with end-stage renal disease (ESRD) by using in vivo proton MR spectroscopy (MRS). We enrolled 32 patients with ESRD and 32 healthy controls between the ages of 26 and 50 years. Short echo time single-voxel proton MRS was acquired from volumes of interest (VOIs) located in the frontal grey and white matter, temporal white matter and basal ganglia. The choline/phospatidylcholine (Cho), myo-inositol (mI), N-acetylaspartate (NAA) and total creatine (tCr) peaks were measured and the metabolic ratios with respect to tCr were calculated. In the ESRD group, significant elevations of the Cho/tCr and mI/tCr ratios were observed for the frontal grey matter, frontal white matter, temporal white matter and basal ganglia as compared with controls. There was no significant difference in the NAA/tCr ratios at all VOIs between the ESRD patients and the healthy controls. Proton MRS is a useful and non-invasive imaging tool for the detection of early cerebral metabolic changes in neurologically presymptomatic ESRD patients. (orig.)

  2. Neurologic and neuromuscular functional disorders of the pharynx and esophagus

    International Nuclear Information System (INIS)

    Wuttge-Hannig, A.; Hannig, C.

    2007-01-01

    Neurologic swallowing disorders are an increasing diagnostic problem in our overaged population. Undiagnosed chronic aspiration pneumonia is the cause of death in 20-40% of all inhabitants of nursing homes. In neurologic diseases of the pharynx, the physiologic interaction of pharyngeal contraction, closure of the pharynx, and esophageal motility are frequently disturbed. This may be due to cortical, bulbar, or cerebellar brain damage of ischemic or traumatic origin. Furthermore diseases or peripheral nerves, muscles, and synapses cause disturbances. The most life-threatening complication of these disturbances is tracheal aspiration, which requires an iso-osmolar contrast medium for imaging studies that cause no or minimal pulmonary problems. Utilizing fast dynamic documentation we can analyze the swallowing act in 35 images within the passage time of 0.7 s. This requires digital frame sequences from 15-50 images/s, which can be provided by DSI or videofluoroscopy. Neurologic and neuromuscular patterns are demonstrated with and without tracheal aspiration. The differentiation of aspiration in a so-called pre-, intra-, and postdeglutitive form is possible. We distinguish four grades of severity of aspiration, which is also of great clinical impact for the differential rehabilitation therapy. The efficiency of the rehabilitation protocol can be assessed by the dynamic swallowing studies. (orig.) [de

  3. Neurological and functional recovery in tuberculosis patients with spinal cord injury in The Netherlands

    NARCIS (Netherlands)

    Wouda, Eva M. N.; Stienstra, Ymkje; van der Werf, Tjip S.; Kerstjens, Huib; de Lange, Wiel C. M.; Coppes, Maarten; Kuijlen, Jos; Tepper, Marga; Akkerman, Onno W.

    2017-01-01

    BACKGROUND: Spinal tuberculosis (TB) accounts for approximately 1% to 3% of all TB cases and it can cause a wide range of neurological symptoms, from none to a complete spinal cord injury (SCI), resulting in complete paraplegia or tetraplegia. OBJECTIVES: To describe the functional and neurological

  4. Metabolic assessment and enteral tube feeding usage in children with acute neurological diseases.

    Science.gov (United States)

    Leite, H P; Fantozzi, G

    1998-01-01

    To report on acquired experience of metabolic support for children with acute neurological diseases, emphasizing enteral tube feeding usage and metabolic assessment, and also to recommend policies aimed towards improving its implementation. Retrospective analysis. Pediatric Intensive Care Unit of Hospital do Servidor Público Estadual de São Paulo. 44 patients consecutively admitted to the Pediatric ICU over a period of 3 years who were given nutrition and metabolic support for at least 72 hours. Head trauma, CNS infections and craniotomy post-operative period following tumor exeresis were the main diagnoses. Records of protein-energy intake, nutrient supply route, nitrogen balance and length of therapy. From a total of 527 days of therapy, single parenteral nutrition was utilized for 34.3% and single enteral tube feeding for 79.1% of that period. 61.4% of the children were fed exclusively via enteral tube feeding, 9.1% via parenteral and 39.5% by both routes. The enteral tube feeding was introduced upon admission and transpyloric placement was successful in 90% of the cases. Feeding was started 48 hours after ICU admission. The caloric goal was achieved on the 7th day after admission, and thereafter parenteral nutrition was interrupted. The maximum energy supply was 104.2 +/- 23.15 kcal/kg. The median length of therapy was 11 days (range 4-38). None of the patients on tube feeding developed GI tract bleeding, pneumonia or bronchoaspiration episodes and, of the 4 patients who were given exclusive TPN, 2 developed peptic ulcer. The initial urinary urea nitrogen was 7.11 g/m2 and at discharge 6.44 g/m2. The protein supply increased from 1.49 g/kg to 3.65 g/kg (p < 0.01). The nitrogen balance increased from--7.05 to 2.2 g (p < 0.01). Children with acute neurological diseases are hypercatabolic and have high urinary nitrogen losses. The initial negative nitrogen balance can be increased by more aggressive feeding regimes than the usual ones. Early tube feeding was

  5. Metabolic assessment and enteral tube feeding usage in children with acute neurological diseases

    Directory of Open Access Journals (Sweden)

    Heitor Pons Leite

    Full Text Available OBJECTIVE: To report on acquired experience of metabolic support for children with acute neurological diseases, emphasizing enteral tube feeding usage and metabolic assessment, and also to recommend policies aimed towards improving its implementation. DESIGN: Retrospective analysis. SETTING: Pediatric Intensive Care Unit of Hospital do Servidor Público Estadual de São Paulo. SUBJECTS: 44 patients consecutively admitted to the Pediatric ICU over a period of 3 years who were given nutrition and metabolic support for at least 72 hours. Head trauma, CNS infections and craniotomy post-operative period following tumor exeresis were the main diagnoses. MEASUREMENTS: Records of protein-energy intake, nutrient supply route, nitrogen balance and length of therapy. RESULTS: From a total of 527 days of therapy, single parenteral nutrition was utilized for 34.3% and single enteral tube feeding for 79.1% of that period. 61.4% of the children were fed exclusively via enteral tube feeding, 9.1% via parenteral and 39.5 % by both routes. The enteral tube feeding was introduced upon admission and transpyloric placement was successful in 90% of the cases. Feeding was started 48 hours after ICU admission. The caloric goal was achieved on the 7th day after admission, and thereafter parenteral nutrition was interrupted. The maximum energy supply was 104.2 ± 23.15 kcal/kg. The median length of therapy was 11 days (range 4-38. None of the patients on tube feeding developed GI tract bleeding, pneumonia or bronchoaspiration episodes and, of the 4 patients who were given exclusive TPN, 2 developed peptic ulcer. The initial urinary urea nitrogen was 7.11 g/m2 and at discharge 6.44 g/m2. The protein supply increased from 1.49 g/kg to 3.65 g/kg (p< 0.01. The nitrogen balance increased from -7.05 to 2.2 g (p< 0.01. CONCLUSIONS: Children with acute neurological diseases are hypercatabolic and have high urinary nitrogen losses. The initial negative nitrogen balance can be

  6. Functional MRT in psychiatry and neurology; Funktionelle MRT in Psychiatrie und Neurologie

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, F. [Universitaetsklinikum der RWTH Aachen (Germany). Klinik fuer Psychiatrie und Psychotherapie; Fink, G.R. (eds.) [Koeln Univ. (Germany). Klinik und Poliklinik fuer Neurologie

    2007-07-01

    Almost no other method has reach such an interest as the functional imaging in psychiatric and neurological science; it is fascinating to observe the brain at work. The fundamentals of functional magnetic resonance tomography (fMRT) and the interpretation of MRT images are explained; the state-of-the-art is discussed. The book is focussed on the functional imaging within psychiatry and neurology. The book contains 45 contributions within the following chapters: fundamentals, higher brain accomplishments, disease pattern, examinatory examples, perspectives.

  7. Differentiating cerebral ischemia from functional neurological symptom disorder: a psychosomatic perspective

    Science.gov (United States)

    2014-01-01

    Background The differential diagnosis of pseudo-neurological symptoms often represents a clinical challenge. The Diagnostic and Statistical Manual of Mental Disorders, DSM-5, made an attempt to improve diagnostic criteria of conversion disorder (functional neurological symptom disorder). Incongruences of the neurological examination, i.e. positive neurological signs, indicate a new approach - whereas psychological factors are not necessary anymore. As the DSM-5 will influence the International Classification of Diseases, ICD-11, this is of importance. In the case presented, a history of psychological distress and adverse childhood experiences coexisted with a true neurological disorder. We discuss the relevance of an interdisciplinary assessment and of operationalized diagnostic criteria. Case presentation A 32-year-old man presented twice with neurological symptoms without obvious pathological organic findings. A conversion disorder was considered early on at the second admission by the neurology team. Sticking to ICD-10, this diagnosis was not supported by a specialist for psychosomatic medicine, due to missing hints of concurrent psychological distress in temporal association with neurological symptoms. Further investigations then revealed a deep vein thrombosis (though D-dimers had been negative), which had probably resulted in a crossed embolus. Conclusion The absence of a clear proof of biological dysfunction underlying neurological symptoms should not lead automatically to the diagnosis of a conversion disorder. In contrast, at least in more complex patients, the work-up should include repeated psychological and neurological assessments in close collaboration. According to ICD-10 positive signs of concurrent psychological distress are required, while DSM-5 emphasizes an incongruity between neurological symptoms and neurophysiological patterns of dysfunction. In the case presented, an extensive medical work-up was initially negative, and neither positive

  8. Association of neurological diseases with metabolic syndrome among out-patients

    International Nuclear Information System (INIS)

    Ueno, Satoshi; Furiya, Yoshiko; Sugie, Kazuma; Kawahara, Makoto; Kataoka, Hiroshi; Saito, Kozue; Kiriyama, Takao; Kinoshita, Satoko; Hirano, Makito

    2007-01-01

    Metabolic syndrome (MetS) is highly prevalent in Japan; however, most previous surveys have studied only adults able to engage fully in normal daily activities, after excluding persons with diseases or disabilities. Recently, lifestyle-related risk factors have been strongly linked to a number of major diseases. In particular, the incidence of atherosclerotic vascular diseases associated with MetS has increased markedly, and this trend is projected to continue. We focused on the prevalence of MetS among out-patients with neurological diseases. The subjects for this hospital-based study were 713 out-patients with various neurological diseases (329 men, mean age 65.2±14.5 yr, age range 40-78 yr, and 384 women, mean age 64.6±15.3 yr, age range 40-88 yr) who presented at the Department of Neurology, Nara Medical University Hospital. A total of 120 patients had cerebral infarction, 102 Parkinson's disease, 32 spinal spondylosis, 30 headache, 32 myositis, and the rest various other neurological diseases. MetS was diagnosed according to the criteria proposed by The Japanese Society of Internal Medicine in 2005. The cutoff values for waist circumference (WC) were greater than 85 cm in men and 90 cm in women. A diagnosis of MetS additionally required two or more of the following: a serum triglyceride level (TG) of at least 150 mg/dl and/or a high-density lipoprotein cholesterol level (HDL-C) of less than 40 mg/dl; a blood pressure (BP) of greater than 130/85; or a fasting plasma glucose level (FPG) of greater than 110 mg/dl. Visceral fat accumulation was measured by abdominal CT scanning (N2system, K.K., Japan). WC positively correlated with visceral fat area as determined by CT scanning. WC also positively correlated with TG in both sexes and fasting blood sugar (FBS) in women, but negatively correlated with HDL-C in both sexes. The mean prevalence of MetS among subjects 40 to 70 years of age was 25.1% in men and 12.6% in women. To assess the incidence of MetS in the

  9. Cortical arousal in children and adolescents with functional neurological symptoms during the auditory oddball task.

    Science.gov (United States)

    Kozlowska, Kasia; Melkonian, Dmitriy; Spooner, Chris J; Scher, Stephen; Meares, Russell

    2017-01-01

    Stress, pain, injury, and psychological trauma all induce arousal-mediated changes in brain network organization. The associated, high level of arousal may disrupt motor-sensory processing and result in aberrant patterns of motor function, including functional neurological symptoms. We used the auditory oddball paradigm to assess cortical arousal in children and adolescents with functional neurological symptom disorder. Electroencephalogram (EEG) data was collected in fifty-seven children and adolescents (41 girls; 16 boys, aged 8.5-18 years) with acute functional neurological symptoms and age- sex- matched controls during a conventional auditory oddball task. The high-resolution fragmentary decomposition technique was used to analyse the amplitude of event-related potentials (ERPs) to target tones at midline sites (Fz, Cz, and Pz). Compared to age- and sex-matched controls, and across all three midline sites, children and adolescents with functional neurological symptoms showed increased amplitude of all ERP components (P50, N100, P200, N200, and P300) (t-value range 2.28-8.20; p value-range 0.023 to physiological stressors can trigger functional neurological symptoms in some patients. Interventions that target cortical arousal may be central to the treatment of paediatric patients with functional neurological symptom disorder.

  10. Neurological and functional outcomes of subdural hematoma evacuation in patients over 70 years of age

    Directory of Open Access Journals (Sweden)

    Patrick Mulligan

    2013-01-01

    Full Text Available Background: Subdural hematoma (SDH is a common disease entity treated by neurosurgical intervention. Although the incidence increases in the elderly population, there is a paucity of studies examining their surgical outcomes. Objectives: To determine the neurological and functional outcomes of patients over 70 years of age undergoing surgical decompression for subdural hematoma. Materials and Methods: We retrospectively reviewed data on 45 patients above 70 years who underwent craniotomy or burr holes for acute, chronic or mixed subdural hematomas. We analyzed both neurological and functional status before and after surgery. Results: Forty-five patients 70 years of age or older were treated in our department during the study period. There was a significant improvement in the neurological status of patients from admission to follow up as assessed using the Markwalder grading scale (1.98 vs. 1.39; P =0.005, yet no improvement in functional outcome was observed as assessed by Glasgow Outcome Score. Forty-one patients were admitted from home, however only 20 patients (44% were discharged home, 16 (36% discharged to nursing home or rehab, 6 (13% to hospice and 3 (7% died in the postoperative period. Neurological function improved in patients who were older, had a worse pre-operative neurological status, were on anticoagulation and had chronic or mixed acute and chronic hematoma. However, no improvement in functional status was observed. Conclusion: Surgical management of SDH in patients over 70 years of age provides significant improvement in neurological status, but does not change functional status.

  11. The classification of conversion disorder (functional neurologic symptom disorder) in ICD and DSM.

    Science.gov (United States)

    Levenson, J L; Sharpe, M

    2016-01-01

    The name given to functional neurologic symptoms has evolved over time in the different editions of the International Classification of Diseases (ICD) and the Diagnostic and Statistical Manual of Mental Disorders (DSM), reflecting a gradual move away from an etiologic conception rooted in hysterical conversion to an empiric phenomenologic one, emphasizing the central role of the neurologic examination and testing in demonstrating that the symptoms are incompatible with recognized neurologic disease pathophysiology, or are internally inconsistent. © 2016 Elsevier B.V. All rights reserved.

  12. PTERIDINES - METABOLIC FUNCTIONS AND CLINICAL DISORDERS

    Directory of Open Access Journals (Sweden)

    Gordana Bjelakovic

    2004-04-01

    Full Text Available Pteridines are widely distributed compounds in nature, associated with numerous important physiological functions. BH4 is classified as unconjugated pteridine distinct from folic acid and its metabolites folates representing the group of conjugated pteridines. Unlike folic acid, which is a vitamin, BH4 can be synthesized in organism.Tetrahydrobiopterin (BH4 is a cofactor, important for different biological processes, present in probably all cells and tissues of higher organisms. The presence of persistent hyperphenylalaninemia with atypic neurological symptoms in children, resistent to diet poor in phenylalanin, which disappears upon BH4 application, gave a strong impuls to the study of this unconjugated pteridine metabolic functions.BH4 is a natural cofactor of cyclic amino acid hydroxylases - phenylalanin hydroxylase (EC 1.14.16.2, tyrosine-3-hydroxylase (EC 1.14.16.3 and tryptophane-5-hydroxylase (EC 1.14.16.4 as well as all three isoenzymes of nitric oxide synthase (NOS. It is neccessary for the activity of glyceryl-ether-monooxygenase (1.14.16.5. The regeneration of tetrahydrobiopterin is neccessary for the catalytic activity of these enzymes.BH4 insufficiency disturbs the function of mentioned hydroxylases leading to disorders of their products synthesis, especially 5-hydroxytryptophane, the precursor of serotonine and L-DOPA (the precursor of catecholamines. These metabolites function as neurotransmitters in brain and their deficit causes CNS diseases (including disturbed psychomotoric development, disfunction of basal ganglia and instability of body temperature. The whole content of BH4 present in organism originates from de novo synthesis of this compound.Tetrahydrobiopterin deficit disturbs the function of all three isoenzymes of NOS: NOS-I or neuronal, macrophagal or inducible (NOS-II and endothelial (NOS-III, leading to decreased production of NO and increased production of superoxide anion. The inhibition of GTP cyclohydrolase 1

  13. Neuro-Functional Training Programme (NFTP): engaging and empowering people with a neurological condition

    OpenAIRE

    Twohig, Teresa; O' Sullivan, Trish; O' Donoghue, Elaine; Reen, Anne; O Sullivan, Liz; Morrisroe, Patricia

    2017-01-01

    Introduction: Neuro-Functional Training Programme (NFTP): An enhancing primary care initiative that supports self care in patients with a neurological condition, thus engaging and enpowering people.Problem Statement: The NFTP was established by Cork South Lee PCC Physiotherapy in February 2013 as a 4 fold initiative:1) To facilitate discharge planning of our complex Neurological patients. These include young patients with Acquired Brain Injury, discharges from  the National Rehabilitation Hos...

  14. Designing and implementing a longitudinal study of children with neurological, genetic or metabolic conditions: charting the territory

    Directory of Open Access Journals (Sweden)

    Davies Betty

    2010-09-01

    Full Text Available Abstract Background Children with progressive metabolic, neurological, or chromosomal conditions and their families anticipate an unknown lifespan, endure unstable and often painful symptoms, and cope with erratic emotional and spiritual crises as the condition progresses along an uncertain trajectory towards death. Much is known about the genetics and pathophysiology of these diseases, but very little has been documented about the trajectory of symptoms for children with these conditions or the associated experience of their families. A longitudinal study design will help to close this gap in knowledge. Methods/Design Charting the Territory is a longitudinal descriptive, correlational study currently underway with children 0-19 years who are diagnosed with progressive neurological, metabolic, or chromosomal conditions and their families. The purpose of the study is to determine and document the clinical progression of the condition and the associated bio-psychosocial-spiritual experiences of the parents and siblings age 7-18 years. Approximately 300 families, both newly diagnosed children and those with established conditions, are being recruited in six Canadian cities. Children and their families are being followed for a minimum of 18 months, depending on when they enroll in the study. Family data collection will continue after the child's death if the child dies during the study period. Data collection includes monthly parental assessment of the child's symptoms; an annual functional assessment of the child; and completion of established instruments every 6 months by parents to assess family functioning, marital satisfaction, health status, anxiety, depression, stress, burden, grief, spirituality, and growth, and by siblings to assess coping and health. Impact of participation on parents is assessed after 1 year and at the end of the study. Chart reviews are conducted at enrollment and at the conclusion of the study or at the time of the

  15. Clinical assessment of social cognitive function in neurological disorders.

    Science.gov (United States)

    Henry, Julie D; von Hippel, William; Molenberghs, Pascal; Lee, Teresa; Sachdev, Perminder S

    2016-01-01

    Social cognition broadly refers to the processing of social information in the brain that underlies abilities such as the detection of others' emotions and responding appropriately to these emotions. Social cognitive skills are critical for successful communication and, consequently, mental health and wellbeing. Disturbances of social cognition are early and salient features of many neuropsychiatric, neurodevelopmental and neurodegenerative disorders, and often occur after acute brain injury. Its assessment in the clinic is, therefore, of paramount importance. Indeed, the most recent edition of the American Psychiatric Association's Diagnostic and Statistical Manual for Mental Disorders (DSM-5) introduced social cognition as one of six core components of neurocognitive function, alongside memory and executive control. Failures of social cognition most often present as poor theory of mind, reduced affective empathy, impaired social perception or abnormal social behaviour. Standard neuropsychological assessments lack the precision and sensitivity needed to adequately inform treatment of these failures. In this Review, we present appropriate methods of assessment for each of the four domains, using an example disorder to illustrate the value of these approaches. We discuss the clinical applications of testing for social cognitive function, and finally suggest a five-step algorithm for the evaluation and treatment of impairments, providing quantitative evidence to guide the selection of social cognitive measures in clinical practice.

  16. Neurologic approaches to hysteria, psychogenic and functional disorders from the late 19th century onwards.

    Science.gov (United States)

    Stone, J

    2016-01-01

    The history of functional neurologic disorders in the 20th century from the point of view of the neurologist is U-shaped. A flurry of interest between the 1880s and early 1920s gave way to lack of interest, skepticism, and concern about misdiagnosis. This was mirrored by increasing professional and geographic divisions between neurology and psychiatry after the First World War. In the 1990s the advent of imaging and other technology highlighted the positive nature of a functional diagnosis. Having been closer in the early 20th century but later more separate, these disorders are now once again the subject of academic and clinical interest, although arguably still very much on the fringes of neurology and neuropsychiatry. Revisiting older material provides a rich source of ideas and data for today's clinical researcher, but also offers cautionary tales of theories and treatments that led to stagnation rather than advancement of the field. Patterns of treatment do have a habit of repeating themselves, for example, the current enthusiasm for transcranial magnetic stimulation compared to the excitement about electrotherapy in the 19th century. For these reasons, an understanding of the history of functional disorders in neurology is arguably more important than it is for other areas of neurologic practice. © 2016 Elsevier B.V. All rights reserved.

  17. Metabolic Modulation in Macrophage Effector Function

    Directory of Open Access Journals (Sweden)

    Ciana Diskin

    2018-02-01

    Full Text Available Traditionally cellular respiration or metabolism has been viewed as catabolic and anabolic pathways generating energy and biosynthetic precursors required for growth and general cellular maintenance. However, growing literature provides evidence of a much broader role for metabolic reactions and processes in controlling immunological effector functions. Much of this research into immunometabolism has focused on macrophages, cells that are central in pro- as well as anti-inflammatory responses—responses that in turn are a direct result of metabolic reprogramming. As we learn more about the precise role of metabolic pathways and pathway intermediates in immune function, a novel opportunity to target immunometabolism therapeutically has emerged. Here, we review the current understanding of the regulation of macrophage function through metabolic remodeling.

  18. Functional progression of patients with neurological diseases in a tertiary paediatric intensive care unit: Our experience.

    Science.gov (United States)

    Madurga Revilla, P; López Pisón, J; Samper Villagrasa, P; García Íñiguez, J P; Garcés Gómez, R; Domínguez Cajal, M; Gil Hernández, I

    2017-11-23

    Neurological diseases explain a considerable proportion of admissions to paediatric intensive care units (PICU), and are a significant cause of morbidity and mortality. This study aims to analyse the functional progression of children with critical neurological conditions. Retrospective descriptive study of children admitted to PICU with neurological diseases over a period of 3 years (2012-2014), assessing vital and functional prognosis at PICU discharge and at one year according to the Pediatric Cerebral and Overall Performance Category scales (PCPC-POPC) and the Functional Status Scale (FSS). The results are compared with our previous data (1990-1999), and those of the international multicentre PANGEA study. A total of 266 children were studied. The mortality rate was 3%; the PRISM-III and PIM2 models did not show predictive ability. Clinically significant worsening was observed in functional health at discharge in 30% of the sample, according to POPC, 15% according to PCPC, and 5% according to FSS. After one year, functional performance improved according to PCPC-POPC, but not according to FSS. Children with no underlying neurological disease had a higher degree of functional impairment; this was prolonged over time. We observed a decrease in overall and neurocritical mortality compared with our previous data (5.60 vs. 2.1%, P=.0003, and 8.44 vs. 2.63%, P=.0014, respectively). Compared with the PANGEA study, both mortality and cerebral functional impairment in neurocritical children were lower in our study (1.05 vs. 13.32%, P<.0001, and 10.47% vs. 23.79%, P<.0001, respectively). Nearly one-third of critically ill children have neurological diseases. A significant percentage, mainly children without underlying neurological diseases, had a clinically significant functional impact at PICU discharge and after a year. Neuromonitoring and neuroprotection measures and the evaluation of functional progression are necessary to improve critical child care. Copyright

  19. The concept of technology transfer. [for neurologically handicapped persons with impairment of sensorimotor functions

    Science.gov (United States)

    Arnold, L.

    1974-01-01

    Potential benefits from aerospace technology applications are elaborated that will enable the neurologically handicapped to recapture and upgrade some of their motor and sensor functions. Considered are all individuals whose sensorimotor communication systems have been damaged as a result of disease, trauma, or aging.

  20. Computational Functional Analysis of Lipid Metabolic Enzymes.

    Science.gov (United States)

    Bagnato, Carolina; Have, Arjen Ten; Prados, María B; Beligni, María V

    2017-01-01

    The computational analysis of enzymes that participate in lipid metabolism has both common and unique challenges when compared to the whole protein universe. Some of the hurdles that interfere with the functional annotation of lipid metabolic enzymes that are common to other pathways include the definition of proper starting datasets, the construction of reliable multiple sequence alignments, the definition of appropriate evolutionary models, and the reconstruction of phylogenetic trees with high statistical support, particularly for large datasets. Most enzymes that take part in lipid metabolism belong to complex superfamilies with many members that are not involved in lipid metabolism. In addition, some enzymes that do not have sequence similarity catalyze similar or even identical reactions. Some of the challenges that, albeit not unique, are more specific to lipid metabolism refer to the high compartmentalization of the routes, the catalysis in hydrophobic environments and, related to this, the function near or in biological membranes.In this work, we provide guidelines intended to assist in the proper functional annotation of lipid metabolic enzymes, based on previous experiences related to the phospholipase D superfamily and the annotation of the triglyceride synthesis pathway in algae. We describe a pipeline that starts with the definition of an initial set of sequences to be used in similarity-based searches and ends in the reconstruction of phylogenies. We also mention the main issues that have to be taken into consideration when using tools to analyze subcellular localization, hydrophobicity patterns, or presence of transmembrane domains in lipid metabolic enzymes.

  1. Clinical Characteristics and Functional Motor Outcomes of Enterovirus 71 Neurological Disease in Children.

    Science.gov (United States)

    Teoh, Hooi-Ling; Mohammad, Shekeeb S; Britton, Philip N; Kandula, Tejaswi; Lorentzos, Michelle S; Booy, Robert; Jones, Cheryl A; Rawlinson, William; Ramachandran, Vidiya; Rodriguez, Michael L; Andrews, P Ian; Dale, Russell C; Farrar, Michelle A; Sampaio, Hugo

    2016-03-01

    Enterovirus 71 (EV71) causes a spectrum of neurological complications with significant morbidity and mortality. Further understanding of the characteristics of EV71-related neurological disease, factors related to outcome, and potential responsiveness to treatments is important in developing therapeutic guidelines. To further characterize EV71-related neurological disease and neurological outcome in children. Prospective 2-hospital (The Sydney Children's Hospitals Network) inpatient study of 61 children with enterovirus-related neurological disease during a 2013 outbreak of EV71 in Sydney, Australia. The dates of our analysis were January 1, to June 30, 2013. Clinical, neuroimaging, laboratory, and pathological characteristics, together with treatment administered and functional motor outcomes, were assessed. Among 61 patients, there were 4 precipitous deaths (7%), despite resuscitation at presentation. Among 57 surviving patients, the age range was 0.3 to 5.2 years (median age, 1.5 years), and 36 (63%) were male. Fever (100% [57 of 57]), myoclonic jerks (86% [49 of 57]), ataxia (54% [29 of 54]), and vomiting (54% [29 of 54]) were common initial clinical manifestations. In 57 surviving patients, EV71 neurological disease included encephalomyelitis in 23 (40%), brainstem encephalitis in 20 (35%), encephalitis in 6 (11%), acute flaccid paralysis in 4 (7%), and autonomic dysregulation with pulmonary edema in 4 (7%). Enterovirus RNA was more commonly identified in feces (42 of 44 [95%]), rectal swabs (35 of 37 [95%]), and throat swabs (33 of 39 [85%]) rather than in cerebrospinal fluid (10 of 41 [24%]). Magnetic resonance imaging revealed characteristic increased T2-weighted signal in the dorsal pons and spinal cord. All 4 patients with pulmonary edema (severe disease) demonstrated dorsal brainstem restricted diffusion (odds ratio, 2; 95% CI, 1-4; P = .001). Brainstem or motor dysfunction had resolved in 44 of 57 (77%) at 2 months and in 51 of 57 (90%) at 12 months

  2. Improved Neuropsychological and Neurological Functioning Across Three Antiretroviral Regimens in Diverse Resource-Limited Settings: AIDS Clinical Trials Group Study A5199, the International Neurological Study

    Science.gov (United States)

    Robertson, K.; Jiang, H.; Kumwenda, J.; Supparatpinyo, K.; Evans, S.; Campbell, T. B.; Price, R.; Tripathy, S.; Kumarasamy, N.; La Rosa, A.; Santos, B.; Silva, M. T.; Montano, S.; Kanyama, C.; Faesen, S.; Murphy, R.; Hall, C.; Marra, C. M.; Marcus, C.; Berzins, B.; Allen, R.; Housseinipour, M.; Amod, F.; Sanne, I.; Hakim, J.; Walawander, A.; Nair, A.

    2012-01-01

    Background. AIDS Clinical Trials Group (ACTG) A5199 compared the neurological and neuropsychological (NP) effects of 3 antiretroviral regimens in participants infected with human immunodeficiency virus type 1 (HIV-1) in resource-limited settings. Methods. Participants from Brazil, India, Malawi, Peru, South Africa, Thailand, and Zimbabwe were randomized to 3 antiretroviral treatment arms: A (lamivudine-zidovudine plus efavirenz, n = 289), B (atazanavir, emtricitabine, and didanosine-EC, n = 293), and C (emtricitabine-tenofovir-disoproxil fumarate plus efavirenz, n = 278) as part of the ACTG PEARLS study (A5175). Standardized neurological and neuropsychological (NP) screening examinations (grooved pegboard, timed gait, semantic verbal fluency, and finger tapping) were administered every 24 weeks from February 2006 to May 2010. Associations with neurological and neuropsychological function were estimated from linear and logistic regression models using generalized estimating equations. Results. The median weeks on study was 168 (Q1 = 96, Q3 = 192) for the 860 participants. NP test scores improved (P  .10). Significant country effects were noted on all NP tests and neurological outcomes (P < .01). Conclusions. The study detected no significant differences in neuropsychological and neurological outcomes between randomized ART regimens. Significant improvement occurred in neurocognitive and neurological functioning over time after initiation of ARTs. The etiology of these improvements is likely multifactorial, reflecting reduced central nervous system HIV infection, better general health, and practice effects. This study suggests that treatment with either of the World Health Organization –recommended first-line antiretroviral regimens in resource-limited settings will improve neuropsychological functioning and reduce neurological dysfunction. Clinical trials registration.  NCT00096824. PMID:22661489

  3. Nmf9 Encodes a Highly Conserved Protein Important to Neurological Function in Mice and Flies.

    Directory of Open Access Journals (Sweden)

    Shuxiao Zhang

    2015-07-01

    Full Text Available Many protein-coding genes identified by genome sequencing remain without functional annotation or biological context. Here we define a novel protein-coding gene, Nmf9, based on a forward genetic screen for neurological function. ENU-induced and genome-edited null mutations in mice produce deficits in vestibular function, fear learning and circadian behavior, which correlated with Nmf9 expression in inner ear, amygdala, and suprachiasmatic nuclei. Homologous genes from unicellular organisms and invertebrate animals predict interactions with small GTPases, but the corresponding domains are absent in mammalian Nmf9. Intriguingly, homozygotes for null mutations in the Drosophila homolog, CG45058, show profound locomotor defects and premature death, while heterozygotes show striking effects on sleep and activity phenotypes. These results link a novel gene orthology group to discrete neurological functions, and show conserved requirement across wide phylogenetic distance and domain level structural changes.

  4. Impact of multiple injuries on functional and neurological outcomes of patients with spinal cord injury

    Science.gov (United States)

    2013-01-01

    Background The effects of multiple injuries on the neurological and functional outcomes of patients with traumatic spinal cord injury (SCI) are debated—some groups have shown that subjects with multiple injuries have the same neurological and functional outcomes of those without them, whereas others have found that SCI patients with associated traumatic brain injury have worse functional status at admission and discharge and longer rehabilitation stays than patients without brain injury. Thus, the aim of this study was to compare the outcomes of SCI subjects with or without multiple injuries. Methods A total of 245 patients with a traumatic SCI during the first rehabilitation stay after the development of the lesion (202 males and 43 females; age 39.8 ± 17 years; lesion to admission time 51.1 ± 58 days) were examined on a referral basis. Patients were assessed using the following measures: American Spinal Injury Association standards, Barthel Index, Rivermead Mobility Index, and Walking Index for Spinal Cord Injury. The statistical analysis comprised Poisson regression models with relative risks and 95% confidence intervals, adjusted for the following confounders: age, sex, lesion level, and ASIA impairment scale (AIS) grade. Student’s T test was used to compare the outcomes of patients divided by AIS impairment and lesion level. Results SCI patients with and without multiple injuries differed significantly with regard to the level and completeness of the lesion. Overall, patients with multiple injuries had worse functional status at admission and discharge than monotraumatic subjects. However, when adjusted for neurological features, the populations had comparable functional and neurological status at admission and discharge and similar rates of complications and discharge destinations. The separate analysis per each level of lesion/AIS grade showed that in some groups, patients with multiple injuries had a significant longer length of stay or worse

  5. Neurologic and metabolic issues in moderately preterm, late preterm, and early term infants.

    Science.gov (United States)

    Laptook, Abbot R

    2013-12-01

    Common neurologic morbidities encountered in very preterm and extremely preterm infants (intracranial hemorrhage, white matter injury and periventricular leukomalacia, and apnea of prematurity) are much less common in moderately preterm and late preterm infants. The frequency of germinal matrix hemorrhage-intraventricular hemorrhage and white matter injury are reported to be low, but selection bias in neuroimaging surveillance prevents ascertainment of precise frequencies. The major neurologic morbidity of moderately and late preterm infants is feeding difficulty reflecting developmental integration of suck, swallow, and breathing. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Mapping of brain function with positron emission tomography for pathophysiological analysis of neurological disorders

    International Nuclear Information System (INIS)

    Nariai, Tadashi

    2001-01-01

    The role of PET is discussed mainly through author's clinical experience in patients with brain lesions from the view of mapping of brain function. Procedure for PET concept in clinical practice is summarized. PET using tracers like [ 15 O]water and [ 18 F]fluorodeoxyglucose for mapping of the function has been used in combination with MRI, MEG (magnetoencephalography), SPECT and other imaging means for morphological identification. Actual those images before and after surgery are presented in cases of epilepsy, moyamoya disease, stegnosis of cervical artery, arteriovenous malformation and oligodendroglioma. Images of [ 11 C]flumazenil in epilepsies are also presented to show the neurological dysfunctions. PET evaluation of neurological functions is concluded to become more important in parallel with the advancement of therapeutics. (K.H.)

  7. 5-HT2A Agonists: A Novel Therapy for Functional Neurological Disorders?

    Science.gov (United States)

    Bryson, Alexander; Carter, Olivia; Norman, Trevor; Kanaan, Richard

    2017-05-01

    Functional neurological disorders are frequently encountered in clinical practice. They have a poor prognosis and treatment options are limited. Their etiology is unknown, but leading theories propose a disturbance of somatic self-representation: the mind perceives dysfunction of a body region despite intact motor and sensory pathways. Central to this model is the concept of an abnormal top-down cognitive influence upon sensorimotor function. There is growing interest in the use of 5-HT2A agonists in the management of neuropsychiatric conditions. Recent studies have shown that these agents induce changes in neural activity that disrupt hierarchical brain dynamics and modulate networks subserving self-related processing. Converging evidence suggests they may hold unique therapeutic potential in functional neurological disorders. This is of importance given the considerable personal and societal burden of this condition and we argue a clinical trial to test this hypothesis is warranted. © The Author 2017. Published by Oxford University Press on behalf of CINP.

  8. Heart-Brain Axis: Effects of Neurologic Injury on Cardiovascular Function.

    Science.gov (United States)

    Tahsili-Fahadan, Pouya; Geocadin, Romergryko G

    2017-02-03

    A complex interaction exists between the nervous and cardiovascular systems. A large network of cortical and subcortical brain regions control cardiovascular function via the sympathetic and parasympathetic outflow. A dysfunction in one system may lead to changes in the function of the other. The effects of cardiovascular disease on the nervous system have been widely studied; however, our understanding of the effects of neurological disorders on the cardiovascular system has only expanded in the past 2 decades. Various pathologies of the nervous system can lead to a wide range of alterations in function and structure of the cardiovascular system ranging from transient and benign electrographic changes to myocardial injury, cardiomyopathy, and even cardiac death. In this article, we first review the anatomy and physiology of the central and autonomic nervous systems in regard to control of the cardiovascular function. The effects of neurological injury on cardiac function and structure will be summarized, and finally, we review neurological disorders commonly associated with cardiovascular manifestations. © 2017 American Heart Association, Inc.

  9. Personality Traits, Education, Physical Exercise, and Childhood Neurological Function as Independent Predictors of Adult Obesity

    OpenAIRE

    Cheng, Helen; Furnham, Adrian

    2013-01-01

    Objective To investigate whether personality traits, education, physical exercise, parental socio-economic conditions, and childhood neurological function are independently associated with obesity in 50 year old adults in a longitudinal birth cohort study. Method The sample consisted of 5,921 participants born in Great Britain in 1958 and followed up at 7, 11, 33, 42, and 50 years with data on body mass index measured at 42 and 50 years. Results There was an increase of adult obesity from 14....

  10. Cognitive-analytical therapy for a patient with functional neurological symptom disorder-conversion disorder (psychogenic myopia: A case study

    Directory of Open Access Journals (Sweden)

    Hamid Nasiri

    2015-01-01

    Full Text Available Functional neurological symptom disorder commonly presents with symptoms and defects of sensory and motor functions. Therefore, it is often mistaken for a medical condition. It is well known that functional neurological symptom disorder more often caused by psychological factors. There are three main approaches namely analytical, cognitive and biological to manage conversion disorder. Any of such approaches can be applied through short-term treatment programs. In this case, study a 12-year-old boy with the diagnosed functional neurological symptom disorder (psychogenic myopia was put under a cognitive-analytical treatment. The outcome of this treatment modality was proved successful.

  11. Cognitive-analytical therapy for a patient with functional neurological symptom disorder-conversion disorder (psychogenic myopia): A case study.

    Science.gov (United States)

    Nasiri, Hamid; Ebrahimi, Amrollah; Zahed, Arash; Arab, Mostafa; Samouei, Rahele

    2015-05-01

    Functional neurological symptom disorder commonly presents with symptoms and defects of sensory and motor functions. Therefore, it is often mistaken for a medical condition. It is well known that functional neurological symptom disorder more often caused by psychological factors. There are three main approaches namely analytical, cognitive and biological to manage conversion disorder. Any of such approaches can be applied through short-term treatment programs. In this case, study a 12-year-old boy with the diagnosed functional neurological symptom disorder (psychogenic myopia) was put under a cognitive-analytical treatment. The outcome of this treatment modality was proved successful.

  12. Childhood craniopharyngioma: survival, local control, endocrine and neurologic function following radiotherapy

    International Nuclear Information System (INIS)

    Danoff, B.F.; Cowchock, F.S.; Kramer, S.

    1983-01-01

    Between 1961 and 1978, 19 patients with a diagnosis of childhood or teenage craniopharyngioma received supervoltage radiotherapy. All patients had previously undergone either partial surgical resection (10 patients), total gross resection (3 patients), or aspiration and biopsy (6 patients). Fourteen patients were treated primarily and five were treated for recurrence. The five-year survival was 73% with a 10-year survival of 64%. Sixteen percent developed a recurrence following radiotherapy. Long term effects were assesed in terms of neurologic, intellectual, psychological and endocrine function. Seventy-nine percent had none or minimal neurologic disability. The mean full scale IQ for the group was 90. There were no additional endocrine deficiencies that could be directly attributed to radiation. Behavioral disorders occurred in 50%. These results are at least comparable, if not superior, to those of surgery

  13. On Functional Module Detection in Metabolic Networks

    Science.gov (United States)

    Koch, Ina; Ackermann, Jörg

    2013-01-01

    Functional modules of metabolic networks are essential for understanding the metabolism of an organism as a whole. With the vast amount of experimental data and the construction of complex and large-scale, often genome-wide, models, the computer-aided identification of functional modules becomes more and more important. Since steady states play a key role in biology, many methods have been developed in that context, for example, elementary flux modes, extreme pathways, transition invariants and place invariants. Metabolic networks can be studied also from the point of view of graph theory, and algorithms for graph decomposition have been applied for the identification of functional modules. A prominent and currently intensively discussed field of methods in graph theory addresses the Q-modularity. In this paper, we recall known concepts of module detection based on the steady-state assumption, focusing on transition-invariants (elementary modes) and their computation as minimal solutions of systems of Diophantine equations. We present the Fourier-Motzkin algorithm in detail. Afterwards, we introduce the Q-modularity as an example for a useful non-steady-state method and its application to metabolic networks. To illustrate and discuss the concepts of invariants and Q-modularity, we apply a part of the central carbon metabolism in potato tubers (Solanum tuberosum) as running example. The intention of the paper is to give a compact presentation of known steady-state concepts from a graph-theoretical viewpoint in the context of network decomposition and reduction and to introduce the application of Q-modularity to metabolic Petri net models. PMID:24958145

  14. Abnormal brain iron metabolism in Irp2 deficient mice is associated with mild neurological and behavioral impairments.

    Directory of Open Access Journals (Sweden)

    Kimberly B Zumbrennen-Bullough

    Full Text Available Iron Regulatory Protein 2 (Irp2, Ireb2 is a central regulator of cellular iron homeostasis in vertebrates. Two global knockout mouse models have been generated to explore the role of Irp2 in regulating iron metabolism. While both mouse models show that loss of Irp2 results in microcytic anemia and altered body iron distribution, discrepant results have drawn into question the role of Irp2 in regulating brain iron metabolism. One model shows that aged Irp2 deficient mice develop adult-onset progressive neurodegeneration that is associated with axonal degeneration and loss of Purkinje cells in the central nervous system. These mice show iron deposition in white matter tracts and oligodendrocyte soma throughout the brain. A contrasting model of global Irp2 deficiency shows no overt or pathological signs of neurodegeneration or brain iron accumulation, and display only mild motor coordination and balance deficits when challenged by specific tests. Explanations for conflicting findings in the severity of the clinical phenotype, brain iron accumulation and neuronal degeneration remain unclear. Here, we describe an additional mouse model of global Irp2 deficiency. Our aged Irp2-/- mice show marked iron deposition in white matter and in oligodendrocytes while iron content is significantly reduced in neurons. Ferritin and transferrin receptor 1 (TfR1, Tfrc, expression are increased and decreased, respectively, in the brain from Irp2-/- mice. These mice show impairments in locomotion, exploration, motor coordination/balance and nociception when assessed by neurological and behavioral tests, but lack overt signs of neurodegenerative disease. Ultrastructural studies of specific brain regions show no evidence of neurodegeneration. Our data suggest that Irp2 deficiency dysregulates brain iron metabolism causing cellular dysfunction that ultimately leads to mild neurological, behavioral and nociceptive impairments.

  15. The impact of early cranioplasty on cerebral blood flow and metabolism and its correlation with neurological and cognitive outcome: Prospective multi-center study on 34 patients

    Directory of Open Access Journals (Sweden)

    Salvatore Chibbaro

    2012-01-01

    Full Text Available Background: The main indications for cranial reconstruction following decompressive craniectomy at present are cerebral protection and the cosmetic repair. Many reports about neurological improvement after cranioplasty are now available in the literature; however, the underlying patho-physiological mechanisms are still unknown. Materials and Methods: Thirty four patients undergoing decompressive craniectomy for severe head injury and early cranioplasty were prospectively studied. Clinical outcome was evaluated by GOS, FAB and MMSE, 3 days prior and 1 and 6 months after surgery; Trans-cranial Doppler and 18 FDG PET scan were also performed (to explore local and global brain hemodynamic and metabolic changes 3 days prior to, and 30 days after cranial reconstruction. Results: Cranioplasty improved local and global cerebral brain perfusion (CBF as well as brain metabolism in all 34 (100% patients. Ninety-one % of patients showed also a clear and remarkable neuro-cognitive improvement tested by GOS, FAB and MMSE in the post-cranioplasty period. Conclusion: Cranial reconstruction has an effect upon local as well as global brain CBF and metabolism, constituting probably an essential factor influencing the final functional and especially cognitive outcome in a patient.

  16. Application of whole exome sequencing to a rare inherited metabolic disease with neurological and gastrointestinal manifestations: a congenital disorder of glycosylation mimicking glycogen storage disease.

    Science.gov (United States)

    Choi, Rihwa; Woo, Hye In; Choe, Byung-Ho; Park, Seungman; Yoon, Yeomin; Ki, Chang-Seok; Lee, Soo-Youn; Kim, Jong-Won; Song, Junghan; Kim, Dong Sub; Kwon, Soonhak; Park, Hyung-Doo

    2015-04-15

    Rare inherited metabolic diseases with neurological and gastrointestinal manifestations can be misdiagnosed as other diseases or remain as disorders with indeterminate etiologies. This study aims to provide evidence to recommend the utility of whole exome sequencing in clinical diagnosis of a rare inherited metabolic disease. A 4-month-old female baby visited an outpatient clinic due to poor weight gain, repeated seizure-like episodes, developmental delay, and unexplained hepatomegaly with abnormal liver function test results. Although liver biopsy revealed moderate fibrosis with a suggested diagnosis of glycogen storage disease (GSD), no mutations were identified either by single gene approach for GSD (G6PC and GAA) or by next generation sequencing panels for GSD (including 21 genes). Whole exome sequencing of the patient revealed compound heterozygous mutations of PMM2: c.580C>T (p.Arg194*) and c.713G>C (p.Arg238Pro) which mutations were associated with congenital disorder of glycosylation Ia (CDG-Ia: PMM2-CDG). We successfully applied exome sequencing to diagnose the first reported Korean patient with CDG-Ia, which was misdiagnosed as GSD. Whole exome sequencing may prove to be the preferred strategy for analysis of clinical features that do not readily suggest a specific diagnosis, such as those observed in inherited metabolic diseases, including CDG. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. The Early Functional Abilities (EFA) scale to assess neurological and neurosurgical early rehabilitation patients.

    Science.gov (United States)

    Hankemeier, Ariane; Rollnik, Jens D

    2015-10-19

    It is difficult to assess neurological and neurosurgical early rehabilitation patients comprehensively. Available scales focus on activities of daily living (Barthel (BI) and Early Rehabilitation Barthel Index (ERBI)) or wakefulness (Glasgow Coma Scale (GCS), Coma Remission Scale (CRS)) while cognitive items are missing. The Early Functional Abilities (EFA) scale comprises 20 items referring to activities of daily living (ADL), wakefulness and cognitive abilities. To evaluate its validity, n = 623 early neurological and neurosurgical rehabilitation patients (most of them after ischemic stroke or cerebral bleeding) were assessed on admission using the EFA, ERBI, GCS, CRS and measures of morbidity (co-diagnoses). The more co-diagnoses the lower EFA sum scores were obtained (Spearman-Rho rs = -0.509, p < 0.001). EFA predicted length of stay (LOS, rs = -0.565, p < 0.001) and BI at discharge (rs = 0.571, p < 0.001). The results suggest that EFA is a valid instrument to assess critically ill neurological and neurosurgical early rehabilitation patients. It may be used as a measure of morbidity and a predictor of LOS and outcome. Further studies are strongly encouraged.

  18. Correlation between serum neuron specific enolase and functional neurological outcome in patients of acute ischemic stroke.

    Science.gov (United States)

    Zaheer, Sana; Beg, Mujahid; Rizvi, Imran; Islam, Najmul; Ullah, Ekram; Akhtar, Nishat

    2013-10-01

    The use of biomarkers to predict stroke prognosis is gaining particular attention nowadays. Neuron specific enolase (NSE), which is a dimeric isoenzyme of the glycolytic enzyme enolase and is found mainly in the neurons is one such biomarker. This study was carried out on patients of acute ischemic stroke with the aims to determine the correlation between NSE levels on the day of admission with infarct volume, stroke severity, and functional neurological outcome on day 30. Seventy five patients of acute ischemic stroke admitted in the Department of Medicine were included in the study. Levels of NSE were determined on day 1 using the human NSE ELISA kit (Alpha Diagnostic International Texas 78244, USA). Volume of infarct was measured by computed tomography (CT) scan using the preinstalled software Syngo (version A40A) of Siemen's medical solutions (Forchheim, Germany). Stroke severity at admission was assessed using Glasgow coma scale (GCS) and functional neurological outcome was assessed using modified Rankin scale (mRS) on day 30. Statistical analysis was performed using the SPSS software for windows version 15.0 (SPSS). A positive correlation was found between concentration of NSE on day 1 and infarct volume determined by CT scan (r = 0.955, P < 0.001). A strong negative correlation was found between GCS at presentation and concentration of NSE on day 1 (r = -0.806, P < 0.001). There was a positive correlation between NSE levels at day 1 and functional neurological outcome assessed by mRS at day 30 (r = 0.744, P < 0.001). Serum levels of NSE in first few days of ischemic stroke can serve as a useful marker to predict stroke severity and early functional outcome. However, larger studies with serial estimation of NSE are needed to establish these observations more firmly.

  19. Immune responses at brain barriers and implications for brain development and neurological function in later life

    Directory of Open Access Journals (Sweden)

    Helen B. Stolp

    2013-08-01

    Full Text Available For a long time the brain has been considered an immune-privileged site due to a muted inflammatory response and the presence of protective brain barriers. It is now recognised that neuroinflammation may play an important role in almost all neurological disorders and that the brain barriers may be contributing through either normal immune signalling, or disruption of their basic physiological mechanisms. The distinction between normal function and dysfunction at the barriers is difficult to dissect, partly due to a lack of understanding of normal barrier function and partly because of physiological changes that occur as part of normal development and ageing. Brain barriers consist of a number of interacting structural and physiological elements including tight junctions between adjacent barrier cells and an array of influx and efflux transporters. Despite these protective mechanisms, the capacity for immune-surveillance of the brain is maintained, and there is evidence of inflammatory signalling at the brain barriers that may be an important part of the body’s response to damage or infection. This signalling system appears to change both with normal ageing, and during disease. Changes may affect diapedesis of immune cells and active molecular transfer, or cause rearrangement of the tight junctions and an increase in passive permeability across barrier interfaces. Here we review the many elements that contribute to brain barrier functions and how they respond to inflammation, particularly during development and aging. The implications of inflammation–induced barrier dysfunction for brain development and subsequent neurological function are also discussed.

  20. High-fat diet ameliorates neurological deficits caused by defective astrocyte lipid metabolism

    NARCIS (Netherlands)

    Camargo, N.K.; Brouwers, J.F.; Loos, M.; Gutmann, D.H.; Smit, A.B.; Verheijen, M.H.G.

    2012-01-01

    The mammalian CNS is considered to be autonomous in lipid metabolism. Glial cells, in particular astrocytes, have been shown to be highly active in lipid synthesis and secretion. To determine the importance of astrocytes as lipid providers in the brain, we generated mice in which the sterol

  1. The Comparison of the Executive-Neurological Functions of the Narcotic Addicted and Normal Adults

    Directory of Open Access Journals (Sweden)

    Fereshteh Amini

    2010-05-01

    Full Text Available Aim: The purpose of present research was the comparison of executive-neurological functions of narcotics addicted and normal adults. Method: In this causal-comparative study 38 narcotics addicted person selected of two addiction treatment clinics in Tehran, and 38 normal persons selected through available sampling. The both groups assessed by neuropsychological tests namely: the Wisconsin classification cards. Results: The analysis of data indicated the significant difference on executive functions of addicted and normal groups. That is addicted group were poorer than normal group on executive functions. Conclusion: The findings of present research showed the addicts have weaker executive functions than the normal persons. In other words, the addicts showed impairments on cognitive flexibility and formation of change concepts.

  2. Can repetitive transcranial magnetic stimulation increase muscle strength in functional neurological paresis? A proof-of-principle study

    NARCIS (Netherlands)

    Broersma, M; Koops, E A; Vroomen, Patrick; Van der Hoeven, J H; Aleman, A; Leenders, K L; Maurits, N M; van Beilen, M

    BACKGROUND AND PURPOSE: Therapeutic options are limited in functional neurological paresis disorder. Earlier intervention studies did not control for a placebo effect, hampering assessment of effectivity. A proof-of-principle investigation was conducted into the therapeutic potential of repetitive

  3. Neurological channelopathies: new insights into disease mechanisms and ion channel function

    Science.gov (United States)

    Kullmann, Dimitri M; Waxman, Stephen G

    2010-01-01

    Inherited mutations of ion channels provide unique insights into the mechanisms of many neurological diseases. However, they also provide a wealth of new information on the fundamental biology of ion channels and on neuron and muscle function. Ion channel genes are continuing to be discovered by positional cloning of disease loci. And some mutations provide unique tools to manipulate signalling cascades, which cannot be achieved by pharmacological intervention. Here we highlight some unanswered questions, and some promising areas for research that will likely lead to a fuller understanding of the link from molecular lesion to disease. PMID:20375141

  4. Is there an association of vitamin B12 status with neurological function in older people? A systematic review.

    Science.gov (United States)

    Miles, Lisa M; Mills, Kerry; Clarke, Robert; Dangour, Alan D

    2015-08-28

    Low vitamin B12 status is common in older people; however, its public health significance in terms of neurological manifestations remains unclear. The present systematic review evaluated the association of vitamin B12 status with neurological function and clinically relevant neurological outcomes in adults aged 50+ years. A systematic search of nine bibliographic databases (up to March 2013) identified twelve published articles describing two longitudinal and ten cross-sectional analyses. The included study populations ranged in size (n 28-2287) and mean/median age (range 65-81 years). Studies reported various neurological outcomes: nerve function; clinically measured signs and symptoms of nerve function; self-reported neurological symptoms. Studies were assessed for risk of bias, and results were synthesised qualitatively. Among the general population groups of older people, one longitudinal study reported no association, and four of seven cross-sectional studies reported limited evidence of an association of vitamin B12 status with some, but not all, neurological outcomes. Among groups with clinical and/or biochemical evidence of low vitamin B12 status, one longitudinal study reported an association of vitamin B12 status with some, but not all, neurological outcomes and three cross-sectional analyses reported no association. Overall, there is limited evidence from observational studies to suggest an association of vitamin B12 status with neurological function in older people. The heterogeneity and quality of the evidence base preclude more definitive conclusions, and further high-quality research is needed to better inform understanding of public health significance in terms of neurological function of vitamin B12 status in older people.

  5. Neurological function following cerebral ischemia/reperfusion is improved by the Ruyi Zhenbao pill in a rats

    OpenAIRE

    WANG, TIAN; DUAN, SIJIN; WANG, HAIPING; SUN, SHAN; HAN, BING; FU, FENGHUA

    2016-01-01

    The present study aimed to investigate the effect and underlying mechanisms of the Ruyi Zhenbao pill on neurological function following cerebral ischemia/reperfusion in rats. Male Sprague-Dawley rats underwent middle cerebral artery occlusion following reperfusion. The rats received intragastrically either sodium carboxymethyl cellulose (control and model groups) or Ruyi Zhenbao pill at doses of 0.2, 0.4 or 0.8 g/kg. Neurological function was assessed by cylinder, adhesive and beam-walking te...

  6. Neurologic music therapy improves executive function and emotional adjustment in traumatic brain injury rehabilitation.

    Science.gov (United States)

    Thaut, Michael H; Gardiner, James C; Holmberg, Dawn; Horwitz, Javan; Kent, Luanne; Andrews, Garrett; Donelan, Beth; McIntosh, Gerald R

    2009-07-01

    This study examined the immediate effects of neurologic music therapy (NMT) on cognitive functioning and emotional adjustment with brain-injured persons. Four treatment sessions were held, during which participants were given a pre-test, participated in 30 min of NMT that focused on one aspect of rehabilitation (attention, memory, executive function, or emotional adjustment), which was followed by post-testing. Control participants engaged in a pre-test, 30 min of rest, and then a post-test. Treatment participants showed improvement in executive function and overall emotional adjustment, and lessening of depression, sensation seeking, and anxiety. Control participants improved in emotional adjustment and lessening of hostility, but showed decreases in measures of memory, positive affect, and sensation seeking.

  7. A Review Of Common And Quick Tests In Executive Function In Adults With Neurological Disorder

    Directory of Open Access Journals (Sweden)

    Fateme Satarian

    2017-02-01

    Full Text Available Purpose: As a higher cognitive function is controlled Executive function by frontal cortex. It is consisted of Decision-making، planning، inhibition، organization and working memory. According to high prevalence of executive dysfunction in adults with neurological disorders such as Dementia and stroke and considering to applying appropriate tests in neurological patients and aging people in order to diagnose executive dysfunction quickly and correctly، In this study we aimed to review common and quick executive function tests. Methods: This research was a review study on common and quick executive function tests in adults. A search was conducted using some databases including Iran medex، SID، Magiran، Google scholar، Medline، Science Direct، Scopus and Web of Science. The tests were investigated regarding to the date of publishing، method of administration، target populations، subscales، time administration and psychometric features. Results:  According to inclusion and exclusion criteria of this study، we found 26 common and quick tests، Most of them were in English and just one of them was a Persian version. Thirteen tests of them were translated or modified version of original English test. Ten tests of them were very quick with average administration time about 10 minute and the other need 30 minute to administer. Conclusion: Regarding to importance of evaluating of executive function in neurological patients especially individuals with Dementia beside  existence of  a lot of tests   in other languages and  lack of quick executive function tests in Persian , results of current study  can help neurologist, speech and language pathologist and other experts to be familiar with common quick tests  and their clinical application. These results also recommend researchers and clinicians to translate and adapt some of  the quick and easy administer Executive function  tests in Persian.

  8. Functional Performance and Associations between Performance Tests and Neurological Assessment Differ in Men and Women with Parkinson's Disease.

    Science.gov (United States)

    Medijainen, Kadri; Pääsuke, Mati; Lukmann, Aet; Taba, Pille

    2015-01-01

    Neurological assessment of a patient with Parkinson's disease (PD) is expected to reflect upon functional performance. As women are known to report more limitations even for same observed functional performance level, present study was designed to examine whether associations between neurological assessments and functional performance differ across genders. 14 men and 14 women with PD participated. Functional performance was assessed by measuring walking speeds on 10-meter walk test (10MWT) and by performing timed-up-and-go-test (TUG). Neurological assessment included Hoehn and Yahr Scale (HY), Movement Disorders Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS), Schwab and England Activities of Daily Living Scale (S-E), and Mini Mental State Examination (MMSE). In women with PD, Kendall's tau-b correlation analyses revealed significant correlations between functional performance tests and neurological assessment measures, with the exception in MMSE. No corresponding associations were found for men, although they demonstrated better functional performance, as expected. Men in similar clinical stage of the PD perform better on functional tests than women. Disease severity reflects upon functional performance differently in men and women with PD. Results indicate that when interpreting the assessment results of both functional performance and neurological assessment tests, the gender of the patient should be taken into consideration.

  9. Functional Performance and Associations between Performance Tests and Neurological Assessment Differ in Men and Women with Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Kadri Medijainen

    2015-01-01

    Full Text Available Background. Neurological assessment of a patient with Parkinson’s disease (PD is expected to reflect upon functional performance. As women are known to report more limitations even for same observed functional performance level, present study was designed to examine whether associations between neurological assessments and functional performance differ across genders. Methods. 14 men and 14 women with PD participated. Functional performance was assessed by measuring walking speeds on 10-meter walk test (10MWT and by performing timed-up-and-go-test (TUG. Neurological assessment included Hoehn and Yahr Scale (HY, Movement Disorders Society Unified Parkinson’s Disease Rating Scale (MDS-UPDRS, Schwab and England Activities of Daily Living Scale (S-E, and Mini Mental State Examination (MMSE. Results. In women with PD, Kendall’s tau-b correlation analyses revealed significant correlations between functional performance tests and neurological assessment measures, with the exception in MMSE. No corresponding associations were found for men, although they demonstrated better functional performance, as expected. Conclusion. Men in similar clinical stage of the PD perform better on functional tests than women. Disease severity reflects upon functional performance differently in men and women with PD. Results indicate that when interpreting the assessment results of both functional performance and neurological assessment tests, the gender of the patient should be taken into consideration.

  10. Functional MRT in psychiatry and neurology. 2. rev. and upd. ed.

    International Nuclear Information System (INIS)

    Schneider, Frank; Fink, Gereon R.

    2013-01-01

    The book on functional MRT in psychiatry and neurology covers the following topics: (I) Fundamentals: functional neuro-anatomy, fundamentals of NMR imaging, basic research on the clinical use for diagnostics and therapy; basics of morphometry; real-time fMRT, planning and execution of experimental paradigms; data analysis and statistics; reliability and quality of fMRT experiments; eye movement, neuropharmacologic functional imaging, gender dependent effects, age dependent effects, resting state fMRT; meta analyses. (II) Higher brain achievements: movement and action, perception and attention, visual system and object processing, auditory system, executive functions, somatosensoric system, memory, learning and gratification system, functional neuro-anatomy of speech, number processing and calculation, connectivity, social cognition, emotions, olfactory system, functional imaging in the pain research. (III) Disease pattern: dystonia, Parkinson syndrome, Chorea Huntington, aphasia, apraxia, neglect, amnesia, function recovery following apoplexy, schizophrenia, affective disturbances, anxiety and fear, post-traumatic disturbances, hyperactivity syndrome, personality disorder. (IV) Working tools: brain atlas, tool for integrated analyses of structure, functionality and connectivity (SPM anatomy toolbox).

  11. Disrupted avoidance learning in functional neurological disorder: Implications for harm avoidance theories.

    Science.gov (United States)

    Morris, Laurel S; To, Benjaman; Baek, Kwangyeol; Chang-Webb, Yee-Chien; Mitchell, Simon; Strelchuk, Daniela; Mikheenko, Yevheniia; Phillips, Wendy; Zandi, Michael; Jenaway, Allison; Walsh, Cathy; Voon, Valerie

    2017-01-01

    Functional neurological disorder (FND) is an elusive disorder characterized by unexplained neurological symptoms alongside aberrant cognitive processing and negative affect, often associated with amygdala reactivity. We examined the effect of negative conditioning on cognitive function and amygdala reactivity in 25 FND patients and 20 healthy volunteers (HV). Participants were first conditioned to stimuli paired with negative affective or neutral (CS +/CS -) information. During functional MRI, subjects then performed an instrumental associative learning task to avoid monetary losses in the context of the previously conditioned stimuli. We expected that FND patients would be better at learning to avoid losses when faced with negatively conditioned stimuli (increased harm avoidance). Multi-echo resting state fMRI was also collected from the same subjects and a robust denoising method was employed, important for removing motion and physiological artifacts. FND subjects were more sensitive to the negative CS + compared to HV, demonstrated by a reinforcement learning model. Contrary to expectation, FND patients were generally more impaired at learning to avoid losses under both contexts (CS +/CS -), persisting to choose the option that resulted in a negative outcome demonstrated by both behavioural and computational analyses. FND patients showed enhanced amygdala but reduced dorsolateral prefrontal cortex responses when they received negative feedback. Patients also had increased resting state functional connectivity between these two regions. FND patients had impaired instrumental avoidance learning, findings that parallel previous observations of impaired action-outcome binding. FND patients further show enhanced behavioural and neural sensitivity to negative information. However, this did not translate to improved avoidance learning. Put together, our findings do not support the theory of harm avoidance in FND. We highlight a potential mechanism by which

  12. Testosterone replacement in 49,XXXXY syndrome: andrological, metabolic and neurological aspects.

    Science.gov (United States)

    Mazzilli, Rossella; Delfino, Michele; Elia, Jlenia; Benedetti, Francesco; Alesi, Laura; Chessa, Luciana; Mazzilli, Fernando

    2016-01-01

    We report the case of a 19-year-old boy, presenting several congenital malformations (facial dysmorphisms, cardiac and musculoskeletal abnormalities), mental retardation, recurrent respiratory infections during growth and delayed puberty. Although previously hospitalised in other medical centres, only psychological support had been recommended for this patient. In our department, genetic, biochemical/hormonal and ultrasound examinations were undertaken. The karyotype was 49,XXXXY, a rare aneuploidy with an incidence of 1/85 000-100 000, characterised by the presence of three extra X chromosomes in phenotypically male subjects. The hormonal/biochemical profile showed hypergonadotropic hypogonadism, insulin resistance and vitamin D deficiency. The patient was then treated with testosterone replacement therapy. After 12 months of treatment, we observed the normalisation of testosterone levels. There was also an increase in pubic hair growth, testicular volume and penis size, weight loss, homeostatic model assessment index reduction and the normalisation of vitamin D values. Moreover, the patient showed greater interaction with the social environment and context. In cases of plurimalformative syndrome, cognitive impairment, recurrent infections during growth and, primarily, delayed puberty, it is necessary to ascertain as soon as possible whether the patient is suffering from hypogonadism or metabolic disorders due to genetic causes. In our case, the diagnosis of hypogonadism, and then of 49,XXXXY syndrome, was unfortunately made only at the age of 19 years.The testosterone replacement treatment, even though delayed, induced positive effects on: i) development of the reproductive system, ii) regulation of the metabolic profile and iii) interaction with the social environment and context.However, earlier and timely hormonal replacement treatment could probably have improved the quality of life of this subject and his family.

  13. AMPK in skeletal muscle function and metabolism

    DEFF Research Database (Denmark)

    Kjøbsted, Rasmus; Hingst, Janne Rasmuss; Fentz, Joachim

    2018-01-01

    highly changeable energy turnover. Due to the drastic changes in energy demand that occur between the resting and exercising state, skeletal muscle is one such tissue. Here, we review the complex regulation of AMPK in skeletal muscle and its consequences on metabolism (e.g., substrate uptake, oxidation......, and storage as well as mitochondrial function of skeletal muscle fibers). We focus on the role of AMPK in skeletal muscle during exercise and in exercise recovery. We also address adaptations to exercise training, including skeletal muscle plasticity, highlighting novel concepts and future perspectives...

  14. Inflammatory myelopathies and traumatic spinal cord lesions: comparison of functional and neurological outcomes.

    Science.gov (United States)

    Scivoletto, Giorgio; Cosentino, Elena; Mammone, Alessia; Molinari, Marco

    2008-04-01

    Outcomes knowledge is essential to answer patients' questions regarding function, to plan the use of resources, and to evaluate treatments to enhance recovery. The purpose of this study was to compare the outcomes of patients with traumatic spinal cord injury (SCI) with those of patients with inflammatory spinal cord lesions (ISCLs). The authors evaluated 181 subjects with traumatic SCI and 67 subjects with ISCLs. Using a matching cohorts procedure, 38 subjects were selected from each group. The measures used were the American Spinal Injury Association (ASIA) Impairment Scale (motor function), the Barthel Index (BI), the Rivermead Mobility Index (RMI), and the Walking Index for Spinal Cord Injury (WISCI). The subjects in the ISCL group were older than those in the SCI group, with a longer interval from onset of lesion to rehabilitation admission and more incomplete lesions. In the matching cohorts, at admission, the traumatic SCI group had RMI and WISCI scores comparable to those of the ISCL group, but the traumatic SCI group had lower scores on the BI (greater dependence on assistance for activities of daily living). At discharge, the 2 groups had comparable functional outcomes. The neurological status of the 2 groups was comparable at admission and discharge. The results indicate that, at admission, patients with SCI have a greater physical dependence for assistance with activities of daily living than patients with ISCLs who have comparable neurological status. Such a difference depends on factors not related to the spinal cord lesion, such as the presence of associated lesions, the need to wear an orthotic device, or the sequelae of surgery. The outcomes of patients with SCI are determined more by factors such as lesion level and severity and age than by etiology. This finding could have implications for health care planning and rehabilitation research.

  15. Survivors of cardiac arrest with good neurological outcome show considerable impairments of memory functioning.

    Science.gov (United States)

    Sulzgruber, Patrick; Kliegel, Andreas; Wandaller, Cosima; Uray, Thomas; Losert, Heidrun; Laggner, Anton N; Sterz, Fritz; Kliegel, Matthias

    2015-03-01

    Deficits in cognitive function are a well-known dysfunction in survivors of cardiac arrest. However, data concerning memory function in this neurological vulnerable patient collective remain scarce and inconclusive. Therefore, we aimed to assess multiple aspects of retrospective and prospective memory performance in patients after cardiac arrest. We prospectively enrolled 33 survivors of cardiac arrest, with cerebral performance categories (CPC) 1 and 2 and a control-group (n=33) matched in sex, age and educational-level. To assess retrospective and prospective memory performance we administrated 4 weeks after cardiac arrest the "Rey Adult Learning Test" (RAVLT), the "Digit-Span-Backwards Test", the "Logic-Memory Test" and the "Red-Pencil Test". Results indicate an impairment in immediate and delayed free recall, but not in recognition. However, the overall impairment in immediate recall was qualified by analyzing RAVLT performance, showing that patients were only impaired in trials 4 and 5 of the learning sequence. Moreover, working and prospective memory as well as prose recall were worse in cardiac arrest survivors. Cranial computed tomography was available in 61% of all patients (n=20) but there was no specific neurological damage detectable that could be linked to this cognitive impairment. Episodic long-term memory functioning appears to be particularly impaired after cardiac arrest. In contrast, short-term memory storage, even tested via free-call, seems not to be affected. Based on cranial computed tomography we suggest that global brain ischemia rather than focal brain lesions appear to underlie these effects. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Neurological, functional, and biomechanical characteristics after high-velocity behind armor blunt trauma of the spine.

    Science.gov (United States)

    Zhang, Bo; Huang, Yifeng; Su, Zhenglin; Wang, Shuangping; Wang, Shu; Wang, Jianmin; Wang, Aimin; Lai, Xinan

    2011-12-01

    Behind armor blunt trauma (BABT) describes a nonpenetrating injury to the organs of an individual wearing body armor. The aim of this study was to investigate the neurologic and functional changes that occur in the central nervous system after high-velocity BABT of the spine as well as its biomechanical characteristics. This study evaluated 28 healthy adult white pigs. Animals were randomly divided into three experimental groups: (1) 15 animals (9 in the exposed group and 6 in the control group) were tested for neurologic changes; (2) 10 animals (5 in the exposed group and 5 in the control group) were used for studies of cognitive function; (3) and 3 animals were used for examination of biomechanics. In the group tested for neurologic changes, 9 anesthetized pigs wearing body armor (including a ceramic plate and polyethylene body armor) on the back were shot on the eighth thoracic vertebrae (T8) with a 5.56-mm rifle bullet (velocity appropriately 910 m/s). As a control, six pigs were shot with blank ammunition. Ultrastructural changes of the spinal cord and brain tissue were observed with light and electron microscopy. Expression levels of myelin basic protein, neuron-specific enolase (NSE), and glial cytoplasmic protein (S-100B) were investigated in the serum and cerebrospinal fluid using enzyme-linked immunosorbent assays. Electroencephalograms (EEGs) were monitored before and 10 minutes after the shot. Pressures in the spine, common carotid artery, and brain were detected. Acceleration of the 10th vertebrae (T10) was tested. Finally, cognitive outcomes between exposed and control groups were compared. Neuronal degeneration and nerve fiber demyelination were seen in the spinal cord. The concentrations of neuron-specific enolase, myelin basic protein, and S-100B were significantly increased in the serum and cerebrospinal fluid 3 hours after trauma (p < 0.05). The electroencephalogram was suppressed within 3 to 6 minutes after trauma. The pressure detected in the

  17. Mechanisms of action for the medium-chain triglyceride ketogenic diet in neurological and metabolic disorders.

    Science.gov (United States)

    Augustin, Katrin; Khabbush, Aziza; Williams, Sophie; Eaton, Simon; Orford, Michael; Cross, J Helen; Heales, Simon J R; Walker, Matthew C; Williams, Robin S B

    2018-01-01

    High-fat, low-carbohydrate diets, known as ketogenic diets, have been used as a non-pharmacological treatment for refractory epilepsy. A key mechanism of this treatment is thought to be the generation of ketones, which provide brain cells (neurons and astrocytes) with an energy source that is more efficient than glucose, resulting in beneficial downstream metabolic changes, such as increasing adenosine levels, which might have effects on seizure control. However, some studies have challenged the central role of ketones because medium-chain fatty acids, which are part of a commonly used variation of the diet (the medium-chain triglyceride ketogenic diet), have been shown to directly inhibit AMPA receptors (glutamate receptors), and to change cell energetics through mitochondrial biogenesis. Through these mechanisms, medium-chain fatty acids rather than ketones are likely to block seizure onset and raise seizure threshold. The mechanisms underlying the ketogenic diet might also have roles in other disorders, such as preventing neurodegeneration in Alzheimer's disease, the proliferation and spread of cancer, and insulin resistance in type 2 diabetes. Analysing medium-chain fatty acids in future ketogenic diet studies will provide further insights into their importance in modified forms of the diet. Moreover, the results of these studies could facilitate the development of new pharmacological and dietary therapies for epilepsy and other disorders. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Impaired functional default mode network in patients with mild neurological Wilson's disease.

    Science.gov (United States)

    Han, Yongsheng; Cheng, Hewei; Toledo, Jon B; Wang, Xun; Li, Bo; Han, Yongzhu; Wang, Kai; Fan, Yong

    2016-09-01

    Wilson's disease (WD) is an autosomal recessive metabolic disorder characterized by cognitive, psychiatric and motor signs and symptoms that are associated with structural and pathological brain abnormalities, in addition to liver changes. However, functional brain connectivity pattern of WD patients remains largely unknown. In the present study, we investigated functional brain connectivity pattern of WD patients using resting state functional magnetic resonance imaging. Particularly, we studied default mode network (DMN) using posterior cingulate cortex (PCC) based seed functional connectivity analysis and graph theoretic functional brain network analysis tools, and investigated the relationship between the DMN's functional connectivity pattern of WD patients and their attention functions examined using the attention network test (ANT). Our results demonstrated that WD patients had altered DMN's functional connectivity and lower local and global network efficiency compared with normal controls (NCs). In addition, the functional connectivity between left inferior temporal cortex and right lateral parietal cortex was correlated with altering function, one of the attention functions, across WD and NC subjects. These findings indicated that the DMN's functional connectivity was altered in WD patients, which might be correlated with their attention dysfunction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Maresin 1 Promotes Inflammatory Resolution, Neuroprotection, and Functional Neurological Recovery After Spinal Cord Injury.

    Science.gov (United States)

    Francos-Quijorna, Isaac; Santos-Nogueira, Eva; Gronert, Karsten; Sullivan, Aaron B; Kopp, Marcel A; Brommer, Benedikt; David, Samuel; Schwab, Jan M; López-Vales, Ruben

    2017-11-29

    Resolution of inflammation is defective after spinal cord injury (SCI), which impairs tissue integrity and remodeling and leads to functional deficits. Effective pharmacological treatments for SCI are not currently available. Maresin 1 (MaR1) is a highly conserved specialized proresolving mediator (SPM) hosting potent anti-inflammatory and proresolving properties with potent tissue regenerative actions. Here, we provide evidence that the inappropriate biosynthesis of SPM in the lesioned spinal cord hampers the resolution of inflammation and leads to deleterious consequences on neurological outcome in adult female mice. We report that, after spinal cord contusion injury in adult female mice, the biosynthesis of SPM is not induced in the lesion site up to 2 weeks after injury. Exogenous administration of MaR1, a highly conserved SPM, propagated inflammatory resolution after SCI, as revealed by accelerated clearance of neutrophils and a reduction in macrophage accumulation at the lesion site. In the search of mechanisms underlying the proresolving actions of MaR1 in SCI, we found that this SPM facilitated several hallmarks of resolution of inflammation, including reduction of proinflammatory cytokines (CXCL1, CXCL2, CCL3, CCL4, IL6, and CSF3), silencing of major inflammatory intracellular signaling cascades (STAT1, STAT3, STAT5, p38, and ERK1/2), redirection of macrophage activation toward a prorepair phenotype, and increase of the phagocytic engulfment of neutrophils by macrophages. Interestingly, MaR1 administration improved locomotor recovery significantly and mitigated secondary injury progression in a clinical relevant model of SCI. These findings suggest that proresolution, immunoresolvent therapies constitute a novel approach to improving neurological recovery after acute SCI. SIGNIFICANCE STATEMENT Inflammation is a protective response to injury or infection. To result in tissue homeostasis, inflammation has to resolve over time. Incomplete or delayed

  20. Changes in Emotion Processing following Brief Augmented Psychodynamic Interpersonal Therapy for Functional Neurological Symptoms.

    Science.gov (United States)

    Williams, Isobel Anne; Howlett, Stephanie; Levita, Liat; Reuber, Markus

    2018-01-25

    Functional neurological symptoms (FNS) are considered non-volitional and often very disabling, but are not explainable by neurological disease or structural abnormalities. Brief Augmented Psychodynamic Interpersonal Therapy (BAPIT) was adapted to treat the putative emotion processing deficits thought to be central to FNS aetiology and maintenance. BAPIT for FNS has previously been shown to improve levels of distress and functioning, but it is unknown whether improvements on such measures correlate with changes in emotion processing ‒ which this treatment focuses on. To determine (a) whether the recently developed Emotional Processing Scale-25 can be used to demonstrate BAPIT-associated changes in patients with FNS, and (b) whether changes in the EPS-25 are associated with changes in previously validated outcome measures. 44 patients with FNS completed questionnaires including the EPS-25 and measures of clinical symptomology (health-related quality of life (SF-36), somatic symptoms (PHQ-15), psychological distress (CORE-10) and illness understanding (BIPQ)) pre- and post-therapy. At group level, emotion processing improved following therapy (p = .049). Some measures of clinical symptomology also improved, namely health-related quality of life (p = .02) and illness understanding (p = .01). Improvements in the EPS-25 correlated with improvements in mental health-related quality of life and psychological distress. Emotion processing and some measures of clinical symptomology improved in patients with FNS following BAPIT. The EPS-25 demonstrated changes that correlated with previously validated outcome measures. The EPS-25 is a suitable measure of psychotherapy-associated change in the FNS patient population.

  1. Modeling Neurological Disease by Rapid Conversion of Human Urine Cells into Functional Neurons

    Directory of Open Access Journals (Sweden)

    Shu-Zhen Zhang

    2016-01-01

    Full Text Available Somatic cells can be directly converted into functional neurons by ectopic expression of defined factors and/or microRNAs. Since the first report of conversion mouse embryonic fibroblasts into functional neurons, the postnatal mouse, and human fibroblasts, astroglia, hepatocytes, and pericyte-derived cells have been converted into functional dopaminergic and motor neurons both in vitro and in vivo. However, it is invasive to get all these materials. In the current study, we provide a noninvasive approach to obtain directly reprogrammed functional neurons by overexpression of the transcription factors Ascl1, Brn2, NeuroD, c-Myc, and Myt1l in human urine cells. These induced neuronal (iN cells could express multiple neuron-specific proteins and generate action potentials. Moreover, urine cells from Wilson’s disease (WD patient could also be directly converted into neurons. In conclusion, generation of iN cells from nonneural lineages is a feasible and befitting approach for neurological disease modeling.

  2. Neurological and functional recovery in acute transverse myelitis patients with inpatient rehabilitation and magnetic resonance imaging correlates.

    Science.gov (United States)

    Gupta, A; Kumar, S N; Taly, A B

    2016-10-01

    The objective of this study was to observe neurological and functional recovery in patients with acute transverse myelitis (ATM) with inpatient rehabilitation and correlate with magnetic resonance imaging (MRI) changes. The study was conducted with 43 ATM patients (19 males) admitted in the tertiary university research hospital from July 2012 to June 2014. Detailed MRI findings were noted. Neurological status was assessed using the ASIA impairment scale (AIS) and functional recovery was assessed using the Barthel Index score (BI) and Spinal Cord Independence Measure (SCIM). Patients showed significant neurological and functional recovery with inpatient rehabilitation using AIS, BI and SCIM scales when admission and discharge scores were compared (P<0.001). Thirty-one patients (72.1%) had rostral level in the cervical region according to MR imaging, but clinically, 17 patients had tetraplegia, whereas 26 patients had lower-limb weakness only. No definitive pattern or correlation was found between level (MRI or clinical) and neurological status (AIS). The neurological outcome in patients with ATM cannot be predicted on the basis of imaging findings. There is a great variation in the imaging level and clinical presentation. Patients show significant improvement with inpatient rehabilitation even with poor functional ability in acute and sub-acute phase of illness.

  3. Subjective Evaluation of Mood and Cognitive Functions in a General Neurology Clinic: Patients versus Informants

    Science.gov (United States)

    Del Barrio, Antonio; Riva, Elena; Campo, Pablo; Toledano, Rafael; Franch, Oriol

    2017-01-01

    Background and Purpose We aimed to determine the correlation between subjective evaluations of mood and cognitive functions by patients and informants, and the findings of a battery of neuropsychological tests. Methods We analyzed 74 subjects recruited from a general neurology clinic, comprising 37 patients with cognitive complaints and 37 informants (either relatives or caregivers in close contact with the patients). Four ordinal scales concerning recent memory, verbal expression, initiative, and mood were correlated with the findings of a series of neuropsychological tests and questionnaires using the tau b coefficient. Results The scores for the patients on the scales were most strongly correlated with scores on the 15-item Geriatric Depression Scale (GDS-15), while the scores for the informants were most strongly correlated with scores on GDS-15, the Informant Questionnaire on Cognitive Decline, and the Functional Activities Questionnaire (FAQ). The most significant correlation was between the initiative scale from informants and FAQ (tau b=-0.591, p<0.001), and it was the only one that remained significant after correcting for multiple testing (p Holm=0.013). Conclusions Cognitive complaints from patients mainly reflect their mood, whilst informant reports mainly reflect both the functional ability and mood of the patients. PMID:28748677

  4. Cingulo-insular structural alterations associated with psychogenic symptoms, childhood abuse and PTSD in functional neurological disorders.

    Science.gov (United States)

    Perez, David L; Matin, Nassim; Barsky, Arthur; Costumero-Ramos, Victor; Makaretz, Sara J; Young, Sigrid S; Sepulcre, Jorge; LaFrance, W Curt; Keshavan, Matcheri S; Dickerson, Bradford C

    2017-06-01

    Adverse early-life events are predisposing factors for functional neurological disorder (FND) and post-traumatic stress disorder (PTSD). Cingulo-insular regions are implicated in the biology of both conditions and are sites of stress-mediated neuroplasticity. We hypothesised that functional neurological symptoms and the magnitude of childhood abuse would be associated with overlapping anterior cingulate cortex (ACC) and insular volumetric reductions, and that FND and PTSD symptoms would map onto distinct cingulo-insular areas. This within-group voxel-based morphometry study probes volumetric associations with self-report measures of functional neurological symptoms, adverse life events and PTSD symptoms in 23 mixed-gender FND patients. Separate secondary analyses were also performed in the subset of 18 women with FND to account for gender-specific effects. Across the entire cohort, there were no statistically significant volumetric associations with self-report measures of functional neurological symptom severity or childhood abuse. In women with FND, however, parallel inverse associations were observed between left anterior insular volume and functional neurological symptoms as measured by the Patient Health Questionnaire-15 and the Screening for Somatoform Symptoms Conversion Disorder subscale. Similar inverse relationships were also appreciated between childhood abuse burden and left anterior insular volume. Across all subjects, PTSD symptom severity was inversely associated with dorsal ACC volume, and the magnitude of lifetime adverse events was inversely associated with left hippocampal volume. This study reveals distinct cingulo-insular alterations for FND and PTSD symptoms and may advance our understanding of FND. Potential biological convergence between stress-related neuroplasticity, functional neurological symptoms and reduced insular volume was identified. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017

  5. High serum uric acid levels are a protective factor against unfavourable neurological functional outcome in patients with ischaemic stroke.

    Science.gov (United States)

    Wang, Yu-Fang; Li, Jiao-Xing; Sun, Xun-Sha; Lai, Rong; Sheng, Wen-Li

    2018-01-01

    Objective We aimed to evaluate the association between serum uric acid levels at the onset and prognostic outcome in patients with acute ischaemic stroke. Methods We retrospectively analysed the outcomes of 1166 patients with ischaemic stroke who were hospitalized in our centre during August 2008 to November 2012. Correlations of serum uric acid levels and prognostic outcomes were analysed. Results Men had higher serum uric acid levels and better neurological functional outcomes compared with women. There was a strong negative correlation between serum uric acid levels and unfavourable neurological functional outcomes. Generalized estimated equation analysis showed that a higher serum uric acid level (>237 µmol/L) was a protective factor for neurological functional outcome in male, but not female, patients. Among five trial of ORG 10172 in acute stroke treatment classification subtypes, only patients with the large-artery atherosclerosis subtype had a significant protective effect of serum uric acid levels on neurological outcome. Conclusions Our study shows that high serum uric acid levels are a significant protective factor in men and in the large-artery atherosclerosis subtype in patients with ischaemic stroke. This is helpful for determining the prognostic value of serum uric acid levels for neurological outcome of acute ischaemic stroke.

  6. A preliminary investigation of sleep quality in functional neurological disorders: Poor sleep appears common, and is associated with functional impairment.

    Science.gov (United States)

    Graham, Christopher D; Kyle, Simon D

    2017-07-15

    Functional neurological disorders (FND) are disabling conditions for which there are few empirically-supported treatments. Disturbed sleep appears to be part of the FND context; however, the clinical importance of sleep disturbance (extent, characteristics and impact) remains largely unknown. We described sleep quality in two samples, and investigated the relationship between sleep and FND-related functional impairment. We included a sample recruited online via patient charities (N=205) and a consecutive clinical sample (N=20). Participants completed validated measures of sleep quality and sleep characteristics (e.g. total sleep time, sleep efficiency), mood, and FND-related functional impairment. Poor sleep was common in both samples (89% in the clinical range), which was characterised by low sleep efficiency (M=65.40%) and low total sleep time (M=6.05h). In regression analysis, sleep quality was negatively associated with FND-related functional impairment, accounting for 16% of the variance and remaining significant after the introduction of mood variables. These preliminary analyses suggest that subjective sleep disturbance (low efficiency, short sleep) is common in FND. Sleep quality was negatively associated with the functional impairment attributed to FND, independent of depression. Therefore, sleep disturbance may be a clinically important feature of FND. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Emotion regulation and functional neurological symptoms: Does emotion processing convert into sensorimotor activity?

    Science.gov (United States)

    Fiess, Johanna; Rockstroh, Brigitte; Schmidt, Roger; Steffen, Astrid

    2015-12-01

    Functional neurological symptoms (FNS) are hypothetically explained as a shift of emotion processing to sensorimotor deficits, but psychophysiological evidence supporting this hypothesis is scarce. The present study measured neuromagnetic and somatic sensation during emotion regulation to examine frontocortical and sensorimotor activity as signals of altered emotion processing. Magnetoencephalographic (MEG) activity was mapped during an emotion regulation task in 20 patients with FNS and 20 healthy comparison participants (HC). Participants were instructed to (A) passively watch unpleasant or neutral pictures or (B) down-regulate their emotional response to unpleasant pictures utilizing cognitive reappraisal strategies. Group- and task-specific cortical activity was evaluated via 8-12 Hz (alpha) power modulation, while modulation of somatic sensation was measured via perception and discomfort thresholds of transcutaneous electrical nerve stimulation. Implementing emotion regulation strategies induced frontocortical alpha power modulation in HC but not in patients, who showed prominent activity modulation in sensorimotor regions. Compared to HC, discomfort threshold for transcutaneous stimulation decreased after the task in patients, who also expressed increased symptom intensity. Reduced frontocortical, but enhanced sensorimotor involvement in emotion regulation efforts offers a trace to modeling a conversion of (aversive) feelings into (aversive) somatic sensations in FNS. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Ginkgo biloba extract improved cognitive and neurological functions of acute ischaemic stroke: a randomised controlled trial

    Science.gov (United States)

    Li, Shanshan; Zhang, Xinjiang; Fang, Qi; Zhou, Junshan; Zhang, Meijuan; Wang, Hui; Chen, Yan; Xu, Biyun; Wu, Yanfeng; Qian, Lai

    2017-01-01

    Purpose To evaluate the efficacy and safety of Ginkgo biloba extract (GBE) in acute ischaemic stroke and its impact on the recurrence of vascular events. Methods We conducted a multicentre, prospective, randomised, open label, blinded, controlled clinical trial enrollingpatients with an onset of acute stroke within 7 days from five hospitals in China Jiangsu Province. Participants were assigned to the GBE group (450 mg GBE with 100 mg aspirin daily) or the control group (100 mg aspirin daily) for 6 months. The primary outcome was the decline in the Montreal Cognitive Assessment score at 6 months. Secondary outcomes were other neuropsychological tests of cognitive and neurological function, the the incidence of adverse events and vascular events. Results 348 patients were enrolled: 179 in the GBE group and 169 in the control group. With 18 patients lost to follow-up, the dropout rate was 5.17%. Admission data between two groups were similar, but in the GBE group there was a marked slow down in the decline in the Montreal Cognitive Assessment scores (−2.77±0.21 vs −1.99±0.23, P=0.0116 (30 days); −3.34±0.24 vs −2.48±0.26, P=0.0165 (90 days); −4.00±0.26 vs −2.71±0.26, P=0.0004 (180 days)) compared with controls. The National Institutes of Health Stroke Scale scores at 12 and 30 days, the modified Rankin Scale scores for independent rate at 30, 90 and 180 days, and the Barthel Index scores at 30, 90 and 180 days in the GBE group were significantly improved compared with controls. Improvements were also observedin GBE groups for Mini-Metal State Examination scores of 30, 90 and 180 days, Webster’s digit symbol test scores at 30 days and Executive Dysfunction Index scores at 30 and 180 days. No significant differences were seen in the incidence of adverse events or vascular events. Conclusions We conclude that GBE in combination with aspirin treatment alleviated cognitive and neurological deficits after acute ischaemic stroke without increasing

  9. Neurological disease mutations of α3 Na+,K+-ATPase: Structural and functional perspectives and rescue of compromised function.

    Science.gov (United States)

    Holm, Rikke; Toustrup-Jensen, Mads S; Einholm, Anja P; Schack, Vivien R; Andersen, Jens P; Vilsen, Bente

    2016-11-01

    Na + ,K + -ATPase creates transmembrane ion gradients crucial to the function of the central nervous system. The α-subunit of Na + ,K + -ATPase exists as four isoforms (α1-α4). Several neurological phenotypes derive from α3 mutations. The effects of some of these mutations on Na + ,K + -ATPase function have been studied in vitro. Here we discuss the α3 disease mutations as well as information derived from studies of corresponding mutations of α1 in the light of the high-resolution crystal structures of the Na + ,K + -ATPase. A high proportion of the α3 disease mutations occur in the transmembrane sector and nearby regions essential to Na + and K + binding. In several cases the compromised function can be traced to disturbance of the Na + specific binding site III. Recently, a secondary mutation was found to rescue the defective Na + binding caused by a disease mutation. A perspective is that it may be possible to develop an efficient pharmaceutical mimicking the rescuing effect. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Effects of professional rehabilitation training on the recovery of neurological function in young stroke patients

    Directory of Open Access Journals (Sweden)

    Chao-jin-zi Li

    2016-01-01

    Full Text Available Young stroke patients have a strong desire to return to the society, but few studies have been conducted on their rehabilitation training items, intensity, and prognosis. We analyzed clinical data of young and middle-aged/older stroke patients hospitalized in the Department of Neurological Rehabilitation, China Rehabilitation Research Center, Capital Medical University, China from February 2014 to May 2015. Results demonstrated that hemorrhagic stroke (59.6% was the primary stroke type found in the young group, while ischemic stroke (60.0% was the main type detected in the middle-aged/older group. Compared with older stroke patients, education level and incidence of hyperhomocysteinemia were higher in younger stroke patients, whereas, incidences of hypertension, diabetes, and heart disease were lower. The average length of hospital stay was longer in the young group than in the middle-aged/older group. The main risk factors observed in the young stroke patients were hypertension, drinking, smoking, hyperlipidemia, hyperhomocysteinemia, diabetes, previous history of stroke, and heart disease. The most accepted rehabilitation program consisted of physiotherapy, occupational therapy, speech therapy, acupuncture and moxibustion. Average rehabilitation training time was 2.5 hours/day. Barthel Index and modified Rankin Scale scores were increased at discharge. Six months after discharge, the degree of occupational and economic satisfaction declined, and there were no changes in family life satisfaction. The degrees of other life satisfaction (such as friendship improved. The degree of disability and functional status improved significantly in young stroke patients after professional rehabilitation, but the number of patients who returned to society within 6 months after stroke was still small.

  11. Resilience linked to personality dimensions, alexithymia and affective symptoms in motor functional neurological disorders.

    Science.gov (United States)

    Jalilianhasanpour, Rozita; Williams, Benjamin; Gilman, Isabelle; Burke, Matthew J; Glass, Sean; Fricchione, Gregory L; Keshavan, Matcheri S; LaFrance, W Curt; Perez, David L

    2018-04-01

    Reduced resilience, a construct associated with maladaptive stress coping and a predisposing vulnerability for Functional Neurological Disorders (FND), has been under-studied compared to other neuropsychiatric factors in FND. This prospective case-control study investigated self-reported resilience in patients with FND compared to controls and examined relationships between resilience and affective symptoms, personality traits, alexithymia, health status and adverse life event burden. 50 individuals with motor FND and 47 healthy controls participated. A univariate test followed by a logistic regression analysis investigated group-level differences in Connor-Davidson Resilience Scale (CD-RISC) scores. For within-group analyses performed separately in patients with FND and controls, univariate screening tests followed by multivariate linear regression analyses examined factors associated with self-reported resilience. Adjusting for age, gender, education status, ethnicity and lifetime adverse event burden, patients with FND reported reduced resilience compared to controls. Within-group analyses in patients with FND showed that individual-differences in mental health, extraversion, conscientiousness, and openness positively correlated with CD-RISC scores; post-traumatic stress disorder symptom severity, depression, anxiety, alexithymia and neuroticism scores negatively correlated with CD-RISC scores. Extraversion independently predicted resilience scores in patients with FND. In control subjects, univariate associations were appreciated between CD-RISC scores and gender, personality traits, anxiety, alexithymia and physical health; conscientiousness independently predicted resilience in controls. Patients with FND reported reduced resilience, and CD-RISC scores covaried with other important predisposing vulnerabilities for the development of FND. Future research should investigate if the CD-RISC is predictive of clinical outcomes in patients with FND. Copyright

  12. Soft Robotic Haptic Interface with Variable Stiffness for Rehabilitation of Neurologically Impaired Hand Function

    Directory of Open Access Journals (Sweden)

    Frederick Sebastian

    2017-12-01

    Full Text Available The human hand comprises complex sensorimotor functions that can be impaired by neurological diseases and traumatic injuries. Effective rehabilitation can bring the impaired hand back to a functional state because of the plasticity of the central nervous system to relearn and remodel the lost synapses in the brain. Current rehabilitation therapies focus on strengthening motor skills, such as grasping, employ multiple objects of varying stiffness so that affected persons can experience a wide range of strength training. These devices have limited range of stiffness due to the rigid mechanisms employed in their variable stiffness actuators. This paper presents a novel soft robotic haptic device for neuromuscular rehabilitation of the hand, which is designed to offer adjustable stiffness and can be utilized in both clinical and home settings. The device eliminates the need for multiple objects by employing a pneumatic soft structure made with highly compliant materials that act as the actuator of the haptic interface. It is made with interchangeable sleeves that can be customized to include materials of varying stiffness to increase the upper limit of the stiffness range. The device is fabricated using existing 3D printing technologies, and polymer molding and casting techniques, thus keeping the cost low and throughput high. The haptic interface is linked to either an open-loop system that allows for an increased pressure during usage or closed-loop system that provides pressure regulation in accordance to the stiffness the user specifies. Preliminary evaluation is performed to characterize the effective controllable region of variance in stiffness. It was found that the region of controllable stiffness was between points 3 and 7, where the stiffness appeared to plateau with each increase in pressure. The two control systems are tested to derive relationships between internal pressure, grasping force exertion on the surface, and displacement using

  13. Factors Associated With Neurological Recovery of Brainstem Function Following Postoperative Conformal Radiation Therapy for Infratentorial Ependymoma

    International Nuclear Information System (INIS)

    Merchant, Thomas E.; Chitti, Ramana M.; Li Chenghong; Xiong Xiaoping; Sanford, Robert A.; Khan, Raja B.

    2010-01-01

    Purpose: To identify risk factors associated with incomplete neurological recovery in pediatric patients with infratentorial ependymoma treated with postoperative conformal radiation therapy (CRT). Methods: The study included 68 patients (median age ± standard deviation of 2.6 ± 3.8 years) who were followed for 5 years after receiving CRT (54-59.4 Gy) and were assessed for function of cranial nerves V to VII and IX to XII, motor weakness, and dysmetria. The mean (± standard deviation) brainstem dose was 5,487 (±464) cGy. Patients were divided into four groups representing those with normal baseline and follow-up, those with abnormal baseline and full recovery, those with abnormal baseline and partial or no recovery, and those with progressive deficits at 12 (n = 62 patients), 24 (n = 57 patients), and 60 (n = 50 patients) months. Grouping was correlated with clinical and treatment factors. Results: Risk factors (overall risk [OR], p value) associated with incomplete recovery included gender (male vs. female, OR = 3.97, p = 0.036) and gross tumor volume (GTV) (OR/ml = 1.23, p = 0.005) at 12 months, the number of resections (>1 vs. 1; OR = 23.7, p = 0.003) and patient age (OR/year = 0.77, p = 0.029) at 24 months, and cerebrospinal fluid (CSF) shunting (Yes vs. No; OR = 21.9, p = 0.001) and GTV volume (OR/ml = 1.18, p = 0.008) at 60 months. An increase in GTV correlated with an increase in the number of resections (p = 0.001) and CSF shunting (p = 0.035); the number of resections correlated with CSF shunting (p < 0.0001), and male patients were more likely to undergo multiple tumor resections (p = 0.003). Age correlated with brainstem volume (p < 0.0001). There were no differences in outcome based on the absolute or relative volume of the brainstem that received more than 54 Gy. Conclusions: Incomplete recovery of brainstem function after CRT for infratentorial ependymoma is related to surgical morbidity and the volume and the extent of tumor.

  14. Smith-Magenis syndrome: haploinsufficiency of RAI1 results in altered gene regulation in neurological and metabolic pathways.

    Science.gov (United States)

    Elsea, Sarah H; Williams, Stephen R

    2011-04-19

    Smith-Magenis syndrome (SMS) is a complex neurobehavioural disorder characterised by intellectual disability, self-injurious behaviours, sleep disturbance, obesity, and craniofacial and skeletal anomalies. Diagnostic strategies are focused towards identification of a 17p11.2 microdeletion encompassing the gene RAI1 (retinoic acid induced 1) or a mutation of RAI1. Molecular evidence shows that most SMS features are due to RAI1 haploinsufficiency, whereas variability and severity are modified by other genes in the 17p11.2 region for 17p11.2 deletion cases. The functional role of RAI1 is not completely understood, but it is probably a transcription factor acting in several different biological pathways that are dysregulated in SMS. Functional studies based on the hypothesis that RAI1 acts through phenotype-specific pathways involving several downstream genes have shown that RAI1 gene dosage is crucial for normal regulation of circadian rhythm, lipid metabolism and neurotransmitter function. Here, we review the clinical and molecular features of SMS and explore more recent studies supporting possible therapeutic strategies for behavioural management.

  15. microRNA involvement in developmental and functional aspects of the nervous system and in neurological diseases

    DEFF Research Database (Denmark)

    Christensen, Mette; Schratt, Gerhard M

    2009-01-01

    microRNAs, small non-coding RNAs that regulate gene expression at the post-transcriptional level, are emerging as important regulatory molecules involved in the fine-tuning of gene expression during neuronal development and function. microRNAs have roles during neuronal stem cell commitment...... and early differentiation as well as in later stages of neuronal development, such as dendritogenesis and synaptic plasticity. A link between microRNAs and neurological diseases, such as neurodegeneration or synaptic dysfunction, is becoming increasingly clear. This review summarizes the current knowledge...... of the function of microRNAs in the developing and adult nervous system and their potential contribution to the etiology of neurological diseases....

  16. Calcium metabolism and cardiovascular function after spaceflight

    Science.gov (United States)

    Hatton, Daniel C.; Yue, Qi; Dierickx, Jacqueline; Roullet, Chantal; Otsuka, Keiichi; Watanabe, Mitsuaki; Coste, Sarah; Roullet, Jean Baptiste; Phanouvang, Thongchan; Orwoll, Eric; hide

    2002-01-01

    To determine the influence of dietary calcium on spaceflight-induced alterations in calcium metabolism and blood pressure (BP), 9-wk-old spontaneously hypertensive rats, fed either high- (2%) or low-calcium (0.02%) diets, were flown on an 18-day shuttle flight. On landing, flight animals had increased ionized calcium (P Basal and thrombin-stimulated platelet free calcium (intracellular calcium concentration) were also reduced (P metabolism (P metabolism are relatively impervious to dietary calcium in the short term, 2) increased ionized calcium did not normalize low-calcium-induced elevations of BP, and 3) parathyroid hormone was paradoxically increased in the high-calcium-fed flight animals after landing.

  17. 2011 Plant Lipids: Structure, Metabolism, & Function Gordon Research Conference

    Energy Technology Data Exchange (ETDEWEB)

    Christopher Benning

    2011-02-04

    This is the second Gordon Research Conference on 'Plant Lipids: Structure, Metabolism & Function'. It covers current topics in lipid structure, metabolism and function in eukaryotic photosynthetic organisms including seed plants, algae, mosses and ferns. Work in photosynthetic bacteria is considered as well as it serves the understanding of specific aspects of lipid metabolism in plants. Breakthroughs are discussed in research on plant lipids as diverse as glycerolipids, sphingolipids, lipids of the cell surface, isoprenoids, fatty acids and their derivatives. The program covers nine concepts at the forefront of research under which afore mentioned plant lipid classes are discussed. The goal is to integrate areas such as lipid signaling, basic lipid metabolism, membrane function, lipid analysis, and lipid engineering to achieve a high level of stimulating interaction among diverse researchers with interests in plant lipids. One Emphasis is on the dynamics and regulation of lipid metabolism during plant cell development and in response to environmental factors.

  18. Intrathecal Transplantation of Autologous Adherent Bone Marrow Cells Induces Functional Neurological Recovery in a Canine Model of Spinal Cord Injury.

    Science.gov (United States)

    Gabr, Hala; El-Kheir, Wael Abo; Farghali, Haithem A M A; Ismail, Zeinab M K; Zickri, Maha B; El Maadawi, Zeinab M; Kishk, Nirmeen A; Sabaawy, Hatem E

    2015-01-01

    Spinal cord injury (SCI) results in demyelination of surviving axons, loss of oligodendrocytes, and impairment of motor and sensory functions. We have developed a clinical strategy of cell therapy for SCI through the use of autologous bone marrow cells for transplantation to augment remyelination and enhance neurological repair. In a preclinical large mammalian model of SCI, experimental dogs were subjected to a clipping contusion of the spinal cord. Two weeks after the injury, GFP-labeled autologous minimally manipulated adherent bone marrow cells (ABMCs) were transplanted intrathecally to investigate the safety and efficacy of autologous ABMC therapy. The effects of ABMC transplantation in dogs with SCI were determined using functional neurological scoring, and the integration of ABMCs into the injured cords was determined using histopathological and immunohistochemical investigations and electron microscopic analyses of sections from control and transplanted spinal cords. Our data demonstrate the presence of GFP-labeled cells in the injured spinal cord for up to 16 weeks after transplantation in the subacute SCI stage. GFP-labeled cells homed to the site of injury and were detected around white matter tracts and surviving axons. ABMC therapy in the canine SCI model enhanced remyelination and augmented neural regeneration, resulting in improved neurological functions. Therefore, autologous ABMC therapy appears to be a safe and promising therapy for spinal cord injuries.

  19. Accessing Autonomic Function Can Early Screen Metabolic Syndrome

    Science.gov (United States)

    Dai, Meng; Li, Mian; Yang, Zhi; Xu, Min; Xu, Yu; Lu, Jieli; Chen, Yuhong; Liu, Jianmin; Ning, Guang; Bi, Yufang

    2012-01-01

    Background Clinical diagnosis of the metabolic syndrome is time-consuming and invasive. Convenient instruments that do not require laboratory or physical investigation would be useful in early screening individuals at high risk of metabolic syndrome. Examination of the autonomic function can be taken as a directly reference and screening indicator for predicting metabolic syndrome. Methodology and Principal Findings The EZSCAN test, as an efficient and noninvasive technology, can access autonomic function through measuring electrochemical skin conductance. In this study, we used EZSCAN value to evaluate autonomic function and to detect metabolic syndrome in 5,887 participants aged 40 years or older. The EZSCAN test diagnostic accuracy was analyzed by receiver operating characteristic curves. Among the 5,815 participants in the final analysis, 2,541 were diagnosed as metabolic syndrome and the overall prevalence was 43.7%. Prevalence of the metabolic syndrome increased with the elevated EZSCAN risk level (p for trend metabolic syndrome components (p for trend metabolic syndrome after the multiple adjustments. The area under the curve of the EZSCAN test was 0.62 (95% confidence interval [CI], 0.61–0.64) for predicting metabolic syndrome. The optimal operating point for the EZSCAN value to detect a high risk of prevalent metabolic syndrome was 30 in this study, while the sensitivity and specificity were 71.2% and 46.7%, respectively. Conclusions and Significance In conclusion, although less sensitive and accurate when compared with the clinical definition of metabolic syndrome, we found that the EZSCAN test is a good and simple screening technique for early predicting metabolic syndrome. PMID:22916265

  20. Accessing autonomic function can early screen metabolic syndrome.

    Directory of Open Access Journals (Sweden)

    Kan Sun

    Full Text Available BACKGROUND: Clinical diagnosis of the metabolic syndrome is time-consuming and invasive. Convenient instruments that do not require laboratory or physical investigation would be useful in early screening individuals at high risk of metabolic syndrome. Examination of the autonomic function can be taken as a directly reference and screening indicator for predicting metabolic syndrome. METHODOLOGY AND PRINCIPAL FINDINGS: The EZSCAN test, as an efficient and noninvasive technology, can access autonomic function through measuring electrochemical skin conductance. In this study, we used EZSCAN value to evaluate autonomic function and to detect metabolic syndrome in 5,887 participants aged 40 years or older. The EZSCAN test diagnostic accuracy was analyzed by receiver operating characteristic curves. Among the 5,815 participants in the final analysis, 2,541 were diagnosed as metabolic syndrome and the overall prevalence was 43.7%. Prevalence of the metabolic syndrome increased with the elevated EZSCAN risk level (p for trend <0.0001. Moreover, EZSCAN value was associated with an increase in the number of metabolic syndrome components (p for trend <0.0001. Compared with the no risk group (EZSCAN value 0-24, participants at the high risk group (EZSCAN value: 50-100 had a 2.35 fold increased risk of prevalent metabolic syndrome after the multiple adjustments. The area under the curve of the EZSCAN test was 0.62 (95% confidence interval [CI], 0.61-0.64 for predicting metabolic syndrome. The optimal operating point for the EZSCAN value to detect a high risk of prevalent metabolic syndrome was 30 in this study, while the sensitivity and specificity were 71.2% and 46.7%, respectively. CONCLUSIONS AND SIGNIFICANCE: In conclusion, although less sensitive and accurate when compared with the clinical definition of metabolic syndrome, we found that the EZSCAN test is a good and simple screening technique for early predicting metabolic syndrome.

  1. Cardio-metabolic risk factors and cortical thickness in a neurologically healthy male population: Results from the psychological, social and biological determinants of ill health (pSoBid) study.

    Science.gov (United States)

    Krishnadas, Rajeev; McLean, John; Batty, G David; Batty, David G; Burns, Harry; Deans, Kevin A; Ford, Ian; McConnachie, Alex; McGinty, Agnes; McLean, Jennifer S; Millar, Keith; Sattar, Naveed; Shiels, Paul G; Velupillai, Yoga N; Packard, Chris J; Cavanagh, Jonathan

    2013-01-01

    Cardio-metabolic risk factors have been associated with poor physical and mental health. Epidemiological studies have shown peripheral risk markers to be associated with poor cognitive functioning in normal healthy population and in disease. The aim of the study was to explore the relationship between cardio-metabolic risk factors and cortical thickness in a neurologically healthy middle aged population-based sample. T1-weighted MRI was used to create models of the cortex for calculation of regional cortical thickness in 40 adult males (average age = 50.96 years), selected from the pSoBid study. The relationship between cardio-vascular risk markers and cortical thickness across the whole brain, was examined using the general linear model. The relationship with various covariates of interest was explored. Lipid fractions with greater triglyceride content (TAG, VLDL and LDL) were associated with greater cortical thickness pertaining to a number of regions in the brain. Greater C reactive protein (CRP) and intercellular adhesion molecule (ICAM-1) levels were associated with cortical thinning pertaining to perisylvian regions in the left hemisphere. Smoking status and education status were significant covariates in the model. This exploratory study adds to a small body of existing literature increasingly showing a relationship between cardio-metabolic risk markers and regional cortical thickness involving a number of regions in the brain in a neurologically normal middle aged sample. A focused investigation of factors determining the inter-individual variations in regional cortical thickness in the adult brain could provide further clarity in our understanding of the relationship between cardio-metabolic factors and cortical structures.

  2. Functional Imaging of Dolphin Brain Metabolism and Blood Flow

    National Research Council Canada - National Science Library

    Ridgway, Sam; Finneran, James; Carder, Don; Keogh, Mandy; Van Bonn, William; Smith, Cynthia; Scadeng, Miriam; Dubowitz, David; Mattrey, Robert; Hoh, Carl

    2006-01-01

    .... Diazepam has been shown to induce unihemispheric slow waves (USW), therefore we used functional imaging of dolphins with and without diazepam to observe hemispheric differences in brain metabolism and blood flow...

  3. Neurological soft signs in persons with amnestic mild cognitive impairment and the relationships to neuropsychological functions

    Directory of Open Access Journals (Sweden)

    Li Hui-jie

    2012-06-01

    Full Text Available Abstract Background Neurological abnormalities have been reported in people with amnestic mild cognitive impairment (aMCI. The current study aimed to examine the prevalence of neurological soft signs (NSS in this clinical group and to examine the relationship of NSS to other neuropsychological performances. Methods Twenty-nine people with aMCI and 28 cognitively healthy elderly people were recruited for the present study. The NSS subscales (motor coordination, sensory integration, and disinhibition of the Cambridge Neurological Inventory and a set of neuropsychological tests were administered to all the participants. Results People with aMCI exhibited significantly more motor coordination signs, disinhibition signs, and total NSS than normal controls. Correlation analysis showed that the motor coordination subscale score and total score of NSS were significantly inversely correlated with the combined Z-score of neuropsychological tests in aMCI group. Conclusions These preliminary findings suggested that people with aMCI demonstrated a higher prevalence of NSS compared to healthy elderly people. Moreover, NSS was found to be inversely correlated with the neuropsychological performances in persons with aMCI. When taken together, these findings suggested that NSS may play a potential important role and serve as a tool to assist in the early detection of aMCI.

  4. Non-metabolic functions of glycolytic enzymes in tumorigenesis.

    Science.gov (United States)

    Yu, X; Li, S

    2017-05-11

    Cancer cells reprogram their metabolism to meet the requirement for survival and rapid growth. One hallmark of cancer metabolism is elevated aerobic glycolysis and reduced oxidative phosphorylation. Emerging evidence showed that most glycolytic enzymes are deregulated in cancer cells and play important roles in tumorigenesis. Recent studies revealed that all essential glycolytic enzymes can be translocated into nucleus where they participate in tumor progression independent of their canonical metabolic roles. These noncanonical functions include anti-apoptosis, regulation of epigenetic modifications, modulation of transcription factors and co-factors, extracellular cytokine, protein kinase activity and mTORC1 signaling pathway, suggesting that these multifaceted glycolytic enzymes not only function in canonical metabolism but also directly link metabolism to epigenetic and transcription programs implicated in tumorigenesis. These findings underscore our understanding about how tumor cells adapt to nutrient and fuel availability in the environment and most importantly, provide insights into development of cancer therapy.

  5. A Cellular Perspective on Brain Energy Metabolism and Functional Imaging

    KAUST Repository

    Magistretti, Pierre J.

    2015-05-01

    The energy demands of the brain are high: they account for at least 20% of the body\\'s energy consumption. Evolutionary studies indicate that the emergence of higher cognitive functions in humans is associated with an increased glucose utilization and expression of energy metabolism genes. Functional brain imaging techniques such as fMRI and PET, which are widely used in human neuroscience studies, detect signals that monitor energy delivery and use in register with neuronal activity. Recent technological advances in metabolic studies with cellular resolution have afforded decisive insights into the understanding of the cellular and molecular bases of the coupling between neuronal activity and energy metabolism and pointat a key role of neuron-astrocyte metabolic interactions. This article reviews some of the most salient features emerging from recent studies and aims at providing an integration of brain energy metabolism across resolution scales. © 2015 Elsevier Inc.

  6. Metabolic and neurological complications of second-generation antipsychotic use in children: a systematic review and meta-analysis of randomized controlled trials.

    Science.gov (United States)

    Pringsheim, Tamara; Lam, Darren; Ching, Heidi; Patten, Scott

    2011-08-01

    Available evidence indicates that the use of antipsychotics, especially second-generation antipsychotics (SGAs), for children with mental health disorders has increased dramatically. Given the demonstrated metabolic and neurological adverse effects seen in adult patients on these medications, detailed evaluation of the risk for these adverse effects in children is appropriate. The aim of the study was to assess the evidence for specific metabolic and neurological adverse effects associated with the use of SGAs in children. MEDLINE (1996-May 2010) and EMBASE (1996-May 2010) databases were searched using highly sensitive search strategies for clinical trials in a paediatric population (children up to age 18 years). We included any double-blind, randomized controlled trial (RCT) of SGA medications conducted specifically in a paediatric population for the treatment of a mental health disorder. This included the medications risperidone, olanzapine, quetiapine, aripiprazole, clozapine, ziprasidone and paliperidone. The primary outcomes assessed for this review were metabolic and neurological adverse effects, as measured using physical examination manoeuvres, rating scales or laboratory tests. A total of 35 RCTs were included in the analysis, but not all studies had data that could be used in the meta-analysis. Abstracts retrieved from the searches were reviewed independently by two different reviewers for potential relevant articles. Full-text articles were then read in detail independently by two different reviewers to see if inclusion criteria were fulfilled. Data were extracted independently by two review authors from included studies and entered onto pre-designed summary forms. Clinical trials were evaluated for methodological quality using quality criteria developed by the US Preventive Services Task Force. Based on the fulfilment of quality criteria, studies were rated as good, fair or poor. Meta-analysis was performed on the data for synthesis, and was carried out

  7. Physiology of leptin: energy homeostasis, neuroendocrine function and metabolism.

    Science.gov (United States)

    Park, Hyeong-Kyu; Ahima, Rexford S

    2015-01-01

    Leptin is secreted by adipose tissue and regulates energy homeostasis, neuroendocrine function, metabolism, immune function and other systems through its effects on the central nervous system and peripheral tissues. Leptin administration has been shown to restore metabolic and neuroendocrine abnormalities in individuals with leptin-deficient states, including hypothalamic amenorrhea and lipoatrophy. In contrast, obese individuals are resistant to leptin. Recombinant leptin is beneficial in patients with congenital leptin deficiency or generalized lipodystrophy. However, further research on molecular mediators of leptin resistance is needed for the development of targeted leptin sensitizing therapies for obesity and related metabolic diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Calcium metabolism and cardiovascular function after spaceflight

    Science.gov (United States)

    Hatton, Daniel C.; Yue, Qi; Dierickx, Jacqueline; Roullet, Chantal; Otsuka, Keiichi; Watanabe, Mitsuaki; Coste, Sarah; Roullet, Jean Baptiste; Phanouvang, Thongchan; Orwoll, Eric; hide

    2002-01-01

    To determine the influence of dietary calcium on spaceflight-induced alterations in calcium metabolism and blood pressure (BP), 9-wk-old spontaneously hypertensive rats, fed either high- (2%) or low-calcium (0.02%) diets, were flown on an 18-day shuttle flight. On landing, flight animals had increased ionized calcium (P parathyroid hormone levels (P animals (P = 0.057). However, mean arterial pressure was elevated (P animals fed low- compared with high-calcium diets (P parathyroid hormone was paradoxically increased in the high-calcium-fed flight animals after landing.

  9. Biodegradable seeds of holmium don't change neurological function after implant in brain of rats.

    Science.gov (United States)

    Diniz, Mirla Fiuza; Ferreira, Diogo Milioli; de Lima, Wanderson Geraldo; Pedrosa, Maria Lucia; Silva, Marcelo Eustáquio; de Almeida Araujo, Stanley; Sampaio, Kinulpe Honorato; de Campos, Tarcisio Passos Ribeiro; Siqueira, Savio Lana

    2017-01-01

    To evaluate the surgical procedure and parenchymal abnormalities related to implantation of ceramic seeds with holmium-165 in rats' brain. An effective method of cancer treatment is brachytherapy in which radioactive seeds are implanted in the tumor, generating a high local dose of ionizing radiation that can eliminate tumor cells while protecting the surrounding healthy tissue. Biodegradable Ho 166 -ceramic-seeds have been addressed recently. The experiments in this study were approved by the Ethics Committee on Animal Use at the Federal University of Ouro Preto, protocol number 2012/034. Twenty-one adult Fischer rats were divided into Naive Group, Sham Group and Group for seed implants (ISH). Surgical procedures for implantation of biodegradable seeds were done and 30 days after the implant radiographic examination and biopsy of the brain were performed. Neurological assays were also accomplished to exclude any injury resulting from either surgery or implantation of the seeds. Radiographic examination confirmed the location of the seeds in the brain. Neurological assays showed animals with regular spontaneous activity. The histological analysis showed an increase of inflammatory cells in the brain of the ISH group. Electron microscopy evidenced cytoplasmic organelles to be unchanged. Biochemical analyzes indicate there was neither oxidative stress nor oxidative damage in the ISH brain. CAT activity showed no difference between the groups as well as lipid peroxidation measured by TBARS. The analysis of the data pointed out that the performed procedure is safe as no animal showed alterations of the neurological parameters and the seeds did not promote histological architectural changes in the brain tissue.

  10. Microalgal Metabolic Network Model Refinement through High-Throughput Functional Metabolic Profiling

    International Nuclear Information System (INIS)

    Chaiboonchoe, Amphun; Dohai, Bushra Saeed; Cai, Hong; Nelson, David R.; Jijakli, Kenan; Salehi-Ashtiani, Kourosh

    2014-01-01

    Metabolic modeling provides the means to define metabolic processes at a systems level; however, genome-scale metabolic models often remain incomplete in their description of metabolic networks and may include reactions that are experimentally unverified. This shortcoming is exacerbated in reconstructed models of newly isolated algal species, as there may be little to no biochemical evidence available for the metabolism of such isolates. The phenotype microarray (PM) technology (Biolog, Hayward, CA, USA) provides an efficient, high-throughput method to functionally define cellular metabolic activities in response to a large array of entry metabolites. The platform can experimentally verify many of the unverified reactions in a network model as well as identify missing or new reactions in the reconstructed metabolic model. The PM technology has been used for metabolic phenotyping of non-photosynthetic bacteria and fungi, but it has not been reported for the phenotyping of microalgae. Here, we introduce the use of PM assays in a systematic way to the study of microalgae, applying it specifically to the green microalgal model species Chlamydomonas reinhardtii. The results obtained in this study validate a number of existing annotated metabolic reactions and identify a number of novel and unexpected metabolites. The obtained information was used to expand and refine the existing COBRA-based C. reinhardtii metabolic network model iRC1080. Over 254 reactions were added to the network, and the effects of these additions on flux distribution within the network are described. The novel reactions include the support of metabolism by a number of d-amino acids, l-dipeptides, and l-tripeptides as nitrogen sources, as well as support of cellular respiration by cysteamine-S-phosphate as a phosphorus source. The protocol developed here can be used as a foundation to functionally profile other microalgae such as known microalgae mutants and novel isolates.

  11. Microalgal Metabolic Network Model Refinement through High Throughput Functional Metabolic Profiling

    Directory of Open Access Journals (Sweden)

    Amphun eChaiboonchoe

    2014-12-01

    Full Text Available Metabolic modeling provides the means to define metabolic processes at a systems level; however, genome-scale metabolic models often remain incomplete in their description of metabolic networks and may include reactions that are experimentally unverified. This shortcoming is exacerbated in reconstructed models of newly isolated algal species, as there may be little to no biochemical evidence available for the metabolism of such isolates. The Phenotype Microarray (PM technology (Biolog, Hayward, CA, USA provides an efficient, high throughput method to functionally define cellular metabolic activities in response to a large array of entry metabolites. The platform can experimentally verify many of the unverified reactions in a network model as well as identify missing or new reactions in the reconstructed metabolic model. The PM technology has been used for metabolic phenotyping of non-photosynthetic bacteria and fungi but it has not been reported for the phenotyping of microalgae. Here we introduce the use of PM assays in a systematic way to the study of microalgae, applying it specifically to the green microalgal model species Chlamydomonas reinhardtii. The results obtained in this study validate a number of existing annotated metabolic reactions and identify a number of novel and unexpected metabolites. The obtained information was used to expand and refine the existing COBRA-based C. reinhardtii metabolic network model iRC1080. Over 254 reactions were added to the network, and the effects of these additions on flux distribution within the network are described. The novel reactions include the support of metabolism by a number of D-amino acids, L-dipeptides, and L-tripeptides as nitrogen sources, as well as support of cellular respiration by cysteamine-S-phosphate as a phosphorus source. The protocol developed here can be used as a foundation to functionally profile other microalgae such as known microalgae mutants and novel isolates.

  12. Microalgal Metabolic Network Model Refinement through High-Throughput Functional Metabolic Profiling.

    Science.gov (United States)

    Chaiboonchoe, Amphun; Dohai, Bushra Saeed; Cai, Hong; Nelson, David R; Jijakli, Kenan; Salehi-Ashtiani, Kourosh

    2014-01-01

    Metabolic modeling provides the means to define metabolic processes at a systems level; however, genome-scale metabolic models often remain incomplete in their description of metabolic networks and may include reactions that are experimentally unverified. This shortcoming is exacerbated in reconstructed models of newly isolated algal species, as there may be little to no biochemical evidence available for the metabolism of such isolates. The phenotype microarray (PM) technology (Biolog, Hayward, CA, USA) provides an efficient, high-throughput method to functionally define cellular metabolic activities in response to a large array of entry metabolites. The platform can experimentally verify many of the unverified reactions in a network model as well as identify missing or new reactions in the reconstructed metabolic model. The PM technology has been used for metabolic phenotyping of non-photosynthetic bacteria and fungi, but it has not been reported for the phenotyping of microalgae. Here, we introduce the use of PM assays in a systematic way to the study of microalgae, applying it specifically to the green microalgal model species Chlamydomonas reinhardtii. The results obtained in this study validate a number of existing annotated metabolic reactions and identify a number of novel and unexpected metabolites. The obtained information was used to expand and refine the existing COBRA-based C. reinhardtii metabolic network model iRC1080. Over 254 reactions were added to the network, and the effects of these additions on flux distribution within the network are described. The novel reactions include the support of metabolism by a number of d-amino acids, l-dipeptides, and l-tripeptides as nitrogen sources, as well as support of cellular respiration by cysteamine-S-phosphate as a phosphorus source. The protocol developed here can be used as a foundation to functionally profile other microalgae such as known microalgae mutants and novel isolates.

  13. Insulin Action in Brain Regulates Systemic Metabolism and Brain Function

    OpenAIRE

    Kleinridders, Andr?; Ferris, Heather A.; Cai, Weikang; Kahn, C. Ronald

    2014-01-01

    Insulin receptors, as well as IGF-1 receptors and their postreceptor signaling partners, are distributed throughout the brain. Insulin acts on these receptors to modulate peripheral metabolism, including regulation of appetite, reproductive function, body temperature, white fat mass, hepatic glucose output, and response to hypoglycemia. Insulin signaling also modulates neurotransmitter channel activity, brain cholesterol synthesis, and mitochondrial function. Disruption of insulin action in t...

  14. Metabolic Assessment of Suited Mobility Using Functional Tasks

    Science.gov (United States)

    Norcross, J. R.; McFarland, S. M.; Ploutz-Snyder, Robert

    2016-01-01

    Existing methods for evaluating extravehicular activity (EVA) suit mobility have typically focused on isolated joint range of motion or torque, but these techniques have little to do with how well a crewmember functionally performs in an EVA suit. To evaluate suited mobility at the system level through measuring metabolic cost (MC) of functional tasks.

  15. Development of personalized functional foods needs metabolic profiling.

    Science.gov (United States)

    Claus, Sandrine Paule

    2014-11-01

    There is growing interest in applying metabolic profiling technologies to food science as this approach is now embedded into the foodomics toolbox. This review aims at exploring how metabolic profiling can be applied to the development of functional foods. One of the biggest challenges of modern nutrition is to propose a healthy diet to populations worldwide that must suit high inter-individual variability driven by complex gene-nutrient-environment interactions. Although a number of functional foods are now proposed in support of a healthy diet, a one-size-fits-all approach to nutrition is inappropriate and new personalized functional foods are necessary. Metabolic profiling technologies can assist at various levels of the development of functional foods, from screening for food composition to identification of new biomarkers of food intake to support diet intervention and epidemiological studies. Modern 'omics' technologies, including metabolic profiling, will support the development of new personalized functional foods of high relevance to 21st century medical challenges, such as controlling the worldwide spread of metabolic disorders and ensuring healthy ageing.

  16. [Comorbidities in patients with cerebral palsy and their relationship with neurologic subtypes and Gross Motor Function Classification System levels].

    Science.gov (United States)

    Hou, Mei; Sun, Dian-rong; Shan, Ruo-bing; Wang, Ke; Yu, Rong; Zhao, Jian-hui; Jiang, Yan-ping

    2010-05-01

    To analyze the comorbidities in patients with cerebral palsy (CP) from two perspectives as neurologic subtype and gross motor functions, and find their correlations. Children with cerebral palsy treated in the rehabilitation center from January 2007 to June 2009 received the following examinations: intelligence capacity test, ophthalmologic consultation, language-speech test, brainstem auditory evoked potential and electroencephalogram. They were stratified according to both neurologic subtype and gross motor functions to detect the occurrence of comorbidities. Of all the 354 cases, 166 (46.89%) had mental retardation, 15 (4.24%) auditory limitations, 138 (38.98%) visual disorder, 216 (61.02%) language-speech disorder and 82 (23.16%) epilepsy. The frequency of individual comorbidities were distributed disproportionately between the different neurologic subtypes. Correlation analysis showed that there was a significant correlation between the spastic diplegia and the visual disorder (correlation coefficient = 0.26), between spastic hemiplegia and epilepsy (correlation coefficient = 0.17), between spastic quadriplegia and epilepsy and mental retardation (the correlation coefficient was 0.38 and 0.11, respectively) and between both dyskinetic and mixed children and language-speech disorder (the correlation coefficient was 0.24 and 0.27, respectively). The frequency of individual comorbidities was distributed disproportionately between the different neurologic subtypes and between the different GMFCS levels (P 0.05); and with the increase of the GMFCS levels, the burden of the comorbidities were more heavy and the incidence of the comorbidities was higher. Multi-comorbidities were relatively infrequently encountered in those with spastic hemiplegic or spastic diplegic children or patients whose GMFCS levels were I-III, while these entities occurred at a frequent level for those with spastic quadriplegic, dyskinetic, or mixed or children whose GMFCS levels were IV and V

  17. Effect of dance exercise on cognitive function in elderly patients with metabolic syndrome: a pilot study.

    Science.gov (United States)

    Kim, Se-Hong; Kim, Minjeong; Ahn, Yu-Bae; Lim, Hyun-Kook; Kang, Sung-Goo; Cho, Jung-Hyoun; Park, Seo-Jin; Song, Sang-Wook

    2011-01-01

    Metabolic syndrome is associated with an increased risk of cognitive impairment. The purpose of this prospective pilot study was to examine the effects of dance exercise on cognitive function in elderly patients with metabolic syndrome. The participants included 38 elderly metabolic syndrome patients with normal cognitive function (26 exercise group and 12 control group). The exercise group performed dance exercise twice a week for 6 months. Cognitive function was assessed in all participants using the Korean version of the Consortium to Establish a Registry for Alzheimer's disease (CERAD-K). Repeated-measures ANCOVA was used to assess the effect of dance exercise on cognitive function and cardiometabolic risk factors. Compared with the control group, the exercise group significantly improved in verbal fluency (p = 0.048), word list delayed recall (p = 0.038), word list recognition (p = 0.007), and total CERAD-K score (p = 0.037). However, no significance difference was found in body mass index, blood pressure, waist circumference, fasting plasma glucose, triglyceride, and HDL cholesterol between groups over the 6-month period. In the present study, six months of dance exercise improved cognitive function in older adults with metabolic syndrome. Thus, dance exercise may reduce the risk for cognitive disorders in elderly people with metabolic syndrome. Key pointsMetabolic syndrome (MS) is associated with an increased risk of cognitive impairment.Aerobic exercise improves cognitive function in elderly people and contributes to the prevention of degenerative neurological disease and brain damage. Dance sport is a form of aerobic exercise that has the additional benefits of stimulating the emotions, promoting social interaction, and exposing subjects to acoustic stimulation and music.In the present study, dance exercise for a 6-month period improved cognitive function in older adults with MS. In particular, positive effects were observed in verbal fluency, word list

  18. Effect of Dance Exercise on Cognitive Function in Elderly Patients with Metabolic Syndrome: A Pilot Study

    Science.gov (United States)

    Kim, Se-Hong; Kim, Minjeong; Ahn, Yu-Bae; Lim, Hyun-Kook; Kang, Sung-Goo; Cho, Jung-hyoun; Park, Seo-Jin; Song, Sang-Wook

    2011-01-01

    Metabolic syndrome is associated with an increased risk of cognitive impairment. The purpose of this prospective pilot study was to examine the effects of dance exercise on cognitive function in elderly patients with metabolic syndrome. The participants included 38 elderly metabolic syndrome patients with normal cognitive function (26 exercise group and 12 control group). The exercise group performed dance exercise twice a week for 6 months. Cognitive function was assessed in all participants using the Korean version of the Consortium to Establish a Registry for Alzheimer’s disease (CERAD-K). Repeated-measures ANCOVA was used to assess the effect of dance exercise on cognitive function and cardiometabolic risk factors. Compared with the control group, the exercise group significantly improved in verbal fluency (p = 0.048), word list delayed recall (p = 0.038), word list recognition (p = 0.007), and total CERAD-K score (p = 0.037). However, no significance difference was found in body mass index, blood pressure, waist circumference, fasting plasma glucose, triglyceride, and HDL cholesterol between groups over the 6-month period. In the present study, six months of dance exercise improved cognitive function in older adults with metabolic syndrome. Thus, dance exercise may reduce the risk for cognitive disorders in elderly people with metabolic syndrome. Key points Metabolic syndrome (MS) is associated with an increased risk of cognitive impairment. Aerobic exercise improves cognitive function in elderly people and contributes to the prevention of degenerative neurological disease and brain damage. Dance sport is a form of aerobic exercise that has the additional benefits of stimulating the emotions, promoting social interaction, and exposing subjects to acoustic stimulation and music. In the present study, dance exercise for a 6-month period improved cognitive function in older adults with MS. In particular, positive effects were observed in verbal fluency, word

  19. Functional MRT in psychiatry and neurology. 2. rev. and upd. ed.; Funktionelle MRT in Psychiatrie und Neurologie

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Frank [Universitaetsklinikum Aachen (Germany); Fink, Gereon R. (eds.) [Forschungszentrum Juelich GmbH (Germany); Uniklinik Koeln (Germany)

    2013-08-01

    The book on functional MRT in psychiatry and neurology covers the following topics: (I) Fundamentals: functional neuro-anatomy, fundamentals of NMR imaging, basic research on the clinical use for diagnostics and therapy; basics of morphometry; real-time fMRT, planning and execution of experimental paradigms; data analysis and statistics; reliability and quality of fMRT experiments; eye movement, neuropharmacologic functional imaging, gender dependent effects, age dependent effects, resting state fMRT; meta analyses. (II) Higher brain achievements: movement and action, perception and attention, visual system and object processing, auditory system, executive functions, somatosensoric system, memory, learning and gratification system, functional neuro-anatomy of speech, number processing and calculation, connectivity, social cognition, emotions, olfactory system, functional imaging in the pain research. (III) Disease pattern: dystonia, Parkinson syndrome, Chorea Huntington, aphasia, apraxia, neglect, amnesia, function recovery following apoplexy, schizophrenia, affective disturbances, anxiety and fear, post-traumatic disturbances, hyperactivity syndrome, personality disorder. (IV) Working tools: brain atlas, tool for integrated analyses of structure, functionality and connectivity (SPM anatomy toolbox).

  20. Navigated transcranial magnetic stimulation for glioma removal: prognostic value in motor function recovery from postsurgical neurological deficits.

    Science.gov (United States)

    Takakura, Tomokazu; Muragaki, Yoshihiro; Tamura, Manabu; Maruyama, Takashi; Nitta, Masayuki; Niki, Chiharu; Kawamata, Takakazu

    2017-10-01

    OBJECTIVE The aim of the present study was to evaluate the usefulness of navigated transcranial magnetic stimulation (nTMS) as a prognostic predictor for upper-extremity motor functional recovery from postsurgical neurological deficits. METHODS Preoperative and postoperative nTMS studies were prospectively applied in 14 patients (mean age 39 ± 12 years) who had intraparenchymal brain neoplasms located within or adjacent to the motor eloquent area in the cerebral hemisphere. Mapping by nTMS was done 3 times, i.e., before surgery, and 1 week and 3 weeks after surgery. To assess the response induced by nTMS, motor evoked potential (nTMS-MEP) was recorded using a surface electromyography electrode attached to the abductor pollicis brevis (APB). The cortical locations that elicited the largest electromyography response by nTMS were defined as hotspots. Hotspots for APB were confirmed as positive responsive sites by direct electrical stimulation (DES) during awake craniotomy. The distances between hotspots and lesions (D HS-L ) were measured. Postoperative neurological deficits were assessed by manual muscle test and dynamometer. To validate the prognostic value of nTMS in recovery from upper-extremity paresis, the following were investigated: 1) the correlation between D HS-L and the serial grip strength change, and 2) the correlation between positive nTMS-MEP at 1 week after surgery and the serial grip strength change. RESULTS From the presurgical nTMS study, MEPs from targeted muscles were identified in 13 cases from affected hemispheres. In one case, MEP was not evoked due to a huge tumor. Among 9 cases from which intraoperative DES mapping for hand motor area was available, hotspots for APB identified by nTMS were concordant with DES-positive sites. Compared with the adjacent group (D HS-L motor recovery at 1 week, 3 weeks, and 3 months after surgery (r = 0.87, 0.88, and 0.77, respectively). CONCLUSIONS Navigated TMS is a useful tool for identifying motor eloquent

  1. Effectiveness of music-based interventions on motricity or cognitive functioning in neurological populations: a systematic review.

    Science.gov (United States)

    Moumdjian, Lousin; Sarkamo, Teppo; Leone, Carmela; Leman, Marc; Feys, Peter

    2017-06-01

    Motor and cognitive symptoms are frequent in persons with neurological disorders and often require extensive long-term rehabilitation. Recently, a variety of music-based interventions have been introduced into neurological rehabilitation as training tools. This review aims to 1) describe and define music-based intervention modalities and content which are applied in experimental studies; and 2) describe the effects of these interventions on motor and/or cognitive symptoms in the neurological population. The databases PubMed and Web of Science were searched. Cited references of included articles where screened for potential inclusion. A systematic literature search up to 20th of June 2016 was conducted to include controlled trials and cohort studies that have used music-based interventions for ≥3 weeks in the neurological population (in- and outpatients) targeting motor and/or cognitive symptoms. No limitations to publication date was set. EVIDENCE SYNTHESISː Nineteen articles comprising thirteen randomized controlled trials (total participants Nexp=241, Nctrl=269), four controlled trials (Nexp=59, Nctrl=53) and two cohort studies (N.=27) were included. Fourteen studies were conducted in stroke, three in Parkinson's disease, and two in multiple sclerosis population. Modalities of music-based interventions were clustered into four groups: instrument-based, listening-based, rhythm-based, and multicomponent-based music interventions. Overall, studies consistently showed that music-based interventions had similar or larger effects than conventional rehabilitation on upper limb function (N.=16; fine motricity, hand and arm capacity, finger and hand tapping velocity/variability), mobility (N.=7; gait parameters), and cognition (N.=4; verbal memory and focused attention). CONCLUSIONSː Variety of modalities using music-based interventions has been identified and grouped into four clusters. Effects of interventions demonstrate an improvement in the domains assessed

  2. Current neurology

    International Nuclear Information System (INIS)

    Appel, S.H.

    1988-01-01

    The topics covered in this book include: Duchenne muscular dystrophy: DNA diagnosis in practice; Central nervous system magnetic resonance imaging; and Magnetic resonance spectroscopy of neurologic diseases

  3. Glucose metabolism regulates T cell activation, differentiation and functions

    Directory of Open Access Journals (Sweden)

    Clovis Steve Palmer

    2015-01-01

    Full Text Available The adaptive immune system is equipped to eliminate both tumors and pathogenic microorganisms. It requires a series of complex and coordinated signals to drive the activation, proliferation and differentiation of appropriate T cell subsets. It is now established that changes in cellular activation are coupled to profound changes in cellular metabolism. In addition, emerging evidence now suggest that specific metabolic alterations associated with distinct T cell subsets may be ancillary to their differentiation and influential in their immune functions. The Warburg effect originally used to describe a phenomenon in which most cancer cells relied on aerobic glycolysis for their growth is a key process that sustain T cell activation and differentiation. Here we review how different aspects of metabolism in T cells influence their functions, focusing on the emerging role of key regulators of glucose metabolism such as HIF-1α. A thorough understanding of the role of metabolism in T cell function could provide insights into mechanisms involved in inflammatory-mediated conditions, with the potential for developing novel therapeutic approaches to treat these diseases.

  4. DNM1L Variant Alters Baseline Mitochondrial Function and Response to Stress in a Patient with Severe Neurological Dysfunction.

    Science.gov (United States)

    Hogarth, Kaley A; Costford, Sheila R; Yoon, Grace; Sondheimer, Neal; Maynes, Jason T

    2018-04-01

    Mitochondria play vital roles in brain development and neuronal activity, and mitochondrial dynamics (fission and fusion) maintain organelle function through the removal of damaged components. Dynamin-like protein-1 (DRP-1), encoded by DNM1L, is an evolutionarily conserved GTPase that mediates mitochondrial fission by surrounding the scission site in concentric ring-like structures via self-oligomerization, followed by GTPase-dependant constriction. Here, we describe the clinical characteristics and cellular phenotype of a patient with severe neurological dysfunction, possessing a homozygous DNM1L variant c.305C>T (p.T115M) in the GTPase domain. For comparative analysis, we also describe a previously identified heterozygous variant demonstrating a rapidly fatal neurocognitive phenotype (c.261dup/c.385:386del, p.W88M*9/E129K*6). Using patient-generated fibroblasts, we demonstrated both DNM1L variants undergo adverse alterations to mitochondrial structure and function, including impaired mitochondrial fission, reduced membrane potential, and lower oxidative capacity including an increased cellular level of reactive oxygen species (ROS) and dsDNA breaks. Mutation of DNM1L was also associated with impaired responses to oxidative stress, as treatment with hydrogen peroxide dramatically increased cellular ROS, with minimal exacerbation of already impaired mitochondrial function. Taken together, our observations indicate that homozygous p.T115M variant of DNM1L produces a neurological and neurodevelopmental phenotype, consistent with impaired mitochondrial architecture and function, through a diminished ability to oligomerize, which was most prevalent under oxidative stress.

  5. Metabolism

    Science.gov (United States)

    ... functions: Anabolism (uh-NAB-uh-liz-um), or constructive metabolism, is all about building and storing. It ... in infants and young children. Hypothyroidism slows body processes and causes fatigue (tiredness), slow heart rate, excessive ...

  6. Neurologic function during developmental and adult stages in Dab1(scm) (scrambler) mutant mice.

    Science.gov (United States)

    Jacquelin, C; Strazielle, C; Lalonde, R

    2012-01-01

    Homozygous Dab1(scm) mouse mutants with cell ectopias in cerebellar cortex, hippocampus, and neocortex were compared to non-ataxic controls on the SHIRPA primary screening battery on postnatal days 8, 15, and 22, as well as in the adult period. Dab1(scm) mutants were distinguished from non-ataxic controls as early as postnatal day 8 based on body tremor, gait anomalies, and body weight. On postnatal day 15, motor coordination deficits were evident on horizontal bar and inclined or vertical grid tests in association with a weaker grip strength. Likewise, mutants were distinguished from controls on drop righting and hindpaw clasping tests. Further differences were detected on postnatal day 22 in the form of fewer visual placing, touch escape, trunk curl, freezing, and vocalization responses, as well as squares traversed in the open-field. Evaluation at the adult age demonstrated similar impairments, indicative of permanent motor alterations. Neuronal metabolic activity was estimated by cytochrome oxidase histochemistry on cerebellar sections. Cerebellar cortical layers and efferent deep nuclei of Dab1(scm) mice appeared hypometabolic relative to non-ataxic mice despite normal metabolism in both regular and ectopic Purkinje cells. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Cardiomyopathy in neurological disorders.

    Science.gov (United States)

    Finsterer, Josef; Stöllberger, Claudia; Wahbi, Karim

    2013-01-01

    According to the American Heart Association, cardiomyopathies are classified as primary (solely or predominantly confined to heart muscle), secondary (those showing pathological myocardial involvement as part of a neuromuscular disorder) and those in which cardiomyopathy is the first/predominant manifestation of a neuromuscular disorder. Cardiomyopathies may be further classified as hypertrophic cardiomyopathy, dilated cardiomyopathy, restrictive cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy, or unclassified cardiomyopathy (noncompaction, Takotsubo-cardiomyopathy). This review focuses on secondary cardiomyopathies and those in which cardiomyopathy is the predominant manifestation of a myopathy. Any of them may cause neurological disease, and any of them may be a manifestation of a neurological disorder. Neurological disease most frequently caused by cardiomyopathies is ischemic stroke, followed by transitory ischemic attack, syncope, or vertigo. Neurological disease, which most frequently manifests with cardiomyopathies are the neuromuscular disorders. Most commonly associated with cardiomyopathies are muscular dystrophies, myofibrillar myopathies, congenital myopathies and metabolic myopathies. Management of neurological disease caused by cardiomyopathies is not at variance from the same neurological disorders due to other causes. Management of secondary cardiomyopathies is not different from that of cardiomyopathies due to other causes either. Patients with neuromuscular disorders require early cardiologic investigations and close follow-ups, patients with cardiomyopathies require neurological investigation and avoidance of muscle toxic medication if a neuromuscular disorder is diagnosed. Which patients with cardiomyopathy profit most from primary stroke prevention is unsolved and requires further investigations. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Use of density functional theory in drug metabolism studies

    DEFF Research Database (Denmark)

    Rydberg, Patrik; Jørgensen, Flemming Steen; Olsen, Lars

    2014-01-01

    INTRODUCTION: The cytochrome P450 enzymes (CYPs) metabolize many drug compounds. They catalyze a wide variety of reactions, and potentially, a large number of different metabolites can be generated. Density functional theory (DFT) has, over the past decade, been shown to be a powerful tool...

  9. Glucose metabolism and adrenal function in goats bred for fibre ...

    African Journals Online (AJOL)

    It has been proposed that the abortions, cold-stress fatalities, and slow growth rates typical of the South African type of Angora goat can be explained by congenital adrenal hypofunction incident to genetic selection for hair production. The aim of this experiment was to compare glucose metabolism and adrenal function in ...

  10. Platelet function, anthropometric and metabolic variables in Nigerian ...

    African Journals Online (AJOL)

    Platelet function, anthropometric and metabolic variables in Nigerian Type 2 Diabetic patients. ... (BSA) were assessed as indices of anthropometry, fasting blood sugar (FBS), plasma cholesterol and triglycerides (TAG) were determined using standard method and platelet aggregation test was done on the whole blood.

  11. Positron emission tomographic scan investigations of Huntington's disease: cerebral metabolic correlates of cognitive function

    International Nuclear Information System (INIS)

    Berent, S.; Giordani, B.; Lehtinen, S.; Markel, D.; Penney, J.B.; Buchtel, H.A.; Starosta-Rubinstein, S.; Hichwa, R.; Young, A.B.

    1988-01-01

    Fifteen drug-free patients with early to mid-stage Huntington's disease (HD) were evaluated with positron emission tomographic (PET) scans of 18 F-2-fluoro-2-deoxy-D-glucose uptake and quantitative measures of neurological function, learning, memory, and general intelligence. In comparison with a group of normal volunteers, the HD patients showed lower metabolism in both caudate (p less than 0.001) and putamen (p less than 0.001) on PET scans. A significant and positive relationship was found between neuropsychological measures of verbal learning and memory and caudate metabolism in the patient group but not in the normal group. Visual-spatial learning did not reflect a similar pattern, but performance intelligence quotient was positively related to both caudate and putamen metabolism in the HD group. Vocabulary level was unrelated to either brain structure. Discussion focuses on these and other observed brain-behavior relationships and on the implications of these findings for general behaviors such as those involved in coping and adaptation

  12. Metabolically Healthy Obesity and Risk of Kidney Function Decline.

    Science.gov (United States)

    Chang, Alex R; Surapaneni, Aditya; Kirchner, H Lester; Young, Amanda; Kramer, Holly J; Carey, David J; Appel, Lawrence J; Grams, Morgan E

    2018-04-01

    The aim of this study was to examine the association between BMI categories, stratified by metabolic health status, and the risk of kidney function decline (KFD). In this study, 42,128 adult patients with a stable BMI were classified over a 3-year baseline window by BMI and metabolic health status (assessed by Adult Treatment Panel-III criteria). KFD was defined as an estimated glomerular filtration rate (eGFR) decline ≥ 30%, eGFR < 15 mL/min/1.73 m 2 , or receipt of dialysis and/or transplant. Over a median of 5.1 years (interquartile range 2.1-8.9), 6,533 (15.5%) individuals developed KFD. Compared with the normal weight, metabolically healthy category, metabolically healthy obesity was associated with a higher risk of KFD (adjusted hazard ratio [aHR] 1.52; 95% CI: 1.22-1.89). aHRs for KFD were 1.17 (95% CI: 0.89-1.53), 2.21 (95% CI: 1.59-3.08), and 2.20 (95% CI: 1.55-3.11) for metabolically healthy obesity with BMI 30 to 34.9, BMI 35 to 39.9, and BMI ≥ 40 kg/m 2 . These associations were consistent among men and women, patients with eGFR ≥ or < 90 mL/min/1.73 m 2 , and age ≥ or < 55 years. The risk of KFD was highest among metabolically unhealthy individuals with BMI ≥ 40 (aHR 4.02; 95% CI: 3.40-4.75 vs. metabolically healthy individuals with normal weight). Obesity, whether in the presence or absence of metabolic health, is a risk factor for KFD. © 2018 The Obesity Society.

  13. Aberrant functional connectome in neurologically asymptomatic patients with end-stage renal disease.

    Directory of Open Access Journals (Sweden)

    Xiaofen Ma

    Full Text Available This study aimed to investigate the topological organization of intrinsic functional brain networks in patients with end-stage renal disease (ESRD.Resting-state functional MRI data were collected from 22 patients with ESRD (16 men, 18-61 years and 29 age- and gender-matched healthy controls (HCs, 19 men, 32-61 years. Whole-brain functional networks were obtained by calculating the interregional correlation of low-frequency fluctuations in spontaneous brain activity among 1,024 parcels that cover the entire cerebrum. Weighted graph-based models were then employed to topologically characterize these networks at different global, modular and nodal levels.Compared to HCs, the patients exhibited significant disruption in parallel information processing over the whole networks (P < 0.05. The disruption was present in all the functional modules (default mode, executive control, sensorimotor and visual networks although decreased functional connectivity was observed only within the default mode network. Regional analysis showed that the disease disproportionately weakened nodal efficiency of the default mode components and tended to preferentially affect central or hub-like regions. Intriguingly, the network abnormalities correlated with biochemical hemoglobin and serum calcium levels in the patients. Finally, the functional changes were substantively unchanged after correcting for gray matter atrophy in the patients.Our findings provide evidence for the disconnection nature of ESRD's brain and therefore have important implications for understanding the neuropathologic substrate of the disease from disrupted network organization perspective.

  14. Traumatic vs non-traumatic spinal cord lesions: comparison of neurological and functional outcome after in-patient rehabilitation.

    Science.gov (United States)

    Gupta, A; Taly, A B; Srivastava, A; Vishal, S; Murali, T

    2008-07-01

    Retrospective comparative study of 2 years duration. To compare neurological and functional outcome and length of stay of persons with traumatic vs non-traumatic spinal cord lesion (SCL) after in-patient rehabilitation. Neurological rehabilitation department of a tertiary research center in Bangalore, Karnataka, India. Seventy-six in-patients with spinal cord lesion: traumatic (38 patients, M/F=34:4) and non-traumatic (38 patients, M/F=16:22) were admitted for in-patient multidisciplinary neurorehabilitation. ASIA impairment scale, duration of stay (DOS), and admission and discharge--Barthel Index scores in both the groups were recorded, compared and analyzed. ASIA impairment scale scores were significantly higher in non-traumatic group both at admission and discharge (P=0.020 and 0.017), respectively, showing lesser impairment in non-traumatic group. DOS for rehabilitation was higher for traumatic group as compared to non-traumatic group (65.97+/-47.66 vs 60.68+/-45.69 days), although statistically not significant (P>0.05). Barthel Index scores were 28.68+/-17.15 vs 27.63+/-14.96 at admission and 54.21+/-25.10 vs 51.44+/-19.86 at discharge in traumatic and non-traumatic groups, respectively. All patients (n=76) showed significant improvement in Barthel Index (P=0.000), but no statistically significant difference (P>0.05) was recorded between the two groups, both at admission and at discharge. Orthoses was required significantly more frequently (P=0.043) in traumatic SCL group. The study showed that despite more impairment in persons with traumatic spinal cord lesion, there was statistically no significant difference in the length of stay and the functional outcome between persons with traumatic and non-traumatic spinal cord lesion after in-patient rehabilitation.

  15. Decreased in vitro mitochondrial function is associated with enhanced brain metabolism, blood flow, and memory in Surf1-deficient mice.

    Science.gov (United States)

    Lin, Ai-Ling; Pulliam, Daniel A; Deepa, Sathyaseelan S; Halloran, Jonathan J; Hussong, Stacy A; Burbank, Raquel R; Bresnen, Andrew; Liu, Yuhong; Podlutskaya, Natalia; Soundararajan, Anuradha; Muir, Eric; Duong, Timothy Q; Bokov, Alex F; Viscomi, Carlo; Zeviani, Massimo; Richardson, Arlan G; Van Remmen, Holly; Fox, Peter T; Galvan, Veronica

    2013-10-01

    Recent studies have challenged the prevailing view that reduced mitochondrial function and increased oxidative stress are correlated with reduced longevity. Mice carrying a homozygous knockout (KO) of the Surf1 gene showed a significant decrease in mitochondrial electron transport chain Complex IV activity, yet displayed increased lifespan and reduced brain damage after excitotoxic insults. In the present study, we examined brain metabolism, brain hemodynamics, and memory of Surf1 KO mice using in vitro measures of mitochondrial function, in vivo neuroimaging, and behavioral testing. We show that decreased respiration and increased generation of hydrogen peroxide in isolated Surf1 KO brain mitochondria are associated with increased brain glucose metabolism, cerebral blood flow, and lactate levels, and with enhanced memory in Surf1 KO mice. These metabolic and functional changes in Surf1 KO brains were accompanied by higher levels of hypoxia-inducible factor 1 alpha, and by increases in the activated form of cyclic AMP response element-binding factor, which is integral to memory formation. These findings suggest that Surf1 deficiency-induced metabolic alterations may have positive effects on brain function. Exploring the relationship between mitochondrial activity, oxidative stress, and brain function will enhance our understanding of cognitive aging and of age-related neurologic disorders.

  16. Insulin action in brain regulates systemic metabolism and brain function.

    Science.gov (United States)

    Kleinridders, André; Ferris, Heather A; Cai, Weikang; Kahn, C Ronald

    2014-07-01

    Insulin receptors, as well as IGF-1 receptors and their postreceptor signaling partners, are distributed throughout the brain. Insulin acts on these receptors to modulate peripheral metabolism, including regulation of appetite, reproductive function, body temperature, white fat mass, hepatic glucose output, and response to hypoglycemia. Insulin signaling also modulates neurotransmitter channel activity, brain cholesterol synthesis, and mitochondrial function. Disruption of insulin action in the brain leads to impairment of neuronal function and synaptogenesis. In addition, insulin signaling modulates phosphorylation of tau protein, an early component in the development of Alzheimer disease. Thus, alterations in insulin action in the brain can contribute to metabolic syndrome, and the development of mood disorders and neurodegenerative diseases. © 2014 by the American Diabetes Association.

  17. Left Brain vs. Right Brain: Findings on Visual Spatial Capacities and the Functional Neurology of Giftedness

    Science.gov (United States)

    Kalbfleisch, M. Layne; Gillmarten, Charles

    2013-01-01

    As neuroimaging technologies increase their sensitivity to assess the function of the human brain and results from these studies draw the attention of educators, it becomes paramount to identify misconceptions about what these data illustrate and how these findings might be applied to educational contexts. Some of these "neuromyths" have…

  18. Neurology of Affective Prosody and Its Functional-Anatomic Organization in Right Hemisphere

    Science.gov (United States)

    Ross, Elliott D.; Monnot, Marilee

    2008-01-01

    Unlike the aphasic syndromes, the organization of affective prosody in brain has remained controversial because affective-prosodic deficits may occur after left or right brain damage. However, different patterns of deficits are observed following left and right brain damage that suggest affective prosody is a dominant and lateralized function of…

  19. Effect of metabolic syndrome on mitsugumin 53 expression and function.

    Directory of Open Access Journals (Sweden)

    Hanley Ma

    Full Text Available Metabolic syndrome is a cluster of risk factors, such as obesity, insulin resistance, and hyperlipidemia that increases the individual's likelihood of developing cardiovascular diseases. Patients inflicted with metabolic disorders also suffer from tissue repair defect. Mitsugumin 53 (MG53 is a protein essential to cellular membrane repair. It facilitates the nucleation of intracellular vesicles to sites of membrane disruption to create repair patches, contributing to the regenerative capacity of skeletal and cardiac muscle tissues upon injury. Since individuals suffering from metabolic syndrome possess tissue regeneration deficiency and MG53 plays a crucial role in restoring membrane integrity, we studied MG53 activity in mice models exhibiting metabolic disorders induced by a 6 month high-fat diet (HFD feeding. Western blotting showed that MG53 expression is not altered within the skeletal and cardiac muscles of mice with metabolic syndrome. Rather, we found that MG53 levels in blood circulation were actually reduced. This data directly contradicts findings presented by Song et. al that indict MG53 as a causative factor for metabolic syndrome (Nature 494, 375-379. The diminished MG53 serum level observed may contribute to the inadequate tissue repair aptitude exhibited by diabetic patients. Furthermore, immunohistochemical analyses reveal that skeletal muscle fibers of mice with metabolic disorders experience localization of subcellular MG53 around mitochondria. This clustering may represent an adaptive response to oxidative stress resulting from HFD feeding and may implicate MG53 as a guardian to protect damaged mitochondria. Therapeutic approaches that elevate MG53 expression in serum circulation may be a novel method to treat the degenerative tissue repair function of diabetic patients.

  20. The skin function: a factor of anti-metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Zhou Shi-Sheng

    2012-04-01

    Full Text Available Abstract The body’s total antioxidant capacity represents a sum of the antioxidant capacity of various tissues/organs. A decrease in the body’s antioxidant capacity may induce oxidative stress and subsequent metabolic syndrome, a clustering of risk factors for type 2 diabetes and cardiovascular disease. The skin, the largest organ of the body, is one of the major components of the body’s total antioxidant defense system, primarily through its xenobiotic/drug biotransformation system, reactive oxygen species-scavenging system, and sweat glands- and sebaceous glands-mediated excretion system. Notably, unlike other contributors, the skin contribution is variable, depending on lifestyles and ambient temperature or seasonal variations. Emerging evidence suggests that decreased skin’s antioxidant and excretory functions (e.g., due to sedentary lifestyles and low ambient temperature may increase the risk for metabolic syndrome. This review focuses on the relationship between the variability of skin-mediated detoxification and elimination of exogenous and endogenous toxic substances and the development of metabolic syndrome. The potential role of sebum secretion in lipid and cholesterol homeostasis and its impact on metabolic syndrome, and the association between skin disorders (acanthosis nigricans, acne, and burn and metabolic syndrome are also discussed.

  1. Dancing for Healthy Aging: Functional and Metabolic Perspectives.

    Science.gov (United States)

    Rodrigues-Krause, Josianne; Krause, Mauricio; Reischak-Oliveira, Alvaro

    2018-02-10

    Context • Dancing has been used as a form of exercise to improve functional and metabolic outcomes during aging. The field lacks randomized, clinical trials (RCTs) evaluating metabolic outcomes related to dance interventions, but dancing may be a form of exercise that could induce positive effects on the metabolic health of older adults. However, primary studies seem very heterogonous regarding the trial designs, characteristics of the interventions, the methods for outcomes assessments, statistical powers, and methodological quality. Objective • The current research team intended to review the literature on the use of dance as a form of intervention to promote functional and metabolic health in older adults. Specifically, the research team aimed to identify and describe the characteristics of a large range of studies using dance as an intervention, summarizing them and putting them into perspective for further analysis. Design • The research team searched the following data sources-MEDLINE, Cochrane Wiley, Clinical Trials.gov, the Physiotherapy Evidence Database (PEDRO), and the Literatura Latino-Americana e do Caribe em Ciências da Saúde (LILACS)-for RCTs, quasi-experimental studies, and observational trials that compared the benefits of any style of dancing, combined with other exercises or alone, to nonexercising controls and/or controls practicing other types of exercise. Setting • The study took place at the Federal University of Rio Grande do Sul (Porto Alegre, Brazil). Participants were aging individuals, >55 y, both with or without health conditions. Interventions • Interventions should be supervised, taking form as group classes, in a dance setting environment. Dance styles were divided into 5 categories for the review: (1) cultural dances developed by groups of people to reflect the roots of a certain region, such as Greek dance; (2) ballroom dance (ie, dances with partners performed socially or competitively in a ballroom, such as foxtrot

  2. The study of correlation between neurological function rehabilitation and dynamic change of rCBF in patients with aphasia

    International Nuclear Information System (INIS)

    Liu Haibo; Song Debiao; Kong Jun; Lv Junfeng; Tian Jing

    2004-01-01

    Objective: To evaluate the result of SPECT and CT in the patients with acute cerebral infarction and further more, to study the correlation between aphasia and dynamic change of regional cerebral blood flow (rCBF) in patients. Methods: Thirty cases with cerebral infarction of left basal ganglia were divided into two groups according to the presence or absence of aphasia; the vision and semi-ration analysis were used in photograph reading and region of interest (ROI) technology, respectively. Results: 1) Group A: there was a low rCBF in left basal ganglia, the dimension was larger than that in CT. There was also a low rCBF in frontal lobe and temporal lobe. Group B: there was only a low rCBF in left basal ganglia. 2) There were 6 cases with crossed cerebellar diaschisis (CCD) in the patients with aphasia. 3) The comparison about aphasia: the rCBF was higher in language center in the patients with improved language function than that in the patients without language function improvement and the difference between them was significant. Conclusions: The neurological function can be indirectly reflected through the study of the rCBF. At the same time, it may conduce to the locating of the damage in the central nervous system and to the differentiation diagnosis. It may also conduce to the programming of the therapeutic course and prognostication. (authors)

  3. The impact of therapeutic hypothermia on neurological function and quality of life after cardiac arrest

    DEFF Research Database (Denmark)

    Bro-Jeppesen, John; Kjaergaard, Jesper; Horsted, Tina I

    2008-01-01

    AIMS: To assess the impact of therapeutic hypothermia on cognitive function and quality of life in comatose survivors of out of Hospital Cardiac arrest (OHCA). METHODS: We prospectively studied comatose survivors of OHCA consecutively admitted in a 4-year period. Therapeutic hypothermia...... was implemented in the last 2-year period, intervention period (n=79), and this group was compared to patients admitted the 2 previous years, control period (n=77). We assessed Cerebral Performance Category (CPC), survival, Mini Mental State Examination (MMSE) and self-rated quality of life (SF-36) 6 months after...... OHCA in the subgroup with VF/VT as initial rhythm. RESULTS: CPC in patients alive at hospital discharge was significantly better in the intervention period with a CPC of 1-2 in 97% vs. 71% in the control period, p=0.003, corresponding to an adjusted odds ratio of a favourable cerebral outcome of 17, p...

  4. Disentangling metabolic functions of bacteria in the honey bee gut.

    Directory of Open Access Journals (Sweden)

    Lucie Kešnerová

    2017-12-01

    Full Text Available It is presently unclear how much individual community members contribute to the overall metabolic output of a gut microbiota. To address this question, we used the honey bee, which harbors a relatively simple and remarkably conserved gut microbiota with striking parallels to the mammalian system and importance for bee health. Using untargeted metabolomics, we profiled metabolic changes in gnotobiotic bees that were colonized with the complete microbiota reconstituted from cultured strains. We then determined the contribution of individual community members in mono-colonized bees and recapitulated our findings using in vitro cultures. Our results show that the honey bee gut microbiota utilizes a wide range of pollen-derived substrates, including flavonoids and outer pollen wall components, suggesting a key role for degradation of recalcitrant secondary plant metabolites and pollen digestion. In turn, multiple species were responsible for the accumulation of organic acids and aromatic compound degradation intermediates. Moreover, a specific gut symbiont, Bifidobacterium asteroides, stimulated the production of host hormones known to impact bee development. While we found evidence for cross-feeding interactions, approximately 80% of the identified metabolic changes were also observed in mono-colonized bees, with Lactobacilli being responsible for the largest share of the metabolic output. These results show that, despite prolonged evolutionary associations, honey bee gut bacteria can independently establish and metabolize a wide range of compounds in the gut. Our study reveals diverse bacterial functions that are likely to contribute to bee health and provide fundamental insights into how metabolic activities are partitioned within gut communities.

  5. Neurological abnormalities predict disability

    DEFF Research Database (Denmark)

    Poggesi, Anna; Gouw, Alida; van der Flier, Wiesje

    2014-01-01

    To investigate the role of neurological abnormalities and magnetic resonance imaging (MRI) lesions in predicting global functional decline in a cohort of initially independent-living elderly subjects. The Leukoaraiosis And DISability (LADIS) Study, involving 11 European centres, was primarily aimed...... at evaluating age-related white matter changes (ARWMC) as an independent predictor of the transition to disability (according to Instrumental Activities of Daily Living scale) or death in independent elderly subjects that were followed up for 3 years. At baseline, a standardized neurological examination.......0 years, 45 % males), 327 (51.7 %) presented at the initial visit with ≥1 neurological abnormality and 242 (38 %) reached the main study outcome. Cox regression analyses, adjusting for MRI features and other determinants of functional decline, showed that the baseline presence of any neurological...

  6. Conversion Disorder, Functional Neurological Symptom Disorder, and Chronic Pain: Comorbidity, Assessment, and Treatment.

    Science.gov (United States)

    Tsui, Patricia; Deptula, Andrew; Yuan, Derek Y

    2017-06-01

    This paper examines the overlap of conversion disorder with chronic pain conditions, describes ways to assess for conversion disorder, and provides an overview of evidence-based treatments for conversion disorder and chronic pain, with a focus on conversion symptoms. Conversion disorder is a significant problem that warrants further study, given that there are not many well-established guidelines. Accurate and timely assessment should help move treatment in a more fruitful direction and avoid unnecessary medical interventions. Advances in neuroimaging may also help further our understanding of conversion disorder. Creating a supportive environment and a collaborative treatment relationship and improving understanding of conversion symptoms appear to help individuals diagnosed with conversion disorder engage in appropriate treatments. Novel uses of earlier treatments, such as hypnosis and psychodynamic approaches, could potentially be beneficial and require a more vigorous and systematic study. There are treatments that produce significant improvements in functioning and reduction of physical symptoms from conversion disorder even for very severe cases. Hypnotherapy, cognitive behavioral therapy, and inpatient multidisciplinary treatment with intensive physiotherapy for severe cases have the most evidence to support reduction of symptoms. Components of treatment for conversion disorder overlap with treatments for chronic pain and can be used together to produce therapeutic effects for both conditions. Treatment needs to be tailored for each individual's specific symptoms.

  7. Metabolic and functional connectivity changes in mal de debarquement syndrome.

    Directory of Open Access Journals (Sweden)

    Yoon-Hee Cha

    Full Text Available Individuals with mal de debarquement syndrome (MdDS experience a chronic illusion of self-motion triggered by prolonged exposure to passive motion, such as from sea or air travel. The experience is one of rocking dizziness similar to when the individual was originally on the motion trigger such as a boat or airplane. MdDS represents a prolonged version of a normal phenomenon familiar to most individuals but which persists for months or years in others. It represents a natural example of the neuroplasticity of motion adaptation. However, the localization of where that motion adaptation occurs is unknown. Our goal was to localize metabolic and functional connectivity changes associated with persistent MdDS.Twenty subjects with MdDS lasting a median duration of 17.5 months were compared to 20 normal controls with (18F FDG PET and resting state fMRI. Resting state metabolism and functional connectivity were calculated using age, grey matter volume, and mood and anxiety scores as nuisance covariates.MdDS subjects showed increased metabolism in the left entorhinal cortex and amygdala (z>3.3. Areas of relative hypometabolism included the left superior medial gyrus, left middle frontal gyrus, right amygdala, right insula, and clusters in the left superior, middle, and inferior temporal gyri. MdDS subjects showed increased connectivity between the entorhinal cortex/amygdala cluster and posterior visual and vestibular processing areas including middle temporal gyrus, motion sensitive area MT/V5, superior parietal lobule, and primary visual cortex, while showing decreased connectivity to multiple prefrontal areas.These data show an association between resting state metabolic activity and functional connectivity between the entorhinal cortex and amygdala in a human disorder of abnormal motion perception. We propose a model for how these biological substrates can allow a limited period of motion exposure to lead to chronic perceptions of self-motion.

  8. Dietary fats and membrane function: implications for metabolism and disease.

    Science.gov (United States)

    Hulbert, A J; Turner, N; Storlien, L H; Else, P L

    2005-02-01

    Lipids play varied and critical roles in metabolism, with function dramatically modulated by the individual fatty acid moities in complex lipid entities. In particular, the fatty acid composition of membrane lipids greatly influences membrane function. Here we consider the role of dietary fatty acid profile on membrane composition and, in turn, its impact on prevalent disease clusters of the metabolic syndrome and mental illness. Applying the classical physiological conformer-regulator paradigm to quantify the influence of dietary fats on membrane lipid composition (i.e. where the membrane variable is plotted against the same variable in the environment--in this case dietary fats), membrane lipid composition appears as a predominantly regulated parameter. Membranes remain relatively constant in their saturated (SFA) and monounsaturated (MUFA) fatty acid levels over a wide range of dietary variation for these fatty acids. Membrane composition was found to be more responsive to n-6 and n-3 polyunsaturated fatty acid (PUFA) levels in the diet and most sensitive to n-3 PUFA and to the n-3/n-6 ratio. These differential responses are probably due to the fact that both n-6 and n-3 PUFA classes cannot be synthesised de novo by higher animals. Diet-induced modifications in membrane lipid composition are associated with changes in the rates of membrane-linked cellular processes that are major contributors to energy metabolism. For example, in the intrinsic activity of fundamental processes such as the Na+/K+ pump and proton pump-leak cycle. Equally, dietary lipid profile impacts substantially on diseases of the metabolic syndrome with evidence accruing for changes in metabolic rate and neuropeptide regulation (thus influencing both sides of the energy balance equation), in second messenger generation and in gene expression influencing a range of glucose and lipid handling pathways. Finally, there is a growing literature relating changes in dietary fatty acid profile to many

  9. Functional imaging of dolphin brain metabolism and blood flow.

    Science.gov (United States)

    Ridgway, Sam; Houser, Dorian; Finneran, James; Carder, Don; Keogh, Mandy; Van Bonn, William; Smith, Cynthia; Scadeng, Miriam; Dubowitz, David; Mattrey, Robert; Hoh, Carl

    2006-08-01

    This report documents the first use of magnetic resonance images (MRIs) of living dolphins to register functional brain scans, allowing for the exploration of potential mechanisms of unihemispheric sleep. Diazepam has been shown to induce unihemispheric slow waves (USW), therefore we used functional imaging of dolphins with and without diazepam to observe hemispheric differences in brain metabolism and blood flow. MRIs were used to register functional brain scans with single photon emission computed tomography (SPECT) and positron emission tomography (PET) in trained dolphins. Scans using SPECT revealed unihemispheric blood flow reduction following diazepam doses greater than 0.55 mg kg(-1) for these 180-200 kg animals. Scans using PET revealed hemispheric differences in brain glucose consumption when scans with and without diazepam were compared. The findings suggest that unihemispheric reduction in blood flow and glucose metabolism in the hemisphere showing USW are important features of unihemispheric sleep. Functional scans may also help to elucidate the degree of hemispheric laterality of sensory and motor systems as well as in neurotransmitter or molecular mechanisms of unihemispheric sleep in delphinoid cetaceans. The findings also demonstrate the potential value of functional scans to explore other aspects of dolphin brain physiology as well as pathology.

  10. Proton NMR based serum metabolic profile correlates with the neurological recovery in treated acute spinal cord injury (ASCI) subjects: A pilot study.

    Science.gov (United States)

    Singh, Alka; Srivastava, Rajeshwar Nath; Agrahari, Ashok; Singh, Suruchi; Raj, Saloni; Chatterji, Tanushri; Mahdi, Abbas Ali; Garg, Ravindra Kumar; Roy, Raja

    2018-05-01

    Acute Spinal Cord Injury (ASCI) is still having substantial morbidity and mortality despite of advanced therapeutics. Major obstacles are paucity of monitoring tools or biomarkers for severity determination, recovery and prognostication. A prospective case control pilot study with serum 1 H NMR spectroscopic metabolic profiling was carried out to evaluate metabolites perturbations and its relationship with recovery and to see role of stem cells in facilitating neurological recovery. Twenty subjects with ASCI were classified on the basis of therapeutic modality into surgical fixation alone (Group-1, n = 10), stem cell adjuvant (Group-2, n = 10) and healthy controls (Group-0, n = 10). Serum samples were collected at admission (baseline) and after six months (follow-up). NMR data of serum sample were quantified and subjected to Wilcoxon and ANOVA tests. Further validation was performed using supervised OSC-PCA and OPLS-DA by incorporating substantial control samples. Twenty-eight metabolites were identified; well resolved resonances of fifteen metabolites were quantified wherein seven were statistically significant. Predominantly amino acids and ketone bodies played vital role in the differentiation of groups. Serum NMR spectroscopy reveals certain metabolites perturbations having clear correlation with pattern of recovery in treated ASCI subject. Stem cells treatment group had comparatively effective recovery. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Rare diseases: matching wheelchair users with rare metabolic, neuromuscular or neurological disorders to electric powered indoor/outdoor wheelchairs (EPIOCs).

    Science.gov (United States)

    De Souza, Lorraine H; Frank, Andrew O

    2016-08-01

    To describe the clinical features of electric powered indoor/outdoor wheelchair (EPIOC) users with rare diseases (RD) impacting on EPIOC provision and seating. Retrospective review by a consultant in rehabilitation medicine of electronic and case note records of EPIOC recipients with RDs attending a specialist wheelchair service between June 2007 and September 2008. Data were systematically extracted, entered into a database and analysed under three themes; demographic, diagnostic/clinical (including comorbidity and associated clinical features (ACFs) of the illness/disability) and wheelchair factors. Fifty-four (27 male) EPIOC users, mean age 37.3 (SD 18.6, range 11-70) with RDs were identified and reviewed a mean of 64 (range 0-131) months after receiving their wheelchair. Diagnoses included 27 types of RDs including Friedreich's ataxia, motor neurone disease, osteogenesis imperfecta, arthrogryposis, cerebellar syndromes and others. Nineteen users had between them 36 comorbidities and 30 users had 44 ACFs likely to influence the prescription. Tilt-in-space was provided to 34 (63%) users and specialised seating to 17 (31%). Four users had between them complex control or interfacing issues. The complex and diverse clinical problems of those with RDs present unique challenges to the multiprofessional wheelchair team to maintain successful independent mobility and community living. Implications for Rehabilitation Powered mobility is a major therapeutic tool for those with rare diseases enhancing independence, participation, reducing pain and other clinical features. The challenge for rehabilitation professionals is reconciling the physical disabilities with the individual's need for function and participation whilst allowing for disease progression and/or growth. Powered wheelchair users with rare diseases with a (kypho) scoliosis require a wheelchair system that balances spine stability and movement to maximise residual upper limb and trunk function. The role of

  12. Functional foods as potential therapeutic options for metabolic syndrome.

    Science.gov (United States)

    Brown, L; Poudyal, H; Panchal, S K

    2015-11-01

    Obesity as part of metabolic syndrome is a major lifestyle disorder throughout the world. Current drug treatments for obesity produce small and usually unsustainable decreases in body weight with the risk of major adverse effects. Surgery has been the only treatment producing successful long-term weight loss. As a different but complementary approach, lifestyle modification including the use of functional foods could produce a reliable decrease in obesity with decreased comorbidities. Functional foods may include fruits such as berries, vegetables, fibre-enriched grains and beverages such as tea and coffee. Although health improvements continue to be reported for these functional foods in rodent studies, further evidence showing the translation of these results into humans is required. Thus, the concept that these fruits and vegetables will act as functional foods in humans to reduce obesity and thereby improve health remains intuitive and possible rather than proven. © 2015 World Obesity.

  13. Adult neurology training during child neurology residency.

    Science.gov (United States)

    Schor, Nina F

    2012-08-21

    As it is currently configured, completion of child neurology residency requires performance of 12 months of training in adult neurology. Exploration of whether or not this duration of training in adult neurology is appropriate for what child neurology is today must take into account the initial reasons for this requirement and the goals of adult neurology training during child neurology residency.

  14. Combination of 24-Hour and 7-Day Relative Neurological Improvement Strongly Predicts 90-Day Functional Outcome of Endovascular Stroke Therapy.

    Science.gov (United States)

    Pu, Jie; Wang, Huaiming; Tu, Mingyi; Zi, Wenjie; Hao, Yonggang; Yang, Dong; Liu, Wenhua; Wan, Yue; Geng, Yu; Lin, Min; Jin, Ping; Xiong, Yunyun; Xu, Gelin; Yin, Qin; Liu, Xinfeng

    2018-01-03

    Early judgment of long-term prognosis is the key to making medical decisions in acute anterior circulation large-vessel occlusion stroke (LVOS) after endovascular treatment (EVT). We aimed to investigate the relationship between the combination of 24-hour and 7-day relative neurological improvement (RNI) and 90-day functional outcome. We selected the target population from a multicenter ischemic stroke registry. The National Institutes of Health Stroke Scale (NIHSS) scores at baseline, 24 hours, and 7 days were collected. RNI was calculated by the following equation: (baseline NIHSS - 24-hour/7-day NIHSS)/baseline NIHSS × 100%. A modified Rankin Scale score of 0-2 at 90 days was defined as a favorable outcome. Multivariable logistic regression analysis was used to evaluate the relationship between RNI and 90-day outcome. Receiver operator characteristic curve analysis was performed to identify the predictive power and cutoff point of RNI for functional outcome. A total of 568 patients were enrolled. Both 24-hour and 7-day RNI were independent predictors of 90-day outcome. The best cutoff points of 24-hour and 7-day RNI were 28% and 42%, respectively. Compared with those with 24-hour RNI of less than 28% and 7-day RNI of less than 42%, patients with 24-hour RNI of 28% or greater and 7-day RNI of 42% or greater had a 39.595-fold (95% confidence interval 22.388-70.026) increased probability of achieving 90-day favorable outcome. The combination of 24-hour and 7-day RNI very strongly predicts 90-day functional outcome in patients with acute anterior circulation LVOS who received EVT, and it can be used as an early accurate surrogate of long-term outcome. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  15. Effectiveness of music-based interventions on motricity or cognitive functioning in neurological populations: a systematic review.

    OpenAIRE

    Moumdjian, Lousin; Sarkamo, Teppo; Leone, Carmela; Leman, Marc; Feys, Peter

    2016-01-01

    INTRODUCTION: Motor and cognitive symptoms are frequent in persons with neurological disorders and often require extensive long-term rehabilitation. Recently, a variety of musicbased interventions have been introduced into neurological rehabilitation as training tools. AIM: This review aims to a) describe and define music-based intervention modalities and content which are applied in experimental studies, and b) describe the effects of these interventions on motor and/or cognitive symptoms...

  16. Jisuikang, a Chinese herbal formula, increases neurotrophic factor expression and promotes the recovery of neurological function after spinal cord injury

    Directory of Open Access Journals (Sweden)

    Yang Guo

    2017-01-01

    Full Text Available The Chinese medicine compound, Jisuikang, can promote recovery of neurological function by inhibiting lipid peroxidation, scavenging oxygen free radicals, and effectively improving the local microenvironment after spinal cord injury. However, the mechanism remains unclear. Thus, we established a rat model of acute spinal cord injury using a modified version of Allen's method. Jisuikang (50, 25, and 12.5 g/kg/d and prednisolone were administered 30 minutes after anesthesia. Basso, Beattie, and Bresnahan locomotor scale scores and the oblique board test showed improved motor function recovery in the prednisone group and moderate-dose Jisuikang group compared with the other groups at 3–7 days post-injury. The rats in the moderate-dose Jisuikang group recovered best at 14 days post-injury. Hematoxylin-eosin staining and transmission electron microscopy showed that the survival rate of neurons in treatment groups increased after 3–7 days of administration. Further, the structure of neurons and glial cells was more distinct, especially in prednisolone and moderate-dose Jisuikang groups. Western blot assay and immunohistochemistry showed that expression of brain-derived neurotrophic factor (BDNF in injured segments was maintained at a high level after 7–14 days of treatment. In contrast, expression of nerve growth factor (NGF was down-regulated at 7 days after spinal cord injury. Real-time fluorescence quantitative polymerase chain reaction showed that expression of BDNF and NGF mRNA was induced in injured segments by prednisolone and Jisuikang. At 3–7 days after injury, the effect of prednisolone was greater, while 14 days after injury, the effect of moderate-dose Jisuikang was greater. These results confirm that Jisuikang can upregulate BDNF and NGF expression for a prolonged period after spinal cord injury and promote repair of acute spinal cord injury, with its effect being similar to prednisolone.

  17. Functional roles of KATP channel subunits in metabolic inhibition

    Science.gov (United States)

    Glukhov, Alexey V.; Uchida, Keita; Efimov, Igor R.; Nichols, Colin G.

    2013-01-01

    ATP-sensitive potassium channel (KATP) activation can drastically shorten action potential duration (APD) in metabolically compromised myocytes. We showed previously that SUR1 with Kir6.2 forms the functional channel in mouse atria while Kir6.2 and SUR2A predominate in ventricles. SUR1 is more sensitive to metabolic stress than SUR2A, raising the possibility that KATP in atria and ventricles may respond differently to metabolic stress. Action potential duration (APD) and calcium transient duration (CaTD) were measured simultaneously in both atria and ventricles by optical mapping of the posterior surface of Langendorff-perfused hearts from C57BL wild-type (WT; n = 11), Kir6.2−/− (n = 5), and SUR1−/− (n = 6) mice during metabolic inhibition (MI, 0 mM glucose + 2 mM sodium cyanide). After variable delay, MI led to significant shortening of APD in WT hearts. On average, atrial APD shortened by 60.5 ± 2.7% at 13.1 ± 2.1 min (n = 6, p < 0.01) after onset of MI. Ventricular APD shortening (56.4 ± 10.0% shortening at 18.2 ± 1.8 min) followed atrial APD shortening. In SUR1−/− hearts (n = 6), atrial APD shortening was abolished, but ventricular shortening (65.0 ± 15.4% at 25.33 ± 4.48 min, p < 0.01) was unaffected. In Kir6.2−/− hearts, two disparate responses to MI were observed; 3 of 5 hearts displayed slight shortening of APD in the ventricles (24 ± 3%, p < 0.05) and atria (39.0 ± 1.9%, p < 0.05) but this shortening occurred later and to much less extent than in WT (p < 0.05). Marked prolongation of ventricular APD was observed in the remaining hearts (327% and 489% prolongation) and was associated with occurrence of ventricular tachyarrhythmias. The results confirm that Kir6.2 contributes to APD shortening in both atria and ventricle during metabolic stress, and that SUR1 is required for atrial APD shortening while SUR2A is required for ventricular APD shortening. Importantly, the results show that the presence of SUR1-dependent KATP in the atria

  18. Vascular dementia Cognitive, functional and behavioral assessment Recommendations of the Scientific Department of Cognitive Neurology and Aging of the Brazilian Academy of Neurology. Part II.

    Directory of Open Access Journals (Sweden)

    Eliasz Engelhardt

    Full Text Available Abstract Vascular dementia (VaD is the most prevalent form of secondary dementia and the second most common of all dementias. The present paper aims to define guidelines on the basic principles for treating patients with suspected VaD (and vascular cognitive impairment - no dementia using an evidence-based approach. The material was retrieved and selected from searches of databases (Medline, Scielo, Lilacs, preferentially from the last 15 years, to propose a systematic way to assess cognition, function and behavior, and disease severity staging, with instruments adapted for our milieu, and diagnosis disclosure. The present proposal contributes to the definition of standard diagnostic criteria for VaD based on various levels of evidence. It is noteworthy that only around half of the population of patients with vascular cognitive impairment present with dementia, which calls for future proposals defining diagnostic criteria and procedures for this condition.

  19. Neurologic disorders

    International Nuclear Information System (INIS)

    Chakeres, D.W.

    1987-01-01

    There is a wide range of indications for radiographic evaluation of possible cerebrovascular disease, since a wide range of neurologic symptoms can be encountered secondary to ischemia. Frequently the diagnosis of cerebrovascular disease is clear on clinical grounds, but radiographic evaluation is essential both to quantify the extent of disease and establish the underlying cause (e.g., vasculitis, embolus) while excluding other causes so that the proper therapy can follow

  20. Voluntary exercise improves hypothalamic and metabolic function in obese mice.

    Science.gov (United States)

    Laing, Brenton T; Do, Khoa; Matsubara, Tomoko; Wert, David W; Avery, Michael J; Langdon, Erin M; Zheng, Donghai; Huang, Hu

    2016-05-01

    Exercise plays a critical role in regulating glucose homeostasis and body weight. However, the mechanism of exercise on metabolic functions associated with the CNS has not been fully understood. C57BL6 male mice (n=45) were divided into three groups: normal chow diet, high-fat diet (HFD) treatment, and HFD along with voluntary running wheel exercise training for 12 weeks. Metabolic function was examined by the Comprehensive Lab Animal Monitoring System and magnetic resonance imaging; phenotypic analysis included measurements of body weight, food intake, glucose and insulin tolerance tests, as well as insulin and leptin sensitivity studies. By immunohistochemistry, the amount changes in the phosphorylation of signal transducer and activator of transcription 3, neuronal proliferative maker Ki67, apoptosis positive cells as well as pro-opiomelanocortin (POMC)-expressing neurons in the arcuate area of the hypothalamus was identified. We found that 12 weeks of voluntary exercise training partially reduced body weight gain and adiposity induced by an HFD. Insulin and leptin sensitivity were enhanced in the exercise training group verses the HFD group. Furthermore, the HFD-impaired POMC-expressing neuron is remarkably restored in the exercise training group. The restoration of POMC neuron number may be due to neuroprotective effects of exercise on POMC neurons, as evidenced by altered proliferation and apoptosis. In conclusion, our data suggest that voluntary exercise training improves metabolic symptoms induced by HFD, in part through protected POMC-expressing neuron from HFD and enhanced leptin signaling in the hypothalamus that regulates whole-body energy homeostasis. © 2016 Society for Endocrinology.

  1. The Effectiveness of Singing or Playing a Wind Instrument in Improving Respiratory Function in Patients with Long-Term Neurological Conditions: A Systematic Review.

    Science.gov (United States)

    Ang, Kexin; Maddocks, Matthew; Xu, Huiying; Higginson, Irene J

    2017-03-01

    Many long-term neurological conditions adversely affect respiratory function. Singing and playing wind instruments are relatively inexpensive interventions with potential for improving respiratory function; however, synthesis of current evidence is needed to inform research and clinical use of music in respiratory care. To critically appraise, analyze, and synthesize published evidence on the effectiveness of singing or playing a wind instrument to improve respiratory function in people with long-term neurological conditions. Systematic review of published randomized controlled trials and observational studies examining singing or playing wind instruments to improve respiratory function in individuals with long-term neurological conditions. Articles meeting specified inclusion criteria were identified through a search of the Medline, Embase, PsycINFO, Cochrane Library, CINAHL, Web of Science, CAIRSS for Music, WHO International Clinical Trials Registry Platform Search Portal, and AMED databases as early as 1806 through March 2015. Information on study design, clinical populations, interventions, and outcome measures was extracted and summarized using an electronic standardized coding form. Methodological quality was assessed and summarized across studies descriptively. From screening 584 references, 68 full texts were reviewed and five studies included. These concerned 109 participants. The studies were deemed of low quality, due to evidence of bias, in part due to intervention complexity. No adverse effects were reported. Overall, there was a trend toward improved respiratory function, but only one study on Parkinson's disease had significant between-group differences. The positive trend in respiratory function in people with long-term neurological conditions following singing or wind instrument therapy is of interest, and warrants further investigation. © the American Music Therapy Association 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  2. The Functions of Metamorphic Metallothioneins in Zinc and Copper Metabolism.

    Science.gov (United States)

    Krężel, Artur; Maret, Wolfgang

    2017-06-09

    Recent discoveries in zinc biology provide a new platform for discussing the primary physiological functions of mammalian metallothioneins (MTs) and their exquisite zinc-dependent regulation. It is now understood that the control of cellular zinc homeostasis includes buffering of Zn 2+ ions at picomolar concentrations, extensive subcellular re-distribution of Zn 2+ , the loading of exocytotic vesicles with zinc species, and the control of Zn 2+ ion signalling. In parallel, characteristic features of human MTs became known: their graded affinities for Zn 2+ and the redox activity of their thiolate coordination environments. Unlike the single species that structural models of mammalian MTs describe with a set of seven divalent or eight to twelve monovalent metal ions, MTs are metamorphic. In vivo, they exist as many species differing in redox state and load with different metal ions. The functions of mammalian MTs should no longer be considered elusive or enigmatic because it is now evident that the reactivity and coordination dynamics of MTs with Zn 2+ and Cu⁺ match the biological requirements for controlling-binding and delivering-these cellular metal ions, thus completing a 60-year search for their functions. MT represents a unique biological principle for buffering the most competitive essential metal ions Zn 2+ and Cu⁺. How this knowledge translates to the function of other families of MTs awaits further insights into the specifics of how their properties relate to zinc and copper metabolism in other organisms.

  3. Predictors of global left ventricular function in metabolic syndrome.

    Science.gov (United States)

    Ivanovic, Branislava Aleksa; Tadic, Marijana Vaso; Simic, Dragan Vojislav

    2011-05-01

    The metabolic syndrome (MS) represents a cluster of cardiovascular risk factors that act synergistically. The aim of this study was to determine which parameters were independently associated with the global left ventricular (LV) function in subjects with MS estimated with the Tei index. The study included 234 subjects with MS and 96 controls adjusted by age. MS was defined by the presence of three or more of ATP- NCEP III criteria. All subjects underwent laboratory blood tests and two-dimensional, pulsed and tissue Doppler echocardiography. Appropriate tissue Doppler time intervals for the estimation of the Tei index were also assessed. The Tei index was increased in subjects with MS (0.35 ± 0.05 vs 0.49 ± 0.10, p < 0.001). Multiple regression analysis of the clinical parameters showed that systolic blood pressure (β= 0.289, p < 0.001), fasting glucose (β= 0.205, p = 0.009), LV mass index (β= 0.301, p < 0.001), E/e'(septal) (β= 0.267, p < 0.001), and e'(septal) (β= -0.176, p = 0.011) were independently associated with the global left ventricular function estimated by Tei index. MS has a significant impact on LV global function. Systolic blood pressure, fasting glucose, LV mass index, E/e'(septal), and e'(septal) were independently associated with the LV global function.

  4. The Functions of Metamorphic Metallothioneins in Zinc and Copper Metabolism

    Directory of Open Access Journals (Sweden)

    Artur Krężel

    2017-06-01

    Full Text Available Recent discoveries in zinc biology provide a new platform for discussing the primary physiological functions of mammalian metallothioneins (MTs and their exquisite zinc-dependent regulation. It is now understood that the control of cellular zinc homeostasis includes buffering of Zn2+ ions at picomolar concentrations, extensive subcellular re-distribution of Zn2+, the loading of exocytotic vesicles with zinc species, and the control of Zn2+ ion signalling. In parallel, characteristic features of human MTs became known: their graded affinities for Zn2+ and the redox activity of their thiolate coordination environments. Unlike the single species that structural models of mammalian MTs describe with a set of seven divalent or eight to twelve monovalent metal ions, MTs are metamorphic. In vivo, they exist as many species differing in redox state and load with different metal ions. The functions of mammalian MTs should no longer be considered elusive or enigmatic because it is now evident that the reactivity and coordination dynamics of MTs with Zn2+ and Cu+ match the biological requirements for controlling—binding and delivering—these cellular metal ions, thus completing a 60-year search for their functions. MT represents a unique biological principle for buffering the most competitive essential metal ions Zn2+ and Cu+. How this knowledge translates to the function of other families of MTs awaits further insights into the specifics of how their properties relate to zinc and copper metabolism in other organisms.

  5. The Functions of Metamorphic Metallothioneins in Zinc and Copper Metabolism

    Science.gov (United States)

    Krężel, Artur; Maret, Wolfgang

    2017-01-01

    Recent discoveries in zinc biology provide a new platform for discussing the primary physiological functions of mammalian metallothioneins (MTs) and their exquisite zinc-dependent regulation. It is now understood that the control of cellular zinc homeostasis includes buffering of Zn2+ ions at picomolar concentrations, extensive subcellular re-distribution of Zn2+, the loading of exocytotic vesicles with zinc species, and the control of Zn2+ ion signalling. In parallel, characteristic features of human MTs became known: their graded affinities for Zn2+ and the redox activity of their thiolate coordination environments. Unlike the single species that structural models of mammalian MTs describe with a set of seven divalent or eight to twelve monovalent metal ions, MTs are metamorphic. In vivo, they exist as many species differing in redox state and load with different metal ions. The functions of mammalian MTs should no longer be considered elusive or enigmatic because it is now evident that the reactivity and coordination dynamics of MTs with Zn2+ and Cu+ match the biological requirements for controlling—binding and delivering—these cellular metal ions, thus completing a 60-year search for their functions. MT represents a unique biological principle for buffering the most competitive essential metal ions Zn2+ and Cu+. How this knowledge translates to the function of other families of MTs awaits further insights into the specifics of how their properties relate to zinc and copper metabolism in other organisms. PMID:28598392

  6. Surfactant phosphatidylcholine metabolism and surfactant function in preterm, ventilated lambs

    International Nuclear Information System (INIS)

    Jobe, A.H.; Ikegami, M.; Seidner, S.R.; Pettenazzo, A.; Ruffini, L.

    1989-01-01

    Preterm lambs were delivered at 138 days gestational age and ventilated for periods up to 24 h in order to study surfactant metabolism and surfactant function. The surfactant-saturated phosphatidylcholine pool in the alveolar wash was 13 +/- 4 mumol/kg and did not change from 10 min to 24 h after birth. Trace amounts of labeled natural sheep surfactant were mixed with fetal lung fluid at birth. By 24 h, 80% of the label had become lung-tissue-associated, yet there was no loss of label from phosphatidylcholine in the lungs when calculated as the sum of the lung tissue plus alveolar wash. De novo synthesized phosphatidylcholine was labeled with choline given by intravascular injection at 1 h of age. Labeled phosphatidylcholine accumulated in the lung tissue linearly to 24 h, and the labeled phosphatidylcholine moved through lamellar body to alveolar pools. The turnover time for alveolar phosphatidylcholine was estimated to be about 13 h, indicating an active metabolic pool. A less surface-active surfactant fraction recovered as a supernatant after centrifugation of the alveolar washes at 40,000 x g increased from birth to 10 min of ventilation, but no subsequent changes in the distribution of surfactant phosphatidylcholine in surfactant fractions occurred. The results were consistent with recycling pathway(s) that maintained surface-active surfactant pools in preterm ventilated lambs

  7. Silibinin regulates lipid metabolism and differentiation in functional human adipocytes

    Directory of Open Access Journals (Sweden)

    Ignazio eBarbagallo

    2016-01-01

    Full Text Available Silibinin, a natural plant flavonoid, is the main active constituent found in milk thistle (Silybum marianum. It is known to have hepatoprotective, anti-neoplastic effect and suppresses lipid accumulation in adipocytes. Objective of this study was to investigate the effect of silibinin on adipogenic differentiation and thermogenic capacity of human adipose tissue derived mesenchymal stem cells. Silibinin (10 μM treatment, either at the beginning or at the end of adipogenic differentiation, resulted in an increase of SIRT-1, PPARα, Pgc-1α and UCPs gene expression. Moreover, silibinin administration resulted in a decrease of PPARγ, FABP4, FAS and MEST/PEG1 gene expression during the differentiation, confirming that this compound is able to reduce fatty acid accumulation and adipocyte size. Our data showed that silibinin regulated adipocyte lipid metabolism, inducing thermogenesis and promoting a brown remodelling in adipocyte. Taken together, our findings suggest that silibinin increases UCPs expression by stimulation of SIRT1, PPARα and Pgc-1α, improved metabolic parameters, decreased lipid mass leading to the formation of functional adipocytes.

  8. Broadening the scope on health problems among the chronically neurologically ill with the International Classification of Functioning (ICF)

    NARCIS (Netherlands)

    Wynia, K.; Middel, B.; van Dijk, J.P.; de Ruiter, H.; Lok, W.; de Keyser, J.H.A.; Reijneveld, S.A.

    2006-01-01

    Purpose. The aim of this study was to determine ICF items indicating health problems for patients with a chronic neurological disorder such as multiple sclerosis, Parkinson's disease and neuromuscular disease. Method. A Delphi study using three disease-specific panels composed of patients and

  9. Influence of minimally invasive hematoma evacuation combined with nerve growth factor preparation on neurological function injury in patients with hypertensive cerebral hemorrhage

    OpenAIRE

    Jiang Tao; Feng Ai-Ping; Liu Lun-Bo; Huang Qi-Jun; Du Chen

    2017-01-01

    Objective: To study the influence of minimally invasive hematoma evacuation combined with nerve growth factor preparation on neurological function injury in patients with hypertensive cerebral hemorrhage. Methods: A total of 112 patients with hypertensive cerebral hemorrhage who were treated in our hospital between July 2013 and February 2016 were collected, and according to random number table, they were divided into the control group (n=56) who underwent minimally invasive he...

  10. Effect of minimally invasive evacuation of hematoma combined with Xingnaojing therapy on neurological function injury and cytokine level in patients with hypertensive cerebral hemorrhagen

    OpenAIRE

    Yong-Feng Li; Wei Li

    2017-01-01

    Objective: To study the effect of minimally invasive evacuation of hematoma combined with Xingnaojing therapy on neurological function damage and cytokine level in patients with hypertensive cerebral hemorrhage. Methods: A total of 80 patients with hypertensive cerebral hemorrhage treated in our hospital between June 2010 and September 2015 were selected as the research subjects, the treatment methods and test results were reviewed, and then they were divided into the control g...

  11. Effect of minimally invasive evacuation of hematoma combined with Xingnaojing therapy on neurological function injury and cytokine level in patients with hypertensive cerebral hemorrhagen

    Directory of Open Access Journals (Sweden)

    Yong-Feng Li

    2017-06-01

    Full Text Available Objective: To study the effect of minimally invasive evacuation of hematoma combined with Xingnaojing therapy on neurological function damage and cytokine level in patients with hypertensive cerebral hemorrhage. Methods: A total of 80 patients with hypertensive cerebral hemorrhage treated in our hospital between June 2010 and September 2015 were selected as the research subjects, the treatment methods and test results were reviewed, and then they were divided into the control group (n=45 who accepted minimally invasive evacuation of hematoma alone and the observation group (n=35 who accepted minimally invasive evacuation of hematoma combined with Xingnaojing therapy. Before and after treatment, cerebral blood flow detector was used to detect cerebral blood flow parameters; ELISA method was used to detect serum levels of neurological function indexes and inflammatory cytokines; high performance liquid chromatograph was used to detect serum neurotransmitter levels. Results: Before treatment, the differences in cerebral blood flow parameters, neurological function indexes, inflammatory cytokines and neurotransmitters were not statistically significant between two groups of patients. After treatment, cerebral blood flow parameters Q and V levels of observation group were higher than those of control group while R level was lower than that of control group; serum NSE, NPY, IL-1β, IL-4, IL-6, TNF-α, Glu and Asp contents of observation group were lower than those of control group while BDNF and Gly contents were higher than those of control group. Conclusion: Minimally invasive evacuation of hematoma combined with Xingnaojing therapy can improve the neurological function and regulate the synthesis of inflammatory cytokines and neurotransmitters in patients with hypertension cerebral hemorrhage.

  12. Maternal blood metal levels and fetal markers of metabolic function

    International Nuclear Information System (INIS)

    Ashley-Martin, Jillian; Dodds, Linda; Arbuckle, Tye E.; Ettinger, Adrienne S.; Shapiro, Gabriel D.; Fisher, Mandy; Taback, Shayne; Bouchard, Maryse F.; Monnier, Patricia; Dallaire, Renee; Fraser, William D.

    2015-01-01

    Exposure to metals commonly found in the environment has been hypothesized to be associated with measures of fetal growth but the epidemiological literature is limited. The Maternal–Infant Research on Environmental Chemicals (MIREC) study recruited 2001 women during the first trimester of pregnancy from 10 Canadian sites. Our objective was to assess the association between prenatal exposure to metals (lead, arsenic, cadmium, and mercury) and fetal metabolic function. Average maternal metal concentrations in 1st and 3rd trimester blood samples were used to represent prenatal metals exposure. Leptin and adiponectin were measured in 1363 cord blood samples and served as markers of fetal metabolic function. Polytomous logistic regression models were used to estimate odds ratios (OR) and 95% confidence intervals (CI) for the association between metals and both high (≥90%) and low (≤10%) fetal adiponectin and leptin levels. Leptin levels were significantly higher in female infants compared to males. A significant relationship between maternal blood cadmium and odds of high leptin was observed among males but not females in adjusted models. When adjusting for birth weight z-score, lead was associated with an increased odd of high leptin. No other significant associations were found at the top or bottom 10th percentile in either leptin or adiponectin models. This study supports the proposition that maternal levels of cadmium influence cord blood adipokine levels in a sex-dependent manner. Further investigation is required to confirm these findings and to determine how such findings at birth will translate into childhood anthropometric measures. - Highlights: • We determined relationships between maternal metal levels and cord blood adipokines. • Cord blood leptin levels were higher among female than male infants. • Maternal cadmium was associated with elevated leptin in male, not female infants. • No significant associations were observed between metals and

  13. Maternal blood metal levels and fetal markers of metabolic function

    Energy Technology Data Exchange (ETDEWEB)

    Ashley-Martin, Jillian [Perinatal Epidemiology Research Unit, Dalhousie University, Halifax, Nova Scotia (Canada); Dodds, Linda, E-mail: l.dodds@dal.ca [Perinatal Epidemiology Research Unit, Dalhousie University, Halifax, Nova Scotia (Canada); Arbuckle, Tye E. [Health Canada, Ottawa (Canada); Ettinger, Adrienne S. [Yale University, New Haven, CT (United States); Shapiro, Gabriel D. [University of Montreal, Montreal, Quebec (Canada); CHU Sainte-Justine Research Centre, Montreal, Quebec (Canada); Fisher, Mandy [Health Canada, Ottawa (Canada); Taback, Shayne [University of Manitoba, Winnipeg, Manitoba (Canada); Bouchard, Maryse F. [University of Montreal, Montreal, Quebec (Canada); Monnier, Patricia [McGill University, Montreal, Quebec (Canada); Dallaire, Renee [Laval University, Quebec City, Quebec (Canada); Fraser, William D. [University of Montreal, Montreal, Quebec (Canada); CHU Sainte-Justine Research Centre, Montreal, Quebec (Canada)

    2015-01-15

    Exposure to metals commonly found in the environment has been hypothesized to be associated with measures of fetal growth but the epidemiological literature is limited. The Maternal–Infant Research on Environmental Chemicals (MIREC) study recruited 2001 women during the first trimester of pregnancy from 10 Canadian sites. Our objective was to assess the association between prenatal exposure to metals (lead, arsenic, cadmium, and mercury) and fetal metabolic function. Average maternal metal concentrations in 1st and 3rd trimester blood samples were used to represent prenatal metals exposure. Leptin and adiponectin were measured in 1363 cord blood samples and served as markers of fetal metabolic function. Polytomous logistic regression models were used to estimate odds ratios (OR) and 95% confidence intervals (CI) for the association between metals and both high (≥90%) and low (≤10%) fetal adiponectin and leptin levels. Leptin levels were significantly higher in female infants compared to males. A significant relationship between maternal blood cadmium and odds of high leptin was observed among males but not females in adjusted models. When adjusting for birth weight z-score, lead was associated with an increased odd of high leptin. No other significant associations were found at the top or bottom 10th percentile in either leptin or adiponectin models. This study supports the proposition that maternal levels of cadmium influence cord blood adipokine levels in a sex-dependent manner. Further investigation is required to confirm these findings and to determine how such findings at birth will translate into childhood anthropometric measures. - Highlights: • We determined relationships between maternal metal levels and cord blood adipokines. • Cord blood leptin levels were higher among female than male infants. • Maternal cadmium was associated with elevated leptin in male, not female infants. • No significant associations were observed between metals and

  14. Thyroid function in adult Nigerians with metabolic syndrome ...

    African Journals Online (AJOL)

    Introduction: metabolic syndrome and thyroid dysfunction are two common disorders encountered in the metabolic clinic. Recently, there has been increased interest in the association between the two disorders because of the similarities between symptoms of hypothyroidism and components of the metabolic syndrome.

  15. EFFECT OF DANCE EXERCISE ON COGNITIVE FUNCTION IN ELDERLY PATIENTS WITH METABOLIC SYNDROME: A PILOT STUDY

    OpenAIRE

    Sang-Wook Song; Seo-Jin Park; Jung-hyoun Cho; Sung-Goo Kang; Hyun-Kook Lim; Yu-Bae Ahn; Minjeong Kim; Se-Hong Kim

    2011-01-01

    Metabolic syndrome is associated with an increased risk of cognitive impairment. The purpose of this prospective pilot study was to examine the effects of dance exercise on cognitive function in elderly patients with metabolic syndrome. The participants included 38 elderly metabolic syndrome patients with normal cognitive function (26 exercise group and 12 control group). The exercise group performed dance exercise twice a week for 6 months. Cognitive function was assessed in all participants...

  16. Stressful life events and maltreatment in conversion (functional neurological) disorder: systematic review and meta-analysis of case-control studies.

    Science.gov (United States)

    Ludwig, Lea; Pasman, Joëlle A; Nicholson, Timothy; Aybek, Selma; David, Anthony S; Tuck, Sharon; Kanaan, Richard A; Roelofs, Karin; Carson, Alan; Stone, Jon

    2018-04-01

    Stressful life events and maltreatment have traditionally been considered crucial in the development of conversion (functional neurological) disorder, but the evidence underpinning this association is not clear. We aimed to assess the association between stressors and functional neurological disorder. We systematically reviewed controlled studies reporting stressors occurring in childhood or adulthood, such as stressful life events and maltreatment (including sexual, physical abuse, and emotional neglect) and functional neurological disorder. We did a meta-analysis, with assessments of methodology, sources of bias, and sensitivity analyses. 34 case-control studies, with 1405 patients, were eligible. Studies were of moderate-to-low quality. The frequency of childhood and adulthood stressors was increased in cases compared with controls. Odds ratios (OR) were higher for emotional neglect in childhood (49% for cases vs 20% for controls; OR 5·6, 95% CI 2·4-13·1) compared with sexual abuse (24% vs 10%; 3·3, 2·2-4·8) or physical abuse (30% vs 12%; 3·9, 2·2-7·2). An association with stressful life events preceding onset (OR 2·8, 95% CI 1·4-6·0) was stronger in studies with better methods (interviews; 4·3, 1·4-13·2). Heterogeneity was significant between studies (I 2 21·1-90·7%). 13 studies that specifically ascertained that the participants had not had either severe life events or any subtype of maltreatment all found a proportion of patients with functional neurological disorder reporting no stressor. Stressful life events and maltreatment are substantially more common in people with functional neurological disorder than in healthy controls and patient controls. Emotional neglect had a higher risk than traditionally emphasised sexual and physical abuse, but many cases report no stressors. This outcome supports changes to diagnostic criteria in DSM-5; stressors, although relevant to the cause in many patients, are not a core diagnostic feature. This

  17. Functional genomics and proteomics applied to the study of nutritional metabolism.

    Science.gov (United States)

    Guengerich, F P

    2001-08-01

    Functional genomics, commonly applied to the genes and enzymes involved in metabolism of chemicals, can also be applied to enzymes involved in the metabolism of nutrients. Although in its infancy, genomics can be used to determine relationships between nutrition and toxicology, drug metabolism, and cancer.

  18. Prefronto–cerebellar transcranial direct current stimulation improves visuospatial memory, executive functions, and neurological soft signs in patients with euthymic bipolar disorder

    Directory of Open Access Journals (Sweden)

    Minichino A

    2015-08-01

    Full Text Available Amedeo Minichino, Francesco Saverio Bersani, Laura Bernabei, Francesco Spagnoli, Lucilla Vergnani, Alessandra Corrado, Ines Taddei, Massimo Biondi, Roberto Delle Chiaie Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy Objective: The aim of the study was to improve neuropsychological functioning of euthymic patients with bipolar disorder (BD using transcranial direct current stimulation (tDCS applied to cerebellar and prefrontal cortices.Methods: Twenty-five BD outpatients underwent prefrontal (anodal and cerebellar (cathodal tDCS for 3 consecutive weeks. All participants were assessed through the Rey Complex Figure Test delay and copy and the Neurological Examination Scale at baseline and after therapy with tDCS.Results: After tDCS treatment, patients showed significant improvements in visuospatial memory tasks. Patients with worse baseline cognitive performances also showed a significant improvement in executive functioning tasks. Neurological Examination Scale total score and motor coordination subscale significantly improved.Conclusion: Prefrontal-excitatory and cerebellar-inhibitory stimulations in euthymic BD patients may lead to better neurocognitive performances. This improvement could result from the modulation of prefronto–thalamic–cerebellar circuit activity pattern, which can be disrupted in BD. Keywords: cerebellum, dorsolateral prefrontal cortex, neuropsychology, cognition 

  19. Exploiting immune cell metabolic machinery for functional HIV cure and the prevention of inflammaging

    OpenAIRE

    Palmer, Clovis S.; Palchaudhuri, Riya; Albargy, Hassan; Abdel-Mohsen, Mohamed; Crowe, Suzanne M.

    2018-01-01

    An emerging paradigm in immunology suggests that metabolic reprogramming and immune cell activation and functions are intricately linked. Viral infections, such as HIV infection, as well as cancer force immune cells to undergo major metabolic challenges. Cells must divert energy resources in order to mount an effective immune response. However, the fact that immune cells adopt specific metabolic programs to provide host defense against intracellular pathogens and how this metabolic shift impa...

  20. Linking of the quality of life in neurological disorders (Neuro-QoL) to the international classification of functioning, disability and health.

    Science.gov (United States)

    Wong, Alex W K; Lau, Stephen C L; Cella, David; Lai, Jin-Shei; Xie, Guanli; Chen, Lidian; Chan, Chetwyn C H; Heinemann, Allen W

    2017-09-01

    The quality of life in neurological disorders (Neuro-QoL) is a U.S. National Institutes of Health initiative that produced a set of self-report measures of physical, mental, and social health experienced by adults or children who have a neurological condition or disorder. To describe the content of the Neuro-QoL at the item level using the World Health Organization's international classification of functioning, disability and health (ICF). We assessed the Neuro-QoL for its content coverage of functioning and disability relative to each of the four ICF domains (i.e., body functions, body structures, activities and participation, and environment). We used second-level ICF three-digit codes to classify items into categories within each ICF domain and computed the percentage of categories within each ICF domain that were represented in the Neuro-QoL items. All items of Neuro-QoL could be mapped to the ICF categories at the second-level classification codes. The activities and participation domain and the mental functions category of the body functions domain were the areas most often represented by Neuro-QoL. Neuro-QoL provides limited coverage of the environmental factors and body structure domains. Neuro-QoL measures map well to the ICF. The Neuro-QoL-ICF-mapped items provide a blueprint for users to select appropriate measures in ICF-based measurement applications.

  1. Functions of autophagy in plant carbon and nitrogen metabolism

    Directory of Open Access Journals (Sweden)

    Chenxia eRen

    2014-06-01

    Full Text Available Carbon and nitrogen are essential components for plant growth. Although models of plant carbon and nitrogen metabolisms have long been established, certain gaps remain unfilled, such as how plants are able to maintain a flexible nocturnal starch turnover capacity over various light cycles, or how nitrogen remobilization is achieved during the reproductive growth stage. Recent advances in plant autophagy have shed light on such questions. Not only does autophagy contribute to starch degradation at night, but it participates in the degradation of chloroplast proteins and even chloroplasts after prolonged carbon starvation, thus help maintain the free amino acid pool and provide substrate for respiration. The induction of autophagy under these conditions may involve transcriptional regulation. Large-scale transcriptome analyses revealed that ATG8e belongs to a core carbon signaling response shared by Arabidopsis accessions, and the transcription of Arabidopsis ATG7 is tightly co-regulated with genes functioning in chlorophyll degradation and leaf senescence. In the reproductive phase, autophagy is essential for bulk degradation of leaf proteins, thus contributes to Nitrogen Use Efficiency (NUE both under normal and low-nitrogen conditions.

  2. Improved neurologic prognosis for a patient with propionic acidemia who received early living donor liver transplantation.

    Science.gov (United States)

    Nagao, Masayoshi; Tanaka, Toju; Morii, Mayuko; Wakai, Shuji; Horikawa, Reiko; Kasahara, Mureo

    2013-01-01

    Despite medical therapy, patients with propionic academia (PA) still display a tendency to develop epilepsy. Patients with neonatal-onset PA who have received early living donor liver transplantation (LDLT) are limited in number, and the effect on neurologic prognosis, including epilepsy, is not clear. We report a patient with PA whose EEG findings improved dramatically after undergoing LDLT at age 7 months. The patient's neurologic development and brain MRI findings were quite satisfactory at age 2 years and 3 months. LDLT is effective not only in preventing metabolic decompensation, but also in improving neurologic function to ensure better quality of life. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. β-cell function is associated with metabolic syndrome in Mexican subjects

    Science.gov (United States)

    Baez-Duarte, Blanca G; Sánchez-Guillén, María Del Carmen; Pérez-Fuentes, Ricardo; Zamora-Ginez, Irma; Leon-Chavez, Bertha Alicia; Revilla-Monsalve, Cristina; Islas-Andrade, Sergio

    2010-01-01

    Aims The clinical diagnosis of metabolic syndrome does not find any parameters to evaluate the insulin sensitivity (IS) or β-cell function. The evaluation of these parameters would detect early risk of developing metabolic syndrome. The aim of this study is to determine the relationship between β-cell function and presence of metabolic syndrome in Mexican subjects. Material and methods This study is part of the Mexican Survey on the Prevention of Diabetes (MexDiab Study) with headquarters in the city of Puebla, Mexico. The study comprised of 444 subjects of both genders, aged between 18 and 60 years and allocated into two study groups: (1) control group of individuals at metabolic balance without metabolic syndrome and (2) group composed of subjects with metabolic syndrome and diagnosed according to the criteria of the Third Report of the National Cholesterol Education Program Expert Panel on Defection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Anthropometric, biochemical, and clinical assessments were carried out. Results Average age of the subjects in the control group (n = 254) was 35.7 ± 11.5 years and 42.0 ± 10.7 years for subjects in the metabolic syndrome group (n = 190). Subjects at metabolic balance without metabolic syndrome showed decreased IS, increased insulin resistance (IR), and altered β-cell function. Individuals with metabolic syndrome showed a high prevalence (P ≤ 0.05) of family history of type 2 diabetes (T2D). This group also showed a significant metabolic imbalance with glucose and insulin levels and lipid profile outside the ranges considered safe to prevent the development of cardiovascular disease and T2D. Conclusion The main finding in this study was the detection of altered β-cell function, decreased IS, an increased IR in subjects at metabolic balance, and the progressive deterioration of β-cell function and IS in subjects with metabolic syndrome as the number of features of metabolic syndrome increases

  4. Roles of homocysteine in cell metabolism: old and new functions.

    Science.gov (United States)

    Medina, M; Urdiales, J L; Amores-Sánchez, M I

    2001-07-01

    Mild hyperhomocysteinemia has been suggested as a new, independent risk factor for cardiovascular disease. This fact has produced a new, increased interest in the study of homocysteine metabolism and its relation to pathogenesis. This emergent area of biomedical research is reviewed here, stressing the biochemical and metabolic basis of the pathogenicity of increased levels of homocysteine.

  5. Mitochondrial metabolism in hematopoietic stem cells requires functional FOXO3

    Science.gov (United States)

    Rimmelé, Pauline; Liang, Raymond; Bigarella, Carolina L; Kocabas, Fatih; Xie, Jingjing; Serasinghe, Madhavika N; Chipuk, Jerry; Sadek, Hesham; Zhang, Cheng Cheng; Ghaffari, Saghi

    2015-01-01

    Hematopoietic stem cells (HSC) are primarily dormant but have the potential to become highly active on demand to reconstitute blood. This requires a swift metabolic switch from glycolysis to mitochondrial oxidative phosphorylation. Maintenance of low levels of reactive oxygen species (ROS), a by-product of mitochondrial metabolism, is also necessary for sustaining HSC dormancy. Little is known about mechanisms that integrate energy metabolism with hematopoietic stem cell homeostasis. Here, we identify the transcription factor FOXO3 as a new regulator of metabolic adaptation of HSC. ROS are elevated in Foxo3−/− HSC that are defective in their activity. We show that Foxo3−/− HSC are impaired in mitochondrial metabolism independent of ROS levels. These defects are associated with altered expression of mitochondrial/metabolic genes in Foxo3−/− hematopoietic stem and progenitor cells (HSPC). We further show that defects of Foxo3−/− HSC long-term repopulation activity are independent of ROS or mTOR signaling. Our results point to FOXO3 as a potential node that couples mitochondrial metabolism with HSC homeostasis. These findings have critical implications for mechanisms that promote malignant transformation and aging of blood stem and progenitor cells. PMID:26209246

  6. The effect of captopril on the expression of MMP-9 and the prognosis of neurological function in herpes simplex encephalitis mice.

    Science.gov (United States)

    Zhou, Yu; Zeng, Yan-Ping; Zhou, Qin; Guan, Jing-Xia; Lu, Zu-Neng

    2016-08-01

    Early increased matrix metalloproteinase-9 (MMP-9) expression is involved in the evolution of herpes simplex encephalitis (HSE) by facilitating the development of cerebrovascular complications. However, the molecular mechanism underlying the detrimental effects of MMP-9 in HSE has not been elucidated. Recent research finds angiotensin II plays an important role in regulation of MMP-9 activity. The aim of this work was to identify the influence of angiotensin-converting enzyme inhibitor (ACEI) captopril on MMP-9 activation after herpes simplex virus 1 (HSV-1) infection. Animal models of HSE were established by intracerebral inoculation of HSV-1 into mice. Brain tissue ROS levels were measured by staining with dihydroethidium. MMP-9 protein expression was detected by immunofluorescence and brain water content was measured with dry-wet weight method. Neurological function score was quantified 5 d after HSV-1 infection. Microglial cells were treated with various concentrations of captopril. MMP-9 gelatinolytic activity in the supematant of the cell cultures was assessed by zymography. RT-PCR was used to detect the mRNA expressions of p47phox and MMP-9. Immunofluorescence showed that expression of MMP-9 in brain tissue was mainly presented in OX-42 positive microglia. Quantification of gelatinolytic activity by densitometry showed that expression of MMP-9 in microglia was significantly increased after HSV-1 infection and inhibited by captopril treatment. NADPH oxidase subunit p47phox and MMP-9 mRNA expression were significantly increased 6 h after HSV-1 infection, and were seen reduced after captopril treatment in dose dependence. Captopril also downregulated ROS and MMP-9 protein expression following encephalitis in vivo, and attenuated brain edema, and improved neurological function. This compelling evidence suggests that MMP-9 is a key pathogenic factor within HSE. ACEI captopril could reduce the expression of MMP-9 mediated by ROS, then relieve cerebral edema and

  7. Neurological diseases and pain

    Science.gov (United States)

    2012-01-01

    Chronic pain is a frequent component of many neurological disorders, affecting 20–40% of patients for many primary neurological diseases. These diseases result from a wide range of pathophysiologies including traumatic injury to the central nervous system, neurodegeneration and neuroinflammation, and exploring the aetiology of pain in these disorders is an opportunity to achieve new insight into pain processing. Whether pain originates in the central or peripheral nervous system, it frequently becomes centralized through maladaptive responses within the central nervous system that can profoundly alter brain systems and thereby behaviour (e.g. depression). Chronic pain should thus be considered a brain disease in which alterations in neural networks affect multiple aspects of brain function, structure and chemistry. The study and treatment of this disease is greatly complicated by the lack of objective measures for either the symptoms or the underlying mechanisms of chronic pain. In pain associated with neurological disease, it is sometimes difficult to obtain even a subjective evaluation of pain, as is the case for patients in a vegetative state or end-stage Alzheimer's disease. It is critical that neurologists become more involved in chronic pain treatment and research (already significant in the fields of migraine and peripheral neuropathies). To achieve this goal, greater efforts are needed to enhance training for neurologists in pain treatment and promote greater interest in the field. This review describes examples of pain in different neurological diseases including primary neurological pain conditions, discusses the therapeutic potential of brain-targeted therapies and highlights the need for objective measures of pain. PMID:22067541

  8. Neurologic and neuromuscular functional disorders of the pharynx and esophagus; Neurologisch bedingte und neuromuskulaere Funktionsstoerungen des Pharynx und Oesophagus

    Energy Technology Data Exchange (ETDEWEB)

    Wuttge-Hannig, A. [Gemeinschaftspraxis fuer Radiologie, Nuklearmedizin und Strahlentherapie, Muenchen (Germany); Hannig, C. [Klinikum rechts der Isar der Technischen Universitaet Muenchen, Institut fuer Roentgendiagnostik, Muenchen (Germany)

    2007-02-15

    Neurologic swallowing disorders are an increasing diagnostic problem in our overaged population. Undiagnosed chronic aspiration pneumonia is the cause of death in 20-40% of all inhabitants of nursing homes. In neurologic diseases of the pharynx, the physiologic interaction of pharyngeal contraction, closure of the pharynx, and esophageal motility are frequently disturbed. This may be due to cortical, bulbar, or cerebellar brain damage of ischemic or traumatic origin. Furthermore diseases or peripheral nerves, muscles, and synapses cause disturbances. The most life-threatening complication of these disturbances is tracheal aspiration, which requires an iso-osmolar contrast medium for imaging studies that cause no or minimal pulmonary problems. Utilizing fast dynamic documentation we can analyze the swallowing act in 35 images within the passage time of 0.7 s. This requires digital frame sequences from 15-50 images/s, which can be provided by DSI or videofluoroscopy. Neurologic and neuromuscular patterns are demonstrated with and without tracheal aspiration. The differentiation of aspiration in a so-called pre-, intra-, and postdeglutitive form is possible. We distinguish four grades of severity of aspiration, which is also of great clinical impact for the differential rehabilitation therapy. The efficiency of the rehabilitation protocol can be assessed by the dynamic swallowing studies. (orig.) [German] Neurologische Schluckstoerungen stellen mit zunehmender Ueberalterung der Bevoelkerung ein wachsendes diagnostisches Problem dar. 20-40% aller Alter- und Pflegeheiminsassen versterben an einer nicht erkannten aspirationsbedingten Pneumonie. Gerade bei den neurologischen Erkrankungen des Pharynx und der Speiseroehre ist die physiologische Interaktion zwischen Pharynxkontraktion, Larynxschluss und oesophagealer Motilitaet haeufig gestoert. Hierbei koennen sowohl kortikale, bulbaere sowie zerebellaere Hirnschaeden ischaemischer oder traumatischer Genese, Erkrankungen

  9. Stoichiometric Correlation Analysis: Principles of Metabolic Functionality from Metabolomics Data

    Directory of Open Access Journals (Sweden)

    Kevin Schwahn

    2017-12-01

    Full Text Available Recent advances in metabolomics technologies have resulted in high-quality (time-resolved metabolic profiles with an increasing coverage of metabolic pathways. These data profiles represent read-outs from often non-linear dynamics of metabolic networks. Yet, metabolic profiles have largely been explored with regression-based approaches that only capture linear relationships, rendering it difficult to determine the extent to which the data reflect the underlying reaction rates and their couplings. Here we propose an approach termed Stoichiometric Correlation Analysis (SCA based on correlation between positive linear combinations of log-transformed metabolic profiles. The log-transformation is due to the evidence that metabolic networks can be modeled by mass action law and kinetics derived from it. Unlike the existing approaches which establish a relation between pairs of metabolites, SCA facilitates the discovery of higher-order dependence between more than two metabolites. By using a paradigmatic model of the tricarboxylic acid cycle we show that the higher-order dependence reflects the coupling of concentration of reactant complexes, capturing the subtle difference between the employed enzyme kinetics. Using time-resolved metabolic profiles from Arabidopsis thaliana and Escherichia coli, we show that SCA can be used to quantify the difference in coupling of reactant complexes, and hence, reaction rates, underlying the stringent response in these model organisms. By using SCA with data from natural variation of wild and domesticated wheat and tomato accession, we demonstrate that the domestication is accompanied by loss of such couplings, in these species. Therefore, application of SCA to metabolomics data from natural variation in wild and domesticated populations provides a mechanistic way to understanding domestication and its relation to metabolic networks.

  10. Neurological and behavioral abnormalities, ventricular dilatation, altered cellular functions, inflammation, and neuronal injury in brains of mice due to common, persistent, parasitic infection

    Directory of Open Access Journals (Sweden)

    Hwang Jong-Hee

    2008-10-01

    Full Text Available Abstract Background Worldwide, approximately two billion people are chronically infected with Toxoplasma gondii with largely unknown consequences. Methods To better understand long-term effects and pathogenesis of this common, persistent brain infection, mice were infected at a time in human years equivalent to early to mid adulthood and studied 5–12 months later. Appearance, behavior, neurologic function and brain MRIs were studied. Additional analyses of pathogenesis included: correlation of brain weight and neurologic findings; histopathology focusing on brain regions; full genome microarrays; immunohistochemistry characterizing inflammatory cells; determination of presence of tachyzoites and bradyzoites; electron microscopy; and study of markers of inflammation in serum. Histopathology in genetically resistant mice and cytokine and NRAMP knockout mice, effects of inoculation of isolated parasites, and treatment with sulfadiazine or αPD1 ligand were studied. Results Twelve months after infection, a time equivalent to middle to early elderly ages, mice had behavioral and neurological deficits, and brain MRIs showed mild to moderate ventricular dilatation. Lower brain weight correlated with greater magnitude of neurologic abnormalities and inflammation. Full genome microarrays of brains reflected inflammation causing neuronal damage (Gfap, effects on host cell protein processing (ubiquitin ligase, synapse remodeling (Complement 1q, and also increased expression of PD-1L (a ligand that allows persistent LCMV brain infection and CD 36 (a fatty acid translocase and oxidized LDL receptor that mediates innate immune response to beta amyloid which is associated with pro-inflammation in Alzheimer's disease. Immunostaining detected no inflammation around intra-neuronal cysts, practically no free tachyzoites, and only rare bradyzoites. Nonetheless, there were perivascular, leptomeningeal inflammatory cells, particularly contiguous to the aqueduct of

  11. EFFECT OF KINESIO TAPING AND SOFT ORTHOSIS APPLICATION ON THE PAIN AND FUNCTIONAL DISABILITY IN LUMBAR REGION PATHOLOGIES WITHOUT NEUROLOGICAL DEFICITS: A RANDOMIZED CONTROLLED EXPERIMENTAL STUDY

    Directory of Open Access Journals (Sweden)

    Burcu TALU

    2016-12-01

    Full Text Available Background: Back pain caused by lumbar region pathologies is a condition that leads to loss of productivity and physical disability, with high costs of diagnosis and treatment. This study was planned to investigate the effect of taping and soft orthosis application on the pain and functional disability in the pathology of lumbar region without neurological deficit. Methods: This study is randomized controlled trial. Sixty-three volunteer patients were randomly divided into three groups of 21 people. Group I, soft orthotics and stabilization exercise program; Group II, Kinesio taping and stabilization exercise program; Group III, stabilization exercise program was applied. After obtaining demographic data of the participants; patients were evaluated in terms of range of motion and muscle strength. We used visual analog scale for pain level assessment, sit and reach test for flexibility assessment, timed up and go test (TUG for functional ambulation and balance, modified Schober test for lumbar spine flexibility, Oswestry Disability Index in the assessment of functional disability. They were assessed at the pretreatment, third (post treatment and six week (home programs and follow-up. Results: The results showed that significant differences (p<0.05 occurred over time in the study parameters such as functional ambulation, flexibility, lumbar flexibility, functional disability, pain, strength, range of motion in all groups. In comparisons between groups, there was a difference mainly in favor of Group II (p<0.05. Conclusions: We have concluded that in lumbar region pathologies without neurological deficits, stabilization exercises combined with orthotics and Kinesio taping applications reduces pain and functional disability.

  12. Metabolic profiling of Lolium perenne shows functional integration of metabolic responses to diverse subtoxic conditions of chemical stress

    Science.gov (United States)

    Serra, Anne-Antonella; Couée, Ivan; Renault, David; Gouesbet, Gwenola; Sulmon, Cécile

    2015-01-01

    Plant communities are confronted with a great variety of environmental chemical stresses. Characterization of chemical stress in higher plants has often been focused on single or closely related stressors under acute exposure, or restricted to a selective number of molecular targets. In order to understand plant functioning under chemical stress conditions close to environmental pollution conditions, the C3 grass Lolium perenne was subjected to a panel of different chemical stressors (pesticide, pesticide degradation compound, polycyclic aromatic hydrocarbon, and heavy metal) under conditions of seed-level or root-level subtoxic exposure. Physiological and metabolic profiling analysis on roots and shoots revealed that all of these subtoxic chemical stresses resulted in discrete physiological perturbations and complex metabolic shifts. These metabolic shifts involved stressor-specific effects, indicating multilevel mechanisms of action, such as the effects of glyphosate and its degradation product aminomethylphosphonic acid on quinate levels. They also involved major generic effects that linked all of the subtoxic chemical stresses with major modifications of nitrogen metabolism, especially affecting asparagine, and of photorespiration, especially affecting alanine and glycerate. Stress-related physiological effects and metabolic adjustments were shown to be integrated through a complex network of metabolic correlations converging on Asn, Leu, Ser, and glucose-6-phosphate, which could potentially be modulated by differential dynamics and interconversion of soluble sugars (sucrose, trehalose, fructose, and glucose). Underlying metabolic, regulatory, and signalling mechanisms linking these subtoxic chemical stresses with a generic impact on nitrogen metabolism and photorespiration are discussed in relation to carbohydrate and low-energy sensing. PMID:25618145

  13. Effect of the functional caregivers Plan implementation on the anxiety and quality of life for the family caregivers of dependent people with neurological disorders

    Directory of Open Access Journals (Sweden)

    Ruth Molina Fuillerat

    2012-01-01

    Full Text Available In January 2005 the Andalusian Health Service Improvement Plan prepared: Caring for the Caregiver include actions to be taken to promote equity, to recognize and facilitate the work of family carers. From our perspective of formal caregivers, it seems necessary to consider not only themselves need care patients with the disease, but also makes it mandatory caring individuals usually relatives, facilitators of the provision of care. In the Unit of Neurology, the daily observation of these family situations, has guided and network relationship between the two formal and informal systems of care, and we have tried the approach of the caregivers as clients to treat them as co-participants the experience of caring. Hypothesis: The Implementation of Functional Plan caregiver positive impact on hospitalization decreased anxiety and improved quality of life of caregivers of a dependent patient. Overall objective: To determine the effect of applying functional caregiver Plan on anxiety and quality of life of family caregivers of dependent people with neurological disorders. Study Design: Experimental study of the clinical trial such an intervention group and a control group randomly assigned.

  14. Influence of minimally invasive hematoma evacuation combined with nerve growth factor preparation on neurological function injury in patients with hypertensive cerebral hemorrhage

    Directory of Open Access Journals (Sweden)

    Jiang Tao

    2017-05-01

    Full Text Available Objective: To study the influence of minimally invasive hematoma evacuation combined with nerve growth factor preparation on neurological function injury in patients with hypertensive cerebral hemorrhage. Methods: A total of 112 patients with hypertensive cerebral hemorrhage who were treated in our hospital between July 2013 and February 2016 were collected, and according to random number table, they were divided into the control group (n=56 who underwent minimally invasive hematoma evacuation therapy and the observation group (n=56 who underwent minimally invasive hematoma evacuation combined with nerve growth factor preparation therapy. Serum contents of inflammatory mediators, nerve injury indexes and neurotransmitters were compared between two groups of patients before and after treatment. Results: Before treatment, there were no significant differences in serum contents of inflammatory mediators, nerve injury indexes and neurotransmitters between the two groups. After treatment, serum contents of inflammatory mediators such as CRP, PCT, IL-1β and IL-6 in observation group were lower than those in control group; serum contents of nerve injury indexes such as NSE, S100B, GEAP and MBP were lower than those in control group; serum contents of neurotransmitters such as SP, NPY, Glu and Asp were lower than those in control group while GABA and Gly were higher than those in control group. Conclusion: Minimally invasive hematoma evacuation combined with nerve growth factor preparation can effectively reduce neurological function injury, and has positive clinical significance.

  15. A Strategy for Functional Interpretation of Metabolomic Time Series Data in Context of Metabolic Network Information

    Directory of Open Access Journals (Sweden)

    Thomas eNägele

    2016-03-01

    Full Text Available The functional connection of experimental metabolic time series data with biochemical network information is an important, yet complex, issue in systems biology. Frequently, experimental analysis of diurnal, circadian or developmental dynamics of metabolism results in a comprehensive and multidimensional data matrix comprising information about metabolite concentrations, protein levels and/or enzyme activities. While, irrespective of the type of organism, the experimental high-throughput analysis of the transcriptome, proteome and metabolome has become a common part of many systems biology studies, functional data integration in a biochemical and physiological context is still challenging. Here, an approach is presented which addresses the functional connection of experimental time series data with biochemical network information which can be inferred, for example, from a metabolic network reconstruction. Based on a time-continuous and variance-weighted regression analysis of experimental data, metabolic functions, i.e. first-order derivatives of metabolite concentrations, were related to time-dependent changes in other biochemically relevant metabolic functions, i.e. second-order derivatives of metabolite concentrations. This finally revealed time points of perturbed dependencies in metabolic functions indicating a modified biochemical interaction. The approach was validated using previously published experimental data on a diurnal time course of metabolite levels, enzyme activities and metabolic flux simulations. To support and ease the presented approach of functional time series analysis, a graphical user interface including a test data set and a manual is provided which can be run within the numerical software environment Matlab®.

  16. Curcumin pretreatment attenuates brain lesion size and improves neurological function following traumatic brain injury in the rat.

    Science.gov (United States)

    Samini, Fariborz; Samarghandian, Saeed; Borji, Abasalt; Mohammadi, Gholamreza; bakaian, Mahdi

    2013-09-01

    Turmeric has been in use since ancient times as a condiment and due to its medicinal properties. Curcumin, the yellow coloring principle in turmeric, is a polyphenolic and a major active constituent. Besides anti-inflammatory, thrombolytic and anti-carcinogenic activities, curcumin also possesses strong antioxidant property. The neuroprotective effects of curcumin were evaluated in a weight drop model of cortical contusion trauma in rat. Male Wistar rats (350-400 g, n=9) were anesthetized with sodium pentobarbital (60 mg/kg i.p.) and subjected to head injury. Five days before injury, animals randomly received an i.p. bolus of either curcumin (50 and 100 mg/kg/day, n=9) or vehicle (n=9). Two weeks after the injury and drug treatment, animals were sacrificed and a series of brain sections, stained with hematoxylin and eosin (H&E) were evaluated for quantitative brain lesion volume. Two weeks after the injury, oxidative stress parameter (malondialdehyde) was also measured in the brain. Curcumin (100 mg/kg) significantly reduced the size of brain injury-induced lesions (Pcurcumin (100 mg/kg). Curcumin treatment significantly improved the neurological status evaluated during 2 weeks after brain injury. The study demonstrates the protective efficacy of curcumin in rat traumatic brain injury model. © 2013 Elsevier Inc. All rights reserved.

  17. Pediatric neurology and neuroradiology

    International Nuclear Information System (INIS)

    Diebler, C.

    1987-01-01

    In this book, a neuroradiologist and a neuropediatrician have combined forces to provide the widest possible knowledge in investigating cranial and cerebral disorders in infancy and childhood. Based on more than 20,000 pediatric CT examinations, with a follow-up time often exceeding ten years, the book aims to bridge interdisciplinary gaps and help radiologists, pediatricians and neurosurgeons solve the various problems of pediatric neuroradiology that frequently confront them. For each disease, the etiology, clinical manifestations, pathological lesions and radiological presentations are discussed, supported by extensive illustrations. Malformative, vascular, traumatic, tumoral, infectious and metabolic diseases are reviewed. Miscellaneous conditions presenting particular symptoms or syndromes are also studied, such as hydrocephalus and neurological complications of leukemia. The combined expertise and experience contained in this volume make it an outstanding reference work in the field of pediatric neuroradiology. (orig./MG)

  18. [Effect of Scalp-acupuncture Stimulation on Neurological Function and Expression of ASIC 1 a and ASIC 2 b of Hippocampal CA 1 Region in Cerebral Ischemia Rats].

    Science.gov (United States)

    Tian, Liang; Wang, Jin-Hai; Zhao, Min; Bao, Ying-Cun; Shang, Jun-Fang; Yan, Qi; Zhang, Zhen-Chang; Du, Xiao-Zheng; Jiang, Hua; Sun, Run-Jie; Yuan, Bo; Zhang, Xing-Hua; Zhang, Ting-Zhuo; Li, Xing-Lan

    2016-10-25

    To observe the influence of scalp-acupuncture on the expression of acid-sensing ion channels (ASICs) 1 a and 2 b of hippocampal CA 1 region in cerebral ischemia (CI) rats, so as to investigate its mechanism underlying improvement of ischemic stroke. Thirty-two male SD rats were randomly allocated to normal control, model, scalp-acupuncture and Amiloride group ( n =8 in each group). The model of focal CI was established by middle cerebral artery occlusion (MCAO). Scalp acupuncture stimulation was applied to bilateral Dingnieqianxiexian (MS 6) and Dingniehouxiexian (MS 7), once daily for 7 days. Rats of the Amiloride group were fed with Amiloride solution, twice a day for 7 days, and those of the normal control and model groups were grabbled and fixed in the same way with the acupuncture and Amiloride groups. The neurological deficit score was given according to Longa's method. The expression of hippocampal ASIC 1 a and ASIC 2 b was detected by immunohistochemistry, and the Ca 2+ concentration in the hippocampal tissue assayed using flowing cytometry. After the intervention, the neurological deficit score of both the scalp-acupuncture and Amiloride groups were significantly decreased in comparison with pre-treatment ( P ASIC 1 a and ASIC 2 b in the hippocampal CA 1 region and hip-pocampal Ca 2+ concentration were significantly up-regulated in the model group compared with the normal control group ( P ASIC 1 a and ASIC 2 b expression and Ca 2+ concentration ( P >0.05). Scalp-acupuncture stimulation can improve neurological function in CI rats, which may be related to its effects in suppressing the increased expression of hippocampal ASIC 1 a and ASIC 2 b proteins and in reducing calcium overload in hip-pocampal neurocytes.

  19. Neurologic considerations in propionic acidemia.

    Science.gov (United States)

    Schreiber, John; Chapman, Kimberly A; Summar, Marshall L; Ah Mew, Nicholas; Sutton, V Reid; MacLeod, Erin; Stagni, Kathy; Ueda, Keiko; Franks, Jill; Island, Eddie; Matern, Dietrich; Peña, Loren; Smith, Brittany; Urv, Tiina; Venditti, Charles; Chakarapani, Anupam; Gropman, Andrea L

    2012-01-01

    Propionic acidemia (PA) is an organic acidemia which has a broad range of neurological complications, including developmental delay, intellectual disability, structural abnormalities, metabolic stroke-like episodes, seizures, optic neuropathy, and cranial nerve abnormalities. As the PA consensus conference hosted by Children's National Medical Center progressed from January 28 to 30, 2011, it became evident that neurological complications were common and a major component of morbidity, but the role of imaging and the basis for brain pathophysiology were unclear. This paper reviews the hypothesized pathophysiology, presentation and uses the best available evidence to suggest programs for treatment, imaging, and monitoring the neurological complications of PA. Copyright © 2011. Published by Elsevier Inc. All rights reserved.

  20. Metabolic fate and function of dietary glutamate in the gut

    Science.gov (United States)

    Glutamate is a major constituent of dietary protein and is also consumed in many prepared foods as an additive in the form of monosodium glutamate. Evidence from human and animal studies indicates that glutamate is a major oxidative fuel for the gut and that dietary glutamate is extensively metabol...

  1. The international spinal cord injury endocrine and metabolic function basic data set

    DEFF Research Database (Denmark)

    Bauman, W A; Biering-Sørensen, Fin; Krassioukov, A

    2011-01-01

    To develop the International Spinal Cord Injury (SCI) Endocrine and Metabolic Function Basic Data Set within the framework of the International SCI Data Sets that would facilitate consistent collection and reporting of basic endocrine and metabolic findings in the SCI population....

  2. Abnormal glucose metabolism in acute myocardial infarction: influence on left ventricular function and prognosis

    DEFF Research Database (Denmark)

    Høfsten, Dan E; Løgstrup, Brian B; Møller, Jacob E

    2009-01-01

    OBJECTIVES: We studied the influence of abnormal glucose metabolism on left ventricular (LV) function and prognosis in 203 patients with acute myocardial infarction. BACKGROUND: Abnormal glucose metabolism is associated with increased mortality after acute myocardial infarction. This appears to b...... alone did not explain the excess mortality in patients with newly detected or known diabetes....

  3. Functional characterization of the PPAR targets ANGPTL4 and HILPDA in lipid metabolism

    NARCIS (Netherlands)

    Mattijssen, F.B.J.

    2014-01-01

      The peroxisomal proliferator activator receptors (PPARs) are ligand-activated transcription factors that play important roles in the regulation of lipid metabolism. Three PPAR isoforms have been identified: PPARα, PPARβ/δ, and PPARγ. Each isoform has specific functions

  4. Effects of dexmedetomidine on H-FABP, CK-MB, cTnI levels, neurological function and near-term prognosis in patients undergoing heart valve replacement.

    Science.gov (United States)

    Wang, Zhi; Chen, Qiang; Guo, Hao; Li, Zhishan; Zhang, Jinfeng; Lv, Lei; Guo, Yongqing

    2017-12-01

    This study investigated the effects of dexmedetomidine on heart-type fatty acid binding protein (H-FABP), creatine kinase isoenzymes (CK-MB), and troponin I (cTnI) levels, neurological function and near-term prognosis in patients undergoing heart valve replacement. Patients undergoing heart valve replacement were randomly allocated to remifentanil anesthesia (control group, n=48) or dexmedetomidine anesthesia (observation group, n=48). Hemodynamic parameters were measured before anesthesia induction (T1), 1 min after intubation (T2), 10 min after start of surgery (T3), and on completion of surgery (T4). Levels of plasma H-FABP, CK-MB and cTnI were measured 10 min before anesthesia induction (C1), 10 min after start of surgery (C2), on completion of surgery (C3), 6 h after surgery (C4), and 24 h after surgery (C5). S100β protein and serum neuron-specific enolase (NSE) were detected 10 min before anesthesia induction (C1), and 24 h after surgery (C5). Neurological and cardiac function was evaluated 24 h after surgery. Incidence of cardiovascular adverse events was recorded for 1 year of follow-up. There were no significant differences in the average heart rate between the two groups during the perioperative period. The mean arterial pressure in the observation group was significantly lower than control group (PH-FABP, CK-MB and cTnI at C2, C3, C4 and C5, were significantly higher than C1, but significantly lower in the observation versus control group (P<0.05). Twenty-four hours after surgery, levels of S100β and NSE in both groups were higher than those before induction (P<0.05), but significantly lower in the observation versus control group (P<0.05). Twenty-four hours after surgery, neurological function scores were better, and myocardial contractility and arrhythmia scores significantly lower in the observation versus control group (P<0.05 for all). After follow-up for 1 year, incidence of cardiovascular adverse events was significantly lower in the observation

  5. Glucocorticoid receptor action in metabolic and neuronal function.

    Science.gov (United States)

    Garabedian, Michael J; Harris, Charles A; Jeanneteau, Freddy

    2017-01-01

    Glucocorticoids via the glucocorticoid receptor (GR) have effects on a variety of cell types, eliciting important physiological responses via changes in gene expression and signaling. Although decades of research have illuminated the mechanism of how this important steroid receptor controls gene expression using in vitro and cell culture-based approaches, how GR responds to changes in external signals in vivo under normal and pathological conditions remains elusive. The goal of this review is to highlight recent work on GR action in fat cells and liver to affect metabolism in vivo and the role GR ligands and receptor phosphorylation play in calibrating signaling outputs by GR in the brain in health and disease. We also suggest that both the brain and fat tissue communicate to affect physiology and behavior and that understanding this "brain-fat axis" will enable a more complete understanding of metabolic diseases and inform new ways to target them.

  6. Creatine, energetic function, metabolism and supplementation effects on sports

    Directory of Open Access Journals (Sweden)

    Emerson Gimenes Bernardo da Silva

    2008-06-01

    Full Text Available The purpose of this work is to review the literature regarding creatine ingestion by athletes and physical activity enthusiasts, discussing its necessity and, if possible, predicting some consequences. In order to achieve this purpose it was necessary to study the relationship between the muscles energetic system and their regulation. It was also proved necessary to investigate the creatine cycle, its endogenous origin, its metabolizing and conversion into creatine-phosphate. A bibliography was used to collect information about the subject. The research lead to the following conclusions: diet supplementation with creatine leads to increased phosphocreatine levels in human muscles. However, new in vivo experiments are most desirable, because it is already known that creatine interferes with the regulation of some metabolic pathways.

  7. Comparative genomics and functional study of lipid metabolic genes in Caenorhabditis elegans

    Science.gov (United States)

    2013-01-01

    Background Animal models are indispensable to understand the lipid metabolism and lipid metabolic diseases. Over the last decade, the nematode Caenorhabditis elegans has become a popular animal model for exploring the regulation of lipid metabolism, obesity, and obese-related diseases. However, the genomic and functional conservation of lipid metabolism from C. elegans to humans remains unknown. In the present study, we systematically analyzed genes involved in lipid metabolism in the C. elegans genome using comparative genomics. Results We built a database containing 471 lipid genes from the C. elegans genome, and then assigned most of lipid genes into 16 different lipid metabolic pathways that were integrated into a network. Over 70% of C. elegans lipid genes have human orthologs, with 237 of 471 C. elegans lipid genes being conserved in humans, mice, rats, and Drosophila, of which 71 genes are specifically related to human metabolic diseases. Moreover, RNA-mediated interference (RNAi) was used to disrupt the expression of 356 of 471 lipid genes with available RNAi clones. We found that 21 genes strongly affect fat storage, development, reproduction, and other visible phenotypes, 6 of which have not previously been implicated in the regulation of fat metabolism and other phenotypes. Conclusions This study provides the first systematic genomic insight into lipid metabolism in C. elegans, supporting the use of C. elegans as an increasingly prominent model in the study of metabolic diseases. PMID:23496871

  8. How Energy Metabolism Supports Cerebral Function: Insights from 13C Magnetic Resonance Studies In vivo

    Directory of Open Access Journals (Sweden)

    Sarah Sonnay

    2017-05-01

    Full Text Available Cerebral function is associated with exceptionally high metabolic activity, and requires continuous supply of oxygen and nutrients from the blood stream. Since the mid-twentieth century the idea that brain energy metabolism is coupled to neuronal activity has emerged, and a number of studies supported this hypothesis. Moreover, brain energy metabolism was demonstrated to be compartmentalized in neurons and astrocytes, and astrocytic glycolysis was proposed to serve the energetic demands of glutamatergic activity. Shedding light on the role of astrocytes in brain metabolism, the earlier picture of astrocytes being restricted to a scaffold-associated function in the brain is now out of date. With the development and optimization of non-invasive techniques, such as nuclear magnetic resonance spectroscopy (MRS, several groups have worked on assessing cerebral metabolism in vivo. In this context, 1H MRS has allowed the measurements of energy metabolism-related compounds, whose concentrations can vary under different brain activation states. 1H-[13C] MRS, i.e., indirect detection of signals from 13C-coupled 1H, together with infusion of 13C-enriched glucose has provided insights into the coupling between neurotransmission and glucose oxidation. Although these techniques tackle the coupling between neuronal activity and metabolism, they lack chemical specificity and fail in providing information on neuronal and glial metabolic pathways underlying those processes. Currently, the improvement of detection modalities (i.e., direct detection of 13C isotopomers, the progress in building adequate mathematical models along with the increase in magnetic field strength now available render possible detailed compartmentalized metabolic flux characterization. In particular, direct 13C MRS offers more detailed dataset acquisitions and provides information on metabolic interactions between neurons and astrocytes, and their role in supporting neurotransmission. Here

  9. Association between basal metabolic function and bone metabolism in postmenopausal women with type 2 diabetes.

    Science.gov (United States)

    Ogata, Makiko; Ide, Risa; Takizawa, Miho; Tanaka, Mizuho; Tetsuo, Tamaki; Sato, Asako; Iwasaki, Naoko; Uchigata, Yasuko

    2015-01-01

    Diabetes is a risk factor for osteoporosis, and glycemic control is critical during osteoporosis treatment in patients with type 2 diabetes (T2D). However, diabetic therapies have potentially adverse effects on bone metabolism. Additionally, biomarkers for bone metabolism are directly affected by drug therapies for osteoporosis. This study examined resting energy expenditure (REE) and respiratory quotient (RQ) as indices of bone metabolism in postmenopausal Japanese women with T2D. Forty-six postmenopausal Japanese women with T2D were examined. Procollagen type 1 N-terminal propeptide (P1NP, a fasting serum bone formation marker) and carboxy-terminal collagen cross-links-1 (CTX-1, a resorption marker) were evaluated, along with intact parathyroid hormone, 25-hydroxyvitamin D (25[OH]D), urine microalbumin, motor nerve conduction velocity, sensory nerve conduction velocity, R-R interval, body composition, REE, RQ, and bone mineral density at the nondominant distal radius. The mean T-score was low with high variance (-1.7 ± 1.6), and 18 patients (39%) met the criteria for osteoporosis. REE was positively correlated with body mass index (β = 0.517; r(2) = 0.250), serum calcium (β = 0.624; r(2) = 0.200), glycated hemoglobin A1C for the previous 6 mo (β = 0.395; r(2) = 0.137), and the serum P1NP/CTX-1 ratio (β = 0.380; r(2) = 0.144). RQ was positively correlated with serum 25(OH)D (β = 0.387; r(2) = 0.131). The basal metabolic rate and diabetic pathophysiology are interrelated with bone turnover. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Flux analysis uncovers key role of functional redundancy in formaldehyde metabolism.

    Directory of Open Access Journals (Sweden)

    Christopher J Marx

    2005-02-01

    Full Text Available Genome-scale analysis of predicted metabolic pathways has revealed the common occurrence of apparent redundancy for specific functional units, or metabolic modules. In many cases, mutation analysis does not resolve function, and instead, direct experimental analysis of metabolic flux under changing conditions is necessary. In order to use genome sequences to build models of cellular function, it is important to define function for such apparently redundant systems. Here we describe direct flux measurements to determine the role of redundancy in three modules involved in formaldehyde assimilation and dissimilation in a bacterium growing on methanol. A combination of deuterium and (14C labeling was used to measure the flux through each of the branches of metabolism for growth on methanol during transitions into and out of methylotrophy. The cells were found to differentially partition formaldehyde among the three modules depending on the flux of methanol into the cell. A dynamic mathematical model demonstrated that the kinetic constants of the enzymes involved are sufficient to account for this phenomenon. We demonstrate the role of redundancy in formaldehyde metabolism and have uncovered a new paradigm for coping with toxic, high-flux metabolic intermediates: a dynamic, interconnected metabolic loop.

  11. Neurology and neurologic practice in China.

    Science.gov (United States)

    Shi, Fu-Dong; Jia, Jian-Ping

    2011-11-29

    In the wake of dramatic economic success during the past 2 decades, the specialized field of neurology has undergone a significant transformation in China. With an increase in life expectancy, the problems of aging and cognition have grown. Lifestyle alterations have been associated with an epidemiologic transition both in the incidence and etiology of stroke. These changes, together with an array of social issues and institution of health care reform, are creating challenges for practicing neurologists throughout China. Notable problems include overcrowded, decrepit facilities, overloaded physician schedules, deteriorating physician-patient relationships, and an insufficient infrastructure to accommodate patients who need specialized neurologic care. Conversely, with the creation of large and sophisticated neurology centers in many cities across the country, tremendous opportunities exist. Developments in neurologic subspecialties enable delivery of high-quality care. Clinical and translational research based on large patient populations as well as highly sophisticated technologies are emerging in many neurologic centers and pharmaceutical companies. Child neurology and neurorehabilitation will be fast-developing subdisciplines. Given China's extensive population, the growth and progress of its neurology complex, and its ever-improving quality control, it is reasonable to anticipate that Chinese neurologists will contribute notably to unraveling the pathogenic factors causing neurologic diseases and to providing new therapeutic solutions.

  12. Chronic obstructive pulmonary disease candidate gene prioritization based on metabolic networks and functional information.

    Directory of Open Access Journals (Sweden)

    Xinyan Wang

    Full Text Available Chronic obstructive pulmonary disease (COPD is a multi-factor disease, in which metabolic disturbances played important roles. In this paper, functional information was integrated into a COPD-related metabolic network to assess similarity between genes. Then a gene prioritization method was applied to the COPD-related metabolic network to prioritize COPD candidate genes. The gene prioritization method was superior to ToppGene and ToppNet in both literature validation and functional enrichment analysis. Top-ranked genes prioritized from the metabolic perspective with functional information could promote the better understanding about the molecular mechanism of this disease. Top 100 genes might be potential markers for diagnostic and effective therapies.

  13. Effect of Chinese Herbal Medicine on Molecular Imaging of Neurological Disorders.

    Science.gov (United States)

    Yao, Yao; Chen, Ting; Huang, Jing; Zhang, Hong; Tian, Mei

    2017-01-01

    Chinese herbal medicine has been used to treat a wide variety of neurological disorders including stroke, Alzheimer's disease, and Parkinson's disease. However, its mechanism behind the effectiveness remains unclear. Recently, molecular imaging technology has been applied for this purpose, since it can assess the cellular or molecular function in a living subject by using specific imaging probes and/or radioactive tracers, which enable efficient analysis and monitoring the therapeutic response repetitively. This chapter reviews the in vivo functional and metabolic changes after administration of Chinese herbal medicine in various neurological disorders and provides perspectives on the future evaluations of therapeutic response of Chinese herbal medicine. © 2017 Elsevier Inc. All rights reserved.

  14. Neurological and neuropsychological functions in adults with a history of developmental arsenic poisoning from contaminated milk powder

    DEFF Research Database (Denmark)

    Yorifuji, Takashi; Kato, Tsuguhiko; Ohta, Hitoshi

    2016-01-01

    showed average performance at least 1.2 standard deviations below the average for the controls. Exposed participants performed less well than controls, even after exclusion of subjects with recognized disabilities or those with a high level of education. Adults who had suffered arsenic poisoning during...... infancy revealed neuropsychological dysfunctions, even among those subjects not recognized as having disabilities. Developmental neurotoxicity due to arsenic likely results in permanent changes in brain functions....

  15. Systematic inference of functional phosphorylation events in yeast metabolism

    DEFF Research Database (Denmark)

    Chen, Yu; Wang, Yonghong; Nielsen, Jens

    2017-01-01

    of phosphorylation events to flux changes. We showed that phosphorylation regulation analysis, combined with a systematic workflow and correlation analysis, can be used for inference of functional phosphorylation events in steady and dynamic conditions, respectively. Using this analysis, we assigned functionality...... biology....

  16. Microbial community assembly and metabolic function during mammalian corpse decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Metcalf, J. L.; Xu, Z. Z.; Weiss, S.; Lax, S.; Van Treuren, W.; Hyde, E. R.; Song, S. J.; Amir, A.; Larsen, P.; Sangwan, N.; Haarmann, D.; Humphrey, G. C.; Ackermann, G.; Thompson, L. R.; Lauber, C.; Bibat, A.; Nicholas, C.; Gebert, M. J.; Petrosino, J. F.; Reed, S. C.; Gilbert, J. A.; Lynne, A. M.; Bucheli, S. R.; Carter, D. O.; Knight, R.

    2015-12-10

    Vertebrate corpse decomposition provides an important stage in nutrient cycling in most terrestrial habitats, yet microbially mediated processes are poorly understood. Here we combine deep microbial community characterization, community-level metabolic reconstruction, and soil biogeochemical assessment to understand the principles governing microbial community assembly during decomposition of mouse and human corpses on different soil substrates. We find a suite of bacterial and fungal groups that contribute to nitrogen cycling and a reproducible network of decomposers that emerge on predictable time scales. Our results show that this decomposer community is derived primarily from bulk soil, but key decomposers are ubiquitous in low abundance. Soil type was not a dominant factor driving community development, and the process of decomposition is sufficiently reproducible to offer new opportunities for forensic investigations.

  17. Psychosocial and metabolic function by smoking status in individuals with binge eating disorder and obesity.

    Science.gov (United States)

    Udo, Tomoko; White, Marney A; Barnes, Rachel D; Ivezaj, Valentina; Morgan, Peter; Masheb, Robin M; Grilo, Carlos M

    2016-02-01

    Individuals with binge eating disorder (BED) report smoking to control appetite and weight. Smoking in BED is associated with increased risk for comorbid psychiatric disorders, but its impact on psychosocial functioning and metabolic function has not been evaluated. Participants were 429 treatment-seeking adults (72.4% women; mean age 46.2±11.0years old) with BED comorbid with obesity. Participants were categorized into current smokers (n=66), former smokers (n=145), and never smokers (n=218). Smoking status was unrelated to most historical eating/weight variables and to current eating disorder psychopathology. Smoking status was associated with psychiatric, psychosocial, and metabolic functioning. Compared with never smokers, current smokers were more likely to meet lifetime diagnostic criteria for alcohol (OR=5.51 [95% CI=2.46-12.33]) and substance use disorders (OR=7.05 [95% CI=3.37-14.72]), poorer current physical quality of life, and increased risk for metabolic syndrome (OR=1.80 [95% CI=0.97-3.35]) and related metabolic risks (reduced HDL, elevated total cholesterol). On the other hand, the odds of meeting criteria for lifetime psychiatric comorbidity or metabolic abnormalities were not significantly greater in former smokers, relative to never smokers. Our findings suggest the importance of promoting smoking cessation in treatment-seeking patients with BED and obesity for its potential long-term implications for psychiatric and metabolic functioning. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Metabolism

    Science.gov (United States)

    ... a particular food provides to the body. A chocolate bar has more calories than an apple, so ... acid phenylalanine, needed for normal growth and protein production). Inborn errors of metabolism can sometimes lead to ...

  19. Dietary Exercise as a Novel Strategy for the Prevention and Treatment of Metabolic Syndrome: Effects on Skeletal Muscle Function

    OpenAIRE

    Aoi, Wataru; Naito, Yuji; Yoshikawa, Toshikazu

    2011-01-01

    A sedentary lifestyle can cause metabolic syndrome to develop. Metabolic syndrome is associated with metabolic function in the skeletal muscle, a major consumer of nutrients. Dietary exercise, along with an adequate diet, is reported to be one of the major preventive therapies for metabolic syndrome; exercise improves the metabolic capacity of muscles and prevents the loss of muscle mass. Epidemiological studies have shown that physical activity reduces the risk of various common diseases suc...

  20. Focal neurological deficits

    Science.gov (United States)

    ... Brain References Daroff RB, Jankovic J, Mazziotta JC, Pomeroy SL. Diagnosis of neurological disease. In: Daroff RB, Jankovic J, Mazziotta JC, Pomeroy SL, eds. Bradley's Neurology in Clinical Practice . 7th ...

  1. Acquired Neurologic Mutism

    OpenAIRE

    J Gordon Millichap

    1997-01-01

    The behavioral features of four children with acquired neurologic mutism are reported from the Department of Neurology, University Hospital Rotterdam-Dijkzigt, Rotterdam; and Department of Medical Psychology, Ziekenhuis Walcheren, Vlissingen, The Netherlands.

  2. Effects of metabolic syndrome on the functional outcomes of corticosteroid injection for De Quervain tenosynovitis.

    Science.gov (United States)

    Roh, Y H; Noh, J H; Gong, H S; Baek, G H

    2017-06-01

    Metabolic syndrome is a constellation of medical conditions that arise from insulin resistance and abnormal adipose deposition and function. In patients with metabolic syndrome and De Quervain tenosynovitis this might affect the outcome of treatment by local corticosteroid injection. A total of 64 consecutive patients with De Quervain tenosynovitis and metabolic syndrome treated with corticosteroid injection were age- and sex-matched with 64 control patients without metabolic syndrome. The response to treatment, including visual analogue scale score for pain, objective findings consistent with De Quervain tenosynovitis (tenderness at first dorsal compartment, Finkelstein test result), and Disability of the Arm, Shoulder, and Hand score were assessed at 6, 12, and 24 weeks follow-up. Treatment failure was defined as persistence of symptoms or surgical intervention. Prior to treatment, patients with metabolic syndrome had mean initial pain visual analogue scale and Disability of the Arm, Shoulder, and Hand scores similar to those in the control group. The proportion of treatment failure in the metabolic syndrome group (43%) was significantly higher than that in the control group (20%) at 6 months follow-up. The pain visual analogue scale scores in the metabolic syndrome group were higher than the scores in the control group at the 12- and 24-week follow-ups. The Disability of the Arm, Shoulder, and Hand scores of the metabolic syndrome group were higher (more severe symptoms) than those of the control group at the 12- and 24-week follow-ups. Although considerable improvements in symptom severity and hand function will likely occur in patients with metabolic syndrome, corticosteroid injection for De Quervain tenosynovitis is not as effective in these patients compared with age- and sex-matched controls in terms of functional outcomes and treatment failure. III.

  3. Functional analysis of thermostable proteins involved in carbohydrate metabolism

    NARCIS (Netherlands)

    Akerboom, A.P.

    2007-01-01

    Thermostable proteins can resist temperature stress whilst keeping their integrity and functionality. In many cases, thermostable proteins originate from hyperthermophilic microorganisms that thrive in extreme environments. These systems are generally located close to geothermal (volcanic) activity,

  4. Functional Imaging of Dolphin Brain Metabolism and Blood Flow

    National Research Council Canada - National Science Library

    Ridgway, Sam; Finneran, James; Carder, Don; Keogh, Mandy; Van Bonn, William; Smith, Cynthia; Scadeng, Miriam; Dubowitz, David; Mattrey, Robert; Hoh, Carl

    2006-01-01

    This report documents the first use of magnetic resonance images (MRls) of living dolphins to register functional brain scans, allowing for the exploration of potential mechanisms of unihemispheric sleep...

  5. Methylprednisolone promotes recovery of neurological function after spinal cord injury: association with Wnt/β-catenin signaling pathway activation

    Science.gov (United States)

    Lu, Gong-biao; Niu, Fu-wen; Zhang, Ying-chun; Du, Lin; Liang, Zhi-yuan; Gao, Yuan; Yan, Ting-zhen; Nie, Zhi-kui; Gao, Kai

    2016-01-01

    Some studies have indicated that the Wnt/β-catenin signaling pathway is activated following spinal cord injury, and expression levels of specific proteins, including low-density lipoprotein receptor related protein-6 phosphorylation, β-catenin, and glycogen synthase kinase-3β, are significantly altered. We hypothesized that methylprednisolone treatment contributes to functional recovery after spinal cord injury by inhibiting apoptosis and activating the Wnt/β-catenin signaling pathway. In the current study, 30 mg/kg methylprednisolone was injected into rats with spinal cord injury immediately post-injury and at 1 and 2 days post-injury. Basso, Beattie, and Bresnahan scores showed that methylprednisolone treatment significantly promoted locomotor functional recovery between 2 and 6 weeks post-injury. The number of surviving motor neurons increased, whereas the lesion size significantly decreased following methylprednisolone treatment at 7 days post-injury. Additionally, caspase-3, caspase-9, and Bax protein expression levels and the number of apoptotic cells were reduced at 3 and 7 days post-injury, while Bcl-2 levels at 7 days post-injury were higher in methylprednisolone-treated rats compared with saline-treated rats. At 3 and 7 days post-injury, methylprednisolone up-regulated expression and activation of the Wnt/β-catenin signaling pathway, including low-density lipoprotein receptor related protein-6 phosphorylation, β-catenin, and glycogen synthase kinase-3β phosphorylation. These results indicate that methylprednisolone-induced neuroprotection may correlate with activation of the Wnt/β-catenin signaling pathway. PMID:28123427

  6. Methylprednisolone promotes recovery of neurological function after spinal cord injury: association with Wnt/β-catenin signaling pathway activation

    Directory of Open Access Journals (Sweden)

    Gong-biao Lu

    2016-01-01

    Full Text Available Some studies have indicated that the Wnt/β-catenin signaling pathway is activated following spinal cord injury, and expression levels of specific proteins, including low-density lipoprotein receptor related protein-6 phosphorylation, β-catenin, and glycogen synthase kinase-3β, are significantly altered. We hypothesized that methylprednisolone treatment contributes to functional recovery after spinal cord injury by inhibiting apoptosis and activating the Wnt/β-catenin signaling pathway. In the current study, 30 mg/kg methylprednisolone was injected into rats with spinal cord injury immediately post-injury and at 1 and 2 days post-injury. Basso, Beattie, and Bresnahan scores showed that methylprednisolone treatment significantly promoted locomotor functional recovery between 2 and 6 weeks post-injury. The number of surviving motor neurons increased, whereas the lesion size significantly decreased following methylprednisolone treatment at 7 days post-injury. Additionally, caspase-3, caspase-9, and Bax protein expression levels and the number of apoptotic cells were reduced at 3 and 7 days post-injury, while Bcl-2 levels at 7 days post-injury were higher in methylprednisolone-treated rats compared with saline-treated rats. At 3 and 7 days post-injury, methylprednisolone up-regulated expression and activation of the Wnt/β-catenin signaling pathway, including low-density lipoprotein receptor related protein-6 phosphorylation, β-catenin, and glycogen synthase kinase-3β phosphorylation. These results indicate that methylprednisolone-induced neuroprotection may correlate with activation of the Wnt/β-catenin signaling pathway.

  7. Metabolic Activity and Functional Diversity Changes in Sediment Prokaryotic Communities Organically Enriched with Mussel Biodeposits

    OpenAIRE

    Pollet, Thomas; Cloutier, Olivier; Nozais, Christian; McKindsey, Christopher W.; Archambault, Philippe

    2015-01-01

    This experimental microcosm study reports the influence of organic enrichments by mussel biodeposits on the metabolic activity and functional diversity of benthic prokaryotic communities. The different biodeposit enrichment regimes created, which mimicked the quantity of faeces and pseudo-faeces potentially deposited below mussel farms, show a clear stimulatory effect of this organic enrichment on prokaryotic metabolic activity. This effect was detected once a certain level of biodeposition w...

  8. Microbial functional genes elucidate environmental drivers of biofilm metabolism in glacier-fed streams.

    Science.gov (United States)

    Ren, Ze; Gao, Hongkai; Elser, James J; Zhao, Qiudong

    2017-10-04

    Benthic biofilms in glacier-fed streams harbor diverse microorganisms driving biogeochemical cycles and, consequently, influencing ecosystem-level processes. Benthic biofilms are vulnerable to glacial retreat induced by climate change. To investigate microbial functions of benthic biofilms in glacier-fed streams, we predicted metagenomes from 16s rRNA gene sequence data using PICRUSt and identified functional genes associated with nitrogen and sulfur metabolisms based on KEGG database and explored the relationships between metabolic pathways and abiotic factors in glacier-fed streams in the Tianshan Mountains in Central Asia. Results showed that the distribution of functional genes was mainly associated with glacier area proportion, glacier source proportion, total nitrogen, dissolved organic carbon, and pH. For nitrogen metabolism, the relative abundance of functional genes associated with dissimilatory pathways was higher than those for assimilatory pathways. The relative abundance of functional genes associated with assimilatory sulfate reduction was higher than those involved with the sulfur oxidation system and dissimilatory sulfate reduction. Hydrological factors had more significant correlations with nitrogen metabolism than physicochemical factors and anammox was the most sensitive nitrogen cycling pathway responding to variation of the abiotic environment in these glacial-fed streams. In contrast, sulfur metabolism pathways were not sensitive to variations of abiotic factors in these systems.

  9. EFFECT OF DANCE EXERCISE ON COGNITIVE FUNCTION IN ELDERLY PATIENTS WITH METABOLIC SYNDROME: A PILOT STUDY

    Directory of Open Access Journals (Sweden)

    Sang-Wook Song

    2011-12-01

    Full Text Available Metabolic syndrome is associated with an increased risk of cognitive impairment. The purpose of this prospective pilot study was to examine the effects of dance exercise on cognitive function in elderly patients with metabolic syndrome. The participants included 38 elderly metabolic syndrome patients with normal cognitive function (26 exercise group and 12 control group. The exercise group performed dance exercise twice a week for 6 months. Cognitive function was assessed in all participants using the Korean version of the Consortium to Establish a Registry for Alzheimer's disease (CERAD-K. Repeated-measures ANCOVA was used to assess the effect of dance exercise on cognitive function and cardiometabolic risk factors. Compared with the control group, the exercise group significantly improved in verbal fluency (p = 0.048, word list delayed recall (p = 0.038, word list recognition (p = 0.007, and total CERAD-K score (p = 0.037. However, no significance difference was found in body mass index, blood pressure, waist circumference, fasting plasma glucose, triglyceride, and HDL cholesterol between groups over the 6-month period. In the present study, six months of dance exercise improved cognitive function in older adults with metabolic syndrome. Thus, dance exercise may reduce the risk for cognitive disorders in elderly people with metabolic syndrome.

  10. Metabolic data and retention functions for the intracellular alkali metals

    International Nuclear Information System (INIS)

    Leggett, R.W.

    1983-05-01

    This report is a collection and discussion of the information needed for interpretation of bioassay results for the important radioelement cesium (Cs), as well as a comparison of the physiological behavior of Cs with that of potassium (K) and rubidium (Rb). This report is intended not only as an investigation of the metabolism of the intracellular alkali metals by humans, but also as a case study of the limitations inherent in applying ICRP 30 retention models in bioassay programs. In particular, the relationship between the mathematical components of the ICRP 30 retention model for Cs and actual physiological or anatomical entities is examined, and ways are suggested for modifying the ICRP 30 models for Cs, Rb, and K to yield better accuracy and to better account for biological variability among humans. Although the physiological behaviors of both Rb and Cs resemble that of K, quantitative differences arise because of differences in transport of K, Rb, and Cs by cell membranes. The resemblance is close enough, however, that total body K can be used as an index of whole-body retention times of Rb and Cs, and of compartmental fractions of Cs. The Cs half-time based on total body K appears to be within a factor of 1.5 for all adults. Total body K may be determined by whole-body gamma-ray counting techniques and hence is a reasonable index to use in many bioassay programs

  11. Systemic Inflammation and Lung Function Impairment in Morbidly Obese Subjects with the Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Astrid van Huisstede

    2013-01-01

    Full Text Available Background. Obesity and asthma are associated. There is a relationship between lung function impairment and the metabolic syndrome. Whether this relationship also exists in the morbidly obese patients is still unknown. Hypothesis. Low-grade systemic inflammation associated with the metabolic syndrome causes inflammation in the lungs and, hence, lung function impairment. Methods. This is cross-sectional study of morbidly obese patients undergoing preoperative screening for bariatric surgery. Metabolic syndrome was assessed according to the revised NCEP-ATP III criteria. Results. A total of 452 patients were included. Patients with the metabolic syndrome (n=293 had significantly higher blood monocyte (mean 5.3 versus 4.9, P=0.044 and eosinophil percentages (median 1.0 versus 0.8, P=0.002, while the total leukocyte count did not differ between the groups. The FEV1/FVC ratio was significantly lower in patients with the metabolic syndrome (76.7% versus 78.2%, P=0.032. Blood eosinophils were associated with FEV1/FVC ratio (adj. B −0.113, P=0.018. Conclusion. Although the difference in FEV1/FVC ratio between the groups is relatively small, in this cross-sectional study, and its clinical relevance may be limited, these data indicate that the presence of the metabolic syndrome may influence lung function impairment, through the induction of relative eosinophilia.

  12. Medical marijuana in neurology.

    Science.gov (United States)

    Benbadis, Selim R; Sanchez-Ramos, Juan; Bozorg, Ali; Giarratano, Melissa; Kalidas, Kavita; Katzin, Lara; Robertson, Derrick; Vu, Tuan; Smith, Amanda; Zesiewicz, Theresa

    2014-12-01

    Constituents of the Cannabis plant, cannabinoids, may be of therapeutic value in neurologic diseases. The most abundant cannabinoids are Δ(9)-tetrahydrocannabinol, which possesses psychoactive properties, and cannabidiol, which has no intrinsic psychoactive effects, but exhibits neuroprotective properties in preclinical studies. A small number of high-quality clinical trials support the safety and efficacy of cannabinoids for treatment of spasticity of multiple sclerosis, pain refractory to opioids, glaucoma, nausea and vomiting. Lower level clinical evidence indicates that cannabinoids may be useful for dystonia, tics, tremors, epilepsy, migraine and weight loss. Data are also limited in regards to adverse events and safety. Common nonspecific adverse events are similar to those of other CNS 'depressants' and include weakness, mood changes and dizziness. Cannabinoids can have cardiovascular adverse events and, when smoked chronically, may affect pulmonary function. Fatalities are rare even with recreational use. There is a concern about psychological dependence, but physical dependence is less well documented. Cannabis preparations may presently offer an option for compassionate use in severe neurologic diseases, but at this point, only when standard-of-care therapy is ineffective. As more high-quality clinical data are gathered, the therapeutic application of cannabinoids will likely expand.

  13. Emergence of Complexity in Protein Functions and Metabolic Networks

    Science.gov (United States)

    Pohorille, Andzej

    2009-01-01

    In modern organisms proteins perform a majority of cellular functions, such as chemical catalysis, energy transduction and transport of material across cell walls. Although great strides have been made towards understanding protein evolution, a meaningful extrapolation from contemporary proteins to their earliest ancestors is virtually impossible. In an alternative approach, the origin of water-soluble proteins was probed through the synthesis of very large libraries of random amino acid sequences and subsequently subjecting them to in vitro evolution. In combination with computer modeling and simulations, these experiments allow us to address a number of fundamental questions about the origins of proteins. Can functionality emerge from random sequences of proteins? How did the initial repertoire of functional proteins diversify to facilitate new functions? Did this diversification proceed primarily through drawing novel functionalities from random sequences or through evolution of already existing proto-enzymes? Did protein evolution start from a pool of proteins defined by a frozen accident and other collections of proteins could start a different evolutionary pathway? Although we do not have definitive answers to these questions, important clues have been uncovered. Considerable progress has been also achieved in understanding the origins of membrane proteins. We will address this issue in the example of ion channels - proteins that mediate transport of ions across cell walls. Remarkably, despite overall complexity of these proteins in contemporary cells, their structural motifs are quite simple, with -helices being most common. By combining results of experimental and computer simulation studies on synthetic models and simple, natural channels, I will show that, even though architectures of membrane proteins are not nearly as diverse as those of water-soluble proteins, they are sufficiently flexible to adapt readily to the functional demands arising during

  14. Enriched Environment Enhances Poststroke Neurological Function Recovery on Rat: Involvement of p-ERK1/2.

    Science.gov (United States)

    Jiang, Congyu; Yu, Kewei; Wu, Yi; Xie, Hongyu; Liu, Gang; Wu, Junfa; Jia, Jie; Kuang, Shenyi

    2016-07-01

    Increasing evidence shows that exposure to an enriched environment (EE) after cerebral ischemia or reperfusion injury is neuroprotective in animal models, including that EE enhances functional recovery after ischemic stroke. However, the mechanism underlying this effect remains unclear. To clarify this critical issue, the current study investigated the effects of EE on the role of extracellular signal-regulated kinase (ERK) after cerebral ischemia or reperfusion injury of rat. Adult rats were subjected to ischemia induced by middle cerebral artery occlusion (MCAO) followed by reperfusion. Ladder walking task and limb-use asymmetry task were used to test the recovery of rat behavior on postoperative days 1, 3, 5, 7, 14 and days 3, 7, 14, respectively. On the eighth day after MCAO, infarct volume was assessed by 2,3,5-triphenyltetrazolium chloride staining. Expressions of phosphorylated ERK1/2 (p-ERK1/2) and total ERK1/2 were examined by western blot, and electron microscopy was used to evaluate the astrocytes morphology surround in the perivascular 14 days after MCAO. EE improves the recovery of coordination and integration of motor movements on rats after cerebral ischemia or reperfusion injury. EE downregulates the level of p-ERK1/2 in the rat cortex after cerebral ischemia or reperfusion injury. Furthermore, EE reduces astrocytic swelling and injury. These findings suggest that EE could promote rehabilitation after ischemia via regulation of p-ERK1/2 expression, which may provide a therapeutic approach for cerebral ischemia or reperfusion injury. The suppression of postischemic astrocytic swelling in the brain of the ischemic rats through the intervention of EE would be one of the underlying mechanisms in the protective effect of cerebral ischemia. Copyright © 2016 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  15. Neurology at the bedside

    DEFF Research Database (Denmark)

    Kondziella, Daniel; Waldemar, Gunhild

    This updated and expanded new edition takes neurology trainees by the hand and guides them through the whole patient encounter - from an efficient neurological history and bedside examination through to differential diagnosis, diagnostic procedures and treatment. At each step the expert authors......, as have new chapters including neurogenetics, neurorehabilitation, neurocritical care and heuristic neurological reasoning. In addition, this second edition now includes more than 100 unique case histories. Neurology at the Bedside, Second Edition is written for neurologists in all stages of training....... Medical students, general practitioners and others with an interest in neurology will also find invaluable information here....

  16. Vitamin D metabolism, sex hormones, and male reproductive function

    DEFF Research Database (Denmark)

    Blomberg Jensen, Martin

    2012-01-01

    The spectrum of vitamin D (VD)-mediated effects has expanded in recent years, and VD is now recognized as a versatile signaling molecule rather than being solely a regulator of bone health and calcium homeostasis. One of the recently identified target areas of VD is male reproductive function...

  17. Glucose metabolism and adrenal function in goats bred for fibre ...

    African Journals Online (AJOL)

    rate did not differ between breeds (P > 0.05), and there was no evidence of impaired adrenal function in Angora goats ... linear (P 0.05) between breed and diet. ..... derived by gluconeogenesis from the liver (87%) and kidneys. (9%).

  18. Metabolic correlates of cognitive function in children with unilateral Sturge-Weber syndrome: Evidence for regional functional reorganization and crowding.

    Science.gov (United States)

    Kim, Jeong-A; Jeong, Jeong-Won; Behen, Michael E; Pilli, Vinod K; Luat, Aimee; Chugani, Harry T; Juhász, Csaba

    2018-04-01

    To evaluate metabolic changes in the ipsi- and contralateral hemisphere in children showing a cognitive profile consistent with early reorganization of cognitive function, we evaluated the regional glucose uptake, interhemispheric metabolic connectivity, and cognitive function in children with unilateral SWS. Interictal 2-deoxy-2[ 18 F]fluoro-D-glucose (FDG)-PET scans of 27 children with unilateral SWS and mild epilepsy and 27 age-matched control (non-SWS children with epilepsy and normal FDG-PET) were compared using statistical parametric mapping (SPM). Regional FDG-PET abnormalities calculated as SPM(t) scores in the SWS group were correlated with cognitive function (IQ) in left- and right-hemispheric subgroups. Interhemispheric metabolic connectivity between homotopic cortical regions was also calculated. Verbal IQ was substantially (≥10 points difference) higher than non-verbal IQ in 61% of the right- and 71% of the left-hemispheric SWS group. FDG SPM(t) scores in the affected hemisphere showed strong positive correlations with IQ in the left-hemispheric, but not in right-hemispheric SWS group in several frontal, parietal, and temporal cortical regions. Significant positive interhemispheric metabolic connectivity, present in controls, was diminished in the SWS group. In addition, the left-hemispheric SWS group showed inverse metabolic interhemispheric correlations in specific parietal, temporal, and occipital regions. FDG SPM(t) scores in the same regions of the right (unaffected) hemisphere showed inverse correlations with IQ. These findings suggest that left-hemispheric lesions in SWS often result in early reorganization of verbal functions while interfering with ("crowding") their non-verbal cognitive abilities. These cognitive changes are associated with specific metabolic abnormalities in the contralateral hemisphere not directly affected by SWS. © 2017 Wiley Periodicals, Inc.

  19. Recovery of neurological function despite immediate sleep disruption following diffuse brain injury in the mouse: clinical relevance to medically untreated concussion.

    Science.gov (United States)

    Rowe, Rachel K; Harrison, Jordan L; O'Hara, Bruce F; Lifshitz, Jonathan

    2014-04-01

    We investigated the relationship between immediate disruption of posttraumatic sleep and functional outcome in the diffuse brain-injured mouse. Adult male C57BL/6 mice were subjected to moderate midline fluid percussion injury (n = 65; 1.4 atm; 6-10 min righting reflex time) or sham injury (n = 44). Cohorts received either intentional sleep disruption (minimally stressful gentle handling) or no sleep disruption for 6 h following injury. Following disruption, serum corticosterone levels (enzyme-linked immunosorbent assay) and posttraumatic sleep (noninvasive piezoelectric sleep cages) were measured. For 1-7 days postinjury, sensorimotor outcome was assessed by Rotarod and a modified Neurological Severity Score (NSS). Cognitive function was measured using Novel Object Recognition (NOR) and Morris water maze (MWM) in the first week postinjury. Neurotrauma research laboratory. Disrupting posttraumatic sleep for 6 h did not affect serum corticosterone levels or functional outcome. In the hour following the first dark onset, sleep-disrupted mice exhibited a significant increase in sleep; however, this increase was not sustained and there was no rebound of lost sleep. Regardless of sleep disruption, mice showed a time-dependent improvement in Rotarod performance, with brain-injured mice having significantly shorter latencies on day 7 compared to sham. Further, brain-injured mice, regardless of sleep disruption, had significantly higher NSS scores postinjury compared with sham. Cognitive behavioral testing showed no group differences among any treatment group measured by MWM and NOR. Short-duration disruption of posttraumatic sleep did not affect functional outcome, measured by motor and cognitive performance. These data raise uncertainty about posttraumatic sleep as a mechanism of recovery from diffuse brain injury.

  20. Neurologic emergencies in sports.

    Science.gov (United States)

    Williams, Vernon B

    2014-12-01

    Sports neurology is an emerging area of subspecialty. Neurologists and non-neurologists evaluating and managing individuals participating in sports will encounter emergencies that directly or indirectly involve the nervous system. Since the primary specialty of sports medicine physicians and other practitioners involved in the delivery of medical care to athletes in emergency situations varies significantly, experience in recognition and management of neurologic emergencies in sports will vary as well. This article provides a review of information and elements essential to neurologic emergencies in sports for the practicing neurologist, although content may be of benefit to readers of varying background and expertise. Both common neurologic emergencies and less common but noteworthy neurologic emergencies are reviewed in this article. Issues that are fairly unique to sports participation are highlighted in this review. General concepts and principles related to treatment of neurologic emergencies that are often encountered unrelated to sports (eg, recognition and treatment of status epilepticus, increased intracranial pressure) are discussed but are not the focus of this article. Neurologic emergencies can involve any region of the nervous system (eg, brain, spine/spinal cord, peripheral nerves, muscles). In addition to neurologic emergencies that represent direct sports-related neurologic complications, indirect (systemic and generalized) sports-related emergencies with significant neurologic consequences can occur and are also discussed in this article. Neurologists and others involved in the care of athletes should consider neurologic emergencies in sports when planning and providing medical care.

  1. Metabolic Control of Dendritic Cell Activation and Function: Recent Advances and Clinical Implications

    Directory of Open Access Journals (Sweden)

    Bart eEverts

    2014-05-01

    Full Text Available Dendritic cells (DCs are key regulators of both immunity and tolerance by controlling activation and polarization of effector T helper cell and regulatory T cell responses. Therefore, there is a major focus on developing approaches to manipulate DC function for immunotherapy. It is well known that changes in cellular activation are coupled to profound changes in cellular metabolism. Over the past decade there is a growing appreciation that these metabolic changes also underlie the capacity of immune cells to perform particular functions. This has led to the concept that the manipulation of cellular metabolism can be used to shape innate and adaptive immune responses. While most of our understanding in this area has been gained from studies with T cells and macrophages, evidence is emerging that the activation and function of DCs are also dictated by the type of metabolism these cells commit to. We here discuss these new insights and explore whether targeting of metabolic pathways in DCs could hold promise as a novel approach to manipulate the functional properties of DCs for clinical purposes.

  2. Ketogenic diets, mitochondria, and neurological diseases

    Science.gov (United States)

    Gano, Lindsey B.; Patel, Manisha; Rho, Jong M.

    2014-01-01

    The ketogenic diet (KD) is a broad-spectrum therapy for medically intractable epilepsy and is receiving growing attention as a potential treatment for neurological disorders arising in part from bioenergetic dysregulation. The high-fat/low-carbohydrate “classic KD”, as well as dietary variations such as the medium-chain triglyceride diet, the modified Atkins diet, the low-glycemic index treatment, and caloric restriction, enhance cellular metabolic and mitochondrial function. Hence, the broad neuroprotective properties of such therapies may stem from improved cellular metabolism. Data from clinical and preclinical studies indicate that these diets restrict glycolysis and increase fatty acid oxidation, actions which result in ketosis, replenishment of the TCA cycle (i.e., anaplerosis), restoration of neurotransmitter and ion channel function, and enhanced mitochondrial respiration. Further, there is mounting evidence that the KD and its variants can impact key signaling pathways that evolved to sense the energetic state of the cell, and that help maintain cellular homeostasis. These pathways, which include PPARs, AMP-activated kinase, mammalian target of rapamycin, and the sirtuins, have all been recently implicated in the neuroprotective effects of the KD. Further research in this area may lead to future therapeutic strategies aimed at mimicking the pleiotropic neuroprotective effects of the KD. PMID:24847102

  3. Beta-cell function is associated with metabolic syndrome in Mexican subjects

    Directory of Open Access Journals (Sweden)

    Pérez-Fuentes

    2010-08-01

    Full Text Available Blanca G Baez-Duarte1,3, María Del Carmen Sánchez-Guillén3†, Ricardo Pérez-Fuentes2,3, Irma Zamora-Ginez1,3, Bertha Alicia Leon-Chavez1, Cristina Revilla-Monsalve4, Sergio Islas-Andrade41Posgrado en Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, México; 2Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, México; 3Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Atlixco, Puebla, México; 4Multidiciplinary Research Group on Diabetes (José Sánchez-Corona, Fernando Guerrero-Romero, Martha Rodriguez-Moran, Agustin Madero, Jorge Escobedo-de-la-Peña, Silvia Flores-Martinez, Esperanza, Martinez-Abundis, Manuel Gonzalez-Ortiz, Alberto Rascon-Pacheco, Margarita Torres-Tamayo, Instituto Mexicano del Seguro Social, México, Distrito Federal, México; †María Del Carmen Sánchez-Guillén passed away on 27 November 2009.Aims: The clinical diagnosis of metabolic syndrome does not find any parameters to evaluate the insulin sensitivity (IS or β-cell function. The evaluation of these parameters would detect early risk of developing metabolic syndrome. The aim of this study is to determine the relationship between β-cell function and presence of metabolic syndrome in Mexican subjects.Material and methods: This study is part of the Mexican Survey on the Prevention of Diabetes (MexDiab Study with headquarters in the city of Puebla, Mexico. The study comprised of 444 subjects of both genders, aged between 18 and 60 years and allocated into two study groups: (1 control group of individuals at metabolic balance without metabolic syndrome and (2 group composed of subjects with metabolic syndrome and diagnosed according to the criteria of the Third Report of the National Cholesterol Education Program Expert Panel on Defection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Anthropometric, biochemical, and clinical assessments were carried out.Results: Average age of the

  4. Hydrogen sulfide metabolism regulates endothelial solute barrier function

    Directory of Open Access Journals (Sweden)

    Shuai Yuan

    2016-10-01

    Full Text Available Hydrogen sulfide (H2S is an important gaseous signaling molecule in the cardiovascular system. In addition to free H2S, H2S can be oxidized to polysulfide which can be biologically active. Since the impact of H2S on endothelial solute barrier function is not known, we sought to determine whether H2S and its various metabolites affect endothelial permeability. In vitro permeability was evaluated using albumin flux and transendothelial electrical resistance. Different H2S donors were used to examine the effects of exogenous H2S. To evaluate the role of endogenous H2S, mouse aortic endothelial cells (MAECs were isolated from wild type mice and mice lacking cystathionine γ-lyase (CSE, a predominant source of H2S in endothelial cells. In vivo permeability was evaluated using the Miles assay. We observed that polysulfide donors induced rapid albumin flux across endothelium. Comparatively, free sulfide donors increased permeability only with higher concentrations and at later time points. Increased solute permeability was associated with disruption of endothelial junction proteins claudin 5 and VE-cadherin, along with enhanced actin stress fiber formation. Importantly, sulfide donors that increase permeability elicited a preferential increase in polysulfide levels within endothelium. Similarly, CSE deficient MAECs showed enhanced solute barrier function along with reduced endogenous bound sulfane sulfur. CSE siRNA knockdown also enhanced endothelial junction structures with increased claudin 5 protein expression. In vivo, CSE genetic deficiency significantly blunted VEGF induced hyperpermeability revealing an important role of the enzyme for barrier function. In summary, endothelial solute permeability is critically regulated via exogenous and endogenous sulfide bioavailability with a prominent role of polysulfides.

  5. First-year metabolic control guidelines and their impact on future metabolic control and neurocognitive functioning in children with PKU.

    Science.gov (United States)

    de la Parra, Alicia; García, María Ignacia; Hamilton, Valerie; Arias, Carolina; Cabello, Juan Francisco; Cornejo, Verónica

    2017-12-01

    There is a consensus on the importance of early and life-long treatment for PKU patients. Still, differences exist on target blood phenylalanine (Phe) concentrations for children with PKU in different countries and treatment centers. For the first time, long-term metabolic control and child development and cognitive functioning is compared between children with mean phenylalanine concentrations under 240 μmol/L (group A), between 240 and 360 μmol/L (group B) or over 360 μmol/L (group C) during their first year of life. 70 patients diagnosed with PKU through neonatal screening with Phe > 900 μmol/L, were divided into 3 groups: A, B and C, according to mean Phe concentrations and standard deviation (SD). Metabolic control during childhood, psychomotor development and IQ were compared. In group A, Phe was maintained within the recommended range until 6 years of age, in Group B, until 3 years of age, and in group C, Phe was always over the recommended range. No significant differences were found between the three groups in mental development index (MDI) and motor development index (PDI) scores at 12, 24, and 30 months of age, but group C had the lowest scores on MDI at all age periods. At preschool and school age, IQ was higher in group A compared to group C. Results show that mean blood Phe concentrations between 120 and 240 μmol/L during first year of life have a positive impact in metabolic control and cognitive functioning during childhood.

  6. Sleep Disorders in Childhood Neurological Diseases

    Directory of Open Access Journals (Sweden)

    Abdullah Tolaymat

    2017-09-01

    Full Text Available Sleep problems are frequently addressed as a primary or secondary concern during the visit to the pediatric neurology clinic. Sleep disorders can mimic other neurologic diseases (e.g., epilepsy and movement disorders, and this adds challenges to the diagnostic process. Sleep disorders can significantly affect the quality of life and functionality of children in general and those with comorbid neurological diseases in particular. Understanding the pathophysiology of sleep disorders, recognizing the implications of sleep disorder in children with neurologic diseases and behavioral difficulties, and early intervention continue to evolve resulting in better neurocognitive outcomes.

  7. Neuroimaging distinction between neurological and psychiatric disorders.

    Science.gov (United States)

    Crossley, Nicolas A; Scott, Jessica; Ellison-Wright, Ian; Mechelli, Andrea

    2015-11-01

    It is unclear to what extent the traditional distinction between neurological and psychiatric disorders reflects biological differences. To examine neuroimaging evidence for the distinction between neurological and psychiatric disorders. We performed an activation likelihood estimation meta-analysis on voxel-based morphometry studies reporting decreased grey matter in 14 neurological and 10 psychiatric disorders, and compared the regional and network-level alterations for these two classes of disease. In addition, we estimated neuroanatomical heterogeneity within and between the two classes. Basal ganglia, insula, sensorimotor and temporal cortex showed greater impairment in neurological disorders; whereas cingulate, medial frontal, superior frontal and occipital cortex showed greater impairment in psychiatric disorders. The two classes of disorders affected distinct functional networks. Similarity within classes was higher than between classes; furthermore, similarity within class was higher for neurological than psychiatric disorders. From a neuroimaging perspective, neurological and psychiatric disorders represent two distinct classes of disorders. © The Royal College of Psychiatrists 2015.

  8. Effect of alteplase thrombolysis sequenced by low molecular heparin calcium antithrombosis on the neurological function and serum cytokines in patients with cerebral infarction

    Directory of Open Access Journals (Sweden)

    Yi-Ping Dan

    2017-04-01

    Full Text Available Objective: To study the effect of alteplase thrombolysis sequenced by low molecular heparin calcium antithrombosis on the neurological function and serum cytokines in patients with cerebral infarction. Methods: Patients with acute cerebral infarction who received alteplase thrombolysis in Zigong Fourth People's Hospital between June 2014 and October 2016 were retrospectively analyzed and divided into the intervention group who received low molecular heparin calcium treatment and the control group who did not receive low molecular heparin calcium treatment. The serum was collected before and after treatment to determine the contents of platelet activation factors, nerve injury molecules, soluble apoptotic molecules and growth factors. Results: Serum CD62p, CD63, PAF, GMP-140, NSE, S100B, GFAP, sFas, sFasL, sTRAIL, IGF-1, VEGF, BDNF and bFGF levels of both groups of patients after treatment were lower than those before treatment, serum CD62p, CD63, PAF, GMP-140, NSE, S100B, GFAP, sFas, sFasL and sTRAIL levels of intervention group after treatment were lower than those of control group while IGF-1, VEGF, BDNF and bFGF levels were higher than those of control group. Conclusion: Alteplase thrombolysis sequenced by low molecular heparin calcium antithrombosis for acute cerebral infarction can inhibit platelet activation and cell apoptosis, alleviate nerve injury and improve neurotrophy status.

  9. "That pulled the rug out from under my feet!" - adverse experiences and altered emotion processing in patients with functional neurological symptoms compared to healthy comparison subjects.

    Science.gov (United States)

    Steffen, Astrid; Fiess, Johanna; Schmidt, Roger; Rockstroh, Brigitte

    2015-06-24

    Medically unexplained movement or sensibility disorders, recently defined in DSM-5 as functional neurological symptoms (FNS), are still insufficiently understood. Stress and trauma have been addressed as relevant factors in FNS genesis. Altered emotion processing has been discussed. The present study screened different types and times of adverse experiences in childhood and adulthood in patients with FNS as well as in healthy individuals. The relationship between stress profile, aspects of emotion processing and symptom severity was examined, with the hypothesis that particularly emotional childhood adversities would have an impact on dysfunctional emotion processing as a mediator of FNS. Adverse childhood experiences (ACE), recent negative life events (LE), alexithymia, and emotion regulation style were assessed in 45 inpatients diagnosed with dissociative disorder expressing FNS, and in 45 healthy comparison subjects (HC). Patients reported more severe FNS, more (particularly emotional) ACE, and more LE than HC. FNS severity varied with emotional ACE and negative LE, and LE partially mediated the relation between ACE and FNS. Alexithymia and suppressive emotion regulation style were stronger in patients than HC, and alexithymia varied with FNS severity. Structural equation modeling verified partial mediation of the relationship between emotional ACE and FNS by alexithymia. Early, emotional and accumulating stress show a substantial impact on FNS-associated emotion processing, influencing FNS. Understanding this complex interplay of stress, emotion processing and the severity of FNS is relevant not only for theoretical models, but, as a consequence also inform diagnostic and therapeutic adjustments.

  10. Impairment of intellectual functions after surgery and posterior fossa irradiation in children with ependymoma is related to age and neurologic complications

    International Nuclear Information System (INIS)

    Hoff, Katja von; Kieffer, Virginie; Habrand, Jean-Louis; Kalifa, Chantal; Dellatolas, Georges; Grill, Jacques

    2008-01-01

    To investigate the neuropsychological outcome of children treated with surgery and posterior fossa irradiation for localized infratentorial ependymoma. 23 patients (age 0.3 – 14 years at diagnosis) who were treated with local posterior fossa irradiation (54 Gy) underwent one (4 patients) or sequential (19 patients) neuropsychologic evaluation. The last evaluation was performed at a median of 4.5 (1 to 15.5) years after RT. Mean last full scale IQ (FSIQ), verbal IQ (VIQ) and PIQ were 89.1, 94.0, and 86.2 respectively. All patients had difficulties with reading, and individual patients showed deficits in visuospatial, memory and attentional tasks. There was no trend for deterioration of intellectual outcome over time. All 5 children with IQ scores ≤ 75 were under the age of four at diagnosis. There was a significant association between the presence of cerebellar deficits and impaired IQ (72.0 vs 95.2, p < 0,001). The absence of hydrocephalus was an indicator of better neuropsychologic outcome (mean FSIQ of 102.6 vs 83.9, p = 0.025). Within the evaluated cohort, intellectual functions were moderately impaired. Markedly reduced IQ scores were only seen with early disease manifestation and treatment, and postoperative neurological deficits had a strong impact on intellectual outcome

  11. Spinal Cord Injury due to Tumour or Metastasis in Aragón, Northeastern Spain (1991–2008: Incidence, Time Trends, and Neurological Function

    Directory of Open Access Journals (Sweden)

    Maayken Elizabeth Louise van den Berg

    2017-01-01

    Full Text Available Purpose. Understanding the presentation of spinal cord injury (SCI due to tumours considering population distribution and temporal trends is key to managing SCI health services. This study quantified incidence rates, function scores, and trends of SCI due to tumour or metastasis over an 18-year time period in a defined region in Spain. Methods. A retrospective cohort study included in-and outpatients with nontraumatic SCI due to tumour or metastasis admitted to a metropolitan hospital in Spain between 1991 and 2008. Main outcome measures were crude and age- and sex-adjusted incidence rates, tumour location and type, distribution by spinal level, neurological level of injury, and impairment ASIA scores. Results. Primary tumour or metastasis accounted for 32.5% of nontraumatic SCI with an incidence rate of 4.1 per million population. Increasing rates with age and over time were observed. Major pathology groups were intradural-extramedullary masses from which meningiomas and neurinomas accounted for 40%. Lesions were mostly incomplete with predominant ASIA Grade D. Conclusions. Increasing incidence rates of tumour-related SCI over time in the middle-aged and the elderly suggest a growing need for neurooncology health resources in the future.

  12. Impairment of intellectual functions after surgery and posterior fossa irradiation in children with ependymoma is related to age and neurologic complications

    Directory of Open Access Journals (Sweden)

    Kalifa Chantal

    2008-01-01

    Full Text Available Abstract Background To investigate the neuropsychological outcome of children treated with surgery and posterior fossa irradiation for localized infratentorial ependymoma. Methods 23 patients (age 0.3 – 14 years at diagnosis who were treated with local posterior fossa irradiation (54 Gy underwent one (4 patients or sequential (19 patients neuropsychologic evaluation. The last evaluation was performed at a median of 4.5 (1 to 15.5 years after RT. Results Mean last full scale IQ (FSIQ, verbal IQ (VIQ and PIQ were 89.1, 94.0, and 86.2 respectively. All patients had difficulties with reading, and individual patients showed deficits in visuospatial, memory and attentional tasks. There was no trend for deterioration of intellectual outcome over time. All 5 children with IQ scores ≤ 75 were under the age of four at diagnosis. There was a significant association between the presence of cerebellar deficits and impaired IQ (72.0 vs 95.2, p Conclusion Within the evaluated cohort, intellectual functions were moderately impaired. Markedly reduced IQ scores were only seen with early disease manifestation and treatment, and postoperative neurological deficits had a strong impact on intellectual outcome.

  13. Effects of anabolic hormones on structural, metabolic and functional aspects of skeletal muscle

    Directory of Open Access Journals (Sweden)

    Flávio de Oliveira Pires

    2009-01-01

    Full Text Available http://dx.doi.org/10.5007/1980-0037.2009v11n3p350   This study reviewed information regarding the effects of anabolic hormones on strength gain and muscle hypertrophy, emphasizing the physiological mechanisms that may increase muscle strength. Structural, metabolic and functional aspects were analyzed and special attention was paid to the dose-response relationship. The Pubmed database was searched and studies were selected according to relevance and date of publication (last 15 years. The administration of high testosterone doses (~600 mg/week potentiates the effects of strength training, increasing lean body mass, muscle fiber type IIA and IIB cross-sectional area, and the number of myonuclei. There is no evidence of conversion between MHC isoforms. The interaction between testosterone administration and strength training seems to modify some metabolic pathways, increasing protein synthesis, glycogen and ATP-CP muscle stores and improving fat mobilization. Changes in 17-estradiol concentration or in the ACTH-cortisol and insulin-glucagon ratios seem to be associated with these metabolic alterations. Regarding performance, testosterone administration may improve muscle strength by 5-20% depending on the dose used. On the other hand, the effects of growth hormone on the structural and functional aspects of skeletal muscle are not evident, with this hormone more affecting metabolic aspects. However, strictly controlled human studies are necessary to establish the extent of the effects of anabolic hormones on structural, metabolic and functional aspects.

  14. Effects of anabolic hormones on structural, metabolic and functional aspects of skeletal muscle

    Directory of Open Access Journals (Sweden)

    Flávio de Oliveira Pires

    2009-06-01

    Full Text Available This study reviewed information regarding the effects of anabolic hormones on strength gain and muscle hypertrophy, emphasizing the physiological mechanisms that may increase muscle strength. Structural, metabolic and functional aspects were analyzed and special attention was paid to the dose-response relationship. The Pubmed database was searched and studies were selected according to relevance and date of publication (last 15 years. The administration of high testosterone doses (~600 mg/week potentiates the effects of strength training, increasing lean body mass, muscle fiber type IIA and IIB cross-sectional area, and the number of myonuclei. There is no evidence of conversion between MHC isoforms. The interaction between testosterone administration and strength training seems to modify some metabolic pathways, increasing protein synthesis, glycogen and ATP-CP muscle stores and improving fat mobilization. Changes in 17-estradiol concentration or in the ACTH-cortisol and insulin-glucagon ratios seem to be associated with these metabolic alterations. Regarding performance, testosterone administration may improve muscle strength by 5-20% depending on the dose used. On the other hand, the effects of growth hormone on the structural and functional aspects of skeletal muscle are not evident, with this hormone more affecting metabolic aspects. However, strictly controlled human studies are necessary to establish the extent of the effects of anabolic hormones on structural, metabolic and functional aspects.

  15. Management of male neurologic patients with infertility

    DEFF Research Database (Denmark)

    Fode, Mikkel; Sønksen, Jens

    2015-01-01

    Many aspects of fertility rely on intact neurologic function and thus neurologic diseases can result in infertility. While research into general female fertility and alterations in male semen quality is limited, we have an abundance of knowledge regarding ejaculatory dysfunction following nerve...

  16. Dietary Proteins as Determinants of Metabolic and Physiologic Functions of the Gastrointestinal Tract

    Directory of Open Access Journals (Sweden)

    G. Harvey Anderson

    2011-05-01

    Full Text Available Dietary proteins elicit a wide range of nutritional and biological functions. Beyond their nutritional role as the source of amino acids for protein synthesis, they are instrumental in the regulation of food intake, glucose and lipid metabolism, blood pressure, bone metabolism and immune function. The interaction of dietary proteins and their products of digestion with the regulatory functions of the gastrointestinal (GI tract plays a dominant role in determining the physiological properties of proteins. The site of interaction is widespread, from the oral cavity to the colon. The characteristics of proteins that influence their interaction with the GI tract in a source-dependent manner include their physico-chemical properties, their amino acid composition and sequence, their bioactive peptides, their digestion kinetics and also the non-protein bioactive components conjugated with them. Within the GI tract, these products affect several regulatory functions by interacting with receptors releasing hormones, affecting stomach emptying and GI transport and absorption, transmitting neural signals to the brain, and modifying the microflora. This review discusses the interaction of dietary proteins during digestion and absorption with the physiological and metabolic functions of the GI tract, and illustrates the importance of this interaction in the regulation of amino acid, glucose, lipid metabolism, and food intake.

  17. Renal function and metabolic syndrome components on cardiovascular and all-cause mortality.

    Science.gov (United States)

    Chien, Kuo-Liong; Hsu, Hsiu-Ching; Lee, Yuan-Teh; Chen, Ming-Fong

    2008-04-01

    Impaired renal function and metabolic syndrome have been associated with risk of cardiovascular disease (CVD). We investigated their roles in CVD and all-cause death among ethnic Chinese population. We followed up a cohort of 11429 men and 7472 women aged 20 years and older for an average 4.9 years (median: 3.5, inter-quartile range: 2.7-7.9) from the tertiary hospital health check-up population. CVD death rates increased when the quintiles of each variable progressed. Metabolic syndrome was a significant predictor for CVD death, with relative risk of up to 4.68. In the multivariate adjusted model that included metabolic syndrome, quintiles of serum creatinine concentrations, estimated glomerular filtration rate (GFR), and uric acids were significantly associated CVD death, with the highest relative risk of creatinine concentration (11.22, 95% confidence interval [CI]: 2.43-51.7, P for trend: creatinine concentrations and estimated GFR had the higher areas under ROC curves of CVD death (0.76, 95% CI: 0.71-0.80 for creatinine and 0.76, 95% CI: 0.72-0.81 for estimated GFR). The two marker models showed that metabolic syndrome and impaired renal function had the most significant roles in predicting CVD deaths; the multivariate relative risk was 30.6 (95% CI: 3.7-254, P: 0.002) in participants with the highest creatinine and presence of metabolic syndrome compared with those with the lowest and absence of metabolic syndrome. Impaired renal function and metabolic syndrome are important risk factors for CVD and all-cause deaths among ethnic Chinese.

  18. The association between the metabolic syndrome and metabolic syndrome score and pulmonary function in non-smoking adults.

    Science.gov (United States)

    Yoon, Hyun; Gi, Mi Young; Cha, Ju Ae; Yoo, Chan Uk; Park, Sang Muk

    2018-03-01

    This study assessed the association of metabolic syndrome and metabolic syndrome score with the predicted forced vital capacity and predicted forced expiratory volume in 1 s (predicted forced expiratory volume in 1 s) values in Korean non-smoking adults. We analysed data obtained from 6684 adults during the 2013-2015 Korean National Health and Nutrition Examination Survey. After adjustment for related variables, metabolic syndrome ( p metabolic syndrome score ( p metabolic syndrome score with metabolic syndrome score 0 as a reference group showed no significance for metabolic syndrome score 1 [1.061 (95% confidence interval, 0.755-1.490)] and metabolic syndrome score 2 [1.247 (95% confidence interval, 0.890-1.747)], but showed significant for metabolic syndrome score 3 [1.433 (95% confidence interval, 1.010-2.033)] and metabolic syndrome score ⩾ 4 [1.760 (95% confidence interval, 1.216-2.550)]. In addition, the odds ratio of restrictive pulmonary disease of the metabolic syndrome [1.360 (95% confidence interval, 1.118-1.655)] was significantly higher than those of non-metabolic syndrome. Metabolic syndrome and metabolic syndrome score were inversely associated with the predicted forced vital capacity and forced expiratory volume in 1 s values in Korean non-smoking adults. In addition, metabolic syndrome and metabolic syndrome score were positively associated with the restrictive pulmonary disease.

  19. Pancreatic Function, Type 2 Diabetes, and Metabolism in Aging

    Directory of Open Access Journals (Sweden)

    Zhenwei Gong

    2012-01-01

    Full Text Available Aging is a risk factor for impaired glucose tolerance and diabetes. Of the reported 25.8 million Americans estimated to have diabetes, 26.9% are over the age of 65. In certain ethnic groups, the proportion is even higher; almost 1 in 3 older Hispanics and African Americans and 3 out of 4 Pima Indian elders have diabetes. As per the NHANES III (Third National Health and Nutrition Examination survey, the percentage of physician-diagnosed diabetes increased from 3.9% in middle-aged adults (40–49 years to 13.2% in elderly adults (≥75 years. The higher incidence of diabetes is especially alarming considering that diabetes in itself increases the risk for multiple other age-related diseases such as cancer, stroke, cardiovascular diseases, Parkinson’s disease, and Alzheimer’s disease (AD. In this review, we summarize the current evidence on how aging affects pancreatic β cell function, β cell mass, insulin secretion and insulin sensitivity. We also review the effects of aging on the relationship between insulin sensitivity and insulin secretion. Understanding the mechanisms that lead to impaired glucose homeostasis and T2D in the elderly will lead to development of novel treatments that will prevent or delay diabetes, substantially improve quality of life and ultimately increase overall life span.

  20. [Neurology! Adieau? (Part 2)].

    Science.gov (United States)

    Szirmai, Imre

    2010-05-30

    The education of neurologists is debilitated worldwide. University professors are engaged in teaching, research and patient-care. This triple challenge is very demanding, and results in permanent insecurity of University employees. To compensate for the insufficient clinical training, some institutes in the USA employ academic staff members exclusively for teaching. The formation of new subspecialties hinders the education and training of general neurologists. At present, four generations of medical doctors are working together in hospitals. The two older generations educate the younger neurologists who have been brought up in the world of limitless network of sterile information. Therefore their manual skills at the bedside and their knowledge of emergency treatment are deficient. Demographics of medical doctors changed drastically. Twice as many women are working in neurology and psychiatry than men. Integrity of neurology is threatened by: (1) Separation of the cerebrovascular diseases from general neurology. Development of "stroke units" was facilitated by the better reimbursement for treatment and by the interest of the pharmaceutical companies. Healthcare politics promoted the split of neurology into two parts. The independent status of "stroke departments" will reduce the rest of clinical neurology to outpatient service. (2) The main argumentation to segregate the rare neurological diseases was that their research will provide benefit for the diseases with high prevalence. This argumentation serves territorial ambitions. The separation of rare diseases interferes with the teaching of differential diagnostics in neurological training. The traditional pragmatic neurology can not be retrieved. The faculty of neurology could retain its integrity by the improvement of diagnostic methods and the ever more effective drugs. Nevertheless, even the progression of neurological sciences induces dissociation of clinical neurology. Neurology shall suffer fragmentation if

  1. Rb and p53 Liver Functions Are Essential for Xenobiotic Metabolism and Tumor Suppression.

    Directory of Open Access Journals (Sweden)

    Sathidpak Nantasanti

    Full Text Available The tumor suppressors Retinoblastoma (Rb and p53 are frequently inactivated in liver diseases, such as hepatocellular carcinomas (HCC or infections with Hepatitis B or C viruses. Here, we discovered a novel role for Rb and p53 in xenobiotic metabolism, which represent a key function of the liver for metabolizing therapeutic drugs or toxins. We demonstrate that Rb and p53 cooperate to metabolize the xenobiotic 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC. DDC is metabolized mainly by cytochrome P450 (Cyp3a enzymes resulting in inhibition of heme synthesis and accumulation of protoporphyrin, an intermediate of heme pathway. Protoporphyrin accumulation causes bile injury and ductular reaction. We show that loss of Rb and p53 resulted in reduced Cyp3a expression decreased accumulation of protoporphyrin and consequently less ductular reaction in livers of mice fed with DDC for 3 weeks. These findings provide strong evidence that synergistic functions of Rb and p53 are essential for metabolism of DDC. Because Rb and p53 functions are frequently disabled in liver diseases, our results suggest that liver patients might have altered ability to remove toxins or properly metabolize therapeutic drugs. Strikingly the reduced biliary injury towards the oxidative stress inducer DCC was accompanied by enhanced hepatocellular injury and formation of HCCs in Rb and p53 deficient livers. The increase in hepatocellular injury might be related to reduce protoporphyrin accumulation, because protoporphrin is well known for its anti-oxidative activity. Furthermore our results indicate that Rb and p53 not only function as tumor suppressors in response to carcinogenic injury, but also in response to non-carcinogenic injury such as DDC.

  2. Hydrodynamics-based functional forms of activity metabolism: a case for the power-law polynomial function in animal swimming energetics.

    Directory of Open Access Journals (Sweden)

    Anthony Papadopoulos

    Full Text Available The first-degree power-law polynomial function is frequently used to describe activity metabolism for steady swimming animals. This function has been used in hydrodynamics-based metabolic studies to evaluate important parameters of energetic costs, such as the standard metabolic rate and the drag power indices. In theory, however, the power-law polynomial function of any degree greater than one can be used to describe activity metabolism for steady swimming animals. In fact, activity metabolism has been described by the conventional exponential function and the cubic polynomial function, although only the power-law polynomial function models drag power since it conforms to hydrodynamic laws. Consequently, the first-degree power-law polynomial function yields incorrect parameter values of energetic costs if activity metabolism is governed by the power-law polynomial function of any degree greater than one. This issue is important in bioenergetics because correct comparisons of energetic costs among different steady swimming animals cannot be made unless the degree of the power-law polynomial function derives from activity metabolism. In other words, a hydrodynamics-based functional form of activity metabolism is a power-law polynomial function of any degree greater than or equal to one. Therefore, the degree of the power-law polynomial function should be treated as a parameter, not as a constant. This new treatment not only conforms to hydrodynamic laws, but also ensures correct comparisons of energetic costs among different steady swimming animals. Furthermore, the exponential power-law function, which is a new hydrodynamics-based functional form of activity metabolism, is a special case of the power-law polynomial function. Hence, the link between the hydrodynamics of steady swimming and the exponential-based metabolic model is defined.

  3. Exploiting immune cell metabolic machinery for functional HIV cure and the prevention of inflammaging [version 1; referees: 4 approved

    OpenAIRE

    Clovis S. Palmer; Riya Palchaudhuri; Hassan Albargy; Mohamed Abdel-Mohsen; Suzanne M. Crowe

    2018-01-01

    An emerging paradigm in immunology suggests that metabolic reprogramming and immune cell activation and functions are intricately linked. Viral infections, such as HIV infection, as well as cancer force immune cells to undergo major metabolic challenges. Cells must divert energy resources in order to mount an effective immune response. However, the fact that immune cells adopt specific metabolic programs to provide host defense against intracellular pathogens and how this metabolic shift impa...

  4. Thyroid function and metabolic syndrome in the population-based LifeLines cohort study

    NARCIS (Netherlands)

    Wolffenbuttel, Bruce H R; Wouters, Hanneke J C M; Slagter, Sandra N; van Waateringe, Robert P; Muller Kobold, Anneke C; van Vliet-Ostaptchouk, Jana V; Links, Thera P; van der Klauw, Melanie M

    2017-01-01

    Background: The metabolic syndrome (MetS) is a combination of unfavourable health factors which includes abdominal obesity, dyslipidaemia, elevated blood pressure and impaired fasting glucose. Earlier studies have reported a relationship between thyroid function and some MetS components or suggested

  5. Functional and metabolic adaptation of the heart to prolonged thyroid hormone treatment.

    NARCIS (Netherlands)

    Degens, H.; Gilde, A.J.; Lindhout, M.; Willemsen, P.H.; Vusse, G.J. van der; Bilsen, M. van

    2003-01-01

    In heart failure, thyroid hormone (TH) treatment improves cardiac performance. The long-term effects of TH on cardiac function and metabolism, however, are incompletely known. To investigate the effects of up to 28 days of TH treatment, male Wistar rats received 3,3',5-triiodo-l-thyronine (200

  6. Genetic variation in folate metabolism is not associated with cognitive functioning or mood in healthy adults.

    NARCIS (Netherlands)

    Schiepers, O. J.; van Boxtel, M. P. J.; de Groot, R. H. M.; Jolles, J.; Bekers, O.; Kok, F. J.; Verhoef, P.; Durga, J.

    2011-01-01

    The present study examined the associations between genetic variation in folate metabolism on the one hand and cognitive functioning and mood on the other in healthy individuals. Two independent population-based samples were used, including 777 participants, aged 24-82. years, from the Maastricht

  7. Genetic variation in folate metabolism is not associated with cognitive functioning or mood in healthy adults

    NARCIS (Netherlands)

    Schiepers, O.J.G.; Boxtel, van M.P.J.; Groot, R.H.M.; Jolles, J.; Bekers, O.; Kok, F.J.; Verhoef, P.; Durga, J.

    2011-01-01

    The present study examined the associations between genetic variation in folate metabolism on the one hand and cognitive functioning and mood on the other in healthy individuals. Two independent population-based samples were used, including 777 participants, aged 24-82 years, from the Maastricht

  8. An expanded role for microbial physiology in metabolic engineering and functional genomics: moving towards systems biology

    DEFF Research Database (Denmark)

    Nielsen, Jens; Olsson, Lisbeth

    2002-01-01

    . With the progress in molecular biology it has become possible to optimize industrial fermentations through introduction of directed genetic modification - an approach referred to as metabolic engineering. Furthermore, as a consequence of large sequencing programs the complete genomic sequence has become available...... for an increasing number of microorganisms. This has resulted in substantial research efforts in assigning function to all identified open reading frames - referred to as functional genomics. In both metabolic engineering and functional genomics there is a trend towards application of a macroscopic view on cell......Microbial physiology has traditionally played a very important role in both fundamental research and in industrial applications of microorganisms. The classical approach in microbial physiology has been to analyze the role of individual components (genes or proteins) in the overall cell function...

  9. Proteomic analysis uncovers a metabolic phenotype in C. elegans after nhr-40 reduction of function

    International Nuclear Information System (INIS)

    Pohludka, Michal; Simeckova, Katerina; Vohanka, Jaroslav; Yilma, Petr; Novak, Petr; Krause, Michael W.; Kostrouchova, Marta; Kostrouch, Zdenek

    2008-01-01

    Caenorhabditis elegans has an unexpectedly large number (284) of genes encoding nuclear hormone receptors, most of which are nematode-specific and are of unknown function. We have exploited comparative two-dimensional chromatography of synchronized cultures of wild type C. elegans larvae and a mutant in nhr-40 to determine if proteomic approaches will provide additional insight into gene function. Chromatofocusing, followed by reversed-phase chromatography and mass spectrometry, identified altered chromatographic patterns for a set of proteins, many of which function in muscle and metabolism. Prompted by the proteomic analysis, we find that the penetrance of the developmental phenotypes in the mutant is enhanced at low temperatures and by food restriction. The combination of our phenotypic and proteomic analysis strongly suggests that NHR-40 provides a link between metabolism and muscle development. Our results highlight the utility of comparative two-dimensional chromatography to provide a relatively rapid method to gain insight into gene function

  10. Exploiting immune cell metabolic machinery for functional HIV cure and the prevention of inflammaging.

    Science.gov (United States)

    Palmer, Clovis S; Palchaudhuri, Riya; Albargy, Hassan; Abdel-Mohsen, Mohamed; Crowe, Suzanne M

    2018-01-01

    An emerging paradigm in immunology suggests that metabolic reprogramming and immune cell activation and functions are intricately linked. Viral infections, such as HIV infection, as well as cancer force immune cells to undergo major metabolic challenges. Cells must divert energy resources in order to mount an effective immune response. However, the fact that immune cells adopt specific metabolic programs to provide host defense against intracellular pathogens and how this metabolic shift impacts immune cell functions and the natural course of diseases have only recently been appreciated. A clearer insight into how these processes are inter-related will affect our understanding of several fundamental aspects of HIV persistence. Even in patients with long-term use of anti-retroviral therapies, HIV infection persists and continues to cause chronic immune activation and inflammation, ongoing and cumulative damage to multiple organs systems, and a reduction in life expectancy. HIV-associated fundamental changes to the metabolic machinery of the immune system can promote a state of "inflammaging", a chronic, low-grade inflammation with specific immune changes that characterize aging, and can also contribute to the persistence of HIV in its reservoirs. In this commentary, we will bring into focus evolving concepts on how HIV modulates the metabolic machinery of immune cells in order to persist in reservoirs and how metabolic reprogramming facilitates a chronic state of inflammation that underlies the development of age-related comorbidities. We will discuss how immunometabolism is facilitating the changing paradigms in HIV cure research and outline the novel therapeutic opportunities for preventing inflammaging and premature development of age-related conditions in HIV + individuals.

  11. Metabolic mapping of functional activity in human subjects with the [18F]fluorodeoxyglucose technique

    International Nuclear Information System (INIS)

    Greenberg, J.H.; Reivich, M.; Alavi, A.

    1981-01-01

    The 2-[ 18 F]fluoro-2-deoxy-D-glucose technique was used to measure regional cerebral glucose utilization by human subjects during functional activation. Normal male volunteers subjected to one or more sensory stimuli exhibited focal increases in glucose metabolism in response to the stimulus. These results demonstrate that the technique is capable of providing functional maps in vivo related to both body region and submodality of sensory information in the human brain

  12. Collagen/heparin sulfate scaffolds fabricated by a 3D bioprinter improved mechanical properties and neurological function after spinal cord injury in rats.

    Science.gov (United States)

    Chen, Chong; Zhao, Ming-Liang; Zhang, Ren-Kun; Lu, Gang; Zhao, Chang-Yu; Fu, Feng; Sun, Hong-Tao; Zhang, Sai; Tu, Yue; Li, Xiao-Hong

    2017-05-01

    mechanical properties of collagen and provide continuous guidance channels for axons, which would improve the neurological function after SCI. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1324-1332, 2017. © 2017 Wiley Periodicals, Inc.

  13. The Neurologic Manifestations of Mitochondrial Disease

    Science.gov (United States)

    Parikh, Sumit

    2010-01-01

    The nervous system contains some of the body's most metabolically demanding cells that are highly dependent on ATP produced via mitochondrial oxidative phosphorylation. Thus, the neurological system is consistently involved in patients with mitochondrial disease. Symptoms differ depending on the part of the nervous system affected. Although almost…

  14. The Changes of Energy Interactions between Nucleus Function and Mitochondria Functions Causing Transmutation of Chronic Inflammation into Cancer Metabolism.

    Science.gov (United States)

    Ponizovskiy, Michail R

    2016-01-01

    Interactions between nucleus and mitochondria functions induce the mechanism of maintenance stability of cellular internal energy according to the first law of thermodynamics in able-bodied cells and changes the mechanisms of maintenance stability of cellular internal energy creating a transition stationary state of ablebodied cells into quasi-stationary pathologic states of acute inflammation transiting then into chronic inflammation and then transmuting into cancer metabolism. The mechanisms' influences of intruding etiologic pathologic agents (microbe, virus, etc.) lead to these changes of energy interactions between nucleus and mitochondria functions causing general acute inflammation, then passing into local chronic inflammation, and reversing into cancer metabolism transmutation. Interactions between biochemical processes and biophysical processes of cellular capacitors' operations create a supplementary mechanism of maintenance stability of cellular internal energy in the norm and in pathology. Discussion of some scientific works eliminates doubts of the authors of these works.

  15. Determinants of DHA status and functional effects on metabolic markers and immune modulation in early life

    DEFF Research Database (Denmark)

    Harsløf, Laurine Bente Schram

    LCPUFA on metabolic markers such as glucose homeostasis, lipid profile and blood pressure in young children is limited. No studies have explored whether polymorphisms of genes encoding proteins involved in the mechanisms behind the effect (such as PPARG2 and COX2) can support the findings of diet studies...... by identifying the involved pathways and genes. The second part of the PhD thesis explores whether functional effects of n-3 LCPUFA on metabolic markers and immune maturation in young children can be supported by polymorphisms in genes involved in the mechanisms (PPARG2, COX2 and NFKB1). Results can be found...

  16. Features of Mineral Metabolism and Parathyroid Glands Functioning in Chronic Renal Disease

    Directory of Open Access Journals (Sweden)

    L.P. Martynyuk

    2012-04-01

    Full Text Available The calcium phosphoric metabolism was analyzed depending on the severity of renal functioning disorders. Chronic renal disease is known to be associated with impaired mineral metabolism in terms of hypocalcaemia, hyperphosphatemia and enhanced level of Ca × P product that aggravates in chronic renal failure progression. The majority of patients with nephropathy have parathyroid hormone concentration to be different from target one recommended by NKF-K/DOQI (2003, at that secondary hyperparathyroidism prevails on pre-dialysis stage of chronic renal disease, the relative hypoparathyroidism is common among the patients received dialysis.

  17. Metatranscriptomic analysis of diverse microbial communities reveals core metabolic pathways and microbiome-specific functionality.

    Science.gov (United States)

    Jiang, Yue; Xiong, Xuejian; Danska, Jayne; Parkinson, John

    2016-01-12

    Metatranscriptomics is emerging as a powerful technology for the functional characterization of complex microbial communities (microbiomes). Use of unbiased RNA-sequencing can reveal both the taxonomic composition and active biochemical functions of a complex microbial community. However, the lack of established reference genomes, computational tools and pipelines make analysis and interpretation of these datasets challenging. Systematic studies that compare data across microbiomes are needed to demonstrate the ability of such pipelines to deliver biologically meaningful insights on microbiome function. Here, we apply a standardized analytical pipeline to perform a comparative analysis of metatranscriptomic data from diverse microbial communities derived from mouse large intestine, cow rumen, kimchi culture, deep-sea thermal vent and permafrost. Sequence similarity searches allowed annotation of 19 to 76% of putative messenger RNA (mRNA) reads, with the highest frequency in the kimchi dataset due to its relatively low complexity and availability of closely related reference genomes. Metatranscriptomic datasets exhibited distinct taxonomic and functional signatures. From a metabolic perspective, we identified a common core of enzymes involved in amino acid, energy and nucleotide metabolism and also identified microbiome-specific pathways such as phosphonate metabolism (deep sea) and glycan degradation pathways (cow rumen). Integrating taxonomic and functional annotations within a novel visualization framework revealed the contribution of different taxa to metabolic pathways, allowing the identification of taxa that contribute unique functions. The application of a single, standard pipeline confirms that the rich taxonomic and functional diversity observed across microbiomes is not simply an artefact of different analysis pipelines but instead reflects distinct environmental influences. At the same time, our findings show how microbiome complexity and availability of

  18. Neurology at the bedside

    DEFF Research Database (Denmark)

    Kondziella, Daniel; Waldemar, Gunhild

    , as have new chapters including neurogenetics, neurorehabilitation, neurocritical care and heuristic neurological reasoning. In addition, this second edition now includes more than 100 unique case histories. Neurology at the Bedside, Second Edition is written for neurologists in all stages of training...

  19. Metabolomics analysis reveals the metabolic and functional roles of flavonoids in light-sensitive tea leaves.

    Science.gov (United States)

    Zhang, Qunfeng; Liu, Meiya; Ruan, Jianyun

    2017-03-20

    As the predominant secondary metabolic pathway in tea plants, flavonoid biosynthesis increases with increasing temperature and illumination. However, the concentration of most flavonoids decreases greatly in light-sensitive tea leaves when they are exposed to light, which further improves tea quality. To reveal the metabolism and potential functions of flavonoids in tea leaves, a natural light-sensitive tea mutant (Huangjinya) cultivated under different light conditions was subjected to metabolomics analysis. The results showed that chlorotic tea leaves accumulated large amounts of flavonoids with ortho-dihydroxylated B-rings (e.g., catechin gallate, quercetin and its glycosides etc.), whereas total flavonoids (e.g., myricetrin glycoside, epigallocatechin gallate etc.) were considerably reduced, suggesting that the flavonoid components generated from different metabolic branches played different roles in tea leaves. Furthermore, the intracellular localization of flavonoids and the expression pattern of genes involved in secondary metabolic pathways indicate a potential photoprotective function of dihydroxylated flavonoids in light-sensitive tea leaves. Our results suggest that reactive oxygen species (ROS) scavenging and the antioxidation effects of flavonoids help chlorotic tea plants survive under high light stress, providing new evidence to clarify the functional roles of flavonoids, which accumulate to high levels in tea plants. Moreover, flavonoids with ortho-dihydroxylated B-rings played a greater role in photo-protection to improve the acclimatization of tea plants.

  20. Mitochondrial function and autophagy: integrating proteotoxic, redox, and metabolic stress in Parkinson's disease.

    Science.gov (United States)

    Zhang, Jianhua; Culp, Matilda Lillian; Craver, Jason G; Darley-Usmar, Victor

    2018-01-17

    Parkinson's disease (PD) is a movement disorder with widespread neurodegeneration in the brain. Significant oxidative, reductive, metabolic, and proteotoxic alterations have been observed in PD postmortem brains. The alterations of mitochondrial function resulting in decreased bioenergetic health is important and needs to be further examined to help develop biomarkers for PD severity and prognosis. It is now becoming clear that multiple hits on metabolic and signaling pathways are likely to exacerbate PD pathogenesis. Indeed, data obtained from genetic and genome association studies have implicated interactive contributions of genes controlling protein quality control and metabolism. For example, loss of key proteins that are responsible for clearance of dysfunctional mitochondria through a process called mitophagy has been found to cause PD, and a significant proportion of genes associated with PD encode proteins involved in the autophagy-lysosomal pathway. In this review, we highlight the evidence for the targeting of mitochondria by proteotoxic, redox and metabolic stress, and the role autophagic surveillance in maintenance of mitochondrial quality. Furthermore, we summarize the role of α-synuclein, leucine-rich repeat kinase 2, and tau in modulating mitochondrial function and autophagy. Among the stressors that can overwhelm the mitochondrial quality control mechanisms, we will discuss 4-hydroxynonenal and nitric oxide. The impact of autophagy is context depend and as such can have both beneficial and detrimental effects. Furthermore, we highlight the potential of targeting mitochondria and autophagic function as an integrated therapeutic strategy and the emerging contribution of the microbiome to PD susceptibility. © 2018 International Society for Neurochemistry.

  1. 2009 Plant Lipids: Structure, Metabolism & Function Gordon Research Conference - February 1- 6 ,2009

    Energy Technology Data Exchange (ETDEWEB)

    Kent D. Chapman

    2009-02-06

    The Gordon Research Conference on 'Plant Lipids: Structure, Metabolism and Function' has been instituted to accelerate research productivity in the field of plant lipids. This conference will facilitate wide dissemination of research breakthroughs, support recruitment of young scientists to the field of plant lipid metabolism and encourage broad participation of the plant lipid community in guiding future directions for research in plant lipids. This conference will build upon the strengths of the successful, previous biannual meetings of the National Plant Lipid Cooperative (www.plantlipids.org) that began in 1993, but will reflect a broader scope of topics to include the biochemistry, cell biology, metabolic regulation, and signaling functions of plant acyl lipids. Most importantly, this conference also will serve as a physical focal point for the interaction of the plant lipid research community. Applications to attend this conference will be open to all researchers interested in plant lipids and will provide a venue for the presentation of the latest research results, networking opportunities for young scientists, and a forum for the development and exchange of useful lipid resources and new ideas. By bringing together senior- and junior-level scientists involved in plant lipid metabolism, a broad range of insights will be shared and the community of plant lipid researchers will function more as a network of vested partners. This is important for the vitality of the research community and for the perceived value that will encourage conference attendance into the future.

  2. Tryptophan metabolism, its relation to inflammation and stress markers and association with psychological and cognitive functioning: Tasmanian Chronic Kidney Disease pilot study.

    Science.gov (United States)

    Karu, Naama; McKercher, Charlotte; Nichols, David S; Davies, Noel; Shellie, Robert A; Hilder, Emily F; Jose, Matthew D

    2016-11-10

    Adults with chronic kidney disease (CKD) exhibit alterations in tryptophan metabolism, mainly via the kynurenine pathway, due to higher enzymatic activity induced mainly by inflammation. Indoles produced by gut-microflora are another group of tryptophan metabolites related to inflammation and conditions accompanying CKD. Disruptions in tryptophan metabolism have been associated with various neurological and psychological disorders. A high proportion of CKD patients self-report symptoms of depression and/or anxiety and decline in cognitive functioning. This pilot study examines tryptophan metabolism in CKD and explores associations with psychological and cognitive functioning. Twenty-seven adults with CKD were part of 49 patients recruited to participate in a prospective pilot study, initially with an eGFR of 15-29 mL/min/1.73 m 2 . Only participants with viable blood samples and complete psychological/cognitive data at a 2-year follow-up were included in the reported cross-sectional study. Serum samples were analysed by Liquid Chromatography coupled to Mass Spectrometry, for tryptophan, ten of its metabolites, the inflammation marker neopterin and the hypothalamic-pituitary-adrenal (HPA) axis marker cortisol. The tryptophan breakdown index (kynurenine / tryptophan) correlated with neopterin (Pearson R = 0.51 P = 0.006) but not with cortisol. Neopterin levels also correlated with indoxyl sulfate (R = 0.68, P tryptophan (R range 0.5-0.7, all P ≤ 0.01), which were all negatively related to eGFR (P tryptophan breakdown via the kynurenine pathway, yet without sparing tryptophan metabolism through the 5-HT (serotonin) pathway in CKD patients. The multiple moderate associations between indole-3 acetic acid and psychological measures were a novel finding. The presented pilot data necessitate further exploration of these associations within a large prospective cohort to assess the broader significance of these findings.

  3. [Music and neurology].

    Science.gov (United States)

    Arias Gómez, M

    2007-01-01

    Music perception and output are special functions of the human brain. Investigation in this field is growing with the support of modern neuroimaging techniques (functional magnetic resonance imaging, positron emission tomography). Interest in the music phenomenon and the disorders regarding its processing has been limited. Music is not just an artistic activity but a language to communicate, evoke and reinforce several emotions. Although the subject is still under debate, processing of music is independent of common language and each one uses independent circuits. One may be seriously affected and the other practically unharmed. On the other hand, there may be separate channels within the processing of music for the temporary elements (rhythm), melodic elements (pitch, timbre, and melody), memory and emotional response. The study of subjects with absolute pitch, congenital and acquired amusias, musicogenic epilepsy and musical hallucinations has greatly contributed to the knowledge of how the brain processes music. Music training involves some changes in morphology and physiology of professional musicians' brains. Stress, chronic pain and professional dystonias constitute a special field of musicians' disturbances that concerns neurological practice. Listening to and playing music may have some educational and therapeutic benefits.

  4. [Neurological interpretation of dreams] .

    Science.gov (United States)

    Pareja, J A; Gil-Nagel, A

    2000-10-01

    Cerebral cortical activity is constant throughout the entire human life, but substantially changes during the different phases of the sleep-wake cycle (wakefulness, non-REM sleep and REM sleep), as well as in relation to available information. In particular, perception of the environment is closely linked to the wake-state, while during sleep perception turns to the internal domain or endogenous cerebral activity. External and internal information are mutually exclusive. During wakefulness a neuronal mechanism allows attention to focus on the environment whereas endogenous cortical activity is ignored. The opposite process is provided during sleep. The function external attention-internal attention is coupled with the two modes of brain function during wakefulness and during sleep, providing two possible cortical status: thinking and dreaming. Several neurological processes may influence the declaration of the three states of being or may modify their orderly oscillation through the sleep-wake cycle. In addition, endogenous information and its perception (dreams) may be modified. Disturbances of dreaming may configurate in different general clinical scenarios: lack of dreaming, excess of dreaming (epic dreaming), paroxysmal dreaming (epileptic), nightmares, violent dreaming, daytime-dreaming (hallucinations), and lucid dreaming. Sensorial deprivation, as well as the emergence of internal perception may be the underlying mechanism of hallucinations. The probable isomorphism between hallucinations and dreaming is postulated, analyzed and discussed.

  5. Association of plasma osteoprotegerin and adiponectin with arterial function, cardiac function and metabolism in asymptomatic type 2 diabetic men

    Directory of Open Access Journals (Sweden)

    Bjerre Mette

    2011-07-01

    Full Text Available Abstract Background Osteoprotegerin (OPG, a soluble member of the tumor necrosis factor receptor superfamily, is linked to cardiovascular disease. Negative associations exist between circulating OPG and cardiac function. The adipocytokine adiponectin (ADPN is downregulated in type 2 diabetes mellitus (T2DM and coronary artery disease and shows an inverse correlation with insulin sensitivity and cardiovascular disease risk. We assessed the relationship of plasma OPG and ADPN and arterial function, cardiac function and myocardial glucose metabolism in T2DM. Methods We included 78 asymptomatic men with uncomplicated, well-controlled T2DM, without inducible ischemia, assessed by dobutamine-stress echocardiography, and 14 age-matched controls. Cardiac function was measured by magnetic resonance imaging, myocardial glucose metabolism (MMRglu by 18F-2-fluoro-2-deoxy-D-glucose positron emission tomography. OPG and ADPN levels were measured in plasma. Results T2DM patients vs. controls showed lower aortic distensibility, left ventricular (LV volumes, impaired LV diastolic function and MMRglu (all P P Conclusions OPG was inversely associated with aortic distensibility, LV volumes and LV diastolic function, while ADPN was positively associated with MMRglu. These findings indicate that in asymptomatic men with uncomplicated T2DM, OPG and ADPN may be markers of underlying mechanisms linking the diabetic state to cardiac abnormalities. Trial registration Current Controlled Trials ISRCTN53177482

  6. Regulatory and Functional Aspects of Indolic Metabolism in Plant Systemic Acquired Resistance.

    Science.gov (United States)

    Stahl, Elia; Bellwon, Patricia; Huber, Stefan; Schlaeppi, Klaus; Bernsdorff, Friederike; Vallat-Michel, Armelle; Mauch, Felix; Zeier, Jürgen

    2016-05-02

    Tryptophan-derived, indolic metabolites possess diverse functions in Arabidopsis innate immunity to microbial pathogen infection. Here, we investigate the functional role and regulatory characteristics of indolic metabolism in Arabidopsis systemic acquired resistance (SAR) triggered by the bacterial pathogen Pseudomonas syringae. Indolic metabolism is broadly activated in both P. syringae-inoculated and distant, non-inoculated leaves. At inoculation sites, camalexin, indol-3-ylmethylamine (I3A), and indole-3-carboxylic acid (ICA) are the major accumulating compounds. Camalexin accumulation is positively affected by MYB122, and the cytochrome P450 genes CYP81F1 and CYP81F2. Local I3A production, by contrast, occurs via indole glucosinolate breakdown by PEN2- dependent and independent pathways. Moreover, exogenous application of the defense hormone salicylic acid stimulates I3A generation at the expense of its precursor indol-3-ylmethylglucosinolate (I3M), and the SAR regulator pipecolic acid primes plants for enhanced P. syringae-induced activation of distinct branches of indolic metabolism. In uninfected systemic tissue, the metabolic response is more specific and associated with enhanced levels of the indolics I3A, ICA, and indole-3-carbaldehyde (ICC). Systemic indole accumulation fully depends on functional CYP79B2/3, PEN2, and MYB34/51/122, and requires functional SAR signaling. Genetic analyses suggest that systemically elevated indoles are dispensable for SAR and associated systemic increases of salicylic acid. However, soil-grown but not hydroponically -cultivated cyp79b2/3 and pen2 plants, both defective in indolic secondary metabolism, exhibit pre-induced immunity, which abrogates their intrinsic ability to induce SAR. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  7. Functional Gene Diversity and Metabolic Potential of the Microbial Community in an Estuary-Shelf Environment

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2017-06-01

    Full Text Available Microbes play crucial roles in various biogeochemical processes in the ocean, including carbon (C, nitrogen (N, and phosphorus (P cycling. Functional gene diversity and the structure of the microbial community determines its metabolic potential and therefore its ecological function in the marine ecosystem. However, little is known about the functional gene composition and metabolic potential of bacterioplankton in estuary areas. The East China Sea (ECS is a dynamic marginal ecosystem in the western Pacific Ocean that is mainly affected by input from the Changjiang River and the Kuroshio Current. Here, using a high-throughput functional gene microarray (GeoChip, we analyzed the functional gene diversity, composition, structure, and metabolic potential of microbial assemblages in different ECS water masses. Four water masses determined by temperature and salinity relationship showed different patterns of functional gene diversity and composition. Generally, functional gene diversity [Shannon–Weaner’s H and reciprocal of Simpson’s 1/(1-D] in the surface water masses was higher than that in the bottom water masses. The different presence and proportion of functional genes involved in C, N, and P cycling among the bacteria of the different water masses showed different metabolic preferences of the microbial populations in the ECS. Genes involved in starch metabolism (amyA and nplT showed higher proportion in microbial communities of the surface water masses than of the bottom water masses. In contrast, a higher proportion of genes involved in chitin degradation was observed in microorganisms of the bottom water masses. Moreover, we found a higher proportion of nitrogen fixation (nifH, transformation of hydroxylamine to nitrite (hao and ammonification (gdh genes in the microbial communities of the bottom water masses compared with those of the surface water masses. The spatial variation of microbial functional genes was significantly correlated

  8. Functional Gene Diversity and Metabolic Potential of the Microbial Community in an Estuary-Shelf Environment.

    Science.gov (United States)

    Wang, Yu; Zhang, Rui; He, Zhili; Van Nostrand, Joy D; Zheng, Qiang; Zhou, Jizhong; Jiao, Nianzhi

    2017-01-01

    Microbes play crucial roles in various biogeochemical processes in the ocean, including carbon (C), nitrogen (N), and phosphorus (P) cycling. Functional gene diversity and the structure of the microbial community determines its metabolic potential and therefore its ecological function in the marine ecosystem. However, little is known about the functional gene composition and metabolic potential of bacterioplankton in estuary areas. The East China Sea (ECS) is a dynamic marginal ecosystem in the western Pacific Ocean that is mainly affected by input from the Changjiang River and the Kuroshio Current. Here, using a high-throughput functional gene microarray (GeoChip), we analyzed the functional gene diversity, composition, structure, and metabolic potential of microbial assemblages in different ECS water masses. Four water masses determined by temperature and salinity relationship showed different patterns of functional gene diversity and composition. Generally, functional gene diversity [Shannon-Weaner's H and reciprocal of Simpson's 1/(1- D )] in the surface water masses was higher than that in the bottom water masses. The different presence and proportion of functional genes involved in C, N, and P cycling among the bacteria of the different water masses showed different metabolic preferences of the microbial populations in the ECS. Genes involved in starch metabolism ( amyA and nplT ) showed higher proportion in microbial communities of the surface water masses than of the bottom water masses. In contrast, a higher proportion of genes involved in chitin degradation was observed in microorganisms of the bottom water masses. Moreover, we found a higher proportion of nitrogen fixation ( nifH ), transformation of hydroxylamine to nitrite ( hao ) and ammonification ( gdh ) genes in the microbial communities of the bottom water masses compared with those of the surface water masses. The spatial variation of microbial functional genes was significantly correlated with

  9. Thyroid peroxidase antibodies in pregnant women with type 1 diabetes: impact on thyroid function, metabolic control and pregnancy outcome

    DEFF Research Database (Denmark)

    Vestgaard, Marianne; Nielsen, Lene Ringholm; Rasmussen, Åse Krogh

    2008-01-01

    In pregnant women with type 1 diabetes, we evaluated whether the presence of thyroid peroxidase autoantibodies (anti-TPO) was associated with changes in thyroid function, metabolic control and pregnancy outcome.......In pregnant women with type 1 diabetes, we evaluated whether the presence of thyroid peroxidase autoantibodies (anti-TPO) was associated with changes in thyroid function, metabolic control and pregnancy outcome....

  10. Regional myocardial blood flow, metabolism and function assessed noninvasively by positron emission tomography

    International Nuclear Information System (INIS)

    Schelbert, H.R.; Phelps, M.E.; Hoffman, E.; Huang, S.; Kuhl, D.E.

    1979-01-01

    Positron emission computed tomography is a new technique for the noninvasive measure of myocardial blood flow, mechanical function and, in particular, metabolism. The capability of this new study means is due to the technological innovations of the imaging device and the availability of radioactive tracers that are specific for blood flow and metabolism. The device permits recording of cross-sectional images of the left ventricular myocardium that reflect quantitatively regional tracer tissue concentrations. By employing tracer kinetic models this new technique permits the measurement of regional glucose and fatty acid metabolism of the heart. While already an important new tool for investigative studies into cardiac physiology and pathophysiology, the clinical utility of positron emission tomography remains to be defined

  11. Regional myocardial blood flow, metabolism and function assessed noninvasively by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Schelbert, H.R.; Phelps, M.E.; Hoffman, E.; Huang, S.; Kuhl, D.E.

    1979-01-01

    Positron emission computed tomography is a new technique for the noninvasive measure of myocardial blood flow, mechanical function and, in particular, metabolism. The capability of this new study means is due to the technological innovations of the imaging device and the availability of radioactive tracers that are specific for blood flow and metabolism. The device permits recording of cross-sectional images of the left ventricular myocardium that reflect quantitatively regional tracer tissue concentrations. By employing tracer kinetic models this new technique permits the measurement of regional glucose and fatty acid metabolism of the heart. While already an important new tool for investigative studies into cardiac physiology and pathophysiology, the clinical utility of positron emission tomography remains to be defined.

  12. Comparative functional genomic analysis of two Vibrio phages reveals complex metabolic interactions with the host cell

    Directory of Open Access Journals (Sweden)

    Dimitrios Skliros

    2016-11-01

    Full Text Available Sequencing and annotation was performed for two giant double stranded DNA bacteriophages, φGrn1 and φSt2 of the Myoviridae family, considered to be of great interest for phage therapy against Vibrios in aquaculture live feeds. In addition, phage-host metabolic interactions and exploitation was studied by transcript profiling of selected viral and host genes. Comparative genomic analysis with other giant Vibrio phages was also performed to establish the presence and location of homing endonucleases highlighting distinct features for both phages. Phylogenetic analysis revealed that they belong to the schizoT4like clade. Although many reports of newly sequenced viruses have provided a large set of information, basic research related to the shift of the bacterial metabolism during infection remains stagnant. The function of many viral protein products in the process of infection is still unknown. Genome annotation identified the presence of several viral ORFs participating in metabolism, including a Sir2/cobB (sirtuin protein and a number of genes involved in auxiliary NAD+ and nucleotide biosynthesis, necessary for phage DNA replication. Key genes were subsequently selected for detail study of their expression levels during infection. This work suggests a complex metabolic interaction and exploitation of the host metabolic pathways and biochemical processes, including a possible post-translational protein modification, by the virus during infection.

  13. Neurology in Asia.

    Science.gov (United States)

    Tan, Chong-Tin

    2015-02-10

    Asia is important as it accounts for more than half of the world population. The majority of Asian countries fall into the middle income category. As for cultural traditions, Asia is highly varied, with many languages spoken. The pattern of neurologic diseases in Asia is largely similar to the West, with some disease features being specific to Asia. Whereas Asia constitutes 60% of the world's population, it contains only 20% of the world's neurologists. This disparity is particularly evident in South and South East Asia. As for neurologic care, it is highly variable depending on whether it is an urban or rural setting, the level of economic development, and the system of health care financing. To help remedy the shortage of neurologists, most counties with larger populations have established training programs in neurology. These programs are diverse, with many areas of concern. There are regional organizations serving as a vehicle for networking in neurology and various subspecialties, as well as an official journal (Neurology Asia). The Asian Epilepsy Academy, with its emphasis on workshops in various locations, EEG certification examination, and fellowships, may provide a template of effective regional networking for improving neurology care in the region. © 2015 American Academy of Neurology.

  14. The future of neurology.

    Science.gov (United States)

    Freeman, W David; Vatz, Kenneth A

    2010-05-01

    For the past 200 years, neurology has been deeply rooted in the history and neurologic examination, but 21st century advances in neurosurgery, endovascular techniques, and neuropathology, and an explosion in basic neuroscience research and neuroimaging have added exciting new dimensions to the field. Neurology residency training programs face intense governmental regulatory changes and economic pressures, making it difficult to predict the number of neurology residents being trained for the future. The future job outlook for neurologists in the United States, based on recent survey and trends, suggests an increased demand because of the prevalence of neurologic diseases within the aging population, particularly in underserved urban and rural areas. Telemedicine and "teleconsultation" offer a potential solution to bringing virtual subspecialists to underserved areas. The future for neurology and neuroscience research in the United States remains a high priority according to the National Institute of Neurologic Diseases and Stroke, but this may be affected in the long run by budgetary constraints and a growing deficit. Copyright 2010 Elsevier Inc. All rights reserved.

  15. Macrophages and Mitochondria: A Critical Interplay Between Metabolism, Signaling, and the Functional Activity.

    Science.gov (United States)

    Tur, J; Vico, T; Lloberas, J; Zorzano, A; Celada, A

    2017-01-01

    Macrophages are phagocytic cells that participate in a broad range of cellular functions and they are key regulators of innate immune responses and inflammation. Mitochondria are highly dynamic endosymbiotic organelles that play key roles in cellular metabolism and apoptosis. Mounting evidence suggests that mitochondria are involved in the interplay between metabolism and innate immune responses. The ability of these organelles to alter the metabolic profile of a cell, thereby allowing an appropriate response to each situation, is crucial for the correct establishment of immune responses. Furthermore, mitochondria act as scaffolds for many proteins involved in immune signaling pathways and as such they are able to modulate the function of these proteins. Finally, mitochondria release molecules, such as reactive oxygen species, which directly regulate the immune response. In summary, mitochondria can be considered as core components in the regulation of innate immune signaling. Here we discuss the intricate relationship between mitochondria, metabolism, intracellular signaling, and innate immune responses in macrophages. © 2017 Elsevier Inc. All rights reserved.

  16. Contribution of positron emission tomography in neurology

    International Nuclear Information System (INIS)

    Salmon, E.; Franck, G.

    1992-01-01

    Positron Emission Tomography (PET) is a scanner technique using tracers labelled with shortlived radioisotopes which allows to study and quantify human metabolic processes or drug pharmacology in vivo. The technique is first applied in physiological studies. Sleep, normal brain metabolism or cerebral activations have been studied. The pharmacological approach concerns both drug distribution in the human brain and blood flow or metabolic variations under treatment. Main neurological applications in pathology are cerebrovascular disorders, diseases leading to dementia, epilepsy, movement disorders, and brain tumors. In each field of application, PET gives unique and frequently early informations. It nicely combines both dynamic informations and measurement precision. (author)

  17. Establishing the NeuroRecovery Network Community Fitness and Wellness facilities: multi-site fitness facilities provide activity-based interventions and assessments for evidence-based functional gains in neurologic disorders.

    Science.gov (United States)

    Tolle, Heather; Rapacz, Andrew; Weintraub, Barry; Shogren, Carrie; Harkema, Susan J; Gibson, Jeremy L

    2017-08-17

    Physical fitness is a necessity for those living with a spinal cord injury, yet access to fitness facilities, equipment, and specially trained fitness experts are limited. This article introduces the concept of a network of fitness facilities specially geared towards individuals with spinal cord injury and other neurological disorders. The Community Fitness and Wellness branch of the NeuroRecovery Network was created to provide a continuum of care after traditional rehabilitation for individuals living with a spinal cord injury and other neurological disorders. Community Fitness and Wellness facilities translate activity-based interventions performed during rehabilitation into a community setting as well as provide other fitness and wellness opportunities. Community Fitness and Wellness facilities are staffed by professionals with training on the specialized needs of individuals living with spinal cord injury or other neurological disorders. Standardized assessments evaluate functional, health, and quality of life gains at regular intervals. A national database gathers information on standardized interventions and assessment outcomes providing a mechanism for evaluation of interventions performed in the community setting. The establishment of Community Fitness and Wellness facilities allows for the quick translation and evaluation of novel, effective approaches from research to individuals in the community. Implications for Rehabilitation Fitness needs of individuals with spinal cord injury living in the community necessitate the use of special equipment and trained staff. Community Fitness and Wellness Programs offer specially trained staff and adaptive equipment providing a continuity of care for those with spinal cord injuries and other neurological disorders.

  18. Rett syndrome: Neurologic and metabolic aspects

    NARCIS (Netherlands)

    Hagebeuk, E.E.O.

    2013-01-01

    Rett syndrome (RTT) is a neurodevelopmental disorder that occurs almost exclusively in females. It was described in 1954 by Andreas Rett, an Australian neuropediatrician. After a period of apparently normal development, affected patients experience loss of speech and purposeful handuse, stereotypic

  19. Intranasal administration of insulin to the brain impacts cognitive function and peripheral metabolism.

    Science.gov (United States)

    Ott, V; Benedict, C; Schultes, B; Born, J; Hallschmid, M

    2012-03-01

    In recent years, the central nervous system (CNS) has emerged as a principal site of insulin action. This notion is supported by studies in animals relying on intracerebroventricular insulin infusion and by experiments in humans that make use of the intranasal pathway of insulin administration to the brain. Employing neurobehavioural and metabolic measurements as well as functional imaging techniques, these studies have provided insight into a broad range of central and peripheral effects of brain insulin. The present review focuses on CNS effects of insulin administered via the intranasal route on cognition, in particular memory function, and whole-body energy homeostasis including glucose metabolism. Furthermore, evidence is reviewed that suggests a pathophysiological role of impaired brain insulin signaling in obesity and type 2 diabetes, which are hallmarked by peripheral and possibly central nervous insulin resistance, as well as in conditions such as Alzheimer's disease where CNS insulin resistance might contribute to cognitive dysfunction. © 2011 Blackwell Publishing Ltd.

  20. Maintained exercise-enhanced brain executive function related to cerebral lactate metabolism in men

    DEFF Research Database (Denmark)

    Hashimoto, Takeshi; Tsukamoto, Hayato; Takenaka, Saki

    2018-01-01

    High-intensity interval exercise (HIIE) improves cerebral executive function (EF), but the improvement in EF is attenuated after repeated HIIE, perhaps because of lower lactate availability for the brain. This investigation examined whether improved EF after exercise relates to brain lactate uptake......), and brain-derived neurotrophic factor (BDNF; diffBDNF). EF was evaluated by the color-word Stroop task. The first HIIE improved EF for 40 min, whereas the second HIIE improved EF only immediately after exercise. The a-v diffglucose was unchanged, whereas the a-v diffBDNF increased similarly after both HIIEs...... metabolism and is, thereby, linked to systemic metabolism as an example of the lactate shuttle mechanism.-Hashimoto, T., Tsukamoto, H., Takenaka, S., Olesen, N. D., Petersen, L. G., Sørensen, H., Nielsen, H. B., Secher, N. H., Ogoh, S. Maintained exercise-enhanced brain executive function related to cerebral...

  1. Dynamics of Panax ginseng Rhizospheric Soil Microbial Community and Their Metabolic Function

    Directory of Open Access Journals (Sweden)

    Yong Li

    2014-01-01

    Full Text Available The bacterial communities of 1- to 6-year ginseng rhizosphere soils were characterized by culture-independent approaches, random amplified polymorphic DNA (RAPD, and amplified ribosomal DNA restriction analysis (ARDRA. Culture-dependent method (Biolog was used to investigate the metabolic function variance of microbe living in rhizosphere soil. Results showed that significant genetic and metabolic function variance were detected among soils, and, with the increasing of cultivating years, genetic diversity of bacterial communities in ginseng rhizosphere soil tended to be decreased. Also we found that Verrucomicrobia, Acidobacteria, and Proteobacteria were the dominants in rhizosphere soils, but, with the increasing of cultivating years, plant disease prevention or plant growth promoting bacteria, such as Pseudomonas, Burkholderia, and Bacillus, tended to be rare.

  2. Cerebral energy metabolism and the brain's functional network architecture: an integrative review

    Science.gov (United States)

    Lord, Louis-David; Expert, Paul; Huckins, Jeremy F; Turkheimer, Federico E

    2013-01-01

    Recent functional magnetic resonance imaging (fMRI) studies have emphasized the contributions of synchronized activity in distributed brain networks to cognitive processes in both health and disease. The brain's ‘functional connectivity' is typically estimated from correlations in the activity time series of anatomically remote areas, and postulated to reflect information flow between neuronal populations. Although the topological properties of functional brain networks have been studied extensively, considerably less is known regarding the neurophysiological and biochemical factors underlying the temporal coordination of large neuronal ensembles. In this review, we highlight the critical contributions of high-frequency electrical oscillations in the γ-band (30 to 100 Hz) to the emergence of functional brain networks. After describing the neurobiological substrates of γ-band dynamics, we specifically discuss the elevated energy requirements of high-frequency neural oscillations, which represent a mechanistic link between the functional connectivity of brain regions and their respective metabolic demands. Experimental evidence is presented for the high oxygen and glucose consumption, and strong mitochondrial performance required to support rhythmic cortical activity in the γ-band. Finally, the implications of mitochondrial impairments and deficits in glucose metabolism for cognition and behavior are discussed in the context of neuropsychiatric and neurodegenerative syndromes characterized by large-scale changes in the organization of functional brain networks. PMID:23756687

  3. Altered metabolism and persistent starvation behaviors caused by reduced AMPK function in Drosophila.

    Directory of Open Access Journals (Sweden)

    Erik C Johnson

    2010-09-01

    Full Text Available Organisms must utilize multiple mechanisms to maintain energetic homeostasis in the face of limited nutrient availability. One mechanism involves activation of the heterotrimeric AMP-activated protein kinase (AMPK, a cell-autonomous sensor to energetic changes regulated by ATP to AMP ratios. We examined the phenotypic consequences of reduced AMPK function, both through RNAi knockdown of the gamma subunit (AMPKγ and through expression of a dominant negative alpha (AMPKα variant in Drosophila melanogaster. Reduced AMPK signaling leads to hypersensitivity to starvation conditions as measured by lifespan and locomotor activity. Locomotor levels in flies with reduced AMPK function were lower during unstressed conditions, but starvation-induced hyperactivity, an adaptive response to encourage foraging, was significantly higher than in wild type. Unexpectedly, total dietary intake was greater in animals with reduced AMPK function yet total triglyceride levels were lower. AMPK mutant animals displayed starvation-like lipid accumulation patterns in metabolically key liver-like cells, oenocytes, even under fed conditions, consistent with a persistent starved state. Measurements of O(2 consumption reveal that metabolic rates are greater in animals with reduced AMPK function. Lastly, rapamycin treatment tempers the starvation sensitivity and lethality associated with reduced AMPK function. Collectively, these results are consistent with models that AMPK shifts energy usage away from expenditures into a conservation mode during nutrient-limited conditions at a cellular level. The highly conserved AMPK subunits throughout the Metazoa, suggest such findings may provide significant insight for pharmaceutical strategies to manipulate AMPK function in humans.

  4. Brain imaging and brain function

    International Nuclear Information System (INIS)

    Sokoloff, L.

    1985-01-01

    This book is a survey of the applications of imaging studies of regional cerebral blood flow and metabolism to the investigation of neurological and psychiatric disorders. Contributors review imaging techniques and strategies for measuring regional cerebral blood flow and metabolism, for mapping functional neural systems, and for imaging normal brain functions. They then examine the applications of brain imaging techniques to the study of such neurological and psychiatric disorders as: cerebral ischemia; convulsive disorders; cerebral tumors; Huntington's disease; Alzheimer's disease; depression and other mood disorders. A state-of-the-art report on magnetic resonance imaging of the brain and central nervous system rounds out the book's coverage

  5. Metabolic activity and functional diversity changes in sediment prokaryotic communities organically enriched with mussel biodeposits.

    Directory of Open Access Journals (Sweden)

    Thomas Pollet

    Full Text Available This experimental microcosm study reports the influence of organic enrichments by mussel biodeposits on the metabolic activity and functional diversity of benthic prokaryotic communities. The different biodeposit enrichment regimes created, which mimicked the quantity of faeces and pseudo-faeces potentially deposited below mussel farms, show a clear stimulatory effect of this organic enrichment on prokaryotic metabolic activity. This effect was detected once a certain level of biodeposition was attained with a tipping point estimated between 3.25 and 10 g day-1 m-2. Prokaryotic communities recovered their initial metabolic activity by 11 days after the cessation of biodeposit additions. However, their functional diversity remained greater than prior to the disturbance suggesting that mussel biodeposit enrichment may disturb the functioning and perhaps the role of prokaryotic communities in benthic ecosystems. This manipulative approach provided new information on the influence of mussel biodeposition on benthic prokaryotic communities and dose-response relationships and may support the development of carrying capacity models for bivalve culture.

  6. Metabolic activity and functional diversity changes in sediment prokaryotic communities organically enriched with mussel biodeposits.

    Science.gov (United States)

    Pollet, Thomas; Cloutier, Olivier; Nozais, Christian; McKindsey, Christopher W; Archambault, Philippe

    2015-01-01

    This experimental microcosm study reports the influence of organic enrichments by mussel biodeposits on the metabolic activity and functional diversity of benthic prokaryotic communities. The different biodeposit enrichment regimes created, which mimicked the quantity of faeces and pseudo-faeces potentially deposited below mussel farms, show a clear stimulatory effect of this organic enrichment on prokaryotic metabolic activity. This effect was detected once a certain level of biodeposition was attained with a tipping point estimated between 3.25 and 10 g day-1 m-2. Prokaryotic communities recovered their initial metabolic activity by 11 days after the cessation of biodeposit additions. However, their functional diversity remained greater than prior to the disturbance suggesting that mussel biodeposit enrichment may disturb the functioning and perhaps the role of prokaryotic communities in benthic ecosystems. This manipulative approach provided new information on the influence of mussel biodeposition on benthic prokaryotic communities and dose-response relationships and may support the development of carrying capacity models for bivalve culture.

  7. Metabolism and Ovarian Function in PCOS Women: A Therapeutic Approach with Inositols

    Directory of Open Access Journals (Sweden)

    Antonio Simone Laganà

    2016-01-01

    Full Text Available Polycystic ovary syndrome (PCOS is characterized by chronical anovulation and hyperandrogenism which may be present in a different degree of severity. Insulin-resistance and hyperinsulinemia are the main physiopathological basis of this syndrome and the failure of inositol-mediated signaling may concur to them. Myo (MI and D-chiro-inositol (DCI, the most studied inositol isoforms, are classified as insulin sensitizers. In form of glycans, DCI-phosphoglycan and MI-phosphoglycan control key enzymes were involved in glucose and lipid metabolism. In form of phosphoinositides, they play an important role as second messengers in several cellular biological functions. Considering the key role played by insulin-resistance and androgen excess in PCOS patients, the insulin-sensitizing effects of both MI and DCI were tested in order to ameliorate symptoms and signs of this syndrome, including the possibility to restore patients’ fertility. Accumulating evidence suggests that both isoforms of inositol are effective in improving ovarian function and metabolism in patients with PCOS, although MI showed the most marked effect on the metabolic profile, whereas DCI reduced hyperandrogenism better. The purpose of this review is to provide an update on inositol signaling and correlate data on biological functions of these multifaceted molecules, in view of a rational use for the therapy in women with PCOS.

  8. Metabolism and Ovarian Function in PCOS Women: A Therapeutic Approach with Inositols

    Science.gov (United States)

    Rossetti, Paola; Buscema, Massimo; Condorelli, Rosita Angela; Gullo, Giuseppe; Triolo, Onofrio

    2016-01-01

    Polycystic ovary syndrome (PCOS) is characterized by chronical anovulation and hyperandrogenism which may be present in a different degree of severity. Insulin-resistance and hyperinsulinemia are the main physiopathological basis of this syndrome and the failure of inositol-mediated signaling may concur to them. Myo (MI) and D-chiro-inositol (DCI), the most studied inositol isoforms, are classified as insulin sensitizers. In form of glycans, DCI-phosphoglycan and MI-phosphoglycan control key enzymes were involved in glucose and lipid metabolism. In form of phosphoinositides, they play an important role as second messengers in several cellular biological functions. Considering the key role played by insulin-resistance and androgen excess in PCOS patients, the insulin-sensitizing effects of both MI and DCI were tested in order to ameliorate symptoms and signs of this syndrome, including the possibility to restore patients' fertility. Accumulating evidence suggests that both isoforms of inositol are effective in improving ovarian function and metabolism in patients with PCOS, although MI showed the most marked effect on the metabolic profile, whereas DCI reduced hyperandrogenism better. The purpose of this review is to provide an update on inositol signaling and correlate data on biological functions of these multifaceted molecules, in view of a rational use for the therapy in women with PCOS. PMID:27579037

  9. Functions of Arginase Isoforms in Macrophage Inflammatory Responses: Impact on Cardiovascular Diseases and Metabolic Disorders

    Directory of Open Access Journals (Sweden)

    Zhihong eYang

    2014-10-01

    Full Text Available Macrophages play a paramount role in immunity and inflammation-associated diseases, including infections, cardiovascular diseases, obesity‐associated metabolic imbalances and cancer. Compelling evidence from studies of recent years demonstrates that macrophages are heterogeneous and undergo heterogeneous phenotypic changes in response to microenvironmental stimuli. The M1 Killer type response and the M2 Repair type response are best known, and are two extreme examples. Among other markers, inducible nitric oxide synthase (iNOS and type-I arginase (Arg-I, the enzymes that are involved in L-arginine/nitric oxide (NO metabolism, are associated with the M1 and M2 phenotype, respectively, and therefore widely used as the markers for characterization of the two macrophage phenotypes. There is also a type-II arginase (Arg-II which is expressed in macrophages and prevalently viewed as having the same function as Arg-I in the cells. In contrast to Arg-I, little information on the role of Arg‐II in macrophage inflammatory responses is available. Emerging evidence, however, suggests differential roles of Arg-I and Arg-II in regulating macrophage functions. In this article, we will review recent developments on the functional roles of the two arginase isoforms in regulation of macrophage inflammatory responses by focusing on their impact on the pathogenesis of cardiovascular diseases and metabolic disorders.

  10. Air Pollution Exposure During Pregnancy and Fetal Markers of Metabolic function

    Science.gov (United States)

    Lavigne, Eric; Ashley-Martin, Jillian; Dodds, Linda; Arbuckle, Tye E.; Hystad, Perry; Johnson, Markey; Crouse, Dan L.; Ettinger, Adrienne S.; Shapiro, Gabriel D.; Fisher, Mandy; Morisset, Anne-Sophie; Taback, Shayne; Bouchard, Maryse F.; Sun, Liu; Monnier, Patricia; Dallaire, Renée; Fraser, William D.

    2016-01-01

    Previous evidence suggests that exposure to outdoor air pollution during pregnancy could alter fetal metabolic function, which could increase the risk of obesity in childhood. However, to our knowledge, no epidemiologic study has investigated the association between prenatal exposure to air pollution and indicators of fetal metabolic function. We investigated the association between maternal exposure to nitrogen dioxide and fine particulate matter (aerodynamic diameter ≤2.5 µm) and umbilical cord blood leptin and adiponectin levels with mixed-effects linear regression models among 1,257 mother-infant pairs from the Maternal-Infant Research on Environmental Chemicals (MIREC) Study, conducted in Canada (2008–2011). We observed that an interquartile-range increase in average exposure to fine particulate matter (3.2 µg/m3) during pregnancy was associated with an 11% (95% confidence interval: 4, 17) increase in adiponectin levels. We also observed 13% (95% confidence interval: 6, 20) higher adiponectin levels per interquartile-range increase in average exposure to nitrogen dioxide (13.6 parts per billion) during pregnancy. Significant associations were seen between air pollution markers and cord blood leptin levels in models that adjusted for birth weight z score but not in models that did not adjust for birth weight z score. The roles of prenatal exposure to air pollution and fetal metabolic function in the potential development of childhood obesity should be further explored. PMID:27026336

  11. Effect of fruit and vegetable concentrates on endothelial function in metabolic syndrome: A randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Ma Yingying

    2011-06-01

    Full Text Available Abstract Background and Objective Dehydrated fruit and vegetable concentrates provide an accessible form of phytonutrient supplementation that may offer cardioprotective effects. This study assessed the effects of two blends of encapsulated juice powder concentrates (with and without added berry powders on endothelial function in persons with metabolic syndrome, a risk factor for type 2 diabetes and cardiovascular disease. Methods Randomized, double blind, placebo controlled crossover clinical trial with three treatment arms. 64 adults with metabolic syndrome were enrolled and received 8-week sequences of each blend of the concentrates and placebo. The primary outcome measure was change in endothelial function (assessed as flow-mediated dilatation of the brachial artery 2 hr after consuming a 75 g glucose load, after 8-weeks of daily consumption (sustained or 2 hr after consumption of a single dose (acute. Secondary outcome measures included plasma glucose, serum insulin, serum lipids, and body weight. Results No significant between-group differences in endothelial function with daily treatment for 8 weeks were seen. No other significant treatment effects were discerned in glucose, insulin, lipids, and weight. Conclusion Encapsulated fruit and vegetable juice powder concentrates did not alter insulin or glucose measures in this sample of adults with metabolic syndrome. Trial Registration clinicaltrials.gov NCT01224743

  12. Qiliqiangxin Enhances Cardiac Glucose Metabolism and Improves Diastolic Function in Spontaneously Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Jingfeng Wang

    2017-01-01

    Full Text Available Cardiac diastolic dysfunction has emerged as a growing type of heart failure. The present study aims to explore whether Qiliqiangxin (QL can benefit cardiac diastolic function in spontaneously hypertensive rat (SHR through enhancement of cardiac glucose metabolism. Fifteen 12-month-old male SHRs were randomly divided into QL-treated, olmesartan-treated, and saline-treated groups. Age-matched WKY rats served as normal controls. Echocardiography and histological analysis were performed. Myocardial glucose uptake was determined by 18F-FDG using small-animal PET imaging. Expressions of several crucial proteins and key enzymes related to glucose metabolism were also evaluated. As a result, QL improved cardiac diastolic function in SHRs, as evidenced by increased E′/A′and decreased E/E′ (P<0.01. Meanwhile, QL alleviated myocardial hypertrophy, collagen deposits, and apoptosis (P<0.01. An even higher myocardial glucose uptake was illustrated in QL-treated SHR group (P<0.01. Moreover, an increased CS activity and ATP production was observed in QL-treated SHRs (P<0.05. QL enhanced cardiac glucose utilization and oxidative phosphorylation in SHRs by upregulating AMPK/PGC-1α axis, promoting GLUT-4 expression, and regulating key enzymes related to glucose aerobic oxidation such as HK2, PDK4, and CS (P<0.01. Our data suggests that QL improves cardiac diastolic function in SHRs, which may be associated with enhancement of myocardial glucose metabolism.

  13. Wikipedia and neurological disorders.

    Science.gov (United States)

    Brigo, Francesco; Igwe, Stanley C; Nardone, Raffaele; Lochner, Piergiorgio; Tezzon, Frediano; Otte, Willem M

    2015-07-01

    Our aim was to evaluate Wikipedia page visits in relation to the most common neurological disorders by determining which factors are related to peaks in Wikipedia searches for these conditions. Millions of people worldwide use the internet daily as a source of health information. Wikipedia is a popular free online encyclopedia used by patients and physicians to search for health-related information. The following Wikipedia articles were considered: Alzheimer's disease; Amyotrophic lateral sclerosis; Dementia; Epilepsy; Epileptic seizure; Migraine; Multiple sclerosis; Parkinson's disease; Stroke; Traumatic brain injury. We analyzed information regarding the total article views for 90 days and the rank of these articles among all those available in Wikipedia. We determined the highest search volume peaks to identify possible relation with online news headlines. No relation between incidence or prevalence of neurological disorders and the search volume for the related articles was found. Seven out of 10 neurological conditions showed relations in search volume peaks and news headlines. Six out of these seven peaks were related to news about famous people suffering from neurological disorders, especially those from showbusiness. Identification of discrepancies between disease burden and health seeking behavior on Wikipedia is useful in the planning of public health campaigns. Celebrities who publicly announce their neurological diagnosis might effectively promote awareness programs, increase public knowledge and reduce stigma related to diagnoses of neurological disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Dietary fiber supplements: effects in obesity and metabolic syndrome and relationship to gastrointestinal functions.

    Science.gov (United States)

    Papathanasopoulos, Athanasios; Camilleri, Michael

    2010-01-01

    Dietary fiber is a term that reflects a heterogeneous group of natural food sources, processed grains, and commercial supplements. Several forms of dietary fiber have been used as complementary or alternative agents in the management of manifestations of the metabolic syndrome, including obesity. Not surprisingly, there is a great variation in the biological efficacy of dietary fiber in the metabolic syndrome and body weight control. Diverse factors and mechanisms have been reported as mediators of the effects of dietary fiber on the metabolic syndrome and obesity. Among this array of mechanisms, the modulation of gastric sensorimotor influences appears to be crucial for the effects of dietary fiber but also quite variable. This report focuses on the role, mechanism of action, and benefits of different forms of fiber and supplements on obesity and the metabolic syndrome, glycemia, dyslipidemia, and cardiovascular risk and explores the effects of dietary fiber on gastric sensorimotor function and satiety in mediating these actions of dietary fiber. Copyright 2010 AGA Institute. Published by Elsevier Inc. All rights reserved.

  15. Energy metabolism and thyroid function of mice with deleted wolframin (Wfs1) gene.

    Science.gov (United States)

    Noormets, K; Kõks, S; Ivask, M; Aunapuu, M; Arend, A; Vasar, E; Tillmann, V

    2014-05-01

    There is no data about the energy metabolism of patients with Wolfram syndrome caused by mutations in the wolframin (Wfs1) gene. The aim of this study was to investigate the role of Wfs1 in energy metabolism and thyroid function in Wfs1 deficient mice (Wfs1KO). 16 male (8 Wfs1KO, 8 wild type (wt)) and 16 female (8 Wfs1KO, 8wt) mice aged 11-13 weeks were studied alone in a specific metabolic cage for 48 h. Body weight, food, water and O2 consumption, motor activity, CO2 and heat production of mice were recorded. At the age of 14-20 weeks, plasma levels of thyroxine (T4), TSH and leptin were measured and histology of thyroid tissues examined. Mean CO2 and heat production was not different between the groups. Mean O2 consumption was higher in the Wfs1KO females compared to the Wfs1KO males (3 410.0±127.0 vs. 2 806.0±82.4 ml/kg/h; pWfs1 has a role in energy metabolism when the disease progresses further. © J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York.

  16. Development of an Objective Space Suit Mobility Performance Metric Using Metabolic Cost and Functional Tasks

    Science.gov (United States)

    McFarland, Shane M.; Norcross, Jason

    2016-01-01

    Existing methods for evaluating EVA suit performance and mobility have historically concentrated on isolated joint range of motion and torque. However, these techniques do little to evaluate how well a suited crewmember can actually perform during an EVA. An alternative method of characterizing suited mobility through measurement of metabolic cost to the wearer has been evaluated at Johnson Space Center over the past several years. The most recent study involved six test subjects completing multiple trials of various functional tasks in each of three different space suits; the results indicated it was often possible to discern between different suit designs on the basis of metabolic cost alone. However, other variables may have an effect on real-world suited performance; namely, completion time of the task, the gravity field in which the task is completed, etc. While previous results have analyzed completion time, metabolic cost, and metabolic cost normalized to system mass individually, it is desirable to develop a single metric comprising these (and potentially other) performance metrics. This paper outlines the background upon which this single-score metric is determined to be feasible, and initial efforts to develop such a metric. Forward work includes variable coefficient determination and verification of the metric through repeated testing.

  17. Functional Outcomes in Individuals Undergoing Very Early (Spinal Cord Injury: Analysis of Neurological Improvement from the Austrian Spinal Cord Injury Study.

    Science.gov (United States)

    Mattiassich, Georg; Gollwitzer, Maria; Gaderer, Franz; Blocher, Martina; Osti, Michael; Lill, Markkus; Ortmaier, Reinhold; Haider, Thomas; Hitzl, Wolfgang; Resch, Herbert; Aschauer-Wallner, Stephanie

    2017-12-15

    Our study aim was to assess the neurological outcomes of surgical decompression and stabilization within 5 and 24 h after injury. We performed a multi-center, retrospective cohort study in adolescents and adults 15-85 years of age presenting cervical spinal cord injury (CSCI) at one of 6 Austrian trauma centers participating in the Austrian Spinal Cord Injury Study (ASCIS). Neurological outcomes were measured using the American Spinal Injury Association Impairment Scale (AIS) grade according to the International Standards For Neurological Classification Of Spinal Cord Injury (ISNCSCI) form after at least 6 months of follow-up (FU). Of the 49 enrolled patients with acute CSCI, 33 underwent surgical decompression within 5 h (mean 3.2 h ± 1.1 h; very early group) after injury, and 16 underwent surgical decompression between 5 and 24 h (mean 8.6 h ± 5.5 h; early group). Significant neurological improvement was observed among the entire study population between the preoperative assessment and the FU. We identified a significant difference in the AIS grade at the last FU between the groups the using Jonckheere-Terpstra test for doubly ordered crosstabs (p = 0.011) and significantly different AIS improvement rates in the early group (Poisson model, p = 0.018). Improvement by one AIS grade was observed in 31% and 42% of the patients in the early and very early groups, respectively (p = 0.54). Improvement by two AIS grades was observed in 31% and 6% of the patients in the early and very early groups, respectively (p = 0.03; relative risk [RR], 5.2; 95% CI, 1.1-35). Improvement by three AIS grades was observed in 6% and 3% of patients in the early and very early groups, respectively (p = 1.0). Decompression of the spinal cord within 24 h after SCI was associated with an improved neurological outcome. No additional neurological benefit was observed in patients who underwent decompression within 5 h of injury.

  18. Nuclear medicine and neurology

    International Nuclear Information System (INIS)

    Paris, M.; Samarina, G.; Kelk, E.; Poksi, A.; Nazarenko, S.

    2005-01-01

    Methods of nuclear medicine are based on the use of radioactive isotopes bound to specific marker substances. Administered radioactive markers enter metabolic processes. SPET and PET cameras enable, with their detectors, to register gamma quanta resulting from isotope decay, transform the absorbed quanta into visible light and process the registered signals by means of a computer system. Thus the functions of a living organism can be observed at the molecular level. Special markers capable of crossing the haematin-cephalic barrier and targeting neural metabolic processes are used for visualization of brain perfusion and neurotransmission at SPET and PET, serving for defection of diseases. These procedures are of special significance for the diagnosis of neurodegenerative diseases where the diagnostic value of anatomical-structural methods like CT and conventional MRI is low and where timely administration of proper neuroprotecfive measures contributes to improved disease management. SPET studies of brain perfusion enable to make early diagnosis of Alzheimer's disease due to typical perfusion defects which appear at the preclinical stage and allow to distinguish this disease from other dementia syndromes. Parkinson's disease has a latent period of 3-4 years before the clinical signs appear. SPET with dopamine receptors visualizes striatal dopaminergic presynaptic hypofunction providing the diagnosis at the early stage. Procedures of nuclear medicine enable to establish the differential diagnosis of various Parkinsonian syndromes. SPET and PET research helps to understand better pathophysiological processes, pharmacokinetics and pharmacodynamics in living organisms.(authors) [et

  19. The Profile of Neurology Patients Evaluated in the Emergency Department

    Directory of Open Access Journals (Sweden)

    Ufuk Emre

    2009-09-01

    Full Text Available OBJECTIVE: Early, rapid, and multidisciplinary approaches are very important in the diagnosis of neurological disorders in emergency departments. The present study aimed to investigate the features of patients that presented for neurology consultation in the emergency department. METHODS: The present study included 780 patients. Patient demographic features, reasons for emergent treatment and neurological consultation, neurological diagnosis by the neurologist, and laboratory (total blood count, serum glucose level, urea, creatine, erythrocyte sedimentation rate, and D-dimer levels and imaging findings were retrospectively evaluated based on patient charts. RESULTS: Impaired consciousness was the most frequent reason for neurological consultation (19.7%. Among these patients, ischemic stroke was diagnosed in 27.9%, hypoxic encephalopathy in 18.2%, cerebral hemorrhage in 9.1%, and 11% had no neurological diagnosis. Other common reasons for neurological consultation were vertigo, headache, seizure, and stroke. Clinical findings were related to other systemic causes in 43.7% of the study group. Focal neurological findings were present, especially in patients that presented with ischemic and hemorrhagic stroke, epilepsy, and hypoxic encephalopathy. CONCLUSION: In emergency departments, metabolic causes should be ruled out in patients with impaired consciousness and the absence of focal neurological signs. Intracranial structural disorders must be evaluated when focal neurological signs are present. Cautiously prepared algorithms and neurological examination training will help improve the accuracy of emergency department diagnoses

  20. Effect of TNF-α Inhibition on Bone Marrow-Derived Mesenchymal Stem Cells in Neurological Function Recovery after Spinal Cord Injury via the Wnt Signaling Pathway in a Rat Model.

    Science.gov (United States)

    Peng, Ren-Jun; Jiang, Bing; Ding, Xi-Ping; Huang, He; Liao, Yi-Wei; Peng, Gang; Cheng, Quan; Xi, Jian

    2017-01-01

    The present study aimed to examine the effect of tumor necrosis factor-α (TNF-α) inhibition on bone marrow-derived mesenchymal stem cells (BMSCs) in neurological function recovery after spinal cord injury (SCI) via the Wnt signaling pathway in a rat model. The rat model of SCI was established using Allen's method. Seventy-two adult male Sprague Dawley (SD) rats were randomly assigned into 4 groups (18 rats in each group): the sham control group, saline control group, BMSCs group (injection with BMSCs at the injured site) and BMSCs + TNF-α group (injection with BMSCs under TNF-α treatment at the injured site). Immunochemistry was performed to characterize the culture media after TNF-α-induced differentiation. qRT-PCR and Western blotting analyses were performed to detect the mRNA and protein expression of β-catenin, Wnt3a, GSK-3β and Axin. The Basso Beattie Bresnahan (BBB) locomotor score, neurological deficit score (NDS), and balance beam test (BBT) score were used to assess neurological functional recovery of SCI rats. In the BMSC group, numerous spherical cell clusters grew in suspension, and the cells were nestin-, NF200- and GFAP-positive. Compared with the sham control and BMSC groups, the β-catenin and Wnt3a mRNA and protein expression was increased, but the GSK-3β and Axin mRNA and protein expression was decreased in the BMSCs + TNF-α group. The SCI rats in the BMSCs + TNF-α group exhibited lower BBB scores, and higher NDSs and BBT scores compared to the BMSCs group. Our study provides evidence that TNF-α inhibition may weaken the ability of BMSCs in neurological functional recovery after SCI by activating the Wnt signaling pathway. © 2017 The Author(s). Published by S. Karger AG, Basel.

  1. Beneficial effects of herbs, spices and medicinal plants on the metabolic syndrome, brain and cognitive function.

    Science.gov (United States)

    Panickar, Kiran S

    2013-03-01

    Herbs and spices have been used since ancient times to not only improve the flavor of edible food but also to prevent and treat chronic health maladies. While the scientific evidence for the use of such common herbs and medicinal plants then had been scarce or lacking, the beneficial effects observed from such use were generally encouraging. It is, therefore, not surprising that the tradition of using such herbs, perhaps even after the advent of modern medicine, has continued. More recently, due to an increased interest in understanding the nutritional effects of herbs/spices more comprehensively, several studies have examined the cellular and molecular modes of action of the active chemical components in herbs and their biological properties. Beneficial actions of herbs/spices include anti-inflammatory, antioxidant, anti-hypertensive, gluco-regulatory, and anti-thrombotic effects. One major component of herbs and spices is the polyphenols. Some of the aforementioned properties are attributed to the polyphenols and they are associated with attenuating the metabolic syndrome. Detrimental changes associated with the metabolic syndrome over time affect brain and cognitive function. Metabolic syndrome and type-2 diabetes are also risk factors for Alzheimer's disease and stroke. In addition, the neuroprotective effects of herbs and spices have been demonstrated and, whether directly or indirectly, such beneficial effects may also contribute to an improvement in cognitive function. This review evaluates the current evidence available for herbs/spices in potentially improving the metabolic syndrome, as well as their neuroprotective effects on the brain, and cognitive function in animal and human studies.

  2. Metabolic correlates of general cognitive function in nondemented elderly subjects: an FDG PET study

    International Nuclear Information System (INIS)

    Cho, Sang Soo; Kwak, Young Bin; Lee, Eun Ju; Ryu, Chang Hyung; Chey, Jean Yung; Kim, Sang Eun

    2004-01-01

    While many studies examined the neural correlates of individual cognitive functions, few made efforts to identify the neural networks associated with general cognitive function. General cognitive function decline in the elderly population is not infrequent. This study examined the brain areas associated with general cognitive function in the elderly subjects. Community-dwelling 116 elderly subjects without dementing illnesses (age, 71±5 y; 13 males and 103 females) participated. General cognitive ability was assessed with the Dementia Rating Scale (K-DRS), which is composed of five subtests of attention, initiation and perseveration, construction, conceptualization, and memory. The EVLT (Elderly Verbal Learning Test), a nine-word list learning test, was used for general memory assessment. Brain FDG PET scans were acquired in all subjects. Brain regions where metabolic levels are correlated with the total scores of K-DRS and EVLT were examined using SPM99. There was a significant positive correlation (P < 0.01 uncorrected, k=100) between the total score of K-DRS and glucose metabolism in the bilateral posterior cingulate gyri, bilateral inferior frontal gyri, left caudate, left inferior parietal lobule, right precuneus, bilateral unci, right parahippocampal gyrus, and right anterior cingulate gyrus. A significant positive correlation between the total score of EVLT and glucose metabolism was shown in the right precuneus, right posterior cingulate gyrus, left insula, bilateral inferior parietal lobules, left anterior cingulate gyrus, left caudate, right inferior frontal gyrus (P < 0.01 uncorrected, k=100). Our data showed the brain regions that are associated with general cognitive function in the elderly. Those regions may serve as the neural substrated of cognitive dysfunction associated with neurodegenerative and cerebrovascular diseases in elderly subjects

  3. Adipokines as metabolic modulators of ovarian functions in livestock: A mini-review

    Directory of Open Access Journals (Sweden)

    Smruti Ranjan Mishra

    2016-09-01

    Full Text Available Adipose tissue is the principal fat storing tissue which secretes various molecules known as adipokines. The major adipokines secreted from adipose tissue are leptin, adiponectin, visfatin, resistin, chemerin and apelin. Adipokines are regarded as the and ldquo;marker of body metabolic status'' which maintains the body energy homeostasis. An adequate energy level is essential for the onset of puberty and ovarian functions. Adipokines act as energy sensor and signal the body energy level to hypothalamic neurons to regulate many physiological activities including ovarian functions such as onset of puberty, estrus behavior, follicular development and ovulation followed by corpus luteum (CL formation and function in livestock. However, adipose tissue dysfunctions limit adipokines secretion leading to an imbalance in body energy level which ultimately affects the reproduction in livestock. This mini-review highlights the modulatory roles of various adipokines in ovarian functions of livestock. [J Adv Vet Anim Res 2016; 3(3.000: 206-213

  4. A Wearable Hip Assist Robot Can Improve Gait Function and Cardiopulmonary Metabolic Efficiency in Elderly Adults.

    Science.gov (United States)

    Lee, Hwang-Jae; Lee, Suhyun; Chang, Won Hyuk; Seo, Keehong; Shim, Youngbo; Choi, Byung-Ok; Ryu, Gyu-Ha; Kim, Yun-Hee

    2017-09-01

    The aims of this paper were to investigate the effectiveness of a newly developed wearable hip assist robot, that uses an active assist algorithm to improve gait function, muscle effort, and cardiopulmonary metabolic efficiency in elderly adults. Thirty elderly adults (15 males/ 15 females) participated in thispaper. The experimental protocol consisted of overground gait at comfortable speed under three different conditions: free gait without robot assistance, robot-assisted gait with zero torque (RAG-Z), and full RAG. Under all conditions, muscle effort was analyzed using a 12-channel surface electromyography system. Spatio-temporal data were collected at 120 Hz using a 3-D motion capture system with six infrared cameras. Metabolic cost parameters were collected as oxygen consumption per unit (ml/min/kg) and aerobic energy expenditure (Kcal/min). In the RAG condition, participants demonstrated improved gait function, decreased muscle effort, and reduced metabolic cost. Although the hip assist robot only provides assistance at the hip joint, our results demonstrated a clear reduction in knee and ankle muscle activity in addition to decreased hip flexor and extensor activity. Our findings suggest that this robot has the potential to improve stabilization of the trunk during walking in elderly adults.

  5. Plasma Zonulin and its Association with Kidney Function, Severity of Heart Failure, and Metabolic Inflammation.

    Science.gov (United States)

    Dschietzig, Thomas B; Boschann, Felix; Ruppert, Jana; Armbruster, Franz P; Meinitzer, Andreas; Bankovic, Dragic; Mitrovic, Veselin; Melzer, Christoph

    2016-12-01

    The tight junction regulator zonulin has attracted clinical attention as a biomarker of increased gastrointestinal permeability. Recent work also suggests zonulin to represent a general regulator of tissue barriers and a player in metabolic inflammation. Here, we investigated the associations of zonulin with chronic heart failure (CHF), kidney function, and metabolic inflammation. Using multiple linear regression (Generalized Linear Model), this study determined the association of plasma zonulin with different laboratory and clinical parameters in 225 patients carrying automatic implantable cardioverters/defibrillators (AICD) for primary or secondary prevention. In another 115 patients with diastolic or systolic CHF, we investigated a possible relationship between zonulin and CHF severity. In the AICD cohort, zonulin associated inversely with serum creatinine (p = 0.013), carboxymethyl-lysine calprotectin (p zonulin increased significantly with high-sensitivity CRP (p = 0.014). In the CHF cohort, we found a highly significant rise of NT-proBNP, but not of zonulin with NYHA functional classes I-IV or other parameters of CHF severity. The inverse associations of zonulin with creatinine and markers of cardio-vascular risk (high CMLcalprotectin and kynurenine, low homoarginine) are novel findings that need further experimental and clinical clarification. Our study indicates zonulin involvement in metabolic inflammation in T2D, but no association with disease status in CHF.

  6. Changes of thyroid function, autoantibodies, bone mineral density and bone metabolism indexes in patients with hyperthyroidism

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2016-07-01

    Full Text Available Objective: To investigate the changes of thyroid function, autoantibodies, bone mineral density and bone metabolism in patients with hyperthyroidism. Methods: A total of 216 cases of hyperthyroidism in our hospital from December 2015 to January 2015 were selected as the case group, 216 cases of healthy people selected the same period in our hospital physical examination center as the control group, detected thyroid function, autoantibodies, bone mineral density and bone metabolism indexes of all the studied subjects and compared with each other. Results: In this study, it was found that diastolic blood pressure, BMI, triglyceride, total cholesterol, HDL-C, VLDL-C, TSH were all significantly lower than the control group (P<0.05, systolic blood pressure, LDL-C, GLU, T3, T4, FT3, FT4, HTG, TG-Ab, TPO-Ab in case group were significantly higher than the control group (P<0.05. Right calcaneal speed of sound (SOS in case group was significantly lower than the control group (P<0.05, BGP, PTH in case group were significantly higher than the control group (P<0.05. Conclusions: Hyperthyroidism can cause thyroid hormone levels abnormal, abnormal increase autoantibodies, decrease bone density, bone metabolism actively, easy to form osteoporosis, clinical treatment of hyperthyroidism in the same time, should actively prevent the occurrence of osteoporosis

  7. Obesity and metabolic syndrome and functional and structural brain impairments in adolescence.

    Science.gov (United States)

    Yau, Po Lai; Castro, Mary Grace; Tagani, Adrian; Tsui, Wai Hon; Convit, Antonio

    2012-10-01

    The prevalence of metabolic syndrome (MetS) parallels the rise in childhood obesity. MetS is associated with neurocognitive impairments in adults, but this is thought to be a long-term effect of poor metabolism. It would be important to ascertain whether these brain complications are also present among adolescents with MetS, a group without clinically manifest vascular disease and relatively short duration of poor metabolism. Forty-nine adolescents with and 62 without MetS, matched on age, socioeconomic status, school grade, gender, and ethnicity, received endocrine, MRI, and neuropsychological evaluations. Adolescents with MetS showed significantly lower arithmetic, spelling, attention, and mental flexibility and a trend for lower overall intelligence. They also had, in a MetS-dose-related fashion, smaller hippocampal volumes, increased brain cerebrospinal fluid, and reductions of microstructural integrity in major white matter tracts. We document lower cognitive performance and reductions in brain structural integrity among adolescents with MetS, thus suggesting that even relatively short-term impairments in metabolism, in the absence of clinically manifest vascular disease, may give rise to brain complications. In view of these alarming results, it is plausible that obesity-associated metabolic disease, short of type 2 diabetes mellitus, may be mechanistically linked to lower the academic and professional potential of adolescents. Although obesity may not be enough to stir clinicians or even parents into action, these results in adolescents strongly argue for an early and comprehensive intervention. We propose that brain function be introduced among the parameters that need to be evaluated when considering early treatment of childhood obesity.

  8. Vascular endothelial growth factors: multitasking functionality in metabolism, health and disease.

    Science.gov (United States)

    Smith, Gina A; Fearnley, Gareth W; Harrison, Michael A; Tomlinson, Darren C; Wheatcroft, Stephen B; Ponnambalam, Sreenivasan

    2015-07-01

    Vascular endothelial growth factors (VEGFs) bind to VEGF receptor tyrosine kinases (VEGFRs). The VEGF and VEGFR gene products regulate diverse regulatory pathways in mammalian development, health and disease. The interaction between a particular VEGF and its cognate VEGFR activates multiple signal transduction pathways which regulate different cellular responses including metabolism, gene expression, proliferation, migration, and survival. The family of VEGF isoforms regulate vascular physiology and promote tissue homeostasis. VEGF dysfunction is implicated in major chronic disease states including atherosclerosis, diabetes, and cancer. More recent studies implicate a strong link between response to VEGF and regulation of vascular metabolism. Understanding how this family of multitasking cytokines regulates cell and animal function has implications for treating many different diseases.

  9. Metabolic and functional phenotypic profiling of Drosophila melanogaster reveals reduced sex differentiation under stressful environmental conditions

    DEFF Research Database (Denmark)

    Ørsted, Michael; Malmendal, Anders; Muñoz, Joaquin

    2017-01-01

    Strong sexual dimorphism is commonly observed across species and e.g. trade-offs between reproduction and maintenance are thought to explain this dimorphism. Here we test how the metabolic and functional phenotypic responses to varying types of environmental stress differ in male and female...... rearing regimes were investigated using NMR metabolomics and assessed for body mass and viability. Our results showed that environmental stress leads to reduced sexual dimorphism in both metabolic composition and body mass compared to the level of dimorphism observed at benign conditions. This reduced...... Drosophila melanogaster (Diptera: Drosophilidae), and how this impacts the magnitude of sexual dimorphism. Experimental stressors that we exposed flies to during development were heat stress, poor nutrition, high acidity, high levels of ammonia and ethanol. Emerged male and female flies from the different...

  10. Neurologic manifestations of achondroplasia.

    Science.gov (United States)

    Hecht, Jacqueline T; Bodensteiner, John B; Butler, Ian J

    2014-01-01

    Achondroplasia is the best described and most common form of the congenital short-limbed dwarfing conditions. Achondroplasia is apparent at birth and has a birth prevalence of 1 in 20000-30000 live-born infants. Achondroplasia is inherited as an autosomal dominant condition, although 80% of cases occur sporadically as new events in their families. Achondroplasia is caused, in virtually all of the cases, by a G380R mutation in fibroblast growth factor receptor 3 (FGFR3). Patients with achondroplasia should be evaluated by a multidisciplinary team of clinicians including geneticists, neurologists, and orthopedists, since there are numerous bony and neurological complications. The most severe complication results from craniocervical stenosis and medullary and upper spinal cord compression, which can have devastating and even lethal sequelae during early childhood. In subsequent decades, including adolescence, spinal cord and nerve compression are more prominent. The neurological complications of achondroplasia have been recognized in adults for more than a century and are attributed to bony defects, connective tissue structures, or both. Similar neurological complications are now appreciated in infants, young children, and teenagers with achondroplasia. Defective connective tissue elements in achondroplasia frequently lead to ligamentous laxity, which can aggravate the complications associated with bony stenosis. Bony abnormalities are known to cause neurological morbidity and lead to a shortened lifespan. Neurological complications associated with achondroplasia are reviewed, including recommendations for the evaluation and management of these clinical problems. © 2014 Elsevier B.V. All rights reserved.

  11. Neurology and Don Quixote.

    Science.gov (United States)

    Palma, Jose-Alberto; Palma, Fermin

    2012-01-01

    Don Quixote de la Mancha, which is considered one of the most important and influential works of Western modern prose, contains many references of interest for almost all of the medical specialties. In this regard, numerous references to neurology can be found in Cervantes' immortal work. In this study, we aimed to read Don Quixote from a neurologist's point of view, describing the neurological phenomena scattered throughout the novel, including tremors, sleep disturbances, neuropsychiatric symptoms, dementia, epilepsy, paralysis, stroke, syncope, traumatic head injury, and headache; we relate these symptoms with depictions of those conditions in the medical literature of the time. We also review Cervantes' sources of neurological information, including the works by renowned Spanish authors such as Juan Huarte de San Juan, Dionisio Daza Chacón and Juan Valverde de Amusco, and we hypothesize that Don Quixote's disorder was actually a neurological condition. Although Cervantes wrote it four centuries ago, Don Quixote contains plenty of references to neurology, and many of the ideas and concepts reflected in it are still of interest. Copyright © 2012 S. Karger AG, Basel.

  12. Impact of metabolic syndrome traits on cardiovascular function: should the Adult Treatment Panel III definition be further stratified?

    Science.gov (United States)

    Antonini-Canterin, Francesco; Mateescu, Anca D; Vriz, Olga; La Carrubba, Salvatore; Di Bello, Vitantonio; Carerj, Scipione; Zito, Concetta; Sparacino, Lina; Uşurelu, Cătălin; Ticulescu, Răzvan; Ginghină, Carmen; Nicolosi, Gian L; Popescu, Bogdan A

    2014-10-01

    The aims of the study were to evaluate whether a further classification of metabolic syndrome according to the number of traits (based on the Adult Treatment Panel III definition) could better explain the impact on cardiovascular remodeling and function, and to assess the role of single metabolic syndrome components in this regard. We studied by echocardiography and carotid ultrasound 435 asymptomatic patients with metabolic syndrome. Patients with coronary artery disease or more than mild valvular heart disease were excluded. Carotid stiffness index (β) was measured using a high-resolution echo-tracking system. Patients with metabolic syndrome were divided into two groups: metabolic syndrome with three traits (Gr.1) and metabolic syndrome with four or five traits (Gr. 2). Patients in Gr. 2 had higher left ventricular mass index (P metabolic syndrome traits separately, in an age-corrected multivariate analysis, abdominal obesity was found to have the strongest association with cardiac structure and carotid artery atherosclerosis and stiffness. An increasing number of metabolic syndrome traits had a significantly worse impact on cardiac remodeling and function and carotid artery atherosclerosis. Abdominal obesity showed the strongest association with cardiac structure, carotid artery stiffness, and intima-media thickness. Prospective studies are needed to evaluate whether a new classification of metabolic syndrome using the number of traits could add prognostic information.

  13. Delivery Mode and the Transition of Pioneering Gut-Microbiota Structure, Composition and Predicted Metabolic Function.

    Science.gov (United States)

    Mueller, Noel T; Shin, Hakdong; Pizoni, Aline; Werlang, Isabel C; Matte, Ursula; Goldani, Marcelo Z; Goldani, Helena A S; Dominguez-Bello, Maria G

    2017-12-04

    Cesarean (C-section) delivery, recently shown to cause excess weight gain in mice, perturbs human neonatal gut microbiota development due to the lack of natural mother-to-newborn transfer of microbes. Neonates excrete first the in-utero intestinal content (referred to as meconium) hours after birth, followed by intestinal contents reflective of extra-uterine exposure (referred to as transition stool) 2 to 3 days after birth. It is not clear when the effect of C-section on the neonatal gut microbiota emerges. We examined bacterial DNA in carefully-collected meconium, and the subsequent transitional stool, from 59 neonates [13 born by scheduled C-section and 46 born by vaginal delivery] in a private hospital in Brazil. Bacterial DNA was extracted, and the V4 region of the 16S rRNA gene was sequenced using the Illumina MiSeq (San Diego, CA, USA) platform. We found evidence of bacterial DNA in the majority of meconium samples in our study. The bacterial DNA structure (i.e., beta diversity) of meconium differed significantly from that of the transitional stool microbiota. There was a significant reduction in bacterial alpha diversity (e.g., number of observed bacterial species) and change in bacterial composition (e.g., reduced Proteobacteria) in the transition from meconium to stool. However, changes in predicted microbiota metabolic function from meconium to transitional stool were only observed in vaginally-delivered neonates. Within sample comparisons showed that delivery mode was significantly associated with bacterial structure, composition and predicted microbiota metabolic function in transitional-stool samples, but not in meconium samples. Specifically, compared to vaginally delivered neonates, the transitional stool of C-section delivered neonates had lower proportions of the genera Bacteroides , Parabacteroides and Clostridium . These differences led to C-section neonates having lower predicted abundance of microbial genes related to metabolism of amino and

  14. Delivery Mode and the Transition of Pioneering Gut-Microbiota Structure, Composition and Predicted Metabolic Function

    Directory of Open Access Journals (Sweden)

    Noel T. Mueller

    2017-12-01

    Full Text Available Cesarean (C-section delivery, recently shown to cause excess weight gain in mice, perturbs human neonatal gut microbiota development due to the lack of natural mother-to-newborn transfer of microbes. Neonates excrete first the in-utero intestinal content (referred to as meconium hours after birth, followed by intestinal contents reflective of extra-uterine exposure (referred to as transition stool 2 to 3 days after birth. It is not clear when the effect of C-section on the neonatal gut microbiota emerges. We examined bacterial DNA in carefully-collected meconium, and the subsequent transitional stool, from 59 neonates [13 born by scheduled C-section and 46 born by vaginal delivery] in a private hospital in Brazil. Bacterial DNA was extracted, and the V4 region of the 16S rRNA gene was sequenced using the Illumina MiSeq (San Diego, CA, USA platform. We found evidence of bacterial DNA in the majority of meconium samples in our study. The bacterial DNA structure (i.e., beta diversity of meconium differed significantly from that of the transitional stool microbiota. There was a significant reduction in bacterial alpha diversity (e.g., number of observed bacterial species and change in bacterial composition (e.g., reduced Proteobacteria in the transition from meconium to stool. However, changes in predicted microbiota metabolic function from meconium to transitional stool were only observed in vaginally-delivered neonates. Within sample comparisons showed that delivery mode was significantly associated with bacterial structure, composition and predicted microbiota metabolic function in transitional-stool samples, but not in meconium samples. Specifically, compared to vaginally delivered neonates, the transitional stool of C-section delivered neonates had lower proportions of the genera Bacteroides, Parabacteroides and Clostridium. These differences led to C-section neonates having lower predicted abundance of microbial genes related to metabolism of

  15. Thyroid peroxidase antibodies in pregnant women with type 1 diabetes: impact on thyroid function, metabolic control and pregnancy outcome

    DEFF Research Database (Denmark)

    Vestgaard, Marianne; Nielsen, Lene Ringholm; Rasmussen, Åse Krogh

    2008-01-01

    In pregnant women with type 1 diabetes, we evaluated whether the presence of thyroid peroxidase autoantibodies (anti-TPO) was associated with changes in thyroid function, metabolic control and pregnancy outcome....

  16. Butyrate alleviates metabolic impairments and protects pancreatic β cell function in pregnant mice with obesity.

    Science.gov (United States)

    Li, Hua-Ping; Chen, Xuan; Li, Ming-Qing

    2013-01-01

    The relative or absolute deficiency of pancreatic β-cell mass function underlies the pathogenesis of diabetes. It is necessary to alleviate the metabolic stress and reduce the demand for insulin to decrease the effects of mutations affecting β-cell expansion. Butyrate is a natural nutrient existed in food and can also be produced physiologically through the intestinal fermentation of fiber. Pregnancy and obesity model would be helpful for understanding how β-cell adapt to insulin resistance and how butyrate alleviate the metabolic impairment and protect pancreatic β cell function in pregnant mice with obesity. C57BL/6J female mice were divided into three groups and fed with high fat food (HF group, 40% energy from fat), high fat with sodium butyrate food (HSF group, 95% HF with 5% butyrate), or control food (CF group, 14% energy from fat), respectively. The feeding would last for 14 weeks before mating and throughout the gestation period. A subset of dams were sacrificed at gestational day (GD) 14.5 to evaluate the changes of metabolism and β-cell function, mass, proliferation and apoptosis, inflammatory reaction of islet from different diet. Pancreases were double immuno-labeled to assess the islet morphology, insulin expression, expression of proliferation gene PCNA and anti-apoptosis gene bcl-2. Moreover, we detected the expression of NF-κB, phosphorylated NF-κB (pNF-κB) to evaluate the islet inflammatory response with immunohistochemistry. Mice fed with HSF showed obviously changes including the decreased values of weight gain, glucose, insulin, triglyceride and total cholesterol level of blood compared with high fat diet group, and the reduced circulating maternal pro-inflammation factors at GD14.5. Mice fed with HF displayed β-cell hyperplasia with a greater β-cell size and β-cell area in pancreas. Furthermore, the higher ratio of apoptosis and inflammatory response were found in HF group compared with HSF and CF group, while the proliferation

  17. Intraspecific variation in flight metabolic rate in the bumblebee Bombus impatiens: repeatability and functional determinants in workers and drones.

    Science.gov (United States)

    Darveau, Charles-A; Billardon, Fannie; Bélanger, Kasandra

    2014-02-15

    The evolution of flight energetics requires that phenotypes be variable, repeatable and heritable. We studied intraspecific variation in flight energetics in order to assess the repeatability of flight metabolic rate and wingbeat frequency, as well as the functional basis of phenotypic variation in workers and drones of the bumblebee species Bombus impatiens. We showed that flight metabolic rate and wingbeat frequency were highly repeatable in workers, even when controlling for body mass variation using residual analysis. We did not detect significant repeatability in drones, but a smaller range of variation might have prevented us from finding significant values in our sample. Based on our results and previous findings, we associated the high repeatability of flight phenotypes in workers to the functional links between body mass, thorax mass, wing size, wingbeat frequency and metabolic rate. Moreover, differences between workers and drones were as predicted from these functional associations, where drones had larger wings for their size, lower wingbeat frequency and lower flight metabolic rate. We also investigated thoracic muscle metabolic phenotypes by measuring the activity of carbohydrate metabolism enzymes, and we found positive correlations between mass-independent metabolic rate and the activity of all enzymes measured, but in workers only. When comparing workers and drones that differ in flight metabolic rate, only the activity of the enzymes hexokinase and trehalase showed the predicted differences. Overall, our study indicates that there should be correlated evolution among physiological phenotypes at multiple levels of organization and morphological traits associated with flight.

  18. Neurologic complications after solid organ transplantation.

    Science.gov (United States)

    Senzolo, Marco; Marco, Senzolo; Ferronato, Cecilia; Cecilia, Ferronato; Burra, Patrizia; Patrizia, Burra

    2009-03-01

    Neurologic complications are common after solid organ transplantation and are associated with significant morbidity. Approximately one-third of transplant recipients experiences neurologic alterations with incidence ranging from 10% to 59%. The complications can be divided into such of those common to all types of transplant and others of those specific to transplanted organ. The most common complication seen with all types of transplanted organ is neurotoxicity attributable to immunosuppressive drugs, followed by seizures, opportunistic central nervous system (CNS) infections, cardiovascular events, encephalopathy and de novo CNS neoplasms. Amongst immunosuppressants, calcineurin inhibitors are the main drugs involved in neurotoxicity, leading to complications which ranges from mild symptoms, such as tremors and paresthesia to severe symptoms, such as disabling pain syndrome and leukoencephalopathy. Neurologic complications of liver transplantation are more common than that of other solid organ transplants (13-47%); encephalopathy is the most common CNS complication, followed by seizures; however, central pontine myelinolysis can appear in 1-8% of the patients leading to permanent disabilities or death. In kidney transplanted patients, stroke is the most common neurologic complication, whereas cerebral infarction and bleeding are more typical after heart transplantation. Metabolic, electrolyte and infectious anomalies represent common risk factors; however, identification of specific causes and early diagnosis are still difficult, because of patient's poor clinical status and concomitant systemic and metabolic disorders, which may obscure symptoms.

  19. The neurology literature 2016.

    Science.gov (United States)

    Khoujah, Danya; Chang, Wan-Tsu W; Abraham, Michael K

    2017-12-01

    Emergency neurology is a complex and rapidly changing field. Its evolution can be attributed in part to increased imaging options, debates about optimal treatment, and simply the growth of emergency medicine as a specialty. Every year, a number of articles published in emergency medicine or other specialty journals should become familiar to the emergency physician. This review summarizes neurology articles published in 2016, which the authors consider crucial to the practice of emergency medicine. The articles are categorized according to disease process, with the understanding that there can be significant overlap among articles. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Genetic neurological channelopathies: molecular genetics and clinical phenotypes.

    Science.gov (United States)

    Spillane, J; Kullmann, D M; Hanna, M G

    2016-01-01

    Evidence accumulated over recent years has shown that genetic neurological channelopathies can cause many different neurological diseases. Presentations relating to the brain, spinal cord, peripheral nerve or muscle mean that channelopathies can impact on almost any area of neurological practice. Typically, neurological channelopathies are inherited in an autosomal dominant fashion and cause paroxysmal disturbances of neurological function, although the impairment of function can become fixed with time. These disorders are individually rare, but an accurate diagnosis is important as it has genetic counselling and often treatment implications. Furthermore, the study of less common ion channel mutation-related diseases has increased our understanding of pathomechanisms that is relevant to common neurological diseases such as migraine and epilepsy. Here, we review the molecular genetic and clinical features of inherited neurological channelopathies. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  1. Vitamin D and functional arterial parameters in postmenopausal women with metabolic syndrome.

    Science.gov (United States)

    Dadonienė, Jolanta; Čypienė, Alma; Rinkūnienė, Egidija; Badarienė, Jolita; Burca, Jelizaveta; Sakaitė, Ieva; Kalinauskaitė, Goda; Kumpauskaitė, Vaiva; Laucevičius, Aleksandras

    2016-09-01

    Our cross sectional study aimed to identify the relation between vitamin D level and functional arterial parameters in postmenopausal women with metabolic syndrome. 100 postmenopausal women at age 50-65 with diagnosed metabolic syndrome were included in this study. Laboratory tests were performed to determine lipid profile, serum glucose, creatinine, C-reactive protein, serum levels of 25(OH) D, ionized calcium and urine albumin/creatinine ratio. Also non-invasive assessment of arterial function (arterial stiffness, flow-mediated dilatation and carotid artery ultrasound examinations) was performed. The mean vitamin D blood concentration was 47.4±16.9nmol/l. The prevalence of modest insufficiency and deficiency of vitamin D was 62%. Vitamin D concentration in samples assembled from January to March was significantly lower than concentration levels from September to November. No significant relationship was observed between vitamin D and endothelial function, arterial stiffness, carotid intima-media thickness. Week negative correlation was stated between mean arterial pressure and 25(OH) D concentration (p=0.04). A positive correlation was found between high density lipoprotein cholesterol and vitamin 25(OH) D (r=0.3, pcreatinine ratio and C-reactive protein blood concentrations were found. The prevalence of vitamin D deficiency in postmenopausal women with metabolic syndrome is high. No relation was found between vitamin D levels and parameters that indicate atherosclerotic vascular lesions. Nevertheless our study revealed the relation between concentrations of vitamin D and mean blood pressure and high density lipoprotein cholesterol. Copyright © 2016. Published by Elsevier Urban & Partner Sp. z o.o.

  2. Dichloroacetate selectively improves cardiac function and metabolism in female and male rainbow trout

    Science.gov (United States)

    Battiprolu, Pavan K.

    2014-01-01

    Cardiac tissue from female rainbow trout demonstrates a sex-specific preference for exogenous glucose and glycolysis, impaired Ca2+ handling, and a greater tolerance for hypoxia and reoxygenation than cardiac tissue from male rainbow trout. We tested the hypothesis that dichloroacetate (DCA), an activator of pyruvate dehydrogenase, enhances cardiac energy metabolism and Ca2+ handling in female preparations and provide cardioprotection for hypoxic male tissue. Ventricle strips from sexually immature fish with very low (male) and nondetectable (female) plasma sex steroids were electrically paced in oxygenated or hypoxic Ringer solution with or without 1 mM DCA. In the presence of 5 mM glucose, aerobic tissue from male trout could be paced at a higher frequency (1.79 vs. 1.36 Hz) with lower resting tension and less contractile dysfunction than female tissue. At 0.5 Hz, DCA selectively reduced resting tension below baseline values and lactate efflux by 75% in aerobic female ventricle strips. DCA improved the functional recovery of developed twitch force, reduced lactate efflux by 50%, and doubled citrate in male preparations after hypoxia-reoxygenation. Independent of female sex steroids, reduced myocardial pyruvate dehydrogenase activity and impaired carbohydrate oxidation might explain the higher lactate efflux, compromised function of the sarcoplasmic reticulum, and reduced mechanical performance of aerobic female tissue. Elevated oxidative metabolism and reduced glycolysis might also underlie the beneficial effects of DCA on the mechanical recovery of male cardiac tissue after hypoxia-reoxygenation. These results support the use of rainbow trout as an experimental model of sex differences of cardiovascular energetics and function, with the potential for modifying metabolic phenotypes and cardioprotection independent of sex steroids. PMID:25217653

  3. Functional and metabolic disorders in celiac disease: new implications for nutritional treatment.

    Science.gov (United States)

    Farnetti, Sara; Zocco, Maria Assunta; Garcovich, Matteo; Gasbarrini, Antonio; Capristo, Esmeralda

    2014-11-01

    Celiac disease (CD) is a chronic disease causing the inflammation of the proximal small intestine, in genetically predisposed individuals. This is triggered by the consumption of the gluten protein and the side effects of the disease are mitigated by a lifelong gluten-free diet (GFD) treatment. The predominant consequence of CD is malnutrition due to malabsorption (with diarrhea, weight loss, nutritional deficiencies, and altered blood parameters), especially in patients who do not show strict adherence to GFD treatment. Recent evidence shows that, despite a lifelong GFD, some functional disorders persist, such as compromised gallbladder function and motility, exocrine pancreatic insufficiency, increased gut permeability, small-intestinal bowel overgrowth, nonalcoholic fatty liver disease (NAFLD), lactose intolerance, and milk allergy. These abnormalities may predispose to the occurrence of overweight and obesity even in CD patients. This review focuses on the principal functional and metabolic disorders in both treated and untreated CD, ranging from alterations of the gastrointestinal system to impaired glucose and lipid metabolism and insulin secretion with the aim of providing new implications beyond a GFD, for an ad hoc nutrition treatment in these patients.

  4. The Deubiquitylase MATH-33 Controls DAF-16 Stability and Function in Metabolism and Longevity.

    Science.gov (United States)

    Heimbucher, Thomas; Liu, Zheng; Bossard, Carine; McCloskey, Richard; Carrano, Andrea C; Riedel, Christian G; Tanasa, Bogdan; Klammt, Christian; Fonslow, Bryan R; Riera, Celine E; Lillemeier, Bjorn F; Kemphues, Kenneth; Yates, John R; O'Shea, Clodagh; Hunter, Tony; Dillin, Andrew

    2015-07-07

    FOXO family transcription factors are downstream effectors of Insulin/IGF-1 signaling (IIS) and major determinants of aging in organisms ranging from worms to man. The molecular mechanisms that actively promote DAF16/FOXO stability and function are unknown. Here we identify the deubiquitylating enzyme MATH-33 as an essential DAF-16 regulator in IIS, which stabilizes active DAF-16 protein levels and, as a consequence, influences DAF-16 functions, such as metabolism, stress response, and longevity in C. elegans. MATH-33 associates with DAF-16 in cellulo and in vitro. MATH-33 functions as a deubiquitylase by actively removing ubiquitin moieties from DAF-16, thus counteracting the action of the RLE-1 E3-ubiquitin ligase. Our findings support a model in which MATH-33 promotes DAF-16 stability in response to decreased IIS by directly modulating its ubiquitylation state, suggesting that regulated oscillations in the stability of DAF-16 protein play an integral role in controlling processes such as metabolism and longevity. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Dengue: a new challenge for neurology

    Directory of Open Access Journals (Sweden)

    Marzia Puccioni-Sohler

    2012-11-01

    Full Text Available Dengue infection is a leading cause of illness and death in tropical and subtropical regions of the world. Forty percent of the world’s population currently lives in these areas. The clinical picture resulting from dengue infection can range from relatively minor to catastrophic hemorrhagic fever. Recently, reports have increased of neurological manifestations. Neuropathogenesis seems to be related to direct nervous system viral invasion, autoimmune reaction, metabolic and hemorrhagic disturbance. Neurological manifestations include encephalitis, encephalopathy, meningitis, Guillain-Barré syndrome, myelitis, acute disseminated encephalomyelitis, polyneuropathy, mononeuropathy, and cerebromeningeal hemorrhage. The development of neurological symptoms in patients with positive Immunoglobulin M (IgM dengue serology suggests a means of diagnosing the neurological complications associated with dengue. Viral antigens, specific IgM antibodies, and the intrathecal synthesis of dengue antibodies have been successfully detected in cerebrospinal fluid. However, despite diagnostic advancements, the treatment of neurological dengue is problematic. The launch of a dengue vaccine is expected to be beneficial.

  6. Catalytic function of the mycobacterial binuclear iron monooxygenase in acetone metabolism.

    Science.gov (United States)

    Furuya, Toshiki; Nakao, Tomomi; Kino, Kuniki

    2015-10-01

    Mycobacteria such as Mycobacterium smegmatis strain mc(2)155 and Mycobacterium goodii strain 12523 are able to grow on acetone and use it as a source of carbon and energy. We previously demonstrated by gene deletion analysis that the mimABCD gene cluster, which encodes a binuclear iron monooxygenase, plays an essential role in acetone metabolism in these mycobacteria. In the present study, we determined the catalytic function of MimABCD in acetone metabolism. Whole-cell assays were performed using Escherichia coli cells expressing the MimABCD complex. When the recombinant E. coli cells were incubated with acetone, a product was detected by gas chromatography (GC) analysis. Based on the retention time and the gas chromatography-mass spectrometry (GC-MS) spectrum, the reaction product was identified as acetol (hydroxyacetone). The recombinant E. coli cells produced 1.02 mM of acetol from acetone within 24 h. Furthermore, we demonstrated that MimABCD also was able to convert methylethylketone (2-butanone) to 1-hydroxy-2-butanone. Although it has long been known that microorganisms such as mycobacteria metabolize acetone via acetol, this study provides the first biochemical evidence for the existence of a microbial enzyme that catalyses the conversion of acetone to acetol. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Assessment of adjuvant ademetionine therapy for the bilirubin metabolism and target organ function of neonatal jaundice

    Directory of Open Access Journals (Sweden)

    Fang Xu

    2017-11-01

    Full Text Available Objective: To study the effect of adjuvant ademetionine (SAMe therapy on the bilirubin metabolism and target organ function of neonatal jaundice. Methods: A total of 68 children who were diagnosed with neonatal jaundice in Hubei Jianghan Oilfield General Hospital between March 2015 and April 2017 were selected as the research subjects and randomly divided into the SAMe group who received ademetionine combined with blue ray irradiation and the control group who received blue ray irradiation. The serum contents of bilirubin metabolism indexes and target organ injury markers before treatment as well as 3 d and 7 d after treatment. Results: 3 d and 7 d after treatment, serum TBIL, ALT, AST, GGT, TBA, CK-MB, cTnT, MYO, HBDH, NSE, S100B and GFAP levels of both groups were lower than those before treatment, and serum TBIL, ALT, AST, GGT, TBA, CK-MB, cTnT, MYO, HBDH, NSE, S100B and GFAP levels of SAMe group were lower than those of control group. Conclusion: Adjuvant ademetionine therapy can improve the bilirubin metabolism of neonatal jaundice and reduce the central nerve, myocardial and liver injury.

  8. The Anti-Oxidant Drug Tempol Promotes Functional Metabolic Changes in the Gut Microbiota

    Science.gov (United States)

    Cai, Jingwei; Zhang, Limin; Jones, Richard A.; Correll, Jared B.; Hatzakis, Emmanuel; Smith, Philip B.; Gonzalez, Frank J.; Patterson, Andrew D.

    2016-01-01

    Recent studies have identified the important role of the gut microbiota in the pathogenesis and progression of obesity and related metabolic disorders. The antioxidant tempol was shown to prevent or reduce weight gain and modulate the gut microbiota community in mice; however, the mechanism by which tempol modulates weight gain/loss with respect to the host and gut microbiota has not been clearly established. Here we show that tempol (0, 1, 10, and 50 mg/kg p.o. for 5 days) decreased cecal bacterial fermentation and increased fecal energy excretion in a dose-dependent manner. Liver 1H NMR-based metabolomics identified a dose-dependent decrease in glycogen and glucose, enhanced glucogenic and ketogenic activity (tyrosine and phenylalanine), and increased activation of the glycolysis pathway. Serum 1H NMR-based metabolomics indicated that tempol promotes enhanced glucose catabolism. Hepatic gene expression was significantly altered as demonstrated by an increase in Pepck and G6pase and a decrease in Hnf4a, ChREBP, Fabp1, and Cd36 mRNAs. No significant change in the liver and serum metabolomic profiles were observed in germ-free mice thus establishing a significant role for the gut microbiota in mediating the beneficial metabolic effects of tempol. These results demonstrate that tempol modulates the gut microbial community and its function resulting in reduced host energy availability and a significant shift in liver metabolism towards a more catabolic state. PMID:26696396

  9. Antioxidant Drug Tempol Promotes Functional Metabolic Changes in the Gut Microbiota.

    Science.gov (United States)

    Cai, Jingwei; Zhang, Limin; Jones, Richard A; Correll, Jared B; Hatzakis, Emmanuel; Smith, Philip B; Gonzalez, Frank J; Patterson, Andrew D

    2016-02-05

    Recent studies have identified the important role of the gut microbiota in the pathogenesis and progression of obesity and related metabolic disorders. The antioxidant tempol was shown to prevent or reduce weight gain and modulate the gut microbiota community in mice; however, the mechanism by which tempol modulates weight gain/loss with respect to the host and gut microbiota has not been clearly established. Here we show that tempol (0, 1, 10, and 50 mg/kg p.o. for 5 days) decreased cecal bacterial fermentation and increased fecal energy excretion in a dose-dependent manner. Liver (1)H NMR-based metabolomics identified a dose-dependent decrease in glycogen and glucose, enhanced glucogenic and ketogenic activity (tyrosine and phenylalanine), and increased activation of the glycolysis pathway. Serum (1)H NMR-based metabolomics indicated that tempol promotes enhanced glucose catabolism. Hepatic gene expression was significantly altered as demonstrated by an increase in Pepck and G6pase and a decrease in Hnf4a, ChREBP, Fabp1, and Cd36 mRNAs. No significant change in the liver and serum metabolomic profiles was observed in germ-free mice, thus establishing a significant role for the gut microbiota in mediating the beneficial metabolic effects of tempol. These results demonstrate that tempol modulates the gut microbial community and its function, resulting in reduced host energy availability and a significant shift in liver metabolism toward a more catabolic state.

  10. Exercise training dose differentially alters muscle and heart capillary density and metabolic functions in an obese rat with metabolic syndrome.

    Science.gov (United States)

    Machado, Marcus Vinicius; Vieira, Aline Bomfim; da Conceição, Fabiana Gomes; Nascimento, Alessandro Rodrigues; da Nóbrega, Antonio Claudio Lucas; Tibirica, Eduardo

    2017-12-01

    What is the central question of this study? Regular exercise is recommended as a non-pharmacological approach for the prevention and treatment of metabolic syndrome. However, the impact of different combinations of intensity, duration and frequency of exercise on metabolic syndrome and microvascular density has not been reported. What is the main finding and its importance? We provide evidence on the impact of aerobic exercise dose on metabolic and microvascular alterations in an experimental model of metabolic syndrome induced by high-fat diet. We found that the exercise frequency and duration were the main factors affecting anthropometric and metabolic parameters and microvascular density in the skeletal muscle. Exercise intensity was related only to microvascular density in the heart. We evaluated the effect of the frequency, duration and intensity of exercise training on metabolic parameters and structural capillary density in obese rats with metabolic syndrome. Wistar-Kyoto rats were fed either a standard commercial diet (CON) or a high-fat diet (HFD). Animals that received the HFD were randomly separated into either a sedentary (SED) group or eight different exercise groups that varied according to the frequency, duration and intensity of training. After 12 weeks of aerobic exercise training, the body composition, aerobic capacity, haemodynamic variables, metabolic parameters and capillary density in the heart and skeletal muscle were evaluated. All the exercise training groups showed reduced resting systolic blood pressure and heart rate and normalized fasting glucose. The minimal amount of exercise (90 min per week) produced little effect on metabolic syndrome parameters. A moderate amount of exercise (150 min per week) was required to reduce body weight and improve capillary density. However, only the high amount of exercise (300 min per week) significantly reduced the amount of body fat depots. The three-way ANOVA showed a main effect of exercise

  11. Neurological manifestations of excessive alcohol consumption.

    Science.gov (United States)

    Planas-Ballvé, Anna; Grau-López, Laia; Morillas, Rosa María; Planas, Ramón

    2017-12-01

    This article reviews the different acute and chronic neurological manifestations of excessive alcohol consumption that affect the central or peripheral nervous system. Several mechanisms can be implicated depending on the disorder, ranging from nutritional factors, alcohol-related toxicity, metabolic changes and immune-mediated mechanisms. Recognition and early treatment of these manifestations is essential given their association with high morbidity and significantly increased mortality. Copyright © 2017 Elsevier España, S.L.U., AEEH y AEG. All rights reserved.

  12. Insulin in the nervous system and the mind: Functions in metabolism, memory, and mood.

    Science.gov (United States)

    Lee, Seung-Hwan; Zabolotny, Janice M; Huang, Hu; Lee, Hyon; Kim, Young-Bum

    2016-08-01

    Insulin, a pleotrophic hormone, has diverse effects in the body. Recent work has highlighted the important role of insulin's action in the nervous system on glucose and energy homeostasis, memory, and mood. Here we review experimental and clinical work that has broadened the understanding of insulin's diverse functions in the central and peripheral nervous systems, including glucose and body weight homeostasis, memory and mood, with particular emphasis on intranasal insulin. Implications for the treatment of obesity, type 2 diabetes, dementia, and mood disorders are discussed in the context of brain insulin action. Intranasal insulin may have potential in the treatment of central nervous system-related metabolic disorders.

  13. Neurologic deficit after resection of the sacrum.

    Science.gov (United States)

    Biagini, R; Ruggieri, P; Mercuri, M; Capanna, R; Briccoli, A; Perin, S; Orsini, U; Demitri, S; Arlecchini, S

    1997-01-01

    The authors describe neurologic deficit (sensory, motor, and sphincteral) resulting from sacrifice of the sacral nerve roots removed during resection of the sacrum. The anatomical and functional bases of sphincteral continence and the amount of neurologic deficit are discussed based on level of sacral resection. A large review of the literature on the subject is reported and discussed. The authors emphasize how the neurophysiological bases of sphincteral continence (rectum and bladder) and of sexual ability are still not well known, and how the literature reveals disagreement on the subject. A score system is proposed to evaluate neurologic deficit. The clinical model of neurologic deficit caused by resection of the sacrum may be extended to an evaluation of post-traumatic deficit.

  14. Morning and Evening Blue-Enriched Light Exposure Alters Metabolic Function in Normal Weight Adults

    Science.gov (United States)

    Cheung, Ivy N.; Zee, Phyllis C.; Shalman, Dov; Malkani, Roneil G.; Kang, Joseph; Reid, Kathryn J.

    2016-01-01

    Increasing evidence points to associations between light-dark exposure patterns, feeding behavior, and metabolism. This study aimed to determine the acute effects of 3 hours of morning versus evening blue-enriched light exposure compared to dim light on hunger, metabolic function, and physiological arousal. Nineteen healthy adults completed this 4-day inpatient protocol under dim light conditions (morning group) or 10.5 hours after wake (n = 10; evening group). All participants remained in dim light on Day 2 to serve as their baseline. Subjective hunger and sleepiness scales were collected hourly. Blood was sampled at 30-minute intervals for 4 hours in association with the light exposure period for glucose, insulin, cortisol, leptin, and ghrelin. Homeostatic model assessment of insulin resistance (HOMA-IR) and area under the curve (AUC) for insulin, glucose, HOMA-IR and cortisol were calculated. Comparisons relative to baseline were done using t-tests and repeated measures ANOVAs. In both the morning and evening groups, insulin total area, HOMA-IR, and HOMA-IR AUC were increased and subjective sleepiness was reduced with blue-enriched light compared to dim light. The evening group, but not the morning group, had significantly higher glucose peak value during blue-enriched light exposure compared to dim light. There were no other significant differences between the morning or the evening groups in response to blue-enriched light exposure. Blue-enriched light exposure acutely alters glucose metabolism and sleepiness, however the mechanisms behind this relationship and its impacts on hunger and appetite regulation remain unclear. These results provide further support for a role of environmental light exposure in the regulation of metabolism. PMID:27191727

  15. Morning and Evening Blue-Enriched Light Exposure Alters Metabolic Function in Normal Weight Adults.

    Science.gov (United States)

    Cheung, Ivy N; Zee, Phyllis C; Shalman, Dov; Malkani, Roneil G; Kang, Joseph; Reid, Kathryn J

    2016-01-01

    Increasing evidence points to associations between light-dark exposure patterns, feeding behavior, and metabolism. This study aimed to determine the acute effects of 3 hours of morning versus evening blue-enriched light exposure compared to dim light on hunger, metabolic function, and physiological arousal. Nineteen healthy adults completed this 4-day inpatient protocol under dim light conditions (blue-enriched light exposure on Day 3 starting either 0.5 hours after wake (n = 9; morning group) or 10.5 hours after wake (n = 10; evening group). All participants remained in dim light on Day 2 to serve as their baseline. Subjective hunger and sleepiness scales were collected hourly. Blood was sampled at 30-minute intervals for 4 hours in association with the light exposure period for glucose, insulin, cortisol, leptin, and ghrelin. Homeostatic model assessment of insulin resistance (HOMA-IR) and area under the curve (AUC) for insulin, glucose, HOMA-IR and cortisol were calculated. Comparisons relative to baseline were done using t-tests and repeated measures ANOVAs. In both the morning and evening groups, insulin total area, HOMA-IR, and HOMA-IR AUC were increased and subjective sleepiness was reduced with blue-enriched light compared to dim light. The evening group, but not the morning group, had significantly higher glucose peak value during blue-enriched light exposure compared to dim light. There were no other significant differences between the morning or the evening groups in response to blue-enriched light exposure. Blue-enriched light exposure acutely alters glucose metabolism and sleepiness, however the mechanisms behind this relationship and its impacts on hunger and appetite regulation remain unclear. These results provide further support for a role of environmental light exposure in the regulation of metabolism.

  16. Astroglia in neurological diseases

    Czech Academy of Sciences Publication Activity Database

    Verkhratsky, Alexei; Rodríguez Arellano, Jose Julio; Parpura, V.

    2013-01-01

    Roč. 8, č. 2 (2013), s. 149-158 ISSN 1479-6708 R&D Projects: GA ČR(CZ) GAP304/11/0184; GA ČR GA309/09/1696 Institutional support: RVO:68378041 Keywords : amyotrophic lateral sclerosis * Alzheimer's disease * Alexander disease Subject RIV: FH - Neurology

  17. American Academy of Neurology

    Science.gov (United States)

    ... on draft guideline manuscript on autism and sleep problems. Capitol Hill Report: Opioid Epidemic Declared Public Health Emergency Read the latest news on how the AAN is fighting for neurology in Washington DC. New Study: Virtual Reality Training May Be as Effective as Regular Therapy ...

  18. Neurological aspects of eclampsia

    Directory of Open Access Journals (Sweden)

    Jovanović Dejana

    2003-01-01

    Full Text Available The difficult types of preeclampsia and eclampsia are presented with the neurological symptoms. The break of cerebral autoregulation mechanism plays the most important role in pathogenesis of cerebral vasospasm. Nevertheless eclampsia isn’t just an ordinary hypertensive encephalopathy because other pathogenic mechanisms are involved in its appearance. The main neuropathologic changes are multifocal vasogenic edema, perivascular multiple microinfarctions and petechial hemorrhages. Neurological clinical manifestations are convulsions, headache, visual disturbances and rarely other discrete focal neurological symptoms. Eclampsia is a high-risk factor for onset of hemorrhagic or ischemic stroke. This is a reason why neurological diagnostic tests are sometimes needed. The method of choice for evaluation of complicated eclampsia is computerized brain topography that shows multiple areas of hypodensity in occipitoparietal regions. These changes are focal vasogenic cerebral edema. For differential diagnosis of eclampsia and stroke other diagnostic methods can be used - fundoscopic exam, magnetic resonance brain imaging, cerebral angiography and cerebrospinal fluid exam. The therapy of eclampsia considers using of magnesium sulfate, antihypertensive, anticonvulsive and antiedematous drugs.

  19. Wikipedia and neurological disorders

    NARCIS (Netherlands)

    Brigo, Francesco; Igwe, Stanley C.; Nardone, Raffaele; Lochner, Piergiorgio; Tezzon, Frediano; Otte, WM

    2015-01-01

    Our aim was to evaluate Wikipedia page visits in relation to the most common neurological disorders by determining which factors are related to peaks in Wikipedia searches for these conditions. Millions of people worldwide use the internet daily as a source of health information. Wikipedia is a

  20. A Copolymer Scaffold Functionalized with Nanodiamond Particles Enhances Osteogenic Metabolic Activity and Bone Regeneration.

    Science.gov (United States)

    Yassin, Mohammed A; Mustafa, Kamal; Xing, Zhe; Sun, Yang; Fasmer, Kristine Eldevik; Waag, Thilo; Krueger, Anke; Steinmüller-Nethl, Doris; Finne-Wistrand, Anna; Leknes, Knut N

    2017-06-01

    Functionalizing polymer scaffolds with nanodiamond particles (nDPs) has pronounced effect on the surface properties, such as improved wettability, an increased active area and binding sites for cellular attachment and adhesion, and increased ability to immobilize biomolecules by physical adsorption. This study aims to evaluate the effect of poly(l-lactide-co-ε-caprolactone) (poly(LLA-co-CL)) scaffolds, functionalized with nDPs, on bone regeneration in a rat calvarial critical size defect. Poly(LLA-co-CL) scaffolds functionalized with nDPs are also compared with pristine scaffolds with reference to albumin adsorption and seeding efficiency of bone marrow stromal cells (BMSCs). Compared with pristine scaffolds, the experimental scaffolds exhibit a reduction in albumin adsorption and a significant increase in the seeding efficiency of BMSCs (p = 0.027). In the calvarial defects implanted with BMSC-seeded poly(LLA-co-CL)/nDPs scaffolds, live imaging at 12 weeks discloses a significant increase in osteogenic metabolic activity (p = 0.016). Microcomputed tomography, confirmed by histological data, reveals a substantial increase in bone volume (p = 0.021). The results show that compared with conventional poly(LLA-co-CL) scaffolds those functionalized with nDPs promote osteogenic metabolic activity and mineralization capacity. It is concluded that poly(LLA-co-CL) composite matrices functionalized with nDPs enhance osteoconductivity and therefore warrant further study as potential scaffolding material for bone tissue engineering. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Metabolic pattern analysis of early detection in Alzheimer's disease from other types of dementias and correlated with cognitive function

    International Nuclear Information System (INIS)

    Ju, R. H.; Lee, C. W.; Jung, Y. A.; Sohn, H. S.; Kim, S. H.; Seo, T. S

    2004-01-01

    PET/CT studies have demonstrated temporoparietal hypometabolism in probable and definite Alzheimer's disease (AD), a pattern that may help differentiate AD from other types of dementias. Seeking to distinguish Dementia with Lewy bodies (DLB) and Alzheimer's disease (AD), we examined brain glucose metabolism of DLB and AD. Identification of individual differences in patterns of regional cerebral glucose metabolism (rCMRglc) interactions may be important for early detection of AD. We elucidate the relationship between reduced cognitive function and cerebral metabolism. Ten patients with the diagnosis of AD, 3 DLB patients underwent 18F-FDG PET CT. We applied statistical mapping procedure to evaluate the diagnostic power of rCMRglc patterns for differentiation and also correlated with Korean-mini mental status exam (K-MMSE) score include orientation time, place, registration, attention, calculation, recaIl, language and visuospatial function. Glucose metabolic pattern analysis confirmed AD and DLB patients showed significant metabolic reductions involving parietotemporal association, posterior cingulate, and frontal association cortex. DLB patients showed significant metabolic reductions in the occipital cortex, particularly in the primary visual cortex. Covariate analysis revealed that occipital metabolic changes in DLB were independent from those in the adjacent parietotemporal cortices. AnaIysis of clinically diagnosed probable AD patients showed a significantly higher frequency of primary visual metabolic reduction among patients who fulfilled clinical criteria for DLB. occipital hypometabolism is a potential discriminate marker to distinguish DLB versus AD

  2. Abnormal barrier function in the pathogenesis of ichthyosis: therapeutic implications for lipid metabolic disorders.

    Science.gov (United States)

    Elias, Peter M; Williams, Mary L; Feingold, Kenneth R

    2012-01-01

    Ichthyoses, including inherited disorders of lipid metabolism, display a permeability barrier abnormality in which the severity of the clinical phenotype parallels the prominence of the barrier defect. The pathogenesis of the cutaneous phenotype represents the consequences of the mutation for epidermal function, coupled with a "best attempt" by affected epidermis to generate a competent barrier in a terrestrial environment. A compromised barrier in normal epidermis triggers a vigorous set of metabolic responses that rapidly normalizes function, but ichthyotic epidermis, which is inherently compromised, only partially succeeds in this effort. Unraveling mechanisms that account for barrier dysfunction in the ichthyoses has identified multiple, subcellular, and biochemical processes that contribute to the clinical phenotype. Current treatment of the ichthyoses remains largely symptomatic: directed toward reducing scale or corrective gene therapy. Reducing scale is often minimally effective. Gene therapy is impeded by multiple pitfalls, including difficulties in transcutaneous drug delivery, high costs, and discomfort of injections. We have begun to use information about disease pathogenesis to identify novel, pathogenesis-based therapeutic strategies for the ichthyoses. The clinical phenotype often reflects not only a deficiency of pathway end product due to reduced-function mutations in key synthetic enzymes but often also accumulation of proximal, potentially toxic metabolites. As a result, depending upon the identified pathomechanism(s) for each disorder, the accompanying ichthyosis can be treated by topical provision of pathway product (eg, cholesterol), with or without a proximal enzyme inhibitor (eg, simvastatin), to block metabolite production. Among the disorders of distal cholesterol metabolism, the cutaneous phenotype in Congenital Hemidysplasia with Ichthyosiform Erythroderma and Limb Defects (CHILD syndrome) and X-linked ichthyosis reflect metabolite

  3. Abnormal barrier function in the pathogenesis of ichthyosis: Therapeutic implications for lipid metabolic disorders☆

    Science.gov (United States)

    Elias, Peter M.; Williams, Mary L.; Feingold, Kenneth R.

    2013-01-01

    Ichthyoses, including inherited disorders of lipid metabolism, display a permeability barrier abnormality in which the severity of the clinical phenotype parallels the prominence of the barrier defect. The pathogenesis of the cutaneous phenotype represents the consequences of the mutation for epidermal function, coupled with a “best attempt” by affected epidermis to generate a competent barrier in a terrestrial environment. A compromised barrier in normal epidermis triggers a vigorous set of metabolic responses that rapidly normalizes function, but ichthyotic epidermis, which is inherently compromised, only partially succeeds in this effort. Unraveling mechanisms that account for barrier dysfunction in the ichthyoses has identified multiple, subcellular, and biochemical processes that contribute to the clinical phenotype. Current treatment of the ichthyoses remains largely symptomatic: directed toward reducing scale or corrective gene therapy. Reducing scale is often minimally effective. Gene therapy is impeded by multiple pitfalls, including difficulties in transcutaneous drug delivery, high costs, and discomfort of injections. We have begun to use information about disease pathogenesis to identify novel, pathogenesis-based therapeutic strategies for the ichthyoses. The clinical phenotype often reflects not only a deficiency of pathway end product due to reduced-function mutations in key synthetic enzymes but often also accumulation of proximal, potentially toxic metabolites. As a result, depending upon the identified pathomechanism(s) for each disorder, the accompanying ichthyosis can be treated by topical provision of pathway product (eg, cholesterol), with or without a proximal enzyme inhibitor (eg, simvastatin), to block metabolite production. Among the disorders of distal cholesterol metabolism, the cutaneous phenotype in Congenital Hemidysplasia with Ichthyosiform Erythroderma and Limb Defects (CHILD syndrome) and X-linked ichthyosis reflect metabolite

  4. Gancao-Gansui combination impacts gut microbiota diversity and related metabolic functions.

    Science.gov (United States)

    Yu, Jingao; Guo, Jianming; Tao, Weiwei; Liu, Pei; Shang, Erxin; Zhu, Zhenhua; Fan, Xiuhe; Shen, Juan; Hua, Yongqing; Zhu, Kevin Yue; Tang, Yuping; Duan, Jin-Ao

    2018-03-25

    The theory of "eighteen incompatible medicaments" (EIM) in traditional Chinese medicine (TCM) is the most representative case of herbal-herbal interactions. Gancao and Gansui are one of the incompatible herbal pairs in EIM. Gancao, also known as "licorice", is the most frequently used Chinese herb or food additive. Gansui, the root of Euphorbia kansui T.P. Wang, is another famous Chinese herb usually used to treat edema, ascites and asthma but could induce gastrointestinal (GI) tract irritation. Although Gancao and Gansui are incompatible herbal pairs, they are still used in combination in the famous "Gansui-Banxia" decoction. This study was conducted to investigate if Gancao-Gansui combination could exacerbate Gansui induced GI tract injury. Moreover, the impact of Gancao-Gansui combination to gut microbiota and related metabolism pathways were evaluated. Normal mice were divided into different groups and treated with Gancao extracts, Gansui extracts, and Gancao-Gansui combination extracts for 7 days. Serum biomarkers (diamine oxidase activity, lipopolysaccharide, motilin, IL-1β, IL-6, TNF-α) were determined to reflect GI tract damage. Gut microbiota diversity was studied by 16S rDNA sequencing and metagenomes analysis were also conducted to reflect functional genes expression alteration. Fecal hydrogen sulfide concentrations were measured by spectrophotometry to confirm the alteration of Desulfovibrio genus. Fecal lipid metabolomics study was conducted by GC-MS analysis to confirm the change of metagenomes and Mycoplasma abundance. Gancao-Gansui combination did not exacerbate GI tract tissue or functional damage but caused gut microbiota dysbiosis and increased some rare genus's abundance including Desulfovibrio and Mycoplasma. Desulfovibrio genus proliferation was confirmed by the disturbance of fecal hydrogen sulfide homeostasis. Gancao-Gansui combination also dys-regulated the metabolic genes in metagenomes. Mycoplasma genus proliferation and the metagenomes

  5. Early-Life Exposure to Perfluoroalkyl Substances and Childhood Metabolic Function.

    Science.gov (United States)

    Fleisch, Abby F; Rifas-Shiman, Sheryl L; Mora, Ana M; Calafat, Antonia M; Ye, Xiaoyun; Luttmann-Gibson, Heike; Gillman, Matthew W; Oken, Emily; Sagiv, Sharon K

    2017-03-01

    Perfluoroalkyl substances (PFASs) are synthetic chemicals that may persist in the environment and in humans. There is a possible association between early-life PFAS exposure and metabolic dysfunction in later life, but data are limited. We studied 665 mother-child pairs in Project Viva, a Boston, Massachusetts-area cohort recruited 1999-2002. We quantified concentrations of PFASs [perfluorooctanoate (PFOA), perfluorooctane sulfonate (PFOS), perfluorononanoate (PFNA), perfluorohexane sulfonate (PFHxS), and perfluorodecanoate (PFDeA)] in maternal plasma collected at the first prenatal visit (median, 9.6 weeks gestation) and in child plasma from the mid-childhood research visit (median, 7.7 years). We assessed leptin, adiponectin, and homeostatic model assessment of insulin resistance (HOMA-IR) in mid-childhood. We fit covariate-adjusted linear regression models and conducted stratified analyses by child sex. Children with higher PFAS concentrations had lower HOMA-IR [e.g., -10.1% (95% CI: -17.3, -2.3) per interquartile range increment in PFOA]. This inverse association between child PFAS and HOMA-IR was more pronounced in females [e.g., PFOA: -15.6% (95% CI: -25.4, -4.6) vs. -6.1% (95% CI: -16.2, 5.2) for males]. Child PFAS plasma concentrations were not associated with leptin or adiponectin. Prenatal PFAS plasma concentrations were not associated with leptin, adiponectin, or HOMA-IR in offspring. We found no evidence for an adverse effect of early-life PFAS exposure on metabolic function in mid-childhood. In fact, children with higher PFAS concentrations had lower insulin resistance. Citation: Fleisch AF, Rifas-Shiman SL, Mora AM, Calafat AM, Ye X, Luttmann-Gibson H, Gillman MW, Oken E, Sagiv SK. 2017. Early-life exposure to perfluoroalkyl substances and childhood metabolic function. Environ Health Perspect 125:481-487; http://dx.doi.org/10.1289/EHP303.

  6. Effects of black raspberry on lipid profiles and vascular endothelial function in patients with metabolic syndrome.

    Science.gov (United States)

    Jeong, Han Saem; Hong, Soon Jun; Lee, Tae-Bum; Kwon, Ji-Wung; Jeong, Jong Tae; Joo, Hyung Joon; Park, Jae Hyoung; Ahn, Chul-Min; Yu, Cheol Woong; Lim, Do-Sun

    2014-10-01

    Black raspberry (Rubus occidentalis) has been known for its anti-inflammatory and anti-oxidant effects. However, short-term effects of black raspberry on lipid profiles and vascular endothelial function have not been investigated in patients with metabolic syndrome. Patients with metabolic syndrome (n = 77) were prospectively randomized into a group with black raspberry (n = 39, 750 mg/day) and a placebo group (n = 38) during a 12-week follow-up. Lipid profiles, brachial artery flow-mediated dilatation (baFMD), and inflammatory cytokines such as IL-6, TNF-α, C-reactive protein, adiponectin, sICAM-1, and sVCAM-1 were measured at the baseline and at the 12-week follow-up. Decreases from the baseline in the total cholesterol level (-22.8 ± 30.4 mg/dL vs. -1.9 ± 31.8 mg/dL, p raspberry than in the placebo group. Increases in baFMD at the 12-week follow-up were significantly greater in the group with black raspberry than in the placebo group (0.33 ± 0.44 mm vs. 0.10 ± 0.35 mm, p raspberry. The use of black raspberry significantly decreased serum total cholesterol level and inflammatory cytokines, thereby improving vascular endothelial function in patients with metabolic syndrome during the 12-week follow-up. Copyright © 2014 John Wiley & Sons, Ltd.

  7. miR-184 Regulates Pancreatic β-Cell Function According to Glucose Metabolism*

    Science.gov (United States)

    Tattikota, Sudhir G.; Rathjen, Thomas; Hausser, Jean; Khedkar, Aditya; Kabra, Uma D.; Pandey, Varun; Sury, Matthias; Wessels, Hans-Hermann; Mollet, Inês G.; Eliasson, Lena; Selbach, Matthias; Zinzen, Robert P.; Zavolan, Mihaela; Kadener, Sebastian; Tschöp, Matthias H.; Jastroch, Martin; Friedländer, Marc R.; Poy, Matthew N.

    2015-01-01

    In response to fasting or hyperglycemia, the pancreatic β-cell alters its output of secreted insulin; however, the pathways governing this adaptive response are not entirely established. Although the precise role of microRNAs (miRNAs) is also unclear, a recurring theme emphasizes their function in cellular stress responses. We recently showed that miR-184, an abundant miRNA in the β-cell, regulates compensatory proliferation and secretion during insulin resistance. Consistent with previous studies showing miR-184 suppresses insulin release, expression of this miRNA was increased in islets after fasting, demonstrating an active role in the β-cell as glucose levels lower and the insulin demand ceases. Additionally, miR-184 was negatively regulated upon the administration of a sucrose-rich diet in Drosophila, demonstrating strong conservation of this pathway through evolution. Furthermore, miR-184 and its target Argonaute2 remained inversely correlated as concentrations of extracellular glucose increased, underlining a functional relationship between this miRNA and its targets. Lastly, restoration of Argonaute2 in the presence of miR-184 rescued suppression of miR-375-targeted genes, suggesting these genes act in a coordinated manner during changes in the metabolic context. Together, these results highlight the adaptive role of miR-184 according to glucose metabolism and suggest the regulatory role of this miRNA in energy homeostasis is highly conserved. PMID:26152724

  8. Saccharin induced liver inflammation in mice by altering the gut microbiota and its metabolic functions.

    Science.gov (United States)

    Bian, Xiaoming; Tu, Pengcheng; Chi, Liang; Gao, Bei; Ru, Hongyu; Lu, Kun

    2017-09-01

    Maintaining the balance of the gut microbiota and its metabolic functions is vital for human health, however, this balance can be disrupted by various external factors including food additives. A range of food and beverages are sweetened by saccharin, which is generally considered to be safe despite controversial debates. However, recent studies indicated that saccharin perturbed the gut microbiota. Inflammation is frequently associated with disruptions of the gut microbiota. The aim of this study is to investigate the relationship between host inflammation and perturbed gut microbiome by saccharin. C57BL/6J male mice were treated with saccharin in drinking water for six months. Q-PCR was used to detect inflammatory markers in mouse liver, while 16S rRNA gene sequencing and metabolomics were used to reveal changes of the gut microbiota and its metabolomic profiles. Elevated expression of pro-inflammatory iNOS and TNF-α in liver indicated that saccharin induced inflammation in mice. The altered gut bacterial genera, enriched orthologs of pathogen-associated molecular patterns, such as LPS and bacterial toxins, in concert with increased pro-inflammatory metabolites suggested that the saccharin-induced liver inflammation could be associated with the perturbation of the gut microbiota and its metabolic functions. Copyright © 2017. Published by Elsevier Ltd.

  9. Microbial metaproteomics for characterizing the range of metabolic functions and activities of human gut microbiota.

    Science.gov (United States)

    Xiong, Weili; Abraham, Paul E; Li, Zhou; Pan, Chongle; Hettich, Robert L

    2015-10-01

    The human gastrointestinal tract is a complex, dynamic ecosystem that consists of a carefully tuned balance of human host and microbiota membership. The microbiome is not merely a collection of opportunistic parasites, but rather provides important functions to the host that are absolutely critical to many aspects of health, including nutrient transformation and absorption, drug metabolism, pathogen defense, and immune system development. Microbial metaproteomics provides the ability to characterize the human gut microbiota functions and metabolic activities at a remarkably deep level, revealing information about microbiome development and stability as well as their interactions with their human host. Generally, microbial and human proteins can be extracted and then measured by high performance MS-based proteomics technology. Here, we review the field of human gut microbiome metaproteomics, with a focus on the experimental and informatics considerations involved in characterizing systems ranging from low-complexity model gut microbiota in gnotobiotic mice, to the emerging gut microbiome in the GI tract of newborn human infants, and finally to an established gut microbiota in human adults. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. The exploration of the changes in bone metabolism in patients with abnormal thyroid function

    International Nuclear Information System (INIS)

    Chu Shaolin; Li Xiaohong; Lei Qiufang; Ye Peihong; Chai Luhua

    2001-01-01

    To explore the changes in bone metabolism with abnormal thyroid function, BGP and PTH in 91 patients with hyperthyroidism, 37 patients with hypothyroidism, 51 controls, were measured by means of IRMA, calcaneus heel bone density (BMD) was measured by means of 241 Am single photon absorptiometry. BGP levels in hyperthyroidism were significantly higher than those in controls (P < 0.001). BGP levels in hypothyroidism were significantly lower than those in controls (P < 0.001). PTH levels in hyperthyroidism were a little lower than those in controls (P < 0.05). PTH levels in hypothyroidism were significantly higher than those in controls (P < 0.001). The measurement of BMD showed that the prevalence rates of osteoporosis (OP) in hyperthyroidism and hypothyroidism were significantly higher than those in controls. In hyperthyroidism and hypothyroidism groups the age of OP tends to be younger. The patients with hyperthyroidism over 55 years of age were all suffered from OP. The changes in BGP and PTH were earlier than BMD, so BGP and PTH can be used as sensitive indicator of the changes in bone metabolism with abnormal thyroid function, especially for curative effect observations

  11. A spectroscopic approach toward depression diagnosis: local metabolism meets functional connectivity.

    Science.gov (United States)

    Demenescu, Liliana Ramona; Colic, Lejla; Li, Meng; Safron, Adam; Biswal, B; Metzger, Coraline Danielle; Li, Shijia; Walter, Martin

    2017-03-01

    Abnormal anterior insula (AI) response and functional connectivity (FC) is associated with depression. In addition to clinical features, such as severity, AI FC and its metabolism further predicted therapeutic response. Abnormal FC between anterior cingulate and AI covaried with reduced glutamate level within cingulate cortex. Recently, deficient glial glutamate conversion was found in AI in major depression disorder (MDD). We therefore postulate a local glutamatergic mechanism in insula cortex of depressive patients, which is correlated with symptoms severity and itself influences AI's network connectivity in MDD. Twenty-five MDD patients and 25 healthy controls (HC) matched on age and sex underwent resting state functional magnetic resonance imaging and magnetic resonance spectroscopy scans. To determine the role of local glutamate-glutamine complex (Glx) ratio on whole brain AI FC, we conducted regression analysis with Glx relative to creatine (Cr) ratio as factor of interest and age, sex, and voxel tissue composition as nuisance factors. We found that in MDD, but not in HC, AI Glx/Cr ratio correlated positively with AI FC to right supramarginal gyrus and negatively with AI FC toward left occipital cortex (p family wise error). AI Glx/Cr level was negatively correlated with HAMD score (p disintegration of insula toward low level and supramodal integration areas, in MDD. While causality cannot directly be inferred from such correlation, our finding helps to define a multilevel network of response-predicting regions based on local metabolism and connectivity strength.

  12. Neudesin as a unique secreted protein with multi-functional roles in neural functions, energy metabolism, and tumorigenesis

    Directory of Open Access Journals (Sweden)

    Hiroya eOhta

    2015-05-01

    Full Text Available Neudesin was originally identified as a secreted protein with neurotrophic activity, and, thereafter, was also termed neuron-derived neurotrophic factor (NENF or the candidate oncogene GIG47. Neudesin with a conserved cytochrome 5-like heme/steroid-binding domain activates intracellular signaling pathways possibly through the activation of G protein-coupled receptors. In the brain, hypothalamic Neudesin decreases food intake. Neudesin knockout mice also exhibit anxiety-like behavior, indicating its roles in the hippocampal anxiety circuitry. Neudesin is also expressed in various peripheral tissues. Neudesin knockout mice are strongly resistant to high-fat diet-induced obesity due to elevated systemic sympathetic activity, heat production, and adipocytic lipolysis. Neudesin, which is over-expressed or induced by DNA hypomethylation in multiple human cancers, also stimulates tumorigenesis. These findings indicate that Neudesin plays roles in neural functions, energy metabolism, and tumorigenesis and is expected to be a novel target for obesity and anti-cancer treatments.

  13. Development of baked and extruded functional foods from metabolic syndrome specific ingredient mix.

    Science.gov (United States)

    Miglani, Neetu; Bains, Kiran; Kaur, Harpreet

    2015-09-01

    The study was aimed to develop baked and extruded functional foods from Metabolic Syndrome (MS) specific designed ingredient mixes with optimum amino acid makeup using key food ingredients with functional properties such as whole cereals, legumes, skimmed milk powder, along with flaxseeds and fenugreek seeds. Two cereals viz. barley and oats and four pulses viz. mung bean, cowpea, bengal gram and soybean were blended in different proportions in order to balance the limiting amino acid lysine in the wheat flour. Three products namely bread, extruded snack and noodles prepared from twenty five ingredient mixes. Six ingredient mixes of breads and four ingredient mixes each of extruded snack and noodles specifically designed for MS patients were organoleptically at par with control wheat flour products. The acceptable products had significantly (p ≤ 0.05) higher lysine, crude protein, ash and fibre and low carbohydrates in compare control whole wheat flour products, hence appropriate for MS patients.

  14. GRK2 – A Link Between Myocardial Contractile Function and Cardiac Metabolism

    Science.gov (United States)

    Woodall, Meryl C.; Ciccarelli, Michele; Woodall, Benjamin P.; Koch, Walter J.

    2014-01-01

    Heart failure (HF) causes a tremendous burden on the worldwide healthcare system, affecting more than 23 million people. There are many cardiovascular disorders that contribute to the development of HF and multiple risk factors that accelerate its occurrence, but regardless of its underlying cause, HF is characterized by a marked decrease in myocardial contractility and loss of pump function. One biomarker molecule consistently shown to be upregulated in human HF and several animal models is G protein-coupled receptor (GPCR) kinase 2 (GRK2), a kinase originally discovered to be involved in GPCR desensitization, especially β-adrenergic receptors (βARs). Indeed, higher levels of GRK2 can impair βAR-mediated inotropic reserve and its inhibition or molecular reduction has shown to improve pump function in several animal models including a pre-clinical pig model of HF. Recently, non-classical roles for GRK2 in cardiovascular disease have been described, including negative regulation of insulin signaling, a role in myocyte cell survival and apoptotic signaling, and it has been shown to be localized in/on mitochondria. These new roles of GRK2 suggest that GRK2 may be a nodal link in the myocyte, influencing both cardiac contractile function and cell metabolism and survival and contributing to HF independent of its canonical role on GPCR desensitization. In this review, classical and non-classical roles for GRK2 will be discussed, focusing on recently discovered roles for GRK2 in cardiomyocyte metabolism and the effects that these roles may have on myocardial contractile function and HF development. PMID:24812353

  15. Effect of basal ganglia calcification on its glucose metabolism and dopaminergic function in idiopathic hypoparathyroidism.

    Science.gov (United States)

    Modi, Sagar; Arora, Geetanjali; Bal, Chandra Shekhar; Sreenivas, Vishnubhatla; Kailash, Suparna; Sagar, Rajesh; Goswami, Ravinder

    2015-10-01

    The functional significance of basal ganglia calcification (BGC) in idiopathic hypoparathyroidism (IH) is not clear. To assess the effect of BGC on glucose metabolism and dopaminergic function in IH. (18) F-FDG and (99m) Tc-TRODAT-1 nuclear imaging were performed in 35 IH patients with (n = 26) and without (n = 9) BGC. Controls were subjects without hypoparathyroidism or BGC (nine for (18) F-FDG and 12 for (99m) Tc-TRODAT-1). Relationship of the glucose metabolism and dopaminergic function was assessed with the neuropsychological and biochemical abnormalities. (18) F-FDG uptake in IH patients with calcification at caudate and striatum was less than that of IH patients without calcification (1·06 ± 0·13 vs 1·24 ± 0·09, P = basal ganglia was comparable between IH with and without BGC and between IH without BGC and controls. Serum calcium-phosphorus ratio maintained by the patients correlated with (18) F-FDG uptake at striatum (r = 0·57, P = 0·001). For every 0·1 unit reduction in calcium-phosphorus ratio, (18) F-FDG uptake decreased by 2·5 ± 0·68% (P = 0·001). BGC was associated with modest reduction (15%) in (18) F-FDG uptake at basal ganglia in IH but did not affect dopaminergic function. (18) F-FDG uptake did not correlate with neuropsychological dysfunctions. Interestingly, chronic hypocalcaemia-hyperphosphataemia also contributed to reduction in (18) F-FDG uptake which was independent of BGC. © 2014 John Wiley & Sons Ltd.

  16. Glucose-functionalized gold nanoparticles as a metabolically targeted CT contrast agent for distinguishing tumors from non-malignant metabolically active processes

    Science.gov (United States)

    Dreifuss, Tamar; Motiei, Menachem; Betzer, Oshra; Popovtzer, Aron; Abourbeh, Galith; Mishani, Eyal; Popovtzer, Rachela

    2017-02-01

    The highly used cancer imaging technique, [18F]FDG-PET, is based on the increased glucose metabolic activity in tumors. However, since there are other biological processes that exhibit increased metabolic activity, in particular inflammation, this methodology is prone to non-specificity for cancer. Herein we describe the development of a novel nanoparticle-based approach, utilizes Glucose-Functionalized Gold Nanoparticles (GF-GNPs) as a metabolically targeted CT contrast agent. Our method has demonstrated specific tumor targeting and has successfully differentiated between cancer and inflammation in a combined tumor-inflammation mouse model, due to dissimilarities in vasculatures in different pathologic conditions. This novel approach provides new capabilities in cancer imaging, and can be applicable to a wide range of cancers.

  17. Gap-filling analysis of the iJO1366 Escherichia coli metabolic network reconstruction for discovery of metabolic functions

    Directory of Open Access Journals (Sweden)

    Orth Jeffrey D

    2012-05-01

    Full Text Available Abstract Background The iJO1366 reconstruction of the metabolic network of Escherichia coli is one of the most complete and accurate metabolic reconstructions available for any organism. Still, because our knowledge of even well-studied model organisms such as this one is incomplete, this network reconstruction contains gaps and possible errors. There are a total of 208 blocked metabolites in iJO1366, representing gaps in the network. Results A new model improvement workflow was developed to compare model based phenotypic predictions to experimental data to fill gaps and correct errors. A Keio Collection based dataset of E. coli gene essentiality was obtained from literature data and compared to model predictions. The SMILEY algorithm was then used to predict the most likely missing reactions in the reconstructed network, adding reactions from a KEGG based universal set of metabolic reactions. The feasibility of these putative reactions was determined by comparing updated versions of the model to the experimental dataset, and genes were predicted for the most feasible reactions. Conclusions Numerous improvements to the iJO1366 metabolic reconstruction were suggested by these analyses. Experiments were performed to verify several computational predictions, including a new mechanism for growth on myo-inositol. The other predictions made in this study should be experimentally verifiable by similar means. Validating all of the predictions made here represents a substantial but important undertaking.

  18. Identification and functional characterization of a novel MTFMT mutation associated with selective vulnerability of the visual pathway and a mild neurological phenotype.

    Science.gov (United States)

    La Piana, Roberta; Weraarpachai, Woranontee; Ospina, Luis H; Tetreault, Martine; Majewski, Jacek; Bruce Pike, G; Decarie, Jean-Claude; Tampieri, Donatella; Brais, Bernard; Shoubridge, Eric A

    2017-04-01

    Mitochondrial protein synthesis is initiated by formylated tRNA-methionine, which requires the activity of MTFMT, a methionyl-tRNA formyltransferase. Mutations in MTFMT have been associated with Leigh syndrome, early-onset mitochondrial leukoencephalopathy, microcephaly, ataxia, and cardiomyopathy. We identified compound heterozygous MTFMT mutations in a patient with a mild neurological phenotype and late-onset progressive visual impairment. MRI studies documented a progressive and selective involvement of the retrochiasmatic visual pathway. MTFMT was undetectable by immunoblot analysis of patient fibroblasts, resulting in specific defects in mitochondrial protein synthesis and assembly of the oxidative phosphorylation complexes. This report expands the clinical and MRI phenotypes associated with MTFMT mutations, illustrating the complexity of genotype-phenotype relationships in mitochondrial translation disorders.

  19. Assesment of Autonomic Function in Metabolic Syndrome using Combination Heart Rate Variability and Heart Rate Turbulence

    Directory of Open Access Journals (Sweden)

    Gülay Aydın

    2013-12-01

    Full Text Available INTRODUCTION: Metabolic syndrome (MetS is described as a group of various abnormal metabolic risk factors such as obesity, dyslipidemia, increased blood pressure, increased plasma glucose levels, prothrombotic condition and proinflammatory state. These parameters are related to decreased parasympathetic and increased sympathetic activity. We aimed to evaluate autonomic function using a combination with heart rate variability (HRV and heart rate turbulence (HRT in metabolic syndrome to compare non-metabolic syndrome(non-MetS. METHODS: We selected consecutive 50 patients with MetS and 50 patients with healthy non-MetS individuals. All patients underwent 24 hours holter monitoring to evaluate HRT and HRV parameters. RESULTS: Age of patients was not different in two groups. Mean age of MetS patients was 57,50±12,13 and 54,6±10,25 in non- MetS individuals. Sex of patients was non different in MetS compared to non-MetS (37 female and 13 male vs. 22 female, 28 male p<0,05 respectively. SDNN and RMSSD was lower in MetS compared to those without MetS (131,96±49,12 vs 179,59±85,83 p=0,03 and 78,64±35,22 vs 112,73±81,24 p=0,08 respectively. SDANN, pNN50,Mean RR, mean heart rate, count of ventricular premature complex(VPC were not different between two groups. Turbulence Slope(TS was not different in two groups. Turbulence Onset(TO was higher in MetS compared to non-MetS (2,01±15,29 and -6,21±13,5 p=0,005. DISCUSSION AND CONCLUSION: We showed that autonomic function in MetS was impaired using a combination with HRT and HRV. These patients should be followed closely for adverse cardiovascular outcome especially including cardiac arrhythmia.

  20. Autoimmune channelopathies in paraneoplastic neurological syndromes.

    Science.gov (United States)

    Joubert, Bastien; Honnorat, Jérôme

    2015-10-01

    Paraneoplastic neurological syndromes and autoimmune encephalitides are immune neurological disorders occurring or not in association with a cancer. They are thought to be due to an autoimmune reaction against neuronal antigens ectopically expressed by the underlying tumour or by cross-reaction with an unknown infectious agent. In some instances, paraneoplastic neurological syndromes and autoimmune encephalitides are related to an antibody-induced dysfunction of ion channels, a situation that can be labelled as autoimmune channelopathies. Such functional alterations of ion channels are caused by the specific fixation of an autoantibody upon its target, implying that autoimmune channelopathies are usually highly responsive to immuno-modulatory treatments. Over the recent years, numerous autoantibodies corresponding to various neurological syndromes have been discovered and their mechanisms of action partially deciphered. Autoantibodies in neurological autoimmune channelopathies may target either directly ion channels or proteins associated to ion channels and induce channel dysfunction by various mechanisms generally leading to the reduction of synaptic expression of the considered channel. The discovery of those mechanisms of action has provided insights on the regulation of the synaptic expression of the altered channels as well as the putative roles of some of their functional subdomains. Interestingly, patients' autoantibodies themselves can be used as specific tools in order to study the functions of ion channels. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Vaccination and neurological disorders

    Directory of Open Access Journals (Sweden)

    Anastasia Gkampeta

    2015-12-01

    Full Text Available Active immunization of children has been proven very effective in elimination of life threatening complications of many infectious diseases in developed countries. However, as vaccination-preventable infectious diseases and their complications have become rare, the interest focuses on immunization-related adverse reactions. Unfortunately, fear of vaccination-related adverse effects can led to decreased vaccination coverage and subsequent epidemics of infectious diseases. This review includes reports about possible side effects following vaccinations in children with neurological disorders and also published recommendations about vaccinating children with neurological disorders. From all international published data anyone can conclude that vaccines are safer than ever before, but the challenge remains to convey this message to society.

  2. Neurology and detective writing.

    Science.gov (United States)

    Kempster, Peter A; Lees, Andrew J

    2013-12-01

    When searching for clues to reach a diagnosis, neurologists often empathise with the detective who is trying to solve a case. The premise of this article is that detective stories have been part of the fabric of neurology ever since the time that it evolved into a discrete medical speciality. We will examine how this form of narrative has found expression in detective mystery fiction and popular science publications created by 20th century neurologist physician-writers. We will also investigate the power of the neurologist's alter ego, Sherlock Holmes: his relationship to founders of clinical neuroscience such as Jean-Martin Charcot, William Gowers and Sigmund Freud, and his influences on neurological practice and its literary traditions.

  3. Neurological legal disability

    Directory of Open Access Journals (Sweden)

    Radhakrishna H

    2006-01-01

    Full Text Available Neurological disorders with a prolonged course, either remediable or otherwise are being seen increasingly in clinical practice and many such patients are young and are part of some organization or other wherein their services are needed if they were healthy and fit. The neurologists who are on the panel of these organizations are asked to certify whether these subjects are fit to work or how long they should be given leave. These certificates may be produced in the court of law and may be subjected to verification by another neurologist or a medical board. At present there are no standard guidelines in our country to effect such certification unlike in orthopedic specialty or in ophthalmology. The following is a beginning, based on which the neurologist can certify the neurological disability of such subjects and convey the same meaning to all neurologists across the country.

  4. The Neurology of Proverbs

    Directory of Open Access Journals (Sweden)

    Diana Van Lancker

    1990-01-01

    Full Text Available Although proverb tests are commonly used in the mental status examination surprisingly little is known about either normal comprehension or the interpretation of proverbial expressions. Current proverbs tests have conceptual and linguistic shortcomings, and few studies have been done to investigate the specific effects of neurological and psychiatric disorders on the interpretation of proverbs. Although frontal lobes have traditionally been impugned in patients who are “concrete”, recent studies targeting deficient comprehension of non literal language (e.g. proverbs, idioms, speech formulas, and indirect requests point to an important role of the right hemisphere (RH. Research describing responses of psychiatrically and neurologically classified groups to tests of proverb and idiom usage is needed to clarify details of aberrant processing of nonliteral meanings. Meanwhile, the proverb test, drawing on diverse cognitive skills, is a nonspecific but sensitive probe of mental status.

  5. Post dengue neurological complication

    Directory of Open Access Journals (Sweden)

    Hizlinda Tohid

    2015-12-01

    Full Text Available Dengue infection is highly endemic in many tropical countries including Malaysia. However, neurological complications arising from dengue infection is not common; Gullain–Barre syndrome (GBS is one of these infrequent complications. In this paper, we have reported a case in which a 39-year-old woman presented with a neurological complication of dengue infection without typical symptoms and signs of dengue fever. She had a history of acute gastroenteritis (AGE followed by an upper respiratory tract infection (URTI weeks prior to her presentation rendering GBS secondary to the post viral URTI and AGE as the most likely diagnosis. Presence of thrombocytopenia was the only clue for dengue in this case.

  6. Neurologic Function and Health-Related Quality of Life in Patients Following Targeted Temperature Management at 33°C vs 36°C After Out-of-Hospital Cardiac Arrest

    DEFF Research Database (Denmark)

    Cronberg, Tobias; Lilja, Gisela; Horn, Janneke

    2015-01-01

    IMPORTANCE: Brain injury affects neurologic function and quality of life in survivors after cardiac arrest. OBJECTIVE: To compare the effects of 2 target temperature regimens on long-term cognitive function and quality of life after cardiac arrest. DESIGN, SETTING, AND PARTICIPANTS...... in the Elderly (IQCODE). Patients reported their activities in daily life and mental recovery through Two Simple Questions and their quality of life through the Medical Outcomes Study 36-Item Short Form Health Survey, version 2. RESULTS: In the modified intent-to-treat population, including nonsurvivors...... summary score was 46.8 (13.8) and 47.5 (13.8) (P = .45), comparable to the population norm. CONCLUSIONS AND RELEVANCE: Quality of life was good and similar in patients with cardiac arrest receiving targeted temperature management at 33°C or 36°C. Cognitive function was similar in both intervention groups...

  7. Survey of the professors of child neurology: neurology versus pediatrics home for child neurology.

    Science.gov (United States)

    Pearl, Phillip L; McConnell, Emily R; Fernandez, Rosamary; Brooks-Kayal, Amy

    2014-09-01

    The optimal academic home for child neurology programs between adult neurology versus pediatric departments remains an open question. The Professors of Child Neurology, the national organization of child neurology department chairs, division chiefs, and training program directors, was surveyed to evaluate the placement of child neurology programs. Professors of Child Neurology members were surveyed regarding the placement of child neurology programs within adult neurology versus pediatric departments. Questions explored academic versus clinical lines of reporting and factors that may be advantages and disadvantages of these affiliations. Issues also addressed were the current status of board certification and number of clinics expected in academic child neurology departments. Of 120 surveys sent, 95 responses were received (79% response rate). The primary academic affiliation is in neurology in 54% of programs versus 46% in pediatrics, and the primary clinical affiliation is 45% neurology and 55% pediatrics. Advantages versus disadvantages of one's primary affiliation were similar whether the primary affiliation was in neurology or pediatrics. While 61% of respondents are presently board certified in pediatrics, only 2% of those with time-limited certification in general pediatrics plan to be recertified going forward. Typically six to eight half-day clinics per week are anticipated for child neurologists in academic departments without additional funding sources. Overall, leaders of child neurology departments and training programs would not change their affiliation if given the opportunity. Advantages and disadvantages associated with current affiliations did not change whether child neurology was located in neurology or pediatrics. Board certification by the American Board of Psychiatry and Neurology in child neurology is virtually universal, whereas pediatric board certification by the American Board of Pediatrics is being maintained by very few. Most academic

  8. Palliative care and neurology

    Science.gov (United States)

    Boersma, Isabel; Miyasaki, Janis; Kutner, Jean

    2014-01-01

    Palliative care is an approach to the care of patients and families facing progressive and chronic illnesses that focuses on the relief of suffering due to physical symptoms, psychosocial issues, and spiritual distress. As neurologists care for patients with chronic, progressive, life-limiting, and disabling conditions, it is important that they understand and learn to apply the principles of palliative medicine. In this article, we aim to provide a practical starting point in palliative medicine for neurologists by answering the following questions: (1) What is palliative care and what is hospice care? (2) What are the palliative care needs of neurology patients? (3) Do neurology patients have unique palliative care needs? and (4) How can palliative care be integrated into neurology practice? We cover several fundamental palliative care skills relevant to neurologists, including communication of bad news, symptom assessment and management, advance care planning, caregiver assessment, and appropriate referral to hospice and other palliative care services. We conclude by suggesting areas for future educational efforts and research. PMID:24991027

  9. Effect of functional yogurt NY-YP901 in improving the trait of metabolic syndrome.

    Science.gov (United States)

    Chang, B J; Park, S U; Jang, Y S; Ko, S H; Joo, N M; Kim, S I; Kim, C-H; Chang, D K

    2011-11-01

    This study was aimed to assess the beneficial effects on metabolic syndrome of functional yogurt NY-YP901 (Namyang Dairy Product Co. Ltd and Nutra R&BT Inc., Seoul, Korea) supplemented with mixture of Streptococcus thermophilus, Lactobacillus acidophilus, Bifidobacterium infantis and extra-ingredients containing Bifidobacterium breve (CBG-C2), Enterococcus faecalis FK-23, fibersol-2 and so on. This study was designed as an 8-week randomized, double-blind, placebo-controlled, parallel study. Treatment and control groups consumed a functional yogurt NY-YP901 (150 ml) and a placebo yogurt twice a day, respectively, for 8 weeks. Body weight and body mass index (BMI), blood pressure, lipid profiles, fasting glucose with HbA1C and waist circumference were measured before and after treatment. Inclusion criteria were healthy individuals between the ages 20-65 years old who submitted an informed consent. During the period August 2009 to December 2009, 101 healthy participants (31 males and 70 females) finished the study. Treatment group were 53 individuals, and the control group were 48 individuals. In the treatment group consuming NY-YP901, statistically significant beneficial changes were observed in body weight (treatment group vs control group=-0.24±1.50 vs +0.64±1.39 kg, Pcholesterol (-7.71±14.14 vs -0.43±15.32 mg/dl, Pyogurt NY-YP901 reduced LDL-cholesterol, body weight and BMI in the subjects at a 300-ml consumption daily for 8 weeks. From these findings, regular intake of functional yogurt NY-YP901 may be consequently related to improve metabolic syndrome.

  10. A close link between metabolic activity and functional connectivity in the resting human brain

    International Nuclear Information System (INIS)

    Passow, Susanne; Specht, Karsten; Adamsen, Tom Christian; Biermann, Martin; Brekke, Njål; Craven, Alexander Richard; Ersland, Lars; Grüner, Renate; Kleven-Madsen, Nina; Kvernenes, Ole-Heine; Schwarzlmüller, Thomas; Olesen, Rasmus; Hugdahl, Kenneth

    2015-01-01

    Default-mode network (DMN) functional connectivity and its task-dependent down-regulation have attracted a lot of attention in the field of neuroscience. Nevertheless, the exact underlying mechanisms of DMN functional connectivity, or more specifically, the blood oxygen level-dependent (BOLD) signal, are still not completely understood. To investigate more directly the association between local glucose consumption, local glutamatergic neurotransmission and DMN functional connectivity during rest, the present study combined for the first time 2-Deoxy-2-[18F]fluoroglucose positron emission tomography (FDG-PET), proton magnetic resonance spectroscopy (1H-MRS), and resting-state functional magnetic resonance imaging (rs-fMRI). Seed-based correlation analyses, using a key region of the DMN i.e. the dorsal posterior cingulate cortex as seed, revealed overall striking spatial similarities between fluctuations in FDG-uptake and the BOLD signal. More specifically, a conjunction analysis across both modalities showed that DMN areas as the inferior parietal lobe, angular gyrus, precuneus, middle and medial frontal gyrus were positively correlated with the dorsal posterior cingulate cortex. Furthermore, we could demonstrate that local glucose consumption in the medial frontal gyrus, posterior cingulate cortex and left angular gyrus was associated with functional connectivity within the DMN. We did not find a relationship between glutamatergic neurotransmission and functional connectivity. In line with very recent findings, our results provide further evidence for a close association between local metabolic activity and functional connectivity and enable further insights towards a better understanding of the underlying mechanisms of the BOLD signal.

  11. A close link between metabolic activity and functional connectivity in the resting human brain

    Energy Technology Data Exchange (ETDEWEB)

    Passow, Susanne [Department of Biological and Medical Psychology, University of Bergen (Norway); NORMENT Center of Excellence, University of Oslo (Norway); Specht, Karsten [Department of Biological and Medical Psychology, University of Bergen (Norway); Department of Clinical Engineering, Haukeland University Hospital, Bergen (Norway); Adamsen, Tom Christian [Department of Radiology, Haukeland University Hospital, Bergen (Norway); Department of Chemistry, University of Bergen (Norway); Biermann, Martin; Brekke, Njål [Department of Radiology, Haukeland University Hospital, Bergen (Norway); Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen (Norway); Craven, Alexander Richard [Department of Biological and Medical Psychology, University of Bergen (Norway); NORMENT Center of Excellence, University of Oslo (Norway); Ersland, Lars [Department of Clinical Engineering, Haukeland University Hospital, Bergen (Norway); NORMENT Center of Excellence, University of Oslo (Norway); Grüner, Renate [Department of Radiology, Haukeland University Hospital, Bergen (Norway); Department of Physics and Technology, University of Bergen (Norway); NORMENT Center of Excellence, University of Oslo (Norway); Kleven-Madsen, Nina [Department of Radiology, Haukeland University Hospital, Bergen (Norway); Department of Physics and Technology, University of Bergen (Norway); Kvernenes, Ole-Heine [Department of Radiology, Haukeland University Hospital, Bergen (Norway); Schwarzlmüller, Thomas [Department of Radiology, Haukeland University Hospital, Bergen (Norway); Department of Clinical Medicine, University of Bergen (Norway); Olesen, Rasmus [Center of Functionally Integrative Neuroscience and MINDLab, Aarhus University, Aarhus (Denmark); Hugdahl, Kenneth [Department of Biological and Medical Psychology, University of Bergen (Norway); Department of Radiology, Haukeland University Hospital, Bergen (Norway); Division of Psychiatry, Haukeland University Hospital, Bergen (Norway); NORMENT Center of Excellence, University of Oslo (Norway)

    2015-05-18

    Default-mode network (DMN) functional connectivity and its task-dependent down-regulation have attracted a lot of attention in the field of neuroscience. Nevertheless, the exact underlying mechanisms of DMN functional connectivity, or more specifically, the blood oxygen level-dependent (BOLD) signal, are still not completely understood. To investigate more directly the association between local glucose consumption, local glutamatergic neurotransmission and DMN functional connectivity during rest, the present study combined for the first time 2-Deoxy-2-[18F]fluoroglucose positron emission tomography (FDG-PET), proton magnetic resonance spectroscopy (1H-MRS), and resting-state functional magnetic resonance imaging (rs-fMRI). Seed-based correlation analyses, using a key region of the DMN i.e. the dorsal posterior cingulate cortex as seed, revealed overall striking spatial similarities between fluctuations in FDG-uptake and the BOLD signal. More specifically, a conjunction analysis across both modalities showed that DMN areas as the inferior parietal lobe, angular gyrus, precuneus, middle and medial frontal gyrus were positively correlated with the dorsal posterior cingulate cortex. Furthermore, we could demonstrate that local glucose consumption in the medial frontal gyrus, posterior cingulate cortex and left angular gyrus was associated with functional connectivity within the DMN. We did not find a relationship between glutamatergic neurotransmission and functional connectivity. In line with very recent findings, our results provide further evidence for a close association between local metabolic activity and functional connectivity and enable further insights towards a better understanding of the underlying mechanisms of the BOLD signal.

  12. Study of beta-cell function (by HOMA model) in metabolic syndrome.

    Science.gov (United States)

    Garg, M K; Dutta, M K; Mahalle, Namita

    2011-07-01

    The clustering of cardiovascular risk factors is termed the metabolic syndrome (MS), which strongly predict risk of diabetes and cardiovascular disease. Many studies implicate insulin resistance (IR) in the development of diabetes, but ignore the contribution of beta-cell dysfunction. Hence, we studied beta-cell function, as assessed by HOMA model, in subjects with MS. We studied 50 subjects with MS diagnosed by IDF criteria and 24 healthy age- and sex-matched controls. Clinical evaluation included anthropometry, body fat analysis by bioimpedance, biochemical, and insulin measurement. IR and secretion were calculated by HOMA model. Subjects with MS had more IR (HOMA-IR) than controls (3.35 ± 3.14 vs. 1.76 ± 0.53, P = 0.029) and secreted less insulin (HOMA-S) than controls (66.80 ± 69.66 vs. 144.27 ± 101.61, P = 0.0003), although plasma insulin levels were comparable in both groups (10.7 ± 10.2 vs. 8.2 ± 2.38, P = 0.44). HOMA-IR and HOMA-S were related with number of metabolic abnormalities. HOMA-IR was positively associated with body mass index, waist hip ratio, body fat mass, and percent body fat. HOMA-S was negatively associated with waist hip ratio, fasting plasma glucose and total cholesterol and positively with basal metabolic rate. Percent body fat was an independent predictor of HOMA-IR and waist hip ratio of HOMA-S in multiple regression analysis. Subjects with MS have increased IR and decreased insulin secretion compared with healthy controls. Lifestyle measures have been shown to improve IR, insulin secretion, and various components and effects of MS. Hence, there is an urgent need for public health measures to prevent ongoing epidemic of diabetes and cardiovascular disease.

  13. Rapamycin inhibits human laryngotracheal stenosis-derived fibroblast proliferation, metabolism, and function in vitro.

    Science.gov (United States)

    Namba, Daryan R; Ma, Garret; Samad, Idris; Ding, Dacheng; Pandian, Vinciya; Powell, Jonathan D; Horton, Maureen R; Hillel, Alexander T

    2015-05-01

    To determine if rapamycin inhibits the growth, function, and metabolism of human laryngotracheal stenosis (LTS)-derived fibroblasts. Controlled in vitro study. Tertiary care hospital in a research university. Fibroblasts isolated from biopsies of 5 patients with laryngotracheal stenosis were cultured. Cell proliferation, histology, gene expression, and cellular metabolism of LTS-derived fibroblasts were assessed in 4 conditions: (1) fibroblast growth medium, (2) fibroblast growth medium with dimethylsulfoxide (DMSO), (3) fibroblast growth medium with 10(-10) M (low-dose) rapamycin dissolved in DMSO, and (4) fibroblast growth medium with 10(-9) M (high-dose) rapamycin dissolved in DMSO. The LTS fibroblast count and DNA concentration were reduced after treatment with high-dose rapamycin compared to DMSO (P = .0007) and normal (P = .0007) controls. Collagen I expression decreased after treatment with high-dose rapamycin versus control (P = .0051) and DMSO (P = .0093) controls. Maximal respiration decreased to 68.6 pMoles of oxygen/min/10 mg/protein from 96.9 for DMSO (P = .0002) and 97.0 for normal (P = .0022) controls. Adenosine triphosphate (ATP) production decreased to 66.8 pMoles from 88.1 for DMSO (P = .0006) and 83.3 for normal (P = .0003) controls. Basal respiration decreased to 78.6 pMoles from 108 for DMSO (P = .0002) and 101 for normal (P = .0014) controls. Rapamycin demonstrated an anti-fibroblast effect by significantly reducing the proliferation, metabolism, and collagen deposition of human LTS fibroblast in vitro. Rapamycin significantly decreased oxidative phosphorylation of LTS fibroblasts, suggesting at a potential mechanism for the reduced proliferation and differentiation. Furthermore, rapamycin's anti-fibroblast effects indicate a promising adjuvant therapy for the treatment of laryngotracheal stenosis. © American Academy of Otolaryngology-Head and Neck Surgery Foundation 2015.

  14. [Delirium in patients with neurological diseases: diagnosis, management and prognosis].

    Science.gov (United States)

    Hüfner, K; Sperner-Unterweger, B

    2014-04-01

    Delirium is a common acute neuropsychiatric syndrome. It is characterized by concurrent disturbances of consciousness and attention, perception, reasoning, memory, emotionality, the sleep-wake cycle as well as psychomotor symptoms. Delirium caused by alcohol or medication withdrawal is not the subject of the current review. Specific predisposing and precipitating factors have been identified in delirium which converge in a common final pathway of global brain dysfunction. The major predisposing factors are older age, cognitive impairment or dementia, sensory deficits, multimorbidity and polypharmacy. Delirium is always caused by one or more underlying pathologies which need to be identified. In neurology both primary triggers of delirium, such as stroke or epileptic seizures and also secondary triggers, such as metabolic factors or medication side effects play a major role. Nonpharmacological interventions are important in the prevention of delirium and lead to an improvement in prognosis. Delirium is associated with increased mortality and in the long term the development of cognitive deficits and functional impairment.

  15. Functions of BCL-XL at the Interface between Cell Death and Metabolism

    Directory of Open Access Journals (Sweden)

    Judith Michels

    2013-01-01

    Full Text Available The BCL-2 homolog BCL-XL, one of the two protein products of BCL2L1, has originally been characterized for its prominent prosurvival functions. Similar to BCL-2, BCL-XL binds to its multidomain proapoptotic counterparts BAX and BAK, hence preventing the formation of lethal pores in the mitochondrial outer membrane, as well as to multiple BH3-only proteins, thus interrupting apical proapoptotic signals. In addition, BCL-XL has been suggested to exert cytoprotective functions by sequestering a cytosolic pool of the pro-apoptotic transcription factor p53 and by binding to the voltage-dependent anion channel 1 (VDAC1, thereby inhibiting the so-called mitochondrial permeability transition (MPT. Thus, BCL-XL appears to play a prominent role in the regulation of multiple distinct types of cell death, including apoptosis and regulated necrosis. More recently, great attention has been given to the cell death-unrelated functions of BCL-2-like proteins. In particular, BCL-XL has been shown to modulate a number of pathophysiological processes, including—but not limited to—mitochondrial ATP synthesis, protein acetylation, autophagy and mitosis. In this short review article, we will discuss the functions of BCL-XL at the interface between cell death and metabolism.

  16. [Ubiquinone: metabolism and functions. Ubiquinone deficiency and its implication in mitochondrial encephalopathies. Treatment with ubiquinone].

    Science.gov (United States)

    Artuch, R; Colomé, C; Vilaseca, M A; Pineda, M; Campistol, J

    Review of ubiquinone-10 metabolism and functions in humans, focusing its implication in the pathogenesis and physiopathology of mitochondrial encephalomyopathies. Ubiquinone-10 is an endogenously synthesized lipid with a wide distribution in tissues. Tyrosine and acetil-CoA are involved in ubiquinone biosynthesis. This molecule has several biological functions in cells: it is a movil electron carrier in the mitochondrial respiratory chain and also acts as antioxidant. Owing to its implication in these functions, ubiquinone deficiency may cause important deletereous effects in tissues. Several authors reported ubiquinone deficient status in some physiological and pathological conditions. Mitochondrial encephalomyopathies may be related to a primary or secondary ubiquinone deficient status, or even to an altered function of ubiquinone in the respiratory chain. Moreover, some relevant aspects about ubiquinone therapy in mitochondrial disorders are reported. According to recent reports about ubiquinone implication in several diseases, its determination in different biological samples seems very useful to elucidate the physiopathological mechanisms involved and even the to start a therapy in cases with ubiquinone deficiency.

  17. Red Blood Cell Function and Dysfunction: Redox Regulation, Nitric Oxide Metabolism, Anemia

    Science.gov (United States)

    Kuhn, Viktoria; Diederich, Lukas; Keller, T.C. Stevenson; Kramer, Christian M.; Lückstädt, Wiebke; Panknin, Christina; Suvorava, Tatsiana; Isakson, Brant E.; Kelm, Malte

    2017-01-01

    Abstract Significance: Recent clinical evidence identified anemia to be correlated with severe complications of cardiovascular disease (CVD) such as bleeding, thromboembolic events, stroke, hypertension, arrhythmias, and inflammation, particularly in elderly patients. The underlying mechanisms of these complications are largely unidentified. Recent Advances: Previously, red blood cells (RBCs) were considered exclusively as transporters of oxygen and nutrients to the tissues. More recent experimental evidence indicates that RBCs are important interorgan communication systems with additional functions, including participation in control of systemic nitric oxide metabolism, redox regulation, blood rheology, and viscosity. In this article, we aim to revise and discuss the potential impact of these noncanonical functions of RBCs and their dysfunction in the cardiovascular system and in anemia. Critical Issues: The mechanistic links between changes of RBC functional properties and cardiovascular complications related to anemia have not been untangled so far. Future Directions: To allow a better understanding of the complications associated with anemia in CVD, basic and translational science studies should be focused on identifying the role of noncanonical functions of RBCs in the cardiovascular system and on defining intrinsic and/or systemic dysfunction of RBCs in anemia and its relationship to CVD both in animal models and clinical settings. Antioxid. Redox Signal. 26, 718–742. PMID:27889956

  18. The metabolic syndrome, atherosclerosis and cognitive functioning in a non-demented population: the Hoorn Study.

    Science.gov (United States)

    Reijmer, Yael D; van den Berg, Esther; Dekker, Jacqueline M; Nijpels, Giel; Stehouwer, Coen D A; Kappelle, L Jaap; Biessels, Geert Jan

    2011-12-01

    The metabolic syndrome (MetS) is associated with cognitive deficits and atherosclerotic vascular disease. We examined whether the relation between the MetS and cognitive dysfunction is mediated by measures of atherosclerosis or the presence of clinically manifest cardiovascular disease. In 380 individuals (153 with MetS; 60-87 years) from the population based Hoorn Study, measures of atherosclerosis including carotid intima-media thickness (c-IMT), flow mediated dilation (FMD), ankle-brachial index and the presence of clinically manifest cardiovascular disease were assessed at baseline and 7 later years at follow-up. Cognitive functioning (information processing speed, memory, and attention and executive functioning) was assessed at follow-up. The relation between the MetS, atherosclerosis and cognitive functioning was assessed with linear regression analysis. Individuals with MetS showed worse performance on information processing speed (adjusted mean difference z-score ± SE: -0.22 ± 0.6; p = 0.01) and attention and executive functioning (-0.32 ± 0.07; p atherosclerosis (standardised B (95%CI) c-IMT: -0.14 (-0.24; -0.05); p 0.05). In this population based cohort, the relation between the MetS and cognitive dysfunction was not mediated by atherosclerosis or a history of cardiovascular disease. These findings should stimulate future studies to elucidate alternative mechanisms underlying cognitive deficits in individuals with MetS. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  19. Effect of phenolic acids on functions of rat aorta, vas deferens and on metabolic changes in streptozotocin-induced diabetes

    OpenAIRE

    Nurcan Bektas; Yusuf Ozturk

    2012-01-01

    Objectives: This study aimed to investigate the effects of antioxidant treatment on streptozotocin (STZ)-induced diabetic metabolic and smooth muscle (SM) complications in rats. Materials and Methods: Threeweeks after STZ injection (i.v.), vehicle, p-OH benzoic (p-OHBA), protocatechic (PA) and gallic acids (GA) were separately administered (10 mg/kg each, i.p.) to the rats everyday for 3 weeks. Metabolic functions were observedregularly. The rats in all groups were sacrificed andaorta and ...

  20. Male sexual dysfunction and infertility associated with neurological disorders

    DEFF Research Database (Denmark)

    Fode, Mikkel; Krogh-Jespersen, Sheila; Brackett, Nancy L

    2012-01-01

    Normal sexual and reproductive functions depend largely on neurological mechanisms. Neurological defects in men can cause infertility through erectile dysfunction, ejaculatory dysfunction and semen abnormalities. Among the major conditions contributing to these symptoms are pelvic and retroperito......Normal sexual and reproductive functions depend largely on neurological mechanisms. Neurological defects in men can cause infertility through erectile dysfunction, ejaculatory dysfunction and semen abnormalities. Among the major conditions contributing to these symptoms are pelvic...... and retroperitoneal surgery, diabetes, congenital spinal abnormalities, multiple sclerosis and spinal cord injury. Erectile dysfunction can be managed by an increasingly invasive range of treatments including medications, injection therapy and the surgical insertion of a penile implant. Retrograde ejaculation...

  1. The use of ketogenic diet in special situations: expanding use in intractable epilepsy and other neurologic disorders

    Directory of Open Access Journals (Sweden)

    Munhyang Lee

    2012-09-01

    Full Text Available The ketogenic diet has been widely used and proved to be effective for intractable epilepsy. Although the mechanisms underlying its antiepileptic effects remain to be proven, there are increasing experimental evidences for its neuroprotective effects along with many researches about expanding use of the diet in other neurologic disorders. The first success was reported in glucose transporter type 1 deficiency syndrome, in which the diet served as an alternative metabolic source. Many neurologic disorders share some of the common pathologic mechanisms such as mitochondrial dysfunction, altered neurotransmitter function and synaptic transmission, or abnormal regulation of reactive oxygen species, and the role of the ketogenic diet has been postulated in these mechanisms. In this article, we introduce an overview about the expanding use and emerging trials of the ketogenic diet in various neurologic disorders excluding intractable epilepsy and provide explanations of the mechanisms in that usage.

  2. The use of ketogenic diet in special situations: expanding use in intractable epilepsy and other neurologic disorders

    Science.gov (United States)

    2012-01-01

    The ketogenic diet has been widely used and proved to be effective for intractable epilepsy. Although the mechanisms underlying its anti-epileptic effects remain to be proven, there are increasing experimental evidences for its neuroprotective effects along with many researches about expanding use of the diet in other neurologic disorders. The first success was reported in glucose transporter type 1 deficiency syndrome, in which the diet served as an alternative metabolic source. Many neurologic disorders share some of the common pathologic mechanisms such as mitochondrial dysfunction, altered neurotransmitter function and synaptic transmission, or abnormal regulation of reactive oxygen species, and the role of the ketogenic diet has been postulated in these mechanisms. In this article, we introduce an overview about the expanding use and emerging trials of the ketogenic diet in various neurologic disorders excluding intractable epilepsy and provide explanations of the mechanisms in that usage. PMID:23049588

  3. Neurology check list. 5. rev. and enl. ed.; Checkliste Neurologie

    Energy Technology Data Exchange (ETDEWEB)

    Grehl, Holger [Evangelisches und Johanniter Klinikum, Duisburg (Germany). Neurologische Klinik; Reinhardt, Frank

    2013-02-01

    The neurology check list covers the following issues, organized in four parts: Grey part - diagnostic fundamentals, therapeutic principles: clinical neurological examination, liquor puncture, specific laboratory diagnostics, neurophysical diagnostics, imaging techniques, therapeutic principles, legal aspects, neurological assessment. Green Part - leading syndromes and leading symptoms. Blue part - neurological disease appearance: pains in head and face, pain syndrome, congenital and development disturbances, liquor circulation disturbances, ZNS hemorrhages, tumors and neoplasm, paraneoplastic syndromes, inflammatory diseases of the nervous system, dementia diseases, metabolic and other encephalopathy, cerebellum diseases and system surmounting processes, movement degeneration, basal ganglion diseases, epilepsy, non-epileptic attacks, medulla diseases, brain nerve diseases, plexus lesions, radicular lesions, peripheric neuropathy, neuromuscular transfer disturbances, muscular diseases. Red part: neurological intensive medicine.

  4. Neurology check list. 5. rev. and enl. ed.

    International Nuclear Information System (INIS)

    Grehl, Holger; Reinhardt, Frank

    2013-01-01

    The neurology check list covers the following issues, organized in four parts: Grey part - diagnostic fundamentals, therapeutic principles: clinical neurological examination, liquor puncture, specific laboratory diagnostics, neurophysical diagnostics, imaging techniques, therapeutic principles, legal aspects, neurological assessment. Green Part - leading syndromes and leading symptoms. Blue part - neurological disease appearance: pains in head and face, pain syndrome, congenital and development disturbances, liquor circulation disturbances, ZNS hemorrhages, tumors and neoplasm, paraneoplastic syndromes, inflammatory diseases of the nervous system, dementia diseases, metabolic and other encephalopathy, cerebellum diseases and system surmounting processes, movement degeneration, basal ganglion diseases, epilepsy, non-epileptic attacks, medulla diseases, brain nerve diseases, plexus lesions, radicular lesions, peripheric neuropathy, neuromuscular transfer disturbances, muscular diseases. Red part: neurological intensive medicine.

  5. Neurological Complications of Cardiac Surgery

    OpenAIRE

    Gottesman, Rebecca F.; McKhann, Guy M.; Hogue, Charles W.

    2008-01-01

    Neurological injury resulting from cardiac surgery has a range of manifestations from focal neurological deficit to encephalopathy or coma. As the safety of drug-eluting stents comes into question, more patients will likely undergo coronary artery bypass graft surgery. These projections, along with the growing proportions of elderly patients and those with comorbidities, portend the potential for rising rates of perioperative neurological complications. The risk for neurological injury may be...

  6. Ligand binding phenomena that pertain to the metabolic function of renalase.

    Science.gov (United States)

    Beaupre, Brett A; Roman, Joseph V; Hoag, Matthew R; Meneely, Kathleen M; Silvaggi, Nicholas R; Lamb, Audrey L; Moran, Graham R

    2016-12-15

    Renalase catalyzes the oxidation of isomers of β-NAD(P)H that carry the hydride in the 2 or 6 positions of the nicotinamide base to form β-NAD(P) + . This activity is thought to alleviate inhibition of multiple β-NAD(P)-dependent enzymes of primary and secondary metabolism by these isomers. Here we present evidence for a variety of ligand binding phenomena relevant to the function of renalase. We offer evidence of the potential for primary metabolism inhibition with structures of malate dehydrogenase and lactate dehydrogenase bound to the 6-dihydroNAD isomer. The previously observed preference of renalase from Pseudomonas for NAD-derived substrates over those derived from NADP is accounted for by the structure of the enzyme in complex with NADPH. We also show that nicotinamide nucleosides and mononucleotides reduced in the 2- and 6-positions are renalase substrates, but bind weakly. A seven-fold enhancement of acquisition (k red /K d ) for 6-dihydronicotinamide riboside was observed for human renalase in the presence of ADP. However, generally the addition of complement ligands, AMP for mononucleotide or ADP for nucleoside substrates, did not enhance the reductive half-reaction. Non-substrate nicotinamide nucleosides or nucleotides bind weakly suggesting that only β-NADH and β-NADPH compete with dinucleotide substrates for access to the active site. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Damaging effects of hyperglycemia on cardiovascular function: spotlight on glucose metabolic pathways.

    Science.gov (United States)

    Mapanga, Rudo F; Essop, M Faadiel

    2016-01-15

    The incidence of cardiovascular complications associated with hyperglycemia is a growing global health problem. This review discusses the link between hyperglycemia and cardiovascular diseases onset, focusing on the role of recently emerging downstream mediators, namely, oxidative stress and glucose metabolic pathway perturbations. The role of hyperglycemia-mediated activation of nonoxidative glucose pathways (NOGPs) [i.e., the polyol pathway, hexosamine biosynthetic pathway, advanced glycation end products (AGEs), and protein kinase C] in this process is extensively reviewed. The proposal is made that there is a unique interplay between NOGPs and a downstream convergence of detrimental effects that especially affect cardiac endothelial cells, thereby contributing to contractile dysfunction. In this process the AGE pathway emerges as a crucial mediator of hyperglycemia-mediated detrimental effects. In addition, a vicious metabolic cycle is established whereby hyperglycemia-induced NOGPs further fuel their own activation by generating even more oxidative stress, thereby exacerbating damaging effects on cardiac function. Thus NOGP inhibition, and particularly that of the AGE pathway, emerges as a novel therapeutic intervention for the treatment of cardiovascular complications such as acute myocardial infarction in the presence hyperglycemia. Copyright © 2016 the American Physiological Society.

  8. Cardiovascular and metabolic responses during functional electric stimulation cycling at different cadences.

    Science.gov (United States)

    Fornusek, Ché; Davis, Glen M

    2008-04-01

    To determine the influence of pedaling cadence on cardiorespiratory responses and muscle oxygenation during functional electric stimulation (FES) leg cycling. Repeated measures. Laboratory. Nine subjects with T4 through T10 spinal cord injury (SCI) (American Spinal Injury Association grade A). FES cycling was performed at pedaling cadences of 15, 30, and 50 revolutions per minute (rpm). At each cadence, heart rate, oxygen uptake, and cardiac output were recorded during 35 minutes of cycling. Near infrared spectroscopy was used to quantify quadriceps muscle oxygenation. All pedaling cadences induced similar elevations in cardiorespiratory metabolism, compared with resting values. Higher average power output was produced at 30rpm (8.2+/-0.7W, P30 and 50rpm than at 15rpm. Quadriceps muscle oxygenation did not differ with pedaling cadences. Cardiorespiratory responses and muscle metabolism adjustments during FES leg cycling were independent of pedal cadence. FES cycling at a cadence of 50rpm may not confer any advantages over 30 or 15rpm for cardiovascular fitness promotion in persons with SCI.

  9. Cardiac PET Imaging of Blood Flow, Metabolism, and Function in Normal and Infarcted Rats

    Science.gov (United States)

    Lecomte, R.; Croteau, E.; Gauthier, M.-E.; Archambault, M.; Aliaga, A.; Rousseau, J.; Cadorette, J.; Leroux, J.-D.; Lepage, M. D.; Benard, F.; Bentourkia, M.

    2004-06-01

    The rat heart is an excellent model for the investigation of cardiac physiology and metabolism. It has been used extensively for ex vivo studies of the normal heart as well as for the study of various heart diseases. With the advent of dedicated high-resolution small animal PET scanners, it is now possible to transpose many of the cardiac studies routinely used in humans to the rat. These include the in vivo measurement of myocardial blood flow, metabolism, and function. Because these techniques are noninvasive, the same animal can be imaged repetitively, thus allowing for follow-up studies of disease progression and for the assessment of new therapeutic methods. In this work, we report on cardiac studies performed in normal and diseased rats using the Sherbrooke avalanche photodiode PET scanner, a small animal PET imaging device achieving 14 /spl mu/l volumetric spatial resolution with excellent image signal-to-noise ratio. The system also features flexible list-mode data acquisition, which allows dynamic studies to be resampled as desired for kinetic modeling. These cardiac PET imaging methods were used for the follow-up of infarcted rats submitted to experimental intramyocardial revascularization therapy.

  10. The SOS pilot study: a RCT of routine oxygen supplementation early after acute stroke--effect on recovery of neurological function at one week.

    Directory of Open Access Journals (Sweden)

    Christine Roffe

    Full Text Available Mild hypoxia is common after stroke and associated with poor long-term outcome. Oxygen supplementation could prevent hypoxia and improve recovery. A previous study of routine oxygen supplementation showed no significant benefit at 7 and 12 months. This pilot study reports the effects of routine oxygen supplementation for 72 hours on oxygen saturation and neurological outcomes at 1 week after a stroke.Patients with a clinical diagnosis of acute stroke were recruited within 24 h of hospital admission between October 2004 and April 2008. Participants were randomized to oxygen via nasal cannulae (72 h or control (room air, oxygen given only if clinically indicated. Clinical outcomes were assessed by research team members at 1 week. Baseline data for oxygen (n = 148 and control (n = 141 did not differ between groups.The median (interquartile range National Institutes of Health Stroke Scale (NIHSS score for the groups at baseline was 6 (7 and 5 (7 respectively. The median Nocturnal Oxygen Saturation during treatment was 1.4% (0.3 higher in the oxygen than in the control group (p<0.001 during the intervention. At 1 week, the median NIHSS score had reduced by 2 (3 in the oxygen and by 1 (2 in the control group. 31% of participants in the oxygen group and 14% in the control group had an improvement of ≥4 NIHSS points at 1 week doubling the odds of improvement in the oxygen group (OR: 2.9.Our data show that routine oxygen supplementation started within 24 hours of hospital admission with acute stroke led to a small, but statistically significant, improvement in neurological recovery at 1 week. However, the difference in NIHSS improvement may be due to baseline imbalance in stroke severity between the two groups and needs to be confirmed in a larger study and linked to longer-term clinical outcome.Controlled-Trials.com ISRCTN12362720; European Clinical Trials Database 2004-001866-41.

  11. Dietary isoflavones alter regulatory behaviors, metabolic hormones and neuroendocrine function in Long-Evans male rats

    Directory of Open Access Journals (Sweden)

    Bu Lihong

    2004-12-01

    protein (UCP-1 mRNA levels in brown adipose tissue (BAT were seen in Phyto-600 fed males. However, decreased core body temperature was recorded in these same animals compared to Phyto-free fed animals. Conclusions This study demonstrates that consumption of a soy-based (isoflavone-rich diet, significantly alters several parameters involved in maintaining body homeostatic balance, energy expenditure, feeding behavior, hormonal, metabolic and neuroendocrine function in male rats.

  12. Neurologic Complications of Celiac Disease

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2004-06-01

    Full Text Available Patients with celiac disease (CD [n=l 11] and controls (n=211 were questioned regarding neurologic disorders, their charts were reviewed, and they received neurologic evaluations, including brain imaging or EEG if indicated, in a study of neurologic complications of CD at Carmel Medical Center, Technion-Israel Institute of Technology, Haifa, Israel.

  13. African Journal of Neurological Sciences

    African Journals Online (AJOL)

    African Journal of Neurological Sciences (AJNS) is owned and controlled by the Pan African Association of Neurological Sciences (PAANS). The AJNS's aim is to publish scientific papers of any aspects of Neurological Sciences. AJNS is published quarterly. Articles submitted exclusively to the AJNS are accepted if neither ...

  14. FoxO3A promotes metabolic adaptation to hypoxia by antagonizing Myc function

    DEFF Research Database (Denmark)

    Jensen, Kim Steen; Binderup, Tina; Jensen, Klaus Thorleif

    2011-01-01

    Exposure of metazoan organisms to hypoxia engages a metabolic switch orchestrated by the hypoxia-inducible factor 1 (HIF-1). HIF-1 mediates induction of glycolysis and active repression of mitochondrial respiration that reduces oxygen consumption and inhibits the production of potentially harmful...... reactive oxygen species (ROS). Here, we show that FoxO3A is activated in hypoxia downstream of HIF-1 and mediates the hypoxic repression of a set of nuclear-encoded mitochondrial genes. FoxO3A is required for hypoxic suppression of mitochondrial mass, oxygen consumption, and ROS production and promotes...... cell survival in hypoxia. FoxO3A is recruited to the promoters of nuclear-encoded mitochondrial genes where it directly antagonizes c-Myc function via a mechanism that does not require binding to the consensus FoxO recognition element. Furthermore, we show that FoxO3A is activated in human hypoxic...

  15. Effects of anesthesia on renal function and metabolism in rats assessed by hyperpolarized MRI

    DEFF Research Database (Denmark)

    Qi, Haiyun; Mariager, Christian Østergaard; Lindhardt, Jakob

    2018-01-01

    PURPOSE: Anesthesia is necessary for most animal studies requiring invasive procedures. It is well documented that various types of anesthesia modulate a wide variety of important metabolic and functional processes in the body, and as such, represent a potential limitation in the study design...... rats receiving inactin. A 2.9-fold and 4.8-fold increased13C-lactate/13C-pyruvate ratio was found in the FFM mixture anesthetized group compared with the sevoflurane and the inactin anesthetized groups. The FFM anesthesia resulted in a 50% lower renal plasma flow compared with the sevoflurane....... Sevoflurane anesthesia is particularly easy to induce and maintain during the whole anesthesia procedure, and as such, represents a good alternative to inaction, although it alters the blood glucose level....

  16. Evaluation of parathyroid function and mineral metabolism in psychiatric patients using lithium salts.

    Science.gov (United States)

    Oliveira, Thiago Costa de; Campos Neto, Ivo Alves de; Aguiar-Oliveira, Manuel Hermínio de; Pereira, Francisco de Assis

    2014-08-01

    To evaluate parathyroid function and mineral metabolism in psychiatric patients users of lithium salts. We measured the serum levels of calcium, ionized calcium, inorganic phosphorus, alkaline phosphatase, albumin, parathyroid hormone (PTH), urea, creatinine, 25-hydroxy-vitamin D and lithium of 35 patients diagnosed with bipolar disorder in use of lithium carbonate (LC) for at least one year (Lithium Group - LG) and 35 healthy subjects (Control Group - CG). The LG and CG were matched by sex and age. There was only statistic difference in relation to the levels of PTH and ionized calcium, with p < 0.004 and p < 0.03, respectively. Secondary form of hyperparathyroidism (HPT) was found in eight (22.8%) LG patients and in none of the CG. There was no correlation between lithemia, usage time and dosage of LC. Our data demonstrate that lithium may create an imbalance in the parathyroid axis, characterized by elevated levels of PTH.

  17. Decreased functional capacity and muscle strength in elderly women with metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Vieira DCL

    2013-10-01

    Full Text Available Denis Cesar Leite Vieira,1 Ramires Alsamir Tibana,1 Vitor Tajra,1 Dahan da Cunha Nascimento,1 Darlan Lopes de Farias,1 Alessandro de Oliveira Silva,1 Tatiane Gomes Teixeira,1 Romulo Maia Carlos Fonseca,2 Ricardo Jacó de Oliveira,2 Felipe Augusto dos Santos Mendes,2 Wagner Rodrigues Martins,2 Silvana Schwerz Funghetto,2 Margo Gomes de Oliveira Karnikowski,2 James Wilfred Navalta,3 Jonato Prestes11Graduate Program on Physical Education, Catholic University of Brasilia, Brasilia, Brazil; 2University of Brasilia, UnB, Brasilia, Brazil; 3Department of Kinesiology and Nutrition Sciences of the University of Nevada, Las Vegas, NV, USAPurpose: To compare the metabolic parameters, flexibility, muscle strength, functional capacity, and lower limb muscle power of elderly women with and without the metabolic syndrome (MetS.Methods: This cross-sectional study included 28 older women divided into two groups: with the MetS (n = 14; 67.3 ± 5.5 years; 67.5 ± 16.7 kg; 1.45 ± 0.35 m; 28.0 ± 7.6 kg/m2, and without the MetS (n = 14; 68.7 ± 5.3 years; 58.2 ± 9.9 kg; 1.55 ± 0.10 m; 24.3 ± 3.8 kg/m2. Body composition was evaluated by dual-energy X-ray absorptiometry and dynamic muscle strength was assessed by one-maximum repetition (1RM tests in leg press, bench press and biceps curl exercises. Six-minute walk test, Timed Up and Go (TUG; 30-second sitting-rising; arm curl using a 2-kg dumbbell, sit-and-reach (flexibility, and vertical jump tests were performed.Results: There was no difference between groups regarding age (P = 0.49, height (P = 0.46, body fat (% (P = 0.19, systolic (P = 0.64, diastolic (P = 0.41 and mean blood pressure (P = 0.86, 30-second sitting-rising (P = 0.57, 30-s arm curl (P = 0.73, leg press 1RM (P = 0.51, bench press 1RM (P = 0.77, and biceps curl 1RM (P = 0.85. However, women without the MetS presented lower body mass (P = 0.001, body mass index (BMI (P = 0.0001, waist circumference (P = 0.02, waist-to-height ratio (P = 0.02, fat body

  18. miR-184 Regulates Pancreatic β-Cell Function According to Glucose Metabolism.

    Science.gov (United States)

    Tattikota, Sudhir G; Rathjen, Thomas; Hausser, Jean; Khedkar, Aditya; Kabra, Uma D; Pandey, Varun; Sury, Matthias; Wessels, Hans-Hermann; Mollet, Inês G; Eliasson, Lena; Selbach, Matthias; Zinzen, Robert P; Zavolan, Mihaela; Kadener, Sebastian; Tschöp, Matthias H; Jastroch, Martin; Friedländer, Marc R; Poy, Matthew N

    2015-08-14

    In response to fasting or hyperglycemia, the pancreatic β-cell alters its output of secreted insulin; however, the pathways governing this adaptive response are not entirely established. Although the precise role of microRNAs (miRNAs) is also unclear, a recurring theme emphasizes their function in cellular stress responses. We recently showed that miR-184, an abundant miRNA in the β-cell, regulates compensatory proliferation and secretion during insulin resistance. Consistent with previous studies showing miR-184 suppresses insulin release, expression of this miRNA was increased in islets after fasting, demonstrating an active role in the β-cell as glucose levels lower and the insulin demand ceases. Additionally, miR-184 was negatively regulated upon the administration of a sucrose-rich diet in Drosophila, demonstrating strong conservation of this pathway through evolution. Furthermore, miR-184 and its target Argonaute2 remained inversely correlated as concentrations of extracellular glucose increased, underlining a functional relationship between this miRNA and its targets. Lastly, restoration of Argonaute2 in the presence of miR-184 rescued suppression of miR-375-targeted genes, suggesting these genes act in a coordinated manner during changes in the metabolic context. Together, these results highlight the adaptive role of miR-184 according to glucose metabolism and suggest the regulatory role of this miRNA in energy homeostasis is highly conserved. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Altered brain protein expression profiles are associated with molecular neurological dysfunction in the PKU mouse model.

    Science.gov (United States)

    Imperlini, Esther; Orrù, Stefania; Corbo, Claudia; Daniele, Aurora; Salvatore, Francesco

    2014-06-01

    Phenylketonuria (PKU), if not detected and treated in newborns, causes severe neurological dysfunction and cognitive and behavioral deficiencies. Despite the biochemical characterization of PKU, the molecular mechanisms underlying PKU-associated brain dysfunction remain poorly understood. The aim of this study was to gain insights into the pathogenesis of this neurological damage by analyzing protein expression profiles in brain tissue of Black and Tan BRachyury-PahEnu2 mice (a mouse model of PKU). We compared the cerebral protein expression of homozygous PKU mice with that of their heterozygous counterparts using two-dimensional difference gel electrophoresis analysis, and identified 21 differentially expressed proteins, four of which were over-expressed and 17 under-expressed. An in silico bioinformatic approach indicated that protein under-expression was related to neuronal differentiation and dendritic growth, and to such neurological disorders as progressive motor neuropathy and movement disorders. Moreover, functional annotation analyses showed that some identified proteins were involved in oxidative metabolism. To further investigate the proteins involved in the neurological damage, we validated two of the proteins that were most strikingly under-expressed, namely, Syn2 and Dpysl2, which are involved in synaptic function and neurotransmission. We found that Glu2/3 and NR1 receptor subunits were over-expressed in PKU mouse brain. Our results indicate that differential expression of these proteins may be associated with the processes underlying PKU brain dysfunction, namely, decreased synaptic plasticity and impaired neurotransmission. We identified a set of proteins whose expression is affected by hyperphenylalaninemia. We think that phenylketonuria (PKU) brain dysfunction also depends on reduced Syn2 and Dpysl2 levels, increased Glu2/3 and NR1 levels, and decreased Pkm, Ckb, Pgam1 and Eno1 levels. These findings finally confirm that alteration in synaptic

  20. Estimated glomerular filtration rate function in patients with and without metabolic syndrome

    Directory of Open Access Journals (Sweden)

    María E Lizardo

    2016-06-01

    Full Text Available Introduction: Metabolic syndrome (MS is an independent risk factor, which affects the development of chronic kidney disease, so the glomerular filtration rate (GFR as an indicator of glomerular function in patients with and without MS who attended the outpatient clinic “los Grillitos, sector Caña de Azucar”. Materials and Methods: A comparative, correlational, cross-sectional study was conducted in a non-probability sample of convenience consisting of 60 patients with MS diagnosed according to the criteria Panel ATP III, and 60 apparently healthy individuals, whom the GFR was determined by the Cockcroft-Gault as well as clinical and biochemical parameters for the diagnosis of MS. Results: Out of the total patients evaluated, 37 (30.7% showed alterations that put them in grades G2 and G3 system risk stratification of CKD, of these 18 and 19 corresponded to patients with and without MS respectively. Glomerular Hyperfiltration (> 120 mil / min it was found in both groups 28 (46.7% and 24 (40% cases of patients with and without MS respectively. The glomerular function was strongly correlated with abdominal obesity and high levels of stress arterial. As for the number of criteria and its relationship to the level of kidney damage present, not a firm to increase the latter with respect to the first (p=0.385 trend was observed. Conclusion: The change in the glomerular function is not directly related to the MS but with its components, specifically abdominal obesity and hypertension.

  1. Alleviation of metabolic syndrome by monascin and ankaflavin: the perspective of Monascus functional foods.

    Science.gov (United States)

    Lin, Chih-Hui; Lin, Tzu-Hsing; Pan, Tzu-Ming

    2017-06-01

    The metabolites of Monascus with multiple benefits are popular subjects for the development of functional foods. The yellow pigments, monascin and ankaflavin, which are the constituent metabolites of M. purpureus, M. pilosus and M. ruber, are becoming the focus of research on Monascus. Monascin and ankaflavin are azaphilone compounds with similar structures that exhibit multiple beneficial effects including anti-inflammation, anti-oxidation, anti-diabetes, immunomodulation, attenuation of Alzheimer's disease risk factor, and anti-tumorigenic effects. Monascin and ankaflavin not only possess pleiotropic bioactivities, but are also more potent than monacolin K in lowering lipid levels and have lower toxicity. Monascin and ankaflavin act as the activators of PPARγ agonist/Nrf-2 that subsequently ameliorate metabolic syndrome. Following the intensive exploration of Monascus bioactivities in recent years, the focus of research on Monascus-functional foods has shifted from whole fermented products/extracts to specific bioactive compounds. Therefore, the production of monascin and ankaflavin is an important topic with respect to Monascus-functional foods. Although several genomic studies have paved the way for understanding the production of secondary metabolites in Monascus, efforts are still required to effectively manipulate the biosynthesis of secondary metabolites with genetic engineering and/or culture techniques.

  2. PTENα, a PTEN isoform translated through alternative initiation, regulates mitochondrial function and energy metabolism.

    Science.gov (United States)

    Liang, Hui; He, Shiming; Yang, Jingyi; Jia, Xinying; Wang, Pan; Chen, Xi; Zhang, Zhong; Zou, Xiajuan; McNutt, Michael A; Shen, Wen Hong; Yin, Yuxin

    2014-05-06

    PTEN is one of the most frequently mutated genes in human cancer. It is known that PTEN has a wide range of biological functions beyond tumor suppression. Here, we report that PTENα, an N-terminally extended form of PTEN, functions in mitochondrial metabolism. Translation of PTENα is initiated from a CUG codon upstream of and in-frame with the coding region of canonical PTEN. Eukaryotic translation initiation factor 2A (eIF2A) controls PTENα translation, which requires a CUG-centered palindromic motif. We show that PTENα induces cytochrome c oxidase activity and ATP production in mitochondria. TALEN-mediated somatic deletion of PTENα impairs mitochondrial respiratory chain function. PTENα interacts with canonical PTEN to increase PINK1 protein levels and promote energy production. Our studies demonstrate the importance of eIF2A-mediated alternative translation for generation of protein diversity in eukaryotic systems and provide insights into the mechanism by which the PTEN family is involved in multiple cellular processes. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. 76 FR 1621 - Proposed Collection; Comment Request; NIH Toolbox for Assessment of Neurological and Behavioral...

    Science.gov (United States)

    2011-01-11

    ... Assessment of Neurological and Behavioral Function SUMMARY: In compliance with the requirement of Section... Neurological and Behavioral Function. Type of Information Collection Request: New. Need and Use of Information... measures of four domains of neurological and behavioral functioning (cognitive, emotional, motor and...

  4. 75 FR 22596 - Proposed Collection; Comment Request; NIH Toolbox for Assessment of Neurological and Behavioral...

    Science.gov (United States)

    2010-04-29

    ... Assessment of Neurological and Behavioral Function SUMMARY: In compliance with the requirement of Section... Neurological and Behavioral Function. Type of Information Collection Request: New. Need and Use of Information... four domains of neurological and behavioral functioning (cognitive, emotional, motor and sensory) for...

  5. Metabolism and secretory function of white adipose tissue: effect of dietary fat

    Directory of Open Access Journals (Sweden)

    Cláudia M. Oller do Nascimento

    2009-09-01

    Full Text Available Approximately 40% of the total energy consumed by western populations is represented by lipids, most of them being ingested as triacylglycerols and phospholipids. The focus of this review is to analyze the effect of the type of dietary fat on white adipose tissue metabolism and secretory function, particularly on haptoglobin, TNF-α, plasminogen activator inhibitor-1 and adiponectin secretion. Previous studies have demonstrated that the duration of the exposure to the high-fat feeding, amount of fatty acid present in the diet and the type of fatty acid may or may not have a significant effect on adipose tissue metabolism. However, the long-term or short-term high fat diets, especially rich in saturated fatty acids, probably by activation of toll-like receptors, stimulated the expression of proinflammatory adipokines and inhibited adiponectin expression. Further studies are needed to investigate the cellular mechanisms by which dietary fatty acids affect white adipose tissue metabolism and secretory functions.Aproximadamente 40% do total de energia consumida pela população ocidental é representada pelos lipídios, a maioria dela sendo ingerida na forma de triglicerídeos e fosfolipídios. O foco desta revisão foi analisar o efeito dos tipos de gordura da dieta sobre o metabolismo e função secretora do tecido adiposo branco, principalmente, sobre a secreção de haptoglobina, TNF-α, inibidor do ativador de plasminogênio-1 e adiponectina. Estudos prévios demonstraram que durante a exposição de dietas hiperlipídicas, a quantidade e o tipo de ácidos graxos presentes na dieta podem ou não ter um efeito significante sobre o metabolismo do tecido adiposo. Entretanto, o tratamento a curto ou longo prazo com dieta hiperlipídica, especialmente rica em ácidos graxos saturados, provavelmente por ativar receptores toll-like, estimula a expressão de adipocinas pró-inflamatórias e inibe a expressão de adiponectina. Estudos adicionais s

  6. Cognitive functions in middle aged individuals are related to metabolic disturbances and aerobic capacity

    DEFF Research Database (Denmark)

    Pedersen, Maria; Pedersen, Karin Kaereby; Bruunsgaard, Helle

    2012-01-01

    Metabolic disturbances may contribute to cognitive dysfunction in patients with type 2 diabetes. We investigated the relation between cognitive impairment and metabolic deteriorations, low physical fitness, low-grade inflammation and abdominal obesity in middle aged individuals....

  7. Neurology and literature 2.

    Science.gov (United States)

    Iniesta, I

    2014-05-01

    Good literary fiction has the potential to move us, extend our sense of life, transform our prospective views and help us in the face of adversity. A neurological disorder is likely to be the most challenging experience a human being may have to confront in a lifetime. As such, literary recreations of illnesses have a doubly powerful effect. Study the synergies between neurology and fictional literature with particular reference to narrative based medicine (NBM). Doctors establish boundaries between the normal and the abnormal. Taking a clinical history is an act of interpretation in which the doctor integrates the science of objective signs and measurable quantities with the art of subjective clinical judgment. The more discrepancy there is between the patient's experience with the illness and the doctor's interpretation of that disease, the less likely the doctor-patient interaction is to succeed. NBM contributes to a better discernment of the meanings, thus considering disease as a biographical event rather than just a natural fact. Drawing from their own experience with disease, writers of fiction provide universal insights through their narratives, whilst neuroscientists, like Cajal, have occasionally devoted their scientific knowledge to literary narratives. Furthermore, neurologists from Alzheimer to Oliver Sacks remind us of the essential value of NBM in the clinic. Integrating NBM (the narrative of patients) and the classic holistic approach to patients with our current paradigm of evidence based medicine represents a challenge as relevant to neurologists as keeping up with technological and scientific advances. Copyright © 2011 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  8. Effect of metabolic alkalosis on respiratory function in patients with chronic obstructive lung disease.

    Science.gov (United States)

    Bear, R.; Goldstein, M.; Phillipson, E.; Ho, M.; Hammeke, M.; Feldman, R.; Handelsman, S.; Halperin, M.

    1977-01-01

    Eleven instances of a mixed acid-base disorder consisting of chronic respiratory acidosis and metabolic alkalosis were recognized in eight patients with chronic obstructive lung disease and carbon dioxide retention. Correction of the metabolic alkalosis led to substantial improvement in blood gas values and clinical symptoms. Patients with mixed chronic respiratory acidosis and metabolic alkalosis constitute a common subgroup of patients with chronic obstructive lung disease and carbon dioxide retention; these patients benefit from correction of the metabolic alkalosis. PMID:21028

  9. Neurological complications of chickenpox

    Directory of Open Access Journals (Sweden)

    Girija A

    2007-01-01

    Full Text Available Aim: To assess the neurological complications of chickenpox with prognosis. Background: The neurological complications occur in 0.03% of persons who get chickenpox. There is no universal vaccination against chicken pox in India. Most patients prefer alternate modalities of treatment. Hence these complications of chickenpox are likely to continue to occur. Study Design: A prospective study was conducted for 2 years (from March 2002 on the admitted cases with neurological complications after chickenpox (with rash or scar. Patients were investigated with CT/MRI, CSF study, EEG and nerve conduction studies and hematological workup. They were followed-up for 1 year and outcome assessed using modified Rankin scale. Results: The latency for the neurological complications was 4-32 days (mean: 16.32 days. There were 18 cases: 10 adults (64% and 8 children (36%. Cerebellar ataxia (normal CT/MRI was observed in 7 cases (32% (mean age: 6.85 years. One patient (6 years had acute right hemiparesis in the fifth week due to left capsular infarct. All these cases spontaneously recovered by 4 weeks. The age range of the adult patients was 13-47 years (mean: 27 years. The manifestations included cerebellar and pyramidal signs (n-4 with features of demyelination in MRI who recovered spontaneously or with methylprednisolone by 8 weeks. Patient with encephalitis recovered in 2 weeks with acyclovir. Guillain Barre syndrome of the demyelinating type (n-2 was treated with Intravenous immunoglobulin (IVIG and they had a slow recovery by a modified Rankin scale (mRs score of 3 and 2 at 6 months and 1 year, respectively. One case died after hemorrhage into the occipital infarct. There were two cases of asymmetrical neuropathy, one each of the seventh cranial and brachial neuritis. Conclusion: Spontaneous recovery occurs in post-chickenpox cerebellar ataxia. Rarely, serious complications can occur in adults. The demyelinating disorders, either of the central or peripheral

  10. CHANGING METABOLIC FUNCTIONS IN EXPERIMENTAL ANIMALS AFTER INTRODUCTION OF THE XENOBIOTIC, IMMUNOTROPIC DRUG AND PROBIOTIC

    Directory of Open Access Journals (Sweden)

    Zvyagintseva O.V.

    2015-05-01

    Full Text Available The aim of the study was to evaluate in vivo changes in metabolic and barrier function of the resistance factors (activity of enzymes of neutrophils, the efficiency of phagocytosis, some biochemical parameters (concentration of ceruloplasmin and haptoglobin and proliferate activity in vitro cells after introduction of copper sulfate, probiotics and immunostimulant "Fungidol" the experimental animals. Material and methods. The in vivo experiments were performed on 6-month-old male rats of Wistar line. Identified the following groups: group 1 - control animals, which were intraperitoneally injected with saline (n = 5; group 2 - animals that were administered saline per os and 48 hours a solution of copper sulphate intraperitoneally (n = 5; group 3 - animals, which were injected with immunotropic drug "Fungidol" per os and 48 hours a solution of copper sulphate intraperitoneally (n = 5; group 4 animals, which were injected with a solution of probiotics per os and 48 hours a solution of copper sulphate intraperitoneally (n = 5. As a probiotic used capsules firm Yogurt that contains active Lactobacillus acidophilus, Lactobacillus rhamnosus, Streptococcus thermophillus, Lactobacillus bulgaricus. The concentration of haptoglobin and ceruloplasmin were determined spectrophotometrically. Oxygen-dependent metabolism of neutrophils was investigated by microscopy according to their ability to absorb nitroblue tetrazolium (NBT-test and restore it to deformazione in the form of granules blue color under the influence of superoxide anion, which is formed in the NADP-oxidase reaction, initiating the process of stimulation of phagocytosis (NBT-test. To determine the barrier function of phagocytic cells by light microscopy to evaluate the activity of phagocytosis of neutrophilic granulocytes with subsequent determination of phagocytic index, phagocytic number and the index of completeness of phagocytosis. As a microbial agent used is a suspension culture of

  11. Dietary Exercise as a Novel Strategy for the Prevention and Treatment of Metabolic Syndrome: Effects on Skeletal Muscle Function

    Directory of Open Access Journals (Sweden)

    Wataru Aoi

    2011-01-01

    Full Text Available A sedentary lifestyle can cause metabolic syndrome to develop. Metabolic syndrome is associated with metabolic function in the skeletal muscle, a major consumer of nutrients. Dietary exercise, along with an adequate diet, is reported to be one of the major preventive therapies for metabolic syndrome; exercise improves the metabolic capacity of muscles and prevents the loss of muscle mass. Epidemiological studies have shown that physical activity reduces the risk of various common diseases such as cardiovascular disease, diabetes, and cancer; it also helps in reducing visceral adipose tissue. In addition, laboratory studies have demonstrated the mechanisms underlying the benefits of single-bout and regular exercise. Exercise regulates the expression/activity of proteins associated with metabolic and anabolic signaling in muscle, leading to a change in phenotype. The extent of these changes depends on the intensity, the duration, and the frequency of the exercise. The effect of exercise is also partly due to a decrease in inflammation, which has been shown to be closely related to the development of various diseases. Furthermore, it has been suggested that several phytochemicals contained in natural foods can improve nutrient metabolism and prevent protein degradation in the muscle.

  12. Education Research: Neurology resident education

    Science.gov (United States)

    Mayans, David; Schneider, Logan; Adams, Nellie; Khawaja, Ayaz M.; Engstrom, John

    2016-01-01

    Objective: To survey US-trained graduating neurology residents who are American Academy of Neurology members, in an effort to trend perceived quality and completeness of graduate neurology education. Methods: An electronic survey was sent to all American Academy of Neurology members graduating from US neurology residency programs in the Spring of 2014. Results: Of 805 eligible respondents, 24% completed the survey. Ninety-three percent of adult neurology residents and 56% of child neurology residents reported plans to pursue fellowship training after residency. Respondents reported a desire for additional training in neurocritical care, neuro-oncology, neuromuscular diseases, botulinum toxin injection, and nerve blocks. There remains a clear deficit in business training of neurology residents, although there was notable improvement in knowledge of coding and office management compared to previous surveys. Discussion: Although there are still areas of perceived weakness in neurology training, graduating neurology residents feel generally well prepared for their chosen careers. However, most still pursue fellowship training for reasons that are little understood. In addition to certain subspecialties and procedures, practice management remains deficient in neurology training and is a point of future insecurity for most residents. Future curriculum changes should consider resident-reported gaps in knowledge, with careful consideration of improving business training. PMID:26976522

  13. Minor neurological dysfunction in children with dyslexia

    NARCIS (Netherlands)

    Punt, Marja; De Jong, Marianne; De Groot, Erik; Hadders-Algra, Mijna

    2010-01-01

    AIM To improve understanding of brain function in children with severe dyslexia in terms of minor neurological dysfunctions (MNDs). METHOD One hundred and four children (81 males, 23 females; age range 7-12y; mean age 9y 7mo, SD 1y 2mo;) with severe dyslexia (the presence of a Full-scale IQ score of

  14. Metabolism of Glutamine by the Intact Functioning Kidney of the Dog STUDIES IN METABOLIC ACIDOSIS AND ALKALOSIS

    Science.gov (United States)

    Pitts, R. F.; Pilkington, L. A.; MacLeod, M. B.; Leal-Pinto, E.

    1972-01-01

    The renal conversion of glutamine to glucose and its oxidation to CO2 were compared in dogs in chronic metabolic acidosis and alkalosis. These studies were performed at normal endogenous levels of glutamine utilizing glutamine-34C (uniformly labeled) as a tracer. It was observed in five experiments in acidosis that mean renal extraction of glutamine by one kidney amounted to 27.7 μmoles/min. Of this quantity, 5.34 μmoles/min was converted to glucose, and 17.5 μmoles/min was oxidized to CO2. Acidotic animals excreted an average of 41 μmoles/min of ammonia in the urine formed by one kidney. In contrast, in five experiments in alkalosis, mean renal extraction of glutamine amounted to 8.04 μmoles/min. Of this quantity, 0.92 μmole/min was converted to glucose, and 4.99 μmoles/min was oxidized to CO2. Alkalotic animals excreted an average of 3.23 μmoles/min of ammonia in the urine. We conclude that renal gluconeogenesis is not rate limiting for the production and excretion of ammonia in either acidosis or alkalosis. Since 40% of total CO2 production is derived from oxidation of glutamine by the acidotic kidney and 14% by the alkalotic kidney, it is apparent that renal energy sources change with acid-base state and that glutamine constitutes a major metabolic fuel in acidosis. Images PMID:5011100

  15. Endocannabinoid System in Neurological Disorders.

    Science.gov (United States)

    Ranieri, Roberta; Laezza, Chiara; Bifulco, Maurizio; Marasco, Daniela; Malfitano, Anna M

    2016-01-01

    Several studies support the evidence that the endocannabinoid system and cannabimimetic drugs might have therapeutic potential in numerous pathologies. These pathologies range from neurological disorders, atherosclerosis, stroke, cancer to obesity/metabolic syndrome and others. In this paper we review the endocannabinoid system signaling and its alteration in neurodegenerative disorders like multiple sclerosis, Alzheimer's disease, Parkinson's disease and Huntington's disease and discuss the main findings about the use of cannabinoids in the therapy of these pathologies. Despite different etiologies, neurodegenerative disorders exhibit similar mechanisms like neuro-inflammation, excitotoxicity, deregulation of intercellular communication, mitochondrial dysfunction and disruption of brain tissue homeostasis. Current treatments ameliorate the symptoms but are not curative. Interfering with the endocannabinoid signaling might be a valid therapeutic option in neuro-degeneration. To this aim, pharmacological intervention to modulate the endocannabinoid system and the use of natural and synthetic cannabimimetic drugs have been assessed. CB1 and CB2 receptor signaling contributes to the control of Ca2+ homeostasis, trophic support, mitochondrial activity, and inflammatory conditions. Several studies and patents suggest that the endocannabinoid system has neuro-protective properties and might be a target in neurodegenerative diseases.

  16. PYRITINOL USAGE IN PEDIATRIC NEUROLOGY

    Directory of Open Access Journals (Sweden)

    N. N. Zavadenko

    2013-01-01

    Full Text Available Treatment of developmental disorders, correction of learning disabilities and behavioral problems in children should be prompt, complex and include pharmacotherapy with nootropic agents. The results of recent studies shown in this review proved effectiveness of pharmacotherapy with pyritinol in children with perinatal injury of central nervous system and its consequences, psychomotor and speech development delay, dyslexia, attention deficit/hyperactivity disorder, cognitive disorders and learning disabilities (including manifestations of epilepsy, chronic tic disorders and Tourette syndrome. Due to its ability to optimize metabolic processes in central nervous system, pyritinol is used in treatment of vegetative dysfunction in children and adolescents, especially associated with asthenical manifestations, as well as in complex therapy of exertion headache and migraine. The drug is effective in treatment of cognitive disorders in children and adolescents with epilepsy, pyritinol was administered without changing of the basic anticonvulsive therapy and no deterioration (increase of severity of seizures or intensity of epileptiform activity on electroencephalogramms was observed. Significant nootropic effect of pyritinol, including neurometabolic, neuroprotective, neurodynamic and other mechanisms, in association with safety and rare side effects of this drug determines its wide usage in pediatric neurology.

  17. [Neonatal asphyxia: neurologic outcome].

    Science.gov (United States)

    Allemand, A; Stanca, M; Sposato, M; Santoro, F; Danti, F R; Dosi, C; Allemand, F

    2013-08-01

    The neonatal asphyxia is recognized as an important cause of morbidity and mortality during the pediatric age. The objective of this study was to evaluate the correlation between some neonatal variables and neurological outcome at two years of life in infants with asphyxia, in order to produce a correct prognosis and to grant a rapid and targeted therapy. We have recruited 63 patients whose history and neuroimages suggested a neonatal asphyxia, and we have analysed their clinical- instrumental parameters every three months until two years of life. A correlation study was carried out in order to find a statistical significance indicated by p-value Neonatal seizures are not related to an increased risk to develop epilepsy. Epilepsy alone is a rare event and it usually complicates CP picture. Most subject with both epilepsy and CP are term infants with adequate weight. Preterm VLBW infants have a greater risk to develop a psychomotor delay. Clinical conditions at birth are related to CP severity (several neonatal neurological signs are the greater risk factors). Severely pathological neonatal EEG (background activity) is related to CP severity and an early symptomatic epilepsy onset is related with both epilepsy and CP severity.

  18. Rhinal hypometabolism on FDG PET in healthy APO-E4 carriers: impact on memory function and metabolic networks

    Energy Technology Data Exchange (ETDEWEB)

    Didic, Mira; Felician, Olivier; Gour, Natalina; Ceccaldi, Mathieu [Pole de Neurosciences Cliniques, Centre Hospitalo-Universitaire de la Timone, AP-HM, Service de Neurologie and Neuropsychologie, Marseille (France); Aix Marseille Universite, Inserm, INS UMRS 1106, Marseille (France); Bernard, Rafaelle; Pecheux, Christophe [Centre Hospitalo-Universitaire de la Timone, AP-HM, et INSERM UMRS 910: ' ' Genetique Medicale et Genomique fonctionnelle' ' , Departement de Genetique Medicale, Marseille (France); Mundler, Olivier; Guedj, Eric [Centre Hospitalo-Universitaire de la Timone, AP-HM, Service Central de Biophysique et Medecine Nucleaire, Marseille (France); Aix Marseille Universite, CERIMED, CNRS UMR7289, INT, Marseille (France); Aix Marseille Universite, CNRS UMR7289, INT, Marseille (France)

    2015-09-15

    The ε4 allele of the apolipoprotein E (APO-E4) gene, a genetic risk factor for Alzheimer's disease (AD), also modulates brain metabolism and function in healthy subjects. The aim of the present study was to explore cerebral metabolism using FDG PET in healthy APO-E4 carriers by comparing cognitively normal APO-E4 carriers to noncarriers and to assess if patterns of metabolism are correlated with performance on cognitive tasks. Moreover, metabolic connectivity patterns were established in order to assess if the organization of neural networks is influenced by genetic factors. Whole-brain PET statistical analysis was performed at voxel-level using SPM8 with a threshold of p < 0.005, corrected for volume, with age, gender and level of education as nuisance variables. Significant hypometabolism between APO-E4 carriers (n = 11) and noncarriers (n = 30) was first determined. Mean metabolic values with clinical/neuropsychological data were extracted at the individual level, and correlations were searched using Spearman's rank test in the whole group. To evaluate metabolic connectivity from metabolic cluster(s) previously identified in the intergroup comparison, voxel-wise interregional correlation analysis (IRCA) was performed between groups of subjects. APO-E4 carriers had reduced metabolism within the left anterior medial temporal lobe (MTL), where neuropathological changes first appear in AD, including the entorhinal and perirhinal cortices. A correlation between metabolism in this area and performance on the DMS48 (delayed matching to sample-48 items) was found, in line with converging evidence involving the perirhinal cortex in object-based memory. Finally, a voxel-wise IRCA revealed stronger metabolic connectivity of the MTL cluster with neocortical frontoparietal regions in carriers than in noncarriers, suggesting compensatory metabolic networks. Exploring cerebral metabolism using FDG PET can contribute to a better understanding of the influence of

  19. Recent insights into the implications of metabolism in plasmacytoid dendritic cell innate functions: Potential ways to control these functions [version 2; referees: 1 approved, 2 approved with reservations

    Directory of Open Access Journals (Sweden)

    Philippe Saas

    2017-06-01

    Full Text Available There are more and more data concerning the role of cellular metabolism in innate immune cells, such as macrophages or conventional dendritic cells. However, few data are available currently concerning plasmacytoid dendritic cells (PDC, another type of innate immune cells. These cells are the main type I interferon (IFN producing cells, but they also secrete other pro-inflammatory cytokines (e.g., tumor necrosis factor or interleukin [IL]-6 or immunomodulatory factors (e.g., IL-10 or transforming growth factor-β. Through these functions, PDC participate in antimicrobial responses or maintenance of immune tolerance, and have been implicated in the pathophysiology of several autoimmune diseases, as well as in tumor immune escape mechanisms. Recent data support the idea that the glycolytic pathway (or glycolysis, as well as lipid metabolism (including both cholesterol and fatty acid metabolism may impact some innate immune functions of PDC or may be involved in these functions after Toll-like receptor (TLR 7/9 triggering. The kinetics of glycolysis after TLR7/9 triggering may differ between human and murine PDC. In mouse PDC, metabolism changes promoted by TLR7/9 activation may depend on an autocrine/paracrine loop, implicating type I IFN and its receptor IFNAR. This could explain a delayed glycolysis in mouse PDC. Moreover, PDC functions can be modulated by the metabolism of cholesterol and fatty acids. This may occur via the production of lipid ligands that activate nuclear receptors (e.g., liver X receptor [LXR] in PDC or through limiting intracellular cholesterol pool size (by statin or LXR agonist treatment in these cells. Finally, lipid-activated nuclear receptors (i.e., LXR or peroxisome proliferator activated receptor may also directly interact with pro-inflammatory transcription factors, such as NF-κB. Here, we discuss how glycolysis and lipid metabolism may modulate PDC functions and how this may be harnessed in pathological situations

  20. Lung function and metabolic syndrome: Findings of National Health and Nutrition Examination Survey 2007–2010*

    Science.gov (United States)

    FORD, Earl S.; CUNNINGHAM, Timothy J.; MERCADO, Carla I.

    2015-01-01

    Background Considerable uncertainty remains about obstructive lung function (OLF) in adults with metabolic syndrome (MetS). The aim of the present study was to examine pulmonary function status in adults with and without MetS. Methods We used data from 3109 participants aged ≥20 years of the National Health and Nutrition Examination Survey 2007–2010. Subjects’ MetS status was established on the basis of the 2009 harmonizing definition. Participants received spirometry. Results After age adjustment, 79.3% (SE 1.1) of participants with MetS had normal lung function, 8.7% (0.9) had restrictive lung function (RLF), 7.1% (0.8) had mild OLF, and 4.8% (0.6) had moderate OLF or worse. Among participants without MetS, these estimates were 78.7% (1.2), 3.9% (0.6), 10.9% (1.1), and 6.4% (0.8), respectively. After multiple adjustment, participants with MetS were more likely to have RLF (adjusted prevalence ratio [aPR] 2.20; 95% confidence interval [CI] 1.67, 2.90) and less likely to have any OLF (aPR 0.73; 95% CI 0.62, 0.86) than those without MetS. Furthermore, participants with MetS had lower mean levels of forced expiratory volume in one second (FEV1), FEV1 % predicted, forced vital capacity (FVC), and FVC % predicted, but a higher FEV1/FVC ratio than participants without MetS. Mean levels of FEV1, FEV1 % predicted, FVC, and FVC % predicted declined significantly, but not the FEV1/FVC ratio, as the number of components increased. Conclusions Compared with adults without MetS, spirometry is more likely to show a restrictive pattern and less likely to show an obstructive pattern among adults with MetS. PMID:26677470

  1. Functional genomics tools applied to plant metabolism: a survey on plant respiration, its connections and the annotation of complex gene functions

    Directory of Open Access Journals (Sweden)

    Wagner L. Araújo

    2012-09-01

    Full Text Available The application of post-genomic techniques in plant respiration studies has greatly improved our ability to assign functions to gene products. In addition it has also revealed previously unappreciated interactions between distal elements of metabolism. Such results have reinforced the need to consider plant respiratory metabolism as part of a complex network and making sense of such interactions will ultimately require the construction of predictive and mechanistic models. Transcriptomics, proteomics, metabolomics and the quantification of metabolic flux will be of great value in creating such models both by facilitating the annotation of complex gene function, determining their structure and by furnishing the quantitative data required to test them. In this review we highlight how these experimental approaches have contributed to our current understanding of plant respiratory metabolism and its interplay with associated process (e.g. photosynthesis, photorespiration and nitrogen metabolism. We also discuss how data from these techniques may be integrated, with the ultimate aim of identifying mechanisms that control and regulate plant respiration and discovering novel gene functions with potential biotechnological implications.

  2. Body composition, nutritional status, and endothelial function in physically active men without metabolic syndrome--a 25 year cohort study.

    Science.gov (United States)

    Pigłowska, Małgorzata; Kostka, Tomasz; Drygas, Wojciech; Jegier, Anna; Leszczyńska, Joanna; Bill-Bielecka, Mirosława; Kwaśniewska, Magdalena

    2016-04-27

    The purpose of this analysis was to investigate the relationship between body composition, metabolic parameters and endothelial function among physically active healthy middle-aged and older men. Out of 101 asymptomatic men prospectively tracked for traditional cardiovascular risk factors (mean observation period 25.1 years), 55 metabolically healthy individuals who maintained stable leisure time physical activity (LTPA) level throughout the observation and agreed to participate in the body composition assessment were recruited (mean age 60.3 ± 9.9 years). Body composition and raw bioelectrical parameters were measured with bioelectrical impedance analysis (BIA). Microvascular endothelial function was evaluated by means of the reactive hyperemia index (RHI) using Endo-PAT2000 system. Strong correlations were observed between lifetime physical activity (PA), aerobic fitness and most of analyzed body composition parameters. The strongest inverse correlation was found for fat mass (p metabolic parameters, HDL cholesterol (HDL-C) and uric acid were significantly associated with most body composition indicators. Regarding endothelial function, a negative correlation was found for RHI and body mass (p metabolic profile. Maintaining regular high PA level and metabolically healthy status through young and middle adulthood may have beneficial influence on body composition parameters and may prevent age-related decrease of fat-free mass and endothelial dysfunction.

  3. Neurology of foreign language aptitude

    Directory of Open Access Journals (Sweden)

    Adriana Biedroń

    2015-01-01

    Full Text Available This state-of-the art paper focuses on the poorly explored issue of foreign language aptitude, attempting to present the latest developments in this field and reconceptualizations of the construct from the perspective of neuroscience. In accordance with this goal, it first discusses general directions in neurolinguistic research on foreign language aptitude, starting with the earliest attempts to define the neurological substrate for talent, sources of difficulties in the neurolinguistic research on foreign language aptitude and modern research methods. This is followed by the discussion of the research on the phonology of foreign language aptitude with emphasis on functional and structural studies as well as their consequences for the knowledge of the concept. The subsequent section presents the studies which focus on lexical and morphosyntactic aspects of foreign language aptitude. The paper ends with a discussion of the limitations of contemporary research, the future directions of such research and selec ed methodological issues.

  4. Aphasia, Just a Neurological Disorder?

    Directory of Open Access Journals (Sweden)

    Mehmet Ozdemir

    2016-02-01

    Full Text Available Hashimoto%u2019s encephalopathy (HE is a rare disorder associated with autoimmune thyroiditis. Etiology of HE is not completely understood. High levels of serum antithyroid antibodies are seen in HE. Presentation with otoimmune thyroiditis, cognitive impairment, psychiatric and neurologic symptoms and absence of bacterial or viral enfections are characteristics of HE. HE is a steroid responsive encephalopathy. 60 years old male patient admitted to hospital with forget fulness continuing for 9 months and speech loss starting 2 days ago. Strong positivity of antithyroid antibodies increases the odds for HE. Thyroid function tests showed severe hypothyroidism. Electroencephalography and magnetic resonance imaging results were compatible with HE. HE is diagnosed with differantial diagnosis and exclusion of other reasons. This uncommon disorder is not recognised enough. High titres of serum antithyroid antiboides are always needed for diagnosis. Correct diagnosis requires awareness of wide range of cognitive and clinical presentations of HE.

  5. Effects of Community Exercise Therapy on Metabolic, Brain, Physical, and Cognitive Function Following Stroke: A Randomized Controlled Pilot Trial.

    Science.gov (United States)

    Moore, Sarah A; Hallsworth, Kate; Jakovljevic, Djordje G; Blamire, Andrew M; He, Jiabao; Ford, Gary A; Rochester, Lynn; Trenell, Michael I

    2015-08-01

    Exercise therapy could potentially modify metabolic risk factors and brain physiology alongside improving function post stroke. To explore the short-term metabolic, brain, cognitive, and functional effects of exercise following stroke. A total of 40 participants (>50 years, >6 months post stroke, independently mobile) were recruited to a single-blind, parallel, randomized controlled trial of community-based exercise (19 weeks, 3 times/wk, "exercise" group) or stretching ("control" group). Primary outcome measures were glucose control and cerebral blood flow. Secondary outcome measures were cardiorespiratory fitness, blood pressure, lipid profile, body composition, cerebral tissue atrophy and regional brain metabolism, and physical and cognitive function. Exercise did not change glucose control (homeostasis model assessment 1·5 ± 0·8 to 1·5 ± 0·7 vs 1·6 ± 0·8 to 1·7 ± 0·7, P = .97; CI = -0·5 to 0·49). Medial temporal lobe tissue blood flow increased with exercise (38 ± 8 to 42 ± 10 mL/100 g/min; P function, and cognition also improved with exercise. Exercise therapy improves short-term metabolic, brain, physical, and cognitive function, without changes in glucose control following stroke. The long-term impact of exercise on stroke recurrence, cardiovascular health, and disability should now be explored. © The Author(s) 2014.

  6. The effect of cytoflavin on functional and metabolic parameters rat liver in pancreatonecrosis

    Directory of Open Access Journals (Sweden)

    M. S. Sukach

    2012-01-01

    Full Text Available Problem of diagnosis and treatment of patients with necrotizing pancreatitis is an urgent. So it is interesting to study the effectiveness of a multicomponent antihypoxant and antioxidant cytoflavin to reduce violations of the detoxifying properties of the liver in experimental pancreatitis and reduce the severity of pancreatic endotoxemia. Pancreatic modeled by introducing into the pancreas of autobile in a dose of 0,15 ml/kg. Cytoflavin was injected into animals of a comparison group in a dose 0,21 ml/kg in 5 minutes after the model of pancreatic necrosis. We determined the activity of enzymes: alanine transaminase, amylase, and gamma glutamyltransferase, the content of direct bilirubin, glucose, and urea. After modeling of pancreatic necrosis in two days, there are signs of acute liver failure, as evidenced by the differences in the studied parameters of blood and hepatic portal vein: increased alanine transaminase and gamma glutamyltransferase, the change in concentration of metabolic pr