WorldWideScience

Sample records for metabolic syndrome fructose

  1. Fructose, Glucocorticoids and Adipose Tissue: Implications for the Metabolic Syndrome.

    Legeza, Balázs; Marcolongo, Paola; Gamberucci, Alessandra; Varga, Viola; Bánhegyi, Gábor; Benedetti, Angiolo; Odermatt, Alex

    2017-04-26

    The modern Western society lifestyle is characterized by a hyperenergetic, high sugar containing food intake. Sugar intake increased dramatically during the last few decades, due to the excessive consumption of high-sugar drinks and high-fructose corn syrup. Current evidence suggests that high fructose intake when combined with overeating and adiposity promotes adverse metabolic health effects including dyslipidemia, insulin resistance, type II diabetes, and inflammation. Similarly, elevated glucocorticoid levels, especially the enhanced generation of active glucocorticoids in the adipose tissue due to increased 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) activity, have been associated with metabolic diseases. Moreover, recent evidence suggests that fructose stimulates the 11β-HSD1-mediated glucocorticoid activation by enhancing the availability of its cofactor NADPH. In adipocytes, fructose was found to stimulate 11β-HSD1 expression and activity, thereby promoting the adipogenic effects of glucocorticoids. This article aims to highlight the interconnections between overwhelmed fructose metabolism, intracellular glucocorticoid activation in adipose tissue, and their metabolic effects on the progression of the metabolic syndrome.

  2. Manifestations of Renal Impairment in Fructose-induced Metabolic Syndrome.

    Bratoeva, Kameliya; Stoyanov, George S; Merdzhanova, Albena; Radanova, Mariya

    2017-11-07

    Introduction International studies show an increased incidence of chronic kidney disease (CKD) in patients with metabolic syndrome (MS). It is assumed that the major components of MS - obesity, insulin resistance, dyslipidemia, and hypertension - are linked to renal damage through the systemic release of several pro-inflammatory mediators, such as uric acid (UA), C-reactive protein (CRP), and generalized oxidative stress. The aim of the present study was to investigate the extent of kidney impairment and manifestations of dysfunction in rats with fructose-induced MS. Methods We used a model of high-fructose diet in male Wistar rats with 35% glucose-fructose corn syrup in drinking water over a duration of 16 weeks. The experimental animals were divided into two groups: control and high-fructose drinking (HFD). Serum samples were obtained from both groups for laboratory study, and the kidneys were extracted for observation via light microscopy examination. Results All HFD rats developed obesity, hyperglycemia, hypertriglyceridemia, increased levels of CRP and UA (when compared to the control group), and oxidative stress with high levels of malondialdehyde and low levels of reduced glutathione. The kidneys of the HFD group revealed a significant increase in kidney weight in the absence of evidence of renal dysfunction and electrolyte disturbances. Under light microscopy, the kidneys of the HFD group revealed amyloid deposits in Kimmelstiel-Wilson-like nodules and the walls of the large caliber blood vessels, early-stage atherosclerosis with visible ruptures and scarring, hydropic change (vacuolar degeneration) in the epithelial cells covering the proximal tubules, and increased eosinophilia in the distant tubules when compared to the control group. Conclusion Under the conditions of a fructose-induced metabolic syndrome, high serum UA and CRP correlate to the development of early renal disorders without a clinical manifestation of renal dysfunction. These

  3. Ursodeoxycholic Acid Ameliorates Fructose-Induced Metabolic Syndrome in Rats

    2014-01-01

    The metabolic syndrome (MS) is characterized by insulin resistance, dyslipidemia and hypertension. It is associated with increased risk of cardiovascular diseases and type-2 diabetes. Consumption of fructose is linked to increased prevalence of MS. Ursodeoxycholic acid (UDCA) is a steroid bile acid with antioxidant, anti-inflammatory activities and has been shown to improve insulin resistance. The current study aims to investigate the effect of UDCA (150 mg/kg) on MS induced in rats by fructose administration (10%) in drinking water for 12 weeks. The effects of UDCA were compared to fenofibrate (100 mg/kg), an agonist of PPAR-α receptors. Treatment with UDCA or fenofibrate started from the 6th week after fructose administration once daily. Fructose administration resulted in significant increase in body weight, elevations of blood glucose, serum insulin, cholesterol, triglycerides, advanced glycation end products (AGEs), uric acid levels, insulin resistance index and blood pressure compared to control rats. Moreover, fructose increased oxidative stress in aortic tissues indicated by significant increases of malondialdehyde (MDA), expression of iNOS and reduction of reduced glutathione (GSH) content. These disturbances were associated with decreased eNOS expression, increased infiltration of leukocytes and loss of aortic vascular elasticity. Treatment with UDCA successfully ameliorated the deleterious effects of fructose. The protective effect of UDCA could be attributed to its ability to decrease uric acid level, improve insulin resistance and diminish oxidative stress in vascular tissues. These results might support possible clinical application of UDCA in MS patients especially those present with liver diseases, taking into account its tolerability and safety. However, further investigations on human subjects are needed before the clinical application of UDCA for this indication. PMID:25202970

  4. Short-term fructose ingestion affects the brain independently from establishment of metabolic syndrome.

    Jiménez-Maldonado, Alberto; Ying, Zhe; Byun, Hyae Ran; Gomez-Pinilla, Fernando

    2018-01-01

    Chronic fructose ingestion is linked to the global epidemic of metabolic syndrome (MetS), and poses a serious threat to brain function. We asked whether a short period (one week) of fructose ingestion potentially insufficient to establish peripheral metabolic disorder could impact brain function. We report that the fructose treatment had no effect on liver/body weight ratio, weight gain, glucose tolerance and insulin sensitivity, was sufficient to reduce several aspects of hippocampal plasticity. Fructose consumption reduced the levels of the neuronal nuclear protein NeuN, Myelin Basic Protein, and the axonal growth-associated protein 43, concomitant with a decline in hippocampal weight. A reduction in peroxisome proliferator-activated receptor gamma coactivator-1 alpha and Cytochrome c oxidase subunit II by fructose treatment is indicative of mitochondrial dysfunction. Furthermore, the GLUT5 fructose transporter was increased in the hippocampus after fructose ingestion suggesting that fructose may facilitate its own transport to brain. Fructose elevated levels of ketohexokinase in the liver but did not affect SIRT1 levels, suggesting that fructose is metabolized in the liver, without severely affecting liver function commensurable to an absence of metabolic syndrome condition. These results advocate that a short period of fructose can influence brain plasticity without a major peripheral metabolic dysfunction. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Hibiscus sabdariffa calyx palliates insulin resistance, hyperglycemia, dyslipidemia and oxidative rout in fructose-induced metabolic syndrome rats.

    Ajiboye, Taofeek O; Raji, Hikmat O; Adeleye, Abdulwasiu O; Adigun, Nurudeen S; Giwa, Oluwayemisi B; Ojewuyi, Oluwayemisi B; Oladiji, Adenike T

    2016-03-30

    The effect of Hibiscus sabdariffa calyx extract was evaluated in high-fructose-induced metabolic syndrome rats. Insulin resistance, hyperglycemia, dyslipidemia and oxidative rout were induced in rats using high-fructose diet. High-fructose diet-fed rats were administered 100 and 200 mg kg(-1) body weight of H. sabdariffa extract for 3 weeks, starting from week 7 of high-fructose diet treatment. High-fructose diet significantly (P Hibiscus extract. Overall, aqueous extract of H. sabdariffa palliates insulin resistance, hyperglycemia, dyslipidemia and oxidative rout in high-fructose-induced metabolic syndrome rats. © 2015 Society of Chemical Industry.

  6. Metabolic Syndrome and Hypertension Resulting from Fructose Enriched Diet in Wistar Rats

    Julie Dupas

    2017-01-01

    Full Text Available Increased sugar consumption, especially fructose, is strongly related to the development of type 2 diabetes (T2D and metabolic syndrome. The aim of this study was to evaluate long term effects of fructose supplementation on Wistar rats. Three-week-old male rats were randomly divided into 2 groups: control (C; n=14 and fructose fed (FF; n=18, with a fructose enriched drink (20–25% w/v fructose in water for 21 weeks. Systolic blood pressure, fasting glycemia, and bodyweight were regularly measured. Glucose tolerance was evaluated three times using an oral glucose tolerance test. Insulin levels were measured concomitantly and insulin resistance markers were evaluated (HOMA 2-IR, Insulin Sensitivity Index for glycemia (ISI-gly. Lipids profile was evaluated on plasma. This fructose supplementation resulted in the early induction of hypertension without renal failure (stable theoretical creatinine clearance and in the progressive development of fasting hyperglycemia and insulin resistance (higher HOMA 2-IR, lower ISI-gly without modification of glucose tolerance. FF rats presented dyslipidemia (higher plasma triglycerides and early sign of liver malfunction (higher liver weight. Although abdominal fat weight was increased in FF rats, no significant overweight was found. In Wistar rats, 21 weeks of fructose supplementation induced a metabolic syndrome (hypertension, insulin resistance, and dyslipidemia but not T2D.

  7. Characterization of vascular complications in experimental model of fructose-induced metabolic syndrome.

    El-Bassossy, Hany M; Dsokey, Nora; Fahmy, Ahmed

    2014-12-01

    Vascular dysfunction is an important complication associated with metabolic syndrome (MS). Here we fully characterized vascular complications in a rat model of fructose-induced MS. MS was induced by adding fructose (10%) to drinking water to male Wistar rats of 6 weeks age. Blood pressure (BP) and isolated aorta responses phenylephrine (PE), KCl, acetylcholine (ACh), and sodium nitroprusside (SNP) were recorded after 6, 9, and 12 weeks of fructose administration. In addition, serum levels of glucose, insulin, uric acid, tumor necrosis factor α (TNFα), lipids, advanced glycation end products (AGEs), and arginase activity were determined. Furthermore, aortic reactive oxygen species (ROS) generation, hemeoxygenase-1 expression, and collagen deposition were examined. Fructose administration resulted in a significant hyperinslinemia after 6 weeks which continued for 12 weeks. It was also associated with a significant increase in BP after 6 weeks which was stable for 12 weeks. Aorta isolated from MS animals showed exaggerated contractility to PE and KCl and impaired relaxation to ACh compared with control after 6 weeks which were clearer at 12 weeks of fructose administration. In addition, MS animals showed significant increases in serum levels of lipids, uric acid, AGEs, TNFα, and arginase enzyme activity after 12 weeks of fructose administration. Furthermore, aortae isolated from MS animals were characterized by increased ROS generation and collagen deposition. In conclusion, adding fructose (10%) to drinking water produces a model of MS with vascular complications after 12 weeks that are characterized by insulin resistance, hypertension, disturbed vascular reactivity and structure, hyperuricemia, dyslipidemia, and low-grade inflammation.

  8. Dietary fructose and risk of metabolic syndrome in adults: Tehran Lipid and Glucose study

    Hosseinpanah Farhad

    2011-07-01

    Full Text Available Abstract Background Studies have shown that the excessive fructose intake may induce adverse metabolic effects. There is no direct evidence from epidemiological studies to clarify the association between usual amounts of fructose intake and the metabolic syndrome. Objective The aim this study was to determine the association of fructose intake and prevalence of metabolic syndrome (MetS and its components in Tehranian adults. Methods This cross-sectional population based study was conducted on 2537 subjects (45% men aged 19-70 y, participants of the Tehran Lipid and Glucose Study (2006-2008. Dietary data were collected using a validated 168 item semi-quantitative food frequency questionnaire. Dietary fructose intake was calculated by sum of natural fructose (NF in fruits and vegetables and added fructose (AF in commercial foods. MetS was defined according to the modified NCEP ATP III for Iranian adults. Results The mean ages of men and women were 40.5 ± 13.6 and 38.6 ± 12.8 years, respectively. Mean total dietary fructose intakes were 46.5 ± 24.5 (NF: 19.6 ± 10.7 and AF: 26.9 ± 13.9 and 37.3 ± 24.2 g/d (NF: 18.6 ± 10.5 and AF: 18.7 ± 13.6 in men and women, respectively. Compared with those in the lowest quartile of fructose intakes, men and women in the highest quartile, respectively, had 33% (95% CI, 1.15-1.47 and 20% (95% CI, 1.09-1.27 higher risk of the metabolic syndrome; 39% (CI, 1.16-1.63 and 20% (CI, 1.07-1.27 higher risk of abdominal obesity; 11% (CI, 1.02-1.17 and 9% (CI, 1.02-1.14 higher risk of hypertension; and 9% (CI, 1-1.15 and 9% (1.04-1.12 higher risk of impaired fasting glucose. Conclusion Higher consumption of dietary fructose may have adverse metabolic effects.

  9. Dietary fructose and risk of metabolic syndrome in adults: Tehran Lipid and Glucose study.

    Hosseini-Esfahani, Firoozeh; Bahadoran, Zahra; Mirmiran, Parvin; Hosseinpour-Niazi, Somayeh; Hosseinpanah, Farhad; Azizi, Fereidoun

    2011-07-12

    Studies have shown that the excessive fructose intake may induce adverse metabolic effects. There is no direct evidence from epidemiological studies to clarify the association between usual amounts of fructose intake and the metabolic syndrome. The aim this study was to determine the association of fructose intake and prevalence of metabolic syndrome (MetS) and its components in Tehranian adults. This cross-sectional population based study was conducted on 2537 subjects (45% men) aged 19-70 y, participants of the Tehran Lipid and Glucose Study (2006-2008). Dietary data were collected using a validated 168 item semi-quantitative food frequency questionnaire. Dietary fructose intake was calculated by sum of natural fructose (NF) in fruits and vegetables and added fructose (AF) in commercial foods. MetS was defined according to the modified NCEP ATP III for Iranian adults. The mean ages of men and women were 40.5 ± 13.6 and 38.6 ± 12.8 years, respectively. Mean total dietary fructose intakes were 46.5 ± 24.5 (NF: 19.6 ± 10.7 and AF: 26.9 ± 13.9) and 37.3 ± 24.2 g/d (NF: 18.6 ± 10.5 and AF: 18.7 ± 13.6) in men and women, respectively. Compared with those in the lowest quartile of fructose intakes, men and women in the highest quartile, respectively, had 33% (95% CI, 1.15-1.47) and 20% (95% CI, 1.09-1.27) higher risk of the metabolic syndrome; 39% (CI, 1.16-1.63) and 20% (CI, 1.07-1.27) higher risk of abdominal obesity; 11% (CI, 1.02-1.17) and 9% (CI, 1.02-1.14) higher risk of hypertension; and 9% (CI, 1-1.15) and 9% (1.04-1.12) higher risk of impaired fasting glucose. Higher consumption of dietary fructose may have adverse metabolic effects.

  10. Proteomic changes associated with metabolic syndrome in a fructose-fed rat model.

    Hsieh, Cheng-Chu; Liao, Chen-Chung; Liao, Yi-Chun; Hwang, Lucy Sun; Wu, Liang-Yi; Hsieh, Shu-Chen

    2016-10-01

    Metabolic syndrome (MetS), characterized by a constellation of disorders such as hyperglycemia, insulin resistance, and hypertension, is becoming a major global public health problem. Fructose consumption has increased dramatically over the past several decades and with it the incidence of MetS. However, its molecular mechanisms remain to be explored. In this study, we used male Sprague-Dawley (SD) rats to study the pathological mechanism of fructose induced MetS. The SD rats were fed a 60% high-fructose diet for 16 weeks to induce MetS. The induction of MetS was confirmed by blood biochemistry examination. Proteomics were used to investigate the differential hepatic protein expression patterns between the normal group and the MetS group. Proteomic results revealed that fructose-induced MetS induced changes in glucose and fatty acid metabolic pathways. In addition, oxidative stress and endoplasmic reticulum stress-related proteins were modulated by high-fructose feeding. In summary, our results identify many new targets for future investigation. Further characterization of these proteins and their involvement in the link between insulin resistance and metabolic dyslipidemia may bring new insights into MetS. Copyright © 2016. Published by Elsevier B.V.

  11. Proteomic changes associated with metabolic syndrome in a fructose-fed rat model

    Cheng-Chu Hsieh

    2016-10-01

    Full Text Available Metabolic syndrome (MetS, characterized by a constellation of disorders such as hyperglycemia, insulin resistance, and hypertension, is becoming a major global public health problem. Fructose consumption has increased dramatically over the past several decades and with it the incidence of MetS. However, its molecular mechanisms remain to be explored. In this study, we used male Sprague-Dawley (SD rats to study the pathological mechanism of fructose induced MetS. The SD rats were fed a 60% high-fructose diet for 16 weeks to induce MetS. The induction of MetS was confirmed by blood biochemistry examination. Proteomics were used to investigate the differential hepatic protein expression patterns between the normal group and the MetS group. Proteomic results revealed that fructose-induced MetS induced changes in glucose and fatty acid metabolic pathways. In addition, oxidative stress and endoplasmic reticulum stress-related proteins were modulated by high-fructose feeding. In summary, our results identify many new targets for future investigation. Further characterization of these proteins and their involvement in the link between insulin resistance and metabolic dyslipidemia may bring new insights into MetS.

  12. Rescue of Fructose-Induced Metabolic Syndrome by Antibiotics or Faecal Transplantation in a Rat Model of Obesity.

    Di Luccia, Blanda; Crescenzo, Raffaella; Mazzoli, Arianna; Cigliano, Luisa; Venditti, Paola; Walser, Jean-Claude; Widmer, Alex; Baccigalupi, Loredana; Ricca, Ezio; Iossa, Susanna

    2015-01-01

    A fructose-rich diet can induce metabolic syndrome, a combination of health disorders that increases the risk of diabetes and cardiovascular diseases. Diet is also known to alter the microbial composition of the gut, although it is not clear whether such alteration contributes to the development of metabolic syndrome. The aim of this work was to assess the possible link between the gut microbiota and the development of diet-induced metabolic syndrome in a rat model of obesity. Rats were fed either a standard or high-fructose diet. Groups of fructose-fed rats were treated with either antibiotics or faecal samples from control rats by oral gavage. Body composition, plasma metabolic parameters and markers of tissue oxidative stress were measured in all groups. A 16S DNA-sequencing approach was used to evaluate the bacterial composition of the gut of animals under different diets. The fructose-rich diet induced markers of metabolic syndrome, inflammation and oxidative stress, that were all significantly reduced when the animals were treated with antibiotic or faecal samples. The number of members of two bacterial genera, Coprococcus and Ruminococcus, was increased by the fructose-rich diet and reduced by both antibiotic and faecal treatments, pointing to a correlation between their abundance and the development of the metabolic syndrome. Our data indicate that in rats fed a fructose-rich diet the development of metabolic syndrome is directly correlated with variations of the gut content of specific bacterial taxa.

  13. Rescue of Fructose-Induced Metabolic Syndrome by Antibiotics or Faecal Transplantation in a Rat Model of Obesity.

    Blanda Di Luccia

    Full Text Available A fructose-rich diet can induce metabolic syndrome, a combination of health disorders that increases the risk of diabetes and cardiovascular diseases. Diet is also known to alter the microbial composition of the gut, although it is not clear whether such alteration contributes to the development of metabolic syndrome. The aim of this work was to assess the possible link between the gut microbiota and the development of diet-induced metabolic syndrome in a rat model of obesity. Rats were fed either a standard or high-fructose diet. Groups of fructose-fed rats were treated with either antibiotics or faecal samples from control rats by oral gavage. Body composition, plasma metabolic parameters and markers of tissue oxidative stress were measured in all groups. A 16S DNA-sequencing approach was used to evaluate the bacterial composition of the gut of animals under different diets. The fructose-rich diet induced markers of metabolic syndrome, inflammation and oxidative stress, that were all significantly reduced when the animals were treated with antibiotic or faecal samples. The number of members of two bacterial genera, Coprococcus and Ruminococcus, was increased by the fructose-rich diet and reduced by both antibiotic and faecal treatments, pointing to a correlation between their abundance and the development of the metabolic syndrome. Our data indicate that in rats fed a fructose-rich diet the development of metabolic syndrome is directly correlated with variations of the gut content of specific bacterial taxa.

  14. The Establishment of Metabolic Syndrome Model by Induction of Fructose Drinking Water in Male Wistar Rats

    Norshalizah Mamikutty

    2014-01-01

    Full Text Available Background. Metabolic syndrome can be caused by modification of diet by means of consumption of high carbohydrate and high fat diet such as fructose. Aims. To develop a metabolic syndrome rat model by induction of fructose drinking water (FDW in male Wistar rats. Methods. Eighteen male Wistar rats were fed with FDW 20% and FDW 25% for a duration of eight weeks. The physiological changes with regard to food and fluid intake, as well as calorie intake, were measured. The metabolic changes such as obesity, dyslipidaemia, hypertension, and hyperglycaemia were determined. Data was presented in mean ± SEM subjected to one-way ANOVA. Results. Male Wistar rats fed with FDW 20% for eight weeks developed significant higher obesity parameters compared to those fed with FDW 25%. There was hypertrophy of adipocytes in F20 and F25. There were also systolic hypertension, hypertriglyceridemia, and hyperglycemia in both groups. Conclusion. We conclude that the metabolic syndrome rat model is best established with the induction of FDW 20% for eight weeks. This was evident in the form of higher obesity parameter which caused the development of the metabolic syndrome.

  15. Risk assessment of silica nanoparticles on liver injury in metabolic syndrome mice induced by fructose.

    Li, Jianmei; He, Xiwei; Yang, Yang; Li, Mei; Xu, Chenke; Yu, Rong

    2018-07-01

    This study aims to assess the effects and the mechanisms of silica nanoparticles (SiNPs) on hepatotoxicity in both normal and metabolic syndrome mouse models induced by fructose. Here, we found that SiNPs exposure lead to improved insulin resistance in metabolic syndrome mice, but markedly worsened hepatic ballooning, inflammation infiltration, and fibrosis. Moreover, SiNPs exposure aggravated liver injury in metabolic syndrome mice by causing serious DNA damage. Following SiNPs exposure, liver superoxide dismutase and catalase activities in metabolic syndrome mice were stimulated, which is accompanied by significantly increased malondialdehyde and 8-hydroxy-2-deoxyguanosine levels as compared to normal mice. Scanning electron microscope (SEM) revealed that SiNPs were more readily deposited in the liver mitochondria of metabolic syndrome mice, resulting in more severe mitochondrial injury as compared to normal mice. We speculated that SiNPs-induced mitochondrial injury might be the cause of hepatic oxidative stress, which further lead to a series of liver lesions as observed in mice following SiNPs exposure. Based on these results, it is likely that SiNPs will increase the risk and severity of liver disease in individuals with metabolic syndrome. Therefore, SiNPs should be used cautiously in food additives and clinical settings. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Association of fructose consumption and components of metabolic syndrome in human studies: a systematic review and meta-analysis.

    Kelishadi, Roya; Mansourian, Marjan; Heidari-Beni, Motahar

    2014-05-01

    The aim of this study was to review the current corpus of human studies to determine the association of various doses and durations of fructose consumption on metabolic syndrome. We searched human studies in PubMed, Scopus, Ovid, ISI Web of Science, Cochrane library, and Google Scholar databases. We searched for the following keywords in each paper: metabolic syndrome x, insulin resistance, blood glucose, blood sugar, fasting blood sugar, triglycerides, lipoproteins, HDL, cholesterol, LDL, blood pressure, mean arterial pressure, systolic blood pressure, diastolic blood pressure, hypertens*, waist circumference, and fructose, sucrose, high-fructose corn syrup, or sugar. Overall, 3102 articles were gathered. We excluded studies on natural fructose content of foods, non-clinical trials, and trials in which fructose was recommended exclusively as sucrose or high-fructose corn syrup. Overall, 3069 articles were excluded. After review by independent reviewers, 15 studies were included in the meta-analysis. Fructose consumption was positively associated with increased fasting blood sugar (FBS; summary mean difference, 0.307; 95% confidence interval [CI], 0.149-0.465; P = 0.002), elevated triglycerides (TG; 0.275; 95% CI, 0.014-0.408; P = 0.002); and elevated systolic blood pressure (SBP; 0.297; 95% CI, 0.144-0.451; P = 0.002). The corresponding figure was inverse for high-density lipoprotein (HDL) cholesterol (-0.267; 95% CI, -0.406 to -0.128; P = 0.001). Significant heterogeneity existed between studies, except for FBS. After excluding studies that led to the highest effect on the heterogeneity test, the association between fructose consumption and TG, SBP, and HDL became non-significant. The results did not show any evidence of publication bias. No missing studies were identified with the trim-and-fill method. Fructose consumption from industrialized foods has significant effects on most components of metabolic syndrome. Copyright © 2014 Elsevier Inc. All rights

  17. The effects of resveratrol on hepatic oxidative stress in metabolic syndrome model induced by high fructose diet.

    Yilmaz Demirtas, C; Bircan, F S; Pasaoglu, O T; Turkozkan, N

    2018-01-01

    The purpose of this study was to evaluate probable protective effects of resveratrol treatment on hepatic oxidative events in a rat model of metabolic syndrome (MetS). Thirty-two male adult rats were randomly divided into 4 groups: control, fructose, resveratrol, and fructose plus resveratrol. To induce MetS, fructose solution (20 % in drinking water) was used. Resveratrol (10 mg/kg/day) was given by oral gavage. All treatments were given for 8 weeks. Serum lipid profile, glucose and insulin levels, liver total oxidant status (TOS) levels and paraoxonase (PON), glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase (CAT) activities were analyzed. Fructose-fed rats displayed statistically significant increases in TOS levels, and decreases in PON activity compared to the control group. Resveratrol treatment moderately prevented the decrease in liver PON activity caused by fructose. On the other hand, resveratrol, alone or in combination with fructose, did not change the TOS levels when compared to the fructose group. The SOD and CAT activities in all groups did not change. In this experimental design, high-fructose consumption led to elevated TOS levels and low PON activities. The resveratrol therapy shown beneficial effects on PON activity. However, it was found to behave like a prooxidant when administered together with fructose and alone in some parameters. Our results can inspire the development of new clinical therapy in patients with MetS (Tab. 2, Ref. 34).

  18. High fructose diet-induced metabolic syndrome: Pathophysiological mechanism and treatment by traditional Chinese medicine.

    Pan, Ying; Kong, Ling-Dong

    2018-04-01

    Fructose is a natural monosaccharide broadly used in modern society. Over the past few decades, epidemiological studies have demonstrated that high fructose intake is an etiological factor of metabolic syndrome (MetS). This review highlights research advances on fructose-induced MetS, especially the underlying pathophysiological mechanism as well as pharmacotherapy by traditional Chinese medicine (TCM), using the PubMed, Web of science, China National Knowledge Infrastructure, China Science and Technology Journal and Wanfang Data. This review focuses on de novo lipogenesis (DNL) and uric acid (UA) production, two unique features of fructolysis different from glucose glycolysis. High level of DNL and UA production can result in insulin resistance, the key pathological event in developing MetS, mostly through oxidative stress and inflammation. Some other pathologies like the disturbance in brain and gut microbiota in the development of fructose-induced MetS in the past years, are also discussed. In management of MetS, TCM is an excellent representative in alternative and complementary medicine with a complete theory system and substantial herbal remedies. TCMs against MetS or MetS components, including Chinese patent medicines, TCM compound formulas, single TCM herbs and active compounds of TCM herbs, are reviewed on their effects and molecular mechanisms. TCMs with hypouricemic activity, which specially target fructose-induced MetS, are highlighted. And new technologies and strategies (such as high-throughput assay and systems biology) in this field are further discussed. In summary, fructose-induced MetS is a multifactorial disorder with the underlying complex mechanisms. Current clinical and pre-clinical evidence supports the potential of TCMs in management of MetS. Additionally, TCMs may show some advantages against complex MetS as their holistic feature through multiple target actions. However, further work is needed to confirm the effectivity and safety of TCMs

  19. Rescue of Fructose-Induced Metabolic Syndrome by Antibiotics or Faecal Transplantation in a Rat Model of Obesity

    Di Luccia, Blanda; Crescenzo, Raffaella; Mazzoli, Arianna; Cigliano, Luisa; Venditti, Paola; Walser, Jean-Claude; Widmer, Alex; Baccigalupi, Loredana; Ricca, Ezio; Iossa, Susanna

    2015-01-01

    A fructose-rich diet can induce metabolic syndrome, a combination of health disorders that increases the risk of diabetes and cardiovascular diseases. Diet is also known to alter the microbial composition of the gut, although it is not clear whether such alteration contributes to the development of metabolic syndrome. The aim of this work was to assess the possible link between the gut microbiota and the development of diet-induced metabolic syndrome in a rat model of obesity. Rats were fed e...

  20. Fructose, insulin resistance, and metabolic dyslipidemia

    Adeli Khosrow

    2005-02-01

    Full Text Available Abstract Obesity and type 2 diabetes are occurring at epidemic rates in the United States and many parts of the world. The "obesity epidemic" appears to have emerged largely from changes in our diet and reduced physical activity. An important but not well-appreciated dietary change has been the substantial increase in the amount of dietary fructose consumption from high intake of sucrose and high fructose corn syrup, a common sweetener used in the food industry. A high flux of fructose to the liver, the main organ capable of metabolizing this simple carbohydrate, perturbs glucose metabolism and glucose uptake pathways, and leads to a significantly enhanced rate of de novo lipogenesis and triglyceride (TG synthesis, driven by the high flux of glycerol and acyl portions of TG molecules from fructose catabolism. These metabolic disturbances appear to underlie the induction of insulin resistance commonly observed with high fructose feeding in both humans and animal models. Fructose-induced insulin resistant states are commonly characterized by a profound metabolic dyslipidemia, which appears to result from hepatic and intestinal overproduction of atherogenic lipoprotein particles. Thus, emerging evidence from recent epidemiological and biochemical studies clearly suggests that the high dietary intake of fructose has rapidly become an important causative factor in the development of the metabolic syndrome. There is an urgent need for increased public awareness of the risks associated with high fructose consumption and greater efforts should be made to curb the supplementation of packaged foods with high fructose additives. The present review will discuss the trends in fructose consumption, the metabolic consequences of increased fructose intake, and the molecular mechanisms leading to fructose-induced lipogenesis, insulin resistance and metabolic dyslipidemia.

  1. Dietary Omega-3 Fatty Acid Deficiency and High Fructose Intake in the Development of Metabolic Syndrome, Brain Metabolic Abnormalities, and Non-Alcoholic Fatty Liver Disease

    Artemis P. Simopoulos

    2013-07-01

    Full Text Available Western diets are characterized by both dietary omega-3 fatty acid deficiency and increased fructose intake. The latter found in high amounts in added sugars such as sucrose and high fructose corn syrup (HFCS. Both a low intake of omega-3 fatty acids or a high fructose intake contribute to metabolic syndrome, liver steatosis or non-alcoholic fatty liver disease (NAFLD, promote brain insulin resistance, and increase the vulnerability to cognitive dysfunction. Insulin resistance is the core perturbation of metabolic syndrome. Multiple cognitive domains are affected by metabolic syndrome in adults and in obese adolescents, with volume losses in the hippocampus and frontal lobe, affecting executive function. Fish oil supplementation maintains proper insulin signaling in the brain, ameliorates NAFLD and decreases the risk to metabolic syndrome suggesting that adequate levels of omega-3 fatty acids in the diet can cope with the metabolic challenges imposed by high fructose intake in Western diets which is of major public health importance. This review presents the current status of the mechanisms involved in the development of the metabolic syndrome, brain insulin resistance, and NAFLD a most promising area of research in Nutrition for the prevention of these conditions, chronic diseases, and improvement of Public Health.

  2. α-Amyrin attenuates high fructose diet-induced metabolic syndrome in rats.

    Prabhakar, Pankaj; Reeta, K H; Maulik, Subir Kumar; Dinda, Amit Kumar; Gupta, Yogendra Kumar

    2017-01-01

    This study investigated the effect of α-amyrin (a pentacyclic triterpene) on high-fructose diet (HFD)-induced metabolic syndrome in rats. Male Wistar rats were randomly distributed into different groups. The control group was fed normal rat chow diet. The HFD group was fed HFD (60%; w/w) for 42 days. Pioglitazone (10 mg/kg, orally, once daily) was used as a standard drug. α-Amyrin was administered in 3 doses (50, 100, and 200 mg/kg, orally, once daily along with HFD). Plasma glucose, total cholesterol, triglycerides, and high-density lipoprotein cholesterol (HDL-C) were estimated. Changes in blood pressure, oral glucose tolerance, and insulin tolerance were measured. Hepatic oxidative stress as well as messenger RNA (mRNA) and protein levels of peroxisome proliferator-activated receptor alpha (PPAR-α) were analyzed. A significant increase in systolic blood pressure, plasma glucose, total cholesterol, and plasma triglycerides and a significant decrease in HDL-C were observed in HFD rats as compared with control rats. Glucose tolerance and insulin tolerance were also significantly impaired with HFD. α-Amyrin prevented these changes in a dose-dependent manner. Hepatic oxidative stress as well as micro- and macrovesicular fatty changes in hepatocytes caused by HFD were also attenuated by α-amyrin. α-Amyrin preserved the hepatic mRNA and protein levels of PPAR-α, which was reduced in HFD group. This study thus demonstrates that α-amyrin attenuates HFD-induced metabolic syndrome in rats.

  3. Lactoferrin dampens high-fructose corn syrup-induced hepatic manifestations of the metabolic syndrome in a murine model.

    Yi-Chieh Li

    Full Text Available Hepatic manifestations of the metabolic syndrome are related obesity, type 2 diabetes/insulin resistance and non-alcoholic fatty liver disease. Here we investigated how the anti-inflammatory properties of lactoferrin can protect against the onset of hepatic manifestations of the metabolic syndrome by using a murine model administered with high-fructose corn syrup. Our results show that a high-fructose diet stimulates intestinal bacterial overgrowth and increases intestinal permeability, leading to the introduction of endotoxin into blood circulation and liver. Immunohistochemical staining of Toll-like receptor-4 and thymic stromal lymphopoietin indicated that lactoferrin can modulate lipopolysaccharide-mediated inflammatory cascade. The important regulatory roles are played by adipokines including interleukin-1β, interleukin-6, tumor necrosis factor-α, monocyte chemotactic protein-1, and adiponectin, ultimately reducing hepatitis and decreasing serum alanine aminotransferase release. These beneficial effects of lactoferrin related to the downregulation of the lipopolysaccharide-induced inflammatory cascade in the liver. Furthermore, lactoferrin reduced serum and hepatic triglycerides to prevent lipid accumulation in the liver, and reduced lipid peroxidation, resulting in 4-hydroxynonenal accumulation. Lactoferrin reduced oral glucose tolerance test and homeostasis model assessment-insulin resistance. Lactoferrin administration thus significantly lowered liver weight, resulting from a decrease in the triglyceride and cholesterol synthesis that activates hepatic steatosis. Taken together, these results suggest that lactoferrin protected against high-fructose corn syrup induced hepatic manifestations of the metabolic syndrome.

  4. Lactoferrin dampens high-fructose corn syrup-induced hepatic manifestations of the metabolic syndrome in a murine model.

    Li, Yi-Chieh; Hsieh, Chang-Chi

    2014-01-01

    Hepatic manifestations of the metabolic syndrome are related obesity, type 2 diabetes/insulin resistance and non-alcoholic fatty liver disease. Here we investigated how the anti-inflammatory properties of lactoferrin can protect against the onset of hepatic manifestations of the metabolic syndrome by using a murine model administered with high-fructose corn syrup. Our results show that a high-fructose diet stimulates intestinal bacterial overgrowth and increases intestinal permeability, leading to the introduction of endotoxin into blood circulation and liver. Immunohistochemical staining of Toll-like receptor-4 and thymic stromal lymphopoietin indicated that lactoferrin can modulate lipopolysaccharide-mediated inflammatory cascade. The important regulatory roles are played by adipokines including interleukin-1β, interleukin-6, tumor necrosis factor-α, monocyte chemotactic protein-1, and adiponectin, ultimately reducing hepatitis and decreasing serum alanine aminotransferase release. These beneficial effects of lactoferrin related to the downregulation of the lipopolysaccharide-induced inflammatory cascade in the liver. Furthermore, lactoferrin reduced serum and hepatic triglycerides to prevent lipid accumulation in the liver, and reduced lipid peroxidation, resulting in 4-hydroxynonenal accumulation. Lactoferrin reduced oral glucose tolerance test and homeostasis model assessment-insulin resistance. Lactoferrin administration thus significantly lowered liver weight, resulting from a decrease in the triglyceride and cholesterol synthesis that activates hepatic steatosis. Taken together, these results suggest that lactoferrin protected against high-fructose corn syrup induced hepatic manifestations of the metabolic syndrome.

  5. Oxidative Inactivation of Liver Mitochondria in High Fructose Diet-Induced Metabolic Syndrome in Rats: Effect of Glycyrrhizin Treatment.

    Sil, Rajarshi; Chakraborti, Abhay Sankar

    2016-09-01

    Metabolic syndrome is a serious health problem in the present world. Glycyrrhizin, a triterpenoid saponin of licorice (Glycyrrhiza glabra) root, has been reported to ameliorate the primary complications and hepatocellular damage in rats with the syndrome. In this study, we have explored metabolic syndrome-induced changes in liver mitochondrial function and effect of glycyrrhizin against the changes. Metabolic syndrome was induced in rats by high fructose (60%) diet for 6 weeks. The rats were then treated with glycyrrhizin (50 mg/kg body weight) by single intra-peritoneal injection. After 2 weeks of the treatment, the rats were sacrificed to collect liver tissue. Elevated mitochondrial ROS, lipid peroxidation and protein carbonyl, and decreased reduced glutathione content indicated oxidative stress in metabolic syndrome. Loss of mitochondrial inner membrane cardiolipin was observed. Mitochondrial complex I activity did not change but complex IV activity decreased significantly. Mitochondrial MTT reduction ability, membrane potential, phosphate utilisation and oxygen consumption decreased in metabolic syndrome. Reduced mitochondrial aconitase activity and increased aconitase carbonyl content suggested oxidative damage of the enzyme. Elevated Fe(2+) ion level in mitochondria might be associated with increased ROS generation in metabolic syndrome. Glycyrrhizin effectively attenuated mitochondrial oxidative stress and aconitase degradation, and improved electron transport chain activity. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Dioscoreophyllum cumminsii (Stapf) Diels leaves halt high-fructose induced metabolic syndrome: Hyperglycemia, insulin resistance, inflammation and oxidative stress.

    Ajiboye, T O; Aliyu, H; Tanimu, M A; Muhammad, R M; Ibitoye, O B

    2016-11-04

    Dioscoreophyllum cumminsii is widely used in the management and treatment of diabetes and obesity in Nigeria. This study evaluates the effect of aqueous leaf extract of D. cumminsii on high-fructose diet-induced metabolic syndrome. Seventy male rats were randomized into seven groups. All rats were fed with high-fructose diet for 9 weeks except groups A and C rats, which received control diet. In addition to the diet treatment, groups A and B rats received distilled water for 3 weeks starting from the seventh week of the experimental period. Rats in groups C-F orally received 400, 100, 200 and 400mg/kg body weight of aqueous leaf extract of D. cumminsii respectively, while group G received 300mg/kg bodyweight of metformin for 3 weeks starting from the seventh week. There was significant (phigh-fructose diet-mediated increase in body weight, body mass index, abdominal circumference, blood glucose, insulin, leptin and insulin resistance by aqueous leaf extract of D. cumminsii. Conversely, high-fructose diet-mediated decrease in adiponectin was reversed by the extract. Increased levels of cholesterol, triglycerides, low-density lipoprotein cholesterol, very low-density lipoprotein cholesterol, atherogenic index, cardiac index and coronary artery index were significantly lowered by the extract, while high-fructose diet mediated decrease in high-density lipoprotein cholesterol was increased by the extract. Tumour necrosis factor-α, interleukin-6 and interleukin-8 levels increased significantly in high-fructose diet-fed rats, which were significantly reversed by the extract. High-fructose mediated-decrease in superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glucose 6-phosphate dehydrogenase and glutathione reduced were significantly reversed by aqueous leaf extract of D. cumminsii. Conversely, elevated levels of malondialdehyde, conjugated dienes, lipid hydroperoxides, protein carbonyl and fragmented DNA were significantly lowered by the

  7. Beneficial effects of co-enzyme Q10 and rosiglitazone in fructose-induced metabolic syndrome in rats

    Suzan M. Mansour

    2013-06-01

    Full Text Available Increased fructose consumption is strongly associated with metabolic syndrome (MS. This study was performed to elucidate the role of co-enzyme Q10 (CoQ and/or rosiglitazone (Rosi in fructose induced MS. Four groups of rats (n = 8–10 were fed on fructose-enriched diet (FED for 16 weeks. One served as FED-control while the remaining groups were treated with CoQ (10 mg/kg/day, Rosi (4 mg/kg/day or their combination during the last 6 weeks. Another group was fed on normal laboratory chow (normal control. At the end of the experiment, blood samples were collected for estimation of markers related to MS. In addition, histological examination of liver, kidney and pancreas samples was done. Induction of the MS was associated with increased body weight gain (34% coupled with elevated levels of blood glucose (48%, insulin (86%, insulin resistance (270%, uric acid (69%, urea (155%, creatinine (129% and blood lipids with different degrees. Fructose-induced MS also reduced plasma catalase (62% and glutathione peroxidase (89% activities parallel to increased serum leptin and tumor necrosis factor-alpha (TNF-α levels. These changes were coupled by marked histological changes in the examined tissues. Treatment with CoQ or Rosi attenuated most of MS-induced changes. Besides, the combination of both agents further reduced blood glucose, total cholesterol, triglycerides and urea levels, as well as, normalized serum levels of leptin and TNF-α. In addition, combined therapy of both agents elevated HDL-cholesterol level and glutathione peroxidase activity. In conclusion, the present study proves the benefits of co-supplementation of CoQ and Rosi in a fructose-induced model of insulin resistance.

  8. Dietary phenolic acids reverse insulin resistance, hyperglycaemia, dyslipidaemia, inflammation and oxidative stress in high-fructose diet-induced metabolic syndrome rats.

    Ibitoye, Oluwayemisi B; Ajiboye, Taofeek O

    2017-12-20

    This study investigated the influence of caffeic, ferulic, gallic and protocatechuic acids on high-fructose diet-induced metabolic syndrome in rats. Oral administration of the phenolic acids significantly reversed high-fructose diet-mediated increase in body mass index and blood glucose. Furthermore, phenolic acids restored high-fructose diet-mediated alterations in metabolic hormones (insulin, leptin and adiponectin). Similarly, elevated tumour necrosis factor-α, interleukin-6 and -8 were significantly lowered. Administration of phenolic acids restored High-fructose diet-mediated increase in the levels of lipid parameters and indices of atherosclerosis, cardiac and cardiovascular diseases. High-fructose diet-mediated decrease in activities of antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glucose 6-phosphate dehydrogenase) and increase in oxidative stress biomarkers (reduced glutathione, lipid peroxidation products, protein oxidation and fragmented DNA) were significantly restored by the phenolic acids. The result of this study shows protective influence of caffeic acid, ferulic acid, gallic acid and protocatechuic acid in high-fructose diet-induced metabolic syndrome.

  9. Dietary cranberry, blueberry, and black raspberry affects the development of dyslipidemia and insulin insensitivity associated with metabolic syndrome in high fructose fed rats

    Effects of feeding cranberry, blueberry, and black raspberry powder on selected parameters of metabolic syndrome were investigated in 40 growing male Sprague Dawley rats. Animals were divided into five dietary treatments of 1) control AIN93G diet, 2) high fructose (65% by weight, HF) diet, and 3-5) ...

  10. Potential protective effects of Nigella sativa and Allium sativum against fructose-induced metabolic syndrome in rats.

    Al-Rasheed, Nawal; Al-Rasheed, Nouf; Bassiouni, Yieldez; Faddah, Laila; Mohamad, Azza M

    2014-01-01

    Among famous medicinal plants with known antioxidant activity; black seed (Nigella sativa, NS) and garlic (Allium sativum) which have been used in traditional medicine. In recent years, rates of metabolic syndrome (MS) have been increasing globally. The present work was designed to study the potential protective effects of black seed and raw garlic homogenate against fructose-induced MS in rats and to assess the benefits gained from their combination. Fifty male albino Wistar rats were divided into 5 groups. A control group was allowed to feed on normal chow and drink tap water. MS group was fed the same diet plus 10% fructose in drinking water. Treated groups received NS or garlic either alone or in combination as oral supplements along with high fructose diet for 8 weeks. Results revealed that body weight, liver weight, fasting blood glucose, serum triglycerides (TG), total cholesterol (TC) and low density lipoprotein cholesterol (LDL-C) levels were significantly increased while high density lipoprotein cholesterol (HDL-C) and the activities of Lactate dehydrogenase (LDH), glucose -6-phosphate dehydrogenase (G-6-PHD) and catalase in liver tissues were significantly decreased in MS group compared to the control group. Administration of NS or garlic either alone or in combination significantly ameliorated all the above-mentioned altered parameters. Treatment with both NS and garlic showed the utmost reduction in serum LDL-C and TG levels and could restore the activities of the studied enzymes in liver nearly to normal values. It was concluded that both NS and garlic were effective in attenuating multiple abnormalities of MS. Combination of these medicinal plants may have additional effectiveness in reducing serum TC, LDL-C and increasing HDL-C levels which could be a step in the prevention and management of MS.

  11. Effects of fructose-induced metabolic syndrome on rat skeletal cells and tissue, and their responses to metformin treatment.

    Felice, Juan Ignacio; Schurman, León; McCarthy, Antonio Desmond; Sedlinsky, Claudia; Aguirre, José Ignacio; Cortizo, Ana María

    2017-04-01

    Deleterious effects of metabolic syndrome (MS) on bone are still controversial. In this study we evaluated the effects of a fructose-induced MS, and/or an oral treatment with metformin on the osteogenic potential of bone marrow mesenchymal stromal cells (MSC), as well as on bone formation and architecture. 32 male 8week-old Wistar rats were assigned to four groups: control (C), control plus oral metformin (CM), rats receiving 10% fructose in drinking water (FRD), and FRD plus metformin (FRDM). Samples were collected to measure blood parameters, and to perform pQCT analysis and static and dynamic histomorphometry. MSC were isolated to determine their osteogenic potential. Metformin improved blood parameters in FRDM rats. pQCT and static and dynamic histomorphometry showed no significant differences in trabecular and cortical bone parameters among groups. FRD reduced TRAP expression and osteocyte density in trabecular bone and metformin only normalized osteocyte density. FRD decreased the osteogenic potential of MSC and metformin administration could revert some of these parameters. FRD-induced MS shows reduction in MSC osteogenic potential, in osteocyte density and in TRAP activity. Oral metformin treatment was able to prevent trabecular osteocyte loss and the reduction in extracellular mineralization induced by FRD-induced MS. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. A novel mice model of metabolic syndrome: the high-fat-high-fructose diet-fed ICR mice

    Zhuhua, Zhang; Zhiquan, Wang; Zhen, Yang; Yixin, Niu; Weiwei, Zhang; Xiaoyong, Li; Yueming, Liu; Hongmei, Zhang; Li, Qin; Qing, Su

    2015-01-01

    Currently, the metabolic syndrome (MS) is occurring at growing rates worldwide, raising extensive concerns on the mechanisms and therapeutic interventions for this disorder. Herein, we described a novel method of establishing MS model in rodents. Male Institute of Cancer Research (ICR) mice were fed with high-fat-high-fructose (HFHF) diet or normal chow (NC) respectively for 12 weeks. Metabolic phenotypes were assessed by glucose tolerance test, insulin tolerance test and hyperinsulinemic-euglycemic clamp. Blood pressure was measured by a tail-cuff system. At the end of the experiment, mice were sacrificed, and blood and tissues were harvested for subsequent analysis. Serum insulin levels were measured by ELISA, and lipid profiles were determined biochemically. The HFHF diet-fed ICR mice exhibited obvious characteristics of the components of MS, including obvious obesity, severe insulin resistance, hyperinsulinemia, dislipidemia, significant hypertension and hyperuricemia. Our data suggest that HFHF diet-fed ICR mice may be a robust and efficient animal model that could well mimic the basic pathogenesis of human MS. PMID:26134356

  13. A novel mice model of metabolic syndrome: the high-fat-high-fructose diet-fed ICR mice.

    Zhuhua, Zhang; Zhiquan, Wang; Zhen, Yang; Yixin, Niu; Weiwei, Zhang; Xiaoyong, Li; Yueming, Liu; Hongmei, Zhang; Li, Qin; Qing, Su

    2015-01-01

    Currently, the metabolic syndrome (MS) is occurring at growing rates worldwide, raising extensive concerns on the mechanisms and therapeutic interventions for this disorder. Herein, we described a novel method of establishing MS model in rodents. Male Institute of Cancer Research (ICR) mice were fed with high-fat-high-fructose (HFHF) diet or normal chow (NC) respectively for 12 weeks. Metabolic phenotypes were assessed by glucose tolerance test, insulin tolerance test and hyperinsulinemic-euglycemic clamp. Blood pressure was measured by a tail-cuff system. At the end of the experiment, mice were sacrificed, and blood and tissues were harvested for subsequent analysis. Serum insulin levels were measured by ELISA, and lipid profiles were determined biochemically. The HFHF diet-fed ICR mice exhibited obvious characteristics of the components of MS, including obvious obesity, severe insulin resistance, hyperinsulinemia, dislipidemia, significant hypertension and hyperuricemia. Our data suggest that HFHF diet-fed ICR mice may be a robust and efficient animal model that could well mimic the basic pathogenesis of human MS.

  14. Relevance of a Hypersaline Sodium-Rich Naturally Sparkling Mineral Water to the Protection against Metabolic Syndrome Induction in Fructose-Fed Sprague-Dawley Rats: A Biochemical, Metabolic, and Redox Approach

    Cidália Dionísio Pereira

    2014-01-01

    Full Text Available The Metabolic Syndrome increases the risk for atherosclerotic cardiovascular disease and type 2 Diabetes Mellitus. Increased fructose consumption and/or mineral deficiency have been associated with Metabolic Syndrome development. This study aimed to investigate the effects of 8 weeks consumption of a hypersaline sodium-rich naturally sparkling mineral water on 10% fructose-fed Sprague-Dawley rats (Metabolic Syndrome animal model. The ingestion of the mineral water (rich in sodium bicarbonate and with higher potassium, calcium, and magnesium content than the tap water used as control reduced/prevented not only the fructose-induced increase of heart rate, plasma triacylglycerols, insulin and leptin levels, hepatic catalase activity, and organ weight to body weight ratios (for liver and both kidneys but also the decrease of hepatic glutathione peroxidase activity and oxidized glutathione content. This mineral-rich water seems to have potential to prevent Metabolic Syndrome induction by fructose. We hypothesize that its regular intake in the context of modern diets, which have a general acidic character interfering with mineral homeostasis and are poor in micronutrients, namely potassium, calcium, and magnesium, could add surplus value and attenuate imbalances, thus contributing to metabolic and redox health and, consequently, decreasing the risk for atherosclerotic cardiovascular disease.

  15. The role of fructose in metabolism and cancer.

    Charrez, Bérénice; Qiao, Liang; Hebbard, Lionel

    2015-05-01

    Fructose consumption has dramatically increased in the last 30 years. The principal form has been in the form of high-fructose corn syrup found in soft drinks and processed food. The effect of excessive fructose consumption on human health is only beginning to be understood. Fructose has been confirmed to induce several obesity-related complications associated with the metabolic syndrome. Here we present an overview of fructose metabolism and how it contrasts with that of glucose. In addition, we examine how excessive fructose consumption can affect de novo lipogenesis, insulin resistance, inflammation, and reactive oxygen species production. Fructose can also induce a change in the gut permeability and promote the release of inflammatory factors to the liver, which has potential implications in increasing hepatic inflammation. Moreover, fructose has been associated with colon, pancreas, and liver cancers, and we shall discuss the evidence for these observations. Taken together, data suggest that sustained fructose consumption should be curtailed as it is detrimental to long-term human health.

  16. Felodipine attenuates vascular inflammation in a fructose-induced rat model of metabolic syndrome via the inhibition of NF-kappaB activation.

    Tan, Hong-wei; Xing, Shan-shan; Bi, Xiu-ping; Li, Li; Gong, Hui-ping; Zhong, Ming; Zhang, Yun; Zhang, Wei

    2008-09-01

    Metabolic syndrome is associated with an increased incidence of atherosclerosis. Clinical studies have shown that calcium channel blockers (CCB) inhibit the progression of atherosclerosis. However, the underlying mechanism is unclear. We investigated the inhibitory effect of felodipine on adhesion molecular expression and macrophage infiltration in the aorta of high fructose-fed rats (FFR). Male Wistar rats were given 10% fructose in drinking water. After 32 weeks of high fructose feeding, they were treated with felodipine (5 mg x kg(-1) x d(-1)) for 6 weeks. The control rats were given a normal diet and water. The aortic expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) and the infiltration of macrophages were measured by real-time RT-PCR and/or immunohistochemistry. NF-kappaB activity was measured by electrophoretic mobility shift assay (EMSA). After 32 weeks of high fructose feeding, FFR displayed increased body weight, systolic blood pressure (SBP), serum insulin, and triglycerides when compared with the control rats. The aortic expressions of ICAM-1 and VCAM-1 were significantly increased in FFR than in the control rats and accompanied by the increased activity of NF-kappaB. FFR also showed significantly increased CD68- positive macrophages in the aortic wall. After treatment with felodipine, SBP, serum insulin, and the homeostasis model assessment decreased significantly. In addition to reducing ICAM-1 and VCAM-1, felodipine decreased macrophages in the aortic wall. EMSA revealed that felodipine inhibited NF-kappaB activation in FFR. Felodipine inhibited vessel wall inflammation. The inhibition of NF-kappaB may be involved in the modulation of vascular inflammatory response by CCB in metabolic syndrome.

  17. Complete Sucrose Metabolism Requires Fructose Phosphotransferase Activity in Corynebacterium glutamicum To Ensure Phosphorylation of Liberated Fructose

    Dominguez, H.; Lindley, N. D.

    1996-01-01

    Sucrose uptake by Corynebacterium glutamicum involves a phosphoenolpyruvate-dependent sucrose phosphotransferase (PTS), but in the absence of fructokinase, further metabolism of the liberated fructose requires efflux of the fructose and reassimilation via the fructose PTS. Mutant strains lacking detectable fructose-transporting PTS activity accumulated fructose extracellularly but consumed sucrose at rates comparable to those of the wild-type strain.

  18. Polyphenolic compounds of red wine: relationship with the antioxidant properties and effects on the metabolic syndrome induced in high-fructose fed rats

    D. Di Majo

    2009-01-01

    Full Text Available Epidemiologists have observed that a diet rich in polyphenolic compounds may provide a positive effects due to their antioxidant properties. Red wine is an excellent source of polyphenolic compounds. Objective of this work is a review of the polyphenolic compounds of red wine. The first study evaluates the antioxidant properties of Sicilian red wines in relationship with their polyphenolic composition; the second investigates the corrective offects of some phenolic molecules on the metabolic syndrome induced in high-fructose fed rats.

  19. Regulatory landscape of AGE-RAGE-oxidative stress axis and its modulation by PPARγ activation in high fructose diet-induced metabolic syndrome.

    Cannizzaro, Luca; Rossoni, Giuseppe; Savi, Federica; Altomare, Alessandra; Marinello, Cristina; Saethang, Thammakorn; Carini, Marina; Payne, D Michael; Pisitkun, Trairak; Aldini, Giancarlo; Leelahavanichkul, Asada

    2017-01-01

    The AGE-RAGE-oxidative stress (AROS) axis is involved in the onset and progression of metabolic syndrome induced by a high-fructose diet (HFD). PPARγ activation is known to modulate metabolic syndrome; however a systems-level investigation looking at the protective effects of PPARγ activation as related to the AROS axis has not been performed. The aim of this work is to simultaneously characterize multiple molecular parameters within the AROS axis, using samples taken from different body fluids and tissues of a rat model of HFD-induced metabolic syndrome, in the presence or absence of a PPARγ agonist, Rosiglitazone (RGZ). Rats were fed with 60% HFD for the first half of the treatment duration (21 days) then continued with either HFD alone or HFD plus RGZ for the second half. Rats receiving HFD alone showed metabolic syndrome manifestations including hypertension, dyslipidemia, increased glucose levels and insulin resistance, as well as abnormal kidney and inflammatory parameters. Systolic blood pressure, plasma triglyceride and glucose levels, plasma creatinine, and albuminuria were significantly improved in the presence of RGZ. The following molecular parameters of the AROS axis were significantly upregulated in our rat model: carboxymethyl lysine (CML) in urine and liver; carboxyethyl lysine (CEL) in urine; advanced glycation end products (AGEs) in plasma; receptor for advanced glycation end products (RAGE) in liver and kidney; advanced oxidation protein products (AOPP) in plasma; and 4-hydroxynonenal (HNE) in plasma, liver, and kidney. Conversely, with RGZ administration, the upregulation of AOPP and AGEs in plasma, CML and CEL in urine, RAGE in liver as well as HNE in plasma and liver was significantly counteracted/prevented. Our data demonstrate (i) the systems-level regulatory landscape of HFD-induced metabolic syndrome involving multiple molecular parameters, including HNE, AGEs and their receptor RAGE, and (ii) attenuation of metabolic syndrome by

  20. Dietary sardine protein lowers insulin resistance, leptin and TNF-α and beneficially affects adipose tissue oxidative stress in rats with fructose-induced metabolic syndrome.

    Madani, Zohra; Louchami, Karim; Sener, Abdullah; Malaisse, Willy J; Ait Yahia, Dalila

    2012-02-01

    The present study aims at exploring the effects of sardine protein on insulin resistance, plasma lipid profile, as well as oxidative and inflammatory status in rats with fructose-induced metabolic syndrome. Rats were fed sardine protein (S) or casein (C) diets supplemented or not with high-fructose (HF) for 2 months. Rats fed the HF diets had greater body weight and adiposity and lower food intake as compared to control rats. Increased plasma glucose, insulin, HbA1C, triacylglycerols, free fatty acids and impaired glucose tolerance and insulin resistance was observed in HF-fed rats. Moreover, a decline in adipose tissues antioxidant status and a rise in lipid peroxidation and plasma TNF-α and fibrinogen were noted. Rats fed sardine protein diets exhibited lower food intake and fat mass than those fed casein diets. Sardine protein diets diminished plasma insulin and insulin resistance. Plasma triacylglycerol and free fatty acids were also lower, while those of α-tocopherol, taurine and calcium were enhanced as compared to casein diets. Moreover, S-HF diet significantly decreased plasma glucose and HbA1C. Sardine protein consumption lowered hydroperoxide levels in perirenal and brown adipose tissues. The S-HF diet, as compared to C-HF diet decreased epididymal hydroperoxides. Feeding sardine protein diets decreased brown adipose tissue carbonyls and increased glutathione peroxidase activity. Perirenal and epididymal superoxide dismutase and catalase activities and brown catalase activity were significantly greater in S-HF group than in C-HF group. Sardine protein diets also prevented hyperleptinemia and reduced inflammatory status in comparison with rats fed casein diets. Taken together, these results support the beneficial effect of sardine protein in fructose-induced metabolic syndrome on such variables as hyperglycemia, insulin resistance, hyperlipidemia and oxidative and inflammatory status, suggesting the possible use of sardine protein as a protective

  1. Fructose Containing Sugars at Normal Levels of Consumption Do Not Effect Adversely Components of the Metabolic Syndrome and Risk Factors for Cardiovascular Disease.

    Angelopoulos, Theodore J; Lowndes, Joshua; Sinnett, Stephanie; Rippe, James M

    2016-03-23

    The objective of the current study was to explore our hypothesis that average consumption of fructose and fructose containing sugars would not increase risk factors for cardiovascular disease (CVD) and the metabolic syndrome (MetS). A randomized, double blind, parallel group study was conducted where 267 individuals with BMI between 23 and 35 kg/m² consumed low fat sugar sweetened milk, daily for ten weeks as part of usual weight-maintenance diet. One group consumed 18% of calories from high fructose corn syrup (HFCS), another group consumed 18% of calories from sucrose, a third group consumed 9% of calories from fructose, and the fourth group consumed 9% of calories from glucose. There was a small change in waist circumference (80.9 ± 9.5 vs. 81.5 ± 9.5 cm) in the entire cohort, as well as in total cholesterol (4.6 ± 1.0 vs. 4.7 ± 1.0 mmol/L, p < 0.01), triglycerides (TGs) (11.5 ± 6.4 vs. 12.6 ± 8.9 mmol/L, p < 0.01), and systolic (109.2 ± 10.2 vs. 106.1 ± 10.4 mmHg, p < 0.01) and diastolic blood pressure (69.8 ± 8.7 vs. 68.1 ± 9.7 mmHg, p < 0.01). The effects of commonly consumed sugars on components of the MetS and CVD risk factors are minimal, mixed and not clinically significant.

  2. Fructose Containing Sugars at Normal Levels of Consumption Do Not Effect Adversely Components of the Metabolic Syndrome and Risk Factors for Cardiovascular Disease

    Theodore J. Angelopoulos

    2016-03-01

    Full Text Available The objective of the current study was to explore our hypothesis that average consumption of fructose and fructose containing sugars would not increase risk factors for cardiovascular disease (CVD and the metabolic syndrome (MetS. A randomized, double blind, parallel group study was conducted where 267 individuals with BMI between 23 and 35 kg/m2 consumed low fat sugar sweetened milk, daily for ten weeks as part of usual weight-maintenance diet. One group consumed 18% of calories from high fructose corn syrup (HFCS, another group consumed 18% of calories from sucrose, a third group consumed 9% of calories from fructose, and the fourth group consumed 9% of calories from glucose. There was a small change in waist circumference (80.9 ± 9.5 vs. 81.5 ± 9.5 cm in the entire cohort, as well as in total cholesterol (4.6 ± 1.0 vs. 4.7 ± 1.0 mmol/L, p < 0.01, triglycerides (TGs (11.5 ± 6.4 vs. 12.6 ± 8.9 mmol/L, p < 0.01, and systolic (109.2 ± 10.2 vs. 106.1 ± 10.4 mmHg, p < 0.01 and diastolic blood pressure (69.8 ± 8.7 vs. 68.1 ± 9.7 mmHg, p < 0.01. The effects of commonly consumed sugars on components of the MetS and CVD risk factors are minimal, mixed and not clinically significant.

  3. Early Life Exposure to Fructose and Offspring Phenotype: Implications for Long Term Metabolic Homeostasis

    Sloboda, Deborah M.; Li, Minglan; Patel, Rachna; Clayton, Zoe E.; Yap, Cassandra; Vickers, Mark H.

    2014-01-01

    The consumption of artificially sweetened processed foods, particularly high in fructose or high fructose corn syrup, has increased significantly in the past few decades. As such, interest into the long term outcomes of consuming high levels of fructose has increased significantly, particularly when the exposure is early in life. Epidemiological and experimental evidence has linked fructose consumption to the metabolic syndrome and associated comorbidities—implicating fructose as a potential factor in the obesity epidemic. Yet, despite the widespread consumption of fructose-containing foods and beverages and the rising incidence of maternal obesity, little attention has been paid to the possible adverse effects of maternal fructose consumption on the developing fetus and long term effects on offspring. In this paper we review studies investigating the effects of fructose intake on metabolic outcomes in both mother and offspring using human and experimental studies. PMID:24864200

  4. Early Life Exposure to Fructose and Offspring Phenotype: Implications for Long Term Metabolic Homeostasis

    Deborah M. Sloboda

    2014-01-01

    Full Text Available The consumption of artificially sweetened processed foods, particularly high in fructose or high fructose corn syrup, has increased significantly in the past few decades. As such, interest into the long term outcomes of consuming high levels of fructose has increased significantly, particularly when the exposure is early in life. Epidemiological and experimental evidence has linked fructose consumption to the metabolic syndrome and associated comorbidities—implicating fructose as a potential factor in the obesity epidemic. Yet, despite the widespread consumption of fructose-containing foods and beverages and the rising incidence of maternal obesity, little attention has been paid to the possible adverse effects of maternal fructose consumption on the developing fetus and long term effects on offspring. In this paper we review studies investigating the effects of fructose intake on metabolic outcomes in both mother and offspring using human and experimental studies.

  5. The Role of Carbohydrate Response Element Binding Protein in Intestinal and Hepatic Fructose Metabolism

    Katsumi Iizuka

    2017-02-01

    Full Text Available Many articles have discussed the relationship between fructose consumption and the incidence of obesity and related diseases. Fructose is absorbed in the intestine and metabolized in the liver to glucose, lactate, glycogen, and, to a lesser extent, lipids. Unabsorbed fructose causes bacterial fermentation, resulting in irritable bowl syndrome. Therefore, understanding the mechanisms underlying intestinal and hepatic fructose metabolism is important for the treatment of metabolic syndrome and fructose malabsorption. Carbohydrate response element binding protein (ChREBP is a glucose-activated transcription factor that controls approximately 50% of de novo lipogenesis in the liver. ChREBP target genes are involved in glycolysis (Glut2, liver pyruvate kinase, fructolysis (Glut5, ketohexokinase, and lipogenesis (acetyl CoA carboxylase, fatty acid synthase. ChREBP gene deletion protects against high sucrose diet-induced and leptin-deficient obesity, because Chrebp−/− mice cannot consume fructose or sucrose. Moreover, ChREBP contributes to some of the physiological effects of fructose on sweet taste preference and glucose production through regulation of ChREBP target genes, such as fibroblast growth factor-21 and glucose-6-phosphatase catalytic subunits. Thus, ChREBP might play roles in fructose metabolism. Restriction of excess fructose intake will be beneficial for preventing not only metabolic syndrome but also irritable bowl syndrome.

  6. Endocrine and metabolic effects of consuming beverages sweetened with fructose, glucose, sucrose, or high-fructose corn syrup.

    Stanhope, Kimber L; Havel, Peter J

    2008-12-01

    Our laboratory has investigated 2 hypotheses regarding the effects of fructose consumption: 1) the endocrine effects of fructose consumption favor a positive energy balance, and 2) fructose consumption promotes the development of an atherogenic lipid profile. In previous short- and long-term studies, we showed that consumption of fructose-sweetened beverages with 3 meals results in lower 24-h plasma concentrations of glucose, insulin, and leptin in humans than does consumption of glucose-sweetened beverages. We have also tested whether prolonged consumption of high-fructose diets leads to increased caloric intake or decreased energy expenditure, thereby contributing to weight gain and obesity. Results from a study conducted in rhesus monkeys produced equivocal results. Carefully controlled and adequately powered long-term studies are needed to address these hypotheses. In both short- and long-term studies, we showed that consumption of fructose-sweetened beverages substantially increases postprandial triacylglycerol concentrations compared with glucose-sweetened beverages. In the long-term studies, apolipoprotein B concentrations were also increased in subjects consuming fructose, but not in those consuming glucose. Data from a short-term study comparing consumption of beverages sweetened with fructose, glucose, high-fructose corn syrup, and sucrose suggest that high-fructose corn syrup and sucrose increase postprandial triacylglycerol to an extent comparable with that induced by 100% fructose alone. Increased consumption of fructose-sweetened beverages along with increased prevalence of obesity, metabolic syndrome, and type 2 diabetes underscore the importance of investigating the metabolic consequences of fructose consumption in carefully controlled experiments.

  7. Clinical Research Strategies for Fructose Metabolism12

    Laughlin, Maren R.; Bantle, John P.; Havel, Peter J.; Parks, Elizabeth; Klurfeld, David M.; Teff, Karen; Maruvada, Padma

    2014-01-01

    Fructose and simple sugars are a substantial part of the western diet, and their influence on human health remains controversial. Clinical studies in fructose nutrition have proven very difficult to conduct and interpret. NIH and USDA sponsored a workshop on 13–14 November 2012, “Research Strategies for Fructose Metabolism,” to identify important scientific questions and parameters to be considered while designing clinical studies. Research is needed to ascertain whether there is an obesogenic role for fructose-containing sugars via effects on eating behavior and energy balance and whether there is a dose threshold beyond which these sugars promote progression toward diabetes and liver and cardiovascular disease, especially in susceptible populations. Studies tend to fall into 2 categories, and design criteria for each are described. Mechanistic studies are meant to validate observations made in animals or to elucidate the pathways of fructose metabolism in humans. These highly controlled studies often compare the pure monosaccharides glucose and fructose. Other studies are focused on clinically significant disease outcomes or health behaviors attributable to amounts of fructose-containing sugars typically found in the American diet. These are designed to test hypotheses generated from short-term mechanistic or epidemiologic studies and provide data for health policy. Discussion brought out the opinion that, although many mechanistic questions concerning the metabolism of monosaccharide sugars in humans remain to be addressed experimentally in small highly controlled studies, health outcomes research meant to inform health policy should use large, long-term studies using combinations of sugars found in the typical American diet rather than pure fructose or glucose. PMID:24829471

  8. Chromium regulation of multiple gene expression in rats with high-fructose diet-induced metabolic syndrome

    Chromium (Cr) supplementation alleviates the metabolic syndrome, glucose intolerance, depression, excess body fat, and type 2 diabetes. However, not all studies have reported beneficial effects of Cr. Molecular evidence is lacking on the effects of Cr. The objective of this study was to investigate ...

  9. Effects of ferulic acid and γ-oryzanol on high-fat and high-fructose diet-induced metabolic syndrome in rats.

    Wang, Ou; Liu, Jia; Cheng, Qian; Guo, Xiaoxuan; Wang, Yong; Zhao, Liang; Zhou, Feng; Ji, Baoping

    2015-01-01

    The high morbidity of metabolic dysfunction diseases has heightened interest in seeking natural and safe compounds to maintain optimal health. γ-Oryzanol (OZ), the ferulic acid (FA) ester with phytosterols, mainly present in rice bran has been shown to improve markers of metabolic syndrome. This study investigates the effects of FA and OZ on alleviating high-fat and high-fructose diet (HFFD)-induced metabolic syndrome parameters. Male SD rats were fed with a regular rodent diet, HFFD, or HFFD supplemented with 0.05% FA or 0.16% OZ (equimolar concentrations) for 13 weeks. Food intake, organ indices, serum lipid profiles, glucose metabolism, insulin resistance (IR) index and cytokine levels were analyzed. The mechanisms were further investigated in oleic acid-stimulated HepG2 cells by analyzing triglyceride (TG) content and lipogenesis-related gene expressions. In the in vivo study, FA and OZ exhibited similar effects in alleviating HFFD-induced obesity, hyperlipidemia, hyperglycemia, and IR. However, only OZ treatment significantly decreased liver index and hepatic TG content, lowered serum levels of C-reactive protein and IL-6, and increased serum concentration of adiponectin. In the in vitro assay, only OZ administration significantly inhibited intracellular TG accumulation and down-regulated expression of stearoyl coenzyme-A desaturase-1, which might facilitate OZ to enhance its hepatoprotective effect. OZ is more effective than FA in inhibiting hepatic fat accumulation and inflammation. Thus, FA and OZ could be used as dietary supplements to alleviate the deleterious effects of HFFD.

  10. Effects of ferulic acid and γ-oryzanol on high-fat and high-fructose diet-induced metabolic syndrome in rats.

    Ou Wang

    Full Text Available The high morbidity of metabolic dysfunction diseases has heightened interest in seeking natural and safe compounds to maintain optimal health. γ-Oryzanol (OZ, the ferulic acid (FA ester with phytosterols, mainly present in rice bran has been shown to improve markers of metabolic syndrome. This study investigates the effects of FA and OZ on alleviating high-fat and high-fructose diet (HFFD-induced metabolic syndrome parameters.Male SD rats were fed with a regular rodent diet, HFFD, or HFFD supplemented with 0.05% FA or 0.16% OZ (equimolar concentrations for 13 weeks. Food intake, organ indices, serum lipid profiles, glucose metabolism, insulin resistance (IR index and cytokine levels were analyzed. The mechanisms were further investigated in oleic acid-stimulated HepG2 cells by analyzing triglyceride (TG content and lipogenesis-related gene expressions.In the in vivo study, FA and OZ exhibited similar effects in alleviating HFFD-induced obesity, hyperlipidemia, hyperglycemia, and IR. However, only OZ treatment significantly decreased liver index and hepatic TG content, lowered serum levels of C-reactive protein and IL-6, and increased serum concentration of adiponectin. In the in vitro assay, only OZ administration significantly inhibited intracellular TG accumulation and down-regulated expression of stearoyl coenzyme-A desaturase-1, which might facilitate OZ to enhance its hepatoprotective effect.OZ is more effective than FA in inhibiting hepatic fat accumulation and inflammation. Thus, FA and OZ could be used as dietary supplements to alleviate the deleterious effects of HFFD.

  11. Normal Roles for Dietary Fructose in Carbohydrate Metabolism

    Maren R. Laughlin

    2014-08-01

    Full Text Available Although there are many well-documented metabolic effects linked to the fructose component of a very high sugar diet, a healthy diet is also likely to contain appreciable fructose, even if confined to that found in fruits and vegetables. These normal levels of fructose are metabolized in specialized pathways that synergize with glucose at several metabolic steps. Glucose potentiates fructose absorption from the gut, while fructose catalyzes glucose uptake and storage in the liver. Fructose accelerates carbohydrate oxidation after a meal. In addition, emerging evidence suggests that fructose may also play a role in the secretion of insulin and GLP-1, and in the maturation of preadipocytes to increase fat storage capacity. Therefore, fructose undergoing its normal metabolism has the interesting property of potentiating the disposal of a dietary carbohydrate load through several routes.

  12. Sucrose, high-fructose corn syrup, and fructose, their metabolism and potential health effects: what do we really know?

    Rippe, James M; Angelopoulos, Theodore J

    2013-03-01

    Both controversy and confusion exist concerning fructose, sucrose, and high-fructose corn syrup (HFCS) with respect to their metabolism and health effects. These concerns have often been fueled by speculation based on limited data or animal studies. In retrospect, recent controversies arose when a scientific commentary was published suggesting a possible unique link between HFCS consumption and obesity. Since then, a broad scientific consensus has emerged that there are no metabolic or endocrine response differences between HFCS and sucrose related to obesity or any other adverse health outcome. This equivalence is not surprising given that both of these sugars contain approximately equal amounts of fructose and glucose, contain the same number of calories, possess the same level of sweetness, and are absorbed identically through the gastrointestinal tract. Research comparing pure fructose with pure glucose, although interesting from a scientific point of view, has limited application to human nutrition given that neither is consumed to an appreciable degree in isolation in the human diet. Whether there is a link between fructose, HFCS, or sucrose and increased risk of heart disease, metabolic syndrome, or fatty infiltration of the liver or muscle remains in dispute with different studies using different methodologies arriving at different conclusions. Further randomized clinical trials are needed to resolve many of these issues. The purpose of this review is to summarize current knowledge about the metabolism, endocrine responses, and potential health effects of sucrose, HFCS, and fructose.

  13. Sucrose, High-Fructose Corn Syrup, and Fructose, Their Metabolism and Potential Health Effects: What Do We Really Know?12

    Rippe, James M.; Angelopoulos, Theodore J.

    2013-01-01

    Both controversy and confusion exist concerning fructose, sucrose, and high-fructose corn syrup (HFCS) with respect to their metabolism and health effects. These concerns have often been fueled by speculation based on limited data or animal studies. In retrospect, recent controversies arose when a scientific commentary was published suggesting a possible unique link between HFCS consumption and obesity. Since then, a broad scientific consensus has emerged that there are no metabolic or endocrine response differences between HFCS and sucrose related to obesity or any other adverse health outcome. This equivalence is not surprising given that both of these sugars contain approximately equal amounts of fructose and glucose, contain the same number of calories, possess the same level of sweetness, and are absorbed identically through the gastrointestinal tract. Research comparing pure fructose with pure glucose, although interesting from a scientific point of view, has limited application to human nutrition given that neither is consumed to an appreciable degree in isolation in the human diet. Whether there is a link between fructose, HFCS, or sucrose and increased risk of heart disease, metabolic syndrome, or fatty infiltration of the liver or muscle remains in dispute with different studies using different methodologies arriving at different conclusions. Further randomized clinical trials are needed to resolve many of these issues. The purpose of this review is to summarize current knowledge about the metabolism, endocrine responses, and potential health effects of sucrose, HFCS, and fructose. PMID:23493540

  14. Uric Acid Stimulates Fructokinase and Accelerates Fructose Metabolism in the Development of Fatty Liver

    Lanaspa, Miguel A.; Sanchez-Lozada, Laura G.; Cicerchi, Christina; Li, Nanxing; Roncal-Jimenez, Carlos A.; Ishimoto, Takuji; Le, Myphuong; Garcia, Gabriela E.; Thomas, Jeffrey B.; Rivard, Christopher J.; Andres-Hernando, Ana; Hunter, Brandi; Schreiner, George; Rodriguez-Iturbe, Bernardo; Sautin, Yuri Y.; Johnson, Richard J.

    2012-01-01

    Excessive dietary fructose intake may have an important role in the current epidemics of fatty liver, obesity and diabetes as its intake parallels the development of these syndromes and because it can induce features of metabolic syndrome. The effects of fructose to induce fatty liver, hypertriglyceridemia and insulin resistance, however, vary dramatically among individuals. The first step in fructose metabolism is mediated by fructokinase (KHK), which phosphorylates fructose to fructose-1-phosphate; intracellular uric acid is also generated as a consequence of the transient ATP depletion that occurs during this reaction. Here we show in human hepatocytes that uric acid up-regulates KHK expression thus leading to the amplification of the lipogenic effects of fructose. Inhibition of uric acid production markedly blocked fructose-induced triglyceride accumulation in hepatocytes in vitro and in vivo. The mechanism whereby uric acid stimulates KHK expression involves the activation of the transcription factor ChREBP, which, in turn, results in the transcriptional activation of KHK by binding to a specific sequence within its promoter. Since subjects sensitive to fructose often develop phenotypes associated with hyperuricemia, uric acid may be an underlying factor in sensitizing hepatocytes to fructose metabolism during the development of fatty liver. PMID:23112875

  15. The sweet path to metabolic demise: fructose and lipid synthesis

    Herman, Mark A.; Samuel, Varman T.

    2016-01-01

    Epidemiological studies link fructose consumption with metabolic disease, an association attributable in part to fructose mediated lipogenesis. The mechanisms governing fructose-induced lipogenesis and disease remain debated. Acutely, fructose increases de novo lipogenesis through the efficient and uninhibited action of Ketohexokinase and Aldolase B, which yields substrates for fatty-acid synthesis. Chronic fructose consumption further enhances the capacity for hepatic fructose metabolism via activation of several key transcription factors (i.e. SREBP1c and ChREBP), which augment expression of lipogenic enzymes, increasing lipogenesis, further compounding hypertriglyceridemia, and hepatic steatosis. Hepatic insulin resistance develops from diacylglycerol-PKCε mediated impairment of insulin signaling and possibly additional mechanisms. Initiatives that decrease fructose consumption and therapies that block fructose mediated lipogenesis are needed to avert future metabolic pandemics. PMID:27387598

  16. Metabolic Syndrome

    Metabolic syndrome is a group of conditions that put you at risk for heart disease and diabetes. These conditions ... agree on the definition or cause of metabolic syndrome. The cause might be insulin resistance. Insulin is ...

  17. Aqueous seed extract of Hunteria umbellata (K. Schum.) Hallier f. (Apocynaceae) palliates hyperglycemia, insulin resistance, dyslipidemia, inflammation and oxidative stress in high-fructose diet-induced metabolic syndrome in rats.

    Ajiboye, T O; Hussaini, A A; Nafiu, B Y; Ibitoye, O B

    2017-02-23

    Hunteria umbellata is used in the management and treatment of diabetes and obesity in Nigeria. This study evaluates the effect of aqueous seed extract of Hunteria umbellata on insulin resistance, dyslipidemia, inflammation and oxidative stress in high-fructose diet-induced metabolic syndrome MATERIALS AND METHODS: Rats were randomized into seven groups (A-G). Control (group A) and group C rats received control diet for nine weeks while rats in groups B, D - G were placed on high-fructose diet for 9 weeks. In addition to the diets, groups C - F rats orally received 400, 100, 200 and 400mg/kg body weight aqueous seed extract of Hunteria umbellata for 3 weeks starting from 6th - 9th week. High-fructose diet (when compared to control rats) mediated a significant (phigh-density lipoprotein cholesterol was decreased significantly. Levels of proinflammatory factor, tumour necrosis factor-α, interleukin-6 and 8 were also increased by the high fructose diet. Moreover, it mediated decrease in activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glucose 6-phosphate dehydrogenase and level of glutathione reduced. Conversely, levels of malondialdehyde, conjugated dienes, lipid hydroperoxides, protein carbonyl and fragmented DNA were elevated. Aqueous seed extract of Hunteria umbellata significantly ameliorated the high fructose diet-mediated alterations. From this study, it is concluded that aqueous seed extract of Hunteria umbellata possesses hypoglycemic, hypolipidemic and antioxidants abilities as evident from its capability to extenuate insulin resistance, dyslipidemia, inflammation and oxidative stress in high-fructose diet-induced metabolic syndrome rats. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  18. Fructose use in clinical nutrition: metabolic effects and potential consequences.

    Moulin, Sandra; Seematter, Gérald; Seyssel, Kevin

    2017-07-01

    The current article presents recent findings on the metabolic effects of fructose. Fructose has always been considered as a simple 'caloric' hexose only metabolized by splanchnic tissues. Nevertheless, there is growing evidence that fructose acts as a second messenger and induces effects throughout the human body. Recent discoveries made possible with the evolution of technology have highlighted that fructose induces pleiotropic effects on different tissues. The fact that all these tissues express the specific fructose carrier GLUT5 let us reconsider that fructose is not only a caloric hexose, but could also be a potential actor of some behaviors and metabolic pathways. The physiological relevance of fructose as a metabolic driver is pertinent regarding recent scientific literature.

  19. Central and Metabolic Effects of High Fructose Consumption: Evidence from Animal and Human Studies

    Alexandra Stoianov

    2014-12-01

    Full Text Available Fructose consumption has increased dramatically in the last 40 years, and its role in the pathogenesis of the metabolic syndrome has been implicated by many studies. It is most often encountered in the diet as sucrose (glucose and fructose or high-fructose corn syrup (55% fructose. At high levels, dietary exposure to fructose triggers a series of metabolic changes originating in the liver, leading to hepatic steatosis, hypertriglyceridemia, insulin resistance, and decreased leptin sensitivity. Fructose has been identified to alter biological pathways in other tissues including the central nervous system (CNS, adipose tissue, and the gastrointestinal system. Unlike glucose, consumption of fructose produces smaller increases in the circulating satiety hormone glucagon-like peptide 1 (GLP-1, and does not attenuate levels of the appetite suppressing hormone ghrelin. In the brain, fructose contributes to increased food consumption by activating appetite and reward pathways, and stimulating hypothalamic AMPK activity, a nutrient-sensitive regulator of food intake. Recent studies investigating the neurophysiological factors linking fructose consumption and weight gain in humans have demonstrated differential activation of brain regions that govern appetite, motivation and reward processing. Compared to fructose, glucose ingestion produces a greater reduction of hypothalamic neuronal activity, and increases functional connectivity between the hypothalamus and other reward regions of the brain, indicating that these two sugars regulate feeding behavior through distinct neural circuits. This review article outlines the current findings in fructose-feeding studies in both human and animal models, and discusses the central effects on the CNS that may lead to increased appetite and food intake. Keywords: Fructose, Metabolic syndrome, Appetite, Central nervous system

  20. Fructose and NAFLD: The Multifaceted Aspects of Fructose Metabolism

    Jegatheesan, Prasanthi; De Bandt, Jean-Pascal

    2017-01-01

    Among various factors, such as an unhealthy diet or a sedentarity lifestyle, excessive fructose consumption is known to favor nonalcoholic fatty liver disease (NAFLD), as fructose is both a substrate and an inducer of hepatic de novo lipogenesis. The present review presents some well-established mechanisms and new clues to better understand the pathophysiology of fructose-induced NAFLD. Beyond its lipogenic effect, fructose intake is also at the onset of hepatic inflammation and cellular stress, such as oxidative and endoplasmic stress, that are key factors contributing to the progression of simple steatosis to nonalcoholic steatohepatitis (NASH). Beyond its hepatic effects, this carbohydrate may exert direct and indirect effects at the peripheral level. Excessive fructose consumption is associated, for example, with the release by the liver of several key mediators leading to alterations in the communication between the liver and the gut, muscles, and adipose tissue and to disease aggravation. These multifaceted aspects of fructose properties are in part specific to fructose, but are also shared in part with sucrose and glucose present in energy–dense beverages and foods. All these aspects must be taken into account in the development of new therapeutic strategies and thereby to better prevent NAFLD. PMID:28273805

  1. Eplerenone ameliorates the phenotypes of metabolic syndrome with NASH in liver-specific SREBP-1c Tg mice fed high-fat and high-fructose diet.

    Wada, Tsutomu; Miyashita, Yusuke; Sasaki, Motohiro; Aruga, Yusuke; Nakamura, Yuto; Ishii, Yoko; Sasahara, Masakiyo; Kanasaki, Keizo; Kitada, Munehiro; Koya, Daisuke; Shimano, Hitoshi; Tsuneki, Hiroshi; Sasaoka, Toshiyasu

    2013-12-01

    Because the renin-angiotensin-aldosterone system has been implicated in the development of insulin resistance and promotion of fibrosis in some tissues, such as the vasculature, we examined the effect of eplerenone, a selective mineralocorticoid receptor (MR) antagonist, on nonalcoholic steatohepatitis (NASH) and metabolic phenotypes in a mouse model reflecting metabolic syndrome in humans. We adopted liver-specific transgenic (Tg) mice overexpressing the active form of sterol response element binding protein-1c (SREBP-1c) fed a high-fat and fructose diet (HFFD) as the animal model in the present study. When wild-type (WT) C57BL/6 and liver-specific SREBP-1c Tg mice grew while being fed HFFD for 12 wk, body weight and epididymal fat weight increased in both groups with an elevation in blood pressure and dyslipidemia. Glucose intolerance and insulin resistance were also observed. Adipose tissue hypertrophy and macrophage infiltration with crown-like structure formation were also noted in mice fed HFFD. Interestingly, the changes noted in both genotypes fed HFFD were significantly ameliorated with eplerenone. HFFD-fed Tg mice exhibited the histological features of NASH in the liver, including macrovesicular steatosis and fibrosis, whereas HFFD-fed WT mice had hepatic steatosis without apparent fibrotic changes. Eplerenone effectively ameliorated these histological abnormalities. Moreover, the direct suppressive effects of eplerenone on lipopolysaccharide-induced TNFα production in the presence and absence of aldosterone were observed in primary-cultured Kupffer cells and bone marrow-derived macrophages. These results indicated that eplerenone prevented the development of NASH and metabolic abnormalities in mice by inhibiting inflammatory responses in both Kupffer cells and macrophages.

  2. Challenging the Fructose Hypothesis: New Perspectives on Fructose Consumption and Metabolism123

    White, John S.

    2013-01-01

    The field of sugar metabolism, and fructose metabolism in particular, has experienced a resurgence of interest in the past decade. The “fructose hypothesis” alleges that the fructose component common to all major caloric sweeteners (sucrose, high-fructose corn syrup, honey, and fruit juice concentrates) plays a unique and causative role in the increasing rates of cardiovascular disease, hypertension, diabetes, cancer, and nonalcoholic fatty liver disease. This review challenges the fructose hypothesis by comparing normal U.S. levels and patterns of fructose intake with contemporary experimental models and looking for substantive cause-and-effect evidence from real-world diets. It is concluded that 1) fructose intake at normal population levels and patterns does not cause biochemical outcomes substantially different from other dietary sugars and 2) extreme experimental models that feature hyperdosing or significantly alter the usual dietary glucose-to-fructose ratio are not predictive of typical human outcomes or useful to public health policymakers. It is recommended that granting agencies and journal editors require more physiologically relevant experimental designs and clinically important outcomes for fructose research. PMID:23493541

  3. Fructose increases corticosterone production in association with NADPH metabolism alterations in rat epididymal white adipose tissue.

    Prince, Paula D; Santander, Yanina A; Gerez, Estefania M; Höcht, Christian; Polizio, Ariel H; Mayer, Marcos A; Taira, Carlos A; Fraga, Cesar G; Galleano, Monica; Carranza, Andrea

    2017-08-01

    Metabolic syndrome is an array of closely metabolic disorders that includes glucose intolerance/insulin resistance, central obesity, dyslipidemia, and hypertension. Fructose, a highly lipogenic sugar, has profound metabolic effects in adipose tissue, and has been associated with the etiopathology of many components of the metabolic syndrome. In adipocytes, the enzyme 11 β-HSD1 amplifies local glucocorticoid production, being a key player in the pathogenesis of central obesity and metabolic syndrome. 11 β-HSD1 reductase activity is dependent on NADPH, a cofactor generated by H6PD inside the endoplasmic reticulum. Our focus was to explore the effect of fructose overload on epididymal white adipose tissue (EWAT) machinery involved in glucocorticoid production and NADPH and oxidants metabolism. Male Sprague-Dawley rats fed with a fructose solution (10% (w/v) in tap water) during 9 weeks developed some characteristic features of metabolic syndrome, such as hypertriglyceridemia, and hypertension. In addition, high levels of plasma and EWAT corticosterone were detected. Activities and expressions of H6PD and 11 β-HSD1, NAPDH content, superoxide anion production, expression of NADPH oxidase 2 subunits, and indicators of oxidative metabolism were measured. Fructose overloaded rats showed an increased potential in oxidant production respect to control rats. In parallel, in EWAT from fructose overloaded rats we found higher expression/activity of H6PD and 11 β-HSD1, and NADPH/NADP + ratio. Our in vivo results support that fructose overload installs in EWAT conditions favoring glucocorticoid production through higher H6PD expression/activity supplying NADPH for enhanced 11 β-HSD1 expression/activity, becoming this tissue a potential extra-adrenal source of corticosterone under these experimental conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. What is Metabolic Syndrome?

    ... Intramural Research Home / Metabolic Syndrome Metabolic Syndrome Also known as What Is Metabolic syndrome ... metabolic risk factors to be diagnosed with metabolic syndrome. Metabolic Risk Factors A Large Waistline Having a large ...

  5. Geraniol, alone and in combination with pioglitazone, ameliorates fructose-induced metabolic syndrome in rats via the modulation of both inflammatory and oxidative stress status.

    Sherehan M Ibrahim

    Full Text Available Geraniol (GO potent antitumor and chemopreventive effects are attributed to its antioxidant and anti-inflammatory properties. In the current study, the potential efficacy of GO (250 mg/kg in ameliorating metabolic syndrome (MetS induced by fructose in drinking water was elucidated. Moreover, the effect of pioglitazone (5 and 10 mg/kg; PIO and the possible interaction of the co-treatment of GO with PIO5 were studied in the MetS model. After 4 weeks of treatment, GO and/or PIO reduced the fasting blood glucose and the glycemic excursion in the intraperitoneal glucose tolerance test. GO and PIO5/10 restrained visceral adiposity and partly the body weight gain. The decreased level of peroxisome proliferator activated receptor (PPAR-γ transcriptional activity in the visceral adipose tissue of MetS rats was increased by single treatment regimens. Though GO did not affect MetS-induced hyperinsulinemia, PIO5/10 lowered it. Additionally, GO and PIO5/10 suppressed glycated hemoglobin and the receptor for advanced glycated end products (RAGE. These single regimens also ameliorated hyperuricemia, the disrupted lipid profile, and the elevated systolic blood pressure evoked by MetS. The rise in serum transaminases, interleukin-1β, and tumor necrosis factor-α, as well as hepatic lipid peroxides and nitric oxide (NO was lowered by the single treatments to different extents. Moreover, hepatic non-protein thiols, as well as serum NO and adiponectin were enhanced by single regimens. Similar effects were reached by the combination of GO with PIO5; however, a potentiative interaction was noted on fasting serum insulin level, while synergistic effects were reflected as improved insulin sensitivity, as well as reduced RAGE and triglycerides. Therefore, GO via the transcriptional activation of PPAR-γ reduces inflammation and free radical injury produced by MetS. Thereby, these effects provide novel mechanistic insights on GO management of MetS associated critical

  6. Effect of Spirulina platensis powder on metabolic syndrome in ...

    S. platensis inhibits also hemolysis of erythrocytes induced by AAPH. In conclusion, S. platensis powder prevent metabolic syndrome induced by high fructose and fat diet. These results justify the use of the plant in the treatment of diabetes in Benin. Keywords: Spirulina platensis, metabolic syndrome, fructose, diabetes, ...

  7. Determination of fructose metabolic pathways in normal and fructose-intolerant children: A 13C NMR study using [U-13C]fructose

    Gopher, A.; Lapidot, A.; Vaisman, N.; Mandel, H.

    1990-01-01

    An inborn deficiency in the ability of aldolase B to split fructose 1-phosphate is found in humans with hereditary fructose intolerance (HFI). A stable isotope procedure to elucidate the mechanism of conversion of fructose to glucose in normal children and in HFI children has been developed. A constant infusion of D-[U- 13 C]fructose was given nasogastrically to control and to HFI children. Hepatic fructose conversion to glucose was estimated by examination of 13 C NMR spectra of plasma glucose. Significantly lower values (∼3-fold) for fructose conversion to glucose were obtained for the HFI patients as compared to the controls. A quantitative determination of the metabolic pathways of fructose conversion to glucose was derived from 13 C NMR measurement of plasma [ 13 C]glucose isotopomer populations. The finding of isotopomer populations of three adjacent 13 C atoms at glucose C-4 ( 13 C 3 - 13 C 4 - 13 C 5 ) suggests that there is a direct pathway from fructose, by-passing fructose-1-phosphate aldolase, to fructose 1,6-bisphosphate. The metabolism of fructose by fructose-1-phosphate aldolase activity accounts for only ∼50% of the total amount of hepatic fructose conversion to glucose. In view of the marked decline by 67% in synthesis of glucose from fructose in HFI subjects found in this study, the extent of [ 13 C]glucose formation from a trace amount of [U- 13 C]fructose infused into the patient can be used as a safe and noninvasive diagnostic test for inherent faulty fructose metabolism

  8. Metabolic Syndrome

    Sevil Ikinci

    2010-10-01

    Full Text Available Metabolic Syndrome is a combination of risk factors including common etiopathogenesis. These risk factors play different roles in occurence of atherosclerotic diseases, type 2 diabetes, and cancers. Although a compromise can not be achieved on differential diagnosis for MS, the existence of any three criterias enable to diagnose MS. These are abdominal obesity, dislipidemia (hypertrigliceridemia, hypercholesterolemia, and reduced high density lipoprotein hypertension, and elevated fasting blood glucose. According to the results of Metabolic Syndrome Research (METSAR, the overall prevalence of MS in Turkey is 34%; in females 40%, and in males it is 28%. As a result of “Western” diet, and increased frequency of obesity, MS is observed in children and in adolescents both in the world and in Turkey. Resulting in chronic diseases, it is thought that the syndrome can be prevented by healthy lifestyle behaviours. [TAF Prev Med Bull 2010; 9(5.000: 535-540

  9. Metabolic and behavioural effects of sucrose and fructose/glucose drinks in the rat.

    Sheludiakova, Anastasia; Rooney, Kieron; Boakes, Robert A

    2012-06-01

    Overconsumption of sugar-sweetened beverages, in particular carbonated soft drinks, promotes the development of overweight and obesity and is associated with metabolic disturbances, including intrahepatic fat accumulation and metabolic syndrome. One theory proposes that drinks sweetened with high-fructose corn syrup are particularly detrimental to health, as they contain fructose in its 'free' monosaccharide form. This experiment tested whether consuming 'free' fructose had a greater impact on body weight and metabolic abnormalities than when consumed 'bound' within the disaccharide sucrose. Male Hooded Wistar rats were given free access for 56 days to 10% sucrose (Group Suc), 10%, 50/50 fructose/glucose (Group FrucGluc) or water control drinks (Group Control), plus chow. Caloric intake and body weights were measured throughout the protocol, and the following metabolic indices were determined between days 54 and 56: serum triglycerides, liver triglycerides, retroperitoneal fat and oral glucose tolerance. Animals with access to sugar beverages consumed 20% more calories, but did not show greater weight gain than controls. Nevertheless, they developed larger abdominal fat pads, higher triglyceride levels and exhibited impaired insulin/glucose homeostasis. Comparison of the two sugars revealed increased fasting glycaemia in the FrucGluc group, but not in Suc group, whereas the Suc group was more active in an open field. A metabolic profile indicating increased risk of diabetes mellitus and cardiovascular disease was observed in animals given access to sugar-sweetened beverages. Notably, 'free' fructose disrupted glucose homeostasis more than did 'bound' fructose, thus posing a greater risk of progression to type 2 diabetes.

  10. Effects of natural mineral-rich water consumption on the expression of sirtuin 1 and angiogenic factors in the erectile tissue of rats with fructose-induced metabolic syndrome

    Cidália D Pereira

    2014-08-01

    Full Text Available Consuming a high-fructose diet induces metabolic syndrome (MS-like features, including endothelial dysfunction. Erectile dysfunction is an early manifestation of endothelial dysfunction and systemic vascular disease. Because mineral deficiency intensifies the deleterious effects of fructose consumption and mineral ingestion is protective against MS, we aimed to characterize the effects of 8 weeks of natural mineral-rich water consumption on the structural organization and expression of vascular growth factors and receptors on the corpus cavernosum (CC in 10% fructose-fed Sprague-Dawley rats (FRUCT. Differences were not observed in the organization of the CC either on the expression of vascular endothelial growth factor (VEGF or the components of the angiopoietins/Tie2 system. However, opposing expression patterns were observed for VEGF receptors (an increase and a decrease for VEGFR1 and VEGFR2, respectively in FRUCT animals, with these patterns being strengthened by mineral-rich water ingestion. Mineral-rich water ingestion (FRUCTMIN increased the proportion of smooth muscle cells compared with FRUCT rats and induced an upregulatory tendency of sirtuin 1 expression compared with the control and FRUCT groups. Western blot results were consistent with the dual immunofluorescence evaluation. Plasma oxidized low-density lipoprotein and plasma testosterone levels were similar among the experimental groups, although a tendency for an increase in the former was observed in the FRUCTMIN group. The mineral-rich water-treated rats presented changes similar to those observed in rats treated with MS-protective polyphenol-rich beverages or subjected to energy restriction, which led us to hypothesize that the effects of mineral-rich water consumption may be more vast than those directly observed in this study.

  11. Formation of Fructose-Mediated Advanced Glycation End Products and Their Roles in Metabolic and Inflammatory Diseases12

    2017-01-01

    Fructose is associated with the biochemical alterations that promote the development of metabolic syndrome (MetS), nonalcoholic fatty liver disease, and type 2 diabetes. Its consumption has increased in parallel with MetS. It is metabolized by the liver, where it stimulates de novo lipogenesis. The triglycerides synthesized lead to hepatic insulin resistance and dyslipidemia. Fructose-derived advanced glycation end products (AGEs) may be involved via the Maillard reaction. Fructose has not been a main focus of glycation research because of the difficulty in measuring its adducts, and, more importantly, because although it is 10 times more reactive than glucose, its plasma concentration is only 1% of that of glucose. In this focused review, I summarize exogenous and endogenous fructose metabolism, fructose glycation, and in vitro, animal, and human data. Fructose is elevated in several tissues of diabetic patients where the polyol pathway is active, reaching the same order of magnitude as glucose. It is plausible that the high reactivity of fructose, directly or via its metabolites, may contribute to the formation of intracellular AGEs and to vascular complications. The evidence, however, is still unconvincing. Two areas that have been overlooked so far and should be actively explored include the following: 1) enteral formation of fructose AGEs, generating an inflammatory response to the receptor for AGEs (which may explain the strong association between fructose consumption and asthma, chronic bronchitis, and arthritis); and 2) inactivation of hepatic AMP-activated protein kinase by a fructose-mediated increase in methylglyoxal flux (perpetuating lipogenesis, fatty liver, and insulin resistance). If proven correct, these mechanisms would put the fructose-mediated Maillard reaction in the limelight again as a contributing factor in chronic inflammatory diseases and MetS. PMID:28096127

  12. Formation of Fructose-Mediated Advanced Glycation End Products and Their Roles in Metabolic and Inflammatory Diseases.

    Gugliucci, Alejandro

    2017-01-01

    Fructose is associated with the biochemical alterations that promote the development of metabolic syndrome (MetS), nonalcoholic fatty liver disease, and type 2 diabetes. Its consumption has increased in parallel with MetS. It is metabolized by the liver, where it stimulates de novo lipogenesis. The triglycerides synthesized lead to hepatic insulin resistance and dyslipidemia. Fructose-derived advanced glycation end products (AGEs) may be involved via the Maillard reaction. Fructose has not been a main focus of glycation research because of the difficulty in measuring its adducts, and, more importantly, because although it is 10 times more reactive than glucose, its plasma concentration is only 1% of that of glucose. In this focused review, I summarize exogenous and endogenous fructose metabolism, fructose glycation, and in vitro, animal, and human data. Fructose is elevated in several tissues of diabetic patients where the polyol pathway is active, reaching the same order of magnitude as glucose. It is plausible that the high reactivity of fructose, directly or via its metabolites, may contribute to the formation of intracellular AGEs and to vascular complications. The evidence, however, is still unconvincing. Two areas that have been overlooked so far and should be actively explored include the following: 1) enteral formation of fructose AGEs, generating an inflammatory response to the receptor for AGEs (which may explain the strong association between fructose consumption and asthma, chronic bronchitis, and arthritis); and 2) inactivation of hepatic AMP-activated protein kinase by a fructose-mediated increase in methylglyoxal flux (perpetuating lipogenesis, fatty liver, and insulin resistance). If proven correct, these mechanisms would put the fructose-mediated Maillard reaction in the limelight again as a contributing factor in chronic inflammatory diseases and MetS. © 2017 American Society for Nutrition.

  13. A mathematical analysis of adaptations to the metabolic fate of fructose in essential fructosuria subjects.

    Allen, R J; Musante, Cynthia J

    2018-04-17

    Fructose is a major component of Western diets and is implicated in the pathogenesis of obesity and type 2 diabetes. In response to an oral challenge, the majority of fructose is cleared during "first-pass" liver metabolism, primarily via phosphorylation by ketohexokinase (KHK). A rare benign genetic deficiency in KHK, called essential fructosuria (EF), leads to altered fructose metabolism. The only reported symptom of EF is the appearance of fructose in the urine following either oral or intravenous fructose administration. Here we develop and use a mathematical model to investigate the adaptations to altered fructose metabolism in people with EF. Firstly, the model is calibrated to fit available data in normal healthy subjects. Then, to mathematically represent EF subjects we systematically implement metabolic adaptations such that model simulations match available data for this phenotype. We hypothesize that these modifications represent the major metabolic adaptations present in these subjects. This modeling approach suggests that several other aspects of fructose metabolism, beyond hepatic KHK deficiency, are altered and contribute to the etiology of this benign condition. Specifically, we predict that fructose absorption into the portal vein is altered, peripheral metabolism is slowed, renal re-absorption of fructose is mostly ablated and that alternate pathways for hepatic metabolism of fructose are up-regulated. Moreover, these findings have implications for drug discovery and development, suggesting that the therapeutic targeting of fructose metabolism could lead to unexpected metabolic adaptations, potentially due to a physiological response to high fructose conditions.

  14. Genetically Engineered Escherichia coli Nissle 1917 Synbiotics Reduce Metabolic Effects Induced by Chronic Consumption of Dietary Fructose.

    Chaudhari Archana Somabhai

    Full Text Available To assess protective efficacy of genetically modified Escherichia coli Nissle 1917 (EcN on metabolic effects induced by chronic consumption of dietary fructose.EcN was genetically modified with fructose dehydrogenase (fdh gene for conversion of fructose to 5-keto-D-fructose and mannitol-2-dehydrogenase (mtlK gene for conversion to mannitol, a prebiotic. Charles foster rats weighing 150-200 g were fed with 20% fructose in drinking water for two months. Probiotic treatment of EcN (pqq, EcN (pqq-glf-mtlK, EcN (pqq-fdh was given once per week 109 cells for two months. Furthermore, blood and liver parameters for oxidative stress, dyslipidemia and hyperglycemia were estimated. Fecal samples were collected to determine the production of short chain fatty acids and pyrroloquinoline quinone (PQQ production.EcN (pqq-glf-mtlK, EcN (pqq-fdh transformants were confirmed by restriction digestion and functionality was checked by PQQ estimation and HPLC analysis. There was significant increase in body weight, serum glucose, liver injury markers, lipid profile in serum and liver, and decrease in antioxidant enzyme activity in high-fructose-fed rats. However the rats treated with EcN (pqq-glf-mtlK and EcN (pqq-fdh showed significant reduction in lipid peroxidation along with increase in serum and hepatic antioxidant enzyme activities. Restoration of liver injury marker enzymes was also seen. Increase in short chain fatty acids (SCFA demonstrated the prebiotic effects of mannitol and gluconic acid.Our study demonstrated the effectiveness of probiotic EcN producing PQQ and fructose metabolizing enzymes against the fructose induced hepatic steatosis suggesting that its potential for use in treating fructose induced metabolic syndrome.

  15. First-pass metabolism of ethanol in human beings: effect of intravenous infusion of fructose

    Parlesak, Alexandr; Billinger, MH; Schäfer, C.

    2004-01-01

    Intravenous infusion of fructose has been shown to enhance reduced form of nicotinamide adenine dinucleotide reoxidation and, thereby, to enhance the metabolism of ethanol. In the current study, the effect of fructose infusion on first-pass metabolism of ethanol was studied in human volunteers....... A significantly higher first-pass metabolism of ethanol was obtained after administration of fructose in comparison with findings for control experiments with an equimolar dose of glucose. Because fructose is metabolized predominantly in the liver and can be presumed to have virtually no effects in the stomach...

  16. Inborn Errors of Fructose Metabolism. What Can We Learn from Them?

    Christel Tran

    2017-04-01

    Full Text Available Fructose is one of the main sweetening agents in the human diet and its ingestion is increasing globally. Dietary sugar has particular effects on those whose capacity to metabolize fructose is limited. If intolerance to carbohydrates is a frequent finding in children, inborn errors of carbohydrate metabolism are rare conditions. Three inborn errors are known in the pathway of fructose metabolism; (1 essential or benign fructosuria due to fructokinase deficiency; (2 hereditary fructose intolerance; and (3 fructose-1,6-bisphosphatase deficiency. In this review the focus is set on the description of the clinical symptoms and biochemical anomalies in the three inborn errors of metabolism. The potential toxic effects of fructose in healthy humans also are discussed. Studies conducted in patients with inborn errors of fructose metabolism helped to understand fructose metabolism and its potential toxicity in healthy human. Influence of fructose on the glycolytic pathway and on purine catabolism is the cause of hypoglycemia, lactic acidosis and hyperuricemia. The discovery that fructose-mediated generation of uric acid may have a causal role in diabetes and obesity provided new understandings into pathogenesis for these frequent diseases.

  17. Supplementation of Lactobacillus plantarum K68 and Fruit-Vegetable Ferment along with High Fat-Fructose Diet Attenuates Metabolic Syndrome in Rats with Insulin Resistance

    Hui-Yu Huang

    2013-01-01

    Full Text Available Lactobacillus plantarum K68 (isolated from fu-tsai and fruit-vegetable ferment (FVF have been tested for antidiabetic, anti-inflammatory, and antioxidant properties in a rat model of insulin resistance, induced by chronic high fat-fructose diet. Fifty rats were equally assigned into control (CON, high fat-fructose diet (HFFD, HFFD plus K68, HFFD plus FVF, and HFFD plus both K68 and FVF (MIX groups. Respective groups were orally administered with K68 (1×109 CFU/0.5 mL or FVF (180 mg/kg or MIX for 8 weeks. We found that HFFD-induced increased bodyweights were prevented, and progressively increased fasting blood glucose and insulin levels were reversed (P<0.01 by K68 and FVF treatments. Elevated glycated hemoglobin (HbA1c and HOMA-IR values were controlled in supplemented groups. Furthermore, dyslipidemia, characterized by elevated total cholesterol (TC, triglyceride (TG, and low-density lipoproteins (LDLs with HFFD, was significantly (P<0.01 attenuated with MIX. Elevated pro-inflammatory cytokines, interleukin-1β (IL-1β, IL-6, and tumor necrosis factor-α (TNF-α, were controlled (P<0.01 by K68, FVF, and MIX treatments. Moreover, decreased superoxide dismutase (SOD, catalase (CAT, and glutathione peroxidase (GPx activities were substantially (P<0.01 restored by all treatments. Experimental evidences demonstrate that K68 and FVF may be effective alternative medicine to prevent HFFD-induced hyperglycemia, hyperinsulinemia, and hyperlipidemia, possibly associated with anti-inflammatory and antioxidant efficacies.

  18. DIFFERENT ACUTE METABOLISM OF FRUCTOSE IN DIALYSIS PATIENTS COMPARED TO HEALTHY SUBJECTS

    Björn Anderstam

    2012-06-01

    We conclude that a fatty meal is associated with a delayed post-prandial fructose absorption and/or metabolism, as well as increased uric acid levels in HD patients. In an ongoing new study, the fructose metabolism will be further studied in CKD patients, diabetics and healthy controls.

  19. Regulation of dual glycolytic pathways for fructose metabolism in heterofermentative Lactobacillus panis PM1.

    Kang, Tae Sun; Korber, Darren R; Tanaka, Takuji

    2013-12-01

    Lactobacillus panis PM1 belongs to the group III heterofermentative lactobacilli that use the 6-phosphogluconate/phosphoketolase (6-PG/PK) pathway as their central metabolic pathway and are reportedly unable to grow on fructose as a sole carbon source. We isolated a variant PM1 strain capable of sporadic growth on fructose medium and observed its distinctive characteristics of fructose metabolism. The end product pattern was different from what is expected in typical group III lactobacilli using the 6-PG/PK pathway (i.e., more lactate, less acetate, and no mannitol). In addition, in silico analysis revealed the presence of genes encoding most of critical enzymes in the Embden-Meyerhof (EM) pathway. These observations indicated that fructose was metabolized via two pathways. Fructose metabolism in the PM1 strain was influenced by the activities of two enzymes, triosephosphate isomerase (TPI) and glucose 6-phosphate isomerase (PGI). A lack of TPI resulted in the intracellular accumulation of dihydroxyacetone phosphate (DHAP) in PM1, the toxicity of which caused early growth cessation during fructose fermentation. The activity of PGI was enhanced by the presence of glyceraldehyde 3-phosphate (GAP), which allowed additional fructose to enter into the 6-PG/PK pathway to avoid toxicity by DHAP. Exogenous TPI gene expression shifted fructose metabolism from heterolactic to homolactic fermentation, indicating that TPI enabled the PM1 strain to mainly use the EM pathway for fructose fermentation. These findings clearly demonstrate that the balance in the accumulation of GAP and DHAP determines the fate of fructose metabolism and the activity of TPI plays a critical role during fructose fermentation via the EM pathway in L. panis PM1.

  20. Transport, metabolism, and endosomal trafficking-dependent regulation of intestinal fructose absorption

    Patel, Chirag; Douard, Veronique; Yu, Shiyan; Gao, Nan; Ferraris, Ronaldo P.

    2015-01-01

    Dietary fructose that is linked to metabolic abnormalities can up-regulate its own absorption, but the underlying regulatory mechanisms are not known. We hypothesized that glucose transporter (GLUT) protein, member 5 (GLUT5) is the primary fructose transporter and that fructose absorption via GLUT5, metabolism via ketohexokinase (KHK), as well as GLUT5 trafficking to the apical membrane via the Ras-related protein-in-brain 11 (Rab11)a-dependent endosomes are each required for regulation. Introducing fructose but not lysine and glucose solutions into the lumen increased by 2- to 10-fold the heterogeneous nuclear RNA, mRNA, protein, and activity levels of GLUT5 in adult wild-type mice consuming chow. Levels of GLUT5 were >100-fold that of candidate apical fructose transporters GLUTs 7, 8, and 12 whose expression, and that of GLUT 2 and the sodium-dependent glucose transporter protein 1 (SGLT1), was not regulated by luminal fructose. GLUT5-knockout (KO) mice exhibited no facilitative fructose transport and no compensatory increases in activity and expression of SGLT1 and other GLUTs. Fructose could not up-regulate GLUT5 in GLUT5-KO, KHK-KO, and intestinal epithelial cell-specific Rab11a-KO mice. The fructose-specific metabolite glyceraldehyde did not increase GLUT5 expression. GLUT5 is the primary transporter responsible for facilitative absorption of fructose, and its regulation specifically requires fructose uptake and metabolism and normal GLUT5 trafficking to the apical membrane.—Patel, C., Douard, V., Yu, S., Gao, N., Ferraris, R. P. Transport, metabolism, and endosomal trafficking-dependent regulation of intestinal fructose absorption. PMID:26071406

  1. [Menopause and metabolic syndrome].

    Meirelles, Ricardo M R

    2014-03-01

    The incidence of cardiovascular disease increases considerably after the menopause. One reason for the increased cardiovascular risk seems to be determined by metabolic syndrome, in which all components (visceral obesity, dyslipidemia, hypertension, and glucose metabolism disorder) are associated with higher incidence of coronary artery disease. After menopause, metabolic syndrome is more prevalent than in premenopausal women, and may plays an important role in the occurrence of myocardial infarction and other atherosclerotic and cardiovascular morbidities. Obesity, an essential component of the metabolic syndrome, is also associated with increased incidence of breast, endometrial, bowel, esophagus, and kidney cancer. The treatment of metabolic syndrome is based on the change in lifestyle and, when necessary, the use of medication directed to its components. In the presence of symptoms of the climacteric syndrome, hormonal therapy, when indicated, will also contribute to the improvement of the metabolic syndrome.

  2. Metabolic syndrome and menopause

    Jouyandeh, Zahra; Nayebzadeh, Farnaz; Qorbani, Mostafa; Asadi, Mojgan

    2013-01-01

    Abstract Background The metabolic syndrome is defined as an assemblage of risk factors for cardiovascular diseases, and menopause is associated with an increase in metabolic syndrome prevalence. The aim of this study was to assess the prevalence of metabolic syndrome and its components among postmenopausal women in Tehran, Iran. Methods In this cross-sectional study in menopause clinic in Tehran, 118 postmenopausal women were investigated. We used the adult treatment panel 3 (ATP3) criteria t...

  3. Mannose and fructose metabolism in red blood cells during cold storage in SAGM.

    Rolfsson, Óttar; Johannsson, Freyr; Magnusdottir, Manuela; Paglia, Giuseppe; Sigurjonsson, Ólafur E; Bordbar, Aarash; Palsson, Sirus; Brynjólfsson, Sigurður; Guðmundsson, Sveinn; Palsson, Bernhard

    2017-11-01

    Alternate sugar metabolism during red blood cell (RBC) storage is not well understood. Here we report fructose and mannose metabolism in RBCs during cold storage in SAGM and the impact that these monosaccharides have on metabolic biomarkers of RBC storage lesion. RBCs were stored in SAGM containing uniformly labeled 13 C-fructose or 13 C-mannose at 9 or 18 mmol/L concentration for 25 days. RBCs and media were sampled at 14 time points during storage and analyzed using ultraperformance liquid chromatography-mass spectrometry. Blood banking quality assurance measurements were performed. Red blood cells incorporated fructose and mannose during cold storage in the presence of glucose. Mannose was metabolized in preference to glucose via glycolysis. Fructose lowered adenosine triphosphate (ATP) levels and contributed little to ATP maintenance when added to SAGM. Both monosaccharides form the advanced glycation end product glycerate. Mannose activates enzymes in the RBC that take part in glycan synthesis. Fructose or mannose addition to RBC SAGM concentrates may not offset the shift in metabolism of RBCs that occurs after 10 days of storage. Fructose and mannose metabolism at 4°C in SAGM reflects their metabolism at physiologic temperature. Glycerate excretion is a measure of protein deglycosylation activity in stored RBCs. No cytoprotective effect was observed upon the addition of either fructose or mannose to SAGM. © 2017 AABB.

  4. Gout and Metabolic Syndrome: a Tangled Web.

    Thottam, Gabrielle E; Krasnokutsky, Svetlana; Pillinger, Michael H

    2017-08-26

    The complexity of gout continues to unravel with each new investigation. Gout sits at the intersection of multiple intrinsically complex processes, and its prevalence, impact on healthcare costs, and association with important co-morbidities make it increasingly relevant. The association between gout and type 2 diabetes, hypertension, hyperlipidemia, cardiovascular disease, renal disease, and obesity suggest that either gout, or its necessary precursor hyperuricemia, may play an important role in the manifestations of the metabolic syndrome. In this review, we analyze the complex interconnections between gout and metabolic syndrome, by reviewing gout's physiologic and epidemiologic relationships with its major co-morbidities. Increasing evidence supports gout's association with metabolic syndrome. More specifically, both human studies and animal models suggest that hyperuricemia may play a role in promoting inflammation, hypertension and cardiovascular disease, adipogenesis and lipogenesis, insulin and glucose dysregulation, and liver disease. Fructose ingestion is associated with increased rates of hypertension, weight gain, impaired glucose tolerance, and dyslipidemia and is a key driver of urate biosynthesis. AMP kinase (AMPK) is a central regulator of processes that tend to mitigate against the metabolic syndrome. Within hepatocytes, leukocytes, and other cells, a fructose/urate metabolic loop drives key inhibitors of AMPK, including AMP deaminase and fructokinase, that may tilt the balance toward metabolic syndrome progression. Preliminary evidence suggests that agents that block the intracellular synthesis of urate may restore AMPK activity and help maintain metabolic homeostasis. Gout is both an inflammatory and a metabolic disease. With further investigation of urate's role, the possibility of proper gout management additionally mitigating metabolic syndrome is an evolving and important question.

  5. [Fructose and fructose intolerance].

    Buzás, György Miklós

    2016-10-01

    Although fructose was discovered in 1794, it was realised in recent decades only that its malabsorption can lead to intestinal symptoms while its excessive consumption induces metabolic disturbances. Fructose is a monosaccharide found naturally in most fruits and vegetables. Dietary intake of fructose has gradually increased in the past decades, especially because of the consumption of high fructose corn syrup. With its 16.4 kg/year consumption, Hungary ranks secondly after the United States. Fructose is absorbed in the small intestine by facilitated transport mediated by glucose transporter proteins-2 and -5, and arrives in the liver cells. Here it is transformed enzymatically into fructose-1-phosphate and then, fructose-1,5-diphosphate, which splits further into glyceraldehyde and dihydroxyacetone-phosphate, entering the process of glycolysis, triglyceride and uric acid production. The prevalence of fructose intolerance varies strongly, depending on the method used. The leading symptoms of fructose intolerance are similar, but less severe than those of lactose intolerance. Multiple secondary symptoms can also occur. A symptom-based diagnosis of fructose intolerance is possible, but the gold standard is the H 2 breath test, though this is less accurate than in lactose testing. Measuring fructosaemia is costly, cumbersome and not widely used. Fructose intolerance increases intestinal motility and sensitivity, promotes biofilm formation and contributes to the development of gastrooesophageal reflux. Long-term use of fructose fosters the development of dental caries and non-alcoholic steatohepatitis. Its role in carcinogenesis is presently investigated. The cornerstone of dietary management for fructose intolerance is the individual reduction of fructose intake and the FODMAP diet, led by a trained dietetician. The newly introduced xylose-isomerase is efficient in reducing the symptoms of fructose intolerance. Orv. Hetil., 2016, 157(43), 1708-1716.

  6. Reduction of liver fructokinase expression and improved hepatic inflammation and metabolism in liquid fructose-fed rats after atorvastatin treatment

    Vila, Laia; Rebollo, Alba; Adalsteisson, Gunnar S [Pharmacology Unit, Department of Pharmacology and Therapeutic Chemistry, School of Pharmacy, University of Barcelona, Barcelona (Spain); Alegret, Marta; Merlos, Manuel; Roglans, Nuria [Pharmacology Unit, Department of Pharmacology and Therapeutic Chemistry, School of Pharmacy, University of Barcelona, Barcelona (Spain); IBUB - Institute of Biomedicine, University of Barcelona, Barcelona (Spain); CIBERobn, [Center for Biomedical Investigation Network in Obesity and Nutrition Physiopathology; Spain; Laguna, Juan C., E-mail: jclagunae@ub.edu [Pharmacology Unit, Department of Pharmacology and Therapeutic Chemistry, School of Pharmacy, University of Barcelona, Barcelona (Spain); IBUB -Institute of Biomedicine, University of Barcelona, Barcelona (Spain); CIBERobn, [Center for Biomedical Investigation Network in Obesity and Nutrition Physiopathology; Spain

    2011-02-15

    Consumption of beverages that contain fructose favors the increasing prevalence of metabolic syndrome alterations in humans, including non-alcoholic fatty liver disease (NAFLD). Although the only effective treatment for NAFLD is caloric restriction and weight loss, existing data show that atorvastatin, a hydroxymethyl-glutaryl-CoA reductase inhibitor, can be used safely in patients with NAFLD and improves hepatic histology. To gain further insight into the molecular mechanisms of atorvastatin's therapeutic effect on NAFLD, we used an experimental model that mimics human consumption of fructose-sweetened beverages. Control, fructose (10% w/v solution) and fructose + atorvastatin (30 mg/kg/day) Sprague-Dawley rats were sacrificed after 14 days. Plasma and liver tissue samples were obtained to determine plasma analytes, liver histology, and the expression of liver proteins that are related to fatty acid synthesis and catabolism, and inflammatory processes. Fructose supplementation induced hypertriglyceridemia and hyperleptinemia, hepatic steatosis and necroinflammation, increased the expression of genes related to fatty acid synthesis and decreased fatty acid {beta}-oxidation activity. Atorvastatin treatment completely abolished histological signs of necroinflammation, reducing the hepatic expression of metallothionein-1 and nuclear factor kappa B binding. Furthermore, atorvastatin reduced plasma (x 0.74) and liver triglyceride (x 0.62) concentrations, decreased the liver expression of carbohydrate response element binding protein transcription factor (x0.45) and its target genes, and increased the hepatic activity of the fatty acid {beta}-oxidation system (x 1.15). These effects may be related to the fact that atorvastatin decreased the expression of fructokinase (x 0.6) in livers of fructose-supplemented rats, reducing the metabolic burden on the liver that is imposed by continuous fructose ingestion. - Graphical Abstract: Display Omitted Research Highlights

  7. Reduction of liver fructokinase expression and improved hepatic inflammation and metabolism in liquid fructose-fed rats after atorvastatin treatment

    Vila, Laia; Rebollo, Alba; Adalsteisson, Gunnar S.; Alegret, Marta; Merlos, Manuel; Roglans, Nuria; Laguna, Juan C.

    2011-01-01

    Consumption of beverages that contain fructose favors the increasing prevalence of metabolic syndrome alterations in humans, including non-alcoholic fatty liver disease (NAFLD). Although the only effective treatment for NAFLD is caloric restriction and weight loss, existing data show that atorvastatin, a hydroxymethyl-glutaryl-CoA reductase inhibitor, can be used safely in patients with NAFLD and improves hepatic histology. To gain further insight into the molecular mechanisms of atorvastatin's therapeutic effect on NAFLD, we used an experimental model that mimics human consumption of fructose-sweetened beverages. Control, fructose (10% w/v solution) and fructose + atorvastatin (30 mg/kg/day) Sprague-Dawley rats were sacrificed after 14 days. Plasma and liver tissue samples were obtained to determine plasma analytes, liver histology, and the expression of liver proteins that are related to fatty acid synthesis and catabolism, and inflammatory processes. Fructose supplementation induced hypertriglyceridemia and hyperleptinemia, hepatic steatosis and necroinflammation, increased the expression of genes related to fatty acid synthesis and decreased fatty acid β-oxidation activity. Atorvastatin treatment completely abolished histological signs of necroinflammation, reducing the hepatic expression of metallothionein-1 and nuclear factor kappa B binding. Furthermore, atorvastatin reduced plasma (x 0.74) and liver triglyceride (x 0.62) concentrations, decreased the liver expression of carbohydrate response element binding protein transcription factor (x0.45) and its target genes, and increased the hepatic activity of the fatty acid β-oxidation system (x 1.15). These effects may be related to the fact that atorvastatin decreased the expression of fructokinase (x 0.6) in livers of fructose-supplemented rats, reducing the metabolic burden on the liver that is imposed by continuous fructose ingestion. - Graphical Abstract: Display Omitted Research Highlights: →Fructose

  8. Uptake and metabolism of fructose by rat neocortical cells in vivo and by isolated nerve terminals in vitro.

    Hassel, Bjørnar; Elsais, Ahmed; Frøland, Anne-Sofie; Taubøll, Erik; Gjerstad, Leif; Quan, Yi; Dingledine, Raymond; Rise, Frode

    2015-05-01

    Fructose reacts spontaneously with proteins in the brain to form advanced glycation end products (AGE) that may elicit neuroinflammation and cause brain pathology, including Alzheimer's disease. We investigated whether fructose is eliminated by oxidative metabolism in neocortex. Injection of [(14) C]fructose or its AGE-prone metabolite [(14) C]glyceraldehyde into rat neocortex in vivo led to formation of (14) C-labeled alanine, glutamate, aspartate, GABA, and glutamine. In isolated neocortical nerve terminals, [(14) C]fructose-labeled glutamate, GABA, and aspartate, indicating uptake of fructose into nerve terminals and oxidative fructose metabolism in these structures. This was supported by high expression of hexokinase 1, which channels fructose into glycolysis, and whose activity was similar with fructose or glucose as substrates. By contrast, the fructose-specific ketohexokinase was weakly expressed. The fructose transporter Glut5 was expressed at only 4% of the level of neuronal glucose transporter Glut3, suggesting transport across plasma membranes of brain cells as the limiting factor in removal of extracellular fructose. The genes encoding aldose reductase and sorbitol dehydrogenase, enzymes of the polyol pathway that forms glucose from fructose, were expressed in rat neocortex. These results point to fructose being transported into neocortical cells, including nerve terminals, and that it is metabolized and thereby detoxified primarily through hexokinase activity. We asked how the brain handles fructose, which may react spontaneously with proteins to form 'advanced glycation end products' and trigger inflammation. Neocortical cells took up and metabolized extracellular fructose oxidatively in vivo, and isolated nerve terminals did so in vitro. The low expression of fructose transporter Glut5 limited uptake of extracellular fructose. Hexokinase was a main pathway for fructose metabolism, but ketohexokinase (which leads to glyceraldehyde formation) was

  9. Metabolic syndrome and menopause

    Jouyandeh Zahra

    2013-01-01

    Full Text Available Abstract Background The metabolic syndrome is defined as an assemblage of risk factors for cardiovascular diseases, and menopause is associated with an increase in metabolic syndrome prevalence. The aim of this study was to assess the prevalence of metabolic syndrome and its components among postmenopausal women in Tehran, Iran. Methods In this cross-sectional study in menopause clinic in Tehran, 118 postmenopausal women were investigated. We used the adult treatment panel 3 (ATP3 criteria to classify subjects as having metabolic syndrome. Results Total prevalence of metabolic syndrome among our subjects was 30.1%. Waist circumference, HDL-cholesterol, fasting blood glucose, diastolic blood pressure ,Systolic blood pressure, and triglyceride were significantly higher among women with metabolic syndrome (P-value Conclusions Our study shows that postmenopausal status is associated with an increased risk of metabolic syndrome. Therefore, to prevent cardiovascular disease there is a need to evaluate metabolic syndrome and its components from the time of the menopause.

  10. Magnesium isoglycyrrhizinate blocks fructose-induced hepatic NF-κB/NLRP3 inflammasome activation and lipid metabolism disorder.

    Zhao, Xiao-Juan; Yang, Yan-Zi; Zheng, Yan-Jing; Wang, Shan-Chun; Gu, Hong-Mei; Pan, Ying; Wang, Shui-Juan; Xu, Hong-Jiang; Kong, Ling-Dong

    2017-08-15

    Magnesium isoglycyrrhizinate as a hepatoprotective agent possesses immune modulation and anti-inflammation, and treats liver diseases. But its effects on immunological-inflammatory and metabolic profiles for metabolic syndrome with liver injury and underlying potential mechanisms are not fully understood. In this study, magnesium isoglycyrrhizinate alleviated liver inflammation and lipid accumulation in fructose-fed rats with metabolic syndrome. It also suppressed hepatic inflammatory signaling activation by reducing protein levels of phosphorylation of nuclear factor-kappa B p65 (p-NF-κB p65), inhibitor of nuclear factor kappa-B kinase α/β (p-IKKα/β) and inhibitor of NF-κB α (p-IκBα) as well as nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein (ASC) and Caspase-1 in rats, being consistent with its reduction of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and IL-6 levels. Furthermore, magnesium isoglycyrrhizinate modulated lipid metabolism-related genes characterized by up-regulating peroxisome proliferator-activated receptor-α (PPAR-α) and carnitine palmitoyl transferase-1 (CPT-1), and down-regulating sensor for fatty acids to control-1 (SREBP-1) and stearoyl-CoA desaturase 1 (SCD-1) in the liver of fructose-fed rats, resulting in the reduction of triglyceride and total cholesterol levels. These effective actions were further confirmed in fructose-exposed BRL-3A and HepG2 cells. The molecular mechanisms underpinning these observations suggest that magnesium isoglycyrrhizinate may inhibit NF-κB/NLRP3 inflammasome activation to reduce immunological-inflammatory response, which in turn may prevent liver lipid metabolic disorder and accumulation under high fructose condition. Thus, blockade of NF-κB/NLRP3 inflammasome activation and lipid metabolism disorder by magnesium isoglycyrrhizinate may be the potential therapeutic approach for improving fructose-induced liver injury with

  11. Effects of high-fructose corn syrup and sucrose on the pharmacokinetics of fructose and acute metabolic and hemodynamic responses in healthy subjects.

    Le, Myphuong T; Frye, Reginald F; Rivard, Christopher J; Cheng, Jing; McFann, Kim K; Segal, Mark S; Johnson, Richard J; Johnson, Julie A

    2012-05-01

    It is unclear whether high-fructose corn syrup (HFCS), which contains a higher amount of fructose and provides an immediate source of free fructose, induces greater systemic concentrations of fructose as compared with sucrose. It is also unclear whether exposure to higher levels of fructose leads to increased fructose-induced adverse effects. The objective was to prospectively compare the effects of HFCS- vs sucrose-sweetened soft drinks on acute metabolic and hemodynamic effects. Forty men and women consumed 24 oz of HFCS- or sucrose-sweetened beverages in a randomized crossover design study. Blood and urine samples were collected over 6 hours. Blood pressure, heart rate, fructose, and a variety of other metabolic biomarkers were measured. Fructose area under the curve and maximum concentration, dose-normalized glucose area under the curve and maximum concentration, relative bioavailability of glucose, changes in postprandial concentrations of serum uric acid, and systolic blood pressure maximum levels were higher when HFCS-sweetened beverages were consumed as compared with sucrose-sweetened beverages. Compared with sucrose, HFCS leads to greater fructose systemic exposure and significantly different acute metabolic effects. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Effects of high fructose corn syrup and sucrose on the pharmacokinetics of fructose and acute metabolic and hemodynamic responses in healthy subjects

    Le, MyPhuong T.; Frye, Reginald F.; Rivard, Christopher J.; Cheng, Jing; McFann, Kim K.; Segal, Mark S.; Johnson, Richard J.; Johnson, Julie A.

    2011-01-01

    Objective It is unclear whether high fructose corn syrup (HFCS), which contains a higher amount of fructose and provides an immediate source of free fructose, induces greater systemic concentrations of fructose as compared to sucrose. It is also unclear whether exposure to higher levels of fructose leads to increased fructose-induced adverse effects. The objective was to prospectively compare the effects of HFCS- versus sucrose-sweetened soft drinks on acute metabolic and hemodynamic effects. Materials/Methods Forty men and women consumed 24 oz of HFCS- or sucrose-sweetened beverages in a randomized crossover design study. Blood and urine samples were collected over 6 hr. Blood pressure, heart rate, fructose, and a variety of other metabolic biomarkers were measured. Results Fructose area under the curve and maximum concentration, dose normalized glucose area under the curve and maximum concentration, relative bioavailability of glucose, changes in postprandial concentrations of serum uric acid, and systolic blood pressure maximum levels were higher when HFCS-sweetened beverages were consumed as compared to sucrose-sweetened beverages. Conclusions Compared to sucrose, HFCS leads to greater fructose systemic exposure and significantly different acute metabolic effects. PMID:22152650

  13. Early Effects of a Low Fat, Fructose-Rich Diet on Liver Metabolism, Insulin Signaling, and Oxidative Stress in Young and Adult Rats

    Raffaella Crescenzo

    2018-04-01

    Full Text Available The increase in the use of refined food, which is rich in fructose, is of particular concern in children and adolescents, since the total caloric intake and the prevalence of metabolic syndrome are increasing continuously in these populations. Nevertheless, the effects of high fructose diet have been mostly investigated in adults, by focusing on the effect of a long-term fructose intake. Notably, some reports evidenced that even short-term fructose intake exerts detrimental effects on metabolism. Therefore, the aim of this study was to compare the metabolic changes induced by the fructose-rich diet in rats of different age, i.e., young (30 days old and adult (90 days old rats. The fructose-rich diet increased whole body lipid content in adult, but not in young rats. The analysis of liver markers of inflammation suggests that different mechanisms depending on the age might be activated after the fructose-rich diet. In fact, a pro-inflammatory gene-expression analysis showed just a minor activation of macrophages in young rats compared to adult rats, while other markers of low-grade metabolic inflammation (TNF-alpha, myeloperoxidase, lipocalin, haptoglobin significantly increased. Inflammation was associated with oxidative damage to hepatic lipids in young and adult rats, while increased levels of hepatic nitrotyrosine and ceramides were detected only in young rats. Interestingly, fructose-induced hepatic insulin resistance was evident in young but not in adult rats, while whole body insulin sensitivity decreased both in fructose-fed young and adult rats. Taken together, the present data indicate that young rats do not increase their body lipids but are exposed to metabolic perturbations, such as hepatic insulin resistance and hepatic oxidative stress, in line with the finding that increased fructose intake may be an important predictor of metabolic risk in young people, independently of weight status. These results indicate the need of corrective

  14. Effects of stevia on synaptic plasticity and NADPH oxidase level of CNS in conditions of metabolic disorders caused by fructose.

    Chavushyan, V A; Simonyan, K V; Simonyan, R M; Isoyan, A S; Simonyan, G M; Babakhanyan, M A; Hovhannisyian, L E; Nahapetyan, Kh H; Avetisyan, L G; Simonyan, M A

    2017-12-19

    Excess dietary fructose intake associated with metabolic syndrome and insulin resistance and increased risk of developing type 2 diabetes. Previous animal studies have reported that diabetic animals have significantly impaired behavioural and cognitive functions, pathological synaptic function and impaired expression of glutamate receptors. Correction of the antioxidant status of laboratory rodents largely prevents the development of fructose-induced plurimetabolic changes in the nervous system. We suggest a novel concept of efficiency of Stevia leaves for treatment of central diabetic neuropathy. By in vivo extracellular studies induced spike activity of hippocampal neurons during high frequency stimulation of entorhinal cortex, as well as neurons of basolateral amygdala to high-frequency stimulation of the hippocampus effects of Stevia rebaudiana Bertoni plant evaluated in synaptic activity in the brain of fructose-enriched diet rats. In the conditions of metabolic disorders caused by fructose, antioxidant activity of Stevia rebaudiana was assessed by measuring the NOX activity of the hippocampus, amygdala and spinal cord. In this study, the characteristic features of the metabolic effects of dietary fructose on synaptic plasticity in hippocampal neurons and basolateral amygdala and the state of the NADPH oxidase (NOX) oxidative system of these brain formations are revealed, as well as the prospects for development of multitarget and polyfunctional phytopreparations (with adaptogenic, antioxidant, antidiabetic, nootropic activity) from native raw material of Stevia rebaudiana. Stevia modulates degree of expressiveness of potentiation/depression (approaches but fails to achieve the norm) by shifting the percentage balance in favor of depressor type of responses during high-frequency stimulation, indicating its adaptogenic role in plasticity of neural networks. Under the action of fructose an increase (3-5 times) in specific quantity of total fraction of NOX

  15. Silymarin ameliorates fructose induced insulin resistance syndrome by reducing de novo hepatic lipogenesis in the rat.

    Prakash, Prem; Singh, Vishal; Jain, Manish; Rana, Minakshi; Khanna, Vivek; Barthwal, Manoj Kumar; Dikshit, Madhu

    2014-03-15

    High dietary fructose causes insulin resistance syndrome (IRS), primarily due to simultaneous induction of genes involved in glucose, lipid and mitochondrial oxidative metabolism. The present study evaluates effect of a hepatoprotective agent, silymarin (SYM) on fructose-induced metabolic abnormalities in the rat and also assessed the associated thrombotic complications. Wistar rats were kept on high fructose (HFr) diet throughout the 12-week study duration (9 weeks of HFr feeding and subsequently 3 weeks of HFr plus SYM oral administration [once daily]). SYM treatment significantly reduced the HFr diet-induced increase expression of peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α/β, peroxisome proliferator-activated receptor (PPAR)-α, forkhead box protein O1 (FOXO1), sterol regulatory element binding protein (SREBP)-1c, liver X receptor (LXR)-β, fatty acid synthase (FAS) and PPARγ genes in rat liver. SYM also reduced HFr diet mediated increase in plasma triglycerides (TG), non-esterified fatty acids (NEFA), uric acid, malondialdehyde (MDA), total nitrite and pro-inflammatory cytokines (C-reactive protein [CRP], interleukin-6 [IL-6], interferon-gamma [IFN-γ] and tumor necrosis factor [TNF]) levels. Moreover, SYM ameliorated HFr diet induced reduction in glucose utilization and endothelial dysfunction. Additionally, SYM significantly reduced platelet activation (adhesion and aggregation), prolonged ferric chloride-induced blood vessel occlusion time and protected against exacerbated myocardial ischemia reperfusion (MI-RP) injury. SYM treatment prevented HFr induced mRNA expression of hepatic PGC-1α/β and also its target transcription factors which was accompanied with recovery in insulin sensitivity and reduced propensity towards thrombotic complications and aggravated MI-RP injury. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Fructose Alters Intermediary Metabolism of Glucose in Human Adipocytes and Diverts Glucose to Serine Oxidation in the One–Carbon Cycle Energy Producing Pathway

    Vijayalakshmi Varma

    2015-06-01

    Full Text Available Increased consumption of sugar and fructose as sweeteners has resulted in the utilization of fructose as an alternative metabolic fuel that may compete with glucose and alter its metabolism. To explore this, human Simpson-Golabi-Behmel Syndrome (SGBS preadipocytes were differentiated to adipocytes in the presence of 0, 1, 2.5, 5 or 10 mM of fructose added to a medium containing 5 mM of glucose representing the normal blood glucose concentration. Targeted tracer [1,2-13C2]-d-glucose fate association approach was employed to examine the influence of fructose on the intermediary metabolism of glucose. Increasing concentrations of fructose robustly increased the oxidation of [1,2-13C2]-d-glucose to 13CO2 (p < 0.000001. However, glucose-derived 13CO2 negatively correlated with 13C labeled glutamate, 13C palmitate, and M+1 labeled lactate. These are strong markers of limited tricarboxylic acid (TCA cycle, fatty acid synthesis, pentose cycle fluxes, substrate turnover and NAD+/NADP+ or ATP production from glucose via complete oxidation, indicating diminished mitochondrial energy metabolism. Contrarily, a positive correlation was observed between glucose-derived 13CO2 formed and 13C oleate and doses of fructose which indicate the elongation and desaturation of palmitate to oleate for storage. Collectively, these results suggest that fructose preferentially drives glucose through serine oxidation glycine cleavage (SOGC pathway one-carbon cycle for NAD+/NADP+ production that is utilized in fructose-induced lipogenesis and storage in adipocytes.

  17. IDH2 Deficiency Aggravates Fructose-Induced NAFLD by Modulating Hepatic Fatty Acid Metabolism and Activating Inflammatory Signaling in Female Mice

    Jeong Hoon Pan

    2018-05-01

    Full Text Available Fructose is a strong risk factor for non-alcoholic fatty liver disease (NAFLD, resulting from the disruption of redox systems by excessive reactive oxygen species production in the liver cells. Of note, recent epidemiological studies indicated that women are more prone to developing metabolic syndrome in response to fructose-sweetened beverages. Hence, we examined whether disruption of the redox system through a deletion of NADPH supplying mitochondrial enzyme, NADP+-dependent isocitrate dehydrogenase (IDH2, exacerbates fructose-induced NAFLD conditions in C57BL/6 female mice. Wild-type (WT and IDH2 knockout (KO mice were treated with either water or 34% fructose water over six weeks. NAFLD phenotypes and key proteins and mRNAs involved in the inflammatory pathway (e.g., NF-κB p65 and IL-1β were assessed. Hepatic lipid accumulation was significantly increased in IDH2 KO mice fed fructose compared to the WT counterpart. Neutrophil infiltration was observed only in IDH2 KO mice fed fructose. Furthermore, phosphorylation of NF-κB p65 and expression of IL-1β was remarkably upregulated in IDH2 KO mice fed fructose, and expression of IκBα was decreased by fructose treatment in both WT and IDH2 KO groups. For the first time, we report our novel findings that IDH2 KO female mice may be more susceptible to fructose-induced NAFLD and the associated inflammatory response, suggesting a mechanistic role of IDH2 in metabolic diseases.

  18. High fructose consumption in pregnancy alters the perinatal environment without increasing metabolic disease in the offspring.

    Lineker, Christopher; Kerr, Paul M; Nguyen, Patricia; Bloor, Ian; Astbury, Stuart; Patel, Nikhil; Budge, Helen; Hemmings, Denise G; Plane, Frances; Symonds, Michael E; Bell, Rhonda C

    2016-10-01

    Maternal carbohydrate intake is one important determinant of fetal body composition, but whether increased exposure to individual sugars has long-term adverse effects on the offspring is not well established. Therefore, we examined the effect of fructose feeding on the mother, placenta, fetus and her offspring up to 6 months of life when they had been weaned onto a standard rodent diet and not exposed to additional fructose. Dams fed fructose were fatter, had raised plasma insulin and triglycerides from mid-gestation and higher glucose near term. Maternal resistance arteries showed changes in function that could negatively affect regulation of blood pressure and tissue perfusion in the mother and development of the fetus. Fructose feeding had no effect on placental weight or fetal metabolic profiles, but placental gene expression for the glucose transporter GLUT1 was reduced, whereas the abundance of sodium-dependent neutral amino acid transporter-2 was raised. Offspring born to fructose-fed and control dams were similar at birth and had similar post-weaning growth rates, and neither fat mass nor metabolic profiles were affected. In conclusion, raised fructose consumption during reproduction results in pronounced maternal metabolic and vascular effects, but no major detrimental metabolic effects were observed in offspring up to 6 months of age.

  19. Sympathetic overactivity precedes metabolic dysfunction in a fructose model of glucose intolerance in mice

    Angelis, Katia De; Senador, Danielle D.; Mostarda, Cristiano; Irigoyen, Maria C.

    2012-01-01

    Consumption of high levels of fructose in humans and animals leads to metabolic and cardiovascular dysfunction. There are questions as to the role of the autonomic changes in the time course of fructose-induced dysfunction. C57/BL male mice were given tap water or fructose water (100 g/l) to drink for up to 2 mo. Groups were control (C), 15-day fructose (F15), and 60-day fructose (F60). Light-dark patterns of arterial pressure (AP) and heart rate (HR), and their respective variabilities were measured. Plasma glucose, lipids, insulin, leptin, resistin, adiponectin, and glucose tolerance were quantified. Fructose increased systolic AP (SAP) at 15 and 60 days during both light (F15: 123 ± 2 and F60: 118 ± 2 mmHg) and dark periods (F15: 136 ± 4 and F60: 136 ± 5 mmHg) compared with controls (light: 111 ± 2 and dark: 117 ± 2 mmHg). SAP variance (VAR) and the low-frequency component (LF) were increased in F15 (>60% and >80%) and F60 (>170% and >140%) compared with C. Cardiac sympatho-vagal balance was enhanced, while baroreflex function was attenuated in fructose groups. Metabolic parameters were unchanged in F15. However, F60 showed significant increases in plasma glucose (26%), cholesterol (44%), triglycerides (22%), insulin (95%), and leptin (63%), as well as glucose intolerance. LF of SAP was positively correlated with SAP. Plasma leptin was correlated with triglycerides, insulin, and glucose tolerance. Results show that increased sympathetic modulation of vessels and heart preceded metabolic dysfunction in fructose-consuming mice. Data suggest that changes in autonomic modulation may be an initiating mechanism underlying the cluster of symptoms associated with cardiometabolic disease. PMID:22319048

  20. Hypothyroidism in metabolic syndrome

    Sunil Kumar Kota

    2012-01-01

    Full Text Available Aim: Metabolic syndrome (MetS and hypothyroidism are well established forerunners of atherogenic cardiovascular disease. Considerable overlap occurs in the pathogenic mechanisms of atherosclerotic cardiovascular disease by metabolic syndrome and hypothyroidism. Insulin resistance has been studied as the basic pathogenic mechanism in metabolic syndrome. [1] This cross sectional study intended to assess thyroid function in patients with metabolic syndrome and to investigate the association between hypothyroidism and metabolic syndrome. Materials and Methods: One hundred patients with metabolic syndrome who fulfilled the National Cholesterol Education Program- Adult Treatment Panel (NCEP-ATP III criteria [ 3 out of 5 criteria positive namely blood pressure ≥ 130/85 mm hg or on antihypertensive medications, fasting plasma glucose > 100 mg/dl or on anti-diabetic medications, fasting triglycerides > 150 mg/dl, high density lipoprotein cholesterol (HDL-C 102 cms in men and 88 cms in women] were included in the study group. [2] Fifty patients who had no features of metabolic syndrome (0 out of 5 criteria for metabolic syndrome were included in the control group. Patients with liver disorders, renal disorders, congestive cardiac failure, pregnant women, patients on oral contraceptive pills, statins and other medications that alter thyroid functions and lipid levels and those who are under treatment for any thyroid related disorder were excluded from the study. Acutely ill patients were excluded taking into account sick euthyroid syndrome. Patients were subjected to anthropometry, evaluation of vital parameters, lipid and thyroid profile along with other routine laboratory parameters. Students t-test, Chi square test and linear regression, multiple logistic regression models were used for statistical analysis. P value < 0.05 was considered significant. Results: Of the 100 patients in study group, 55 were females (55% and 45 were males (45%. Of the 50

  1. Metabolic and cardiac changes in high cholesterol-fructose-fed rats

    Axelsen, Lene N; Pedersen, Henrik D; Petersen, Jørgen S

    2010-01-01

    Introduction: High cholesterol-fructose (HCF) fed rats have previously been described as an animal model of impaired cardiac insulin signaling and decreased contractile performance. In this study, we evaluated the metabolic and cardiac effects of a HCF diet in rats. Methods: Male Sprague-Dawley r......Introduction: High cholesterol-fructose (HCF) fed rats have previously been described as an animal model of impaired cardiac insulin signaling and decreased contractile performance. In this study, we evaluated the metabolic and cardiac effects of a HCF diet in rats. Methods: Male Sprague...

  2. Alleviation of metabolic abnormalities induced by excessive fructose administration in Wistar rats by Spirulina maxima.

    Jarouliya, Urmila; Zacharia, J Anish; Kumar, Pravin; Bisen, P S; Prasad, G B K S

    2012-03-01

    Diabetes mellitus is a metabolic disorder characterized by hyperglycaemia. Several natural products have been isolated and identified to restore the complications of diabetes. Spirulina maxima is naturally occurring fresh water cyanobacterium, enriched with proteins and essential nutrients. The aim of the study was to determine whether S. maxima could serve as a therapeutic agent to correct metabolic abnormalities induced by excessive fructose administration in Wistar rats. Oral administration of 10 per cent fructose solution to Wistar rats (n = 5 in each group) for 30 days resulted in hyperglycaemia and hyperlipidaemia. Aqueous suspension of S. maxima (5 or 10%) was also administered orally once daily for 30 days. The therapeutic potential of the preparation with reference to metformin (500 mg/kg) was assessed by monitoring various biochemical parameters at 10 day intervals during the course of therapy and at the end of 30 days S. maxima administration. Significant (Pmaxima aquous extract. Co-administration of S. maxima extract (5 or 10% aqueous) with 10 per cent fructose solution offered a significant protection against fructose induced metabolic abnormalities in Wistar rats. The present findings showed that S. maxima exhibited anti-hyperglycaemic, anti-hyperlipidaemic and hepatoprotective activity in rats fed with fructose. Further studies are needed to understand the mechanisms.

  3. Fructose-induced aberration of metabolism in familial gout identified by 31P magnetic resonance spectroscopy

    Seegmiller, J.E.; Dixon, R.M.; Kemp, G.J.; Rajagopalan, B.; Radda, G.K.; Angus, P.W.; McAlindon, T.E.; Dieppe, P.

    1990-01-01

    The hyperuricemia responsible for the development of gouty arthritis results from a wide range of environmental factors and underlying genetically determined aberrations of metabolism. 31 P magnetic resonance spectroscopy studies of children with hereditary fructose intolerance revealed a readily detectable rise in phosphomonoesters with a marked fall in inorganic phosphate in their liver in vivo and a rise in serum urate in response to very low doses of oral fructose. Parents and some family members heterozygous for this enzyme deficiency showed a similar pattern when given a substantially larger dose of fructose. Three of the nine heterozygotes thus identified also had clinical gout, suggesting the possibility of this defect being a fairly common cause of gout. In the present study this same noninvasive technology was used to identify the same spectral pattern in 2 of the 11 families studied with hereditary gout. In one family, the index patient's three brothers and his mother all showed the fructose-induced abnormality of metabolism, in agreement with the maternal inheritance of metabolism, in agreement with the maternal inheritance of the gout in this family group. The test dose of fructose used produced a significantly larger increment in the concentration of serum urate in the patients showing the changes in 31 P magnetic resonance spectra than in the other patients with familial gout or in nonaffected members, thus suggesting a simpler method for initial screening for the defect

  4. Metabolic Fate of Fructose Ingested with and without Glucose in a Mixed Meal

    Fanny Theytaz

    2014-07-01

    Full Text Available Ingestion of pure fructose stimulates de novo lipogenesis and gluconeogenesis. This may however not be relevant to typical nutritional situations, where fructose is invariably ingested with glucose. We therefore assessed the metabolic fate of fructose incorporated in a mixed meal without or with glucose in eight healthy volunteers. Each participant was studied over six hours after the ingestion of liquid meals containing either 13C-labelled fructose, unlabeled glucose, lipids and protein (Fr + G or 13C-labelled fructose, lipids and protein, but without glucose (Fr, or protein and lipids alone (ProLip. After Fr + G, plasma 13C-glucose production accounted for 19.0% ± 1.5% and 13CO2 production for 32.2% ± 1.3% of 13C-fructose carbons. After Fr, 13C-glucose production (26.5% ± 1.4% and 13CO2 production (36.6% ± 1.9% were higher (p < 0.05 than with Fr + G. 13C-lactate concentration and very low density lipoprotein VLDL 13C-palmitate concentrations increased to the same extent with Fr + G and Fr, while chylomicron 13C-palmitate tended to increase more with Fr + G. These data indicate that gluconeogenesis, lactic acid production and both intestinal and hepatic de novo lipogenesis contributed to the disposal of fructose carbons ingested together with a mixed meal. Co-ingestion of glucose decreased fructose oxidation and gluconeogenesis and tended to increase 13C-pamitate concentration in gut-derived chylomicrons, but not in hepatic-borne VLDL-triacylglycerol (TG. This trial was approved by clinicaltrial. gov. Identifier is NCT01792089.

  5. Metabolic Syndrome: Polycystic Ovary Syndrome.

    Mortada, Rami; Williams, Tracy

    2015-08-01

    Polycystic ovary syndrome (PCOS) is a heterogeneous condition characterized by androgen excess, ovulatory dysfunction, and polycystic ovaries. It is the most common endocrinopathy among women of reproductive age, affecting between 6.5% and 8% of women, and is the most common cause of infertility. Insulin resistance is almost always present in women with PCOS, regardless of weight, and they often develop diabetes and metabolic syndrome. The Rotterdam criteria are widely used for diagnosis. These criteria require that patients have at least two of the following conditions: hyperandrogenism, ovulatory dysfunction, and polycystic ovaries. The diagnosis of PCOS also requires exclusion of other potential etiologies of hyperandrogenism and ovulatory dysfunction. The approach to PCOS management differs according to the presenting symptoms and treatment goals, particularly the patient's desire for pregnancy. Weight loss through dietary modifications and exercise is recommended for patients with PCOS who are overweight. Oral contraceptives are the first-line treatment for regulating menstrual cycles and reducing manifestations of hyperandrogenism, such as acne and hirsutism. Clomiphene is the first-line drug for management of anovulatory infertility. Metformin is recommended for metabolic abnormalities such as prediabetes, and a statin should be prescribed for cardioprotection if the patient meets standard criteria for statin therapy. Written permission from the American Academy of Family Physicians is required for reproduction of this material in whole or in part in any form or medium.

  6. Endocrine and metabolic effects of consuming beverages sweetened with fructose, glucose, sucrose, or high fructose corn syrup

    Stanhope, Kimber L.; Havel, Peter J.

    2008-01-01

    Our laboratory has investigated two hypotheses regarding the effects of fructose consumption: 1) The endocrine effects of fructose consumption favor a positive energy balance, and 2) Fructose consumption promotes the development of an atherogenic lipid profile. In previous short- and long-term studies, we demonstrated that consumption of fructose-sweetened beverages with 3 meals results in lower 24-hour plasma concentrations of glucose, insulin, and leptin in humans compared with consumption ...

  7. Radiosynthesis, rodent biodistribution, and metabolism of 1-deoxy-1-[18F]fluoro-d-fructose

    Haradahira, Terushi; Tanaka, Akihiro; Maeda, Minoru; Kanazawa, Yoko; Ichiya, Yu-Ichi; Masuda, Kouji

    1995-01-01

    Fluorine-18 labeled analog of d-fructose, 1-deoxy-1-[ 18 F]fluoro-d-fructose (1-[ 18 F]FDFrc), was synthesized by nucleophilic substitution of [ 18 F]fluoride ion and the effect of the fluorine substitution on its in vivo metabolism was investigated. The tissue distributions of 1-[ 18 F]FDFrc in rats and tumor bearing mice showed initial high uptake and subsequent rapid washout of the radioactivity in the principal sites of d-fructose metabolism (kidneys, liver and small intestine). The uptakes in the brain and tumor (fibrosarcoma) were the lowest and moderate, respectively, but tended to increase with time. The in vivo metabolic studies of 1-[ 18 F]FDFrc and nonradiactive 1-FDFrc in mouse brain and tumor showed that the fluorinated analog remained unmetabolized in these tissues, indicating that the substitution of fluorine at the C-1 position produces a nonmetabolizable analog of d-fructose. Thus, 1-[ 18 F]FDFrc had no features of a metabolic trapping tracer without showing any appreciable organ or tumor specific localization

  8. Consumption of Alcopops During Brain Maturation Period: Higher Impact of Fructose Than Ethanol on Brain Metabolism

    Dounia El Hamrani

    2018-05-01

    Full Text Available Alcopops are flavored alcoholic beverages sweetened by sodas, known to contain fructose. These drinks have the goal of democratizing alcohol among young consumers (12–17 years old and in the past few years have been considered as fashionable amongst teenagers. Adolescence, however, is a key period for brain maturation, occurring in the prefrontal cortex and limbic system until 21 years old. Therefore, this drinking behavior has become a public health concern. Despite the extensive literature concerning the respective impacts of either fructose or ethanol on brain, the effects following joint consumption of these substrates remains unknown. Our objective was to study the early brain modifications induced by a combined diet of high fructose (20% and moderate amount of alcohol in young rats by 13C Nuclear Magnetic Resonance (NMR spectroscopy. Wistar rats had isocaloric pair-fed diets containing fructose (HF, 20%, ethanol (Et, 0.5 g/day/kg or both substrates at the same time (HFEt. After 6 weeks of diet, the rats were infused with 13C-glucose and brain perchloric acid extracts were analyzed by NMR spectroscopy (1H and 13C. Surprisingly, the most important modifications of brain metabolism were observed under fructose diet. Alterations, observed after only 6 weeks of diet, show that the brain is vulnerable at the metabolic level to fructose consumption during late-adolescence throughout adulthood in rats. The main result was an increase in oxidative metabolism compared to glycolysis, which may impact lactate levels in the brain and may, at least partially, explain memory impairment in teenagers consuming alcopops.

  9. Treatment of metabolic syndrome.

    Wagh, Arati; Stone, Neil J

    2004-03-01

    The metabolic syndrome is intended to identify patients who have increased risk of diabetes and/or a cardiac event due to the deleterious effects of weight gain, sedentary lifestyle, and/or an atherogenic diet. The National Cholesterol Education Program's Adult Treatment Panel III definition uses easily measured clinical findings of increased abdominal circumference, elevated triglycerides, low high-density lipoprotein-cholesterol, elevated fasting blood glucose and/or elevated blood pressure. Three of these five are required for diagnosis. The authors also note that other definitions of metabolic syndrome focus more on insulin resistance and its key role in this syndrome. This review focuses on how treatment might affect each of the five components. Abdominal obesity can be treated with a variety of lower calorie diets along with regular exercise. Indeed, all of the five components of the metabolic syndrome are improved by even modest amounts of weight loss achieved with diet and exercise. For those with impaired fasting glucose tolerance, there is good evidence that a high fiber, low saturated fat diet with increased daily exercise can reduce the incidence of diabetes by almost 60%. Of note, subjects who exercise the most, gain the most benefit. Metformin has also been shown to be helpful in these subjects. Thiazolidinedione drugs may prove useful, but further studies are needed. Although intensified therapeutic lifestyle change will help the abnormal lipid profile, some patients may require drug therapy. This review also discusses the use of statins, fibrates, and niacin. Likewise, while hypertension in the metabolic syndrome benefits from therapeutic lifestyle change, physicians should also consider angiotensin converting enzyme inhibitor drugs or angiotensin receptor blockers, due to their effects on preventing complications of diabetes, such as progression of diabetic nephropathy and due to their effects on regression of left ventricular hypertrophy. Aspirin

  10. Twenty-four-hour endocrine and metabolic profiles following consumption of high-fructose corn syrup-, sucrose-, fructose-, and glucose-sweetened beverages with meals.

    Stanhope, Kimber L; Griffen, Steven C; Bair, Brandi R; Swarbrick, Michael M; Keim, Nancy L; Havel, Peter J

    2008-05-01

    We have reported that, compared with glucose-sweetened beverages, consuming fructose-sweetened beverages with meals results in lower 24-h circulating glucose, insulin, and leptin concentrations and elevated triacylglycerol (TG). However, pure fructose and glucose are not commonly used as sweeteners. High-fructose corn syrup (HFCS) has replaced sucrose as the predominant sweetener in beverages in the United States. We compared the metabolic/endocrine effects of HFCS with sucrose and, in a subset of subjects, with pure fructose and glucose. Thirty-four men and women consumed 3 isocaloric meals with either sucrose- or HFCS-sweetened beverages, and blood samples were collected over 24 h. Eight of the male subjects were also studied when fructose- or glucose-sweetened beverages were consumed. In 34 subjects, 24-h glucose, insulin, leptin, ghrelin, and TG profiles were similar between days that sucrose or HFCS was consumed. Postprandial TG excursions after HFCS or sucrose were larger in men than in women. In the men in whom the effects of 4 sweeteners were compared, the 24-h glucose and insulin responses induced by HFCS and sucrose were intermediate between the lower responses during consumption of fructose and the higher responses during glucose. Unexpectedly, postprandial TG profiles after HFCS or sucrose were not intermediate but comparably high as after pure fructose. Sucrose and HFCS do not have substantially different short-term endocrine/metabolic effects. In male subjects, short-term consumption of sucrose and HFCS resulted in postprandial TG responses comparable to those induced by fructose.

  11. Effect of dietary fructose on portal and systemic serum fructose levels in rats and in KHK−/− and GLUT5−/− mice

    Patel, Chirag; Sugimoto, Keiichiro; Douard, Veronique; Shah, Ami; Inui, Hiroshi; Yamanouchi, Toshikazu

    2015-01-01

    Elevated blood fructose concentrations constitute the basis for organ dysfunction in fructose-induced metabolic syndrome. We hypothesized that diet-induced changes in blood fructose concentrations are regulated by ketohexokinase (KHK) and the fructose transporter GLUT5. Portal and systemic fructose concentrations determined by HPLC in wild-type mice fed for 7 days 0% free fructose were fructose levels, however, increased markedly in those fed isocaloric 20% fructose, causing significant hyperglycemia. Deletion of KHK prevented fructose-induced hyperglycemia, but caused dramatic hyperfructosemia (>1 mM) with reversed portal to systemic gradients. Systemic fructose in wild-type and KHK−/− mice changed by 0.34 and 1.8 mM, respectively, for every millimolar increase in portal fructose concentration. Systemic glucose varied strongly with systemic, but not portal, fructose levels in wild-type, and was independent of systemic and portal fructose in KHK−/−, mice. With ad libitum feeding for 12 wk, fructose-induced hyperglycemia in wild-type, but not hyperfructosemia in KHK−/− mice, increased HbA1c concentrations. Increasing dietary fructose to 40% intensified the hyperfructosemia of KHK−/− and the fructose-induced hyperglycemia of wild-type mice. Fructose perfusion or feeding in rats also caused duration- and dose-dependent hyperfructosemia and hyperglycemia. Significant levels of blood fructose are maintained independent of dietary fructose, KHK, and GLUT5, probably by endogenous synthesis of fructose. KHK prevents hyperfructosemia and fructose-induced hyperglycemia that would markedly increase HbA1c levels. These findings explain the hyperfructosemia of human hereditary fructosuria as well as the hyperglycemia of fructose-induced metabolic syndrome. PMID:26316589

  12. [Syndrome X vs metabolic syndrome].

    Morales Villegas, Enrique

    2006-01-01

    Himsworth in 1939 postulated that Diabetes Mellitus type 2 (DM2) was not only an insulin deficiency state but also a cellular insulin insensitivity disease. Thirty years later, DeFronzo and Reaven demonstrated that insulin resistance (IR) preceded and predisposed for DM2 and atherosclerotic-cardiovascular-disease (ACVD). Reaven was the first to point out the relationship between IR and with hyperglycemia, dyslipidosis, and hypertension as mediators for ACVD, creating the concept of Syndrome X (SX) in 1988. WHO and, thereafter, other medical societies and medical groups, mainly ATP-III, in 2002, based on the difficulty of diagnosing IR in a simple, reliable, and inexpensive way, proposed and published the Metabolic Syndrome (MS) concept, as a group of five variables, i.e., obesity, hyperglycemia, hypertriglyceridemia, low HDL, and hypertension, as an easy clinical approximation to suspect and treat an increased cardiometabolic risk. Nowadays, there are deep and extensive controversies on this issue; however, these controversies do not really exist since all discordant points of view are rather quantitative and not qualitative in nature. This article is aimed at differentiating and harmonizing the complementary concepts of SX and MS, at analyzing why MS is a good "clinical window" to look for IR and its underlying manifestations, and finally to accept that the MS concept complements, but does not substitute or antagonize, traditional scales used to asses cardiovascular risk, such as the Framingham scale.

  13. Metabolic syndrome in hyperprolactinemia

    Andersen, Marianne; Glintborg, Dorte

    2018-01-01

    The metabolic syndrome (MetS) is a conglomerate of clinical findings that convey into increased morbidity and mortality from type 2 diabetes mellitus (T2D) and cardiovascular disease. Hyperprolactinemia (hyperPRL) is associated with components of MetS, especially during pregnancy. Endogenous levels...... in patients with T2D. HyperPRL is a biomarker for decreased dopaminergic tonus in the hypothalamic-pituitary circuit. Patients with a prolactinoma, patients with schizophrenia and/or T2D often have disturbances in this balance and the finding of lower prolactin (PRL) levels in polycystic ovary syndrome (PCOS......) may indicate increased dopaminergic tonus. Recent studies supported that PRL levels within or above reference range may be differently related to MetS. In healthy study populations and in PCOS, PRL levels were inversely associated with metabolic risk markers. Ongoing research on PRL fragments...

  14. Sucrose, glucose and fructose have similar genotoxicity in the rat colon and affect the metabolism

    Hansen, Max; Baunsgaard, D.; Autrup, H.

    2008-01-01

    We have shown previously that a high sucrose intake increases the background level of somatic mutations and the level of bulky DNA adducts in the colon epithelium of rats. The mechanism may involve either glucose or fructose formed by hydrolysis of sucrose. Male Big Blue (R) rats were fed 30......% sucrose, glucose, fructose or potato starch as part of the diet. Mutation rates and bulky DNA adduct levels were determined in colon and liver. The concentration of short-chain fatty acids and pH were deter-mined in caecum, C-peptide was determined in plasma, biomarkers for oxidative damage....... The metabonomic studies indicated disturbed amino acid metabolism and decrease in plasma and urinary acetate as a common feature for all sugars and confirmed triglyceridemic effects of fructose. In conclusion, the genotoxicity may be related to the altered chemical environment in the caecum and thereby also...

  15. Metabolic syndrome and asthma.

    Garmendia, Jenny V; Moreno, Dolores; Garcia, Alexis H; De Sanctis, Juan B

    2014-01-01

    Metabolic syndrome (MetS) is a syndrome that involves at least three disorders dyslipidemia, insulin resistance, obesity and/or hypertension. MetS has been associated with several chronic diseases in the adulthood; however, in the recent years, the syndrome was redefined in children. Girls with early menarche and asthma, and children with MetS and asthma that reach adulthood appear to have higher risk to develop severe or difficult to control asthma and a higher probability to suffer cardiovascular diseases. It has been proposed that patients with MetS and endocrinological disorders should be considered a different entity in which pharmacologic treatment should be adjusted according to the individual. Recent patents on the field have addressed new issues on how endocrine control should be managed along with asthma therapeutics. In the near future, new approaches should decrease the high morbidity and mortality associated to these types of patients.

  16. Metabolic effects of dietary fructose and surcose in types I and II diabetic subjects

    Bantle, J.P.; Laine, D.C.; Thomas, J.W.

    1986-01-01

    To learn more about the metabolic effects of dietary fructose and sucrose, 12 type 1 and 12 type II diabetic subjects were fed three isocaloric (or isoenergic) diets for eight days each according to a randomized, crossover design. The three diets provided, respectively, 21% of the energy as fructose, 23% of the energy as sucrose, and almost all carbohydrate energy as starch. The fructose diet resulted in significantly lower one- and two-hour postprandial plasma glucose levels, overall mean plasma glucose levels, and urinary glucose excretion in both type I and type II subjects than did the starch diet. There were no significant differences between the sucrose and starch diets in any of the measures of glycemic control in either subject group. The fructose and sucrose diets did not significantly increase serum triglyceride values when compared with the starch diet, but both increased postprandial serum lactate levels. The authors conclude that short-term replacement of other carbohydrate sources in the diabetic diet with fructose will improve glycemic control, whereas replacement with sucrose will not aggravate glycemic control

  17. The FGF21 response to fructose predicts metabolic health and persists after bariatric surgery in obese humans

    ter Horst, Kasper W.; Gilijamse, Pim W.; Demirkiran, Ahmet; van Wagensveld, Bart A.; Ackermans, Mariette T.; Verheij, Joanne; Romijn, Johannes A.; Nieuwdorp, Max; Maratos-Flier, Eleftheria; Herman, Mark A.; Serlie, Mireille J.

    2017-01-01

    Objective: Fructose consumption has been implicated in the development of obesity and insulin resistance. Emerging evidence shows that fibroblast growth factor 21 (FGF21) has beneficial effects on glucose, lipid, and energy metabolism and may also mediate an adaptive response to fructose ingestion.

  18. Clinical update on metabolic syndrome

    Juan Diego Hernández-Camacho

    2017-12-01

    Full Text Available Metabolic syndrome has been defined as a global issue since it affects a lot of people. Numerous factors are involved in metabolic syndrome development. It has been described that metabolic syndrome has negative consequences on health. Consequently, a lot of treatments have been proposed to palliate it such as drugs, surgery or life style changes where nutritional habits have shown to be an important point in its management. The current study reviews the literature existing about the actual epidemiology of metabolic syndrome, the components involucrate in its appearance and progression, the clinical consequences of metabolic syndrome and the nutritional strategies reported in its remission. A bibliographic search in PubMed and Medline was performed to identify eligible studies. Authors obtained that metabolic syndrome is present in population from developed and undeveloped areas in a huge scale. Environmental and genetic elements are involucrate in metabolic syndrome development. Metabolic syndrome exponentially increased risk of cardiovascular disease, some types of cancers, diabetes mellitus type 2, sleep disturbances, etc. Nutritional treatments play a crucial role in metabolic syndrome prevention, treatment and recovery.

  19. Genetic disorder in carbohydrates metabolism: hereditary fructose intolerance associated with celiac disease.

    Păcurar, Daniela; Leşanu, Gabriela; Dijmărescu, Irina; Ţincu, Iulia Florentina; Gherghiceanu, Mihaela; Orăşeanu, Dumitru

    2017-01-01

    Celiac disease (CD) has been associated with several genetic and immune disorders, but association between CD and hereditary fructose intolerance (HFI) is extremely rare. HFI is an autosomal recessive disease caused by catalytic deficiency of aldolase B (fructose-1,6-bisphosphate aldolase). We report the case of a 5-year-old boy suffering from CD, admitted with an initial diagnosis of Reye's-like syndrome. He presented with episodic unconsciousness, seizures, hypoglycemia, hepatomegaly and abnormal liver function. The patient has been on an exclusion diet for three years, but he still had symptoms: stunting, hepatomegaly, high transaminases, but tissue transglutaminase antibodies were negative. Liver biopsy showed hepatic steatosis and mitochondrial damage. The dietary history showed an aversion to fruits, vegetables and sweet-tasting foods. The fructose tolerance test was positive, revealing the diagnostic of hereditary fructose intolerance. Appropriate dietary management and precautions were recommended. The patient has been symptom-free and exhibited normal growth and development until 10 years of age.

  20. A CASE OF METABOLIC SYNDROME

    Khoo Ee Ming; Rabia Khatoon

    2006-01-01

    This case report illustrates a 40-year-old woman who presented with chest discomfort that was subsequently diagnosed to have metabolic syndrome. Metabolic syndrome is a common condition associated with increased cardiovascular morbidity and mortality. As primary care providers, we should be detect this condition early, intervene and prevent appropriately before complications occur.

  1. Drug treatment of metabolic syndrome.

    Altabas, Velimir

    2013-08-01

    The metabolic syndrome is a constellation of risk factors for cardiovascular diseases including: abdominal obesity, a decreased ability to metabolize glucose (increased blood glucose levels and/or presence of insulin resistance), dyslipidemia, and hypertension. Patients who have developed this syndrome have been shown to be at an increased risk of developing cardiovascular disease and/or type 2 diabetes. Genetic factors and the environment both are important in the development of the metabolic syndrome, influencing all single components of this syndrome. The goals of therapy are to treat the underlying cause of the syndrome, to reduce morbidity, and to prevent complications, including premature death. Lifestyle modification is the preferred first-step treatment of the metabolic syndrome. There is no single effective drug treatment affecting all components of the syndrome equally known yet. However, each component of metabolic syndrome has independent goals to be achieved, so miscellaneous types of drugs are used in the treatment of this syndrome, including weight losing drugs, antidiabetics, antihypertensives, antilipemic and anticlothing drugs etc. This article provides a brief insight into contemporary drug treatment of components the metabolic syndrome.

  2. Fructose and NAFLD: The Multifaceted Aspects of  Fructose Metabolism.

    Jegatheesan, Prasanthi; De Bandt, Jean-Pascal

    2017-03-03

    Among various factors, such as an unhealthy diet or a sedentarity lifestyle, excessive fructose consumption is known to favor nonalcoholic fatty liver disease (NAFLD), as fructose is both a substrate and an inducer of hepatic de novo lipogenesis. The present review presents some well-established mechanisms and new clues to better understand the pathophysiology of fructose-induced NAFLD. Beyond its lipogenic effect, fructose intake is also at the onset of hepatic inflammation and cellular stress, such as oxidative and endoplasmic stress, that are key factors contributing to the progression of simple steatosis to nonalcoholic steatohepatitis (NASH). Beyond its hepatic effects, this carbohydrate may exert direct and indirect effects at the peripheral level. Excessive fructose consumption is associated, for example, with the release by the liver of several key mediators leading to alterations in the communication between the liver and the gut, muscles, and adipose tissue and to disease aggravation. These multifaceted aspects of fructose properties are in part specific to fructose, but are also shared in part with sucrose and glucose present in energy- dense beverages and foods. All these aspects must be taken into account in the development of new therapeutic strategies and thereby to better prevent NAFLD.

  3. [Hypovitaminosis D and metabolic syndrome].

    Miñambres, Inka; de Leiva, Alberto; Pérez, Antonio

    2014-12-23

    Metabolic syndrome and hypovitaminosis D are 2 diseases with high prevalence that share several risk factors, while epidemiological evidence shows they are associated. Although the mechanisms involved in this association are not well established, hypovitaminosis D is associated with insulin resistance, decreased insulin secretion and activation of the renin-angiotensin system, mechanisms involved in the pathophysiology of metabolic syndrome. However, the apparent ineffectiveness of vitamin D supplementation on metabolic syndrome components, as well as the limited information about the effect of improving metabolic syndrome components on vitamin D concentrations, does not clarify the direction and the mechanisms involved in the causal relationship between these 2 pathologies. Overall, because of the high prevalence and the epidemiological association between both diseases, hypovitaminosis D could be considered a component of the metabolic syndrome. Copyright © 2013 Elsevier España, S.L.U. All rights reserved.

  4. Symptoms and Diagnosis of Metabolic Syndrome

    ... Thromboembolism Aortic Aneurysm More Symptoms and Diagnosis of Metabolic Syndrome Updated:Apr 13,2017 What are the symptoms ... Syndrome? This content was last reviewed August 2016. Metabolic Syndrome • Home • About Metabolic Syndrome • Why Metabolic Syndrome Matters • ...

  5. High fructose corn syrup induces metabolic dysregulation and altered dopamine signaling in the absence of obesity

    Meyers, Allison M.; Mourra, Devry; Beeler, Jeff A.

    2017-01-01

    The contribution of high fructose corn syrup (HFCS) to metabolic disorder and obesity, independent of high fat, energy-rich diets, is controversial. While high-fat diets are widely accepted as a rodent model of diet-induced obesity (DIO) and metabolic disorder, the value of HFCS alone as a rodent model of DIO is unclear. Impaired dopamine function is associated with obesity and high fat diet, but the effect of HFCS on the dopamine system has not been investigated. The objective of this study ...

  6. Fructose and NAFLD: The Multifaceted Aspects of  Fructose Metabolism

    Prasanthi Jegatheesan

    2017-03-01

    Full Text Available Among various factors, such as an unhealthy diet or a sedentarity lifestyle, excessive fructose consumption is known to favor nonalcoholic fatty liver disease (NAFLD, as fructose is both a substrate and an inducer of hepatic de novo lipogenesis. The present review presents some well‐established mechanisms and new clues to better understand the pathophysiology of fructose‐induced NAFLD. Beyond its lipogenic effect, fructose intake is also at the onset of hepatic inflammation and cellular stress, such as oxidative and endoplasmic stress, that are key factors contributing to the progression of simple steatosis to nonalcoholic steatohepatitis (NASH. Beyond its hepatic effects, this carbohydrate may exert direct and indirect effects at the peripheral level. Excessive fructose consumption is associated, for example, with the release by the liver of several key mediators leading to alterations in the communication between the liver and the gut, muscles, and adipose tissue and to disease aggravation. These multifaceted aspects of fructose properties are in part specific to fructose, but are also shared in part with sucrose and glucose present in energy– dense beverages and foods. All these aspects must be taken into account in the development of new therapeutic strategies and thereby to better prevent NAFLD.

  7. Polycystic ovary syndrome and metabolic syndrome.

    Ali, Aus Tariq

    2015-08-01

    Polycystic ovary syndrome (PCOS) is a heterogeneous disorder, where the main clinical features include menstrual irregularities, sub-fertility, hyperandrogenism, and hirsutism. The prevalence of PCOS depends on ethnicity, environmental and genetic factors, as well as the criteria used to define it. On the other hand, metabolic syndrome is a constellation of metabolic disorders which include mainly abdominal obesity, insulin resistance, impaired glucose metabolism, hypertension and dyslipidaemia. These associated disorders directly increase the risk of Type 2 diabetes mellitus (DMT2), coronary heart disease (CHD), cardiovascular diseases (CVD) and endometrial cancer. Many patients with PCOS have features of metabolic syndrome such as visceral obesity, hyperinsulinaemia and insulin resistance. These place patients with PCOS under high risk of developing cardiovascular disease (CVD), Type 2 diabetes (DMT2) and gynecological cancer, in particular, endometrial cancer. Metabolic syndrome is also increased in infertile women with PCOS. The aim of this review is to provide clear and up to date information about PCOS and its relationship with metabolic syndrome, and the possible interaction between different metabolic disorders.

  8. Metabolic syndrome and cardiovascular risk

    Abdullah M Alshehri

    2010-01-01

    Full Text Available The constellation of dyslipidemia (hypertriglyceridemia and low levels of high-density lipoprotein cholesterol, elevated blood pressure, impaired glucose tolerance, and central obesity is now classified as metabolic syndrome, also called syndrome X. In the past few years, several expert groups have attempted to set forth simple diagnostic criteria for use in clinical practice to identify patients who manifest the multiple components of the metabolic syndrome. These criteria have varied somewhat in specific elements, but in general, they include a combination of multiple and metabolic risk factors. The most widely recognized of the metabolic risk factors are atherogenic dyslipidemia, elevated blood pressure, and elevated plasma glucose. Individuals with these characteristics, commonly manifest a prothrombotic state as well as and a proinflammatory state. Atherogenic dyslipidemia consists of an aggregation of lipoprotein abnormalities including elevated serum triglyceride and apolipoprotein B (apoB, increased small LDL particles, and a reduced level of HDL cholesterol (HDL-C. The metabolic syndrome is often referred to as if it were a discrete entity with a single cause. Available data suggest that it truly is a syndrome, ie, a grouping of atherosclerotic cardiovascular disease (ASCVD risk factors, that probably has more than one cause. Regardless of cause, the syndrome identifies individuals at an elevated risk for ASCVD. The magnitude of the increased risk can vary according to the components of the syndrome present as well as the other, non-metabolic syndrome risk factors in a particular person.

  9. Metabolic syndrome and cardiovascular risk

    Abdullah M Alshehri

    2010-11-01

    Full Text Available The constellation of dyslipidemia (hypertriglyceridemia and low levels of high-density lipoprotein cholesterol, elevated blood pressure, impaired glucose tolerance, and central obesity is now classified as metabolic syndrome, also called syndrome X. In the past few years, several expert groups have attempted to set forth simple diagnostic criteria for use in clinical practice to identify patients who manifest the multiple components of the metabolic syndrome. These criteria have varied somewhat in specific elements, but in general, they include a combination of multiple and metabolic risk factors. The most widely recognized of the metabolic risk factors are atherogenic dyslipidemia, elevated blood pressure, and elevated plasma glucose. Individuals with these characteristics, commonly manifest a prothrombotic state as well as and a proinflammatory state. Atherogenic dyslipidemia consists of an aggregation of lipoprotein abnormalities including elevated serum triglyceride and apolipoprotein B (apoB, increased small LDL particles, and a reduced level of HDL cholesterol (HDL-C. The metabolic syndrome is often referred to as if it were a discrete entity with a single cause. Available data suggest that it truly is a syndrome, ie, a grouping of atherosclerotic cardiovascular disease (ASCVD risk factors, that probably has more than one cause. Regardless of cause, the syndrome identifies individuals at an elevated risk for ASCVD. The magnitude of the increased risk can vary according to the components of the syndrome present as well as the other, non-metabolic syndrome risk factors in a particular person.

  10. Exercise training prevents diastolic dysfunction induced by metabolic syndrome in rats

    Cristiano Mostarda

    2012-07-01

    Full Text Available OBJECTIVE: High fructose consumption contributes to the incidence of metabolic syndrome and, consequently, to cardiovascular outcomes. We investigated whether exercise training prevents high fructose diet-induced metabolic and cardiac morphofunctional alterations. METHODS: Wistar rats receiving fructose overload (F in drinking water (100 g/l were concomitantly trained on a treadmill (FT for 10 weeks or kept sedentary. These rats were compared with a control group (C. Obesity was evaluated by the Lee index, and glycemia and insulin tolerance tests constituted the metabolic evaluation. Blood pressure was measured directly (Windaq, 2 kHz, and echocardiography was performed to determine left ventricular morphology and function. Statistical significance was determined by one-way ANOVA, with significance set at p<0.05. RESULTS: Fructose overload induced a metabolic syndrome state, as confirmed by insulin resistance (F: 3.6 ± 0.2 vs. C: 4.5 ± 0.2 mg/dl/min, hypertension (mean blood pressure, F: 118 ± 3 vs. C: 104 ± 4 mmHg and obesity (F: 0.31±0.001 vs. C: 0.29 ± 0.001 g/mm. Interestingly, fructose overload rats also exhibited diastolic dysfunction. Exercise training performed during the period of high fructose intake eliminated all of these derangements. The improvements in metabolic parameters were correlated with the maintenance of diastolic function. CONCLUSION: The role of exercise training in the prevention of metabolic and hemodynamic parameter alterations is of great importance in decreasing the cardiac morbidity and mortality related to metabolic syndrome.

  11. Hereditaire fructose-intolerantie

    Rumping, Lynne; Waterham, Hans R.; Kok, Irene; van Hasselt, Peter M.; Visser, Gepke

    2014-01-01

    Hereditary fructose intolerance (HFI) is a rare metabolic disease affecting fructose metabolism. After ingestion of fructose, patients may present with clinical symptoms varying from indefinite gastrointestinal symptoms to life-threatening hypoglycaemia and hepatic failure. A 13-year-old boy was

  12. The glycaemic index values of foods containing fructose are affected by metabolic differences between subjects.

    Wolever, T M S; Jenkins, A L; Vuksan, V; Campbell, J

    2009-09-01

    Glycaemic responses are influenced by carbohydrate absorption rate, type of monosaccharide absorbed and the presence of fat; the effect of some of these factors may be modulated by metabolic differences between subjects. We hypothesized that glycaemic index (GI) values are affected by the metabolic differences between subjects for foods containing fructose or fat, but not for starchy foods. The GI values of white bread (WB), fruit leather (FL) and chocolate-chip cookies (CCC) (representing starch, fructose and fat, respectively) were determined in subjects (n=77) recruited to represent all 16 possible combinations of age (40 years), sex (male, female), ethnicity (Caucasian, non-Caucasian) and body mass index (BMI) (25 kg/m2) using glucose as the reference. At screening, fasting insulin, lipids, c-reactive protein (CRP), aspartate transaminase (AST) and waist circumference (WC) were measured. There were no significant main effects of age, sex, BMI or ethnicity on GI, but there were several food x subject-factor interactions. Different factors affected each food's area under the curve (AUC) and GI. The AUC after oral glucose was related to ethnicity, age and triglycerides (r 2=0.27); after WB to ethnicity, age, triglycerides, sex and CRP (r 2=0.43); after CCC to age and weight (r 2=0.18); and after FL to age and CRP (r 2=0.12). GI of WB was related to ethnicity (r 2=0.12) and of FL to AST, insulin and WC (r 2=0.23); but there were no significant correlations for CCC. The GI values of foods containing fructose might be influenced by metabolic differences between -subjects, whereas the GI of starchy foods might be affected by ethnicity. However, the proportion of variation explained by subject factors is small.

  13. Metabolic syndrome in acute coronary syndrome

    Bhalli, M.A.; Aamir, M.; Mustafa, G.

    2011-01-01

    Objective: To determine the frequency of metabolic syndrome in male patients presenting with acute coronary syndrome Study design: A Descriptive study Place and duration of study: Armed Forces Institute of Cardiology and National Institute of Heart Diseases, Rawalpindi, from October 2007 to September 2008 Patients and Methods: Male patients with acute coronary syndrome (ACS) were included. Patients having angioplasty (PCI), coronary artery bypass surgery in the past and other co-morbid diseases were excluded. All patients were assessed for the presence of five components of metabolic syndrome including hypertension, HDL-Cholesterol and triglycerides, glucose intolerance and abdominal obesity. Systolic, diastolic blood pressures, waist circumference (WC) and body mass index (BMI) were measured. ECG, cardiac enzymes, fasting glucose and lipid profile were also done. Results: A total of 135 male patients of ACS were studied with a mean age of 54.26 +- 11 years. Metabolic syndrome (MS) was present in 55 (40.7%) patients. MS with all five components was documented in 4 (7.27%) while MS with four and three components was seen in 23 (41.81%) and 28 (50.90%) patients respectively. Only 24 (43.63%) patients with MS had diabetes mellitus, remaining 31(56.36%) were non diabetic. Frequencies of diabetes, hypertension and family history of CAD were significantly higher (p<0.05) in patients with metabolic syndrome as compared to patients with normal metabolic status. Conclusion: Metabolic syndrome is fairly common and important risk factor in patients of IHD. Other risk factors like smoking, dyslipidemia, hypertension and diabetes were also frequently found. Public awareness to control the risk factors can reduce the prevalence of CAD in our country. (author)

  14. Metabolic syndrome in acute coronary syndrome

    Bhalli, M A; Aamir, M; Mustafa, G [Combined Military Hospital, Abbottabad (Pakistan)

    2011-06-15

    Objective: To determine the frequency of metabolic syndrome in male patients presenting with acute coronary syndrome Study design: A Descriptive study Place and duration of study: Armed Forces Institute of Cardiology and National Institute of Heart Diseases, Rawalpindi, from October 2007 to September 2008 Patients and Methods: Male patients with acute coronary syndrome (ACS) were included. Patients having angioplasty (PCI), coronary artery bypass surgery in the past and other co-morbid diseases were excluded. All patients were assessed for the presence of five components of metabolic syndrome including hypertension, HDL-Cholesterol and triglycerides, glucose intolerance and abdominal obesity. Systolic, diastolic blood pressures, waist circumference (WC) and body mass index (BMI) were measured. ECG, cardiac enzymes, fasting glucose and lipid profile were also done. Results: A total of 135 male patients of ACS were studied with a mean age of 54.26 +- 11 years. Metabolic syndrome (MS) was present in 55 (40.7%) patients. MS with all five components was documented in 4 (7.27%) while MS with four and three components was seen in 23 (41.81%) and 28 (50.90%) patients respectively. Only 24 (43.63%) patients with MS had diabetes mellitus, remaining 31(56.36%) were non diabetic. Frequencies of diabetes, hypertension and family history of CAD were significantly higher (p<0.05) in patients with metabolic syndrome as compared to patients with normal metabolic status. Conclusion: Metabolic syndrome is fairly common and important risk factor in patients of IHD. Other risk factors like smoking, dyslipidemia, hypertension and diabetes were also frequently found. Public awareness to control the risk factors can reduce the prevalence of CAD in our country. (author)

  15. [The effect of halothane on the fructose metabolism in the liver].

    Götz, E; Scholz, R

    1975-10-01

    Glucose production from frutose (2 mmol) and fructolysis was studied in perfused rat liver. In the presence of halothane (0.5, 1.5, and 4.0 vol%) glucose production was inhibited, whereas lactate production was stimulated. Total fructose metabolism was unchanged. Since halogenated hydrocarbon compounds are known to inhibit the mitochondrial respiratory chain, it is concluded that glucose synthesis is inhibited due to decreased supply of energy-rich phosphates from oxidative phosphorylation. On the other hand, this depletion of energy may be partially compensated for by an increased extramitochondrial energy production due to fructolysis.

  16. Cardiac and metabolic changes in long-term high fructose-fat fed rats with severe obesity and extensive intramyocardial lipid accumulation

    Axelsen, Lene N; Lademann, Jacob B; Petersen, Jørgen S

    2010-01-01

    Metabolic syndrome and obesity-related diseases are affecting more and more people in the Western world. The basis for an effective treatment of these patients is a better understanding of the underlying pathophysiology. Here, we characterize fructose- and fat-fed rats (FFFRs) as a new animal model....... FFFRs developed severe obesity, decreased glucose tolerance, increased serum insulin and triglyceride levels, and an initial increased fasting glucose, which returned to control levels after 24 wk of feeding. The diet had no effect on blood pressure but decreased hepatic PEPCK levels. FFFRs showed...

  17. Fructose Consumption in the Development of Obesity and the Effects of Different Protocols of Physical Exercise on the Hepatic Metabolism.

    Pereira, Rodrigo Martins; Botezelli, José Diego; da Cruz Rodrigues, Kellen Cristina; Mekary, Rania A; Cintra, Dennys Esper; Pauli, José Rodrigo; da Silva, Adelino Sanchez Ramos; Ropelle, Eduardo Rochete; de Moura, Leandro Pereira

    2017-04-20

    Fructose consumption has been growing exponentially and, concomitant with this, the increase in the incidence of obesity and associated complications has followed the same behavior. Studies indicate that fructose may be a carbohydrate with greater obesogenic potential than other sugars. In this context, the liver seems to be a key organ for understanding the deleterious health effects promoted by fructose consumption. Fructose promotes complications in glucose metabolism, accumulation of triacylglycerol in the hepatocytes, and alterations in the lipid profile, which, associated with an inflammatory response and alterations in the redox state, will imply a systemic picture of insulin resistance. However, physical exercise has been indicated for the treatment of several chronic diseases. In this review, we show how each exercise protocol (aerobic, strength, or a combination of both) promote improvements in the obesogenic state created by fructose consumption as an improvement in the serum and liver lipid profile (high-density lipoprotein (HDL) increase and decrease triglyceride (TG) and low-density lipoprotein (LDL) levels) and a reduction of markers of inflammation caused by an excess of fructose. Therefore, it is concluded that the practice of aerobic physical exercise, strength training, or a combination of both is essential for attenuating the complications developed by the consumption of fructose.

  18. Effect of Caffeic Acid Phenethyl Ester on Vascular Damage Caused by Consumption of High Fructose Corn Syrup in Rats

    Gun, Aburrahman; Ozer, Mehmet Kaya; Bilgic, Sedat; Kocaman, Nevin; Ozan, Gonca

    2016-01-01

    Fructose corn syrup is cheap sweetener and prolongs the shelf life of products, but fructose intake causes hyperinsulinemia, hypertriglyceridemia, and hypertension. All of them are referred to as metabolic syndrome and they are risk factors for cardiovascular diseases. Hence, the harmful effects of increased fructose intake on health and their prevention should take greater consideration. Caffeic Acid Phenethyl Ester (CAPE) has beneficial effects on metabolic syndrome and vascular function wh...

  19. Effect of specific amino acids on hepatic lipid metabolism in fructose-induced non-alcoholic fatty liver disease.

    Jegatheesan, Prasanthi; Beutheu, Stéphanie; Ventura, Gabrielle; Sarfati, Gilles; Nubret, Esther; Kapel, Nathalie; Waligora-Dupriet, Anne-Judith; Bergheim, Ina; Cynober, Luc; De-Bandt, Jean-Pascal

    2016-02-01

    Fructose diets have been shown to induce insulin resistance and to alter liver metabolism and gut barrier function, ultimately leading to non-alcoholic fatty liver disease. Citrulline, Glutamine and Arginine may improve insulin sensitivity and have beneficial effects on gut trophicity. Our aim was to evaluate their effects on liver and gut functions in a rat model of fructose-induced non-alcoholic fatty liver disease. Male Sprague-Dawley rats (n = 58) received a 4-week fructose (60%) diet or standard chow with or without Citrulline (0.15 g/d) or an isomolar amount of Arginine or Glutamine. All diets were made isonitrogenous by addition of non-essential amino acids. At week 4, nutritional and metabolic status (plasma glucose, insulin, cholesterol, triglycerides and amino acids, net intestinal absorption) was determined; steatosis (hepatic triglycerides content, histological examination) and hepatic function (plasma aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, bilirubin) were assessed; and gut barrier integrity (myeloperoxidase activity, portal endotoxemia, tight junction protein expression and localization) and intestinal and hepatic inflammation were evaluated. We also assessed diets effects on caecal microbiota. In these experimental isonitrogenous fructose diet conditions, fructose led to steatosis with dyslipidemia but without altering glucose homeostasis, liver function or gut permeability. Fructose significantly decreased Bifidobacterium and Lactobacillus and tended to increase endotoxemia. Arginine and Glutamine supplements were ineffective but Citrulline supplementation prevented hypertriglyceridemia and attenuated liver fat accumulation. While nitrogen supply alone can attenuate fructose-induced non-alcoholic fatty liver disease, Citrulline appears to act directly on hepatic lipid metabolism by partially preventing hypertriglyceridemia and steatosis. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition

  20. Metabolic syndrome, diet and exercise.

    De Sousa, Sunita M C; Norman, Robert J

    2016-11-01

    Polycystic ovary syndrome (PCOS) is associated with a range of metabolic complications including insulin resistance (IR), obesity, dyslipidaemia, hypertension, obstructive sleep apnoea (OSA) and non-alcoholic fatty liver disease. These compound risks result in a high prevalence of metabolic syndrome and possibly increased cardiovascular (CV) disease. As the cardiometabolic risk of PCOS is shared amongst the different diagnostic systems, all women with PCOS should undergo metabolic surveillance though the precise approach differs between guidelines. Lifestyle interventions consisting of increased physical activity and caloric restriction have been shown to improve both metabolic and reproductive outcomes. Pharmacotherapy and bariatric surgery may be considered in resistant metabolic disease. Issues requiring further research include the natural history of PCOS-associated metabolic disease, absolute CV risk and comparative efficacy of lifestyle interventions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Metabolic Syndrome and Neuroprotection

    Melisa Etchegoyen

    2018-04-01

    Full Text Available Introduction: Over the years the prevalence of metabolic syndrome (MetS has drastically increased in developing countries as a major byproduct of industrialization. Many factors, such as the consumption of high-calorie diets and a sedentary lifestyle, bolster the spread of this disorder. Undoubtedly, the massive and still increasing incidence of MetS places this epidemic as an important public health issue. Hereon we revisit another outlook of MetS beyond its classical association with cardiovascular disease (CVD and Diabetes Mellitus Type 2 (DM2, for MetS also poses a risk factor for the nervous tissue and threatens neuronal function. First, we revise a few essential concepts of MetS pathophysiology. Second, we explore some neuroprotective approaches in MetS pertaining brain hypoxia. The articles chosen for this review range from the years 1989 until 2017; the selection criteria was based on those providing data and exploratory information on MetS as well as those that studied innovative therapeutic approaches.Pathophysiology: The characteristically impaired metabolic pathways of MetS lead to hyperglycemia, insulin resistance (IR, inflammation, and hypoxia, all closely associated with an overall pro-oxidative status. Oxidative stress is well-known to cause the wreckage of cellular structures and tissue architecture. Alteration of the redox homeostasis and oxidative stress alter the macromolecular array of DNA, lipids, and proteins, in turn disrupting the biochemical pathways necessary for normal cell function.Neuroprotection: Different neuroprotective strategies are discussed involving lifestyle changes, medication aimed to mitigate MetS cardinal symptoms, and treatments targeted toward reducing oxidative stress. It is well-known that the routine practice of physical exercise, aerobic activity in particular, and a complete and well-balanced nutrition are key factors to prevent MetS. Nevertheless, pharmacological control of MetS as a whole and

  2. Cardiac and metabolic changes in long-term high fructose-fat fed rats with severe obesity and extensive intramyocardial lipid accumulation.

    Axelsen, Lene N; Lademann, Jacob B; Petersen, Jørgen S; Holstein-Rathlou, Niels-Henrik; Ploug, Thorkil; Prats, Clara; Pedersen, Henrik D; Kjølbye, Anne Louise

    2010-06-01

    Metabolic syndrome and obesity-related diseases are affecting more and more people in the Western world. The basis for an effective treatment of these patients is a better understanding of the underlying pathophysiology. Here, we characterize fructose- and fat-fed rats (FFFRs) as a new animal model of metabolic syndrome. Sprague-Dawley rats were fed a 60 kcal/100 kcal fat diet with 10% fructose in the drinking water. After 6, 12, 18, 24, 36, and 48 wk of feeding, blood pressure, glucose tolerance, plasma insulin, glucose, and lipid levels were measured. Cardiac function was examined by in vivo pressure volume measurements, and intramyocardial lipid accumulation was analyzed by confocal microscopy. Cardiac AMP-activated kinase (AMPK) and hepatic phosphoenolpyruvate carboxykinase (PEPCK) levels were measured by Western blotting. Finally, an ischemia-reperfusion study was performed after 56 wk of feeding. FFFRs developed severe obesity, decreased glucose tolerance, increased serum insulin and triglyceride levels, and an initial increased fasting glucose, which returned to control levels after 24 wk of feeding. The diet had no effect on blood pressure but decreased hepatic PEPCK levels. FFFRs showed significant intramyocardial lipid accumulation, and cardiac hypertrophy became pronounced between 24 and 36 wk of feeding. FFFRs showed no signs of cardiac dysfunction during unstressed conditions, but their hearts were much more vulnerable to ischemia-reperfusion and had a decreased level of phosphorylated AMPK at 6 wk of feeding. This study characterizes a new animal model of the metabolic syndrome that could be beneficial in future studies of metabolic syndrome and cardiac complications.

  3. Enhanced Fructose Utilization Mediated by SLC2A5 Is a Unique Metabolic Feature of Acute Myeloid Leukemia with Therapeutic Potential.

    Chen, Wen-Lian; Wang, Yue-Ying; Zhao, Aihua; Xia, Li; Xie, Guoxiang; Su, Mingming; Zhao, Linjing; Liu, Jiajian; Qu, Chun; Wei, Runmin; Rajani, Cynthia; Ni, Yan; Cheng, Zhen; Chen, Zhu; Chen, Sai-Juan; Jia, Wei

    2016-11-14

    Rapidly proliferating leukemic progenitor cells consume substantial glucose, which may lead to glucose insufficiency in bone marrow. We show that acute myeloid leukemia (AML) cells are prone to fructose utilization with an upregulated fructose transporter GLUT5, which compensates for glucose deficiency. Notably, AML patients with upregulated transcription of the GLUT5-encoding gene SLC2A5 or increased fructose utilization have poor outcomes. Pharmacological blockage of fructose uptake ameliorates leukemic phenotypes and potentiates the cytotoxicity of the antileukemic agent, Ara-C. In conclusion, this study highlights enhanced fructose utilization as a metabolic feature of AML and a potential therapeutic target. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Metabolic Syndrome in Nurses

    María Escasany

    2014-01-01

    Full Text Available Objectives: To estimate the prevalence of metabolic syndrome (MS in female nurses in the Hospital Juan A. Fernandez (HJAF, Buenos Aires, Argentina, and to determine whether work, rest, diet, and health, are predictive of it.Materials and methods: For the first objective, a descriptive, observational and cross-sectional study was conducted, and for the second, a multivariate cross-sectional observational multivariate analysis was made comparing independent samples. A total of 192 nurses were studied between October 2008 and March 2009. They completed a questionnaire that include indicators that could be predictors of MS. Anthropometric measurements, including blood pressure were taken, was well as a blood sample to analyze fasting glucose, HDL-C and plasma triglycerides.Results: It was found that 35% and 41% of nurses were overweight and obese, respectively. A total of 92% had centro-abdominal obesity. The prevalence of MS found was 33.3% (95%CI, 26.7 to 40.5. Those who had this disease were between 53±9 years. Statistically significant differences were found in the bivariate analysis between MS and the variables, age, length of service, time worked during night shift, and academic studies.Conclusions: The prevalence of MS was 64/192 in HJAF nurses (33.3% I 95%CI, 26.7-40.5. There were no statistically significant differences with the indicators of, age, “time worked during night shift”, and “studies”. These results suggest that age is the most important variable in predicting the onset of MS in the population of nurses.

  5. Testosterone and metabolic syndrome

    Glenn R Cunningham

    2015-04-01

    Full Text Available Controversies surround the usefulness of identifying patients with the metabolic syndrome (MetS. Many of the components are accepted risk factors for cardiovascular disease (CVD. Although the MetS as defined includes many men with insulin resistance, insulin resistance is not universal. The low total testosterone (TT and sex hormone binding globulin (SHBG levels in these men are best explained by the hyperinsulinism and increased inflammatory cytokines that accompany obesity and increased waist circumference. It is informative that low SHBG levels predict future development of the MetS. Evidence is strong relating low TT levels to CVD in men with and without the MetS; however, the relationship may not be causal. The recommendations of the International Diabetes Federation for managing the MetS include cardiovascular risk assessment, lifestyle changes in diet, exercise, weight reduction and treatment of individual components of the MetS. Unfortunately, it is uncommon to see patients with the MetS lose and maintain a 10% weight loss. Recent reports showing testosterone treatment induced dramatic changes in weight, waist circumference, insulin sensitivity, hemoglobin A1c levels and improvements in each of the components of the MetS are intriguing. While some observational studies have reported that testosterone replacement therapy increases cardiovascular events, the Food and Drug Administration in the United States has reviewed these reports and found them to be seriously flawed. Large, randomized, placebo-controlled trials are needed to provide more definitive data regarding the efficacy and safety of this treatment in middle and older men with the MetS and low TT levels.

  6. Deleterious Metabolic Effects of High Fructose Intake: The Preventive Effect of Lactobacillus kefiri Administration.

    Zubiría, María Guillermina; Gambaro, Sabrina Eliana; Rey, María Amanda; Carasi, Paula; Serradell, María de Los Ángeles; Giovambattista, Andrés

    2017-05-17

    Modern lifestyle and diets have been associated with metabolic disorders and an imbalance in the normal gut microbiota. Probiotics are widely known for their health beneficial properties targeting the gut microbial ecosystem. The aim of our study was to evaluate the preventive effect of Lactobacillus kefiri ( L. kefiri ) administration in a fructose-rich diet (FRD) mice model. Mice were provided with tap water or fructose-added (20% w / v ) drinking water supplemented or not with L. kefiri . Results showed that probiotic administration prevented weight gain and epidydimal adipose tissue (EAT) expansion, with partial reversion of the adipocyte hypertrophy developed by FRD. Moreover, the probiotic prevented the increase of plasma triglycerides and leptin, together with the liver triglyceride content. Leptin adipocyte secretion was also improved by L. kefiri , being able to respond to an insulin stimulus. Glucose intolerance was partially prevented by L. kefiri treatment (GTT) and local inflammation (TNFα; IL1β; IL6 and INFγ) was completely inhibited in EAT. L. kefiri supplementation generated an impact on gut microbiota composition, changing Bacteroidetes and Firmicutes profiles. Overall, our results indicate that the administration of probiotics prevents the deleterious effects of FRD intake and should therefore be promoted to improve metabolic disorders.

  7. Neuroinflammatory basis of metabolic syndrome.

    Purkayastha, Sudarshana; Cai, Dongsheng

    2013-10-05

    Inflammatory reaction is a fundamental defense mechanism against threat towards normal integrity and physiology. On the other hand, chronic diseases such as obesity, type 2 diabetes, hypertension and atherosclerosis, have been causally linked to chronic, low-grade inflammation in various metabolic tissues. Recent cross-disciplinary research has led to identification of hypothalamic inflammatory changes that are triggered by overnutrition, orchestrated by hypothalamic immune system, and sustained through metabolic syndrome-associated pathophysiology. While continuing research is actively trying to underpin the identity and mechanisms of these inflammatory stimuli and actions involved in metabolic syndrome disorders and related diseases, proinflammatory IκB kinase-β (IKKβ), the downstream nuclear transcription factor NF-κB and some related molecules in the hypothalamus were discovered to be pathogenically significant. This article is to summarize recent progresses in the field of neuroendocrine research addressing the central integrative role of neuroinflammation in metabolic syndrome components ranging from obesity, glucose intolerance to cardiovascular dysfunctions.

  8. Diagnosis of Hunter's syndrome carriers; radioactive sulphate incorporation into fibroblasts in the presence of fructose 1-phosphate

    Toennesen, T.; Lykkelund, C.; Guettler, F.

    1982-01-01

    Mutual correction of co-cultivated fibroblasts from patients with Hunter's and Hurler's syndrome could be inhibited by either fructose 1-phosphate or mannose 6-phosphate. In the presence of fructose 1-phosphate a 50% mixture of fibroblasts from a patient with Hunter's syndrome and a normal homozygous individual showed an increased 35 S-sulphate incorporation into acid mucopolysaccharides. When fibroblast cultures from one obligate and two possible carriers of Hunter's syndrome were tested for 35 S-sulphate incorporation, the cultures showed either twice the normal 35 S-sulphate incorporation into acid mucopolysaccharides in the presence of fructose 1-phosphate or an abnormally high incorporation in the presence as well as in the absence of the sugar phosphate. (orig.)

  9. Fatty acid metabolism: target for metabolic syndrome

    Wakil, Salih J.; Abu-Elheiga, Lutfi A.

    2009-01-01

    Fatty acids are a major energy source and important constituents of membrane lipids, and they serve as cellular signaling molecules that play an important role in the etiology of the metabolic syndrome. Acetyl-CoA carboxylases 1 and 2 (ACC1 and ACC2) catalyze the synthesis of malonyl-CoA, the substrate for fatty acid synthesis and the regulator of fatty acid oxidation. They are highly regulated and play important roles in the energy metabolism of fatty acids in animals, including humans. They...

  10. Effect of Restriction of Foods with High Fructose Corn Syrup Content on Metabolic Indices and Fatty Liver in Obese Children.

    Ibarra-Reynoso, Lorena Del Rocio; López-Lemus, Hilda Lissette; Garay-Sevilla, Ma Eugenia; Malacara, Juan Manuel

    2017-01-01

    We examined the effect of restriction of foods with high fructose content in obese school children. In a clinical study, we selected 54 obese children 6 to 11 years old with high fructose consumption (>70 g/day) in order indicate dietary fructose restriction (glucose, insulin, lipids, leptin, IGFBP1, and RBP4 serum levels were collected. The group of children had 80% adherence and reported decreased fructose consumption (110 ± 38.6 to 11.4 ± 12.0 g/day) and also a significant decrease in caloric (2,384 ± 568 to 1,757 ± 387 kcal/day) and carbohydrate consumption (302 ± 80.4 to 203 ± 56.0 g/day). The severity of steatosis improved significantly after fructose restriction (p fructose foods with a decrease of caloric and carbohydrate intake at 6 weeks did not induce weight loss; however, triglyceride levels and hepatic steatosis decreased. Differences with other studies in regard to weight loss may be explained by adaptive changes on metabolic expenditure. © 2017 The Author(s) Published by S. Karger GmbH, Freiburg.

  11. The metabolism of sorbitol and fructose in isolated chloroplasts of Santa Rosa plum leaves

    De Villiers, O.T.

    1979-01-01

    Aqueously as well as non-aqueously isolated chloroplasts from Santa Rosa plum leaves readily metabolised sorbitol- 14 C to fructose, glucose and sucrose. Likewise, fructose- 14 C was converted to sorbitol, glucose and sucrose [af

  12. Involvement of glucocorticoid prereceptor metabolism and signaling in rat visceral adipose tissue lipid metabolism after chronic stress combined with high-fructose diet.

    Bursać, Biljana; Djordjevic, Ana; Veličković, Nataša; Milutinović, Danijela Vojnović; Petrović, Snježana; Teofilović, Ana; Gligorovska, Ljupka; Preitner, Frederic; Tappy, Luc; Matić, Gordana

    2018-05-03

    Both fructose overconsumption and increased glucocorticoids secondary to chronic stress may contribute to overall dyslipidemia. In this study we specifically assessed the effects and interactions of dietary fructose and chronic stress on lipid metabolism in the visceral adipose tissue (VAT) of male Wistar rats. We analyzed the effects of 9-week 20% high fructose diet and 4-week chronic unpredictable stress, separately and in combination, on VAT histology, glucocorticoid prereceptor metabolism, glucocorticoid receptor subcellular redistribution and expression of major metabolic genes. Blood triglycerides and fatty acid composition were also measured to assess hepatic Δ9 desaturase activity. The results showed that fructose diet increased blood triglycerides and Δ9 desaturase activity. On the other hand, stress led to corticosterone elevation, glucocorticoid receptor activation and decrease in adipocyte size, while phosphoenolpyruvate carboxykinase, adipose tissue triglyceride lipase, FAT/CD36 and sterol regulatory element binding protein-1c (SREBP-1c) were increased, pointing to VAT lipolysis and glyceroneogenesis. The combination of stress and fructose diet was associated with marked stimulation of fatty acid synthase and acetyl-CoA carboxylase mRNA level and with increased 11β-hydroxysteroid dehydrogenase type 1 and hexose-6-phosphate dehydrogenase protein levels, suggesting a coordinated increase in hexose monophosphate shunt and de novo lipogenesis. It however did not influence the level of peroxisome proliferator-activated receptor-gamma, SREBP-1c and carbohydrate responsive element-binding protein. In conclusion, our results showed that only combination of dietary fructose and stress increase glucocorticoid prereceptor metabolism and stimulates lipogenic enzyme expression suggesting that interaction between stress and fructose may be instrumental in promoting VAT expansion and dysfunction. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Fructose 1-phosphate is the preferred effector of the metabolic regulator Cra of Pseudomonas putida.

    Chavarría, Max; Santiago, César; Platero, Raúl; Krell, Tino; Casasnovas, José M; de Lorenzo, Víctor

    2011-03-18

    The catabolite repressor/activator (Cra) protein is a global sensor and regulator of carbon fluxes through the central metabolic pathways of gram-negative bacteria. To examine the nature of the effector (or effectors) that signal such fluxes to the protein of Pseudomonas putida, the Cra factor of this soil microorganism has been purified and characterized and its three-dimensional structure determined. Analytical ultracentrifugation, gel filtration, and mobility shift assays showed that the effector-free Cra is a dimer that binds an operator DNA sequence in the promoter region of the fruBKA cluster. Furthermore, fructose 1-phosphate (F1P) was found to most efficiently dissociate the Cra-DNA complex. Thermodynamic parameters of the F1P-Cra-DNA interaction calculated by isothermal titration calorimetry revealed that the factor associates tightly to the DNA sequence 5'-TTAAACGTTTCA-3' (K(D) = 26.3 ± 3.1 nM) and that F1P binds the protein with an apparent stoichiometry of 1.06 ± 0.06 molecules per Cra monomer and a K(D) of 209 ± 20 nM. Other possible effectors, like fructose 1,6-bisphosphate, did not display a significant affinity for the regulator under the assay conditions. Moreover, the structure of Cra and its co-crystal with F1P at a 2-Å resolution revealed that F1P fits optimally the geometry of the effector pocket. Our results thus single out F1P as the preferred metabolic effector of the Cra protein of P. putida.

  14. Fructose 1-Phosphate Is the Preferred Effector of the Metabolic Regulator Cra of Pseudomonas putida*

    Chavarría, Max; Santiago, César; Platero, Raúl; Krell, Tino; Casasnovas, José M.; de Lorenzo, Víctor

    2011-01-01

    The catabolite repressor/activator (Cra) protein is a global sensor and regulator of carbon fluxes through the central metabolic pathways of Gram-negative bacteria. To examine the nature of the effector (or effectors) that signal such fluxes to the protein of Pseudomonas putida, the Cra factor of this soil microorganism has been purified and characterized and its three-dimensional structure determined. Analytical ultracentrifugation, gel filtration, and mobility shift assays showed that the effector-free Cra is a dimer that binds an operator DNA sequence in the promoter region of the fruBKA cluster. Furthermore, fructose 1-phosphate (F1P) was found to most efficiently dissociate the Cra-DNA complex. Thermodynamic parameters of the F1P-Cra-DNA interaction calculated by isothermal titration calorimetry revealed that the factor associates tightly to the DNA sequence 5′-TTAAACGTTTCA-3′ (KD = 26.3 ± 3.1 nm) and that F1P binds the protein with an apparent stoichiometry of 1.06 ± 0.06 molecules per Cra monomer and a KD of 209 ± 20 nm. Other possible effectors, like fructose 1,6-bisphosphate, did not display a significant affinity for the regulator under the assay conditions. Moreover, the structure of Cra and its co-crystal with F1P at a 2-Å resolution revealed that F1P fits optimally the geometry of the effector pocket. Our results thus single out F1P as the preferred metabolic effector of the Cra protein of P. putida. PMID:21239488

  15. The role of fructose transporters in diseases linked to excessive fructose intake

    Douard, Veronique; Ferraris, Ronaldo P

    2013-01-01

    Fructose intake has increased dramatically since humans were hunter-gatherers, probably outpacing the capacity of human evolution to make physiologically healthy adaptations. Epidemiological data indicate that this increasing trend continued until recently. Excessive intakes that chronically increase portal and peripheral blood fructose concentrations to >1 and 0.1 mm, respectively, are now associated with numerous diseases and syndromes. The role of the fructose transporters GLUT5 and GLUT2 in causing, contributing to or exacerbating these diseases is not well known. GLUT5 expression seems extremely low in neonatal intestines, and limited absorptive capacities for fructose may explain the high incidence of malabsorption in infants and cause problems in adults unable to upregulate GLUT5 levels to match fructose concentrations in the diet. GLUT5- and GLUT2-mediated fructose effects on intestinal electrolyte transporters, hepatic uric acid metabolism, as well as renal and cardiomyocyte function, may play a role in fructose-induced hypertension. Likewise, GLUT2 may contribute to the development of non-alcoholic fatty liver disease by facilitating the uptake of fructose. Finally, GLUT5 may play a role in the atypical growth of certain cancers and fat tissues. We also highlight research areas that should yield information needed to better understand the role of these GLUTs in fructose-induced diseases. PMID:23129794

  16. High fructose corn syrup induces metabolic dysregulation and altered dopamine signaling in the absence of obesity.

    Meyers, Allison M; Mourra, Devry; Beeler, Jeff A

    2017-01-01

    The contribution of high fructose corn syrup (HFCS) to metabolic disorder and obesity, independent of high fat, energy-rich diets, is controversial. While high-fat diets are widely accepted as a rodent model of diet-induced obesity (DIO) and metabolic disorder, the value of HFCS alone as a rodent model of DIO is unclear. Impaired dopamine function is associated with obesity and high fat diet, but the effect of HFCS on the dopamine system has not been investigated. The objective of this study was to test the effect of HFCS on weight gain, glucose regulation, and evoked dopamine release using fast-scan cyclic voltammetry. Mice (C57BL/6) received either water or 10% HFCS solution in combination with ad libitum chow for 15 weeks. HFCS consumption with chow diet did not induce weight gain compared to water, chow-only controls but did induce glucose dysregulation and reduced evoked dopamine release in the dorsolateral striatum. These data show that HFCS can contribute to metabolic disorder and altered dopamine function independent of weight gain and high-fat diets.

  17. High fructose corn syrup induces metabolic dysregulation and altered dopamine signaling in the absence of obesity.

    Allison M Meyers

    Full Text Available The contribution of high fructose corn syrup (HFCS to metabolic disorder and obesity, independent of high fat, energy-rich diets, is controversial. While high-fat diets are widely accepted as a rodent model of diet-induced obesity (DIO and metabolic disorder, the value of HFCS alone as a rodent model of DIO is unclear. Impaired dopamine function is associated with obesity and high fat diet, but the effect of HFCS on the dopamine system has not been investigated. The objective of this study was to test the effect of HFCS on weight gain, glucose regulation, and evoked dopamine release using fast-scan cyclic voltammetry. Mice (C57BL/6 received either water or 10% HFCS solution in combination with ad libitum chow for 15 weeks. HFCS consumption with chow diet did not induce weight gain compared to water, chow-only controls but did induce glucose dysregulation and reduced evoked dopamine release in the dorsolateral striatum. These data show that HFCS can contribute to metabolic disorder and altered dopamine function independent of weight gain and high-fat diets.

  18. Metabolic syndrome presenting as abdominal pain

    Mohammed Y Al-Dossary

    2017-01-01

    Full Text Available Metabolic syndrome represents a sum of risk factors that lead to the occurrence of cardiovascular and cerebrovascular events. The early detection of metabolic syndrome is extremely important in adults who are at risk. Although the physiopathological mechanisms of the metabolic syndrome are not yet clear, insulin resistance plays a key role that could explain the development of type 2 diabetes mellitus in untreated metabolic syndrome patients. Here, we present the case of a 26-year-old male who was diagnosed with metabolic syndrome and severe hypertriglyceridemia after presenting with abdominal pain. Although hypertriglyceridemia and hyperglycemia are the most common predictors of metabolic syndrome, clinicians need to be vigilant for unexpected presentations in patients at risk for metabolic syndrome. This case sheds light on the importance of early detection.

  19. Metabolic syndrome in Iranian elderly

    Nizal Sarrafzadegan

    2012-01-01

    Full Text Available BACKGROUND: This study aimed to compare Iranian elderly with the youth and middle aged population in terms of the prevalence of metabolic syndrome and its components in Iranian elderly METHODS: This cross-sectional study was conducted using the information from the third phase of Isfahan Healthy Heart Program. Male and female residents of Isfahan who aged over 19 years were selected by multistage cluster random sampling. A questionnaire including demographic characteristics, health status, medical history, medications used, as well as waist circumference, weight, height and systolic and diastolic blood pressures was completed for all participants. Fasting blood samples were obtained from all subjects and examined for fasting blood sugar and lipid profile. RESULTS: The prevalence of metabolic syndrome in individuals aged over 60 years was significantly higher than those under 60 (49.5% vs. 17.5%, respectively; P < 0.001. It was also more prevalent among elderly females than in males (59.2% vs. 39.8%, respectively; P < 0.005. Some anthropometric measures such as height, body mass index, abdominal circumference, waist-hip ratio, and waist to height ratio were significantly different in men and women below 60 years in comparison with those over 60 years (P < 0.05. Moreover, there were significant differences in most studied parameters between the elderly and non-elderly women (P < 0.001. Based on the findings of this study, the risk factors for cardiovascular diseases were significantly more prevalent in men and women over 60 years. T-test and Mann-Whitney were used for quantitative data and the square-chi test is performed for qualitative data.    CONCLUSION: This study showed that metabolic syndrome has a relatively high prevalence in Iranian elderly people (especially in women. Therefore, early diagnosis and management of the complication are recommended among this high-risk group. Keywords: Metabolic Syndrome, Elderly, Iran

  20. (p-ClPhSe)2 stimulates carbohydrate metabolism and reverses the metabolic alterations induced by high fructose load in rats.

    Quines, Caroline B; Rosa, Suzan G; Chagas, Pietro M; Velasquez, Daniela; Prado, Vinicius C; Nogueira, Cristina W

    2017-09-01

    The modern life leads to excess consumption of food rich in fructose; however, the long-term changes in carbohydrate and lipid metabolism could lead to metabolic dysfunction in humans. The present study evaluated the in vitro insulin-mimetic action of p-chloro-diphenyl diselenide (p-ClPhSe) 2 . The second aim of this study was to investigate if (p-ClPhSe) 2 reverses metabolic dysfunction induced by fructose load in Wistar rats. The insulin-mimetic action of (p-ClPhSe) 2  at concentrations of 50 and 100 μM was determined in slices of rat skeletal muscle. (p-ClPhSe) 2  at a concentration of 50 μM stimulated the glucose uptake by 40% in skeletal muscle. A dose-response curve revealed that (p-ClPhSe) 2  at a dose of 25 mg/kg reduced (∼20%) glycemia in rats treated with fructose (5 g/kg, i.g.). The administration of fructose impaired the liver homeostasis and (p-ClPhSe) 2 (25 mg/kg) protected against the increase (∼25%) in the G-6-Pase and isocitrate dehydrogenase activities and reduced the triglyceride content (∼25%) in the liver. (p-ClPhSe) 2 regulated the liver homeostasis by stimulating hexokinase activity (∼27%), regulating the TCA cycle activity (increased the ATP and citrate synthase activity (∼15%)) and increasing the glycogen levels (∼67%). In conclusion, (p-ClPhSe) 2 stimulated carbohydrate metabolism and reversed metabolic dysfunction in rats fed with fructose. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. The metabolic syndrome among Danish seafarers

    Jepsen, Jørgen Riis; Rasmussen, Hanna Barbara

    2016-01-01

    Background: The metabolic syndrome (MS) represents a cluster of risk factors related to insulin resistance. Metabolic syndrome is a strong risk factor for chronic metabolic and cardiovascular diseases and is related to nutritional factors, sleep patterns, work-related stress, fatigue, and physical...

  2. Fluvastatin increases insulin-like growth factor-1 gene expression in rat model of metabolic syndrome

    Mansy, Wael H.; Sourour, Doaa A.; Shaker, Olfat G.; Mahfouz, Mahmoud M.

    2008-01-01

    Insulin-like growth factor-1 (IGF-1) was found to have a role in both glucose homeostasis and cardiovascular diseases. The present study was designed to compare the effects of fluvastatin and metformin on IGF-1 mRNA expression within the liver and other individual components of the metabolic syndrome induced in rats by high fructose feeding. Rats fed 60% fructose in diet for 6 weeks were treated daily with fluvastatin (3.75 mg/kg/day) during the last two weeks and were compared with untreated fructose fed group. Fasting levels of plasma cholesterol, triglyceride, glucose, insulin, nitric oxide products, IGF-1 mRNA within the liver as well as systolic blood pressure and body weight were determined. Compared to control rats, the fructose fed group developed hypertension, hyperlipidemia, hyperinsulinemia, hyperglycemia and endothelial dysfunction as well as decreased levels of plasma IGF-1 and its mRNA within the liver. Fructose fed rats treated with fluvastatin or metformin for 2 weeks showed significant decrease in plasma cholesterol, triglyceride, insulin and glucose levels compared to untreated fructose fed group. Also, both drugs increased significantly plasma levels of nitric oxide products and IGF-1 together with significant increase in IGF-1 mRNA within the liver. However, only metformin treated rats showed significant decrease in systolic blood pressure compared to fructose fed group. This study showed that in a rat model of insulin resistance, fluvastatin improves the metabolic profile and increases plasma level of IGF-1 and its gene expression as effective as metformin. (author)

  3. Metabolic Syndrome Is Associated with Increased Oxo-Nitrative Stress and Asthma-Like Changes in Lungs.

    Vijay Pal Singh

    Full Text Available Epidemiological studies have shown an increased obesity-related risk of asthma. In support, obese mice develop airway hyperresponsiveness (AHR. However, it remains unclear whether the increased risk is a consequence of obesity, adipogenic diet, or the metabolic syndrome (MetS. Altered L-arginine and nitric oxide (NO metabolism is a common feature between asthma and metabolic syndrome that appears independent of body mass. Increased asthma risk resulting from such metabolic changes would have important consequences in global health. Since high-sugar diets can induce MetS, without necessarily causing obesity, studies of their effect on arginine/NO metabolism and airway function could clarify this aspect. We investigated whether normal-weight mice with MetS, due to high-fructose diet, had dysfunctional arginine/NO metabolism and features of asthma. Mice were fed chow-diet, high-fat-diet, or high-fructose-diet for 18 weeks. Only the high-fat-diet group developed obesity or adiposity. Hyperinsulinemia, hyperglycaemia, and hyperlipidaemia were common to both high-fat-diet and high-fructose-diet groups and the high-fructose-diet group additionally developed hypertension. At 18 weeks, airway hyperresponsiveness (AHR could be seen in obese high-fat-diet mice as well as non-obese high-fructose-diet mice, when compared to standard chow-diet mice. No inflammatory cell infiltrate or goblet cell metaplasia was seen in either high-fat-diet or high-fructose-diet mice. Exhaled NO was reduced in both these groups. This reduction in exhaled NO correlated with reduced arginine bioavailability in lungs. In summary, mice with normal weight but metabolic obesity show reduced arginine bioavailability, reduced NO production, and asthma-like features. Reduced NO related bronchodilation and increased oxo-nitrosative stress may contribute to the pathogenesis.

  4. High fructose consumption induces DNA methylation at PPARα and CPT1A promoter regions in the rat liver

    Ohashi, Koji [Department of Clinical Biochemistry, Fujita Health University School of Health Sciences, Toyoake (Japan); Munetsuna, Eiji [Department of Biochemistry, Fujita Health University School of Medicine, Toyoake (Japan); Yamada, Hiroya, E-mail: hyamada@fujita-hu.ac.jp [Department of Hygiene, Fujita Health University School of Medicine, Toyoake (Japan); Ando, Yoshitaka [Department of Joint Research Laboratory of Clinical Medicine, Fujita Health University Hospital, Toyoake (Japan); Yamazaki, Mirai; Taromaru, Nao; Nagura, Ayuri; Ishikawa, Hiroaki [Department of Clinical Biochemistry, Fujita Health University School of Health Sciences, Toyoake (Japan); Suzuki, Koji [Department of Public Health, Fujita Health University School of Health Sciences, Toyoake (Japan); Teradaira, Ryoji [Department of Clinical Biochemistry, Fujita Health University School of Health Sciences, Toyoake (Japan); Hashimoto, Shuji [Department of Hygiene, Fujita Health University School of Medicine, Toyoake (Japan)

    2015-12-04

    DNA methylation status is affected by environmental factors, including nutrition. Fructose consumption is considered a risk factor for the conditions that make up metabolic syndrome such as dyslipidemia. However, the pathogenetic mechanism by which fructose consumption leads to metabolic syndrome is unclear. Based on observations that epigenetic modifications are closely related to induction of metabolic syndrome, we hypothesized that fructose-induced metabolic syndrome is caused by epigenetic alterations. Male SD rats were designated to receive water or 20% fructose solution for 14 weeks. mRNA levels for peroxisome proliferator-activated receptor alpha (PPARα) and carnitine palmitoyltransferase 1A (CPT1A) was analyzed using Real-time PCR. Restriction digestion and real-time PCR (qAMP) was used for the analysis of DNA methylation status. Hepatic lipid accumulation was also observed by fructose intake. Fructose feeding also significantly decreased mRNA levels for PPARα and CPT1A. qAMP analysis demonstrated the hypermethylation of promoter regions of PPARα and CTP1A genes. Fructose-mediated attenuated gene expression may be mediated by alterations of DNA methylation status, and pathogenesis of metabolic syndrome induced by fructose relates to DNA methylation status. - Highlights: • No general consensus has been reached regarding the molecular mechanisms of the pathogenesis of fructose-induced diseases. • Significant increase in hepatic total methylation level was observed after fructose-supplemented feeding. • Fructose feeding significantly decreased mRNA levels for PPARα and CPT1A. • qAMP analysis demonstrated the hypermethylation of promoter regions of PPARα and CTP1A genes. • Fructose-mediated attenuated gene expression may be mediated by alterations of DNA methylation status in rat liver.

  5. High fructose consumption induces DNA methylation at PPARα and CPT1A promoter regions in the rat liver

    Ohashi, Koji; Munetsuna, Eiji; Yamada, Hiroya; Ando, Yoshitaka; Yamazaki, Mirai; Taromaru, Nao; Nagura, Ayuri; Ishikawa, Hiroaki; Suzuki, Koji; Teradaira, Ryoji; Hashimoto, Shuji

    2015-01-01

    DNA methylation status is affected by environmental factors, including nutrition. Fructose consumption is considered a risk factor for the conditions that make up metabolic syndrome such as dyslipidemia. However, the pathogenetic mechanism by which fructose consumption leads to metabolic syndrome is unclear. Based on observations that epigenetic modifications are closely related to induction of metabolic syndrome, we hypothesized that fructose-induced metabolic syndrome is caused by epigenetic alterations. Male SD rats were designated to receive water or 20% fructose solution for 14 weeks. mRNA levels for peroxisome proliferator-activated receptor alpha (PPARα) and carnitine palmitoyltransferase 1A (CPT1A) was analyzed using Real-time PCR. Restriction digestion and real-time PCR (qAMP) was used for the analysis of DNA methylation status. Hepatic lipid accumulation was also observed by fructose intake. Fructose feeding also significantly decreased mRNA levels for PPARα and CPT1A. qAMP analysis demonstrated the hypermethylation of promoter regions of PPARα and CTP1A genes. Fructose-mediated attenuated gene expression may be mediated by alterations of DNA methylation status, and pathogenesis of metabolic syndrome induced by fructose relates to DNA methylation status. - Highlights: • No general consensus has been reached regarding the molecular mechanisms of the pathogenesis of fructose-induced diseases. • Significant increase in hepatic total methylation level was observed after fructose-supplemented feeding. • Fructose feeding significantly decreased mRNA levels for PPARα and CPT1A. • qAMP analysis demonstrated the hypermethylation of promoter regions of PPARα and CTP1A genes. • Fructose-mediated attenuated gene expression may be mediated by alterations of DNA methylation status in rat liver.

  6. Metabolic Syndrome and Breast Cancer Risk.

    Wani, Burhan; Aziz, Shiekh Aejaz; Ganaie, Mohammad Ashraf; Mir, Mohammad Hussain

    2017-01-01

    The study was meant to estimate the prevalence of metabolic syndrome in patients with breast cancer and to establish its role as an independent risk factor on occurrence of breast cancer. Fifty women aged between 40 and 80 years with breast cancer and fifty controls of similar age were assessed for metabolic syndrome prevalence and breast cancer risk factors, including age at menarche, reproductive status, live births, breastfeeding, and family history of breast cancer, age at diagnosis of breast cancer, body mass index, and metabolic syndrome parameters. Metabolic syndrome prevalence was found in 40.0% of breast cancer patients, and 18.0% of those in control group ( P = 0.02). An independent and positive association was seen between metabolic syndrome and breast cancer risk (odds ratio = 3.037; 95% confidence interval 1.214-7.597). Metabolic syndrome is more prevalent in breast cancer patients and is an independent risk factor for breast cancer.

  7. Fructose and cardiometabolic disorders: the controversy will, and must, continue

    Nicolas Wiernsperger

    2010-01-01

    Full Text Available The present review updates the current knowledge on the question of whether high fructose consumption is harmful or not and details new findings which further pushes this old debate. Due to large differences in its metabolic handling when compared to glucose, fructose was indeed suggested to be beneficial for the diet of diabetic patients. However its growing industrial use as a sweetener, especially in soft drinks, has focused attention on its potential harmfulness, possibly leading to dyslipidemia, obesity, insulin resistance/metabolic syndrome and even diabetes. Many new data have been generated over the last years, confirming the lipogenic effect of fructose as well as risks of vascular dysfunction and hypertension. Fructose exerts various direct effects in the liver, affecting both hepatocytes and Kupffer cells and resulting in non-alcoholic steatotic hepatitis, a well known precursor of the metabolic syndrome. Hepatic metabolic abnormalities underlie indirect peripheral metabolic and vascular disturbances, for which uric acid is possibly the culprit. Nevertheless major caveats exist (species, gender, source of fructose, study protocols which are detailed in this review and presently prevent any firm conclusion. New studies taking into account these confounding factors should be undertaken in order to ascertain whether or not high fructose diet is harmful.

  8. Gut microbiota and metabolic syndrome.

    Festi, Davide; Schiumerini, Ramona; Eusebi, Leonardo Henry; Marasco, Giovanni; Taddia, Martina; Colecchia, Antonio

    2014-11-21

    Gut microbiota exerts a significant role in the pathogenesis of the metabolic syndrome, as confirmed by studies conducted both on humans and animal models. Gut microbial composition and functions are strongly influenced by diet. This complex intestinal "superorganism" seems to affect host metabolic balance modulating energy absorption, gut motility, appetite, glucose and lipid metabolism, as well as hepatic fatty storage. An impairment of the fine balance between gut microbes and host's immune system could culminate in the intestinal translocation of bacterial fragments and the development of "metabolic endotoxemia", leading to systemic inflammation and insulin resistance. Diet induced weight-loss and bariatric surgery promote significant changes of gut microbial composition, that seem to affect the success, or the inefficacy, of treatment strategies. Manipulation of gut microbiota through the administration of prebiotics or probiotics could reduce intestinal low grade inflammation and improve gut barrier integrity, thus, ameliorating metabolic balance and promoting weight loss. However, further evidence is needed to better understand their clinical impact and therapeutic use.

  9. Gastroesophageal Reflux Disease and Metabolic Syndrome

    Olinichenko, A. V.

    2014-01-01

    Purpose of the research is to study the features of gastroesophageal reflux disease, combined with the metabolic syndrome. Materials and methods. The study involved 490 patients (250 have got gastroesophageal reflux disease, combined with the metabolic syndrome and 240 have got gastroesophageal reflux disease without the metabolic syndrome). The patients besides general clinical examination were carried out video-fibro-gastro-duodeno-skopy, pH-monitoring in the esophagus, anthropometry, deter...

  10. Metabolic syndrome in fixed-shift workers

    Raquel Canuto; Marcos Pascoal Pattussi; Jamile Block Araldi Macagnan; Ruth Liane Henn; Maria Teresa Anselmo Olinto

    2015-01-01

    OBJECTIVE To analyze if metabolic syndrome and its altered components are associated with demographic, socioeconomic and behavioral factors in fixed-shift workers. METHODS A cross-sectional study was conducted on a sample of 902 shift workers of both sexes in a poultry processing plant in Southern Brazil in 2010. The diagnosis of metabolic syndrome was determined according to the recommendations from Harmonizing the Metabolic Syndrome. Its frequency was evaluated according to the demographic ...

  11. Metabolic syndrome in fixed-shift workers

    Canuto, Raquel; Pattussi, Marcos Pascoal; Macagnan, Jamile Block Araldi; Henn, Ruth Liane; Olinto, Maria Teresa Anselmo

    2015-01-01

    OBJECTIVE To analyze if metabolic syndrome and its altered components are associated with demographic, socioeconomic and behavioral factors in fixed-shift workers.METHODS A cross-sectional study was conducted on a sample of 902 shift workers of both sexes in a poultry processing plant in Southern Brazil in 2010. The diagnosis of metabolic syndrome was determined according to the recommendations from Harmonizing the Metabolic Syndrome. Its frequency was evaluated according to the demographic (...

  12. RESISTANT HYPERTENSION IN A PATIENT WITH METABOLIC SYNDROME

    O. M. Drapkina; J. S. Sibgatullina

    2016-01-01

    Clinical case of resistant hypertension in a patient with metabolic syndrome is presented. Features of hypertension in metabolic syndrome and features of metabolic syndrome in women of pre- and postmenopausal age are also considered. Understanding the features of metabolic syndrome in women, as well as features of hypertension and metabolic syndrome will improve the results of treatment in patients with resistant hypertension.

  13. Metabolic Effects of Glucose-Fructose Co-Ingestion Compared to Glucose Alone during Exercise in Type 1 Diabetes

    Lia Bally

    2017-02-01

    Full Text Available This paper aims to compare the metabolic effects of glucose-fructose co-ingestion (GLUFRU with glucose alone (GLU in exercising individuals with type 1 diabetes mellitus. Fifteen male individuals with type 1 diabetes (HbA1c 7.0% ± 0.6% (53 ± 7 mmol/mol underwent a 90 min iso-energetic continuous cycling session at 50% VO2max while ingesting combined glucose-fructose (GLUFRU or glucose alone (GLU to maintain stable glycaemia without insulin adjustment. GLUFRU and GLU were labelled with 13C-fructose and 13C-glucose, respectively. Metabolic assessments included measurements of hormones and metabolites, substrate oxidation, and stable isotopes. Exogenous carbohydrate requirements to maintain stable glycaemia were comparable between GLUFRU and GLU (p = 0.46. Fat oxidation was significantly higher (5.2 ± 0.2 vs. 2.6 ± 1.2 mg·kg−1·min−1, p < 0.001 and carbohydrate oxidation lower (18.1 ± 0.8 vs. 24.5 ± 0.8 mg·kg−1·min−1 p < 0.001 in GLUFRU compared to GLU, with decreased muscle glycogen oxidation in GLUFRU (10.2 ± 0.9 vs. 17.5 ± 1.0 mg·kg−1·min−1, p < 0.001. Lactate levels were higher (2.2 ± 0.2 vs. 1.8 ± 0.1 mmol/L, p = 0.012 in GLUFRU, with comparable counter-regulatory hormones between GLUFRU and GLU (p > 0.05 for all. Glucose and insulin levels, and total glucose appearance and disappearance were comparable between interventions. Glucose-fructose co-ingestion may have a beneficial impact on fuel metabolism in exercising individuals with type 1 diabetes without insulin adjustment, by increasing fat oxidation whilst sparing glycogen.

  14. PPARs Link Early Life Nutritional Insults to Later Programmed Hypertension and Metabolic Syndrome

    You-Lin Tain

    2015-12-01

    Full Text Available Hypertension is an important component of metabolic syndrome. Adulthood hypertension and metabolic syndrome can be programmed in response to nutritional insults in early life. Peroxisome proliferator-activated receptors (PPARs serve as a nutrient-sensing signaling linking nutritional programming to hypertension and metabolic syndrome. All three members of PPARs, PPARα, PPARβ/δ, and PPARγ, are expressed in the kidney and involved in blood pressure control. This review provides an overview of potential clinical applications of targeting on the PPARs in the kidney to prevent programmed hypertension and metabolic syndrome, with an emphasis on the following areas: mechanistic insights to interpret programmed hypertension; the link between the PPARs, nutritional insults, and programmed hypertension and metabolic syndrome; the impact of PPAR signaling pathway in a maternal high-fructose model; and current experimental studies on early intervention by PPAR modulators to prevent programmed hypertension and metabolic syndrome. Animal studies employing a reprogramming strategy via targeting PPARs to prevent hypertension have demonstrated interesting results. It is critical that the observed effects on developmental reprogramming in animal models are replicated in human studies, to halt the globally-growing epidemic of metabolic syndrome-related diseases.

  15. SIRT1 and metabolic syndrome

    Katarzyna Mac-Marcjanek

    2011-04-01

    Full Text Available Both obesity and type 2 diabetes mellitus, two major components of metabolic syndrome, become healthepidemics in the world. Over the past decade, advances in understanding the role of some regulators participatingin lipid and carbohydrate homeostasis have been made.Of them, SIRT1, the mammalian orthologue of the yeast Sir2 protein has been identified. SIRT1 is a nuclearNAD+-dependent deacetylase that targets many transcriptional modulators, including PPAR-α and -γ (peroxisomeproliferator-activated receptors α and γ, PGC-1α (PPAR-γ coactivator-1α, FOXO (forkhead box O proteins,and nuclear factor κB (NF-κB, thereby this enzyme mediates a wide range of physiological processes like apoptosis,fat metabolism, glucose homeostasis, and neurodegeneration.In this article, we discuss how SIRT1 regulates lipid and carbohydrate metabolism, and insulin secretion indifferent metabolic organs/tissue, including liver, muscle, pancreas, and fat. Additionally, the role of this enzymein reduction of inflammatory signalling is highlighted.

  16. Early Life Exposure to Fructose Alters Maternal, Fetal and Neonatal Hepatic Gene Expression and Leads to Sex-Dependent Changes in Lipid Metabolism in Rat Offspring

    Clayton, Zoe E.; Vickers, Mark H.; Bernal, Angelica; Yap, Cassandra; Sloboda, Deborah M.

    2015-01-01

    Aim Fructose consumption is associated with altered hepatic function and metabolic compromise and not surprisingly has become a focus for perinatal studies. We have previously shown that maternal fructose intake results in sex specific changes in fetal, placental and neonatal outcomes. In this follow-up study we investigated effects on maternal, fetal and neonatal hepatic fatty acid metabolism and immune modulation. Methods Pregnant rats were randomised to either control (CON) or high-fructose (FR) diets. Fructose was given in solution and comprised 20% of total caloric intake. Blood and liver samples were collected at embryonic day 21 (E21) and postnatal day (P)10. Maternal liver samples were also collected at E21 and P10. Liver triglyceride and glycogen content was measured with standard assays. Hepatic gene expression was measured with qPCR. Results Maternal fructose intake during pregnancy resulted in maternal hepatic ER stress, hepatocellular injury and increased levels of genes that favour lipogenesis. These changes were associated with a reduction in the NLRP3 inflammasome. Fetuses of mothers fed a high fructose diet displayed increased hepatic fructose transporter and reduced fructokinase mRNA levels and by 10 days of postnatal age, also have hepatic ER stress, and elevated IL1β mRNA levels. At P10, FR neonates demonstrated increased hepatic triglyceride content and particularly in males, associated changes in the expression of genes regulating beta oxidation and the NLRP3 inflammasome. Further, prenatal fructose results in sex-dependant changes in levels of key clock genes. Conclusions Maternal fructose intake results in age and sex-specific alterations in maternal fetal and neonatal free fatty acid metabolism, which may be associated in disruptions in core clock gene machinery. How these changes are associated with hepatic inflammatory processes is still unclear, although suppression of the hepatic inflammasome, as least in mothers and male neonates may

  17. Maternal high fructose and low protein consumption during pregnancy and lactation share some but not all effects on early-life growth and metabolic programming of rat offspring.

    Arentson-Lantz, Emily J; Zou, Mi; Teegarden, Dorothy; Buhman, Kimberly K; Donkin, Shawn S

    2016-09-01

    Maternal nutritional stress during pregnancy acts to program offspring metabolism. We hypothesized that the nutritional stress caused by maternal fructose or low protein intake during pregnancy would program the offspring to develop metabolic aberrations that would be exacerbated by a diet rich in fructose or fat during adult life. The objective of this study was to characterize and compare the fetal programming effects of maternal fructose with the established programming model of a low-protein diet on offspring. Male offspring from Sprague-Dawley dams fed a 60% starch control diet, a 60% fructose diet, or a low-protein diet throughout pregnancy and lactation were weaned onto either a 60% starch control diet, 60% fructose diet, or a 30% fat diet for 15 weeks. Offspring from low-protein and fructose-fed dam showed retarded growth (Pprotein dams (1.31 vs 0.89, 0.85; confidence interval, 0.78-1.04). Similarly, maternal fructose (P=.09) and low-protein (Pprotein restriction such as retarded growth, but is unique in programming of selected hepatic and intestinal transcripts. Copyright © 2016. Published by Elsevier Inc.

  18. The metabolic syndrome - background and treatment

    van Zwieten, P.A.

    2006-01-01

    The metabolic syndrome (MBS) is characterised by a clustering of cardiovascular and metabolic risk factors. This syndrome is now widely recognised as a distinct pathological entity, and it is receiving a great deal of attention in the medical literature but also in the lay press.

  19. The metabolic syndrome in cancer survivors

    de Haas, Esther C.; Oosting, Sjoukje F.; Lefrandt, Joop D.; Wolffenbuttel, Bruce H. R.; Sleijfer, Dirk Th; Gietema, Jourik A.

    The metabolic syndrome, as a cluster of cardiovascular risk factors, may represent an important connection between cancer treatment and its common late effect of cardiovascular disease. Insight into the aetiology of the metabolic syndrome after cancer treatment might help to identify and treat

  20. Mediterranean diet and the metabolic syndrome

    Bos, M.B.

    2009-01-01

    Mediterranean diet and the metabolic syndrome

    Background: The metabolic syndrome refers to a clustering of risk factors including
    abdominal obesity, hyperglycaemia, low HDL-cholesterol, hypertriglyceridaemia,
    and hypertension and it is a risk factor for diabetes mellitus type

  1. Metabolic syndrome and polycystic ovary syndrome: an intriguing overlapping.

    Caserta, Donatella; Adducchio, Gloria; Picchia, Simona; Ralli, Eleonora; Matteucci, Eleonora; Moscarini, Massimo

    2014-06-01

    Metabolic syndrome is an increasing pathology in adults and in children, due to a parallel rise of obesity. Sedentary lifestyle, food habits, cultural influences and also a genetic predisposition can cause dyslipidemia, hypertension, abdominal obesity and insulin resistance which are the two main features of metabolic syndrome. Polycystic ovary syndrome (PCOS) is a condition directly associated with obesity, insulin resistance (HOMA index) and metabolic syndrome, and it is very interesting for its relationship and overlap with the metabolic syndrome. The relationship between the two syndromes is mutual: PCOS women have a higher prevalence of metabolic syndrome and also women with metabolic syndrome commonly present the reproductive/endocrine trait of PCOS. Prevention and treatment of metabolic syndrome and PCOS are similar for various aspects. It is necessary to treat excess adiposity and insulin resistance, with the overall goals of preventing cardiovascular disease and type 2 diabetes and improving reproductive failure in young women with PCOS. First of all, lifestyle changes, then pharmacological therapy, bariatric surgery and laparoscopic ovarian surgery represent the pillars for PCOS treatment.

  2. Metabolic syndrome and cardiometabolic risk in PCOS.

    Cussons, Andrea J; Stuckey, Bronwyn G A; Watts, Gerald F

    2007-02-01

    The cardiovascular risk associated with the polycystic ovary syndrome (PCOS) has recently attracted much interest. Women with PCOS are more likely to fulfill the diagnosis of the metabolic syndrome, a cluster of related cardiometabolic factors known to predict long-term risk of cardiovascular disease and type 2 diabetes. We review the literature pertaining to the link between the metabolic syndrome, cardiovascular disease, and PCOS. We focus on the influence of obesity and hyperandrogenemia, and on strategies for identifying cardiovascular risk in PCOS.

  3. Metabolic syndrome in fixed-shift workers.

    Canuto, Raquel; Pattussi, Marcos Pascoal; Macagnan, Jamile Block Araldi; Henn, Ruth Liane; Olinto, Maria Teresa Anselmo

    2015-01-01

    OBJECTIVE To analyze if metabolic syndrome and its altered components are associated with demographic, socioeconomic and behavioral factors in fixed-shift workers. METHODS A cross-sectional study was conducted on a sample of 902 shift workers of both sexes in a poultry processing plant in Southern Brazil in 2010. The diagnosis of metabolic syndrome was determined according to the recommendations from Harmonizing the Metabolic Syndrome. Its frequency was evaluated according to the demographic (sex, skin color, age and marital status), socioeconomic (educational level, income and work shift), and behavioral characteristics (smoking, alcohol intake, leisure time physical activity, number of meals and sleep duration) of the sample. The multivariate analysis followed a theoretical framework for identifying metabolic syndrome in fixed-shift workers. RESULTS The prevalence of metabolic syndrome in the sample was 9.3% (95%CI 7.4;11.2). The most frequently altered component was waist circumference (PR 48.4%; 95%CI 45.5;51.2), followed by high-density lipoprotein. Work shift was not associated with metabolic syndrome and its altered components. After adjustment, the prevalence of metabolic syndrome was positively associated with women (PR 2.16; 95%CI 1.28;3.64), workers aged over 40 years (PR 3.90; 95%CI 1.78;8.93) and those who reported sleeping five hours or less per day (PR 1.70; 95%CI 1.09;2.24). On the other hand, metabolic syndrome was inversely associated with educational level and having more than three meals per day (PR 0.43; 95%CI 0.26;0.73). CONCLUSIONS Being female, older and deprived of sleep are probable risk factors for metabolic syndrome, whereas higher educational level and higher number of meals per day are protective factors for metabolic syndrome in fixed-shift workers.

  4. Metabolic syndrome in fixed-shift workers

    Raquel Canuto

    2015-01-01

    Full Text Available OBJECTIVE To analyze if metabolic syndrome and its altered components are associated with demographic, socioeconomic and behavioral factors in fixed-shift workers. METHODS A cross-sectional study was conducted on a sample of 902 shift workers of both sexes in a poultry processing plant in Southern Brazil in 2010. The diagnosis of metabolic syndrome was determined according to the recommendations from Harmonizing the Metabolic Syndrome. Its frequency was evaluated according to the demographic (sex, skin color, age and marital status, socioeconomic (educational level, income and work shift, and behavioral characteristics (smoking, alcohol intake, leisure time physical activity, number of meals and sleep duration of the sample. The multivariate analysis followed a theoretical framework for identifying metabolic syndrome in fixed-shift workers. RESULTS The prevalence of metabolic syndrome in the sample was 9.3% (95%CI 7.4;11.2. The most frequently altered component was waist circumference (PR 48.4%; 95%CI 45.5;51.2, followed by high-density lipoprotein. Work shift was not associated with metabolic syndrome and its altered components. After adjustment, the prevalence of metabolic syndrome was positively associated with women (PR 2.16; 95%CI 1.28;3.64, workers aged over 40 years (PR 3.90; 95%CI 1.78;8.93 and those who reported sleeping five hours or less per day (PR 1.70; 95%CI 1.09;2.24. On the other hand, metabolic syndrome was inversely associated with educational level and having more than three meals per day (PR 0.43; 95%CI 0.26;0.73. CONCLUSIONS Being female, older and deprived of sleep are probable risk factors for metabolic syndrome, whereas higher educational level and higher number of meals per day are protective factors for metabolic syndrome in fixed-shift workers.

  5. Psychosocial risk factors for the metabolic syndrome

    Pedersen, Jolene Masters; Lund, Rikke; Andersen, Ingelise

    2016-01-01

    Background/Objectives: Metabolic deregulations and development of metabolic syndrome may be an important pathway underlying the relationship between stress and cardiovascular disease. We aim to estimate the effect of a comprehensive range of psychosocial factors on the risk of developing metabolic.......11) to be risk factors for developing the metabolic syndrome in women, while vital exhaustion (OR 2.09, 95% CI 0.95 to 4.59) and intake of sleep medications (OR 2.54, 95% CI 0.92 to 5.96) may play a more important role in men. Conclusions: Experiencing major life events in work and adult life and....../or dysfunctional social networks is a risk factor for metabolic syndrome in women, and stress reactions such as vital exhaustion and intake of sleep medications may play a more important role in the development of metabolic syndrome men....

  6. Endocrine and metabolic effects of consuming fructose- and glucose-sweetened beverages with meals in obese men and women: influence of insulin resistance on plasma triglyceride responses.

    Teff, Karen L; Grudziak, Joanne; Townsend, Raymond R; Dunn, Tamara N; Grant, Ryan W; Adams, Sean H; Keim, Nancy L; Cummings, Bethany P; Stanhope, Kimber L; Havel, Peter J

    2009-05-01

    Compared with glucose-sweetened beverages, consumption of fructose-sweetened beverages with meals elevates postprandial plasma triglycerides and lowers 24-h insulin and leptin profiles in normal-weight women. The effects of fructose, compared with glucose, ingestion on metabolic profiles in obese subjects has not been studied. The objective of the study was to compare the effects of fructose- and glucose-sweetened beverages consumed with meals on hormones and metabolic substrates in obese subjects. The study had a within-subject design conducted in the clinical and translational research center. Participants included 17 obese men (n = 9) and women (n = 8), with a body mass index greater than 30 kg/m(2). Subjects were studied under two conditions involving ingestion of mixed nutrient meals with either glucose-sweetened beverages or fructose-sweetened beverages. The beverages provided 30% of total kilocalories. Blood samples were collected over 24 h. Area under the curve (24 h AUC) for glucose, lactate, insulin, leptin, ghrelin, uric acid, triglycerides (TGs), and free fatty acids was measured. Compared with glucose-sweetened beverages, fructose consumption was associated with lower AUCs for insulin (1052.6 +/- 135.1 vs. 549.2 +/- 79.7 muU/ml per 23 h, P glucose consumption. Increases of TGs were augmented in obese subjects with insulin resistance, suggesting that fructose consumption may exacerbate an already adverse metabolic profile present in many obese subjects.

  7. Metabolic syndrome and cardiovascular risk among adults

    Reem Hunain

    2018-03-01

    Full Text Available Background: Mortality and morbidity due cardiovascular diseases in India is on the rise. Metabolic Syndrome which is a collection of risk factors of metabolic origin, can greatly contribute to its rising burden. Aims & Objectives: The present study was conducted with the objective of estimating the prevalence of metabolic syndrome and 10-year cardiovascular risk among adults. Material & Methods: This hospital-based study included 260 adults aged 20-60 years. Metabolic Syndrome was defined using National Cholesterol Education Program –Adult Treatment Panel -3 criteria. The 10 year cardiovascular risk was estimated using Framingham risk scoring. Results: The overall prevalence of metabolic syndrome among the study participants was 38.8%. Age (41-60yrs, male gender and daily consumption of high salt items were positively associated with metabolic syndrome whereas consumption of occasional high sugar items showed an inverse association with metabolic syndrome. According to Framingham Risk Scoring, 14.3% of the participants belonged to intermediate/high risk category. Conclusion: With a high prevalence of metabolic syndrome and a considerable proportion of individuals with intermediate to high 10 yr CVD risk, there is a need to design strategies to prevent future cardiovascular events.

  8. Targets to treat metabolic syndrome in polycystic ovary syndrome.

    Mahalingaiah, Shruthi; Diamanti-Kandarakis, Evanthia

    2015-01-01

    Metabolic syndrome is comprised of a combination of the following states: increased insulin resistance, dyslipidemia, cardiovascular disease, and increased abdominal obesity. Women with polycystic ovary syndrome (PCOS) have an increased risk of developing metabolic syndrome over the course of their lives. Metabolic syndrome increases risk of major cardiovascular events, morbidity, quality of life, and overall health care costs. Though metabolic syndrome in women with PCOS is an area of great concern, there is no effective individual medical therapeutic to adequately treat this issue. This article will review key aspects of metabolic syndrome in PCOS. We will discuss classic and novel therapeutics to address metabolic syndrome in women with PCOS. We will conclude with the importance of developing strategic interventions to increase the compliance to lifestyle and dietary modification, in addition to appreciation of the emerging pharmaceutical therapeutics available. Innovation in lifestyle modification, including diet, exercise, with and without dedicated stress reduction techniques is the future in treatment of metabolic syndrome in PCOS. Application of novel interventions, such as group medical care, may improve future adherence to lifestyle modification recommendations, in addition to or in combination with pharmaceutical therapeutics.

  9. Targets to treat metabolic syndrome in polycystic ovary syndrome

    Mahalingaiah, Shruthi; Diamanti-Kandarakis, Evanthia

    2016-01-01

    Introduction Metabolic syndrome is comprised of a combination of the following states: increased insulin resistance, dyslipidemia, cardiovascular disease, and increased abdominal obesity. Women with polycystic ovary syndrome (PCOS) have an increased risk of developing metabolic syndrome over the course of their lives. Metabolic syndrome increases risk of major cardiovascular events, morbidity, quality of life, and overall health care costs. Though metabolic syndrome in women with PCOS is an area of great concern, there is no effective individual medical therapeutic to adequately treat this issue. Areas Covered This article will review key aspects of metabolic syndrome in PCOS. We will discuss classic and novel therapeutics to address metabolic syndrome in women with PCOS. We will conclude with the importance of developing strategic interventions to increase the compliance to lifestyle and dietary modification, in addition to appreciation of the emerging pharmaceutical therapeutics available. Expert Opinion Innovation in lifestyle modification, including diet, exercise, with and without dedicated stress reduction techniques is the future in treatment of metabolic syndrome in PCOS. Application of novel interventions, such as group medical care, may improve future adherence to lifestyle modification recommendations, in addition to or in combination with pharmaceutical therapeutics. PMID:26488852

  10. Metabolic syndrome in South Asians

    Kaushik Pandit

    2012-01-01

    Full Text Available South Asia is home to one of the largest population of people with metabolic syndrome (MetS. The prevalence of MetS in South Asians varies according to region, extent of urbanization, lifestyle patterns, and socioeconomic/cultural factors. Recent data show that about one-third of the urban population in large cities in India has the MetS. All classical risk factors comprising the MetS are prevalent in Asian Indians residing in India. The higher risk in this ethnic population necessitated a lowering of the cut-off values of the risk factors to identify and intervene for the MetS to prevent diabetes and cardiovascular disease. Some pharmacological and nonpharmacological interventions are underway in MetS to assess the efficacy in preventing the diabetes and cardiovascular disease in this ethnic population.

  11. Metabolic syndrome: definitions and controversies

    Kaltsas Gregory

    2011-05-01

    Full Text Available Abstract Metabolic syndrome (MetS is a complex disorder defined by a cluster of interconnected factors that increase the risk of cardiovascular atherosclerotic diseases and diabetes mellitus type 2. Currently, several different definitions of MetS exist, causing substantial confusion as to whether they identify the same individuals or represent a surrogate of risk factors. Recently, a number of other factors besides those traditionally used to define MetS that are also linked to the syndrome have been identified. In this review, we critically consider existing definitions and evolving information, and conclude that there is still a need to develop uniform criteria to define MetS, so as to enable comparisons between different studies and to better identify patients at risk. As the application of the MetS model has not been fully validated in children and adolescents as yet, and because of its alarmingly increasing prevalence in this population, we suggest that diagnosis, prevention and treatment in this age group should better focus on established risk factors rather than the diagnosis of MetS.

  12. Executive functions in persons with metabolic syndrome

    Subotić Tatjana

    2016-01-01

    Full Text Available Modern man lyfestyle contributes to the increasing incidence of metabolic syndrome in the developed world. Prevalence of the metabolic syndrome in adults ranges from 20 to 25%, and it tends to increase. Each year, 3.2 million people around the world die from complications associated with this syndrome. Treatment involves cooperation of medical doctors of various specialties, but the decisive factor is patient motivation, given that the treatment requires significant lifestyle changes. Our hypothesis is that metabolic syndrome patients have reduced ability to plan, convert plan into action and effectively implement planned activities, showing signs of dysexecutive syndrome. The term executive functions comes from the English word 'executive', which also means the controlling, in neuropsychology reserved for high-level abilities that influence more basic abilities such as attention, perception, memory, thinking and speaking. The main objective of this study was to determine characteristics of executive functioning in patients with metabolic syndrome. The sample consisted of 61 subjects of both sexes, aged 20 to 60 years, divided into two groups - those with a diagnosis of metabolic syndrome and those without this diagnosis. The results suggest that people with metabolic syndrome showed significantly poorer performance in almost all indicators of executive functions, represented by Wisconsin Card Sorting Test (Wisconsin Card Sorting Test variables.

  13. Association between Metabolic Syndrome and Job Rank.

    Mehrdad, Ramin; Pouryaghoub, Gholamreza; Moradi, Mahboubeh

    2018-01-01

    The occupation of the people can influence the development of metabolic syndrome. To determine the association between metabolic syndrome and its determinants with the job rank in workers of a large car factory in Iran. 3989 male workers at a large car manufacturing company were invited to participate in this cross-sectional study. Demographic and anthropometric data of the participants, including age, height, weight, and abdominal circumference were measured. Blood samples were taken to measure lipid profile and blood glucose level. Metabolic syndrome was diagnosed in each participant based on ATPIII 2001 criteria. The workers were categorized based on their job rank into 3 groups of (1) office workers, (2) workers with physical exertion, and (3) workers with chemical exposure. The study characteristics, particularly the frequency of metabolic syndrome and its determinants were compared among the study groups. The prevalence of metabolic syndrome in our study was 7.7% (95% CI 6.9 to 8.5). HDL levels were significantly lower in those who had chemical exposure (p=0.045). Diastolic blood pressure was significantly higher in those who had mechanical exertion (p=0.026). The frequency of metabolic syndrome in the office workers, workers with physical exertion, and workers with chemical exposure was 7.3%, 7.9%, and 7.8%, respectively (p=0.836). Seemingly, there is no association between metabolic syndrome and job rank.

  14. Comparison of breath testing with fructose and high fructose corn syrups in health and IBS

    Skoog, S. M.; Bharucha, A. E.; Zinsmeister, A. R.

    2008-01-01

    Although incomplete fructose absorption has been implicated to cause gastrointestinal symptoms, foods containing high fructose corn syrup (HFCS) contain glucose. Glucose increases fructose absorption in healthy subjects. Our hypothesis was that fructose intolerance is less prevalent after HFCS consumption compared to fructose alone in healthy subjects and irritable bowel syndrome (IBS). Breath hydrogen levels and gastrointestinal symptoms were assessed after 40 g of fructose (12% solution) pr...

  15. Fructose Malabsorption and Intolerance: Effects of Fructose with and without Simultaneous Glucose Ingestion

    Latulippe, Marie E.; Skoog, Suzanne M.

    2011-01-01

    Concern exists that increasing fructose consumption, particularly in the form of high-fructose corn syrup, is resulting in increasing rates of fructose intolerance and aggravation of clinical symptoms in individuals with irritable bowel syndrome. Most clinical trials designed to test this hypothesis have used pure fructose, a form not commonly found in the food supply, often in quantities and concentrations that exceed typical fructose intake levels. In addition, the amount of fructose provid...

  16. High Dietary Fructose: Direct or Indirect Dangerous Factors Disturbing Tissue and Organ Functions.

    Zhang, Dong-Mei; Jiao, Rui-Qing; Kong, Ling-Dong

    2017-03-29

    High dietary fructose is a major contributor to insulin resistance and metabolic syndrome, disturbing tissue and organ functions. Fructose is mainly absorbed into systemic circulation by glucose transporter 2 (GLUT2) and GLUT5, and metabolized in liver to produce glucose, lactate, triglyceride (TG), free fatty acid (FFA), uric acid (UA) and methylglyoxal (MG). Its extrahepatic absorption and metabolism also take place. High levels of these metabolites are the direct dangerous factors. During fructose metabolism, ATP depletion occurs and induces oxidative stress and inflammatory response, disturbing functions of local tissues and organs to overproduce inflammatory cytokine, adiponectin, leptin and endotoxin, which act as indirect dangerous factors. Fructose and its metabolites directly and/or indirectly cause oxidative stress, chronic inflammation, endothelial dysfunction, autophagy and increased intestinal permeability, and then further aggravate the metabolic syndrome with tissue and organ dysfunctions. Therefore, this review addresses fructose-induced metabolic syndrome, and the disturbance effects of direct and/or indirect dangerous factors on the functions of liver, adipose, pancreas islet, skeletal muscle, kidney, heart, brain and small intestine. It is important to find the potential correlations between direct and/or indirect risk factors and healthy problems under excess dietary fructose consumption.

  17. High Dietary Fructose: Direct or Indirect Dangerous Factors Disturbing Tissue and Organ Functions

    Dong-Mei Zhang

    2017-03-01

    Full Text Available High dietary fructose is a major contributor to insulin resistance and metabolic syndrome, disturbing tissue and organ functions. Fructose is mainly absorbed into systemic circulation by glucose transporter 2 (GLUT2 and GLUT5, and metabolized in liver to produce glucose, lactate, triglyceride (TG, free fatty acid (FFA, uric acid (UA and methylglyoxal (MG. Its extrahepatic absorption and metabolism also take place. High levels of these metabolites are the direct dangerous factors. During fructose metabolism, ATP depletion occurs and induces oxidative stress and inflammatory response, disturbing functions of local tissues and organs to overproduce inflammatory cytokine, adiponectin, leptin and endotoxin, which act as indirect dangerous factors. Fructose and its metabolites directly and/or indirectly cause oxidative stress, chronic inflammation, endothelial dysfunction, autophagy and increased intestinal permeability, and then further aggravate the metabolic syndrome with tissue and organ dysfunctions. Therefore, this review addresses fructose-induced metabolic syndrome, and the disturbance effects of direct and/or indirect dangerous factors on the functions of liver, adipose, pancreas islet, skeletal muscle, kidney, heart, brain and small intestine. It is important to find the potential correlations between direct and/or indirect risk factors and healthy problems under excess dietary fructose consumption.

  18. KUDESAN EFFICACY IN ADOLESCENTS WITH METABOLIC SYNDROME

    M.B. Kolesnikova

    2011-01-01

    Full Text Available Metabolic abnormalities in metabolic syndrome affect the functioning of practically all organs and systems, and most seriously — cardio-vascular system. Cardio-vascular abnormalities in metabolic syndrome manifest as arterial hypertension, Riley-Day syndrome and endothelial dysfunction that can lead to decrease of adaptive and reserve capabilities. Co-enzyme Q10 possesses cardioprotective,  stress-protective and anti-ischaemic activity. Clinical study performed on 40 children aged 10 to 17 years with constitutive obesity, complicated metabolic syndrome, has proven validity of co-enzyme Q10 treatment in patients with metabolic syndrome. The use of co-enzyme Q10 15 mg/day during 30 days has lead to improvement of psycho-emotional condition, decrease in anxiety complaints, sleep improvement, decrease in asthenic syndrome symptoms, improvement in electrophysiological heart indices Key words: metabolic syndrome, co-enzyme Q10. (Voprosy sovremennoi pediatrii — Current Pediatrics. — 2011; 10 (5: 102–106.

  19. Relationships among personality traits, metabolic syndrome, and metabolic syndrome scores: The Kakegawa cohort study.

    Ohseto, Hisashi; Ishikuro, Mami; Kikuya, Masahiro; Obara, Taku; Igarashi, Yuko; Takahashi, Satomi; Kikuchi, Daisuke; Shigihara, Michiko; Yamanaka, Chizuru; Miyashita, Masako; Mizuno, Satoshi; Nagai, Masato; Matsubara, Hiroko; Sato, Yuki; Metoki, Hirohito; Tachibana, Hirofumi; Maeda-Yamamoto, Mari; Kuriyama, Shinichi

    2018-04-01

    Metabolic syndrome and the presence of metabolic syndrome components are risk factors for cardiovascular disease (CVD). However, the association between personality traits and metabolic syndrome remains controversial, and few studies have been conducted in East Asian populations. We measured personality traits using the Japanese version of the Eysenck Personality Questionnaire (Revised Short Form) and five metabolic syndrome components-elevated waist circumference, elevated triglycerides, reduced high-density lipoprotein cholesterol, elevated blood pressure, and elevated fasting glucose-in 1322 participants aged 51.1±12.7years old from Kakegawa city, Japan. Metabolic syndrome score (MS score) was defined as the number of metabolic syndrome components present, and metabolic syndrome as having the MS score of 3 or higher. We performed multiple logistic regression analyses to examine the relationship between personality traits and metabolic syndrome components and multiple regression analyses to examine the relationship between personality traits and MS scores adjusted for age, sex, education, income, smoking status, alcohol use, and family history of CVD and diabetes mellitus. We also examine the relationship between personality traits and metabolic syndrome presence by multiple logistic regression analyses. "Extraversion" scores were higher in those with metabolic syndrome components (elevated waist circumference: P=0.001; elevated triglycerides: P=0.01; elevated blood pressure: P=0.004; elevated fasting glucose: P=0.002). "Extraversion" was associated with the MS score (coefficient=0.12, P=0.0003). No personality trait was significantly associated with the presence of metabolic syndrome. Higher "extraversion" scores were related to higher MS scores, but no personality trait was significantly associated with the presence of metabolic syndrome. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Ingestion of a natural mineral-rich water in an animal model of metabolic syndrome: effects in insulin signalling and endoplasmic reticulum stress.

    Pereira, Cidália D; Passos, Emanuel; Severo, Milton; Vitó, Isabel; Wen, Xiaogang; Carneiro, Fátima; Gomes, Pedro; Monteiro, Rosário; Martins, Maria J

    2016-05-01

    High-fructose and/or low-mineral diets are relevant in metabolic syndrome (MS) development. Insulin resistance (IR) represents a central mechanism in MS development. Glucocorticoid signalling dysfunction and endoplasmic reticulum (ER) and oxidative stresses strongly contribute to IR and associate with MS. We have described that natural mineral-rich water ingestion delays fructose-induced MS development, modulates fructose effects on the redox state and glucocorticoid signalling and increases sirtuin 1 expression. Here, we investigated mineral-rich water ingestion effects on insulin signalling and ER homeostasis of fructose-fed rats. Adult male Sprague-Dawley rats had free access to standard-chow diet and different drinking solutions (8 weeks): tap water (CONT), 10%-fructose/tap water (FRUCT) or 10%-fructose/mineral-rich water (FRUCTMIN). Hepatic and adipose (visceral, VAT) insulin signalling and hepatic ER homeostasis (Western blot or PCR) as well as hepatic lipid accumulation were evaluated. Hepatic p-IRS1Ser307/IRS1 (tendency), p-IRS1Ser307, total JNK and (activated IRE1α)/(activated JNK) decreased with fructose ingestion, while p-JNK tended to increase; mineral-rich water ingestion, totally or partially, reverted all these effects. Total PERK, p-eIF2α (tendency) and total IRS1 (tendency) decreased in both fructose-fed groups. p-ERK/ERK and total IRE1α increasing tendencies in FRUCT became significant in FRUCTMIN (similar pattern for lipid area). Additionally, unspliced-XBP1 increased with mineral-rich water. In VAT, total ERK fructose-induced increase was partially prevented in FRUCTMIN. Mineral-rich water modulation of fructose-induced effects on insulin signalling and ER homeostasis matches the better metabolic profile previously reported. Increased p-ERK/ERK, adding to decreased IRE1α activation, and increased unspliced-XBP1 and lipid area may protect against oxidative stress and IR development in FRUCTMIN.

  1. The Relation Between Metabolic Syndrome and Testosterone Level

    Goel Prashant

    2018-03-01

    Full Text Available Metabolic syndrome is a group of conditions that increases the risk of developing diabetes and cardiovascular diseases. The most important pathogenic factors for metabolic syndrome are insulin resistance and obesity. The clinical presentation of this syndrome results from its influence on glucose and fat metabolism. Testosterone deficiency has a prevalence of up to 50% in men with metabolic syndrome and type 2 diabetes mellitus. A low level of testosterone is a factor for cardiovascular diseases and predictor of metabolic syndrome and, on the other hand, the components of metabolic syndrome can lead to low testosterone. This article reveals the bidirectional link between low testosterone level or hypogonadism and metabolic syndrome.

  2. Metabolic Syndrome and Outcomes after Renal Intervention

    Daynene Vykoukal

    2011-01-01

    Full Text Available Metabolic syndrome significantly increases the risk for cardiovascular disease and chronic kidney disease. The increased risk for cardiovascular diseases can partly be caused by a prothrombotic state that exists because of abdominal obesity. Multiple observational studies have consistently shown that increased body mass index as well as insulin resistance and increased fasting insulin levels is associated with chronic kidney disease, even after adjustment for related disorders. Metabolic syndrome appears to be a risk factor for chronic kidney disease, likely due to the combination of dysglycemia and high blood pressure. Metabolic syndrome is associated with markedly reduced renal clinical benefit and increased progression to hemodialysis following endovascular intervention for atherosclerotic renal artery stenosis. Metabolic syndrome is associated with inferior early outcomes for dialysis access procedures.

  3. Metabolic Syndrome among Undergraduate Students Attending ...

    Methods: A total of 384 first-year students attending university medical clinics for obligatory medical ... Keywords: Metabolic syndrome, Obesity, Hypertension, Diabetes, Dyslipidemia, ..... requires the attention of all health professionals.

  4. Pre-diabetes and the metabolic syndrome

    which is termed impaired fasting glycaemia. (IFG), or an abnormal ... Insulin resistance is a feature common to ... fast patients are given a standard dose ... Different criteria for the diagnosis of the metabolic syndrome ... drug therapy for high.

  5. The association between the metabolic syndrome and metabolic syndrome score and pulmonary function in non-smoking adults.

    Yoon, Hyun; Gi, Mi Young; Cha, Ju Ae; Yoo, Chan Uk; Park, Sang Muk

    2018-03-01

    This study assessed the association of metabolic syndrome and metabolic syndrome score with the predicted forced vital capacity and predicted forced expiratory volume in 1 s (predicted forced expiratory volume in 1 s) values in Korean non-smoking adults. We analysed data obtained from 6684 adults during the 2013-2015 Korean National Health and Nutrition Examination Survey. After adjustment for related variables, metabolic syndrome ( p metabolic syndrome score ( p metabolic syndrome score with metabolic syndrome score 0 as a reference group showed no significance for metabolic syndrome score 1 [1.061 (95% confidence interval, 0.755-1.490)] and metabolic syndrome score 2 [1.247 (95% confidence interval, 0.890-1.747)], but showed significant for metabolic syndrome score 3 [1.433 (95% confidence interval, 1.010-2.033)] and metabolic syndrome score ⩾ 4 [1.760 (95% confidence interval, 1.216-2.550)]. In addition, the odds ratio of restrictive pulmonary disease of the metabolic syndrome [1.360 (95% confidence interval, 1.118-1.655)] was significantly higher than those of non-metabolic syndrome. Metabolic syndrome and metabolic syndrome score were inversely associated with the predicted forced vital capacity and forced expiratory volume in 1 s values in Korean non-smoking adults. In addition, metabolic syndrome and metabolic syndrome score were positively associated with the restrictive pulmonary disease.

  6. Preventive role of exercise training in autonomic, hemodynamic, and metabolic parameters in rats under high risk of metabolic syndrome development.

    Moraes-Silva, Ivana Cinthya; Mostarda, Cristiano; Moreira, Edson Dias; Silva, Kleiton Augusto Santos; dos Santos, Fernando; de Angelis, Kátia; Farah, Vera de Moura Azevedo; Irigoyen, Maria Claudia

    2013-03-15

    High fructose consumption contributes to metabolic syndrome incidence, whereas exercise training promotes several beneficial adaptations. In this study, we demonstrated the preventive role of exercise training in the metabolic syndrome derangements in a rat model. Wistar rats receiving fructose overload in drinking water (100 g/l) were concomitantly trained on a treadmill (FT) or kept sedentary (F) for 10 wk. Control rats treated with normal water were also submitted to exercise training (CT) or sedentarism (C). Metabolic evaluations consisted of the Lee index and glycemia and insulin tolerance test (kITT). Blood pressure (BP) was directly measured, whereas heart rate (HR) and BP variabilities were evaluated in time and frequency domains. Renal sympathetic nerve activity was also recorded. F rats presented significant alterations compared with all the other groups in insulin resistance (in mg · dl(-1) · min(-1): F: 3.4 ± 0.2; C: 4.7 ± 0.2; CT: 5.0 ± 0.5 FT: 4.6 ± 0.4), mean BP (in mmHG: F: 117 ± 2; C: 100 ± 2; CT: 98 ± 2; FT: 105 ± 2), and Lee index (in g/mm: F = 0.31 ± 0.001; C = 0.29 ± 0.001; CT = 0.27 ± 0.002; FT = 0.28 ± 0.002), confirming the metabolic syndrome diagnosis. Exercise training blunted all these derangements. Additionally, FS group presented autonomic dysfunction in relation to the others, as seen by an ≈ 50% decrease in baroreflex sensitivity and 24% in HR variability, and increases in sympathovagal balance (140%) and in renal sympathetic nerve activity (45%). These impairments were not observed in FT group, as well as in C and CT. Correlation analysis showed that both Lee index and kITT were associated with vagal impairment caused by fructose. Therefore, exercise training plays a preventive role in both autonomic and hemodynamic alterations related to the excessive fructose consumption.

  7. Endothelial dysfunction in high fructose containing diet fed rats: Increased nitric oxide and decreased endothelin-1 levels in liver tissue

    Zeki Arı

    2010-09-01

    Full Text Available Objectives: Dietary high fructose consumption which is closely associated with endothelial dysfunction via insulin re-sistance has recently increased in developed countries. Insulin resistance has a promoter effect on many metabolic disorders such as syndrome X, polycystic ovary syndrome, Type 2 diabetes mellitus etc. Our aim in this study is to understand the impact of increased fructose intake on metabolisms of glucose, insulin and endothelial dysfunction by measuring nitric oxide (NO and endothelin-1 (ET-1 levels in hepatic tissue which is crucial in fructose metabolism.Materials and Methods: We designed an animal study to understand increased fructose intake on hepatic endothe-lium. Twenty adult male albino rats were divided into two groups; the study group (group 1, n=10 received isocaloric fructose enriched diet (fructose-fed rats, containing 18.3% protein, 60.3% fructose and 5.2% fat while the control group received purified regular chow (group 2, n=10 for 2 weeks. After feeding period, blood and hepatic tissue samples were collected and glucose, insulin, NO and ET-1 levels were analysed.Results: We found increased fasting glucose and insulin levels and impaired glucose tolerance in fructose fed rats. Higher NO and lower ET–1 levels were also detected in hepatic tissue samples of the group 1.Conclusion: Increased fructose consumption has deleterious effects on glucose tolerance, insulin resistance and may cause to endothelial dysfunction.

  8. High-fructose corn syrup-55 consumption alters hepatic lipid metabolism and promotes triglyceride accumulation.

    Mock, Kaitlin; Lateef, Sundus; Benedito, Vagner A; Tou, Janet C

    2017-01-01

    High-fructose corn syrup-55 (HFCS-55) has been suggested to be more lipogenic than sucrose, which increases the risk for nonalcoholic fatty liver disease (NAFLD) and dyslipidemia. The study objectives were to determine the effects of drinking different sugar-sweetened solutions on hepatic gene expression in relation to liver fatty acid composition and risk of NAFLD. Female rats were randomly assigned (n=7 rats/group) to drink water or water sweetened with 13% (w/v) HFCS-55, sucrose or fructose for 8 weeks. Rats drinking HFCS-55 solution had the highest (P=.03) hepatic total lipid and triglyceride content and histological evidence of fat infiltration. Rats drinking HFCS-55 solution had the highest hepatic de novo lipogenesis indicated by the up-regulation of stearoyl-CoA desaturase-1 and the highest (Ptriglyceride-rich lipoprotein from the liver was increased as shown by up-regulation of gene expression of microsomal triglyceride transfer protein in rats drinking sucrose, but not HFCS-55 solution. The observed lipogenic effects were attributed to the slightly higher fructose content of HFCS-55 solution in the absence of differences in macronutrient and total caloric intake between rats drinking HFCS-55 and sucrose solution. Results from gene expression and fatty acid composition analysis showed that, in a hypercaloric state, some types of sugars are more detrimental to the liver. Based on these preclinical study results, excess consumption of caloric sweetened beverage, particularly HFCS-sweetened beverages, should be limited. Published by Elsevier Inc.

  9. RELATIONSHIP BETWEEN FRUCTOSE CONTENT OF A NORMAL KUWAITI DIET AND THE OBESITY EPIDEMIC

    Dana Al-Salem

    2012-06-01

    Full Text Available This project investigates the prevalence of fructose intake in a normal Kuwaiti diet. The prevalence of metabolic syndrome and obesity in Kuwait has been on the rise in the last 2 decades; at the moment just over 74 percent of the population is overweight or obese, according to the World Health Organization. Fructose intake has recently received considerable negative media attention, as the use of high fructose corn syrups has become more widely used. Fructose intake has been believed to be linked with a rise in Metabolic Syndrome and an increase in obesity. It has been considered that moderate fructose consumption of ≤50g/day or ∼10% of total energy has no harmful effect on lipids and of ≤100g/day does not influence body weight. In this study 60 adult participants filled out a two day detailed food diary including quantities. The diaries were then analyzed by a dietitian using the USDA nutrient database and the Food Processor program version 9.9.0, and the total fructose intake per day of the normal Kuwaiti diet was calculated. In addition a 24- hour urine collection for fructose was measured to correlate the results with the food diaries. Once the results were tabulated and verified, a mean fructose intake of 27.9 grams was calculated, ranging in daily fructose intakes from 2.8 g to 101.6g per day. In conclusion the results showed an average daily intake of 27.9 grams of fructose, which is lower than the estimated moderate intake therefore, cannot be the major cause of metabolic syndrome or obesity in Kuwait.

  10. Toxic metabolic syndrome associated with HAART

    Haugaard, Steen B

    2006-01-01

    (HAART) may encounter the HIV-associated lipodystrophy syndrome (HALS), which attenuates patient compliance to this treatment. HALS is characterised by impaired glucose and lipid metabolism and other risk factors for cardiovascular disease. This review depicts the metabolic abnormalities associated...... with HAART by describing the key cell and organ systems that are involved, emphasising the role of insulin resistance. An opinion on the remedies available to treat the metabolic abnormalities and phenotype of HALS is provided....

  11. Holter registers and metabolic syndrome

    Muñoz-Diosdado, A.; Ramírez-Hernández, L.; Aguilar-Molina, A. M.; Zamora-Justo, J. A.; Gutiérrez-Calleja, R. A.; Virgilio-González, C. D.

    2014-11-01

    There is a relationship between the state of the cardiovascular system and metabolic syndrome (MS). A way to diagnose the heart state of a person is to monitor the electrical activity of the heart using a 24 hours Holter monitor. Scanned ECG signal can be analyzed beat-by-beat by algorithms that separate normal of abnormal heartbeats. If the percentage of abnormal heartbeats is too high it could be argued that the patient has heart problems. We have algorithms that can not only identify the abnormal heartbeats, but they can also classify them, so we classified and counted abnormal heartbeats in patients with MS and subjects without MS. Most of our patients have large waist circumference, high triglycerides and high levels of LDL (high-density lipoprotein) cholesterol although some of them have high blood pressure. We enrolled adult patients with MS free of diabetes in a four month lifestyle intervention program including diet and physical aerobic exercise, and compared with healthy controls. We made an initial registration with a Holter, and 24 hours ECG signal is analyzed to identify and classify the different types of heartbeats. The patients then begin with diet or exercise (at least half an hour daily). Periodically Holter records were taken up and we describe the evolution in time of the number and type of abnormal heartbeats. Results show that the percentage of abnormal heartbeats decreases over time, in some cases the decline is very significant, and almost a reduction to half or less of abnormal heartbeats after several months since the patients changed their eating or physical activity habits.

  12. Metabolic syndrome in urban DRDO population

    Prakash P Bellubbi

    2015-01-01

    Full Text Available Metabolic syndrome is a common condition occurring all over the world which is also known by other terminology such as Dysmetabolic syndrome, Syndrome X, Insulin Resistance syndrome, Obesity syndrome, or Reaven′s syndrome. Metabolic syndrome is constituted by a group of Risk Factors such as Trunkal Obesity, Impaired or Altered Glucose Tolerance, Dyslipidemia and Hypertension. Individuals with these risk factors are at a greater risk of developing a cardiovascular disease or Type 2 Diabetes. NCEP, National Heart, lung and Blood Institute, National Institutes of Health periodically publishes ATP clinical updates as warranted by advances in the cholesterol management. Each of the guideline reports -ATP I, II and III - has a major thrust in Cardiovascular Risk Management. While some of the features of ATP I and ATP II are shared by ATP III guidelines, there are some salient differences. ATP III focuses on Multiple risk factors and recommends the use ofFramingham projections of 10 year absolute risk, modifies lipid and lipoprotein classification and supports for implementation of a revised schedule for screening and Therapeutic Life-style Changes. DRDO has embarked upon a program to assess the occupational health risk and the coronary risk status of the DRDO and defence employees. The present paper describes incidence of Metabolic Syndrome amongst the DRDO and Defence employees, using the ATP III guidelines and importance of calculating the absolute coronary risk status of these personnel.

  13. The risk of metabolic syndrome and nutrition

    Aleksandr Konstantinovich Kuntsevich

    2015-02-01

    Full Text Available In the present literature review modern epidemiological studies the role of nutrition in the prevalence of the metabolic syndrome. Were analyzed mainly work on the association of certain types of dietary intake of the population to the risk of metabolic syndrome in several Western and Asian countries. The purpose of these studies was to determine deemed "good" type and the "bad" type of food, risk assessment and exchange of metabolic disorders to determine the optimal dietary recommendations.  Application of factor and cluster analysis allowed in a number of studies to identify groups of products associated with a decrease in the prevalence of metabolic syndrome and to estimate the odds ratios of metabolic syndrome when compared with the "bad" diet.  A number of papers were obtained confirm the effectiveness of the Mediterranean diet in the prevention of metabolic disorders. Commitment to the traditional Western diet is associated with deterioration in health, compared with the recommended "healthy" diet.  Data from epidemiological studies nutrition and metabolic disorders associated with a number of diseases, may be useful in determining how the recommendations on the best type of feeding the population, so to identify ways to further research.

  14. Fructose overfeeding in first-degree relatives of type 2 diabetic patients impacts energy metabolism and mitochondrial functions in skeletal muscle.

    Seyssel, Kevin; Meugnier, Emmanuelle; Lê, Kim-Anne; Durand, Christine; Disse, Emmanuel; Blond, Emilie; Pays, Laurent; Nataf, Serge; Brozek, John; Vidal, Hubert; Tappy, Luc; Laville, Martine

    2016-12-01

    The aim of the study was to assess the effects of a high-fructose diet (HFrD) on skeletal muscle transcriptomic response in healthy offspring of patients with type 2 diabetes, a subgroup of individuals prone to metabolic disorders. Ten healthy normal weight first-degree relatives of type 2 diabetic patients were submitted to a HFrD (+3.5 g fructose/kg fat-free mass per day) during 7 days. A global transcriptomic analysis was performed on skeletal muscle biopsies combined with in vitro experiments using primary myotubes. Transcriptomic analysis highlighted profound effects on fatty acid oxidation and mitochondrial pathways supporting the whole-body metabolic shift with the preferential use of carbohydrates instead of lipids. Bioinformatics tools pointed out possible transcription factors orchestrating this genomic regulation, such as PPARα and NR4A2. In vitro experiments in human myotubes suggested an indirect action of fructose in skeletal muscle, which seemed to be independent from lactate, uric acid, or nitric oxide. This study shows therefore that a large cluster of genes related to energy metabolism, mitochondrial function, and lipid oxidation was downregulated after 7 days of HFrD, thus supporting the concept that overconsumption of fructose-containing foods could contribute to metabolic deterioration in humans. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Management issues in the metabolic syndrome.

    Deedwania, P C; Gupta, R

    2006-10-01

    The metabolic syndrome or cardiovascular dysmetabolic syndrome is characterized by obesity, central obesity, insulin resistance, atherogenic dyslipidemia, and hypertension. The major risk factors leading to this syndrome are physical inactivity and an atherogenic diet and cornerstone clinical feature is abdominal obesity or adiposity. In addition, patients usually have elevated triglycerides, low HDL cholesterol, elevated LDL cholesterol, other abnormal lipid parameters, hypertension, and elevated fasting blood glucose. Impaired fibrinolysis, increased susceptibility to thrombotic events, and raised inflammatory markers are also observed. Given that India has the largest number of subjects with type-2 diabetes in the world it can be extrapolated that this country also has the largest number of patients with the metabolic syndrome. Epidemiological studies confirm a high prevalence. Therapeutic approach involves intervention at a macro-level and control of multiple risk factors using therapeutic lifestyle approaches (diet control and increased physical activity, pharmacotherapy - anti-obesity agents) for control of obesity and visceral obesity, and targeted approach for control of individual risk factors. Pharmacological therapy is a critical step in the management of patients with metabolic syndrome when lifestyle modifications fail to achieve the therapeutic goals. Anti-obesity drugs such as sibutramine and orlistat can be tried to reduce weight and central obesity and jointly control the metabolic syndrome components. Other than weight loss, there is no single best therapy and treatment should consist of treatment of individual components of the metabolic syndrome. Newer drugs such as the endocannabinoid receptor blocker,rimonabant, appear promising in this regard. Atherogenic dyslipidemia should be controlled initially with statins if there is an increase in LDL cholesterol. If there are other lipid abnormalities then combination therapy of statin with fibrates

  16. a family doctor look for metabolic syndrome?

    Izabela Maria Banaś

    2016-09-01

    Full Text Available Background. The asymptomatic course, early genesis, multifactorial onset, and the lack of a single definition of metabolic syndrome in children and adolescents make it difficult to assess its prevalence. Metabolic syndrome developed in childhood increases cardiovascular risk in adulthood. Objectives. The evaluation of the prevalence of metabolic syndrome based on age, sex, weight and abdominal obesity in a population of children and adolescents in a family doctor’s practice. Material and methods. The study group comprised 325 children and adolescents (177♀, 148♂ aged 7, 13 and 16 years. Anthropometric measurements (height, weight, waist circumference were made, along with the determination of blood pressure, fasting glucose and lipid levels. Overweight states and obesity were assessed according to the IOTF criteria. Abdominal obesity and hypertension were evaluated using growth charts appropriate for the age, gender and height of the children of Lodz. Metabolic syndrome was diagnosed based on the NCEP/AT P III criteria. Results . Metabolic syndrome was diagnosed in 6.5% of the subjects. In children aged 13 and 16 years – 7.6% (p > 0.05 vs. 7 years, aged 7 years – 3.9% (p > 0.05 vs. 13, 16 years, boys (8.8%; p > 0.05, girls (4.5%; p > 0.05. Among children with excessive body weight, metabolic syndrome was observed in every fourth child (25.4%, more often in those with obesity (44.1% than with abdominal obesity (32% and those who were overweight (19.2%, respectively (p < 0.001 vs. metabolic syndrome. The number of components of metabolic syndrome elevated with increasing body weight (p < 0.001. Abdominal obesity was observed in 17.5% of the subjects. Children with abdominal obesity had higher levels of triglycerides (p < 0.05 and lower HDL cholesterol (p 110 mg/dl in 85 (26.1% and excessive body weight in 71 subjects (21.8%. Conclusions . The presence of metabolic syndrome correlated with overweight state, obesity and abdominal obesity

  17. Regulation of Autotrophic and Heterotrophic Metabolism in Pseudomonas oxalaticus OX1. Growth on Fructose and on Mixtures of Fructose and Formate in Batch and Continuous Cultures

    Dijkhuizen, L.; Harder, W.

    1984-01-01

    In Pseudomonas oxalaticus the synthesis of enzymes involved in autotrophic CO2 fixation via the Calvin cycle is regulated by repression/derepression. During growth of the organism on fructose alone, the synthesis of ribulosebisphosphate carboxylase (RuBPCase) remained fully repressed, both in batch

  18. [Prescription of Jingdan Yimin for treatment of metabolic syndrome].

    Tian, Jin-Ying; Zhou, Ying; Chen, Ling; Li, Xiu-Li; Zhang, Xiao-Lin; Han, Jing; Liu, Qian; Yang, Ya-Nan; Feng, Zi-Ming; Zhang, Pei-Cheng; Ye, Fei

    2016-01-01

    Based on the theory of traditional Chinese medicine, modern methods for drug investigation such as molecular targets in vitro and effects in vivo were used to study the prescription of Jingdan Yimin(JD), including selection of raw materials, composition, proportion, and effective dose of the compounds for treatment of metabolic syndrome. The IRF mice models, characterized by insulin resistance and hypercholesterolemia, were induced by high fat diet. The insulin sensitivity was estimated with insulin tolerance test(ITT) and glucose tolerance test(GTT); the levels of blood glucose and total cholesterol(TC), and the activities of α-glucosidase, protein tyrosine phosphatase 1B(PTP1B), and fructose phosphate amide transferase(GFAT)were measured with biochemical methods, respectively. The sample H13(h) extracted from Rhodiola crenulata, Y12(y) from Cordyceps militaris, and D(d) from Rheum palmatum were selected according to the inhibition activity on both PTP1B and α-glucosidase in vitro, regulation on hypercholesterolemia in IRF mice, and effects on GFAT activity, respectively; their synergistic effects on the treatment of metabolic syndrome were determined in IRF mice; composition proportion of h∶y∶d was measured in accordance with the results of L8(27) orthogonal experiments targeting on the inhibition of both PTP1B and α-glucosidase; finally, the effective dose was assessed based on the effects on IGT and hypercholesterolemia, respectively, in IRF mice. In conclusion, the prescription JD is composed by R. crenulata, C. militaris, and R. palmatum with the rate of 20∶1∶1, and its effective oral dose is 200 mg•kg⁻¹ for treatment of metabolic syndrome; its main mechanism is to inhibit the targets PTP1B and α-glucosidase. Monarch drug, R. crenulata, can clear away the lung-heat, tonify Qi, resolve stasis and nourish the heart. Adjuvant drug, C. militaris, can tonify the lung Qi and the kidney essence, strengthen waist and knee, accompanied with R

  19. Mitochondrial Dysfunction in Metabolic Syndrome and Asthma

    Mabalirajan, Ulaganathan; Ghosh, Balaram

    2013-01-01

    Though severe or refractory asthma merely affects less than 10% of asthma population, it consumes significant health resources and contributes significant morbidity and mortality. Severe asthma does not fell in the routine definition of asthma and requires alternative treatment strategies. It has been observed that asthma severity increases with higher body mass index. The obese-asthmatics, in general, have the features of metabolic syndrome and are progressively causing a significant burden for both developed and developing countries thanks to the westernization of the world. As most of the features of metabolic syndrome seem to be originated from central obesity, the underlying mechanisms for metabolic syndrome could help us to understand the pathobiology of obese-asthma condition. While mitochondrial dysfunction is the common factor for most of the risk factors of metabolic syndrome, such as central obesity, dyslipidemia, hypertension, insulin resistance, and type 2 diabetes, the involvement of mitochondria in obese-asthma pathogenesis seems to be important as mitochondrial dysfunction has recently been shown to be involved in airway epithelial injury and asthma pathogenesis. This review discusses current understanding of the overlapping features between metabolic syndrome and asthma in relation to mitochondrial structural and functional alterations with an aim to uncover mechanisms for obese-asthma. PMID:23840225

  20. Gallic acid ameliorates hyperglycemia and improves hepatic carbohydrate metabolism in rats fed a high-fructose diet.

    Huang, Da-Wei; Chang, Wen-Chang; Wu, James Swi-Bea; Shih, Rui-Wen; Shen, Szu-Chuan

    2016-02-01

    Herein, we investigated the hypoglycemic effect of plant gallic acid (GA) on glucose uptake in an insulin-resistant cell culture model and on hepatic carbohydrate metabolism in rats with a high-fructose diet (HFD)-induced diabetes. Our hypothesis is that GA ameliorates hyperglycemia via alleviating hepatic insulin resistance by suppressing hepatic inflammation and improves abnormal hepatic carbohydrate metabolism by suppressing hepatic gluconeogenesis and enhancing the hepatic glycogenesis and glycolysis pathways in HFD-induced diabetic rats. Gallic acid increased glucose uptake activity by 19.2% at a concentration of 6.25 μg/mL in insulin-resistant FL83B mouse hepatocytes. In HFD-induced diabetic rats, GA significantly alleviated hyperglycemia, reduced the values of the area under the curve for glucose in an oral glucose tolerance test, and reduced the scores of the homeostasis model assessment of insulin resistance index. The levels of serum C-peptide and fructosamine and cardiovascular risk index scores were also significantly decreased in HFD rats treated with GA. Moreover, GA up-regulated the expression of hepatic insulin signal transduction-related proteins, including insulin receptor, insulin receptor substrate 1, phosphatidylinositol-3 kinase, Akt/protein kinase B, and glucose transporter 2, in HFD rats. Gallic acid also down-regulated the expression of hepatic gluconeogenesis-related proteins, such as fructose-1,6-bisphosphatase, and up-regulated expression of hepatic glycogen synthase and glycolysis-related proteins, including hexokinase, phosphofructokinase, and aldolase, in HFD rats. Our findings indicate that GA has potential as a health food ingredient to prevent diabetes mellitus. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. [Metabolic syndrome and aortic stiffness].

    Simková, A; Bulas, J; Murín, J; Kozlíková, K; Janiga, I

    2010-09-01

    The metabolic syndrome (MS) is a cluster of risk factors that move the patient into higher level of risk category of cardiovascular disease and the probability of type 2 diabetes mellitus manifestation. Definition of MS is s based on the presence of selected risk factors as: abdominal obesity (lager waist circumpherence), atherogenic dyslipidemia (low value of HDL-cholesterol and increased level of triglycerides), increased fasting blood glucose (or type 2 DM diagnosis), higher blood pressure or antihypertensive therapy. In 2009 there were created harmonizing criteria for MS definition; the condition for assignment of MS is the presence of any 3 criteria of 5 mentioned above. The underlying disorder of MS is an insulin resistance or prediabetes. The patients with MS more frequently have subclinical (preclinical) target organ disease (TOD) which is the early sings of atherosclerosis. Increased aortic stiffness is one of the preclinical diseases and is defined by pathologically increased carotidofemoral pulse wave velocity in aorta (PWV Ao). With the aim to assess the influence of MS on aortic stiffness we examined the group of women with arterial hypertension and MS and compare them with the group of women without MS. The aortic stiffness was examined by Arteriograph--Tensiomed, the equipment working on the oscillometric principle in detection of pulsations of brachial artery. This method determines the global aortic stiffness based on the analysis of the shape of pulse curve of brachial artery. From the cohort of 49 pts 31 had MS, the subgroups did not differ in age or blood pressure level. The mean number of risk factors per person in MS was 3.7 comparing with 1.7 in those without MS. In the MS group there was more frequently abdominal obesity present (87% vs 44%), increased fasting blood glucose (81% vs 22%) and low HDL-cholesterol level. The pulse wave velocity in aorta, PWV Ao, was significantly higher in patients with MS (mean value 10,19 m/s vs 8,96 m

  2. Treating fructose-induced metabolic changes in mice with high-intensity interval training: insights in the liver, white adipose tissue, and skeletal muscle.

    Motta, Victor F; Bargut, Thereza L; Aguila, Marcia B; Mandarim-de-Lacerda, Carlos A

    2017-10-01

    Fructose-rich caloric sweeteners induce adverse changes in the metabolism of humans. The study evaluated the effects of high-intensity interval training (HIIT) on a fructose feeding model, focusing on the liver, white adipose tissue (WAT), skeletal muscle, and their interplay. Male C57BL/6 mice were fed for 18 wk one of the following diets: control (C; 5% of total energy from fructose) or fructose (F; 55% of total energy from fructose). In the 10th week, for an additional 8-wk period, the groups were divided into nontrained (NT) or HIIT groups, totaling four groups: C-NT, C-HIIT, F-NT, and F-HIIT. At the end of the experiment, fructose consumption in the F-NT group led to a high systolic blood pressure, high plasma triglycerides, insulin resistance with glucose intolerance, and lower insulin sensitivity. We also observed liver steatosis, adipocyte hypertrophy, and diminished gene expressions of peroxisome proliferator-activated receptor-γ coactivator 1-α and fibronectin type III domain containing 5 (FNDC5; irisin) in this F-NT group. These results were accompanied by decreased gene expressions of nuclear respiratory factor 1 and mitochondrial transcription factor A (markers of mitochondrial biogenesis), and peroxisome proliferator-activated receptor-α and carnitine palmitoyltransferase 1 (markers of β-oxidation). HIIT improved all of these data in the C-HIIT and F-HIIT groups. In conclusion, in mice fed a fructose diet, HIIT improved body mass, blood pressure, glucose metabolism, and plasma triglycerides. Liver, WAT, and skeletal muscle were positively modulated by HIIT, indicating HIIT as a coadjutant treatment for diseases affecting these tissues. NEW & NOTEWORTHY We investigated the effects of high-intensity interval training (HIIT) in mice fed a fructose-rich diet and the resulting severe negative effect on the liver, white adipose tissue (WAT), and skeletal muscle, which reduced the expression of fibronectin type III domain containing 5 (FNDC5, irisin) and

  3. Rodent Models for Metabolic Syndrome Research

    Sunil K. Panchal

    2011-01-01

    Full Text Available Rodents are widely used to mimic human diseases to improve understanding of the causes and progression of disease symptoms and to test potential therapeutic interventions. Chronic diseases such as obesity, diabetes and hypertension, together known as the metabolic syndrome, are causing increasing morbidity and mortality. To control these diseases, research in rodent models that closely mimic the changes in humans is essential. This review will examine the adequacy of the many rodent models of metabolic syndrome to mimic the causes and progression of the disease in humans. The primary criterion will be whether a rodent model initiates all of the signs, especially obesity, diabetes, hypertension and dysfunction of the heart, blood vessels, liver and kidney, primarily by diet since these are the diet-induced signs in humans with metabolic syndrome. We conclude that the model that comes closest to fulfilling this criterion is the high carbohydrate, high fat-fed male rodent.

  4. Chronic fructose intake accelerates non-alcoholic fatty liver disease in the presence of essential hypertension.

    Lírio, Layla Mendonça; Forechi, Ludimila; Zanardo, Tadeu Caliman; Batista, Hiago Martins; Meira, Eduardo Frizera; Nogueira, Breno Valentim; Mill, José Geraldo; Baldo, Marcelo Perim

    2016-01-01

    The growing epidemic of metabolic syndrome has been related to the increased use of fructose by the food industry. In fact, the use of fructose as an ingredient has increased in sweetened beverages, such as sodas and juices. We thus hypothesized that fructose intake by hypertensive rats would have a worse prognosis in developing metabolic disorder and non-alcoholic fatty liver disease. Male Wistar and SHR rats aged 6weeks were given water or fructose (10%) for 6weeks. Blood glucose was measured every two weeks, and insulin and glucose sensitivity tests were assessed at the end of the follow-up. Systolic blood pressure was measure by plethysmography. Lean mass and abdominal fat mass were collected and weighed. Liver tissue was analyzed to determine interstitial fat deposition and fibrosis. Fasting glucose increased in animals that underwent a high fructose intake, independent of blood pressure levels. Also, insulin resistance was observed in normotensive and mostly in hypertensive rats after fructose intake. Fructose intake caused a 2.5-fold increase in triglycerides levels in both groups. Fructose intake did not change lean mass. However, we found that fructose intake significantly increased abdominal fat mass deposition in normotensive but not in hypertensive rats. Nevertheless, chronic fructose intake only increased fat deposition and fibrosis in the liver in hypertensive rats. We demonstrated that, in normotensive and hypertensive rats, fructose intake increased triglycerides and abdominal fat deposition, and caused insulin resistance. However, hypertensive rats that underwent fructose intake also developed interstitial fat deposition and fibrosis in liver. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. D-psicose, an epimer of D-fructose, favorably alters lipid metabolism in Sprague-Dawley rats.

    Nagata, Yasuo; Kanasaki, Akane; Tamaru, Shizuka; Tanaka, Kazunari

    2015-04-01

    D-Psicose, a C3 epimer of D-fructose, is known to lower body weight and adipose tissue weight and affect lipid metabolism. The precise mechanism remains unknown. It has been reported that D-psicose has a short half-life and is not metabolized in the body. To determine how D-psicose modifies lipid metabolism, rats were fed diets with or without 3% D-psicose for 4 weeks. Rats were decapitated without fasting every 6 h over a period of 24 h. Changes in serum and liver lipid levels, liver enzyme activity, and gene expression were quantified in experiment 1. Rats fed D-psicose had significantly lower serum insulin and leptin levels. Liver enzyme activities involved in lipogenesis were significantly lowered by the D-psicose diet, whereas gene expression of a transcriptional modulator of fatty acid oxidation was enhanced. In experiment 2, feeding the D-psicose diet gave significantly lower body weight (389 ± 3 vs 426 ± 6 g, p vs 25.7 ± 0.4 g/day, p energy expenditure in the light period and fat oxidation in the dark period compared to rats fed the control diet, whereas carbohydrate oxidation was lower. In summary, these results indicate that the D-psicose diet decreases lipogenesis, increases fatty acid oxidation, and enhances 24 h energy expenditure, leading to d-psicose's potential for weight management.

  6. Incidence and Major Metabolic Risk Factors of Metabolic Syndrome ...

    The study involved 300 (92 males and 208 females) type 2 diabetic patients and was conducted at the Tamale Teaching/Regional Hospital from June 2006 to May 2007. Metabolic syndrome was diagnosed using the National Cholesterol Education Programme, Adult Treatment Panel III (2001) criteria. The incidence of the ...

  7. Beneficiary effect of Commiphora mukul ethanolic extract against high fructose diet induced abnormalities in carbohydrate and lipid metabolism in wistar rats

    Ramesh Bellamkonda

    2018-01-01

    Full Text Available The present study was proposed to elucidate the effect of Commiphora mukul gum resin elthanolic extract treatment on alterations in carbohydrate and lipid metabolisms in rats fed with high-fructose diet. Male Wistar rats were divided into four groups: two of these groups (group C and C+CM were fed with standard pellet diet and the other two groups (group F and F+CM were fed with high fructose (66 % diet. C. mukul suspension in 5% Tween-80 in distilled water (200 mg/kg body weight/day was administered orally to group C+CM and group F+CM. At the end of 60-day experimental period, biochemical parameters related to carbohydrate and lipid metabolisms were assayed. C. mukul treatment completely prevented the fructose-induced increased body weight, hyperglycemia, and hypertriglyceridemia. Hyperinsulinemia and insulin resistance observed in group F decreased significantly with C. mukul treatment in group F+CM. The alterations observed in the activities of enzymes of carbohydrate and lipid metabolisms and contents of hepatic tissue lipids in group F rats were significantly restored to near normal values by C. mukul treatment in group F+CM. In conclusion, our study demonstrated that C. mukul treatment is effective in preventing fructose-induced insulin resistance and hypertriglyceridemia while attenuating the fructose induced alterations in carbohydrate and lipid metabolisms by the extract which was further supported by histopathological results from liver samples which showed regeneration of the hepatocytes. This study suggests that the plant can be used as an adjuvant for the prevention and/or management of insulin resistance and disorders related to it.

  8. Simvastatin-induced cardiac autonomic control improvement in fructose-fed female rats

    Renata Juliana da Silva

    2011-01-01

    Full Text Available OBJECTIVE: Because autonomic dysfunction has been found to lead to cardiometabolic disorders and because studies have reported that simvastatin treatment has neuroprotective effects, the objective of the present study was to investigate the effects of simvastatin treatment on cardiovascular and autonomic changes in fructose-fed female rats. METHODS: Female Wistar rats were divided into three groups: controls (n=8, fructose (n=8, and fructose+ simvastatin (n=8. Fructose overload was induced by supplementing the drinking water with fructose (100 mg/L, 18 wks. Simvastatin treatment (5 mg/kg/day for 2 wks was performed by gavage. The arterial pressure was recorded using a data acquisition system. Autonomic control was evaluated by pharmacological blockade. RESULTS: Fructose overload induced an increase in the fasting blood glucose and triglyceride levels and insulin resistance. The constant rate of glucose disappearance during the insulin intolerance test was reduced in the fructose group (3.4+ 0.32%/min relative to that in the control group (4.4+ 0.29%/min. Fructose+simvastatin rats exhibited increased insulin sensitivity (5.4+0.66%/min. The fructose and fructose+simvastatin groups demonstrated an increase in the mean arterial pressure compared with controls rats (fructose: 124+2 mmHg and fructose+simvastatin: 126 + 3 mmHg vs. controls: 112 + 2 mmHg. The sympathetic effect was enhanced in the fructose group (73 + 7 bpm compared with that in the control (48 + 7 bpm and fructose+simvastatin groups (31+8 bpm. The vagal effect was increased in fructose+simvastatin animals (84 + 7 bpm compared with that in control (49 + 9 bpm and fructose animals (46+5 bpm. CONCLUSION: Simvastatin treatment improved insulin sensitivity and cardiac autonomic control in an experimental model of metabolic syndrome in female rats. These effects were independent of the improvements in the classical plasma lipid profile and of reductions in arterial pressure. These results

  9. Metabolic syndrome pathophysiology and clinical presentation.

    Handelsman, Yehuda

    2009-01-01

    Metabolic syndrome is a relatively new definition, designed to help the health care practitioner to easily identify people at risk for the development of cardiovascular disease and diabetes. With the obesity epidemic, we are witnessing an epidemic of multiple-risk patients. Insulin resistance is the perceived pathophysiology of metabolic syndrome and defines its clinical presentation. Hypertension, dyslipedemia, polycystic ovarian syndrome, fatty liver disease, pre-diabetes, sleep and breathing disorder, certain cancers, and cognitive impairment are many of the presentations of the syndrome; patients with any of these conditions are at a high risk of developing cardiovascular disease and diabetes. The metabolic syndrome helps identify people at risk to allow early intervention for prevention. Lifestyle modification is the most important part of the management of people with the syndrome. Lately medications--though none approved by the U.S. Food and Drug Administration (FDA)--have been recommended by major medical societies when lifestyle modification is not enough or when it fails.

  10. [Obesity and metabolic syndrome in adolescents].

    Cárdenas Villarreal, Velia Margarita; Rizo-Baeza, María M; Cortés Castell, Ernesto

    2009-03-01

    In spite of the lack of a uniform definition for metabolic syndrome in pediatry, recent studies have shown that it develops during childhood and is highly prevalent among children and adolescents who suffer from obesity. In light of the current epidemic of obesity in this age category in western countries, and specifically in Mexico, it becomes essential to know the means to prevent, detect and treat this syndrome. Nurses play an important role in promoting childhood health with regards to metabolic syndrome. To put into practice the strategies which resolve underlying problems related with this syndrome is a priority for the well-being of this age group. These strategies should include the application and management of public policies; the collaboration by health services, social services and schools; but, furthermore, the prevention and the management of this syndrome require a family commitment, while the changes in living habits benefit the entire family. This review article proposes to introduce prevention, diagnostic and treatment strategies which nursing personnel can carry out while dealing with metabolic syndrome in adolescents.

  11. The pharmacological management of metabolic syndrome.

    Rask Larsen, Julie; Dima, Lorena; Correll, Christoph U; Manu, Peter

    2018-04-01

    The metabolic syndrome includes a constellation of several well-established risk factors, which need to be aggressively treated in order to prevent overt type 2 diabetes and cardiovascular disease. While recent guidelines for the treatment of individual components of the metabolic syndrome focus on cardiovascular benefits as resulted from clinical trials, specific recent recommendations on the pharmacological management of metabolic syndrome are lacking. The objective of present paper was to review the therapeutic options for metabolic syndrome and its components, the available evidence related to their cardiovascular benefits, and to evaluate the extent to which they should influence the guidelines for clinical practice. Areas covered: A Medline literature search was performed to identify clinical trials and meta-analyses related to the therapy of dyslipidemia, arterial hypertension, glucose metabolism and obesity published in the past decade. Expert commentary: Our recommendation for first-line pharmacological are statins for dyslipidemia, renin-angiotensin-aldosteron system inhibitors for arterial hypertension, metformin or sodium/glucose cotransporter 2 inhibitors or glucagon-like peptide 1 receptor agonists (GLP-1RAs) for glucose intolerance, and the GLP-1RA liraglutide for achieving body weight and waist circumference reduction.

  12. Sedentary activity associated with metabolic syndrome independent of physical activity

    Bankoski, Andrea; Harris, Tamara B; McClain, James J

    2011-01-01

    This study examined the association between objectively measured sedentary activity and metabolic syndrome among older adults.......This study examined the association between objectively measured sedentary activity and metabolic syndrome among older adults....

  13. Prevalence and characteristics of the metabolic syndrome in ...

    Objective: Chronic pancreatitis (CP) and metabolic syndrome (MS) share a ... patients with other known systemic disorders, long‑term intake of drugs that ... Keywords: Alcohol, chronic pancreatitis, diabetes, hypertension, metabolic syndrome ...

  14. Comparison of breath testing with fructose and high fructose corn syrups in health and IBS.

    Skoog, S M; Bharucha, A E; Zinsmeister, A R

    2008-05-01

    Although incomplete fructose absorption has been implicated to cause gastrointestinal symptoms, foods containing high fructose corn syrup (HFCS) contain glucose. Glucose increases fructose absorption in healthy subjects. Our hypothesis was that fructose intolerance is less prevalent after HFCS consumption compared to fructose alone in healthy subjects and irritable bowel syndrome (IBS). Breath hydrogen levels and gastrointestinal symptoms were assessed after 40 g of fructose (12% solution) prepared either in water or as HFCS, administered in double-blind randomized order on 2 days in 20 healthy subjects and 30 patients with IBS. Gastrointestinal symptoms were recorded on 100-mm Visual Analogue Scales. Breath hydrogen excretion was more frequently abnormal (P fructose (68%) than HFCS (26%) in controls and patients. Fructose intolerance (i.e. abnormal breath test and symptoms) was more prevalent after fructose than HFCS in healthy subjects (25% vs. 0%, P = 0.002) and patients (40% vs. 7%, P = 0.062). Scores for several symptoms (e.g. bloating r = 0.35) were correlated (P fructose but not HFCS; in the fructose group, this association did not differ between healthy subjects and patients. Symptoms were not significantly different after fructose compared to HFCS. Fructose intolerance is more prevalent with fructose alone than with HFCS in health and in IBS. The prevalence of fructose intolerance is not significantly different between health and IBS. Current methods for identifying fructose intolerance should be modified to more closely reproduce fructose ingestion in daily life.

  15. Metabolic syndrome in Tunisian bipolar I patients | Ezzaher | African ...

    Gender, age, illness episode and treatment were not significantly associated with metabolic syndrome, while patients under lithium had higher prevalence of metabolic syndrome than those under valproic acid, carbamazepine or antipsychotics. Patients with metabolic syndrome had significant higher levels of HOMA-IR and ...

  16. Background and treatment of metabolic syndrome: a therapeutic challenge

    van Zwieten, Pieter A.; Mancia, Giuseppe

    2006-01-01

    Metabolic syndrome is characterized by a clustering of cardiovascular and metabolic risk factors. This syndrome is now widely recognized as a distinct pathologic entity. It is receiving a great deal of attention in the medical literature and also in the lay press. People with metabolic syndrome have

  17. Does vitamin D affects components of the metabolic syndrome?

    Sevil Karahan Yılmaz; Aylin Ayaz

    2015-01-01

    Metabolic syndrome is a major public health problem which has become increasingly common worlwide with cardiometabolic complications and have high morbidity and mortality. In addition to some genetical features, environmental factors such sedentary lifestyle, improper eating habits constitutes a risk factor for metabolic syndrome. Important components of the metabolic syndrome are dyslipidemia (low HDL levels, high triglycerides level), hyperglycemia, elevated blood...

  18. THE METABOLIC SYNDROME AMONG PATIENTS WITH ...

    Objectives: To determine the frequency of occurrence of the Metabolic Syndrome among patients presenting with cardiovascular disease at the Korle Bu Teaching Hospital, Ghana. Methods: This was a case-control study of 100 con-secutive cardiovascular disease patients and 100 age- and sex- matched controls who ...

  19. The Association of Metabolic Syndrome and Urolithiasis

    Yee V. Wong

    2015-01-01

    Full Text Available There has been an increasing prevalence of kidney stones over the last 2 decades worldwide. Many studies have indicated a possible association between metabolic syndrome and kidney stone disease, particularly in overweight and obese patients. Many different definitions of metabolic syndrome have been suggested by various organizations, although the definition by the International Diabetes Federation (IDF is universally considered as the most acceptable definition. The IDF definition revolves around 4 core components: obesity, dyslipidemia, hypertension, and diabetes mellitus. Several hypotheses have been proposed to explain the pathophysiology of urolithiasis resulting from metabolic syndrome, amongst which are the insulin resistance and Randall’s plaque hypothesis. Similarly the pathophysiology of calcium and uric acid stone formation has been investigated to determine a connection between the two conditions. Studies have found many factors contributing to urolithiasis in patients suffering from metabolic syndrome, out of which obesity, overweight, and sedentary lifestyles have been identified as major etiological factors. Primary and secondary prevention methods therefore tend to revolve mainly around lifestyle improvements, including dietary and other preventive measures.

  20. Epigenetic priming of the metabolic syndrome.

    Bruce, Kimberley D; Cagampang, Felino R

    2011-05-01

    The metabolic syndrome (MetS) represents a cluster of cardiometabolic risk factors, including central obesity, insulin resistance, glucose intolerance, dyslipidemia, hypertension, hyperinsulinemia and microalbuminuria, and more recently, nonalcoholic fatty liver disease (NAFLD), polycystic ovarian syndrome (PCOS) and atherosclerosis. Although the concept of the MetS is subject to debate due to lack of a unifying underlying mechanism, the prevalence of a metabolic syndrome phenotype is rapidly increasing worldwide. Moreover, it is increasingly prevalent in children and adolescents of obese mothers. Evidence from both epidemiological and experimental animal studies now demonstrates that MetS onset is increasingly likely following exposure to suboptimal nutrition during critical periods of development, as observed in maternal obesity. Thus, the developmental priming of the MetS provides a common origin for this multifactorial disorder. Consequently, the mechanisms leading to this developmental priming have recently been the subject of intensive investigation. This review discusses recent data regarding the epigenetic modifications resulting from nutrition during early development that mediate persistent changes in the expression of key metabolic genes and contribute toward an adult metabolic syndrome phenotype. In addition, this review considers the role of the endogenous molecular circadian clock system, which has the potential to act at the interface between nutrient sensing and epigenetic processing. A continued and greater understanding of these mechanisms will eventually aid in the identification of individuals at high risk of cardiovascular disease (CVD) and type 2 diabetes, and help develop therapeutic interventions, in accordance with current global government strategy.

  1. Metabolic Syndrome X and Colon Cancer

    Matoulek, M.; Svobodová, S.; Svačina, Š.; Plavcová, Marie; Zvárová, Jana; Visokai, V.; Lipská, M.

    2003-01-01

    Roč. 27, suppl. 1 (2003), s. 86 ISSN 0307-0565. [European Congress on Obesity /12./. 29.05.2003-01.06.2003, Helsinki] R&D Projects: GA MZd NB6635; GA MŠk LN00B107 Keywords : metabolic syndrome X * colon cancer Subject RIV: BB - Applied Statistics, Operational Research

  2. Metabolic complications in the small intestine syndrome

    Mora, Rafael; Orozco, Reynaldo

    2000-01-01

    Metabolic complications in the syndrome of small intestine is presented in a patient of masculine sex, 27 years old, who consulted for a square of inflammation gingival, migraine, fever, anorexia and adinamia for three days, followed by maculopapular-eritematose eruption for 8 days, coincident with the ampicillin ingestion, and later on severe abdominal pain and diarrhea

  3. Pleiotropic genes for metabolic syndrome and inflammation

    Kraja, Aldi T; Chasman, Daniel I; North, Kari E

    2014-01-01

    Metabolic syndrome (MetS) has become a health and financial burden worldwide. The MetS definition captures clustering of risk factors that predict higher risk for diabetes mellitus and cardiovascular disease. Our study hypothesis is that additional to genes influencing individual MetS risk factor...

  4. Metabolic aspects of obstructive sleep apnoea syndrome

    M. R. Bonsignore

    2009-06-01

    Full Text Available Insulin resistance is often associated with obstructive sleep apnoea syndrome (OSAS and could contribute to cardiovascular risk in OSAS. Sleep loss and intermittent hypoxia could contribute to the pathogenesis of the metabolic alterations associated with obesity, a common feature of OSAS. The biology of the adipocyte is being increasingly studied, and it has been found that hypoxia negatively affects adipocyte function. In November 2007, the European Respiratory Society and two EU COST Actions (Cardiovascular risk in OSAS (B26 and Adipose tissue and the metabolic syndrome (BM0602, held a Research Seminar in Düsseldorf, Germany, to discuss the following: 1 the effects of hypoxia on glucose metabolism and adipocyte function; 2 the role of inflammatory activation in OSAS and obesity; 3 the alarming rates of obesity and OSAS in children; 4 the harmful effects of the metabolic syndrome in OSAS; 5 the effects of OSAS treatment on metabolic variables; and 6 the relationship between daytime sleepiness and hormonal and inflammatory responses. Insulin resistance in skeletal muscle, the role of the endocannabinoid system and novel pharmacological approaches to treat insulin resistance were also discussed. As obesity and hypoxia could be the basic links between OSAS and adipocyte dysfunction, further research is needed to translate these new data into clinical practice.

  5. Treating metabolic syndrome's metaflammation with low level light therapy: preliminary results

    Yoshimura, Tania M.; Kato, Ilka T.; Deana, Alessandro M.; Ribeiro, Martha S.

    2014-02-01

    Metabolic syndrome comprises a constellation of morbidities such as insulin resistance, hyperinsulinemia, atherogenic dyslipidemia, dysglycemia and obesity (especially abdominal). Metabolic alterations are observed in major insulin target organs, increasing the risk of cardiovascular diseases, type-2 diabetes and therefore mortality. Tissue alterations are characterized by immune cells infiltrates (especially activated macrophages). Released inflammatory mediators such as TNF-α induce chronic inflammation in subjects with metabolic syndrome, since inflammatory pathways are activated in the neighboring cells. The intra-abdominal adipose tissue appears to be of particular importance in the onset of the inflammatory state, and strategies contributing to modulate the inflammatory process within this adipose tissue can mitigate the metabolic syndrome consequences. Considering the low level light therapy (LLLT) recognized benefits in inflammatory conditions, we hypothesized this therapeutic approach could promote positive effects in modulating the inflammatory state of metabolic syndrome. That being the scope of this study, male C57BL/6 mice were submitted to a high-fat/high-fructose diet among 8 weeks to induce metabolic syndrome. Animals were then irradiated on the abdominal region during 21 days using an 850 nm LED (6 sessions, 300 seconds per session, 60 mW output power, ~6 J/cm2 fluence, ~19 mW/cm2 fluence rate). Before and during treatment, blood was sampled either from the retroorbital plexus or from tail puncture for glucose, total cholesterol and triglycerides analysis. So far our results indicate no alterations on these metabolic parameters after LLLT. For further investigations, blood was collected for plasma inflammatory cytokine quantification and fresh ex vivo samples of liver and intra-abdominal adipose tissue were harvested for immunohistochemistry purposes.

  6. Historical perspectives of the metabolic syndrome.

    Oda, Eiji

    The metabolic syndrome (MetS) or insulin resistance syndrome is a constellation of obesity-related metabolic derangements predisposing to type 2 diabetes and cardiovascular disease. In 1998, WHO defined the first criteria of MetS. Three years later, the user-friendly National Cholesterol Education Program criteria of MetS were proposed. Different criteria were issued by the International Diabetes Federation in 2005, making abdominal obesity a necessary component. Several international societies, including The International Diabetes Federation, jointly adopted the revised National Cholesterol Education Program criteria as harmonizing criteria of MetS in 2009. WHO warned the next year that MetS has limited practical utility as a management tool. Adipose tissue inflammation has been shown to be a fundamental mechanism of metabolic derangements, associated with ectopic lipid deposit and mitochondrial dysfunction in skeletal muscle and the liver. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. A Green Algae Mixture of Scenedesmus and Schroederiella Attenuates Obesity-Linked Metabolic Syndrome in Rats

    Kumar, Senthil Arun; Magnusson, Marie; Ward, Leigh C.; Paul, Nicholas A.; Brown, Lindsay

    2015-01-01

    This study investigated the responses to a green algae mixture of Scenedesmus dimorphus and Schroederiella apiculata (SC) containing protein (46.1% of dry algae), insoluble fibre (19.6% of dry algae), minerals (3.7% of dry algae) and omega-3 fatty acids (2.8% of dry algae) as a dietary intervention in a high carbohydrate, high fat diet-induced metabolic syndrome model in four groups of male Wistar rats. Two groups were fed with a corn starch diet containing 68% carbohydrates as polysaccharides, while the other two groups were fed a diet high in simple carbohydrates (fructose and sucrose in food, 25% fructose in drinking water, total 68%) and fats (saturated and trans fats from beef tallow, total 24%). High carbohydrate, high fat-fed rats showed visceral obesity with hypertension, insulin resistance, cardiovascular remodelling, and nonalcoholic fatty liver disease. SC supplementation (5% of food) lowered total body and abdominal fat mass, increased lean mass, and attenuated hypertension, impaired glucose and insulin tolerance, endothelial dysfunction, infiltration of inflammatory cells into heart and liver, fibrosis, increased cardiac stiffness, and nonalcoholic fatty liver disease in the high carbohydrate, high fat diet-fed rats. This study suggests that the insoluble fibre or protein in SC helps reverse diet-induced metabolic syndrome. PMID:25875119

  8. Nutrition, Epigenetics, and Metabolic Syndrome

    Wang, Junjun; Wu, Zhenlong; Li, Defa; Li, Ning; Dindot, Scott V.; Satterfield, M. Carey; Bazer, Fuller W.; Wu, Guoyao

    2012-01-01

    Significance: Epidemiological and animal studies have demonstrated a close link between maternal nutrition and chronic metabolic disease in children and adults. Compelling experimental results also indicate that adverse effects of intrauterine growth restriction on offspring can be carried forward to subsequent generations through covalent modifications of DNA and core histones. Recent Advances: DNA methylation is catalyzed by S-adenosylmethionine-dependent DNA methyltransferases. Methylation...

  9. Acute metabolic and endocrine responses induced by glucose and fructose in healthy young subjects: A double-blinded, randomized, crossover trial.

    Cai, Wenwen; Li, Jie; Shi, Jiahui; Yang, Bo; Tang, Jun; Truby, Helen; Li, Duo

    2018-04-01

    A rise in fructose consumption has been implicated in the etiology of obesity, diabetes and cardiovascular disease. Serum uric acid (UA) elevates after fructose ingestion, increasing the risk of cardiovascular disease. However, the impact of fructose ingestion on nitric oxide (NO) has not yet been confirmed. The aim of this study was to investigate the postprandial metabolic and endocrine responses following an acute ingestion of fructose and glucose in healthy subjects. This was a double-blinded, randomized, crossover postprandial trial. Eighteen healthy young subjects (9 males and 9 females) with a mean age of 23.6 ± 2.3 years and mean BMI of 20.2 ± 1.5 kg/m 2 completed the experiment that was conducted in Hangzhou, China. Volunteers were randomized to two groups (A and B): after an 8-h overnight fast, volunteers either ingested 300 mL of 25% glucose (group A) or fructose (group B) solution at 0830 within 5 min. After a one-week washout period, volunteers were crossed over to receive the alternate test solution. Blood pressure was measured at 0 h, 1 h, 2 h and 3 h and venous blood was drawn at 0 h, 0.5 h, 1 h, 2 h and 3 h after ingestion of the test solution. Eighteen subjects completed the study. Serum NO level tended to be lower at 1 h (59.40 ± 3.10 μmol/L and 68.1 ± 3.40 μmol/L, respectively, p ≤ 0.05) and 2 h (62.70 ± 3.10 μmol/L and 70.10 ± 3.50 μmol/L, respectively, p ≤ 0.05) after fructose ingestion than after glucose. The 3-h AUC (area under curve) of NO was significantly lower after fructose ingestion than after glucose (p ≤ 0.05). UA level was higher at 1 h (512.17 ± 17.74 μmol/L and 372.11 ± 17.41 μmol/L, respectively, p ≤ 0.01) and 2 h (440.22 ± 16.07 μmol/L and 357.39 ± 14.80 μmol/L, respectively, p ≤ 0.05) after fructose ingestion than after glucose. The 3-h AUC of UA was significantly higher after fructose ingestion than after glucose (p ≤ 0.01). Correlation

  10. A Comprehensive Review on Metabolic Syndrome

    Jaspinder Kaur

    2014-01-01

    Full Text Available Metabolic syndrome is defined by a constellation of interconnected physiological, biochemical, clinical, and metabolic factors that directly increases the risk of cardiovascular disease, type 2 diabetes mellitus, and all cause mortality. Insulin resistance, visceral adiposity, atherogenic dyslipidemia, endothelial dysfunction, genetic susceptibility, elevated blood pressure, hypercoagulable state, and chronic stress are the several factors which constitute the syndrome. Chronic inflammation is known to be associated with visceral obesity and insulin resistance which is characterized by production of abnormal adipocytokines such as tumor necrosis factor α, interleukin-1 (IL-1, IL-6, leptin, and adiponectin. The interaction between components of the clinical phenotype of the syndrome with its biological phenotype (insulin resistance, dyslipidemia, etc. contributes to the development of a proinflammatory state and further a chronic, subclinical vascular inflammation which modulates and results in atherosclerotic processes. Lifestyle modification remains the initial intervention of choice for such population. Modern lifestyle modification therapy combines specific recommendations on diet and exercise with behavioural strategies. Pharmacological treatment should be considered for those whose risk factors are not adequately reduced with lifestyle changes. This review provides summary of literature related to the syndrome’s definition, epidemiology, underlying pathogenesis, and treatment approaches of each of the risk factors comprising metabolic syndrome.

  11. Sensory dysfunction of bladder mucosa and bladder oversensitivity in a rat model of metabolic syndrome.

    Wei-Chia Lee

    Full Text Available PURPOSE: To study the role of sensory dysfunction of bladder mucosa in bladder oversensitivity of rats with metabolic syndrome. MATERIALS AND METHODS: Female Wistar rats were fed a fructose-rich diet (60% or a normal diet for 3 months. Based on cystometry, the fructose-fed rats (FFRs were divided into a group with normal detrusor function or detrusor overactivity (DO. Acidic adenosine triphosphate (ATP solution (5mM, pH 3.3 was used to elicit reflex micturition. Cystometric parameters were evaluated before and after drug administration. Functional proteins of the bladder mucosa were assessed by western blotting. RESULTS: Compared to the controls, intravesical acidic ATP solution instillation induced a significant increase in provoked phasic contractions in both FFR groups and a significant decrease in the mean functional bladder capacity of group DO. Pretreatment with capsaicin for C-fiber desentization, intravesical liposome for mucosal protection, or intravenous pyridoxal 5-phosphate 6-azophenyl-2',4'-disulfonic acid for antagonized purinergic receptors can interfere with the urodynamic effects of intravesical ATP in FFRs and controls. Over-expression of TRPV1, P2X(3, and iNOS proteins, and down-regulation of eNOS proteins were observed in the bladder mucosa of both fructose-fed groups. CONCLUSIONS: Alterations of sensory receptors and enzymes in the bladder mucosa, including over-expression of TRPV1, P2X(3, and iNOS proteins, can precipitate the emergence of bladder phasic contractions and oversensitivity through the activation of C-afferents during acidic ATP solution stimulation in FFRs. The down-regulation of eNOS protein in the bladder mucosa of FFRs may lead to a failure to suppress bladder oversensitivity and phasic contractions. Sensory dysfunction of bladder mucosa and DO causing by metabolic syndrome are easier to elicit bladder oversensitivity to certain urothelium stimuli.

  12. Health Implications of High-Fructose Intake and Current Research12

    Dornas, Waleska C; de Lima, Wanderson G; Pedrosa, Maria L; Silva, Marcelo E

    2015-01-01

    Although fructose consumption has dramatically increased and is suspected to be causally linked to metabolic abnormalities, the mechanisms involved are still only partially understood. We discuss the available data and investigate the effects of dietary fructose on risk factors associated with metabolic disorders. The evidence suggests that fructose may be a predisposing cause in the development of insulin resistance in association with the induction of hypertriglyceridemia. Experiments in animals have shown this relation when they are fed diets very high in fructose or sucrose, and human studies also show this relation, although with conflicting results due to the heterogeneity of the studies. The link between increased fructose consumption and increases in uric acid also has been confirmed as a potential risk factor for metabolic syndrome, and insulin resistance/hyperinsulinemia may be causally related to the development of hypertension. Collectively, these results suggest a link between high fructose intake and insulin resistance, although future studies must be of reasonable duration, use defined populations, and improve comparisons regarding the effects of relevant doses of nutrients on specific endpoints to fully understand the effect of fructose intake in the absence of potential confounding factors. PMID:26567197

  13. Nitric oxide and mitochondria in metabolic syndrome

    Litvinova, Larisa; Atochin, Dmitriy N.; Fattakhov, Nikolai; Vasilenko, Mariia; Zatolokin, Pavel; Kirienkova, Elena

    2015-01-01

    Metabolic syndrome (MS) is a cluster of metabolic disorders that collectively increase the risk of cardiovascular disease. Nitric oxide (NO) plays a crucial role in the pathogeneses of MS components and is involved in different mitochondrial signaling pathways that control respiration and apoptosis. The present review summarizes the recent information regarding the interrelations of mitochondria and NO in MS. Changes in the activities of different NO synthase isoforms lead to the formation of metabolic disorders and therefore are highlighted here. Reduced endothelial NOS activity and NO bioavailability, as the main factors underlying the endothelial dysfunction that occurs in MS, are discussed in this review in relation to mitochondrial dysfunction. We also focus on potential therapeutic strategies involving NO signaling pathways that can be used to treat patients with metabolic disorders associated with mitochondrial dysfunction. The article may help researchers develop new approaches for the diagnosis, prevention and treatment of MS. PMID:25741283

  14. Polycystic ovary syndrome, adipose tissue and metabolic syndrome.

    Delitala, Alessandro P; Capobianco, Giampiero; Delitala, Giuseppe; Cherchi, Pier Luigi; Dessole, Salvatore

    2017-09-01

    Polycystic ovary syndrome (PCOS) is the most common endocrine disorder that affects women of reproductive age and is characterized by ovulatory dysfunction and/or androgen excess or polycystic ovaries. Women with PCOS present a number of systemic symptoms in addition to those related to the reproductive system. It has been associated with functional derangements in adipose tissue, metabolic syndrome, type 2 diabetes, and an increased risk of cardiovascular disease (CVD). A detailed literature search on Pubmed was done for articles about PCOS, adipokines, insulin resistance, and metabolic syndrome. Original articles, reviews, and meta-analysis were included. PCOS women are prone to visceral fat hypertrophy in the presence of androgen excess and the presence of these conditions is related to insulin resistance and worsens the PCO phenotype. Disturbed secretion of many adipocyte-derived substances (adipokines) is associated with chronic low-grade inflammation and contributes to insulin resistance. Abdominal obesity and insulin resistance stimulate ovarian and adrenal androgen production, and may further increase abdominal obesity and inflammation, thus creating a vicious cycle. The high prevalence of metabolic disorders mainly related to insulin resistance and CVD risk factors in women with PCOS highlight the need for early lifestyle changes for reducing metabolic risks in these patients.

  15. Hereditary fructose intolerance

    Fructosemia; Fructose intolerance; Fructose aldolase B-deficiency; Fructose-1, 6-bisphosphate aldolase deficiency ... B. This substance is needed to break down fructose. If a person without this substance eats fructose ...

  16. Metabolic syndrome in patients with severe mental illness in Gorgan

    Kamkar, Mohammad Zaman; Sanagoo, Akram; Zargarani, Fatemeh; Jouybari, Leila; Marjani, Abdoljalal

    2016-01-01

    Background: Metabolic syndrome is commonly associated with cardiovascular diseases and psychiatric mental illness. Hence, we aimed to assess the metabolic syndrome among severe mental illness (SMI). Materials and Methods: The study included 267 patients who were referred to the psychiatric unit at 5th Azar Education Hospital of Golestan University of Medical Sciences in Gorgan, Iran. Results: The mean waist circumference, systolic and diastolic blood pressure, triglyceride and fasting blood glucose levels were significantly higher in the SMI with metabolic syndrome, but the high density lipoprotein (HDL)-cholesterol was significantly lower. The prevalence of metabolic syndrome in SMI patients was 20.60%. There were significant differences in the mean of waist circumference, systolic (except for women) and diastolic blood pressure, triglyceride, HDL-cholesterol and fasting blood glucose in men and women with metabolic syndrome when compared with subjects without metabolic syndrome. The prevalence of metabolic syndrome in SMI women was higher than men. The most age distribution was in range of 30-39 years old. The most prevalence of metabolic syndrome was in age groups 50-59 years old. The prevalence of metabolic syndrome was increased from 30 to 59 years old. Conclusion: The prevalence of metabolic syndrome in patients with SMI in Gorgan is almost similar to those observed in Asian countries. The prevalence of metabolic syndrome was lower than western countries. These observations may be due to cultural differences in the region. It should be mention that the families of mental illness subjects in our country believe that their patients must be cared better than people without mental illness. These findings of this study suggest that mental illness patients are at risk of metabolic syndrome. According to our results, risk factors such as age and gender differences may play an important role in the presence of metabolic syndrome. In our country, women do less

  17. A Review of Hereditary Fructose Intolerance

    Mogoş Tiberius

    2016-03-01

    Full Text Available Fructose intolerance is a metabolic disorder with hereditary determinism, clinically manifested on terms of fructose intake. Untreated, hereditary fructose intolerance may result in renal and hepatic failure. Unfortunately, there are no formal diagnostic and surveillance guidelines for this disease. If identified and treated before the occurrence of permanent organ damage, patients can improve their symptoms and self-rated health. Implementation and adherence to a strict fructose free diet is often difficult, but not impossible.

  18. Metabolic syndrome as a risk factor for neurological disorders.

    Farooqui, Akhlaq A; Farooqui, Tahira; Panza, Francesco; Frisardi, Vincenza

    2012-03-01

    The metabolic syndrome is a cluster of common pathologies: abdominal obesity linked to an excess of visceral fat, insulin resistance, dyslipidemia and hypertension. At the molecular level, metabolic syndrome is accompanied not only by dysregulation in the expression of adipokines (cytokines and chemokines), but also by alterations in levels of leptin, a peptide hormone released by white adipose tissue. These changes modulate immune response and inflammation that lead to alterations in the hypothalamic 'bodyweight/appetite/satiety set point,' resulting in the initiation and development of metabolic syndrome. Metabolic syndrome is a risk factor for neurological disorders such as stroke, depression and Alzheimer's disease. The molecular mechanism underlying the mirror relationship between metabolic syndrome and neurological disorders is not fully understood. However, it is becoming increasingly evident that all cellular and biochemical alterations observed in metabolic syndrome like impairment of endothelial cell function, abnormality in essential fatty acid metabolism and alterations in lipid mediators along with abnormal insulin/leptin signaling may represent a pathological bridge between metabolic syndrome and neurological disorders such as stroke, Alzheimer's disease and depression. The purpose of this review is not only to describe the involvement of brain in the pathogenesis of metabolic syndrome, but also to link the pathogenesis of metabolic syndrome with neurochemical changes in stroke, Alzheimer's disease and depression to a wider audience of neuroscientists with the hope that this discussion will initiate more studies on the relationship between metabolic syndrome and neurological disorders. © Springer Basel AG 2011

  19. Cardiorespiratory fitness and the metabolic syndrome

    Wedell-Neergaard, Anne-Sophie; Krogh-Madsen, Rikke; Petersen, Gitte Lindved

    2018-01-01

    and plasma levels of cytokines and high sensitive C-reactive protein as outcomes and measures of abdominal obesity were added to test if they explained the potential association. Similarly, multiple linear regression models were performed with CR-fitness as exposure and factors of the metabolic syndrome...... sensitive C-reactive protein, Interleukin (IL)-6, and IL-18, and directly associated with the anti-inflammatory cytokine IL-10, but not associated with tumor necrosis factor alpha, interferon gamma or IL-1β. Abdominal obesity could partly explain the significant associations. Moreover, CR...... these associations. CONCLUSION: Data suggest that CR-fitness has anti-inflammatory effects that are partly explained by a reduction in abdominal obesity and a decrease in the metabolic syndrome risk profile. The overall inflammatory load was mainly driven by high sensitive C-reactive protein and IL-6....

  20. Obesity and Metabolic Syndrome in Korea

    Sang Woo Oh

    2011-12-01

    Full Text Available In Korea, a person with a body mass index (BMI ≥25 kg/m2 is considered obese, and a person with a BMI ≥30 kg/m2 is classified as severely obese. Central obesity is defined as a waist circumference ≥90 cm for Korean men and ≥85 cm for Korean women. Recent epidemiologic data show that the prevalence of severe obesity and metabolic syndrome is steadily increasing. These epidemics increased morbidity and mortality of type 2 diabetes, cardiovascular diseases, and obesity-related cancers such as breast, colorectal, and other cancers in Korea. Decreased physical activity, increased fat and alcohol consumption, heavy smoking, and stress/depressed mood are the primary modifiable life-style risk factors for Koreans. Recently, public health interventions to encourage life-style changes have shown promising results in reducing the prevalence of severe obesity and metabolic syndrome.

  1. Prevalence of Hypertension within the Metabolic Syndrome

    Tomečková, Marie; Grünfeldová, H.; Peleška, Jan; Hanuš, P.; Marušiaková, Miriam

    2007-01-01

    Roč. 30 (2007), s. 371-372 ISSN 1420-4096. [Central European Meeting on Hypertension and Cardiovascular Disease Prevention. 11.10.2007-13.10.2007, Kraków] R&D Projects: GA MŠk(CZ) 1M06014 Institutional research plan: CEZ:AV0Z10300504 Keywords : metabolic syndrome * hypertension Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery

  2. Presence of metabolic syndrome in football linemen.

    Buell, Jackie L; Calland, Doug; Hanks, Fiona; Johnston, Bruce; Pester, Benjamin; Sweeney, Robert; Thorne, Robert

    2008-01-01

    Metabolic syndrome is a clustering of symptoms associated with abdominal obesity that demonstrates a high risk for cardiovascular disease and type II diabetes mellitus. To evaluate football linemen in National Collegiate Athletic Association Divisions I, II, and III schools for the presence of metabolic syndrome according to the American Heart Association/National Heart, Lung, and Blood Institute criteria as well as to document other related biomarkers. Cross-sectional descriptive study. Three university locations on the first full day of football camp in early morning. Of 76 football linemen, 70 were able to provide blood samples. Height, mass, blood pressure, upper-body skinfolds, and waist circumference were measured at various stations. Two small venous samples of blood were collected and analyzed in a hospital laboratory for fasting insulin, glucose, high-density lipoprotein, total cholesterol, triglycerides, C-reactive protein, and glycosylated hemoglobin. The last station was a verbal family history for cardiovascular disease and diabetes; also, athletes filled out a nutrition attitudes questionnaire. Of the 70 athletes, 34 were identified as having metabolic syndrome according to measures of blood pressure, waist circumference, fasting glucose, high-density lipoprotein, and triglycerides. The mean total cholesterol-to-high-density lipoprotein cholesterol ratio for the group was 4.95, with 32 participants displaying values higher than 5.0. Twelve volunteers had total cholesterol levels greater than 200 mmol/L, 15 had high levels of C-reactive protein, and 9 had slightly elevated levels of glycosylated hemoglobin. Although athletes might be assumed to be protected from risks of cardiovascular disease, we found a high incidence of metabolic syndrome and other associated adverse biomarkers for heart disease in collegiate football linemen. Early screening, awareness, and intervention may have favorable effects on the overall health outcomes of football linemen.

  3. The Global Epidemic of the Metabolic Syndrome.

    Saklayen, Mohammad G

    2018-02-26

    Metabolic syndrome, variously known also as syndrome X, insulin resistance, etc., is defined by WHO as a pathologic condition characterized by abdominal obesity, insulin resistance, hypertension, and hyperlipidemia. Though there is some variation in the definition by other health care organization, the differences are minor. With the successful conquest of communicable infectious diseases in most of the world, this new non-communicable disease (NCD) has become the major health hazard of modern world. Though it started in the Western world, with the spread of the Western lifestyle across the globe, it has become now a truly global problem. The prevalence of the metabolic syndrome is often more in the urban population of some developing countries than in its Western counterparts. The two basic forces spreading this malady are the increase in consumption of high calorie-low fiber fast food and the decrease in physical activity due to mechanized transportations and sedentary form of leisure time activities. The syndrome feeds into the spread of the diseases like type 2 diabetes, coronary diseases, stroke, and other disabilities. The total cost of the malady including the cost of health care and loss of potential economic activity is in trillions. The present trend is not sustainable unless a magic cure is found (unlikely) or concerted global/governmental/societal efforts are made to change the lifestyle that is promoting it. There are certainly some elements in the causation of the metabolic syndrome that cannot be changed but many are amenable for corrections and curtailments. For example, better urban planning to encourage active lifestyle, subsidizing consumption of whole grains and possible taxing high calorie snacks, restricting media advertisement of unhealthy food, etc. Revitalizing old fashion healthier lifestyle, promoting old-fashioned foods using healthy herbs rather than oil and sugar, and educating people about choosing healthy/wholesome food over junks

  4. Migraine, cerebrovascular disease and the metabolic syndrome

    Alexandra J Sinclair

    2012-01-01

    Full Text Available Evidence is emerging that migraine is not solely a headache disorder. Observations that ischemic stroke could occur in the setting of a migraine attack, and that migraine headaches could be precipitated by cerebral ischemia, initially highlighted a possibly association between migraine and cerebrovascular disease. More recently, large population-based studies that have demonstrated that migraineurs are at increased risk of stroke outside the setting of a migraine attack have prompted the concept that migraine and cerebrovascular disease are comorbid conditions. Explanations for this association are numerous and widely debated, particularly as the comorbid association does not appear to be confined to the cerebral circulation as cardiovascular and peripheral vascular disease also appear to be comorbid with migraine. A growing body of evidence has also suggested that migraineurs are more likely to be obese, hypertensive, hyperlipidemic and have impaired insulin sensitivity, all features of the metabolic syndrome. The comorbid association between migraine and cerebrovascular disease may consequently be explained by migraineurs having the metabolic syndrome and consequently being at increased risk of cerebrovascular disease. This review will summarise the salient evidence suggesting a comorbid association between migraine, cerebrovascular disease and the metabolic syndrome.

  5. Effects of oral D-tagatose, a stereoisomer of D-fructose, on liver metabolism in man as examined by 31P-magnetic resonance spectroscopy.

    Buemann, B; Gesmar, H; Astrup, A; Quistorff, B

    2000-10-01

    D-tagatose, which is a stereoisomer of D-fructose, is phosphorylated to D-tagatose-1-phosphate by fructokinase in the liver. Because of a slow degradation rate of D-tagatose-1-phosphate, this substance may accumulate, and ingested D-tagatose may therefore cause a longer lasting reduction in inorganic phosphate (Pi) and adenosine triphosphate (ATP) levels in the liver compared with D-fructose. Similar to what is seen in patients with hereditary fructose intolerance, this may increase purine nucleotide degradation and thereby increase uric acid production. The effect of 30 g D-tagatose or D-fructose administered orally on ketohexose-1-phosphates, ATP, and Pi levels in the liver was studied by 31P-magnetic resonance spectroscopy (PMRS) in 5 young male volunteers. Blood and urine were collected to detect a possible increased uric acid production. A peak at 5.2 ppm assigned as D-tagatose-1-phosphate equivalent to about 1 mmol/L was found in the spectrum within 30 minutes after D-tagatose was administered in all subjects. Concomitantly, ATP was reduced by about 12% (P effects had vanished after 150 minutes. Serum uric acid concentration was increased by 17% 50 minutes after D-tagatose (P effect of D-tagatose. No changes in 31PMRS spectra or serum uric acid concentration were found after D-fructose. These results suggest that a moderate intake of D-tagatose may affect liver metabolism by phosphate trapping despite the fact that the sugar may only be incompletely absorbed in the gut.

  6. Amelioration of Abnormalities Associated with the Metabolic Syndrome by Spinacia oleracea (Spinach) Consumption and Aerobic Exercise in Rats.

    Panda, Vandana; Mistry, Kinjal; Sudhamani, S; Nandave, Mukesh; Ojha, Shreesh Kumar

    2017-01-01

    The present study evaluates the protective effects of an antioxidant-rich extract of Spinacea oleracea (NAOE) in abnormalities associated with the metabolic syndrome (MetS) in rats. HPTLC of NAOE revealed the presence of 13 total antioxidants, 14 flavonoids, and 10 phenolic acids. Rats administered with fructose (20%  w / v ) in drinking water for 45 days to induce abnormalities of MetS received NAOE (200 and 400 mg/kg, po), the standard drug gemfibrozil (60 mg/kg, po), aerobic exercise (AE), and a combination of NAOE 400 mg/kg and AE (NAOEAE) daily for 45 days. All treatments significantly altered the lipid profile and attenuated the fructose-elevated levels of uric acid, C-reactive protein, homocysteine, and marker enzymes (AST, LDH, and CK-MB) in serum and malondialdehyde in the heart and restored the fructose-depleted levels of glutathione and antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase). A significant decrease in blood glucose and insulin levels decreased insulin resistance, and improved glucose tolerance was observed in the treatment animals when compared with the fructose-fed animals. The best mitigation of MetS was shown by the NAOEAE treatment indicating that regular exercise along with adequate consumption of antioxidant-rich foods such as spinach in diet can help control MetS.

  7. Amelioration of Abnormalities Associated with the Metabolic Syndrome by Spinacia oleracea (Spinach Consumption and Aerobic Exercise in Rats

    Vandana Panda

    2017-01-01

    Full Text Available The present study evaluates the protective effects of an antioxidant-rich extract of Spinacea oleracea (NAOE in abnormalities associated with the metabolic syndrome (MetS in rats. HPTLC of NAOE revealed the presence of 13 total antioxidants, 14 flavonoids, and 10 phenolic acids. Rats administered with fructose (20% w/v in drinking water for 45 days to induce abnormalities of MetS received NAOE (200 and 400 mg/kg, po, the standard drug gemfibrozil (60 mg/kg, po, aerobic exercise (AE, and a combination of NAOE 400 mg/kg and AE (NAOEAE daily for 45 days. All treatments significantly altered the lipid profile and attenuated the fructose-elevated levels of uric acid, C-reactive protein, homocysteine, and marker enzymes (AST, LDH, and CK-MB in serum and malondialdehyde in the heart and restored the fructose-depleted levels of glutathione and antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase. A significant decrease in blood glucose and insulin levels decreased insulin resistance, and improved glucose tolerance was observed in the treatment animals when compared with the fructose-fed animals. The best mitigation of MetS was shown by the NAOEAE treatment indicating that regular exercise along with adequate consumption of antioxidant-rich foods such as spinach in diet can help control MetS.

  8. Maternal Fructose Intake Induces Insulin Resistance and Oxidative Stress in Male, but Not Female, Offspring

    Lourdes Rodríguez

    2015-01-01

    Full Text Available Objective. Fructose intake from added sugars correlates with the epidemic rise in metabolic syndrome and cardiovascular diseases. However, consumption of beverages containing fructose is allowed during gestation. Recently, we found that an intake of fructose (10% wt/vol throughout gestation produces an impaired fetal leptin signalling. Therefore, we have investigated whether maternal fructose intake produces subsequent changes in their progeny. Methods. Blood samples from fed and 24 h fasted female and male 90-day-old rats born from fructose-fed, glucose-fed, or control mothers were used. Results. After fasting, HOMA-IR and ISI (estimates of insulin sensitivity were worse in male descendents from fructose-fed mothers in comparison to the other two groups, and these findings were also accompanied by a higher leptinemia. Interestingly, plasma AOPP and uricemia (oxidative stress markers were augmented in male rats from fructose-fed mothers compared to the animals from control or glucose-fed mothers. In contrast, female rats did not show any differences in leptinemia between the three groups. Further, insulin sensitivity was significantly improved in fasted female rats from carbohydrate-fed mothers. In addition, plasma AOPP levels tended to be diminished in female rats from carbohydrate-fed mothers. Conclusion. Maternal fructose intake induces insulin resistance, hyperleptinemia, and plasma oxidative stress in male, but not female, progeny.

  9. Melatonin, mitochondria, and the metabolic syndrome.

    Cardinali, Daniel P; Vigo, Daniel E

    2017-11-01

    A number of risk factors for cardiovascular disease including hyperinsulinemia, glucose intolerance, dyslipidemia, obesity, and elevated blood pressure are collectively known as metabolic syndrome (MS). Since mitochondrial activity is modulated by the availability of energy in cells, the disruption of key regulators of metabolism in MS not only affects the activity of mitochondria but also their dynamics and turnover. Therefore, a link of MS with mitochondrial dysfunction has been suspected since long. As a chronobiotic/cytoprotective agent, melatonin has a special place in prevention and treatment of MS. Melatonin levels are reduced in diseases associated with insulin resistance like MS. Melatonin improves sleep efficiency and has antioxidant and anti-inflammatory properties, partly for its role as a metabolic regulator and mitochondrial protector. We discuss in the present review the several cytoprotective melatonin actions that attenuate inflammatory responses in MS. The clinical data that support the potential therapeutical value of melatonin in human MS are reviewed.

  10. Effect of different exercise intensities on the pancreas of animals with metabolic syndrome.

    Amaral, Fernanda; Lima, Nathalia Ea; Ornelas, Elisabete; Simardi, Lucila; Fonseca, Fernando Luiz Affonso; Maifrino, Laura Beatriz Mesiano

    2015-01-01

    Metabolic syndrome (MS) comprises several metabolic disorders that are risk factors for cardiovascular disease and has its source connected to the accumulation of visceral adipose tissue (VAT) and development of insulin resistance. Despite studies showing beneficial results of exercise on several risk factors for cardiovascular disease, studies evaluating the effects of different intensities of exercise training on the pancreas with experimental models are scarce. In total, 20 Wistar rats were used, divided into four groups: control (C), metabolic syndrome (MS and without exercise), metabolic syndrome and practice of walking (MSWalk), and metabolic syndrome and practice of running (MSRun). The applied procedures were induction of MS by fructose in drinking water; experimental protocol of walking and running; weighing of body mass and VAT; sacrifice of animals with blood collection and removal of organs and processing of samples for light microscopy using the analysis of volume densities (Vv) of the studied structures. Running showed a reduction of VAT weight (-54%), triglyceride levels (-40%), Vv[islet] (-62%), Vv[islet.cells] (-22%), Vv[islet.insterstitial] (-44%), and Vv[acinar.insterstitial] (-24%) and an increase of Vv[acini] (+21%) and Vv[acinar.cells] (+22%). Regarding walking, we observed a decrease of VAT weight (-34%) and triglyceride levels (-27%), an increase of Vv[islet.cells] (+72%) and Vv[acinar.cells] (+7%), and a decrease of Vv[acini] (-4%) and Vv[acinar.insterstitial] (-16%) when compared with those in the MS group. Our results suggest that the experimental model with low-intensity exercise (walking) seems to be more particularly recommended for preventing morphological and metabolic disorders occurring in the MS.

  11. Prevalence of the metabolic syndrome among employees in Northeast China

    Wang, X; Yang, Fang; Bots, Michiel L.; Guo, Wei Ying; Zhao, Bing; Hoes, Arno W.; Vaartjes, Ilonca

    2015-01-01

    Background: The metabolic syndrome is a clustering of metabolic abnormalities and has been associated with increased risk of type 2 diabetes mellitus and cardiovascular disease. This study aimed to estimate the prevalence of the metabolic syndrome among employees in Northeast China. Methods:

  12. Risk factors for metabolic syndrome after liver transplantation

    Thoefner, Line Buch; Rostved, Andreas Arendtsen; Pommergaard, Hans-Christian

    2018-01-01

    syndrome after liver transplantation. METHODS: The databases Medline and Scopus were searched for observational studies evaluating prevalence and risk factors for metabolic syndrome after liver transplantation. Meta-analyses were performed based on odds ratios (ORs) from multivariable analyses...

  13. Chronic psychological stress and high-fat high-fructose diet disrupt metabolic and inflammatory gene networks in the brain, liver, and gut and promote behavioral deficits in mice.

    de Sousa Rodrigues, Maria Elizabeth; Bekhbat, Mandakh; Houser, Madelyn C; Chang, Jianjun; Walker, Douglas I; Jones, Dean P; Oller do Nascimento, Claudia M P; Barnum, Christopher J; Tansey, Malú G

    2017-01-01

    The mechanisms underlying the association between chronic psychological stress, development of metabolic syndrome (MetS), and behavioral impairment in obesity are poorly understood. The aim of the present study was to assess the effects of mild chronic psychological stress on metabolic, inflammatory, and behavioral profiles in a mouse model of diet-induced obesity. We hypothesized that (1) high-fat high-fructose diet (HFHF) and psychological stress would synergize to mediate the impact of inflammation on the central nervous system in the presence of behavioral dysfunction, and that (2) HFHF and stress interactions would impact insulin and lipid metabolism. C57Bl/6 male mice underwent a combination of HFHF and two weeks of chronic psychological stress. MetS-related conditions were assessed using untargeted plasma metabolomics, and structural and immune changes in the gut and liver were evaluated. Inflammation was measured in plasma, liver, gut, and brain. Our results show a complex interplay of diet and stress on gut alterations, energetic homeostasis, lipid metabolism, and plasma insulin levels. Psychological stress and HFHF diet promoted changes in intestinal tight junctions proteins and increases in insulin resistance and plasma cholesterol, and impacted the RNA expression of inflammatory factors in the hippocampus. Stress promoted an adaptive anti-inflammatory profile in the hippocampus that was abolished by diet treatment. HFHF increased hippocampal and hepatic Lcn2 mRNA expression as well as LCN2 plasma levels. Behavioral changes were associated with HFHF and stress. Collectively, these results suggest that diet and stress as pervasive factors exacerbate MetS-related conditions through an inflammatory mechanism that ultimately can impact behavior. This rodent model may prove useful for identification of possible biomarkers and therapeutic targets to treat metabolic syndrome and mood disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Fructose and satiety.

    Moran, Timothy H

    2009-06-01

    A role for the increased intake of dietary fructose in general and high-fructose corn syrup (HFCS) in particular in the current obesity epidemic has been proposed. Consumed fructose and glucose have different rates of gastric emptying, are differentially absorbed from the gastrointestinal tract, result in different endocrine profiles, and have different metabolic fates, providing multiple opportunities for the 2 saccharides to differentially affect food intake. The consequences of fructose and glucose on eating have been studied under a variety of experimental situations in both model systems and man. The results have been inconsistent, and the particular findings appear to depend on the timing of saccharide administration or ingestion relative to a test meal situation, whether the saccharides are administered as pure sugars or as components of a dietary preload, and the overall volume of the preload. These factors rather than intrinsic differences in the saccharides' ability to induce satiety appear to carry many of the differential effects on food intake that have been found. On balance, the case for fructose being less satiating than glucose or HFCS being less satiating than sucrose is not compelling.

  15. Metabolic syndrome: clinical concept and molecular basis.

    Funahashi, Tohru; Matsuzawa, Yuji

    2007-01-01

    The metabolic syndrome is a cluster of insulin resistance, elevated blood pressure, and atherogenic dyslipidemia and is a common basis of cardiovascular diseases (CVD). Although the precise mechanism remains to be elucidated, a practical definition is needed. A worldwide definition that considers increased waist circumference as an essential component has been settled. Visceral fat locates upstream of the liver. Free fatty acids and glycerol derived from visceral fat reach the liver and stimulate lipoprotein synthesis and gluconeogenesis, respectively. The adipose tissue produces a variety of bioactive substances conceptualized as 'adipocytokines'. Overproduction of plasminogen activator inhibitor-1 and tumor necrosis factor- seems to relate to the thrombotic and inflammatory tendency. On the other hand, adiponectin, which has antiatherogenic and antidiabetic activities, is reduced in subjects with metabolic syndrome. In Japan, the waist circumference criterion based on visceral fat accumulation has been adopted. The concept of this syndrome has been widely publicized, and health promotion programs based on the concept have commenced in various areas of the country. Such 'Adipo-Do-It' movement is an incentive to encourage physical exercise to reduce visceral fat and is a big challenge to prevent life-style-related diseases and CVD.

  16. Energy and fructose from beverages sweetened with sugar or high-fructose corn syrup pose a health risk for some people.

    Bray, George A

    2013-03-01

    Sugar intake in the United States has increased by >40 fold since the American Revolution. The health concerns that have been raised about the amounts of sugar that are in the current diet, primarily as beverages, are the subject of this review. Just less than 50% of the added sugars (sugar and high-fructose corn syrup) are found in soft drinks and fruit drinks. The intake of soft drinks has increased 5-fold between 1950 and 2000. Most meta-analyses have shown that the risk of obesity, diabetes, cardiovascular disease, and metabolic syndrome are related to consumption of beverages sweetened with sugar or high-fructose corn syrup. Calorically sweetened beverage intake has also been related to the risk of nonalcoholic fatty liver disease, and, in men, gout. Calorically sweetened beverages contribute to obesity through their caloric load, and the intake of beverages does not produce a corresponding reduction in the intake of other food, suggesting that beverage calories are "add-on" calories. The increase in plasma triglyceride concentrations by sugar-sweetened beverages can be attributed to fructose rather than glucose in sugar. Several randomized trials of sugar-containing soft drinks versus low-calorie or calorie-free beverages show that either sugar, 50% of which is fructose, or fructose alone increases triglycerides, body weight, visceral adipose tissue, muscle fat, and liver fat. Fructose is metabolized primarily in the liver. When it is taken up by the liver, ATP decreases rapidly as the phosphate is transferred to fructose in a form that makes it easy to convert to lipid precursors. Fructose intake enhances lipogenesis and the production of uric acid. By worsening blood lipids, contributing to obesity, diabetes, fatty liver, and gout, fructose in the amounts currently consumed is hazardous to the health of some people.

  17. Pharmacological treatment and therapeutic perspectives of metabolic syndrome.

    Lim, Soo; Eckel, Robert H

    2014-12-01

    Metabolic syndrome is a disorder based on insulin resistance. Metabolic syndrome is diagnosed by a co-occurrence of three out of five of the following medical conditions: abdominal obesity, elevated blood pressures, elevated glucose, high triglycerides, and low high-density lipoprotein-cholesterol (HDL-C) levels. Clinical implication of metabolic syndrome is that it increases the risk of developing type 2 diabetes and cardiovascular diseases. Prevalence of the metabolic syndrome has increased globally, particularly in the last decade, to the point of being regarded as an epidemic. The prevalence of metabolic syndrome in the USA is estimated to be 34% of adult population. Moreover, increasing rate of metabolic syndrome in developing countries is dramatic. One can speculate that metabolic syndrome is going to induce huge impact on our lives. The metabolic syndrome cannot be treated with a single agent, since it is a multifaceted health problem. A healthy lifestyle including weight reduction is likely most effective in controlling metabolic syndrome. However, it is difficult to initiate and maintain healthy lifestyles, and in particular, with the recidivism of obesity in most patients who lose weight. Next, pharmacological agents that deal with obesity, diabetes, hypertension, and dyslipidemia can be used singly or in combination: anti-obesity drugs, thiazolidinediones, metformin, statins, fibrates, renin-angiotensin system blockers, glucagon like peptide-1 agonists, sodium glucose transporter-2 inhibitors, and some antiplatelet agents such as cilostazol. These drugs have not only their own pharmacologic targets on individual components of metabolic syndrome but some other properties may prove beneficial, i.e. anti-inflammatory and anti-oxidative. This review will describe pathophysiologic features of metabolic syndrome and pharmacologic agents for the treatment of metabolic syndrome, which are currently available.

  18. Accessing Autonomic Function Can Early Screen Metabolic Syndrome

    Dai, Meng; Li, Mian; Yang, Zhi; Xu, Min; Xu, Yu; Lu, Jieli; Chen, Yuhong; Liu, Jianmin; Ning, Guang; Bi, Yufang

    2012-01-01

    Background Clinical diagnosis of the metabolic syndrome is time-consuming and invasive. Convenient instruments that do not require laboratory or physical investigation would be useful in early screening individuals at high risk of metabolic syndrome. Examination of the autonomic function can be taken as a directly reference and screening indicator for predicting metabolic syndrome. Methodology and Principal Findings The EZSCAN test, as an efficient and noninvasive technology, can access autonomic function through measuring electrochemical skin conductance. In this study, we used EZSCAN value to evaluate autonomic function and to detect metabolic syndrome in 5,887 participants aged 40 years or older. The EZSCAN test diagnostic accuracy was analyzed by receiver operating characteristic curves. Among the 5,815 participants in the final analysis, 2,541 were diagnosed as metabolic syndrome and the overall prevalence was 43.7%. Prevalence of the metabolic syndrome increased with the elevated EZSCAN risk level (p for trend metabolic syndrome components (p for trend metabolic syndrome after the multiple adjustments. The area under the curve of the EZSCAN test was 0.62 (95% confidence interval [CI], 0.61–0.64) for predicting metabolic syndrome. The optimal operating point for the EZSCAN value to detect a high risk of prevalent metabolic syndrome was 30 in this study, while the sensitivity and specificity were 71.2% and 46.7%, respectively. Conclusions and Significance In conclusion, although less sensitive and accurate when compared with the clinical definition of metabolic syndrome, we found that the EZSCAN test is a good and simple screening technique for early predicting metabolic syndrome. PMID:22916265

  19. Accessing autonomic function can early screen metabolic syndrome.

    Kan Sun

    Full Text Available BACKGROUND: Clinical diagnosis of the metabolic syndrome is time-consuming and invasive. Convenient instruments that do not require laboratory or physical investigation would be useful in early screening individuals at high risk of metabolic syndrome. Examination of the autonomic function can be taken as a directly reference and screening indicator for predicting metabolic syndrome. METHODOLOGY AND PRINCIPAL FINDINGS: The EZSCAN test, as an efficient and noninvasive technology, can access autonomic function through measuring electrochemical skin conductance. In this study, we used EZSCAN value to evaluate autonomic function and to detect metabolic syndrome in 5,887 participants aged 40 years or older. The EZSCAN test diagnostic accuracy was analyzed by receiver operating characteristic curves. Among the 5,815 participants in the final analysis, 2,541 were diagnosed as metabolic syndrome and the overall prevalence was 43.7%. Prevalence of the metabolic syndrome increased with the elevated EZSCAN risk level (p for trend <0.0001. Moreover, EZSCAN value was associated with an increase in the number of metabolic syndrome components (p for trend <0.0001. Compared with the no risk group (EZSCAN value 0-24, participants at the high risk group (EZSCAN value: 50-100 had a 2.35 fold increased risk of prevalent metabolic syndrome after the multiple adjustments. The area under the curve of the EZSCAN test was 0.62 (95% confidence interval [CI], 0.61-0.64 for predicting metabolic syndrome. The optimal operating point for the EZSCAN value to detect a high risk of prevalent metabolic syndrome was 30 in this study, while the sensitivity and specificity were 71.2% and 46.7%, respectively. CONCLUSIONS AND SIGNIFICANCE: In conclusion, although less sensitive and accurate when compared with the clinical definition of metabolic syndrome, we found that the EZSCAN test is a good and simple screening technique for early predicting metabolic syndrome.

  20. Muscle glycogen metabolism changes in rats fed early postnatal a fructose-rich diet after maternal protein malnutrition: effects of acute physical exercise at the maximal lactate steady-state intensity

    Cambri, Lucieli Teresa [UNESP; Ribeiro, Carla [UNESP; Botezelli, Jose Diego [UNESP; Ghezzi, Ana Carolina [UNESP; Mello, Maria Alice Rostom de [UNESP

    2014-01-01

    Background: The objective was to evaluate the muscle glucose metabolism in rats fed a fructose-rich diet after fetal protein malnutrition, at rest and after acute physical exercise at maximal lactate steady-state intensity.Methods: The male offspring born of mothers fed on a balanced or low-protein diet were split in four groups until 60 days: Balanced (B): balanced diet during the whole period; Balanced/Fructose (BF): balanced diet in utero and fructose-rich diet after birth; Low protein/Bal...

  1. Metabolic syndrome among rural Indian adults.

    Barik, Anamitra; Das, Kausik; Chowdhury, Abhijit; Rai, Rajesh Kumar

    2018-02-01

    To prevent an increasing level of mortality due to type 2 diabetes mellitus and cardiovascular disease among the rural Indian population, a management strategy of the metabolic syndrome (MetS) should be devised. This study aims to estimate the burden of MetS and its associated risk factors. Data from the Birbhum Population Project covering 9886 individuals (4810 male and 5076 female population) aged ≥18 years were used. The burden of metabolic syndrome, as defined by the Third Report of the National Cholesterol Education Program Adult Treatment Panel, was determined. Bivariate and multivariate (logistic regression) analyses were used to attain the study objective. Over 10.7% of the males and 20.3% of the females were diagnosed with MetS. Irrespective of sex, older individuals, being overweight/obese (body mass index of ≥23 kg/m 2 ) had higher probability of developing MetS, whereas being underweight is deemed a protective factor against MetS. Low physical activity among women appeared to be a risk factor for MetS. The prevalence of MetS is concerning even in rural India. Any intervention designed to address the issue could emphasize on weight loss, and physical activity, focusing on women and people at an advanced stage of life. Copyright © 2017 European Society for Clinical Nutrition and Metabolism. Published by Elsevier Ltd. All rights reserved.

  2. Connexins, diabetes and the metabolic syndrome.

    Hamelin, Romain; Allagnat, Florent; Haefliger, Jacques-Antoine; Meda, Paolo

    2009-02-01

    Diabetes and the related metabolic syndrome are multi system disorders that result from improper interactions between various cell types. Even though the underlying mechanism remains to be fully understood, it is most likely that both the long and the short distance range cell interactions, which normally ensure the physiologic functioning of the pancreas, and its relationships with the insulin-targeted organs, are altered. This review focuses on the short-range type of interactions that depend on the contact between adjacent cells and, specifically, on the interactions that are dependent on connexins. The widespread distribution of these membrane proteins, their multiple modes of action, and their interactions with conditions/molecules associated to both the pathogenesis and the treatment of the 2 main forms of diabetes and the metabolic syndrome, make connexins an essential part of the chain of events that leads to metabolic diseases. Here, we review the present state of knowledge about the molecular and cell biology of the connexin genes and proteins, their general mechanisms of action, the roles specific connexin species play in the endocrine pancreas and the major insulin-targeted organs, under physiological and patho-physiological conditions.

  3. Prevalence of depressive symptoms in metabolic syndrome

    Sonia María López C

    2008-06-01

    Full Text Available Depression has been related with alterations of glucose metabolism, hypertension, hypercholesterolemia, adiposity and dislipidemias, which constitute the metabolic syndrome (m s. Objective: to determine the frequency of depressive symptoms in patients with m s. Material and methods: an observational, descriptive, transverse study was carried out in 101 patients with m s(69 women and 32 men. The Beck inventory for depression was applied. Vasodilatation in the brachial artery and the thickness of the carotid intimae-media were evaluated by means of ultrasonographic measurement. Abdominal perimeter, trygliceridemia, cholesterolemia and insulin resistance were calculated. The statistic treatment was performed by means of descriptive and inferential through mean, standard deviation, and correlation proofs. Insulin resistance was calculated by the h o m a method. Results:prevalence of depressive symptoms: 46.34% between patients with m s (correlation of 0.42 significative at p = 0.05. A higher number of components of the syndrome correlates with higher severity of the depression. Depressive symptoms were associated to a higher insulin resistance, low levels of c- h d l, hypertension and carotid atherosclerosis. Conclusion: depression has a high prevalence in the m s and its associates with a higher number of metabolic and vascular disturbances

  4. Risk factors of diabetes in North Indians with metabolic syndrome.

    Pratyush, Daliparthy D; Tiwari, Shalbha; Singh, Saurabh; Singh, Surya K

    2016-01-01

    Metabolic syndrome progresses to diabetes and determinants of this progression like hyperinsulinemia, hypertriglyceridemia and genetic factors have been speculative. The present study was aimed at quantifying the insulin resistance and influence of family history of diabetes in subjects with metabolic syndrome developing prediabetes and diabetes. Consecutive subjects attending the endocrine clinic were evaluated for metabolic syndrome as per definition of International Diabetes Federation, 2005. The family history of diabetes in their first degree relatives was ascertained and Homeostasis model assessment of Insulin resistance (HOMA-IR), Homeostasis model assessment for beta cell function (HOMA-B) and Quantitative insulin sensitivity check index (QUICKI) were calculated in 163 subjects enrolled. HOMA-IR was higher (pmetabolic syndrome+prediabetes or diabetes compared to metabolic syndrome with normal glucose tolerance. HOMA-B was lower and prevalence of prediabetes and diabetes was higher in metabolic syndrome subjects with family history of diabetes than in those without such family history (pmetabolic syndrome having prediabetes and diabetes had more severe insulin resistance than those with metabolic syndrome only. Beta cell dysfunction was remarkable and prevalence of prediabetes was high in metabolic syndrome subjects with family history of diabetes. Both the severity of the insulin resistance and family history of diabetes are therefore proposed to be determinants of diminished Beta cell function leading to diabetes in metabolic syndrome. Copyright © 2016 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  5. High-Glucose or -Fructose Diet Cause Changes of the Gut Microbiota and Metabolic Disorders in Mice without Body Weight Change

    Moon Ho Do

    2018-06-01

    Full Text Available High fat diet-induced changes in gut microbiota have been linked to intestinal permeability and metabolic endotoxemia, which is related to metabolic disorders. However, the influence of a high-glucose (HGD or high-fructose (HFrD diet on gut microbiota is largely unknown. We performed changes of gut microbiota in HGD- or HFrD-fed C57BL/6J mice by 16S rRNA analysis. Gut microbiota-derived endotoxin-induced metabolic disorders were evaluated by glucose and insulin tolerance test, gut permeability, Western blot and histological analysis. We found that the HGD and HFrD groups had comparatively higher blood glucose and endotoxin levels, fat mass, dyslipidemia, and glucose intolerance without changes in bodyweight. The HGD- and HFrD-fed mice lost gut microbial diversity, characterized by a lower proportion of Bacteroidetes and a markedly increased proportion of Proteobacteria. Moreover, the HGD and HFrD groups had increased gut permeability due to alterations to the tight junction proteins caused by gut inflammation. Hepatic inflammation and lipid accumulation were also markedly increased in the HGD and HFrD groups. High levels of glucose or fructose in the diet regulate the gut microbiota and increase intestinal permeability, which precedes the development of metabolic endotoxemia, inflammation, and lipid accumulation, ultimately leading to hepatic steatosis and normal-weight obesity.

  6. Metabolic syndrome induced by anticancer treatment in childhood cancer survivors.

    Chueh, Hee Won; Yoo, Jae Ho

    2017-06-01

    The number of childhood cancer survivors is increasing as survival rates improve. However, complications after treatment have not received much attention, particularly metabolic syndrome. Metabolic syndrome comprises central obesity, dyslipidemia, hypertension, and insulin resistance, and cancer survivors have higher risks of cardiovascular events compared with the general population. The mechanism by which cancer treatment induces metabolic syndrome is unclear. However, its pathophysiology can be categorized based on the cancer treatment type administered. Brain surgery or radiotherapy may induce metabolic syndrome by damaging the hypothalamic-pituitary axis, which may induce pituitary hormone deficiencies. Local therapy administered to particular endocrine organs directly damages the organs and causes hormone deficiencies, which induce obesity and dyslipidemia leading to metabolic syndrome. Chemotherapeutic agents interfere with cell generation and growth, damage the vascular endothelial cells, and increase the cardiovascular risk. Moreover, chemotherapeutic agents induce oxidative stress, which also induces metabolic syndrome. Physical inactivity caused by cancer treatment or the cancer itself, dietary restrictions, and the frequent use of antibiotics may also be risk factors for metabolic syndrome. Since childhood cancer survivors with metabolic syndrome have higher risks of cardiovascular events at an earlier age, early interventions should be considered. The optimal timing of interventions and drug use has not been established, but lifestyle modifications and exercise interventions that begin during cancer treatment might be beneficial and tailored education and interventions that account for individual patients' circumstances are needed. This review evaluates the recent literature that describes metabolic syndrome in cancer survivors, with a focus on its pathophysiology.

  7. The metabolic syndrome using the National Cholesterol Education ...

    The metabolic syndrome using the National Cholesterol Education Program and International Diabetes Federation definitions among urbanised black South Africans with established coronary artery disease.

  8. Cardiorenal metabolic syndrome in the African diaspora: rationale for including chronic kidney disease in the metabolic syndrome definition.

    Lea, Janice P; Greene, Eddie L; Nicholas, Susanne B; Agodoa, Lawrence; Norris, Keith C

    2009-01-01

    Chronic kidney disease (CKD) is more likely to progress to end-stage renal disease (ESRD) in African Americans while the reasons for this are unclear. The metabolic syndrome is a risk factor for the development of diabetes, cardiovascular disease, and has been recently linked to incident CKD. Historically, fewer African Americans meet criteria for the definition of metabolic syndrome, despite having higher rates of cardiovascular mortality than Caucasians. The presence of microalbuminuria portends increased cardiovascular risks and has been shown to cluster with the metabolic syndrome. We recently reported that proteinuria is a predictor of CKD progression in African American hypertensives with metabolic syndrome. In this review we explore the potential value of including CKD markers--microalbuminuria/proteinuria or low glomerular filtration rate (GFR)-in refining the cluster of factors defined as metabolic syndrome, ie, "cardiorenal metabolic syndrome."

  9. Prevalence of the metabolic syndrome among patients with type 2 ...

    DM), there is a multiple set of risk factors that commonly appear together forming what is now known as the 'Metabolic Syndrome' (MS). This 'clustering' of metabolic abnormalities that occur in the same individual appear to confer substantial ...

  10. Neurobiology of the metabolic syndrome : An allostatic perspective

    van Dijk, Gertjan; Buwalda, Bauke

    2008-01-01

    The metabolic syndrome is a cluster of more or less related metabolic and cardiovascular derangements including visceral obesity, insulin resistance, blood and tissue dislipidemia, high blood pressure and it is often associated with neuroendocrine and immunological dysregulations. The aetiology of

  11. Metabolic Syndrome: Systems Thinking in Heart Disease.

    Dommermuth, Ron; Ewing, Kristine

    2018-03-01

    Metabolic syndrome (MetS) is a cluster of cardiometabolic risk factors. MetS is associated with approximately 4-fold increase in the likelihood of developing type 2 diabetes mellitus (T2DM) and a 2-fold increase in the incidence of cardiovascular disease complications. MetS is a progressive, proinflammatory, prothrombotic condition that manifests itself along a broad spectrum of disease. It is associated with hypertension, obstructive sleep apnea, fatty liver disease, gout, and polycystic ovarian syndrome. Intervening in and reversing the pathologic process become more difficult as the disease progresses, highlighting the needs for increased individual and community surveillance and primary prevention. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Insulin Resistance Induced by a High Fructose Diet in Rats Due to Hepatic Disturbance

    Heibashy, M.I.A.; Mazen, G.M.A.; Kelada, N.A.H.

    2013-01-01

    High consumption of dietary fructose is accused of being responsible for the development of the insulin resistance (IR) syndrome. Concern has arisen because of the realization that fructose, at elevated concentrations, can promote metabolic changes that are potentially deleterious. Among these changes is IR which manifests as a decreased biological response to normal levels of plasma insulin. Therefore, this experiment was designed to evaluate the role of high fructose diet on metabolic syndrome in rats. The experimental animals were divided into two batches. The control batch received a control diet; the second batch was given a high-fructose diet as the sole source of carbohydrate. The rats were continued on the dietary regimen for 1, 2 and 3 months. After the experimental periods, fructose fed rats groups showed significant elevations in the levels of glucose, insulin sensitivity, liver function tests, nitric oxide and tumor necrosis factor-α when compared to their corresponding values in the rats fed normal diet. Moreover, liver lipid peroxidation [thiobarbituric acid-reactive substance (TBARS) and lipid hydroperoxide concentrations were remarkably increased in high-fructose-fed rats according to the time of administration (1, 2 and 3 months). On the other hand, the activities of enzymatic antioxidants (glutathione reductase and glutathione peroxidase) and glyoxalase I and II were significantly declined in this group. In conclusion, high fructose feeding raises liver dysfunction and causes the features of metabolic syndrome (insulin resistance) in rats dependent on the time of administration due to different mechanisms which were discussed in this work according to available recent researches

  13. Combined untargeted and targeted fingerprinting by comprehensive two-dimensional gas chromatography: revealing fructose-induced changes in mice urinary metabolic signatures.

    Bressanello, Davide; Liberto, Erica; Collino, Massimo; Chiazza, Fausto; Mastrocola, Raffaella; Reichenbach, Stephen E; Bicchi, Carlo; Cordero, Chiara

    2018-04-01

    This study exploits the information potential of comprehensive two-dimensional gas chromatography configured with a parallel dual secondary column-dual detection by mass spectrometry and flame ionization (GC×2GC-MS/FID) to study changes in urinary metabolic signatures of mice subjected to high-fructose diets. Samples are taken from mice fed with normal or fructose-enriched diets provided either in aqueous solution or in solid form and analyzed at three stages of the dietary intervention (1, 6, and 12 weeks). Automated Untargeted and Targeted fingerprinting for 2D data elaboration is adopted for the most inclusive data mining of GC×GC patterns. The UT fingerprinting strategy performs a fully automated peak-region features fingerprinting and combines results from pre-targeted compounds and unknowns across the sample-set. The most informative metabolites, with statistically relevant differences between sample groups, are obtained by unsupervised multivariate analysis (MVA) and cross-validated by multi-factor analysis (MFA) with external standard quantitation by GC-MS. Results indicate coherent clustering of mice urine signatures according to dietary manipulation. Notably, the metabolite fingerprints of mice fed with liquid fructose exhibited greater derangement in fructose, glucose, citric, pyruvic, malic, malonic, gluconic, cis-aconitic, succinic and 2-keto glutaric acids, glycine acyl derivatives (N-carboxy glycine, N-butyrylglycine, N-isovaleroylglycine, N-phenylacetylglycine), and hippuric acid. Untargeted fingerprinting indicates some analytes which were not a priori pre-targeted which provide additional insights: N-acetyl glucosamine, N-acetyl glutamine, malonyl glycine, methyl malonyl glycine, and glutaric acid. Visual features fingerprinting is used to track individual variations during experiments, thereby extending the panorama of possible data elaboration tools. Graphical abstract ᅟ.

  14. Adverse effects of fructose on cardiometabolic risk factors and hepatic lipid metabolism in subjects with abdominal obesity.

    Taskinen, M-R; Söderlund, S; Bogl, L H; Hakkarainen, A; Matikainen, N; Pietiläinen, K H; Räsänen, S; Lundbom, N; Björnson, E; Eliasson, B; Mancina, R M; Romeo, S; Alméras, N; Pepa, G D; Vetrani, C; Prinster, A; Annuzzi, G; Rivellese, A; Després, J-P; Borén, J

    2017-08-01

    Overconsumption of dietary sugars, fructose in particular, is linked to cardiovascular risk factors such as type 2 diabetes, obesity, dyslipidemia and nonalcoholic fatty liver disease. However, clinical studies have to date not clarified whether these adverse cardiometabolic effects are induced directly by dietary sugars, or whether they are secondary to weight gain. To assess the effects of fructose (75 g day -1 ), served with their habitual diet over 12 weeks, on liver fat content and other cardiometabolic risk factors in a large cohort (n = 71) of abdominally obese men. We analysed changes in body composition, dietary intake, an extensive panel of cardiometabolic risk markers, hepatic de novo lipogenesis (DNL), liver fat content and postprandial lipid responses after a standardized oral fat tolerance test (OFTT). Fructose consumption had modest adverse effects on cardiometabolic risk factors. However, fructose consumption significantly increased liver fat content and hepatic DNL and decreased β-hydroxybutyrate (a measure of β-oxidation). The individual changes in liver fat were highly variable in subjects matched for the same level of weight change. The increase in liver fat content was significantly more pronounced than the weight gain. The increase in DNL correlated positively with triglyceride area under the curve responses after an OFTT. Our data demonstrated adverse effects of moderate fructose consumption for 12 weeks on multiple cardiometabolic risk factors in particular on liver fat content despite only relative low increases in weight and waist circumference. Our study also indicates that there are remarkable individual differences in susceptibility to visceral adiposity/liver fat after real-world daily consumption of fructose-sweetened beverages over 12 weeks. © 2017 The Association for the Publication of the Journal of Internal Medicine.

  15. Reduced-calorie avocado paste attenuates metabolic factors associated with a hypercholesterolemic-high fructose diet in rats.

    Pahua-Ramos, María Elena; Garduño-Siciliano, Leticia; Dorantes-Alvarez, Lidia; Chamorro-Cevallos, German; Herrera-Martínez, Julieta; Osorio-Esquivel, Obed; Ortiz-Moreno, Alicia

    2014-03-01

    The objective of this study was to evaluate the effect of reduced-calorie avocado paste on lipid serum profile, insulin sensitivity, and hepatic steatosis in rats fed a hypercholesterolemic-high fructose diet. Thirty five male Wistar rats were randomly separated in five groups: Control group (ground commercial diet); hypercholesterolemic diet plus 60% fructose solution (HHF group); hypercholesterolemic diet plus 60% fructose solution supplemented with avocado pulp (HHF+A group); hypercholesterolemic diet plus 60% fructose solution supplemented with reduced-calorie avocado paste (HHF+P group); and hypercholesterolemic diet plus 60% fructose solution supplemented with a reduced-calorie avocado paste plus fiber (HHF+FP group). The A, P, and FP were supplemented at 2 g/kg/d. The study was carried out for seven weeks. Rats belonging to the HHF group exhibited significantly (P ≤ 0.05) higher total cholesterol, triglycerides, and insulin levels in serum as well as lower insulin sensitivity than the control group. Supplementation with reduced-calorie avocado paste showed a significant (P ≤ 0.05) decrease in total cholesterol (43.1%), low-density lipoprotein (45.4%), and triglycerides (32.8%) in plasma as well as elevated insulin sensitivity compared to the HHF group. Additionally, the liver enzymes alanine aminotransferase and aspartate aminotransferase decreased significantly in the HHF-P group (39.8 and 35.1%, respectively). These results are likely due to biocompounds present in the reduced-calorie avocado paste, such as polyphenols, carotenoids, chlorophylls, and dietary fibre, which are capable of reducing oxidative stress. Therefore, reduced-calorie avocado paste attenuates the effects of a hypercholesterolemic-high fructose diet in rats.

  16. SGLT5 Reabsorbs Fructose in the Kidney but Its Deficiency Paradoxically Exacerbates Hepatic Steatosis Induced by Fructose

    Fukuzawa, Taku; Fukazawa, Masanori; Ueda, Otoya; Shimada, Hideaki; Kito, Aki; Kakefuda, Mami; Kawase, Yosuke; Wada, Naoko A.; Goto, Chisato; Fukushima, Naoshi; Jishage, Kou-ichi; Honda, Kiyofumi; King, George L.; Kawabe, Yoshiki

    2013-01-01

    Although excessive fructose intake is epidemiologically linked with dyslipidemia, obesity, and diabetes, the mechanisms regulating plasma fructose are not well known. Cells transfected with sodium/glucose cotransporter 5 (SGLT5), which is expressed exclusively in the kidney, transport fructose in vitro; however, the physiological role of this transporter in fructose metabolism remains unclear. To determine whether SGLT5 functions as a fructose transporter in vivo, we established a line of mic...

  17. PREVALENCE OF METABOLIC SYNDROME IN GRANITE WORKERS

    Srilakshmi

    2015-10-01

    Full Text Available BACKGROUND: The prevalence of the metabolic syndrome (MS has significantly increased over the last few decades and has become a main health challenge worldwide. Prevalence of MS is quickly rising in developing countries due to changing lifestyle. It was considered worthwhile to study MS and its components in granite workers since granite factories are situated in and around Khammam area. Moreover, no studies of MS in granite workers have been reported in literature. OBJECTIVES: Aim of our study is to assess the prevalence of metabolic syndrome and its components in granite workers. MATERIALS AND METHODS: 210 male workers in the age group of 20 - 50 working in granite industries located in and around the Khammam town of Telangana State are selected for the present study. Blood pressures (BP, waist circumference (WC were measured. Fasting blood samples were collected for the estimation of glucose and lipids. RESULTS: 69 subjects out of 210 were identified as having MS based on updated National cholesterol education programme - Adult Treatment Panel III (NCEP - ATP III guidelines. CONCLUSION: MS should be identified and remedial measures may be suggested, so that the risk of hypertension, cardiovascular risk, diabetes and the resultant morbidity is minimized and can be delayed

  18. Effects of salicylic acid-induced wine rich in anthocyanins on metabolic parameters and adipose insulin signaling in high-fructose fed rats.

    Rodriguez Lanzi, Cecilia; de Rosas, Inés; Perdicaro, Diahann J; Ponce, María Teresa; Martinez, Liliana; Miatello, Roberto M; Cavagnaro, Bruno; Vazquez Prieto, Marcela A

    2016-12-01

    We evaluated the effects of Syrah red wine treated with salicylic acid (RW SA) and its control red wine (RW) on metabolic parameters, systolic blood pressure and adipose tissue insulin signaling in high-fructose (F) fed rats. Grape treated with SA increased the anthocyanin (ANTs) levels in RW. F induced increased systolic blood pressure, dislipidemia and insulin resistance (HOMA:IR). F rats treated with RW significantly prevented these alterations while RW SA partially attenuated triglycerides levels and HOMA:IR without modifications in HDL cholesterol levels. F impaired the adipose tissue response to insulin. Supplementation with RW and RW SA partially attenuated these alterations. Rats supplemented with RW SA had lesser beneficial effects on metabolic alterations than control RW, while both RW and RW SA attenuated altered adipose response to insulin. More studies are necessary to deeply evaluate the effect on SA-induced RW rich in ANTs levels on metabolic alterations associated to MetS.

  19. Fructose-Drinking Water Induced Nonalcoholic Fatty Liver Disease and Ultrastructural Alteration of Hepatocyte Mitochondria in Male Wistar Rat

    Norshalizah Mamikutty

    2015-01-01

    Full Text Available Background. Nonalcoholic fatty liver disease (NAFLD is one of the complications of the metabolic syndrome. It encompasses a wide range of disease spectrum from simple steatosis to liver cirrhosis. Structural alteration of hepatic mitochondria might be involved in the pathogenesis of NAFLD. Aims. In the present study, we used a newly established model of fructose-induced metabolic syndrome in male Wistar rats in order to investigate the ultrastructural changes in hepatic mitochondria that occur with fructose consumption and their association with NAFLD pathogenesis. Methods. The concentration of fructose-drinking water (FDW used in this study was 20%. Six male Wistar rats were supplemented with FDW 20% for eight weeks. Body composition and metabolic parameters were measured before and after 8 weeks of FDW 20%. Histomorphology of the liver was evaluated and ultrastructural changes of mitochondria were assessed with transmission electron micrograph. Results. After 8 weeks of fructose consumption, the animals developed several features of the metabolic syndrome. Moreover, fructose consumption led to the development of macrovesicular hepatic steatosis and mitochondrial ultrastructural changes, such as increase in mitochondrial size, disruption of the cristae, and reduction of matrix density. Conclusion. We conclude that in male Wistar rat 8-week consumption of FDW 20% leads to NAFLD likely via mitochondrial structural alteration.

  20. Fructose Consumption, Lipogenesis, and Non-Alcoholic Fatty Liver Disease

    ter Horst, Kasper W.; Serlie, Mireille J.

    2017-01-01

    Increased fructose consumption has been suggested to contribute to non-alcoholic fatty liver disease (NAFLD), dyslipidemia, and insulin resistance, but a causal role of fructose in these metabolic diseases remains debated. Mechanistically, hepatic fructose metabolism yields precursors that can be

  1. Fructose: it's "alcohol without the buzz".

    Lustig, Robert H

    2013-03-01

    What do the Atkins Diet and the traditional Japanese diet have in common? The Atkins Diet is low in carbohydrate and usually high in fat; the Japanese diet is high in carbohydrate and usually low in fat. Yet both work to promote weight loss. One commonality of both diets is that they both eliminate the monosaccharide fructose. Sucrose (table sugar) and its synthetic sister high fructose corn syrup consist of 2 molecules, glucose and fructose. Glucose is the molecule that when polymerized forms starch, which has a high glycemic index, generates an insulin response, and is not particularly sweet. Fructose is found in fruit, does not generate an insulin response, and is very sweet. Fructose consumption has increased worldwide, paralleling the obesity and chronic metabolic disease pandemic. Sugar (i.e., fructose-containing mixtures) has been vilified by nutritionists for ages as a source of "empty calories," no different from any other empty calorie. However, fructose is unlike glucose. In the hypercaloric glycogen-replete state, intermediary metabolites from fructose metabolism overwhelm hepatic mitochondrial capacity, which promotes de novo lipogenesis and leads to hepatic insulin resistance, which drives chronic metabolic disease. Fructose also promotes reactive oxygen species formation, which leads to cellular dysfunction and aging, and promotes changes in the brain's reward system, which drives excessive consumption. Thus, fructose can exert detrimental health effects beyond its calories and in ways that mimic those of ethanol, its metabolic cousin. Indeed, the only distinction is that because fructose is not metabolized in the central nervous system, it does not exert the acute neuronal depression experienced by those imbibing ethanol. These metabolic and hedonic analogies argue that fructose should be thought of as "alcohol without the buzz."

  2. Androgenic Hormones In Relation To Parameters of the Metabolic Syndrome in male patients

    Shousha, M. A.; Soliman, S. E.; Semna, S. G.

    2012-12-01

    Back ground and aim of the work :The numerous deleterious effects of metabolic syndrome are being investigated throughout the medical community. Hypo-androgenomes in men is associated with features of the metabolic syndrome, even it may predict the metabolic syndrome, but the association with the metabolic syndrome it self using an accepted definition has not been described. A group 40 men defined as metabolic syndrome were assessed to investigate the relationship between androgenic hormones and parameters of the metabolic syndrome. (Author)

  3. Prevalence of the Metabolic Syndrome in Renal Transplant Recipients

    Prevalence of the Metabolic Syndrome in Renal Transplant Recipients. ... Cholesterol Education Program Adult Treatment Panel III (NCEP-ATP III) criteria and the International Diabetes Federation (IDF) criteria. ... Results: By using the NCEP-ATP III criteria 26 out of 91 patients (28.6%) had the metabolic syndrome. MS was ...

  4. Cancer treatment induced metabolic syndrome : Improving outcome with lifestyle

    Westerink, M. D. N. L.; Nuver, J.; Lefrandt, J. D.; Vrieling, A. H.; Gietema, J. A.; Walenkamp, A. M. E.

    2016-01-01

    Increasing numbers of long-term cancer survivors face important treatment related adverse effects. Cancer treatment induced metabolic syndrome (CTIMetS) is an especially prevalent and harmful condition. The aetiology of CTIMetS likely differs from metabolic syndrome in the general population, but

  5. An association between diet, metabolic syndrome and lower urinary ...

    Diet is a key factor in the aetiology of many diseases, including metabolic syndrome and lower urinary tract disorders. Metabolic syndrome is a growing and increasingly expensive health problem in both the developed and the developing world, with an associated rise in morbidity and mortality. On the other hand, lower ...

  6. Prevalence of the metabolic syndrome among patients with type 2 ...

    Background: The metabolic syndrome is a cluster of risk factors that is responsible for most of the excess cardiovascular morbidity amongst persons with type 2 Diabetes Mellitus (DM). The metabolic syndrome increases the risk for coronary heart disease and stroke by three-fold with a marked increase in cardiovascular ...

  7. Increased brain fatty acid uptake in metabolic syndrome

    Karmi, Anna; Iozzo, Patricia; Viljanen, Antti

    2010-01-01

    To test whether brain fatty acid uptake is enhanced in obese subjects with metabolic syndrome (MS) and whether weight reduction modifies it.......To test whether brain fatty acid uptake is enhanced in obese subjects with metabolic syndrome (MS) and whether weight reduction modifies it....

  8. The metabolic syndrome: prevalence, CHD risk, and treatment.

    Sarti, Cinzia; Gallagher, John

    2006-01-01

    An increased risk of coronary heart disease (CHD) morbidity and mortality is associated with the metabolic syndrome, a condition characterized by the concomitant presence of several abnormalities, including abdominal obesity, dyslipidemia, hypertension, insulin resistance (with or without glucose intolerance or diabetes), microalbuminuria, prothrombotic, and proinflammatory states. Estimates of the prevalence of the metabolic syndrome indicate that this condition is now common and likely to increase dramatically over the coming decades, in parallel with greater rates of obesity and Type 2 diabetes. Risk factors for the metabolic syndrome are already present in obese children and adolescents. Thus, identifying and treating all affected individuals promptly and optimally are critical to ensure that this potentially challenging healthcare burden is minimized. Here, we review the prevalence of the metabolic syndrome, dyslipidemias, and CHD risk. Although changes in lifestyle are fundamental to reducing many of the CHD risk factors associated with the metabolic syndrome, pharmacologic interventions also play an important role. Retrospective subanalyses of the effects of statins on coronary event rates and lipid levels in patients with the metabolic syndrome included in clinical trials indicate that these agents are beneficial in correcting the extensive lipid abnormalities that are frequently present in these individuals. However, the optimal management of metabolic syndrome dyslipidemia will depend on the outcomes of future prospective clinical trials. This review examines the underlying causes and prevalence of the metabolic syndrome and its impact on CHD morbidity and mortality and discusses the role of statins in optimizing its management.

  9. Metabolic Syndrome Risk Profiles Among African American Adolescents

    Fitzpatrick, Stephanie L.; Lai, Betty S.; Brancati, Frederick L.; Golden, Sherita H.; Hill-Briggs, Felicia

    2013-01-01

    OBJECTIVE Although African American adolescents have the highest prevalence of obesity, they have the lowest prevalence of metabolic syndrome across all definitions used in previous research. To address this paradox, we sought to develop a model of the metabolic syndrome specific to African American adolescents. RESEARCH DESIGN AND METHODS Data from the National Health and Nutrition Examination Survey (2003–2010) of 822 nonpregnant, nondiabetic, African American adolescents (45% girls; aged 12 to 17 years) who underwent physical examinations and fasted at least 8 h were analyzed. We conducted a confirmatory factor analysis to model metabolic syndrome and then used latent profile analysis to identify metabolic syndrome risk groups among African American adolescents. We compared the risk groups on probability of prediabetes. RESULTS The best-fitting metabolic syndrome model consisted of waist circumference, fasting insulin, HDL, and systolic blood pressure. We identified three metabolic syndrome risk groups: low, moderate, and high risk (19% boys; 16% girls). Thirty-five percent of both boys and girls in the high-risk groups had prediabetes, a significantly higher prevalence compared with boys and girls in the low-risk groups. Among adolescents with BMI higher than the 85th percentile, 48 and 36% of boys and girls, respectively, were in the high-risk group. CONCLUSIONS Our findings provide a plausible model of the metabolic syndrome specific to African American adolescents. Based on this model, approximately 19 and 16% of African American boys and girls, respectively, are at high risk for having the metabolic syndrome. PMID:23093663

  10. Acute effects of feeding fructose, glucose and sucrose on blood lipid levels and systemic inflammation.

    Jameel, Faizan; Phang, Melinda; Wood, Lisa G; Garg, Manohar L

    2014-12-16

    Recent studies have demonstrated a relationship between fructose consumption and risk of developing metabolic syndrome. Mechanisms by which dietary fructose mediates metabolic changes are poorly understood. This study compared the effects of fructose, glucose and sucrose consumption on post-postprandial lipemia and low grade inflammation measured as hs-CRP. This was a randomized, single blinded, cross-over trial involving healthy subjects (n=14). After an overnight fast, participants were given one of 3 different isocaloric drinks, containing 50 g of either fructose or glucose or sucrose dissolved in water. Blood samples were collected at baseline, 30, 60 and 120 minutes post intervention for the analysis of blood lipids, glucose, insulin and high sensitivity C-reactive protein (hs-CRP). Glucose and sucrose supplementation initially resulted in a significant increase in glucose and insulin levels compared to fructose supplementation and returned to near baseline values within 2 hours. Change in plasma cholesterol, LDL and HDL-cholesterol (measured as area under curve, AUC) was significantly higher when participants consumed fructose compared with glucose or sucrose (PAUC for plasma triglyceride levels however remained unchanged regardless of the dietary intervention. Change in AUC for hs-CRP was also significantly higher in subjects consuming fructose compared with those consuming glucose (P<0.05), but not sucrose (P=0.07). This study demonstrates that fructose as a sole source of energy modulates plasma lipids and hsCRP levels in healthy individuals. The significance of increase in HDL-cholesterol with a concurrent increase in LDL-cholesterol and elevated hs-CRP levels remains to be delineated when considering health effects of feeding fructose-rich diets. ACTRN12614000431628.

  11. Fructose during pregnancy provokes fetal oxidative stress: The key role of the placental heme oxygenase-1.

    Rodrigo, Silvia; Rodríguez, Lourdes; Otero, Paola; Panadero, María I; García, Antonia; Barbas, Coral; Roglans, Núria; Ramos, Sonia; Goya, Luis; Laguna, Juan C; Álvarez-Millán, Juan J; Bocos, Carlos

    2016-12-01

    One of the features of metabolic syndrome caused by liquid fructose intake is an impairment of redox status. We have investigated whether maternal fructose ingestion modifies the redox status in pregnant rats and their fetuses. Fructose (10% wt/vol) in the drinking water of rats throughout gestation, leads to maternal hepatic oxidative stress. However, this change was also observed in glucose-fed rats and, in fact, both carbohydrates produced a decrease in antioxidant enzyme activity. Surprisingly, mothers fed carbohydrates displayed low plasma lipid oxidation. In contrast, fetuses from fructose-fed mothers showed elevated levels of plasma lipoperoxides versus fetuses from control or glucose-fed mothers. Interestingly, a clearly augmented oxidative stress was observed in placenta of fructose-fed mothers, accompanied by a lower expression of the transcription factor Nuclear factor-erythroid 2-related factor-2 (Nrf2) and its target gene, heme oxygenase-1 (HO-1), a potent antioxidant molecule. Moreover, histone deacetylase 3 (HDAC3) that has been proposed to upregulate HO-1 expression by stabilizing Nrf2, exhibited a diminished expression in placenta of fructose-supplemented mothers. Maternal fructose intake provoked an imbalanced redox status in placenta and a clear diminution of HO-1 expression, which could be responsible for the augmented oxidative stress found in their fetuses. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. [Features of the periodontal pathology at patients with metabolic syndrome].

    Ermolaeva, L A; Shishkin, A N; Sheveleva, N A; Penkovoi, E A; Sheveleva, M A; Sokolovich, N A; Khabarova, O V; Mihailova, E S

    2016-01-01

    The purpose of this article is to familiarize readers on the relationship between metabolic syndrome and periodontitis, as well as common pathogenetic processes underlying these diseases. The data of modern researches, devoted to the correlation of lesions of periodontal and systemic diseases associated with metabolic syndrome. In the article analyzed also the data of the original study of the interaction of periodontitis and metabolic syndrome, which also used special methods of examination like Doppler ultrasound microcirculatory vasculature of the periodontal tissues and ultrasound densitometry. The possible methods of diagnostics of a condition of periodontal tissues in patients with metabolic syndrome are considered. Conclusions about the relationship of each component of metabolic syndrome with periodontitis are made.

  13. [Metabolic syndrome: what, why, how and who?].

    Pavlić-Renar, Ivana; Poljicanin, Tamara; Metelko, Zeljko

    2007-06-01

    Although first knowledge on the joint onset of cardiovascular risk factors had been gained earlier, the first systematic review of this condition was made by G. Reaven in 1988 with his thesis on syndrome X, today known as the metabolic syndrome, with insulin resistance as the common denominator. Four elements have been identified: central obesity, dyslipoproteinemia (increased triglycerides, reduced HDL cholesterol), hypertension and glucose intolerance. There are two most influential definitions: one by the National Cholesterol Education Program (NCEP) and the other by the International Diabetes Federation (/IDF). NCEP requires the presence of at least three of the following factors: abdominal obesity as assessed by waist circumference >102 cm (m) or >88 cm (f), dyslipoproteinemia defined as triglyceridemia > or =1.7 mmol/L and/or HDL cholesterol or =30/85 mmHg) and fasting glycemia > or =5.6 mmol/L (previously 6.1). IDF focuses on central obesity defined as waist circumference, taking into consideration sex and ethnic group specificities, with the presence of at least two additional factors (dyslipoproteinemia, hypertension, or increased fasting glycemia - all criteria virtually the same as in NCEP definition). Both IDF and NCEP define abdominal obesity by waist circumference, taking account of sex differences, and, in case of IDF, ethnic ones as well. The idea is to identify the simplest measure to indirectly determine the accumulation of visceral fat, which is, contrary to subcutaneous fat, a significant cardiovascular risk factor. However, waist circumference as the only criterion seems to be less specific than the waist-to-hip circumference ratio, which defines the risk more specifically and also better reflects insulin resistance. There is broad discussion as to whether the term metabolic syndrome contributes to the identification of persons at risk of cardiovascular disease better than its components, and, if so, which is the right set of components. It is

  14. [Correlation of metabolic syndrome components in older Mexican women].

    Ramírez-Arriola, Maria Cleofas; Mendoza-Romo, Margarita Paz; González-Rubio, Marco Vinicio; López-Esqueda, Francisco Javier; Mendoza-Romo, Miguel Angel; Velasco-Chávez, José Fernando

    2011-01-01

    In woman aged over 60 years, body changes occur and might cause insulin resistance and metabolic syndrome. To determine the relationship between the components of metabolic syndrome, insulin resistance and body mass index in women over 60 years, attended at the Geriatric Services in the Dr. Ignacio Morones Prieto Hospital in San Luis Potosi, Mexico. We performed an observational, descriptive and transversal study with non-probability sampling, selecting 61 women aged 60 years attended from 2006 to 2008, who have measured the body mass index (BMI), insulin resistance and homeostasis model (HOMA2), and identifying the components of metabolic syndrome according to the criteria of the World Health Organization. We used descriptive and inferential statistics with r Pearson and Chi Square. The mean age was 68 years. The average HOMA2 were 1.4 and 75 percentile 1.9. The prevalence of metabolic syndrome was present in 23%. The association test with a p metabolic syndrome dysglucemia and obesity, but not for other components of metabolic syndrome. The triglycerides level correlated with insulin resistance (r = 0.325, p = 0.011), insulin resistance with glucose (r = 0.535, p = 0.000) and insulin resistance with BMI (r = 0.282, p = 0.28). It is important to properly define the components for the presence of metabolic syndrome in older women due to not all who qualify as obese have metabolic syndrome, and neither all the metabolic syndrome are associated with insulin resistance. The single alteration of one of the components of metabolic syndrome is not sufficient to cause insulin resistance.

  15. Plant-derived therapeutics for the treatment of metabolic syndrome.

    Graf, Brittany L; Raskin, Ilya; Cefalu, William T; Ribnicky, David M

    2010-10-01

    Metabolic syndrome is defined as a set of coexisting metabolic disorders that increase an individual's likelihood of developing type 2 diabetes, cardiovascular disease and stroke. Medicinal plants, some of which have been used for thousands of years, serve as an excellent source of bioactive compounds for the treatment of metabolic syndrome because they contain a wide range of phytochemicals with diverse metabolic effects. In order for botanicals to be effectively used against metabolic syndrome, however, botanical preparations must be characterized and standardized through the identification of their active compounds and respective modes of action, followed by validation in controlled clinical trials with clearly defined endpoints. This review assesses examples of commonly known and partially characterized botanicals to describe specific considerations for the phytochemical, preclinical and clinical characterization of botanicals associated with metabolic syndrome.

  16. High prevalence of the metabolic syndrome in HIV-infected patients : impact of different definitions of the metabolic syndrome

    Worm, Signe W; Friis-Møller, Nina; Bruyand, Mathias; D'Arminio Monforte, Antonella; Rickenbach, Martin; Reiss, Peter; El-Sadr, Wafaa; Phillips, Andrew; Lundgren, Jens; Sabin, Caroline; Schölvinck, Elisabeth H.

    2010-01-01

    INTRODUCTION: This study describes the characteristics of the metabolic syndrome in HIV-positive patients in the Data Collection on Adverse Events of Anti-HIV Drugs study and discusses the impact of different methodological approaches on estimates of the prevalence of metabolic syndrome over time.

  17. High prevalence of the metabolic syndrome in HIV-infected patients: impact of different definitions of the metabolic syndrome

    Worm, Signe H.Westring; Friis-Møller, Nina; Bruyand, Mathias

    2010-01-01

    This study describes the characteristics of the metabolic syndrome in HIV-positive patients in the Data Collection on Adverse Events of Anti-HIV Drugs study and discusses the impact of different methodological approaches on estimates of the prevalence of metabolic syndrome over time....

  18. High prevalence of the metabolic syndrome in HIV-infected patients: impact of different definitions of the metabolic syndrome

    Worm, Signe W.; Friis-Møller, Nina; Bruyand, Mathias; D'Arminio Monforte, Antonella; Rickenbach, Martin; Reiss, Peter; El-Sadr, Wafaa; Phillips, Andrew; Lundgren, Jens; Sabin, Caroline; de Wolf, F.; Zaheri, S.; Gras, L.; Bronsveld, W.; Hillebrand-Haverkort, M. E.; Prins, J. M.; Bos, J. C.; Eeftinck Schattenkerk, J. K. M.; Geerlings, S. E.; Godfried, M. H.; Lange, J. M. A.; van Leth, F. C.; Lowe, S. H.; van der Meer, J. T. M.; Nellen, F. J. B.; Pogány, K.; van der Poll, T.; Ruys, Th A.; Steingrover, R.; van Twillert, G.; van der Valk, M.; van Vonderen, M. G. A.; Vrouenraets, S. M. E.; van Vugt, M.; Wit, F. W. M. N.; van Eeden, A.; ten Veen, J. H.; van Dam, P. S.; Roos, J. C.; Brinkman, K.; Frissen, P. H. J.; Weigel, H. M.; Mulder, J. W.; van Gorp, E. C. M.; Meenhorst, P. L.; Mairuhu, A. T. A.; Veenstra, J.; Danner, S. A.; van Agtmael, M. A.; Claessen, F. A. P.

    2010-01-01

    INTRODUCTION: This study describes the characteristics of the metabolic syndrome in HIV-positive patients in the Data Collection on Adverse Events of Anti-HIV Drugs study and discusses the impact of different methodological approaches on estimates of the prevalence of metabolic syndrome over time.

  19. Metabolic abnormalities in Williams-Beuren syndrome.

    Palacios-Verdú, María Gabriela; Segura-Puimedon, Maria; Borralleras, Cristina; Flores, Raquel; Del Campo, Miguel; Campuzano, Victoria; Pérez-Jurado, Luis Alberto

    2015-04-01

    Williams-Beuren syndrome (WBS, OMIM-194050) is a neurodevelopmental disorder with multisystemic manifestations caused by a 1.55-1.83 Mb deletion at 7q11.23 including 26-28 genes. Reported endocrine and metabolic abnormalities include transient hypercalcaemia of infancy, subclinical hypothyroidism in ∼ 30% of children and impaired glucose tolerance in ∼ 75% of adult individuals. The purpose of this study was to further study metabolic alterations in patients with WBS, as well as in several mouse models, to establish potential candidate genes. We analysed several metabolic parameters in a cohort of 154 individuals with WBS (data available from 69 to 151 cases per parameter), as well as in several mouse models with complete and partial deletions of the orthologous WBS locus, and searched for causative genes and potential modifiers. Triglyceride plasma levels were significantly decreased in individuals with WBS while cholesterol levels were slightly decreased compared with controls. Hyperbilirubinemia, mostly unconjugated, was found in 18.3% of WBS cases and correlated with subclinical hypothyroidism and hypotriglyceridemia, suggesting common pathogenic mechanisms. Haploinsufficiency at MLXIPL and increased penetrance for hypomorphic alleles at the UGT1A1 gene promoter might underlie the lipid and bilirubin alterations. Other disturbances included increased protein and iron levels, as well as the known subclinical hypothyroidism and glucose intolerance. Our results show that several unreported biochemical alterations, related to haploinsufficiency for specific genes at 7q11.23, are relatively common in WBS. The early diagnosis, follow-up and management of these metabolic disturbances could prevent long-term complications in this disorder. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  20. Selenium intake and metabolic syndrome: A systematic review.

    Retondario, Anabelle; Fernandes, Ricardo; Rockenbach, Gabriele; Alves, Mariane de Almeida; Bricarello, Liliana Paula; Trindade, Erasmo Benicio Santos de Moraes; Vasconcelos, Francisco de Assis Guedes de

    2018-03-02

    Metabolic syndrome is a multi-causal disease. Its treatment includes lifestyle changes with a focus on weight loss. This systematic review assessed the association between Selenium intake and metabolic syndrome. Data were collected mainly from four databases: PubMed, CENTRAL (Cochrane), Scopus and Web of Knowledge. Keywords related to metabolic syndrome, selenium, as well as metabolic syndrome features were searched. This review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Statement. A systematic review protocol was registered at PROSPERO (n. 42016046321). Two reviewers independently screened 2957 abstracts. Six studies were included to perform data extraction with standardized spreadsheets. The risk of bias was assessed by using specific tools according to the design of the relevant studies. An assessment was carried out based on the appropriateness of the study reports accordingly to STROBE and the CONSORT-based checklist for each study design. Three studies found no association between Selenium intake and metabolic syndrome; two of them found an inverse association; and one study found a direct association between Selenium intake and metabolic syndrome. One study also showed an inverse association between Selenium intake and the prevalence of high waist circumference, high diastolic blood pressure, and hyperglycaemia in women. Overall, based on the argumentation and results of this study, it is possible to conclude that Selenium intake and metabolic syndrome are not clearly associated in adults and elderly. Copyright © 2018 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  1. Association of Bone Mineral Density with the Metabolic Syndrome

    Kang, Yeong Han; Kam, Shin

    2008-01-01

    The purpose of this study was to examine the relationship between bone mineral density (BMD) and the metabolic syndrome. We conducted a cross-sectional study of 1204 adults(males: 364 females: 840) in a general hospital health promotion center. They were grouped into the normal and lower BMD group according to bone loss(osteopenia, osteoporosis), as determined by duel energy X-ray absorptiometery (DEXA). We analyzed the association between BMD and metabolic syndrome by multiple logistic regression analysis. After adjustment for age, weight, alcohol intake, smoking, regular exercise, regular intake of meals, and menopausal status, odds ratios for the prevalence of the metabolic syndrome by gender were calculated for lower BMD. After adjustment for the effect of potential covariates, the prevalence of metabolic syndrome was associated with bone loss in men (p<0.001). If the odds ratio of normal group is 1.00, then that of the lower BMD group is 3.07 (95% CI=1.83-5.16). The prevalence of metabolic alterations fitting the criteria of metabolic syndrome was significantly decreased in High BMI, Low HDL in men and in High BMI in women (p<0.05). This study shows that BMD was associated with metabolic syndrome. Further studies needed to obtain evidence concerning the association between BMD and metabolic syndrome.

  2. Association of Bone Mineral Density with the Metabolic Syndrome

    Kang, Yeong Han [Dept. of Diagnostic Radiology, Daegu Catholic University Hospital, Daegu (Korea, Republic of); Kam, Shin [Dept. of Preventtive MedicinE, College of Medicine, Kyungpook National University, Daegu (Korea, Republic of)

    2008-09-15

    The purpose of this study was to examine the relationship between bone mineral density (BMD) and the metabolic syndrome. We conducted a cross-sectional study of 1204 adults(males: 364 females: 840) in a general hospital health promotion center. They were grouped into the normal and lower BMD group according to bone loss(osteopenia, osteoporosis), as determined by duel energy X-ray absorptiometery (DEXA). We analyzed the association between BMD and metabolic syndrome by multiple logistic regression analysis. After adjustment for age, weight, alcohol intake, smoking, regular exercise, regular intake of meals, and menopausal status, odds ratios for the prevalence of the metabolic syndrome by gender were calculated for lower BMD. After adjustment for the effect of potential covariates, the prevalence of metabolic syndrome was associated with bone loss in men (p<0.001). If the odds ratio of normal group is 1.00, then that of the lower BMD group is 3.07 (95% CI=1.83-5.16). The prevalence of metabolic alterations fitting the criteria of metabolic syndrome was significantly decreased in High BMI, Low HDL in men and in High BMI in women (p<0.05). This study shows that BMD was associated with metabolic syndrome. Further studies needed to obtain evidence concerning the association between BMD and metabolic syndrome.

  3. Effect of different exercise intensities on the pancreas of animals with metabolic syndrome

    Amaral F

    2015-02-01

    Full Text Available Fernanda Amaral,1 Nathalia EA Lima,1 Elisabete Ornelas,1 Lucila Simardi,2 Fernando Luiz Affonso Fonseca,2,3 Laura Beatriz Mesiano Maifrino1,4 1Laboratório de Estudos Morfoquantitativo e Imunohistoquímico, Universidade São Judas Tadeu, São Paulo, Brazil; 2Faculdade de Medicina do ABC, Santo André, São Paulo, Brazil; 3Departamento de Ciências Biológicas, Universidade Federal de São Paulo, São Paulo, Brazil; 4Instituto Dante Pazzanese de Cardiologia, São Paulo, Brazil Introduction: Metabolic syndrome (MS comprises several metabolic disorders that are risk factors for cardiovascular disease and has its source connected to the accumulation of visceral adipose tissue (VAT and development of insulin resistance. Despite studies showing beneficial results of exercise on several risk factors for cardiovascular disease, studies evaluating the effects of different intensities of exercise training on the pancreas with experimental models are scarce. Methods: In total, 20 Wistar rats were used, divided into four groups: control (C, metabolic syndrome (MS and without exercise, metabolic syndrome and practice of walking (MSWalk, and metabolic syndrome and practice of running (MSRun. The applied procedures were induction of MS by fructose in drinking water; experimental protocol of walking and running; weighing of body mass and VAT; sacrifice of animals with blood collection and removal of organs and processing of samples for light microscopy using the analysis of volume densities (Vv of the studied structures. Results: Running showed a reduction of VAT weight (–54%, triglyceride levels (–40%, Vv[islet] (–62%, Vv[islet.cells] (–22%, Vv[islet.insterstitial] (–44%, and Vv[acinar.insterstitial] (–24% and an increase of Vv[acini] (+21% and Vv[acinar.cells] (+22%. Regarding walking, we observed a decrease of VAT weight (–34% and triglyceride levels (–27%, an increase of Vv[islet.cells] (+72% and Vv[acinar.cells] (+7%, and a decrease of Vv

  4. Association of Metabolic Syndrome and Hidradenitis Suppurativa

    Miller, Iben Marie; Ellervik, Christina; Vinding, Gabrielle Randskov

    2014-01-01

    ,predominantly female, and more often smokers compared with the non-HS group.EXPOSURE Hidradenitis suppurativa.MAIN OUTCOMES AND MEASURES Metabolic syndrome and its components of diabetes mellitus, hypertension, dyslipidemia, and obesity.RESULTS When compared with the non-HS group, the odds ratios (ORs.......62 (95%CI, 1.73-7.60) and 2.24 (95%CI, 1.78-2.82), respectively, for abdominal obesity. With regard to dyslipidemia, significant results were found for decreased levels of high-density lipoprotein cholesterol, with ORs of 2.97 (95%CI, 1.45-6.08) and 1.94(95%CI, 1.52-2.48) for the hospital HS and general...

  5. Hormonal contraception in obesity, the metabolic syndrome, and diabetes

    Skouby, S.O.

    2010-01-01

    The rate of obesity worldwide is currently at epidemic proportions. As part of obesity, the metabolic syndrome describes a clustering of metabolic abnormalities that increase the cardiovascular and diabetes risk. In particular, women from developing countries have diabetes in the reproductive age...... diabetes, hormonal contraception should therefore be part of the highly needed preconception care and metabolic control...

  6. Hormonal Contraception in obestiy, the metabolic syndrome, and diabetes

    Skouby, Sven O.

    2010-01-01

    The rate of obesity worldwide is currently at epidemic proportions. As part of obesity, the metabolic syndrome describes a clustering of metabolic abnormalities that increase the cardiovascular and diabetes risk. In particular, women from developing countries have diabetes in the reproductive age...... diabetes, hormonal contraception should therefore be part of the highly needed preconception care and metabolic control...

  7. Low intensity exercise prevents disturbances in rat cardiac insulin signaling and endothelial nitric oxide synthase induced by high fructose diet.

    Stanišić, Jelena; Korićanac, Goran; Ćulafić, Tijana; Romić, Snježana; Stojiljković, Mojca; Kostić, Milan; Pantelić, Marija; Tepavčević, Snežana

    2016-01-15

    Increase in fructose consumption together with decrease in physical activity contributes to the development of metabolic syndrome and consequently cardiovascular diseases. The current study examined the preventive role of exercise on defects in cardiac insulin signaling and function of endothelial nitric oxide synthase (eNOS) in fructose fed rats. Male Wistar rats were divided into control, sedentary fructose (received 10% fructose for 9 weeks) and exercise fructose (additionally exposed to low intensity exercise) groups. Concentration of triglycerides, glucose, insulin and visceral adipose tissue weight were determined to estimate metabolic syndrome development. Expression and/or phosphorylation of cardiac insulin receptor (IR), insulin receptor substrate 1 (IRS1), tyrosine-specific protein phosphatase 1B (PTP1B), Akt, extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) and eNOS were evaluated. Fructose overload increased visceral adipose tissue, insulin concentration and homeostasis model assessment index. Exercise managed to decrease visceral adiposity and insulin level and to increase insulin sensitivity. Fructose diet increased level of cardiac PTP1B and pIRS1 (Ser307), while levels of IR and ERK1/2, as well as pIRS1 (Tyr 632), pAkt (Ser473, Thr308) and pERK1/2 were decreased. These disturbances were accompanied by reduced phosphorylation of eNOS at Ser1177. Exercise managed to prevent most of the disturbances in insulin signaling caused by fructose diet (except phosphorylation of IRS1 at Tyr 632 and phosphorylation and protein expression of ERK1/2) and consequently restored function of eNOS. Low intensity exercise could be considered as efficient treatment of cardiac insulin resistance induced by fructose diet. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Refeeding and metabolic syndromes: two sides of the same coin

    Obeid, O A; Hachem, D H; Ayoub, J J

    2014-01-01

    Refeeding syndrome describes the metabolic and clinical changes attributed to aggressive rehabilitation of malnourished subjects. The metabolic changes of refeeding are related to hypophosphatemia, hypokalemia, hypomagnesemia, sodium retention and hyperglycemia, and these are believed to be mainly the result of increased insulin secretion following high carbohydrate intake. In the past few decades, increased consumption of processed food (refined cereals, oils, sugar and sweeteners, and so on) lowered the intake of several macrominerals (mainly phosphorus, potassium and magnesium). This seems to have compromised the postprandial status of these macrominerals, in a manner that mimics low grade refeeding syndrome status. At the pathophysiological level, this condition favored the development of the different components of the metabolic syndrome. Thus, it is reasonable to postulate that metabolic syndrome is the result of long term exposure to a mild refeeding syndrome. PMID:24979149

  9. High prevalence of metabolic syndrome in antisynthetase syndrome.

    Araujo, Paula A O; Silva, Marilda Guimarães; Borba, Eduardo Ferreira; Shinjo, Samuel K

    2018-01-01

    A high frequency of metabolic syndrome (MetS) has been recently described in different idiopathic inflammatory myopathies, but not in antisynthetase syndrome (ASS). Therefore, the aim of the present study was to determine the prevalence of MetS in ASS and also its possible association with cardiovascular the risk factors and ASS-related disease characteristics. A cross-sectional single centre study of 42 consecutive ASS patients was conducted from 2012 to 2015 and compared to 84 healthy individuals matched for gender, age, ethnicity and body mass index-matched (control group). MetS was defined according to the 2009 Join Interim Statement. Clinical and laboratory data were assessed according to a standardised protocol. ASS patients had a median age of 41.1 years with a predominance of female gender and white race. ASS patients had a higher frequency of MetS (42.9% vs. 13.1%; pASS patients had higher resistin, lower leptin and similar adiponectin levels in serum than controls. Further analysis of ASS patients with (n=18) and without (n=24) MetS revealed that older age at disease onset (48.7 vs. 35.4 years; pASS patients that also had serum resistin and low leptin levels. As also identified in other idiopathic inflammatory myopathies, MetS in ASS is more prevalent in older patients.

  10. Laminitis and the equine metabolic syndrome.

    Johnson, Philip J; Wiedmeyer, Charles E; LaCarrubba, Alison; Ganjam, V K Seshu; Messer, Nat T

    2010-08-01

    Although much has been written about laminitis in the context of its association with inflammatory processes, recognition is growing that most cases of laminitis examined by veterinarians in private practice are those associated with pasture grazing, obesity, and insulin resistance (IR). The term 'endocrinopathic laminitis' has been adopted to classify the instances of laminitis in which the origin seems to be more strongly associated with an underlying endocrinopathy, such as either IR or the influence of corticosteroids. Results of a recent study suggest that obesity and IR represent the most common metabolic and endocrinopathic predispositions for laminitis in horses. IR also plays an important role in the pathogenesis of laminitis that develops when some horses or ponies are allowed to graze pastures at certain times of the year. The term equine metabolic syndrome (EMS) has been proposed as a label for horses whose clinical examination results (including both physical examination and laboratory testing) suggest heightened risk for developing laminitis as a result of underlying IR. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  11. Nutrigenetics, metabolic syndrome risk and personalized nutrition.

    Perez-Martinez, Pablo; Phillips, Catherine M; Delgado-Lista, Javier; Garcia-Rios, Antonio; Lopez-Miranda, Jose; Perez-Jimenez, Francisco

    2013-11-01

    The metabolic syndrome (MetS) is a constellation of metabolic risk factors reflecting overnutrition and sedentary lifestyle and its increasing prevalence is reaching epidemic proportions. The importance of MetS lies in its close association with the risk of cardiometabolic disease. In this scenario, the principal goals of pharmacological therapy for these patients are to achieve and maintain an optimal cardiometabolic control, including lipids, blood glucose and blood pressure; in order to prevent and treat potential complications. Moreover nutrition has commonly been accepted as a cornerstone of treatment for MetS, with the expectation that an appropriate intake of energy and nutrients will improve its control. However the question arises as to whether dietary therapy may require a more personalised approach. In this regard improvements in genetic analysis have enhanced our understanding of the role of genetics in this dietrelated condition. In this review we will present recent data highlighting the importance of gene-nutrient interactions in the context of MetS risk.

  12. Metabolic syndrome in children: current issues and South Asian perspective.

    Misra, Anoop; Khurana, Lokesh; Vikram, Naval K; Goel, Ashish; Wasir, Jasjeet S

    2007-01-01

    The objective of this review is to discuss definition, determinants, and management issues of the metabolic syndrome in children with a focus on South Asians. The literature search was done using the PubMed search engine (National Library of Medicine, Bethesda, MD, USA). Manual searches for other important references and medical databases were also done. There is a need for an integrated definition of the metabolic syndrome in children and adolescents, taking cognizance of the ethnic-specific variations. Obesity and body fat patterning are important determinants of insulin resistance and the metabolic syndrome in children and ethnic variations in these parameters are seen. Excess body fat and thicker truncal subcutaneous fat are important predisposing factors for development of insulin resistance in South Asian children. Because the metabolic syndrome tracks into adulthood, its manifestations need to be recognized early for prevention of diabetes and coronary heart disease. Therapeutic lifestyle changes, maintenance of high levels of physical activity and normal weight are most important strategies; pharmacologic therapy for individual components of the metabolic syndrome is occasionally needed. The metabolic syndrome in children is an important clinical marker of diabetes and coronary heart disease in adults. In view of the rapid increase in the metabolic syndrome in most populations, high-risk screening and effective public-intervention educational programs are urgently needed.

  13. Metabolic syndrome and metabolic risk profile according to polycystic ovary syndrome phenotype.

    Bil, Enes; Dilbaz, Berna; Cirik, Derya Akdag; Ozelci, Runa; Ozkaya, Enis; Dilbaz, Serdar

    2016-07-01

    It is unknown which phenotype of polycystic ovary syndrome (PCOS) has a greater metabolic risk and how to detect this risk. The aim of this study was therefore to compare the incidence of metabolic syndrome (MetS) and metabolic risk profile (MRP) for different phenotypes. A total of 100 consecutive newly diagnosed PCOS women in a tertiary referral hospital were recruited. Patients were classified into four phenotypes according to the Rotterdam criteria, on the presence of at least two of the three criteria hyperandrogenism (H), oligo/anovulation (O) and PCO appearance (P): phenotype A, H + O + P; phenotype B, H + O; phenotype C, H + P; phenotype D, O + P. Prevalence of MetS and MRP were compared among the four groups. Based on Natural Cholesterol Education Program Adult Treatment Panel III diagnostic criteria, MetS prevalence was higher in phenotypes A and B (29.6% and 34.5%) compared with the other phenotypes (10.0% and 8.3%; P 3.8 was significantly higher in androgenic PCOS phenotypes. After logistic regression analysis, visceral adiposity index (VAI) was the only independent predictor of MetS in PCOS (P = 0.002). VAI was also significantly higher in phenotype B, when compared with the others (P risk of MetS among the four phenotypes, and VAI may be a predictor of metabolic risk in PCOS women. © 2016 Japan Society of Obstetrics and Gynecology.

  14. Pathogenesis of the Metabolic Syndrome: Insights from Monogenic Disorders

    Rinki Murphy

    2013-01-01

    Full Text Available Identifying rare human metabolic disorders that result from a single-gene defect has not only enabled improved diagnostic and clinical management of such patients, but also has resulted in key biological insights into the pathophysiology of the increasingly prevalent metabolic syndrome. Insulin resistance and type 2 diabetes are linked to obesity and driven by excess caloric intake and reduced physical activity. However, key events in the causation of the metabolic syndrome are difficult to disentangle from compensatory effects and epiphenomena. This review provides an overview of three types of human monogenic disorders that result in (1 severe, non-syndromic obesity, (2 pancreatic beta cell forms of early-onset diabetes, and (3 severe insulin resistance. In these patients with single-gene defects causing their exaggerated metabolic disorder, the primary defect is known. The lessons they provide for current understanding of the molecular pathogenesis of the common metabolic syndrome are highlighted.

  15. High fructose feeding induces copper deficiency in Sprague-Dawley rats: A novel mechanism for obesity related fatty liver

    Dietary copper deficiency is associated with a variety of manifestations of the metabolic syndrome, including hyperlipidemia and fatty liver. Fructose feeding has been reported to exacerbate complications of copper deficiency. In this study, we investigated whether copper deficiency plays a role in ...

  16. Supervised exercise improves cutaneous reinnervation capacity in metabolic syndrome patients.

    Singleton, J Robinson; Marcus, Robin L; Lessard, Margaret K; Jackson, Justin E; Smith, A Gordon

    2015-01-01

    Unmyelinated cutaneous axons are vulnerable to physical and metabolic injury, but also capable of rapid regeneration. This balance may help determine risk for peripheral neuropathy associated with diabetes or metabolic syndrome. Capsaicin application for 48 hours induces cutaneous fibers to die back into the dermis. Regrowth can be monitored by serial skin biopsies to determine intraepidermal nerve fiber density (IENFD). We used this capsaicin axotomy technique to examine the effects of exercise on cutaneous regenerative capacity in the setting of metabolic syndrome. Baseline ankle IENFD and 30-day cutaneous regeneration after thigh capsaicin axotomy were compared for participants with type 2 diabetes (n = 35) or metabolic syndrome (n = 32) without symptoms or examination evidence of neuropathy. Thirty-six participants (17 with metabolic syndrome) then joined twice weekly observed exercise and lifestyle counseling. Axotomy regeneration was repeated in month 4 during this intervention. Baseline distal leg IENFD was significantly reduced for both metabolic syndrome and diabetic groups. With exercise, participants significantly improved exercise capacity and lower extremity power. Following exercise, 30-day reinnervation rate improved (0.051 ± 0.027 fibers/mm/day before vs 0.072 ± 0.030 after exercise, p = 0.002). Those who achieved improvement in more metabolic syndrome features experienced a greater degree of 30-day reinnervation (p Metabolic syndrome was associated with reduced baseline IENFD and cutaneous regeneration capacity comparable to that seen in diabetes. Exercise-induced improvement in metabolic syndrome features increased cutaneous regenerative capacity. The results underscore the potential benefit to peripheral nerve function of a behavioral modification approach to metabolic improvement. © 2014 American Neurological Association.

  17. Association of Metabolic Syndrome and Its Components with Knee Osteoarthritis

    Shahpoor Maddah

    2015-12-01

    Full Text Available The association of obesity and other metabolic conditions with osteoarthritis is under debate; however, a strong link between metabolic disturbances is suggested to contribute to increased incidences and progression of osteoarthritis. We examined the association of metabolic syndrome and its components with the incidence of knee osteoarthritis in Iranian population. A community-based study was conducted on a total of 625 Iranian volunteers with the complaint of knee pain. Weight-bearing and anteroposterior plain radiographs of both knees were taken on the day of admission. Metabolic syndrome was diagnosed using the modified Adult Treatment Panel III of the National Cholesterol Education Program criteria. Prevalence rates of metabolic syndrome were 22.5% in males and 11.6% in females (P=0.002. The prevalence rate of knee osteoarthritis was 20.0% in males and 43.8% of females (P<0.001. In both genders, osteoarthritis group had higher serum levels of triglyceride and systolic blood pressure in comparison with non-osteoarthritis group. Women with osteoarthritis had higher Body Mass Index (BMI, however, this association was not observed in men. In females, the presence of osteoarthritis was significantly associated with the presence of metabolic syndrome, with the risk of metabolic syndrome in the osteoarthritis group at 2.187 fold the risk in the non-osteoarthritis group. But, the presence of osteoarthritis was not associated with metabolic syndrome in males. Metabolic syndrome mainly through high BMI is associated with knee osteoarthritis in the Iranian women, but neither metabolic syndrome nor any related components are associated with knee osteoarthritis in men.

  18. Radiology of syndromes and metabolic disorders

    Taybi, H.; Lachman, R.

    1989-01-01

    The authors describe both the clinical and radiologic manifestations of 700 syndromes. They provide illustrations describing each syndrome and descriptions of those syndromes discovered since publication of a previous edition

  19. Muscle glycogen metabolism changes in rats fed early postnatal a fructose-rich diet after maternal protein malnutrition: effects of acute physical exercise at the maximal lactate steady-state intensity.

    Cambri, Lucieli T; Ribeiro, Carla; Botezelli, José D; Ghezzi, Ana C; Mello, Maria Ar

    2014-01-01

    The objective was to evaluate the muscle glucose metabolism in rats fed a fructose-rich diet after fetal protein malnutrition, at rest and after acute physical exercise at maximal lactate steady-state intensity. The male offspring born of mothers fed on a balanced or low-protein diet were split in four groups until 60 days: Balanced (B): balanced diet during the whole period; Balanced/Fructose (BF): balanced diet in utero and fructose-rich diet after birth; Low protein/Balanced (LB): low-protein diet in utero and balanced diet after birth; Low protein/Fructose (LF): low protein diet in utero and fructose-rich diet after birth. Acute physical exercise reduced the muscle glycogen concentrations in all groups, although the LF group showed higher concentrations at rest. There was no difference among the groups in the glucose uptake and oxidation rates in the isolated soleus muscle neither at rest nor after acute exercise. However, glycogen synthesis was higher in the LF muscle than in the others at rest. Acute physical exercise increased glycogen synthesis in all groups, and the LF group showed the highest values. The fructose-rich diet administered in rats after fetal protein malnutrition alters muscle glycogen concentrations and glycogen synthesis in the rest and after acute exercise at maximal lactate steady-state intensity.

  20. [Clinical analysis of metabolic syndrome in vertiginous diseases].

    Yamanaka, Toshiaki; Fukuda, Takehiko; Sawai, Yachiyo; Shirota, Shiho; Shimizu, Naoki; Murai, Takayuki; Okamoto, Hideyuki; Fujita, Nobuya; Hosoi, Hiroshi

    2011-01-01

    To explore the relationship between metabolic syndrome and vertigo, we measured waist circumference, plasma glucose, triglycerides and blood pressure in 333 subjects aged 20-79 years with vertigo. We found overall metabolic syndrome prevalence defined by Japanese diagnostic criteria to be 13.2%, similar to that in other national surveys by the Japanese Ministry of Health, Labour and Welfare. The 6-fold higher prevalence in men over women exceeded that of other reports, however. The highest frequency was in vertebrobasilar insufficiency (VBI) disorders, suggesting that conditions such as VBI in men with vertigo could involve metabolic syndrome as a risk factor for vertigo incidence.

  1. Metabolic Syndrome in Schizophrenia: A Non‑systematic Review

    Marta Nascimento

    2012-12-01

    Full Text Available Background: The link between mental illness and metabolic disturbances has been recognized since the beginning of the last century. The debate concerning medical morbidity in schizophrenia intensified during the last twenty years, especially after the introduction of atypical antipsychotics. Aims: To highlight some features of the metabolic syndrome in this population, specifically epidemiological data, underlying mechanisms and antipsychotic therapy. Methods: Non‑systematic review of literature. Results and Conclusions: Despite the different criteria used for the definition of metabolic syndrome, it is clear today that the schizophrenic population has the highest rate of metabolic syndrome. Additionally, the prevalence of the metabolic syndrome in this population demonstrates a geographical distribution similar to the general population. Although it hasn’t been recognized for years, schizophrenic patients’ vulnerability to develop metabolic disturbances isn’t entirely related to antipsychotic therapy. Actually, it results from an interaction of multiple factors, including hereditary, genetic, biochemical and environmental ones (which include antipsychotic therapy. Moreover, they are not exclusively explained by weight gain. Metabolic disturbances are one of the main concerns related to general psychopharmacology. The differences between typical and atypical antipsychotics in terms of metabolic syndrome are not completely established. However, clozapine and olanzapine are recognized to have the worst metabolic profile, amongst all atypical antipsychotics.

  2. Metabolic Syndrome in Schizophrenia: A Non‑systematic Review

    Marta Nascimento

    2013-11-01

    Full Text Available Background: The link between mental illness and metabolic disturbances has been recognized since the beginning of the last century. The debate concerning medical morbidity in schizophrenia intensified during the last twenty years, especially after the introduction of atypical antipsychotics. Aims: To highlight some features of the metabolic syndrome in this population, specifically epidemiological data, underlying mechanisms and antipsychotic therapy. Methods: Non‑systematic review of literature. Results and Conclusions: Despite the different criteria used for the definition of metabolic syndrome, it is clear today that the schizophrenic population has the highest rate of metabolic syndrome. Additionally, the prevalence of the metabolic syndrome in this population demonstrates a geographical distribution similar to the general population. Although it hasn’t been recognized for years, schizophrenic patients’ vulnerability to develop metabolic disturbances isn’t entirely related to antipsychotic therapy. Actually, it results from an interaction of multiple factors, including hereditary, genetic, biochemical and environmental ones (which include antipsychotic therapy. Moreover, they are not exclusively explained by weight gain. Metabolic disturbances are one of the main concerns related to general psychopharmacology. The differences between typical and atypical antipsychotics in terms of metabolic syndrome are not completely established. However, clozapine and olanzapine are recognized to have the worst metabolic profile, amongst all atypical antipsychotics.

  3. Increased prevalence of metabolic syndrome in patients with acne inversa.

    Robert Sabat

    Full Text Available BACKGROUND: Acne inversa (AI; also designated as Hidradenitis suppurativa is a common chronic inflammatory skin disease, localized in the axillary, inguinal and perianal skin areas that causes painful, fistulating sinuses with malodorous purulence and scars. Several chronic inflammatory diseases are associated with the metabolic syndrome and its consequences including arteriosclerosis, coronary heart disease, myocardial infraction, and stroke. So far, the association of AI with systemic metabolic alterations is largely unexplored. METHODS AND FINDINGS: A hospital-based case-control study in 80 AI patients and 100 age- and sex-matched control participants was carried out. The prevalence of central obesity (odds ratio 5.88, hypertriglyceridemia (odds ratio 2.24, hypo-HDL-cholesterolemia (odds ratio 4.56, and hyperglycemia (odds ratio 4.09 in AI patients was significantly higher than in controls. Furthermore, the metabolic syndrome, previously defined as the presence of at least three of the five alterations listed above, was more common in those patients compared to controls (40.0% versus 13.0%; odds ratio 4.46, 95% confidence interval 2.02 to 9.96; P<0.001. AI patients with metabolic syndrome also had more pronounced metabolic alterations than controls with metabolic syndrome. Interestingly, there was no correlation between the severity or duration of the disease and the levels of respective parameters or the number of criteria defining the metabolic syndrome. Rather, the metabolic syndrome was observed in a disproportionately high percentage of young AI patients. CONCLUSIONS: This study shows for the first time that AI patients have a high prevalence of the metabolic syndrome and all of its criteria. It further suggests that the inflammation present in AI patients does not have a major impact on the development of metabolic alterations. Instead, evidence is given for a role of metabolic alterations in the development of AI. We recommend

  4. Structural changes in the liver in metabolic syndrome

    D. V. Vasendin

    2015-01-01

    Full Text Available Scientifically proven close relationship of nonalcoholic fatty liver disease with development of metabolic syndrome and its individual components involves the conclusion that the target organ in metabolic symptom, even regardless of the severity of obesity, the liver occupies a dominant position, as the body undergoes the first characteristic of non-alcoholic fatty liver disease changes, involving violation of metabolism in the body. Dislipoproteinemia plays an important role in the formation of metabolic syndrome in obesity and other obesity-associated diseases. Altered liver function are the root cause of violations of processes of lipid metabolism and, consequently, abnormal functioning of the liver may be a separate, additional and independent risk factor for development of dyslipidemia and obesity as the main component of the metabolic syndrome.

  5. Cardiovascular Risk Stratification in Patients with Metabolic Syndrome Without Diabetes or Cardiovascular Disease: Usefulness of Metabolic Syndrome Severity Score.

    Masson, Walter; Epstein, Teo; Huerín, Melina; Lobo, Lorenzo Martín; Molinero, Graciela; Angel, Adriana; Masson, Gerardo; Millán, Diana; De Francesca, Salvador; Vitagliano, Laura; Cafferata, Alberto; Losada, Pablo

    2017-09-01

    The estimated cardiovascular risk determined by the different risk scores, could be heterogeneous in patients with metabolic syndrome without diabetes or vascular disease. This risk stratification could be improved by detecting subclinical carotid atheromatosis. To estimate the cardiovascular risk measured by different scores in patients with metabolic syndrome and analyze its association with the presence of carotid plaque. Non-diabetic patients with metabolic syndrome (Adult Treatment Panel III definition) without cardiovascular disease were enrolled. The Framingham score, the Reynolds score, the new score proposed by the 2013 ACC/AHA Guidelines and the Metabolic Syndrome Severity Calculator were calculated. Prevalence of carotid plaque was determined by ultrasound examination. A Receiver Operating Characteristic analysis was performed. A total of 238 patients were enrolled. Most patients were stratified as "low risk" by Framingham score (64%) and Reynolds score (70.1%). Using the 2013 ACC/AHA score, 45.3% of the population had a risk ≥7.5%. A significant correlation was found between classic scores but the agreement (concordance) was moderate. The correlation between classical scores and the Metabolic Syndrome Severity Calculator was poor. Overall, the prevalence of carotid plaque was 28.2%. The continuous metabolic syndrome score used in our study showed a good predictive power to detect carotid plaque (area under the curve 0.752). In this population, the calculated cardiovascular risk was heterogenic. The prevalence of carotid plaque was high. The Metabolic Syndrome Severity Calculator showed a good predictive power to detect carotid plaque.

  6. Uric acid induces hepatic steatosis by generation of mitochondrial oxidative stress: potential role in fructose-dependent and -independent fatty liver.

    Lanaspa, Miguel A; Sanchez-Lozada, Laura G; Choi, Yea-Jin; Cicerchi, Christina; Kanbay, Mehmet; Roncal-Jimenez, Carlos A; Ishimoto, Takuji; Li, Nanxing; Marek, George; Duranay, Murat; Schreiner, George; Rodriguez-Iturbe, Bernardo; Nakagawa, Takahiko; Kang, Duk-Hee; Sautin, Yuri Y; Johnson, Richard J

    2012-11-23

    Uric acid is an independent risk factor in fructose-induced fatty liver, but whether it is a marker or a cause remains unknown. Hepatocytes exposed to uric acid developed mitochondrial dysfunction and increased de novo lipogenesis, and its blockade prevented fructose-induced lipogenesis. Rather than a consequence, uric acid induces fatty liver Hyperuricemic people are more prone to develop fructose-induced fatty liver. Metabolic syndrome represents a collection of abnormalities that includes fatty liver, and it currently affects one-third of the United States population and has become a major health concern worldwide. Fructose intake, primarily from added sugars in soft drinks, can induce fatty liver in animals and is epidemiologically associated with nonalcoholic fatty liver disease in humans. Fructose is considered lipogenic due to its ability to generate triglycerides as a direct consequence of the metabolism of the fructose molecule. Here, we show that fructose also stimulates triglyceride synthesis via a purine-degrading pathway that is triggered from the rapid phosphorylation of fructose by fructokinase. Generated AMP enters into the purine degradation pathway through the activation of AMP deaminase resulting in uric acid production and the generation of mitochondrial oxidants. Mitochondrial oxidative stress results in the inhibition of aconitase in the Krebs cycle, resulting in the accumulation of citrate and the stimulation of ATP citrate lyase and fatty-acid synthase leading to de novo lipogeneis. These studies provide new insights into the pathogenesis of hepatic fat accumulation under normal and diseased states.

  7. Fructose content in popular beverages made with and without high-fructose corn syrup.

    Walker, Ryan W; Dumke, Kelly A; Goran, Michael I

    2014-01-01

    Excess fructose consumption is hypothesized to be associated with risk for metabolic disease. Actual fructose consumption levels are difficult to estimate because of the unlabeled quantity of fructose in beverages. The aims of this study were threefold: 1) re-examine the fructose content in previously tested beverages using two additional assay methods capable of detecting other sugars, especially maltose, 2) compare data across all methods to determine the actual free fructose-to-glucose ratio in beverages made either with or without high-fructose corn syrup (HFCS), and 3) expand the analysis to determine fructose content in commonly consumed juice products. Sugar-sweetened beverages (SSBs) and fruit juice drinks that were either made with or without HFCS were analyzed in separate, independent laboratories via three different methods to determine sugar profiles. For SSBs, the three independent laboratory methods showed consistent and reproducible results. In SSBs made with HFCS, fructose constituted 60.6% ± 2.7% of sugar content. In juices sweetened with HFCS, fructose accounted for 52.1% ± 5.9% of sugar content, although in some juices made from 100% fruit, fructose concentration reached 65.35 g/L accounting for 67% of sugars. Our results provide evidence of higher than expected amounts of free fructose in some beverages. Popular beverages made with HFCS have a fructose-to-glucose ratio of approximately 60:40, and thus contain 50% more fructose than glucose. Some pure fruit juices have twice as much fructose as glucose. These findings suggest that beverages made with HFCS and some juices have a sugar profile very different than sucrose, in which amounts of fructose and glucose are equivalent. Current dietary analyses may underestimate actual fructose consumption. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Fructose and NAFLD: metabolic implications and models of induction in rats Frutose e NAFLD: implicações metabólicas e modelos de indução em ratos

    Gabriela S. F. Castro

    2011-01-01

    Full Text Available PURPOSE: The increase in fructose consumption is paralleled by a higher incidence of obesity worldwide. This monosaccharide is linked to metabolic syndrome, being associated with hypertriglyceridemia, hypertension, insulin resistance and diabetes mellitus. It is metabolized principally in the liver, where it can be converted into fatty acids, which are stored in the form of triglycerides leading to NAFLD. Several models of NAFLD use diets high in simple carbohydrates. Thus, this study aimed to describe the major metabolic changes caused by excessive consumption of fructose in humans and animals and to present liver abnormalities resulting from high intakes of fructose in different periods of consumption and experimental designs in Wistar rats. METHODS: Two groups of rats were fasted for 48 hours and reefed for 24 or 48 hours with a diet containing 63% fructose. Another group of rats was fed an diet with 63% fructose for 90 days. RESULTS: Refeeding for 24 hours caused accumulation of large amounts of fat, compromising 100% of the hepatocytes. The amount of liver fat in animals refed for 48 hours decreased, remaining mostly in zone 2 (medium-zonal. In liver plates of Wistar rats fed 63% fructose for 45, 60 and 90 days it's possible to see that there is an increase in hepatocytes with fat accumulation according to the increased time; hepatic steatosis, however, is mild, compromising about 20% of the hepatocytes. CONCLUSIONS: Fructose is highly lipogenic, however the induction of chronic models in NAFLD requires long periods of treatment. The acute supply for 24 or 48 hours, fasted rats can cause big changes, liver steatosis with macrovesicular in all lobular zones.OBJETIVO: O aumento do consumo de frutose é concomitante a maior incidência mundial de obesidade. Este monossacarídeo está relacionado à Síndrome Metabólica, sendo vinculado à hipertrigliceridemia, hipertensão arterial, resistência à insulina e diabetes mellitus.

  9. [Types of dislipidemia in children with metabolic syndrome].

    Hromnats'ka, N M

    2014-01-01

    To study dyslipidemia types in children with metabolic syndrome. From 1520 children of total population 155 children aged from 9 to 18 years were selected, who formed 2 groups: 1 group--85 children with metabolic syndrome, 2 group--54 children with normal body mass. Anthropometry, blood pressure measurement, estimation of total cholesterol, low density cholesterol, very low density cholesterol, high density cholesterol, tryglicerides in blood were done. The total cholesterol level was 1,1 times higher (p = 0.001), low density cholesterol 1,4 times higher (p = 0.001), very low density cholesterol 1,1 times higher (p= 0.015), tryglicerides 1,1 times higher (p = 0.020) in children with metabolic syndrome than in children of control group. In children with metabolic syndrome sensitively more often IIa, IV dislipidemia types and isolated hypercholesterolemia and less often IIb, III dislipidemia types and high density cholesterol isolated decrease were diagnosed. So children with metabolic syndrome were characterized by atherogenic types of dislipidemias which determine early atherosclerosis development. Children with metabolic syndrome must be examined on the lipid metabolism violation with the aim of its prevention and correction.

  10. Metabolic syndrome and the risk of adverse cardiovascular events after an acute coronary syndrome.

    Cavallari, Ilaria; Cannon, Christopher P; Braunwald, Eugene; Goodrich, Erica L; Im, KyungAh; Lukas, Mary Ann; O'Donoghue, Michelle L

    2018-05-01

    Background The incremental prognostic value of assessing the metabolic syndrome has been disputed. Little is known regarding its prognostic value in patients after an acute coronary syndrome. Design and methods The presence of metabolic syndrome (2005 International Diabetes Federation) was assessed at baseline in SOLID-TIMI 52, a trial of patients within 30 days of acute coronary syndrome (median follow-up 2.5 years). The primary endpoint was major coronary events (coronary heart disease death, myocardial infarction or urgent coronary revascularization). Results At baseline, 61.6% ( n = 7537) of patients met the definition of metabolic syndrome, 34.7% (n = 4247) had diabetes and 29.3% had both ( n = 3584). The presence of metabolic syndrome was associated with increased risk of major coronary events (adjusted hazard ratio (adjHR) 1.29, p metabolic syndrome was numerically but not significantly associated with the risk of major coronary events (adjHR 1.13, p = 0.06). Conversely, diabetes was a strong independent predictor of major coronary events in the absence of metabolic syndrome (adjHR 1.57, p metabolic syndrome identified patients at highest risk of adverse outcomes but the incremental value of metabolic syndrome was not significant relative to diabetes alone (adjHR 1.07, p = 0.54). Conclusions After acute coronary syndrome, diabetes is a strong and independent predictor of adverse outcomes. Assessment of the metabolic syndrome provides only marginal incremental value once the presence or absence of diabetes is established.

  11. Fructose as a key player in the development of fatty liver disease.

    Basaranoglu, Metin; Basaranoglu, Gokcen; Sabuncu, Tevfik; Sentürk, Hakan

    2013-02-28

    We aimed to investigate whether increased consumption of fructose is linked to the increased prevalence of fatty liver. The prevalence of nonalcoholic steatohepatitis (NASH) is 3% and 20% in nonobese and obese subjects, respectively. Obesity is a low-grade chronic inflammatory condition and obesity-related cytokines such as interleukin-6, adiponectin, leptin, and tumor necrosis factor-α may play important roles in the development of nonalcoholic fatty liver disease (NAFLD). Additionally, the prevalence of NASH associated with both cirrhosis and hepatocellular carcinoma was reported to be high among patients with type 2 diabetes with or without obesity. Our research group previously showed that consumption of fructose is associated with adverse alterations of plasma lipid profiles and metabolic changes in mice, the American Lifestyle-Induced Obesity Syndrome model, which included consumption of a high-fructose corn syrup in amounts relevant to that consumed by some Americans. The observation reinforces the concerns about the role of fructose in the obesity epidemic. Increased availability of fructose (e.g., high-fructose corn syrup) increases not only abnormal glucose flux but also fructose metabolism in the hepatocyte. Thus, the anatomic position of the liver places it in a strategic buffering position for absorbed carbohydrates and amino acids. Fructose was previously accepted as a beneficial dietary component because it does not stimulate insulin secretion. However, since insulin signaling plays an important role in central mechanisms of NAFLD, this property of fructose may be undesirable. Fructose has a selective hepatic metabolism, and provokes a hepatic stress response involving activation of c-Jun N-terminal kinases and subsequent reduced hepatic insulin signaling. As high fat diet alone produces obesity, insulin resistance, and some degree of fatty liver with minimal inflammation and no fibrosis, the fast food diet which includes fructose and fats produces

  12. Metabolic syndrome after laparoscopic bariatric surgery.

    Nugent, Clare; Bai, Chunhong; Elariny, Hazem; Gopalakrishnan, Priya; Quigley, Caitlin; Garone, Michael; Afendy, Mariam; Chan, Oscar; Wheeler, Angela; Afendy, Arian; Younossi, Zobair M

    2008-10-01

    Metabolic syndrome (MS) is common among morbidly obese patients undergoing bariatric surgery. The aim of this study was to assess the impact and predictors of bariatric surgery on the resolution of MS. Subjects included 286 patients [age 44.0 +/- 11.5, female 78.2%, BMI 48.7 +/- 9.4, waist circumference 139 +/- 20 cm, AST 23.5 +/- 14.9, ALT 30.0 +/- 20.1, type 2 diabetes mellitus (DM) 30.1% and MS 39.2%] who underwent bariatric surgery. Of the entire cohort, 27.3% underwent malabsorptive surgery, 55.9% underwent restrictive surgery, and 16.8% had combination restrictive-malabsorptive surgery. Mean weight loss was 33.7 +/- 20.1 kg after restrictive surgery (follow up period 298 +/- 271 days), 39.4 +/- 22.9 kg after malabsorptive surgery (follow-up period 306 +/- 290 days), and 28.3 +/- 14.1 kg after combination surgery (follow-up period 281 +/- 239 days). Regardless of the type of bariatric surgery, significant improvements were noted in MS (p values from <0.0001-0.01) as well as its components such as DM (p values from <0.0001-0.0005), waist circumference (p values <0.0001), BMI (p values <0.0001), fasting serum triglycerides (p values <0.0001 to 0.001), and fasting serum glucose (p values <0.0001). Additionally, a significant improvement in AST/ALT ratio (p value = 0.0002) was noted in those undergoing restrictive surgery. Multivariate analysis showed that patients who underwent malabsorptive bariatric procedures experienced a significantly greater percent excess weight loss than patients who underwent restrictive procedures (p value = 0.0451). Percent excess weight loss increased with longer postoperative follow-up (p value <0.0001). Weight loss after bariatric surgery is associated with a significant improvement in MS and other metabolic factors.

  13. Metabolic syndrome: nature, therapeutic solutions and options.

    Onat, Altan

    2011-08-01

    Metabolic syndrome (MetS) defines the clustering in an individual of multiple metabolic abnormalities, based on central obesity and insulin resistance. In addition to its five components, prothrombotic and proinflammatory states are essential features. The significance of MetS lies in its close association with the risk of type 2 diabetes and cardiovascular disease (CVD). This field being an evolving one necessitated the current review. The areas covered in this review include the so far unproven concept that enhanced low-grade inflammation often leads to dysfunction of the anti-inflammatory and atheroprotective properties of apolipoprotein A-I (apoA-I) and HDL particles, which further increases the risk of diabetes and CVD. It was emphasized that lifestyle modification is essential in the prevention and management of MetS, which includes maintenance of optimal weight by caloric restriction, adherence to a diet that minimizes postprandial glucose and triglyceride fluctuations, restricting alcohol consumption, smoking cessation and engaging in regular exercise. Drug therapy should target the dyslipoproteinemia and the often associated hypertension or dysglycemia.Statins are the drugs of first choice, to be initiated in patients with MetS at high 10-year cardiovascular risk. Such treatment is inadequate if fasting serum triglycerides remain at > 150 mg/dl, when niacin should be combined. Fibrates, omega 3 fatty acids, metformin, angiotensin-converting enzyme inhibitors and pioglitazone are additional options in drug therapy. Research on MetS in subpopulations prone to impaired glucose tolerance and insulin resistance has indicated that proinflammatory state and oxidative stress are often prominently involved in MetS, to the extent that evidence of impaired function of HDL and apo A-I particles is discernible by biological evidence of functional defectiveness via outcomes studies and/or correlations with inflammatory and anti-inflammatory biomarkers. A sex difference

  14. Unhealthy Lifestyle Behaviors in Korean People with Metabolic Syndrome.

    Moon, Seongmi

    2017-01-01

    This study identified factors associated with unhealthy lifestyle behaviors in people with metabolic syndrome in South Korea. The sample consisted of 1,207 subjects with metabolic syndrome from the Sixth Korea National Health and Nutrition Examination Survey conducted in 2014. High-risk alcohol consumption, smoking, aerobic physical activity, leisure physical activity, excessive carbohydrate intake, and fat intake were measured. A secondary data analysis was performed using chi-square tests and logistic regression. Gender was associated with all unhealthy behaviors. The number of metabolic syndrome components, a poor perceived health status, and attempts to control weight were associated with physical inactivity. Those findings may be helpful to develop a tailored lifestyle modification programs for people with metabolic syndrome.

  15. Enterovirus related metabolic myopathy: a postviral fatigue syndrome

    Lane, R; Soteriou, B; Zhang, H; Archard, L

    2003-01-01

    Objective: To detect and characterise enterovirus RNA in skeletal muscle from patients with chronic fatigue syndrome (CFS) and to compare efficiency of muscle energy metabolism in enterovirus positive and negative CFS patients.

  16. Benefits of dark chocolate in treating metabolic syndrome.

    Sander, Ruth

    2012-08-31

    Cardiovascular disease is the leading cause of death worldwide. The risk of developing it is significantly increased by the metabolic syndrome cluster of risk factors: waist measurement and other factors, such as blood pressure and cholesterol levels.

  17. Undiagnosed metabolic syndrome and other adverse effects among ...

    patients with metabolic syndrome,[9] this is a serious adverse effect of which the .... and Toronto Nocturnal Hypersalivation Scale (TNHS).[15] The presence ..... Positive and negative symptoms in affected sib pairs with schizophrenia: ...

  18. the prevalence of metabolic syndrome among active sportsmen

    User

    ABSTRACT. This study sought to establish the prevalence of the metabolic syndrome (MetS) among active .... Table 1: General characteristic of the studied population stratified by exercise. Parameters ..... Prolonged adaptation to fat- rich diet ...

  19. The role of transient receptor potential channels in metabolic syndrome

    Liu, Daoyan; Zhu, Zhiming; Tepel, Martin

    2008-01-01

    Metabolic syndrome is correlated with increased cardiovascular risk and characterized by several factors, including visceral obesity, hypertension, insulin resistance, and dyslipidemia. Several members of a large family of nonselective cation entry channels, e.g., transient receptor potential (TRP...

  20. Metabolic Syndrome in Patients with Polycystic Ovary Syndrome in Iran

    Ziba Zahiri

    2016-12-01

    Full Text Available Background: The prevalence of metabolic syndrome (MetS in polycystic ovary syndrome (PCOS has been studied in different populations, but their results were so controversial regarding Iranian women. These controversial data indicated the need for more investigation of MetS characteristics in PCOS patients in our population. So this study aimed to evaluate the clinical and laboratory characteristics and metabolic features of patients with PCOS in Rasht. Materials and Methods: This prospective cross sectional study was conducted on 215 PCOS women who lived in Rasht, north of Iran, from March 2010 to July 2012. The participants were then divided into two groups of women with MetS (n=62 and women without MetS (n=153. The diagnosis of PCOS and MetS were based on the Rotterdam 2003 criteria and the Adult Treatment Panel III (ATP III criteria, respectively. Demographic characteristics, fertility characteristics, family history and laboratory findings were assessed. Results: The prevalence of MetS in women with PCOS was 28.8%. In PCOS women of both groups, the waist circumference (WC exceeded 88cm in 72.6%, hypertension [systolic blood pressure (SBP and/or diastolic blood pressure (DBP ≥130/85mm Hg] was prevalent in 9.3%, fasting blood sugar (FBS level was ≥110 mg/dl in 6%, triglycerides (Tg level were ≥150 mg/dl in 47%, and high-density lipoprotein (HDL level was <50 mg/dl in 86%. The values of WC, SBP, DBP, body mass index (BMI, ovarian size, Tg, cholesterol, FBS, 2-hour blood sugar, aspartate aminotransferase (AST, and alanine aminotransferase (ALT were significantly greater in PCOS women with MetS than women without MetS. Also HDL and luteinizing hormone (LH levels in women with MetS were significantly lower than women without MetS. Conclusion: Prevalence of MetS in PCOS women was 28.8%, indicating that this value is higher than other studies conducted on PCOS women in Iran and other studies conducted on general population in Iran. PCOS women

  1. Metabolic syndrome and its components among university students in Kenya.

    Mbugua, Samuel Mungai; Kimani, Samuel Thuo; Munyoki, Gilbert

    2017-11-28

    Metabolic syndrome refers to a cluster of interrelated disorders which occur together causing an increase in the risk of developing cardiovascular disease and diabetes. The university population is an understudied group despite the increase in the frequency of related disorders and metabolic risk factors e.g. obesity and diabetes, majorly due to the assumption that they are in their most active phase of life therefore healthy. This study looked at metabolic syndrome, the sedentary lifestyles and dietary habits present among university students attending Mount Kenya University, main campus. Stratified sampling was used to select participants. Self-administered questionnaires were issued to participants after a signed consent had been obtained following which clinical assessments and biochemical measures were performed. They included blood pressure, fasting blood glucose, triglycerides, high density lipoprotein-cholesterol, anthropometric measurements; height, weight, BMI and waist circumference. Pearson's chi-square tests and non-parametric independent t-test were used to analyze the prevalence of metabolic syndrome criteria per gender, the number of metabolic syndrome criteria per BMI and prevalence of metabolic syndrome criteria per BMI category. The study established that 1.9% of the participants met the criteria for diagnosis of metabolic syndrome according to HJSS criteria. Among the elements, there was statistical difference in gender BMI and waist circumference. 11.8% of subjects had two metabolic syndrome components while 3.1% had three components while none of the subjects had all six components. Elevated triglycerides was the most prevalent defining component for metabolic syndrome. There is a statistically significant relationship between sedentary lifestyle and dietary habits as risk factors to metabolic syndrome. Young adults in university have begun developing metabolic syndrome and the risk of developing the syndrome continues to increase with the

  2. The Association between Oxidative Stress and Metabolic Syndrome in Adults

    Chung, So-Won; Kang, Sung-Goo; Rho, Jun-Seung; Kim, Ha-Na; Song, In-Sun; Lee, Yun-Ah; Heo, Soo-Jeong; Song, Sang-Wook

    2013-01-01

    Background In this Study, we investigated the effects of lifestyle and metabolic syndrome on free oxygen radical levels in men and women in Korea. Methods A total of 254 adults were included in this study from February 2011 to June 2012 at a health promotion center. Information of the lifestyles and presence of metabolic syndrome factors was obtained. Biochemical markers were measured and free oxygen radicals test (FORT) was performed on the blood. Results Of the 254 subjects, 86 (33.9%) had ...

  3. Asymptomatic hyperuricemia as a component of metabolic syndrome

    I. D. Bespalova

    2012-01-01

    Full Text Available The level of uric acid in the blood serum of 103 patients with coronary heart disease was researched in clinical conditions. The interrelation with the components of the metabolic syndrome in patients on the background of individually selected pathogenetic therapy was studied. It was shown that the abdominal obesity has the highest correlation with the level of uric acid in a cluster of metabolic syndrome components.

  4. Circulating Levels of Uric Acid and Risk for Metabolic Syndrome.

    Rubio-Guerra, Alberto F; Morales-López, Herlinda; Garro-Almendaro, Ana K; Vargas-Ayala, German; Durán-Salgado, Montserrat B; Huerta-Ramírez, Saul; Lozano-Nuevo, Jose J

    2017-01-01

    Hyperuricemia leads to insulin resistance, whereas insulin resistance decreases renal excretion of uric acid, both mechanisms link elevated serum uric acid with metabolic syndrome. The aim of this study is to evaluate the probability for the development of metabolic syndrome in low-income young adults with hyperuricaemia. We evaluated 103 patients less than 40 years of age, from a low-income population, and without history of cardiovascular disease, in all of them the presence of metabolic syndrome was assessed in accordance with the International Diabetes Federation criteria. In all patients, fasting serum uric acid levels were measured; hyperuricaemia was defined as serum uric acid values 6.5 mg/dl in men and 5.1 mg/dl in women. Statistical analysis was performed with odds ratio. 83 of our patients (80.5%) suffered metabolic syndrome, the odds ratio for the presence of metabolic syndrome in patients with hyperuricaemia was 5.1 (p=0.002, I.C 1.8- 14.5). When patients were evaluated by gender a significantly association between hyperuricaemia and metabolic syndrome was found in women (odds ratio 3.6, p=0.048, C.I. 1.0-12.9), and men (odds ratio 10.2, p= 0.015, IC 1.5-13.2). When uric acid was correlated with the components of metabolic syndrome, we only found a positive correlation with waist circumference (r=0.483). Our results showed a significant association between hyperuricemia and metabolic syndrome in low-income young adults in Mexico. DR is associated with estimated risk of CVD in type 2 diabetic patients. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Metabolic syndrome 2 years after laparoscopic gastric bypass.

    Guilbert, Lizbeth; Ortiz, Cristian J; Espinosa, Omar; Sepúlveda, Elisa M; Piña, Tatiana; Joo, Paul; Zerrweck, Carlos

    2018-04-01

    The latest diabetes consensus identified obesity as key component of the metabolic syndrome. The role of bariatric surgery over such syndrome has been less explored with a lack of long term studies, and especially among Mexicans. Retrospective study including patients with metabolic syndrome submitted to laparoscopic gastric bypass at a single institution with complete data after 24 months. The objective was to analyze the improvement of the syndrome and each component. Demographic, anthropometric, biochemical and clinical parameters were analyzed at 12 and 24 months. Secondarily weight loss and other parameters were also analyzed. Finally, an analysis of syndrome improvement related to weight loss was performed. Sixty-three patients were included. The 2 most common components associated with obesity were reduced HDL and raised glucose or Type 2 diabetes. There was a significant improvement of metabolic syndrome and its components, as well as for the rest of the analyzed data, from the first check point and throughout follow-up. Prevalence of such syndrome was 6.3% at 12 and 24 months. Hypertension and raised glucose or Type 2 diabetes were the components with the greatest and fastest improvement; HDL levels and obesity were the least improved. There was a direct relationship between percentage of excess weight loss or percentage of excess BMI loss, and syndrome's improvement. Patients with metabolic syndrome improved after gastric bypass, with results lasting after 2 years; other metabolic parameters important for cardiovascular risk were also positively affected. There was a relationship between the amount of weight loss and improvement of metabolic syndrome. Copyright © 2018 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.

  6. Gender differences in metabolic syndrome components among the Korean 66-year-old population with metabolic syndrome.

    Lee, Sangjin; Ko, Young; Kwak, Chanyeong; Yim, Eun-Shil

    2016-01-23

    Gender is thought to be an important factor in metabolic syndrome and its outcomes. Despite a number of studies that have demonstrated differences in metabolism and its components that are dependent on gender, limited information about gender differences on the characteristics of metabolic syndrome and its components is available regarding the Korean old adult population. This study aimed to identify gender differences in characteristics of the metabolic syndrome and other risk factors for cardiovascular disease. Secondary analysis of data from a nationwide cross-sectional survey for health examination at the time of transitioning from midlife to old age was performed. Multiple logistic regression models were used to estimate adjusted odds ratios and 95% confidence intervals for gender differences among the Korean 66-year-old population with metabolic syndrome. Gender differences in metabolic syndrome components that contributed to the diagnosis of metabolic syndrome were identified. In males, the most common component was high blood sugar levels (87.5%), followed by elevated triglyceride levels (83.5%) and high blood pressure (83.1%). In females, the most commonly identified component was elevated triglyceride levels (79.0%), followed by high blood sugar levels (78.6%) and high blood pressure (78.5%). Gender differences for other risk factors for cardiovascular disease, including family history, health habits, and body mass index were observed. Gender-specific public health policies and management strategies to prevent cardiovascular disease among the older adult population should be developed for Koreans undergoing the physiological transition to old age.

  7. Emerging health problems among women: Inactivity, obesity, and metabolic syndrome

    Yi-Ju Tsai

    2014-02-01

    Full Text Available The increase in obesity and metabolic syndrome has been documented worldwide. However, few studies have investigated the risk of inactivity, obesity, and metabolic syndrome specifically in women. Hormone balance plays a crucial role in regulating metabolism and helps to maintain optimal health. It is likely that the sex difference in obesity may be due to the variation in hormone concentration throughout a woman's life, which predisposes them to weight gain. This paper reviews previous literature and discusses factors that influence the risk of adiposity-related health consequences among women for three critical biological transitions throughout a woman's life: puberty, menopause, and pregnancy. To improve quality of life and metabolic health for women, interventions are needed to target women at different transition stages and provide tailored health education programs. Interventions should raise awareness of physical inactivity, obesity, and metabolic syndrome, and promote healthy behavioral change in women.

  8. Adipose Tissue Dysfunction in Nascent Metabolic Syndrome

    Andrew A. Bremer

    2013-01-01

    Full Text Available The metabolic syndrome (MetS confers an increased risk for both type 2 diabetes mellitus (T2DM and cardiovascular disease (CVD. Moreover, studies on adipose tissue biology in nascent MetS uncomplicated by T2DM and/or CVD are scanty. Recently, we demonstrated that adipose tissue dysregulation and aberrant adipokine secretion contribute towards the syndrome’s low-grade chronic proinflammatory state and insulin resistance. Specifically, we have made the novel observation that subcutaneous adipose tissue (SAT in subjects with nascent MetS has increased macrophage recruitment with cardinal crown-like structures. We have also shown that subjects with nascent MetS have increased the levels of SAT-secreted adipokines (IL-1, IL-6, IL-8, leptin, RBP-4, CRP, SAA, PAI-1, MCP-1, and chemerin and plasma adipokines (IL-1, IL-6, leptin, RBP-4, CRP, SAA, and chemerin, as well as decreased levels of plasma adiponectin and both plasma and SAT omentin-1. The majority of these abnormalities persisted following correction for increased adiposity. Our data, as well as data from other investigators, thus, highlight the importance of subcutaneous adipose tissue dysfunction in subjects with MetS and its contribution to the proinflammatory state and insulin resistance. This adipokine profile may contribute to increased insulin resistance and low-grade inflammation, promoting the increased risk of T2DM and CVD.

  9. Menopause and Metabolic Syndrome in Tunisian Women

    Samir Ben Ali

    2014-01-01

    Full Text Available Objectives. This study aimed to evaluate the effect of menopausal status on the risk of metabolic syndrome (MetS in Tunisian women. Methods. We analyzed a total of 2680 women aged between 35 and 70 years. Blood pressure, anthropometric indices, fasting glucose, and lipid profile were measured. The MetS was assessed by the modified NCEP-ATPIII definition. Results. The mean values of waist circumference, blood pressure, plasma lipids, and fasting glucose were significantly higher in postmenopausal than in premenopausal women, a difference that was no longer present when adjusting for age. Except for hypertriglyceridaemia, the frequency of central obesity, hyperglycemia, high blood pressure, and high total cholesterol was significantly higher in postmenopausal than in premenopausal women. After adjusting for age, the significance persisted only for hyperglycemia. The overall prevalence of MetS was 35.9%, higher in postmenopausal (45.7% versus 25.6% than in premenopausal women. A binary logistic regression analysis showed that menopause was independently associated with MetS (OR = 1.41, 95% CI 1.10–1.82 after adjusting for age, residence area, marital status, family history of cardiovascular disease, education level, and occupation. Conclusions. The present study provides evidence that the MetS is highly prevalent in this group of women. Menopause can be a predictor of MetS independent of age in Tunisian women.

  10. Metabolic syndrome in asthmatic patients of hazara division

    Ahmed, N.; Kazim, S.M.; Gillani, S.Y.

    2017-01-01

    Bronchial asthma is a common disease and most asthmatics are obese. Both asthma and obesity are showing parallel trends in their increasing prevalence. Obesity is also the main component of metabolic syndrome and several studies have shown metabolic syndrome to be associated with bronchial asthma. The present study was, therefore, designed to determine the frequency of metabolic syndrome among patients with chronic asthma in our setup. Methods: This cross-sectional study was conducted in Department of Medicine, Ayub Teaching Hospital, Abbottabad from May to November, 2014. One hundred and fifty-four asthmatic patients were enrolled in this study. Samples for blood glucose, triglycerides and HDL Cholesterol were taken after an overnight fast. Sitting blood pressure was measured with mercury sphygmomanometer after 10 minutes of rest. Waist circumference was measured at the level of the midpoint between the high point of the iliac crest and the last rib. Results: Out of 154 patients, 80 were males and 74 were females. Metabolic syndrome was diagnosed in 46 (29.87 percent) patients. When metabolic syndrome was stratified according to age, sex and duration of asthma, the results were found to be insignificant (p-0.89, 0.30 and 0.85). Conclusion: This study showed that metabolic syndrome was present in almost one third of study population. (author)

  11. Metabolic Syndrome among Type-2 Diabetic Patients in Benghazi ...

    Background: Metabolic syndrome is a cluster of three out of five conditions that are due to hyperinsulinemia: abdominal obesity, atherogenic dyslipidemia (high triglycerides and/or low HDL), elevated blood pressure, and elevated plasma glucose. The syndrome is highly prevalent in patients with type-2 diabetes mellitus ...

  12. Polycystic ovary syndrome: A component of metabolic syndrome?

    Vignesh J

    2007-01-01

    Full Text Available In 1935, Stein and Leventhal first described the polycystic ovary (PCO as a frequent cause of irregular ovulation in women seeking treatment for subfertility. Although the initial management was surgical with wedge resection of ovary, the availability of radioimmunoassay and increased clinical use of ultrasound made it clear that many women had the ultrasound characteristics of PCO with or without the biochemical or clinical features of PCOS and therefore that PCO were not associated with a single syndrome. The association between increased insulin resistance and PCOS is a consistent finding in all ethnic groups. Obesity is a common factor in the majority of women with PCOS. It is postulated that a woman may be genetically predisposed to developing PCOS but it is only the interaction of environmental factors (obesity with the genetic factors that results in the characteristic metabolic and menstrual disturbances. Weight loss, altered diet and exercise have been shown to be effective in the management of PCOS. Importance of early recognition, proper intervention, long-term monitoring and health implications needs more concern.

  13. Chronic Fructose Ingestion as a Major Health Concern: Is a Sedentary Lifestyle Making It Worse? A Review

    Bidwell, Amy J.

    2017-01-01

    Obesity contributes to metabolic abnormalities such as insulin resistance, dyslipidemia, hypertension, and glucose intolerance, all of which are risk factors associated with metabolic syndrome. The growing prevelance of metabolic syndrome seems to be an end result of our current lifestyle which promotes high caloric, high-fat foods and minimal physical activity, resulting in a state of positive energy balance. Increased adiposity and physical inactivity may represent the beginning of the appearance of these risk factors. Understanding the metabolic and cardiovascular disturbances associated with diet and exercise habits is a crucial step towards reducing the risk factors for metabolic syndrome. Although considerable research has been conducted linking chronic fructose ingestion to the increased prevalence of obesity and metabolic syndrome risk factors, these studies have mainly been performed on animals, and/or in a post-absorptive state. Further, the magnitude of the effect of fructose may depend on other aspects of the diet, including the total amount of carbohydrates and fats in the diet and the overall consumption of meals. Therefore, the overall aim of this review paper is to examine the effects of a diet high in fructose on postprandial lipidemia, inflammatory markers and glucose tolerance, all risk factors for diabetes and cardiovascular disease. Moreover, an objective is to investigate whether increased physical activity can alter such effects. PMID:28555043

  14. Chronic Fructose Ingestion as a Major Health Concern: Is a Sedentary Lifestyle Making It Worse? A Review.

    Bidwell, Amy J

    2017-05-28

    Obesity contributes to metabolic abnormalities such as insulin resistance, dyslipidemia, hypertension, and glucose intolerance, all of which are risk factors associated with metabolic syndrome. The growing prevelance of metabolic syndrome seems to be an end result of our current lifestyle which promotes high caloric, high-fat foods and minimal physical activity, resulting in a state of positive energy balance. Increased adiposity and physical inactivity may represent the beginning of the appearance of these risk factors. Understanding the metabolic and cardiovascular disturbances associated with diet and exercise habits is a crucial step towards reducing the risk factors for metabolic syndrome. Although considerable research has been conducted linking chronic fructose ingestion to the increased prevalence of obesity and metabolic syndrome risk factors, these studies have mainly been performed on animals, and/or in a post-absorptive state. Further, the magnitude of the effect of fructose may depend on other aspects of the diet, including the total amount of carbohydrates and fats in the diet and the overall consumption of meals. Therefore, the overall aim of this review paper is to examine the effects of a diet high in fructose on postprandial lipidemia, inflammatory markers and glucose tolerance, all risk factors for diabetes and cardiovascular disease. Moreover, an objective is to investigate whether increased physical activity can alter such effects.

  15. Descriptive epidemiology of metabolic syndrome among obese adolescent population.

    Mahbuba, Sharmin; Mohsin, Fauzia; Rahat, Farhana; Nahar, Jebun; Begum, Tahmina; Nahar, Nazmun

    2018-05-01

    The study was done to assess the magnitude of problems of metabolic syndrome among obese adolescents. It was a cross-sectional study done from January 2013 to June 2014 in paediatric endocrine outpatient department in BIRDEM General Hospital, Dhaka, Bangladesh. Total 172 adolescents having exogenous obesity aged 10-18 years were included. Impaired fasting glucose (IFG), impaired glucose tolerance (IGT) and type 2 diabetes mellitus (DM) were defined as per WHO criteria.The adolescents having Body Mass Index (BMI) ≥95th centile were classified as obese.Waist circumference was measured at the level midway between the lower rib margin & the iliac crest, at the level of umbilicus with the person breathing out gently in centimeter. Hip circumference was measured at the maximum width over the buttocks at the level of the greater trochanters in centimeter. Among 172 obese adolescents, metabolic syndrome was found in 66 patients (38.4%). The commonest metabolic abnormality among those having metabolic syndrome was low HDL level (77.3%) followed by high triglyceride level(71.2%). Glucose intolerance (IFG and/or IGT) was found in 16.7%, Type 2 DM in 10.6%, systolic hypertension in 10.7% and diastolic hypertension in 12.1%. Triglyceride (p = 0.042) and Cholesterol level (p = 0.016) were significantly higher and HDL-cholesterol level (p = 0.000) was significantly lower among obese adolescents having metabolic syndrome. Less physical activity (p = 0.04) was significantly related to the development of metabolic syndrome. On logistic regression analysis male sex, family history of obesity and low HDL-cholesterol correlated to metabolic syndrome. The High rate of metabolic syndrome among obese adolescents is alarming. Copyright © 2018 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  16. Increased Risk of Metabolic Syndrome in Patients with Vitiligo.

    Ataş, Hatice; Gönül, Müzeyyen

    2017-05-05

    Inflammatory and immune processes can be triggered in vitiligo due to a decreased number of melanocytes and their anti-inflammatory effects. Because of the systemic nature of vitiligo, metabolic abnormalities such as insulin resistance and lipid profile disturbances as well as skin involvement may be observed in vitiligo. To investigate the association between metabolic syndrome and vitiligo. Case-control study. The demographic, clinical and laboratory features in the subjects were compared according to presence of vitiligo and metabolic syndrome [patients (n=63) vs. gender-age matched controls (n=65) and metabolic syndrome positive (n=38) vs. negative (n=90)]. A logistic regression analysis was also used. We identified metabolic syndrome in 24 (38.1%) subjects with vitiligo and 14 (21.5%) subjects without vitiligo (p=0.04). Active vitiligo, segmental vitiligo, an increased duration of vitiligo and an increased percentage in the affected body surface area were determined to be independent predictors of metabolic syndrome [activity of vitiligo: p=0.012, OR (95% CI)=64.4 (2.5-1672); type of vitiligo: p=0.007, OR (95% CI)=215.1 (4.3-10725.8); duration of vitiligo: p=0.03, OR (95% CI)=1.4 (1.1-2.0); percentage of affected body surface area: p=0.07, OR (95% CI)=1.2 (0.98-1.5)]. The risk of developing metabolic syndrome is increased in patients with vitiligo. The poor clinical features of vitiligo, such as active, extended and segmental vitiligo with an increased duration of time, are independent predictors for developing metabolic syndrome.

  17. Metabolic syndrome in children and adolescents with phenylketonuria

    Viviane C. Kanufre

    2015-01-01

    Conclusion: The results of this study suggest that patients with PKU and excess weight are potentially vulnerable to the development of metabolic syndrome. Therefore, it is necessary to conduct clinical and laboratory monitoring, aiming to prevent metabolic changes, as well as excessive weight gain and its consequences, particularly cardiovascular risk.

  18. Contributory role of adenosine deaminase in metabolic syndrome ...

    Adenosine deaminase (ADA) is an enzyme of purine metabolism commonly associated with severe combined immunodeficiency disease and believed to modulate bioactivity of insulin. Its contributory role in patients with metabolic syndrome (having features such as obesity, insulin resistance, fasting hyperglycaemia, lipid ...

  19. [Severe metabolic alkalosis following hypokalemia from a paraneoplastic Cushing syndrome].

    Dubé, L; Daenen, S; Kouatchet, A; Soltner, C; Alquier, P

    2001-12-01

    Metabolic alkalosis is frequently observed in critically ill patients. Etiologies are numerous but endocrinal causes are rare. We report a case of a patient with severe respiratory insufficiency, metabolic alkalosis and hypokalemia. The evolution was fatal. Further explorations revealed an ectopic Adrenocorticotropine Hormone syndrome. The initial tumor was probably a small cell lung carcinoma.

  20. Epidemiological predictors of metabolic syndrome in urban West Bengal, India.

    Chakraborty, Sasthi Narayan; Roy, Sunetra Kaviraj; Rahaman, Md Abdur

    2015-01-01

    Metabolic syndrome is one of the emerging health problems of the world. Its prevalence is high in urban areas. Though pathogenesis is complex, but the interaction of obesity, sedentary lifestyle, dietary, and genetic factors are known as contributing factors. Community-based studies were very few to find out the prevalence or predictors of the syndrome. To ascertain the prevalence and epidemiological predictors of metabolic syndrome. A total of 690 study subjects were chosen by 30 clusters random sampling method from 43 wards of Durgapur city. Data were analyzed in SPSS version 20 software and binary logistic regression was done to find out statistical significance of the predictors. Among 32.75% of the study population was diagnosed as metabolic syndrome according to National Cholesterol Education Program Adult Treatment Panel III definition with a modification for Asia Pacific cut-off of waist circumference. Odds were more among females (2.43), upper social class (14.89), sedentary lifestyle (17.00), and positive family history. The overall prevalence of metabolic syndrome was high in urban areas of Durgapur. Increased age, female gender, higher social status, sedentary lifestyle, positive family history, and higher education were the statistically significant predictors of metabolic syndrome.

  1. Epidemiological predictors of metabolic syndrome in urban West Bengal, India

    Sasthi Narayan Chakraborty

    2015-01-01

    Full Text Available Introduction: Metabolic syndrome is one of the emerging health problems of the world. Its prevalence is high in urban areas. Though pathogenesis is complex, but the interaction of obesity, sedentary lifestyle, dietary, and genetic factors are known as contributing factors. Community-based studies were very few to find out the prevalence or predictors of the syndrome. Objectives: To ascertain the prevalence and epidemiological predictors of metabolic syndrome. Materials and Methods: A total of 690 study subjects were chosen by 30 clusters random sampling method from 43 wards of Durgapur city. Data were analyzed in SPSS version 20 software and binary logistic regression was done to find out statistical significance of the predictors. Results: Among 32.75% of the study population was diagnosed as metabolic syndrome according to National Cholesterol Education Program Adult Treatment Panel III definition with a modification for Asia Pacific cut-off of waist circumference. Odds were more among females (2.43, upper social class (14.89, sedentary lifestyle (17.00, and positive family history. Conclusion: The overall prevalence of metabolic syndrome was high in urban areas of Durgapur. Increased age, female gender, higher social status, sedentary lifestyle, positive family history, and higher education were the statistically significant predictors of metabolic syndrome.

  2. The role of interleukin-18 in the metabolic syndrome

    Seljeflot Ingebjørg

    2010-03-01

    Full Text Available Abstract The metabolic syndrome is thought to be associated with a chronic low-grade inflammation, and a growing body of evidence suggests that interleukin-18 (IL-18 might be closely related to the metabolic syndrome and its consequences. Circulating levels of IL-18 have been reported to be elevated in subjects with the metabolic syndrome, to be closely associated with the components of the syndrome, to predict cardiovascular events and mortality in populations with the metabolic syndrome and to precede the development of type 2 diabetes. IL-18 is found in the unstable atherosclerotic plaque, in adipose tissue and in muscle tissue, and is subject to several regulatory steps including cleavage by caspase-1, inactivation by IL-18 binding protein and the influence of other cytokines in modulating its interaction with the IL-18 receptor. The purpose of this review is to outline the role of IL-18 in the metabolic syndrome, with particular emphasis on cardiovascular risk and the potential effect of life style interventions.

  3. Metabolic Syndrome in Children: Clinical Picture, Features of Lipid and Carbohydrate Metabolism

    O.S. Bobrykovych

    2013-09-01

    Full Text Available The study included 225 children aged from 14 to 18 years with various manifestations of the metabolic syndrome in neighborhoods, different by iodine provision. The physical development (height, weight, body mass index, waist and hip circumferences has been examined. Biochemical investigations are focused on the study of lipid and carbohydrate metabolism in children. It is found that children who live in mountains have more severe obesity. In parallel with the increase of the degree of obesity, disorders of lipid and carbohydrate metabolism aggravate in children with sings of metabolic syndrome.

  4. Cardiovascular Changes in Animal Models of Metabolic Syndrome

    Alexandre M. Lehnen

    2013-01-01

    Full Text Available Metabolic syndrome has been defined as a group of risk factors that directly contribute to the development of cardiovascular disease and/or type 2 diabetes. Insulin resistance seems to have a fundamental role in the genesis of this syndrome. Over the past years to the present day, basic and translational research has used small animal models to explore the pathophysiology of metabolic syndrome and to develop novel therapies that might slow the progression of this prevalent condition. In this paper we discuss the animal models used for the study of metabolic syndrome, with particular focus on cardiovascular changes, since they are the main cause of death associated with the condition in humans.

  5. Cerebral blood flow and oxygen metabolism in the Rett syndrome

    Yoshikawa, Hideto; Fueki, Noboru; Suzuki, Hisaharu; Sakuragawa, Norio; Iio, Masaaki

    1992-01-01

    Positron emission tomography (PET) was performed on six patients with the Rett syndrome and the results were compared with the concurrent clinical status of the patients. The cerebral metabolic rate of oxygen (CMRO 2 ) was low in five patients, and oxygen extraction fraction (OEF) was low in four patients; both had a tendency to decline with advancing age. Although the cause is unknown, it is suggested that impaired oxidative metabolism exists in the Rett syndrome. An analysis of the distribution among brain regions showed that the ratios of values for the frontal cortex to those for the temporal cortex for both the cerebral blood flow (CBF) and CMRO 2 were lower than those for the controls, which may indicate the loss of of hyperfrontality in the Rett syndrome. Distribution of brain metabolism may be immature in the Rett syndrome. (author)

  6. Involvement of astrocyte metabolic coupling in Tourette syndrome pathogenesis.

    de Leeuw, Christiaan; Goudriaan, Andrea; Smit, August B; Yu, Dongmei; Mathews, Carol A; Scharf, Jeremiah M; Verheijen, Mark H G; Posthuma, Danielle

    2015-11-01

    Tourette syndrome is a heritable neurodevelopmental disorder whose pathophysiology remains unknown. Recent genome-wide association studies suggest that it is a polygenic disorder influenced by many genes of small effect. We tested whether these genes cluster in cellular function by applying gene-set analysis using expert curated sets of brain-expressed genes in the current largest available Tourette syndrome genome-wide association data set, involving 1285 cases and 4964 controls. The gene sets included specific synaptic, astrocytic, oligodendrocyte and microglial functions. We report association of Tourette syndrome with a set of genes involved in astrocyte function, specifically in astrocyte carbohydrate metabolism. This association is driven primarily by a subset of 33 genes involved in glycolysis and glutamate metabolism through which astrocytes support synaptic function. Our results indicate for the first time that the process of astrocyte-neuron metabolic coupling may be an important contributor to Tourette syndrome pathogenesis.

  7. Fructose Consumption, Lipogenesis, and Non-Alcoholic Fatty Liver Disease.

    Ter Horst, Kasper W; Serlie, Mireille J

    2017-09-06

    Increased fructose consumption has been suggested to contribute to non-alcoholic fatty liver disease (NAFLD), dyslipidemia, and insulin resistance, but a causal role of fructose in these metabolic diseases remains debated. Mechanistically, hepatic fructose metabolism yields precursors that can be used for gluconeogenesis and de novo lipogenesis (DNL). Fructose-derived precursors also act as nutritional regulators of the transcription factors, including ChREBP and SREBP1c, that regulate the expression of hepatic gluconeogenesis and DNL genes. In support of these mechanisms, fructose intake increases hepatic gluconeogenesis and DNL and raises plasma glucose and triglyceride levels in humans. However, epidemiological and fructose-intervention studies have had inconclusive results with respect to liver fat, and there is currently no good human evidence that fructose, when consumed in isocaloric amounts, causes more liver fat accumulation than other energy-dense nutrients. In this review, we aim to provide an overview of the seemingly contradicting literature on fructose and NAFLD. We outline fructose physiology, the mechanisms that link fructose to NAFLD, and the available evidence from human studies. From this framework, we conclude that the cellular mechanisms underlying hepatic fructose metabolism will likely reveal novel targets for the treatment of NAFLD, dyslipidemia, and hepatic insulin resistance. Finally, fructose-containing sugars are a major source of excess calories, suggesting that a reduction of their intake has potential for the prevention of NAFLD and other obesity-related diseases.

  8. Prevalence of metabolic syndrome among elderly Mexicans.

    Ortiz-Rodríguez, María Araceli; Yáñez-Velasco, Lucía; Carnevale, Alessandra; Romero-Hidalgo, Sandra; Bernal, Demetrio; Aguilar-Salinas, Carlos; Rojas, Rosalba; Villa, Antonio; Tur, Josep A

    2017-11-01

    One of the most prevalent chronic diseases among elderly population is the Metabolic Syndrome (MetS). The aim of this study was to assess the prevalence of MetS and associated factors among Mexican elderly people. Cross-sectional survey carried out in Mexico (2007). A random sample (n=516) of the elderly population (≥65years; 277 female, 239 male) was interviewed. Anthropometric and analytical measurements, and a general questionnaire incorporating questions related to socio-demographic and life-style factors were used. MetS definition AHA/NHLBI/IDF was applied. The prevalence of MetS in the elderly (≥65years) was of 72.9% (75.7% men; 70.4% women). Participants with values above MetS cut-off points were 92.4% (hypertension), 77.8% (hypertriglyceridemia), 77.1% (low HDL-cholesterol), 71.1% (hyperglycaemia), and 65.4% (central obesity). People with MetS showed higher values of anthropometric and biochemical variables than those without MetS, except for the height, cholesterol and creatinine. Mid-high education level (9-12 years), no smokers and former smokers, and Central-Western inhabitants of Mexico were associated with MetS components. BMI status was the main determinant of MetS prevalence and MetS components. The reported prevalence of MetS among the elderly Mexican population was higher than those previously obtained in the geographical area, showing a major public health problem in Mexican elders. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. A Nutritional Approach to the Metabolic Syndrome

    Robert H. Lerman

    2011-02-01

    Full Text Available Poor diet and sedentary lifestyle contribute to the development of metabolic syndrome (MetS; addressing both is crucial for its management. A diet featuring the Mediterranean dietary pattern or low glycemic load has been shown to prevent and ameliorate MetS. Plant compounds, including soy protein and phytosterols, have been associated with reduced cardiovascular disease (CVD risk. Recently, phytochemicals from hops and acacia were identified as lipogenic, antiinflammatory compounds that reduced serum insulin and glucose levels in animals. A 12-week, randomized lifestyle intervention study in overweight and obese women with LDL ≥3.37 mmol/L (130 mg/dL compared a Mediterranean-style, low-glycemic-load diet and soy/phytosterol-based medical food to an AHA low-fat diet. The modified Mediterranean diet with medical food was superior in reducing markers of MetS and CVD risk. A subsequent,randomized 12-week study in men and women with MetS and LDL ≥3.37 mmol/L (130 mg/dL showed that supplementation with soy/phytosterol-based medical food plus phytochemicalsenhanced the benefits of a Mediterranean-style low-glycemic-load diet and aerobic exercise. At the completion of the study, 43% of participants receiving medical food and phytochemicalsexhibited net resolution of MetS compared with only 22% of those on diet and exercise alone. A subanalysis of participants at high risk (MetS + LDL ≥4.14 mmol/L [160 mg/dL] indicated minimal benefit from lifestyle change alone but marked benefits with the addition of medical food and phytochemicals. Case studies illustrate long-term benefits of this supplemented lifestyle change program. In conclusion, institution of a phytochemical-enhanced lifestyle intervention promises to be a clinically useful approach in MetS management.

  10. Effect of metformin on exercise capacity in metabolic syndrome.

    Paul, Abi Albon; Dkhar, Steven Aibor; Kamalanathan, Sadishkumar; Thabah, Molly Mary; George, Melvin; Chandrasekaran, Indumathi; Gunaseelan, Vikneswaran; Selvarajan, Sandhiya

    2017-11-01

    Metabolic syndrome is a constellation of risk factors with increased predilection towards occurrence of cardiovascular diseases. Currently physical exercise and management with metformin are the prevailing treatment modalities for metabolic syndrome. Patients with metabolic syndrome have been found to have reduced exercise capacity over a period of time. Likewise metformin has been shown to decrease exercise capacity among healthy volunteers. Hence this study aims to evaluate the effect of metformin on the exercise capacity of patients with metabolic syndrome. Prospective study with 6 weeks follow up. Newly diagnosed patients with metabolic syndrome and to be started on Table Metformin 500mg twice a day were recruited for the study after obtaining written informed consent. Cardiopulmonary Exercise Testing (CPET) was done at baseline before the subjects were started on metformin and after 6 weeks of treatment using cardiopulmonary exercise testing apparatus (ZAN600). Fifteen treatment naïve patients with metabolic syndrome completed six weeks of therapy with metformin. In these patients oxygen uptake [VO2] showed statistically significant decrease from 1.10±0.44 at baseline to 0.9±0.39 (l/min) after six weeks of treatment with metformin [mean difference of -0.20 (-0.31 to -0.09); P=0.001]. Similarly oxygen uptake/kg body weight [VO2/Kg] showed a significant decrease from 14.10±4.73 to 11.44±3.81 (mlkg -1 min -1 ) at the end of six weeks of treatment [mean difference of -2.66 (-4.06 to -1.26); P=0.001]. Six weeks of treatment with metformin significantly decreases exercise capacity in newly diagnosed patients with metabolic syndrome. Copyright © 2017 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  11. A clinical perspective of obesity, metabolic syndrome and cardiovascular disease

    Thang S Han

    2016-02-01

    Full Text Available The metabolic syndrome is a condition characterized by a special constellation of reversible major risk factors for cardiovascular disease and type 2 diabetes. The main, diagnostic, components are reduced HDL-cholesterol, raised triglycerides, blood pressure and fasting plasma glucose, all of which are related to weight gain, specifically intra-abdominal/ectopic fat accumulation and a large waist circumference. Using internationally adopted arbitrary cut-off values for waist circumference, having metabolic syndrome doubles the risk of cardiovascular disease, but offers an effective treatment approach through weight management. Metabolic syndrome now affects 30–40% of people by age 65, driven mainly by adult weight gain, and by a genetic or epigenetic predisposition to intra-abdominal/ectopic fat accumulation related to poor intra-uterine growth. Metabolic syndrome is also promoted by a lack of subcutaneous adipose tissue, low skeletal muscle mass and anti-retroviral drugs. Reducing weight by 5–10%, by diet and exercise, with or without, anti-obesity drugs, substantially lowers all metabolic syndrome components, and risk of type 2 diabetes and cardiovascular disease. Other cardiovascular disease risk factors such as smoking should be corrected as a priority. Anti-diabetic agents which improve insulin resistance and reduce blood pressure, lipids and weight should be preferred for diabetic patients with metabolic syndrome. Bariatric surgery offers an alternative treatment for those with BMI ≥ 40 or 35–40 kg/m 2 with other significant co-morbidity. The prevalence of the metabolic syndrome and cardiovascular disease is expected to rise along with the global obesity epidemic: greater emphasis should be given to effective early weight-management to reduce risk in pre-symptomatic individuals with large waists.

  12. Metabolic syndrome and insulin resistance in obese adolescents

    Amanda Oliva Gobato

    2014-03-01

    Full Text Available Objective: To verify the prevalence of metabolic syndrome and insulin resistance in obese adolescents and its relationship with different body composition indicators. Methods: A cross-sectional study comprising 79 adolescents aged ten to 18 years old. The assessed body composition indicators were: body mass index (BMI, body fat percentage, abdominal circumference, and subcutaneous fat. The metabolic syndrome was diagnosed according to the criteria proposed by Cook et al. The insulin resistance was determined by the Homeostasis Model Assessment for Insulin Resistance (HOMA-IR index for values above 3.16. The analysis of ROC curves was used to assess the BMI and the abdominal circumference, aiming to identify the subjects with metabolic syndrome and insulin resistance. The cutoff point corresponded to the percentage above the reference value used to diagnose obesity. Results: The metabolic syndrome was diagnosed in 45.5% of the patients and insulin resistance, in 29.1%. Insulin resistance showed association with HDL-cholesterol (p=0.032 and with metabolic syndrome (p=0.006. All body composition indicators were correlated with insulin resistance (p<0.01. In relation to the cutoff point evaluation, the values of 23.5 and 36.3% above the BMI reference point allowed the identification of insulin resistance and metabolic syndrome. The best cutoff point for abdominal circumference to identify insulin resistance was 40%. Conclusions: All body composition indicators, HDL-cholesterol and metabolic syndrome showed correlation with insulin resistance. The BMI was the most effective anthropometric indicator to identify insulin resistance.

  13. The association of breast arterial calcification and metabolic syndrome

    Seyma Yildiz

    2014-01-01

    Full Text Available OBJECTIVES: We investigated the relationship between metabolic syndrome and breast arterial calcification detected via mammography in a cohort of postmenopausal subjects. METHODS: Among 837 patients referred to our radiology department for mammographic screening, 310 postmenopausal females (105 patients with and 205 patients without breast arterial calcification aged 40 to 73 (mean 55.9±8.4 years were included in this study. The groups were compared with respect to clinical characteristics and metabolic syndrome criteria. Univariate and multivariate analyses identified the factors related to breast arterial calcification. RESULTS: Age, postmenopausal duration and the frequencies of diabetes mellitus, hypertension and metabolic syndrome were significantly higher in the subjects with breast arterial calcification than in those without (p<0.05. Multivariate analysis indicated that age (OR = 1.3, 95% CI = 1.1-1.6, p = 0.001 and metabolic syndrome (OR = 4.0, 95% CI = 1.5−10.4, p = 0.005 were independent predictors of breast arterial calcification detected via mammography. The independent predictors among the features of metabolic syndrome were low levels of high-density lipoproteins (OR = 8.1, 95% CI = 1.0−64.0, p = 0.047 and high blood pressure (OR = 8.7, 95% CI = 1.5−49.7, p = 0.014. CONCLUSIONS: The likelihood of mammographic detection of breast arterial calcification increases with age and in the presence of hypertension or metabolic syndrome. For patients undergoing screening mammography who present with breast arterial calcification, the possibility of metabolic syndrome should be considered. These patients should be informed of their cardiovascular risk factors and counseled on appropriate lifestyle changes.

  14. Effects of Coptis chinensis decoction on the metabolic index and renal protection in rats with metabolism syndrome

    Xiao-qing CHEN

    2017-11-01

    Full Text Available Objective To investigate the protective effects of Coptis chinensis decoction on the metabolic index and renal function of rats with fructose-induced metabolism syndrome (MS. Methods From 56 male Wistar rats, 6 were randomly selected as normal control group, the other rats were daily fed with 10% fructose water for 8 weeks to reproduce the MS model. Twenty-four rats were established successfully as MS model and randomly divided into 4 groups (6 each: model group, Coptis decoction group, tauroursodeoxycholic acid (TUDCA group and berberine hydrochloride (BH group. The body weight, visceral fat weight, fasting blood glucose (FBG, fasting insulin (FINS, insulin resistance index (HOMA-IR, cholesterol (TC, triglyceride (TG, systolic blood pressure (SBP, diastolic blood pressure (DBP, urinary N-acetyl-β-D-glucosidase (NAG, urine microalbumin (m-ALB, blood urea nitrogen (BUN and serum creatinine (Scr levels were compared between the groups, and the renal pathological changes were observed by light microscopy and electron microscopy. Results The levels of body weight, visceral fat weight, FINS, HOMA- IR, TC, TG, SBP, DBP and urinary NAG were obviously higher in the four MS model groups than in normal control group (P0.05. After the intervention, the levels of body weight, visceral fat weight, FINS, HOMA-IR, TC, TG, SBP and DBP decreased significantly in Coptis decoction group than in model group (P0.05. It was observed in model group by light microscopy and electron microscopy that the glomerular swelled obviously, the capillary basement membrane of glomerular and renal tubules thickened, mesangial region and interstitial substances hyperplasia, podocytes swelled markedly and most of fusion, the epithelial cells of renal tubules serious vacuolar degeneration, and a lot of secondary lysosomes formed, autophagy of organelles occurred, and most of endoplasmic reticulum and mitochondria disappeared. The kidney pathological damage reduced obviously after

  15. Role of nitric oxide synthase uncoupling at rostral ventrolateral medulla in redox-sensitive hypertension associated with metabolic syndrome.

    Wu, Kay L H; Chao, Yung-Mei; Tsay, Shiow-Jen; Chen, Chen Hsiu; Chan, Samuel H H; Dovinova, Ima; Chan, Julie Y H

    2014-10-01

    Metabolic syndrome (MetS), which is rapidly becoming prevalent worldwide, is long known to be associated with hypertension and recently with oxidative stress. Of note is that oxidative stress in the rostral ventrolateral medulla (RVLM), where sympathetic premotor neurons reside, contributes to sympathoexcitation and hypertension. This study sought to identify the source of tissue oxidative stress in RVLM and their roles in neural mechanism of hypertension associated with MetS. Adult normotensive rats subjected to a high-fructose diet for 8 weeks developed metabolic traits of MetS, alongside increases in sympathetic vasomotor activity and blood pressure. In RVLM of these MetS rats, the tissue level of reactive oxygen species was increased, nitric oxide (NO) was decreased, and mitochondrial electron transport capacity was reduced. Whereas the protein expression of neuronal NO synthase (nNOS) or protein inhibitor of nNOS was increased, the ratio of nNOS dimer/monomer was significantly decreased. Oral intake of pioglitazone or intracisternal infusion of tempol or coenzyme Q10 significantly abrogated all those molecular events in high-fructose diet-fed rats and ameliorated sympathoexcitation and hypertension. Gene silencing of protein inhibitor of nNOS mRNA in RVLM using lentivirus carrying small hairpin RNA inhibited protein inhibitor of nNOS expression, increased the ratio of nNOS dimer/monomer, restored NO content, and alleviated oxidative stress in RVLM of high-fructose diet-fed rats, alongside significantly reduced sympathoexcitation and hypertension. These results suggest that redox-sensitive and protein inhibitor of nNOS-mediated nNOS uncoupling is engaged in a vicious cycle that sustains the production of reactive oxygen species in RVLM, resulting in sympathoexcitation and hypertension associated with MetS. © 2014 American Heart Association, Inc.

  16. Fructose; a Hidden Threat for Chronic Diseases

    Ahmet Korkmaz

    2008-08-01

    Full Text Available Incremental usage of the fructose derived from corn by processed-food manufacturers has become a crucial threat in terms of human health. Although it is known as fruit sugar, the most important source of dietary fructose is now, processed-food prepared by using high-fructose corn syrup. Basically, fructose is metabolized within liver and its energy load is equal to glucose. Nevertheless, it does not make up satiety and fullness. Therefore, fructose-rich foods and beverages can be consumed in large amount because the absence of satiety. Studies performed recently unveil a connection between amount of fructose consumed and metabolic disorders such as cardiovascular diseases, type 2 diabetes, hypertension and obesity. The incidence of metabolic diseases which are already affecting more than half of the adults has been increasing among children. Moreover, these types of foods are generally consumed by children. Therefore, in order to reduce the frequency of metabolic disorders in all ages, the amount of fructose in processed-foods and beverages should also be taken into consideration. [TAF Prev Med Bull 2008; 7(4.000: 343-346

  17. Intranasal Insulin Restores Metabolic Parameters and Insulin Sensitivity in Rats with Metabolic Syndrome.

    Derkach, K V; Ivantsov, A O; Chistyakova, O V; Sukhov, I B; Buzanakov, D M; Kulikova, A A; Shpakov, A O

    2017-06-01

    We studied the effect of 10-week treatment with intranasal insulin (0.5 IU/day) on glucose tolerance, glucose utilization, lipid metabolism, functions of pancreatic β cells, and insulin system in the liver of rats with cafeteria diet-induced metabolic syndrome. The therapy reduced body weight and blood levels of insulin, triglycerides, and atherogenic cholesterol that are typically increased in metabolic syndrome, normalized glucose tolerance and its utilization, and increased activity of insulin signaling system in the liver, thus reducing insulin resistance. The therapy did not affect the number of pancreatic islets and β cells. The study demonstrates prospects of using intranasal insulin for correction of metabolic parameters and reduction of insulin resistance in metabolic syndrome.

  18. Clinical characteristics of metabolic syndrome in Korea, and its comparison with other Asian countries

    Hong, A Ram; Lim, Soo

    2015-01-01

    Metabolic syndrome is referred to as syndrome X or insulin resistance syndrome, and is primarily composed of abdominal obesity, diabetes, glucose intolerance, dyslipidemia and high blood pressure. Asians have a lower frequency of obesity than Caucasians, but have an increasing tendency toward metabolic syndrome. Thus, metabolic syndrome poses a major challenge for public health professionals, and is set to become a social and economic problem in Asian populations. Most data on metabolic syndr...

  19. Fructose-rich diet and insulin action in female rat heart: Estradiol friend or foe?

    Bundalo, Maja; Romic, Snjezana; Tepavcevic, Snezana; Stojiljkovic, Mojca; Stankovic, Aleksandra; Zivkovic, Maja; Koricanac, Goran

    2017-09-15

    Increased intake of fructose in humans and laboratory animals is demonstrated to be a risk factor for development of metabolic disorders (insulin resistance, metabolic syndrome, type 2 diabetes) and cardiovascular diseases. On the other hand, estradiol is emphasized as a cardioprotective agent. The main goal of this review is to summarize recent findings on damaging cardiac effects of fructose-rich diet in females, mostly experimental animals, and to evaluate protective capacity of estradiol. Published results of our and other research groups indicate mostly detrimental effects of fructose-rich diet on cardiac insulin signaling molecules, glucose and fatty acid metabolism, nitric oxide production and ion transport, as well as renin-angiotensin system and inflammation. Some of these processes are involved in cardiac insulin signal transmission, others are regulated by insulin or have an influence on insulin action. Administration of estradiol to ovariectomized female rats, exposed to increased intake of fructose, was mostly beneficial to the heart, but sometimes it was ineffective or even detrimental, depending on the particular processes. We believe that these data, carefully translated to human population, could be useful for clinicians dealing with postmenopausal women susceptible to metabolic diseases and hormone replacement therapy. Copyright © 2017. Published by Elsevier B.V.

  20. Obesity-driven gut microbiota inflammatory pathways to metabolic syndrome

    Luiz Henrique Agra eCavalcante-Silva

    2015-11-01

    Full Text Available The intimate interplay between immune system, metabolism and gut microbiota plays an important role in controlling metabolic homeostasis and possible obesity development. Obesity involves impairment of immune response affecting both innate and adaptive immunity. The main factors involved in the relationship of obesity with inflammation have not been completely elucidated. On the other hand, gut microbiota, via innate immune receptors, has emerged as one of the key factors regulating events triggering acute inflammation associated with obesity and metabolic syndrome. Inflammatory disorders lead to several signalling transduction pathways activation, inflammatory cytokine, chemokine production and cell migration, which in turn cause metabolic dysfunction. Inflamed adipose tissue, with increased macrophages infiltration, is associated with impaired preadipocyte development and differentiation to mature adipose cells, leading to ectopic lipid accumulation and insulin resistance. This review focuses on the relationship between obesity and inflammation, which is essential to understand the pathological mechanisms governing metabolic syndrome.

  1. SGLT5 Reabsorbs Fructose in the Kidney but Its Deficiency Paradoxically Exacerbates Hepatic Steatosis Induced by Fructose

    Fukuzawa, Taku; Fukazawa, Masanori; Ueda, Otoya; Shimada, Hideaki; Kito, Aki; Kakefuda, Mami; Kawase, Yosuke; Wada, Naoko A.; Goto, Chisato; Fukushima, Naoshi; Jishage, Kou-ichi; Honda, Kiyofumi; King, George L.; Kawabe, Yoshiki

    2013-01-01

    Although excessive fructose intake is epidemiologically linked with dyslipidemia, obesity, and diabetes, the mechanisms regulating plasma fructose are not well known. Cells transfected with sodium/glucose cotransporter 5 (SGLT5), which is expressed exclusively in the kidney, transport fructose in vitro; however, the physiological role of this transporter in fructose metabolism remains unclear. To determine whether SGLT5 functions as a fructose transporter in vivo, we established a line of mice lacking the gene encoding SGLT5. Sodium-dependent fructose uptake disappeared in renal brush border membrane vesicles from SGLT5-deficient mice, and the increased urinary fructose in SGLT5-deficient mice indicated that SGLT5 was the major fructose reabsorption transporter in the kidney. From this, we hypothesized that urinary fructose excretion induced by SGLT5 deficiency would ameliorate fructose-induced hepatic steatosis. To test this hypothesis we compared SGLT5-deficient mice with wild-type mice under conditions of long-term fructose consumption. Paradoxically, however, fructose-induced hepatic steatosis was exacerbated in the SGLT5-deficient mice, and the massive urinary fructose excretion was accompanied by reduced levels of plasma triglycerides and epididymal fat but fasting hyperinsulinemia compared with fructose-fed wild-type mice. There was no difference in food consumption, water intake, or plasma fructose between the two types of mice. No compensatory effect by other transporters reportedly involved in fructose uptake in the liver and kidney were indicated at the mRNA level. These surprising findings indicated a previously unrecognized link through SGLT5 between renal fructose reabsorption and hepatic lipid metabolism. PMID:23451068

  2. Fructose malabsorption and intolerance: effects of fructose with and without simultaneous glucose ingestion.

    Latulippe, Marie E; Skoog, Suzanne M

    2011-08-01

    Concern exists that increasing fructose consumption, particularly in the form of high-fructose corn syrup, is resulting in increasing rates of fructose intolerance and aggravation of clinical symptoms in individuals with irritable bowel syndrome. Most clinical trials designed to test this hypothesis have used pure fructose, a form not commonly found in the food supply, often in quantities and concentrations that exceed typical fructose intake levels. In addition, the amount of fructose provided in tests for malabsorption, which is thought to be a key cause of intolerance, often exceeds the normal physiological absorption capacity for this sugar. To help health professionals accurately identify and treat this condition, this article reviews clinical data related to understanding fructose malabsorption and intolerance (i.e., malabsorption that manifests with symptoms) relative to usual fructose and other carbohydrate intake. Because simultaneous consumption of glucose attenuates fructose malabsorption, information on the fructose and glucose content of foods, beverages, and ingredients representing a variety of food categories is provided.

  3. The metabolic vascular syndrome - guide to an individualized treatment.

    Hanefeld, Markolf; Pistrosch, Frank; Bornstein, Stefan R; Birkenfeld, Andreas L

    2016-03-01

    In ancient Greek medicine the concept of a distinct syndrome (going together) was used to label 'a group of signs and symptoms' that occur together and 'characterize a particular abnormality and condition'. The (dys)metabolic syndrome is a common cluster of five pre-morbid metabolic-vascular risk factors or diseases associated with increased cardiovascular morbidity, fatty liver disease and risk of cancer. The risk for major complications such as cardiovascular diseases, NASH and some cancers develops along a continuum of risk factors into clinical diseases. Therefore we still include hyperglycemia, visceral obesity, dyslipidemia and hypertension as diagnostic traits in the definition according to the term 'deadly quartet'. From the beginning elevated blood pressure and hyperglycemia were core traits of the metabolic syndrome associated with endothelial dysfunction and increased risk of cardiovascular disease. Thus metabolic and vascular abnormalities are in extricable linked. Therefore it seems reasonable to extend the term to metabolic-vascular syndrome (MVS) to signal the clinical relevance and related risk of multimorbidity. This has important implications for integrated diagnostics and therapeutic approach. According to the definition of a syndrome the rapid global rise in the prevalence of all traits and comorbidities of the MVS is mainly caused by rapid changes in life-style and sociocultural transition resp. with over- and malnutrition, low physical activity and social stress as a common soil.

  4. Specifics of mental disorders of patients with metabolic syndrome

    K. I. Kleban

    2017-09-01

    Full Text Available In the general-somatic network there is a steady increase in the number of patients with psychosomatic disorders. Problems of providing adequate psychiatric and psychotherapeutic assistance to this category of patients are related to the motivation of patients to participate in psychological measures and the readiness of the medical system to provide comprehensive care on the basis of the biopsychosocial approach. Mental factors are involved both in the occurrence and course of a metabolic syndrome in the form of a patient's lifestyle and behavior patterns of healthy functioning, and is a consequence of somatic pathology. Mental factors are involved both in the occurrence and course of a metabolic syndrome in the form of a patient's lifestyle and behavior patterns of healthy functioning, and is a consequence of somatic pathology. So mental disorders of metabolic syndrome are manifested in the form of psychosocial maladaptation, neurotic, affective, personality, and organic disorders. Desynchronosis which is a factor of the development of a metabolic syndrome and characterizes the complex chronobiological component of the regulation of psychophysiological functions in norm and under the influence of stress, deserves special attention. Addressing the diagnosis of mental disorders associated with metabolic syndrome is precisely aimed at determining chronobiological disorders of psychosomatic integrated areas and is supposed to improve diagnostic and treatment process and to shorten the treatment of these disorders.

  5. Metabolic syndrome in patients with ischemic heart disease

    Yasmin, S.; Naveed, T.; Shakoor, T.

    2008-01-01

    To determine the frequency of metabolic syndrome in patients with Ischemic Heart Disease (IHD). Cross-sectional, descriptive study. A total of 100 subjects with ischemic heart disease, fulfilling the inclusion criteria, were enrolled in the study. Demographic data (age and gender) and the 5 component conditions of the metabolic syndrome were noted. Subjects were physically assessed for the abdominal obesity, based on waist circumference. Fasting blood samples for glucose and lipid profile in first 24 hours after acute coronary insult were drawn and tested in central laboratory. Variables were processed for descriptive statistics. In this study population, 68% were male and 32% were female with mean age of 52 +-13.6 years in men and 56 +- 12.5 years in women. Frequency of metabolic syndrome was 32% in men and 28% in women. It increased with age. The highest rate of metabolic syndrome was in men diagnosed as STEMI (odds ratio: 3.39, 95% CI=1.36-8.41). Frequency of metabolic syndrome was high among the patients with IHD. It supports the potential for preventive efforts in persons with high-risk of IHD. (author)

  6. Metabolic syndrome and quality of life: a systematic review

    Patrícia Pozas Saboya

    Full Text Available ABSTRACT Objectives: to present currently available evidence to verify the association between metabolic syndrome and quality of life. Method: Cochrane Library, EMBASE, Medline and LILACS databases were studied for all studies investigating the association with metabolic syndrome and quality of life. Two blinded reviewers extracted data and one more was chosen in case of doubt. Results: a total of 30 studies were included, considering inclusion and exclusion criteria, which involved 62.063 patients. Almost all studies suggested that metabolic syndrome is significantly associated with impaired quality of life. Some, however, found association only in women, or only if associated with depression or Body Mass Index. Merely one study did not find association after adjusted for confounding factors. Conclusion: although there are a few studies available about the relationship between metabolic syndrome and quality of life, a growing body of evidence has shown significant association between metabolic syndrome and the worsening of quality of life. However, it is necessary to carry out further longitudinal studies to confirm this association and verify whether this relationship is linear, or only an association factor.

  7. The skin function: a factor of anti-metabolic syndrome

    Zhou Shi-Sheng

    2012-04-01

    Full Text Available Abstract The body’s total antioxidant capacity represents a sum of the antioxidant capacity of various tissues/organs. A decrease in the body’s antioxidant capacity may induce oxidative stress and subsequent metabolic syndrome, a clustering of risk factors for type 2 diabetes and cardiovascular disease. The skin, the largest organ of the body, is one of the major components of the body’s total antioxidant defense system, primarily through its xenobiotic/drug biotransformation system, reactive oxygen species-scavenging system, and sweat glands- and sebaceous glands-mediated excretion system. Notably, unlike other contributors, the skin contribution is variable, depending on lifestyles and ambient temperature or seasonal variations. Emerging evidence suggests that decreased skin’s antioxidant and excretory functions (e.g., due to sedentary lifestyles and low ambient temperature may increase the risk for metabolic syndrome. This review focuses on the relationship between the variability of skin-mediated detoxification and elimination of exogenous and endogenous toxic substances and the development of metabolic syndrome. The potential role of sebum secretion in lipid and cholesterol homeostasis and its impact on metabolic syndrome, and the association between skin disorders (acanthosis nigricans, acne, and burn and metabolic syndrome are also discussed.

  8. Obesity and the metabolic syndrome in developing countries.

    Misra, Anoop; Khurana, Lokesh

    2008-11-01

    Prevalence of obesity and the metabolic syndrome is rapidly increasing in developing countries, leading to increased morbidity and mortality due to type 2 diabetes mellitus (T2DM) and cardiovascular disease. Literature search was carried out using the terms obesity, insulin resistance, the metabolic syndrome, diabetes, dyslipidemia, nutrition, physical activity, and developing countries, from PubMed from 1966 to June 2008 and from web sites and published documents of the World Health Organization and Food and Agricultural Organization. With improvement in economic situation in developing countries, increasing prevalence of obesity and the metabolic syndrome is seen in adults and particularly in children. The main causes are increasing urbanization, nutrition transition, and reduced physical activity. Furthermore, aggressive community nutrition intervention programs for undernourished children may increase obesity. Some evidence suggests that widely prevalent perinatal undernutrition and childhood catch-up obesity may play a role in adult-onset metabolic syndrome and T2DM. The economic cost of obesity and related diseases in developing countries, having meager health budgets is enormous. To prevent increasing morbidity and mortality due to obesity-related T2DM and cardiovascular disease in developing countries, there is an urgent need to initiate large-scale community intervention programs focusing on increased physical activity and healthier food options, particularly for children. International health agencies and respective government should intensively focus on primordial and primary prevention programs for obesity and the metabolic syndrome in developing countries.

  9. Justice at work and metabolic syndrome: the Whitehall II study.

    Gimeno, David; Tabák, Adám G; Ferrie, Jane E; Shipley, Martin J; De Vogli, Roberto; Elovainio, Marko; Vahtera, Jussi; Marmot, Michael G; Kivimäki, Mika

    2010-04-01

    Growing evidence shows that high levels of justice are beneficial for employee health, although biological mechanisms underlying this association are yet to be clarified. We aim to test whether high justice at work protects against metabolic syndrome. A prospective cohort study of 20 civil service departments in London (the Whitehall II study) including 6123 male and female British civil servants aged 35-55 years without prevalent coronary heart disease at baseline (1985-1990). Perceived justice at work was determined by means of questionnaire on two occasions between 1985 and 1990. Follow-up for metabolic syndrome and its components occurring from 1990 to 2004 was based on clinical assessments on three occasions over more than 18 years. Cox proportional hazard models adjusted for age, ethnicity and employment grade showed that men who experienced a high level of justice at work had a lower risk of incident metabolic syndrome than employees with a low level of justice (HR 0.75; 95% CI 0.63 to 0.89). There was little evidence of an association between organisational justice and metabolic syndrome or its components in women (HR 0.88; 95% CI 0.67 to 1.17). Our prospective findings provide evidence of an association between high levels of justice at work and the development of metabolic syndrome in men.

  10. [Obesity or overweight and metabolic syndrome in Mexico City teenagers].

    Cardoso-Saldaña, Guillermo C; Yamamoto-Kimura, Liria; Medina-Urrutia, Aida; Posadas-Sánchez, Rosalinda; Caracas-Portilla, Nacú A; Posadas-Romero, Carlos

    2010-01-01

    aim: To know the metabolic syndrome and its components prevalence in Mexico City adolescents sample. A cross-sectional survey was conducted in 772 men and 1078 women, 12 to 16 years old, from 8 randomly selected public junior high schools in Mexico City. Anthropometric variables, lipids, lipoproteins, Apo AI and B, glucose and insulin were determined. Prevalence of metabolic syndrome was 12.5%, 11.15% in men and 13.5% en women (p ns). The most frequently metabolic syndrome component found in México City adolescents was low HDL-C levels (38%), followed by hypertriglyceridemia (25.5%), hypertension (19.2%), central obesity (11.8%) and elevated fasting glucose (1.7). Except by the hypertriglyceridemia, higher in woman than in men, 28.2% vs. 21.6%, p metabolic syndrome components was similar between males and females. The high prevalence of biochemical and physiological factors of metabolic syndrome, associated with overweight and obesity in Mexico City adolescents, increases the risk of premature development of coronary atherosclerosis and diabetes mellitus in this population.

  11. How coffee affects metabolic syndrome and its components.

    Baspinar, B; Eskici, G; Ozcelik, A O

    2017-06-21

    Metabolic syndrome, with its increasing prevalence, is becoming a major public health problem throughout the world. Many risk factors including nutrition play a role in the emergence of metabolic syndrome. Of the most-consumed beverages in the world, coffee contains more than 1000 components such as caffeine, chlorogenic acid, diterpenes and trigonelline. It has been proven in many studies that coffee consumption has a positive effect on chronic diseases. In this review, starting from the beneficial effects of coffee on health, the relationship between coffee consumption and metabolic syndrome and its components has been investigated. There are few studies investigating the relationship between coffee and metabolic syndrome, and the existing ones put forward different findings. The factors leading to the differences are thought to stem from coffee variety, the physiological effects of coffee elements, and the nutritional ingredients (such as milk and sugar) added to coffee. It is reported that consumption of coffee in adults up to three cups a day reduces the risk of Type-2 diabetes and metabolic syndrome.

  12. Frequency of metabolic syndrome in patients with type-2 diabetes

    Ahmed, N.; Ahmad, T.; Hussain, S.J.; Javed, M.

    2010-01-01

    Background: Diabetes, Hypertension, Obesity and Ischaemic Heart Disease have become a problem of public health magnitude with substantial economic burden both in the developed as well as the developing countries. Obesity is quite frequent in Type 2 diabetics and also plays a central role in causing Metabolic Syndrome (MetS). Metabolic Syndrome significantly increases the incidence of cardiovascular complications. This study was done to determine the frequency of MetS in our Type 2 diabetic patients as most of the components of MetS can be modified and identifying/managing these at an early stage might be of considerable help in reducing cardiovascular complications. Methods: This cross-sectional study was done in Medical B and Medical A wards of Ayub Teaching Hospital, Abbottabad from Nov, 08 to April, 09. Type 2 Diabetic patients aged above 40 years who gave informed consent were included in the study. Data was collected through a structured proforma. Frequency of Metabolic Syndrome was estimated according to the IDF consensus worldwide definition of the MetS. Results: Of the 100 patients enrolled in this study 56 were females and 44 were males with a mean age of 59.9 years. Out of these 100 participants seventy six (76%) were diagnosed to have metabolic syndrome. Of the 56 females, forty eight (85.71%) were having metabolic syndrome while twenty eight (63.63%) of the 44 male participants were having the syndrome. The difference was statistically significant (p<0.05). Conclusion: Frequency of MetS was found to be significantly high in this study with female preponderance. All the components, except Hypertension were more frequent in females. Diabetic patients with metabolic syndrome need more aggressive approach in management so as to decrease the incidence of cardiovascular complications. (author)

  13. WATER AND SALT METABOLISM IN THE GERIATRIC SYNDROMES

    Carlos G. Musso

    2010-01-01

    Full Text Available Geriatrics has already described four syndromes of its own: confusional syndrome, incontinence (fecal and/or urinary, and gait disorders and immobility syndrome, naming them geriatric giants. This name reflects their prevalence and great importance in the elderly. Ageing process induces many changes in renal physiology such as a reduction in glomerular filtration rate (senile hyponatremia, and water and sodium reabsorbtion capability. Besides, there are particular water and salt metabolism alteration characteristics of the geriatric syndromes, such as dehydration and hypernatremia in psychiatric disturbances as well as hyponatremia in patients suffering from immobility syndrome. The geriatric giants and nephrogeriatric physiology changes, are a good example of feed-back between geriatric syndromes, clinical entities characteristics in the elderly that predispose and potentiate each other, leading to catastrophic clinical events.

  14. Metabolic Syndrome and Chronic Renal Disease

    Vaia D. Raikou

    2018-01-01

    Full Text Available Background: The influence of metabolic syndrome (MetS on kidneys is related to many complications. We aimed to assess the association between MetS and chronic renal disease defined by a poor estimated glomerular filtration rate (eGFR and/or the presence of microalbuminuria/macroalbuminuria. Methods: 149 patients (77 males/72 females were enrolled in the study. Chronic renal disease was defined according to KDIGO 2012 criteria based on eGFR category and classified albuminuria. MetS was studied as a dichotomous variable (0 to 5 components including hypertension, waist circumference, low HDL-cholesterol, high triglycerides, and high glucose. Results: The association between clustering MetS and both classified eGFR and classified albuminuria (x2 = 50.3, p = 0.001 and x2 = 26.9, p = 0.003 respectively was found to be significant. The MetS presence showed an odds 5.3-fold (1.6–17.8 higher for low eGFR and 3.2-fold (1.2–8.8 higher for albuminuria in combination with the presence of diabetes mellitus, which also increased the risk for albuminuria by 3.5-fold (1.1–11.3. Albuminuria was significantly associated with high triglycerides, hypertension, high glucose (x2 = 11.8, p = 0.003, x2 = 11.4, p = 0.003 and x2 = 9.1, p = 0.01 respectively, and it was mildly associated with a low HDL-C (x2 = 5.7, p = 0.06. A significant association between classified eGFR and both high triglycerides and hypertension (x2 = 9.7, p = 0.04 and x2 = 16.1, p = 0.003 respectively was found. Conclusion: The clustering of MetS was significantly associated with chronic renal disease defined by both classified eGFR and albuminuria. The definition of impaired renal function by classified albuminuria was associated with more MetS components rather than the evaluation of eGFR category. MetS may contribute to the manifestation of albuminuria in patients with diabetes mellitus.

  15. [Impact of metabolic syndrome on CRP levels].

    Rodilla, E; Costa, J A; Mares, S; Miralles, A; González, C; Sánchez, C; Pascual, J M

    2006-09-01

    C-reactive protein (CRP) is considered a marker of subclinical atherosclerosis. The aim of the study was to assess whether the metabolic syndrome (MS) and parameters involved in its diagnosis might influence serum CRP values. Cross-sectional study in outpatients of a HTA and Vascular Risk clinic. MS was diagnosed according to National Cholesterol Educational Program ATP-III guidelines, and hs-CRP was analyzed by nephelometry. A total of 1,969 patients (47% male) were evaluated and distributed into four groups: 1) 1,220 non-diabetics without MS; 2) 384 non-diabetics with MS; 3) 153 diabetics without MS, and 4) 212 diabetics with MS. Patients with MS had higher CRP in both non-diabetic 3.0 (1.7-4.4) mg/l vs. 1.7 (0.9-3.4) mg/l; p=0.001 (MW), and diabetic patients: 2.8 (1.5-4.6) mg/l vs. 2.2 (0.9-4.3) mg/l; p=0.01 (MW). Diabetic patients without MS had CRP values not different to non-diabetic without MS. CRP values increased in relation to the number of parameters included in the MS from 1.7 (2.2) mg/l, in patients without any parameters, to 4.2 (2.8) mg/l in patients who fulfilled five parameters (p=0.001) (KW). In multiple regression analysis abdominal obesity (p=0.001), TG (p=0.001) and glucose (p=0.02) were associated with CRP levels after correcting for other factors. Abdominal obesity (OR: 1.9; 95% CI: 1.5-2.4; p=0.001) and TG (OR: 1.4; 95% CI: 1.1 -1.7; p=0.003), but not glucose were independent factors related to the presence of high levels of CRP (>3 mg/l) in a logistic regression analysis. Diabetic and non-diabetic patients with MS have high CRP levels. Of the five components of MS, the most closely related to CRP is abdominal obesity.

  16. Effect of Caffeic Acid Phenethyl Ester on Vascular Damage Caused by Consumption of High Fructose Corn Syrup in Rats.

    Gun, Aburrahman; Ozer, Mehmet Kaya; Bilgic, Sedat; Kocaman, Nevin; Ozan, Gonca

    2016-01-01

    Fructose corn syrup is cheap sweetener and prolongs the shelf life of products, but fructose intake causes hyperinsulinemia, hypertriglyceridemia, and hypertension. All of them are referred to as metabolic syndrome and they are risk factors for cardiovascular diseases. Hence, the harmful effects of increased fructose intake on health and their prevention should take greater consideration. Caffeic Acid Phenethyl Ester (CAPE) has beneficial effects on metabolic syndrome and vascular function which is important in the prevention of cardiovascular disease. However, there are no known studies about the effect of CAPE on fructose-induced vascular dysfunction. In this study, we examined the effect of CAPE on vascular dysfunction due to high fructose corn syrup (HFCS). HFCS (6 weeks, 30% fed with drinking water) caused vascular dysfunction, but treatment with CAPE (50 micromol/kg i.p. for the last two weeks) effectively restored this problem. Additionally, hypertension in HFCS-fed rats was also decreased in CAPE supplemented rats. CAPE supplements lowered HFCS consumption-induced raise in blood glucose, homocysteine, and cholesterol levels. The aorta tissue endothelial nitric oxide synthase (eNOS) production was decreased in rats given HFCS and in contrast CAPE supplementation efficiently increased its production. The presented results showed that HFCS-induced cardiovascular abnormalities could be prevented by CAPE treatment.

  17. Effect of Caffeic Acid Phenethyl Ester on Vascular Damage Caused by Consumption of High Fructose Corn Syrup in Rats

    Aburrahman Gun

    2016-01-01

    Full Text Available Fructose corn syrup is cheap sweetener and prolongs the shelf life of products, but fructose intake causes hyperinsulinemia, hypertriglyceridemia, and hypertension. All of them are referred to as metabolic syndrome and they are risk factors for cardiovascular diseases. Hence, the harmful effects of increased fructose intake on health and their prevention should take greater consideration. Caffeic Acid Phenethyl Ester (CAPE has beneficial effects on metabolic syndrome and vascular function which is important in the prevention of cardiovascular disease. However, there are no known studies about the effect of CAPE on fructose-induced vascular dysfunction. In this study, we examined the effect of CAPE on vascular dysfunction due to high fructose corn syrup (HFCS. HFCS (6 weeks, 30% fed with drinking water caused vascular dysfunction, but treatment with CAPE (50 micromol/kg i.p. for the last two weeks effectively restored this problem. Additionally, hypertension in HFCS-fed rats was also decreased in CAPE supplemented rats. CAPE supplements lowered HFCS consumption-induced raise in blood glucose, homocysteine, and cholesterol levels. The aorta tissue endothelial nitric oxide synthase (eNOS production was decreased in rats given HFCS and in contrast CAPE supplementation efficiently increased its production. The presented results showed that HFCS-induced cardiovascular abnormalities could be prevented by CAPE treatment.

  18. Fecal microbiota transplantation in metabolic syndrome: History, present and future.

    de Groot, P F; Frissen, M N; de Clercq, N C; Nieuwdorp, M

    2017-05-04

    The history of fecal microbiota transplantation (FMT) dates back even to ancient China. Recently, scientific studies have been looking into FMT as a promising treatment of various diseases, while in the process teaching us about the interaction between the human host and its resident microbial communities. Current research focuses mainly on Clostridium difficile infections, however interest is rising in other areas such as inflammatory bowel disease (IBD) and the metabolic syndrome. With regard to the latter, the intestinal microbiota might be causally related to the progression of insulin resistance and diabetes. FMT in metabolic syndrome has proven to be an intriguing method to study the role of the gut microbiota and open the way to new therapies by dissecting in whom insulin resistance is driven by microbiota. In this article we review the history of FMT, the present evidence on its role in the pathophysiology of metabolic syndrome and its efficacy, limitations and future prospects.

  19. Beneficial Effects of Corn Silk on Metabolic Syndrome.

    Wang, Bing; Xiao, Tiegang; Ruan, Jun; Liu, Wensheng

    2017-01-01

    Metabolic syndrome (MS) is a very common medical problem worldwide. It includes obesity, hypertension, hyperglycemia, and abnormal levels of triglycerides and high-density lipoprotein cholesterol. It is closely associated with insulin resistance and may lead to diabetes mellitus, liver diseases, or cardiovascular diseases. Corn silk (CS), a traditional Chinese medicine, has been reported to have multiple beneficial effects, including hypotensive, anti-diabetic, and hypolipidemic properties. This suggests that corn silk could be used to treat or prevent metabolic syndrome. In this review, we will discuss the potential role of corn silk in different components of metabolic syndrome. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Obesity and Metabolic Syndrome Among Adult Survivors of Childhood Leukemia.

    Gibson, Todd M; Ehrhardt, Matthew J; Ness, Kirsten K

    2016-04-01

    Treatment-related obesity and the metabolic syndrome in adult survivors of childhood acute lymphoblastic leukemia (ALL) are risk factors for cardiovascular disease. Both conditions often begin during therapy. Preventive measures, including dietary counseling and tailored exercise, should be initiated early in the course of survivorship, with referral to specialists to optimize success. However, among adults who develop obesity or the metabolic syndrome and who do not respond to lifestyle therapy, medical intervention may be indicated to manage underlying pathology, such as growth hormone deficiency, or to mitigate risk factors of cardiovascular disease. Because no specific clinical trials have been done in this population to treat metabolic syndrome or its components, clinicians who follow adult survivors of childhood ALL should use the existing American Heart Association/National Heart Lung and Blood Institute Scientific Statement to guide their approach.

  1. Equine metabolic syndrome in Colombian creole horse: case report

    C.A. Castillo

    Full Text Available ABSTRACT The equine metabolic syndrome is a condition that can be recognized because of obesity, insulin resistance and laminitis. Genetic factors could play a role in the occurrence of this syndrome. Certain breeds such as ponies (including the South American creole horses have a lower sensibility to insulin and a higher prevalence of hyperinsulinemia. The environment and management conditions, such as overfeeding and lack of exercise are factors that bring a propensity for obesity. The adipose tissue works as an endocrine organ producing hormones (adipokines or adipocytokines that affect the horse´s metabolism. The objective of this report is to describe the first case report of a Colombian creole mare with a metabolic syndrome, diagnosed by means of the combined test of glucose-insulin and clinical signs. Early diagnosis of this entity and an adequate treatment are useful for improving the life and the zootechnical conditions of the patient.

  2. Prevalence of metabolic syndrome among an urban population in Kenya.

    Kaduka, Lydia U; Kombe, Yeri; Kenya, Eucharia; Kuria, Elizabeth; Bore, John K; Bukania, Zipporah N; Mwangi, Moses

    2012-04-01

    Developing countries are undergoing an epidemiologic transition accompanied by increasing burden of cardiovascular disease (CVD) linked to urbanization and lifestyle modifications. Metabolic syndrome is a cluster of CVD risk factors whose extent in Kenya remains unknown. The aim of this study was to determine the prevalence of metabolic syndrome and factors associated with its occurrence among an urban population in Kenya. This was a household cross-sectional survey comprising 539 adults (aged ≥18 years) living in Nairobi, drawn from 30 clusters across five socioeconomic classes. Measurements included waist circumference, HDL cholesterol, triacylglycerides (TAGs), fasting glucose, and blood pressure. The prevalence of metabolic syndrome was 34.6% and was higher in women than in men (40.2 vs. 29%; P Kenya. The Kenyan government needs to create awareness, develop prevention strategies, and strengthen the health care system to accommodate screening and management of CVDs.

  3. A new course in the clinical pathways for metabolic syndrome

    Kageyama, Shoko; Wada, Yumi; Nakamura, Rie

    2006-01-01

    Metabolic syndrome is consisted with multiple risk factors such as diabetes, dyslipidemia, and hypertension based on visceral fat accumulation, for the development of arteriosclerosis. We present, here, a clinical pathway for education of patients with metabolic syndrome. The program contains an adequate explanation of the high risk for arteriosclerosis to the patients, the measurement of visceral fat content by computed tomography, and several clinical examinations for the evaluation of arteriosclerotic lesions. We have presented this program on the ward of diabetes center in our hospital for patients diagnosed as having metabolic syndrome. Because the focus of education is to clarify understanding of the harmful effects of visceral fat and the benefits of its reduction, it might be a valuable tool to motivate and empower the patient and improve the patient's lifestyle. (author)

  4. A new course in the clinical pathways for metabolic syndrome

    Kageyama, Shoko; Wada, Yumi; Nakamura, Rie [Sumitomo Hospital, Osaka, Osaka (Japan)

    2006-07-15

    Metabolic syndrome is consisted with multiple risk factors such as diabetes, dyslipidemia, and hypertension based on visceral fat accumulation, for the development of arteriosclerosis. We present, here, a clinical pathway for education of patients with metabolic syndrome. The program contains an adequate explanation of the high risk for arteriosclerosis to the patients, the measurement of visceral fat content by computed tomography, and several clinical examinations for the evaluation of arteriosclerotic lesions. We have presented this program on the ward of diabetes center in our hospital for patients diagnosed as having metabolic syndrome. Because the focus of education is to clarify understanding of the harmful effects of visceral fat and the benefits of its reduction, it might be a valuable tool to motivate and empower the patient and improve the patient's lifestyle. (author)

  5. Exercise-induced hypertension in men with metabolic syndrome: anthropometric, metabolic, and hemodynamic features.

    Gaudreault, Valérie; Després, Jean-Pierre; Rhéaume, Caroline; Alméras, Natalie; Bergeron, Jean; Tremblay, Angelo; Poirier, Paul

    2013-02-01

    Metabolic syndrome is associated with increased cardiac morbidity. The aim of this study was to evaluate exercise-induced hypertension (EIH) in men with metabolic syndrome and to explore potential associations with anthropometric and metabolic variables. A total of 179 normotensive men with metabolic syndrome underwent a maximal symptom-limited treadmill test. Blood pressure was measured at 5-min rest prior to exercise testing (anticipatory blood pressure), at every 3 min during the exercise, and during the recovery period. EIH was defined as maximum systolic blood pressure (SBP) ≥220 mmHg and/or maximum diastolic blood pressure (DBP) ≥100 mmHg. Of the 179 men, 87 (47%) presented EIH. Resting blood pressure values at baseline were 127±10/83±6 mmHg in EIH and 119±9/80±6 mmHg (P=0.01 for both) in normal blood pressure responders to exercise. Anticipatory SBP and DPS were higher in the group with EIH (P=0.001). Subjects with EIH presented higher waist circumference (WC) (Pmetabolic syndrome showed EIH. These men are characterized by a worsened metabolic profile. Our data suggest that a treadmill exercise test may be helpful to identify a potentially higher risk metabolic syndrome subset of subjects.

  6. Abdominal obesity and metabolic syndrome: exercise as medicine?

    Paley, Carole A; Johnson, Mark I

    2018-01-01

    Metabolic syndrome is defined as a cluster of at least three out of five clinical risk factors: abdominal (visceral) obesity, hypertension, elevated serum triglycerides, low serum high-density lipoprotein (HDL) and insulin resistance. It is estimated to affect over 20% of the global adult population. Abdominal (visceral) obesity is thought to be the predominant risk factor for metabolic syndrome and as predictions estimate that 50% of adults will be classified as obese by 2030 it is likely that metabolic syndrome will be a significant problem for health services and a drain on health economies.Evidence shows that regular and consistent exercise reduces abdominal obesity and results in favourable changes in body composition. It has therefore been suggested that exercise is a medicine in its own right and should be prescribed as such. This review provides a summary of the current evidence on the pathophysiology of dysfunctional adipose tissue (adiposopathy). It describes the relationship of adiposopathy to metabolic syndrome and how exercise may mediate these processes, and evaluates current evidence on the clinical efficacy of exercise in the management of abdominal obesity. The review also discusses the type and dose of exercise needed for optimal improvements in health status in relation to the available evidence and considers the difficulty in achieving adherence to exercise programmes. There is moderate evidence supporting the use of programmes of exercise to reverse metabolic syndrome although at present the optimal dose and type of exercise is unknown. The main challenge for health care professionals is how to motivate individuals to participate and adherence to programmes of exercise used prophylactically and as a treatment for metabolic syndrome.

  7. [Association between metabolic syndrome and its components with presbycusis].

    Zhao, Jingbo; Zhang, Mengsi; Li, Yuanyuan; Zhang, Jiarui; Wang, Ningning; Yang, Xiaoshan

    2015-07-01

    To investigate the effect of metabolic syndrome and its components on presbycusis. Total of 165 cases and 202 controls were continuously collected in Harbin Ninth Hospital from June 2013 to August 2014, these subjects were investigated and received anthropometry and received biochemical test in hospital laboratory. Statistics analysis was adopted by χ2 test, t test and logistic regression model. Only triglyceride abnormal proportion of case group was higher than that of control group among components of metabolic syndrome, and it were associated with age-related hearing loss whether before adjustment or not after adjustment, OR (95% CI) were 1.69 (1.09-2.63) and 1.96 (1.08-3.54) respectively, and others were not associated with presbycusis. In addition, among all of the various combinations of the components of the metabolic syndrome, combination of triglycerides and high-density lipoprotein, combination of triglycerides and blood glucose, combination of triglycerides and blood pressure were associated with age-related hearing loss before adjustment and after adjustment, OR were 5.31 (95% CI 1.63-17.27), 2.66 (95% CI 1.04-6.85) and 2.09 (95% CI 1.04-4.18) respectively. Further more, the metabolic syndrome was not statistically associated with presbycusis, OR were 1.27 (95% CI 0.83-1.94) and 0.92 (95% CI 0.54-1.57) respectively before adjustment and after adjustment. In addition, stratified by age, the metabolic syndrome was still not statistically associated with presbycusis in each stratification, OR were 0.89 (95% CI 0.44-1.82) and 1.49 (95% CI 0.67-3.30) respectively. The triglyceride was associated with presbycusis. Among all of combinations of the components of the metabolic syndrome, combination of triglycerides and high-density lipoprotein, combination of triglycerides and blood glucose, combination of triglycerides and blood pressure were associated with age-related hearing loss.

  8. Reduced apolipoprotein glycosylation in patients with the metabolic syndrome.

    Olga V Savinova

    Full Text Available The purpose of this study was to compare the apolipoprotein composition of the three major lipoprotein classes in patients with metabolic syndrome to healthy controls.Very low density (VLDL, intermediate/low density (IDL/LDL, hereafter LDL, and high density lipoproteins (HDL fractions were isolated from plasma of 56 metabolic syndrome subjects and from 14 age-sex matched healthy volunteers. The apolipoprotein content of fractions was analyzed by one-dimensional (1D gel electrophoresis with confirmation by a combination of mass spectrometry and biochemical assays.Metabolic syndrome patients differed from healthy controls in the following ways: (1 total plasma--apoA1 was lower, whereas apoB, apoC2, apoC3, and apoE were higher; (2 VLDL--apoB, apoC3, and apoE were increased; (3 LDL--apoC3 was increased, (4 HDL--associated constitutive serum amyloid A protein (SAA4 was reduced (p<0.05 vs. controls for all. In patients with metabolic syndrome, the most extensively glycosylated (di-sialylated isoform of apoC3 was reduced in VLDL, LDL, and HDL fractions by 17%, 30%, and 25%, respectively (p<0.01 vs. controls for all. Similarly, the glycosylated isoform of apoE was reduced in VLDL, LDL, and HDL fractions by 15%, 26%, and 37% (p<0.01 vs. controls for all. Finally, glycosylated isoform of SAA4 in HDL fraction was 42% lower in patients with metabolic syndrome compared with controls (p<0.001.Patients with metabolic syndrome displayed several changes in plasma apolipoprotein composition consistent with hypertriglyceridemia and low HDL cholesterol levels. Reduced glycosylation of apoC3, apoE and SAA4 are novel findings, the pathophysiological consequences of which remain to be determined.

  9. Effect of moderate intake of sweeteners on metabolic health in the rat

    Figlewicz, D.P.; Ioannou, G.; Jay, J. Bennett; Kittleson, S.; Savard, C.; Roth, C.L.

    2009-01-01

    The rise in prevalence of obesity, diabetes, metabolic syndrome, and fatty liver disease has been linked to increased consumption of fructose-containing foods or beverages. Our aim was to compare the effects of moderate consumption of fructose-containing and non-caloric sweetened beverages on feeding behavior, metabolic and serum lipid profiles, and hepatic histology and serum liver enzymes, in rats. Behavioral tests determined preferred (12.5–15%) concentrations of solutions of agave, fructo...

  10. Comparison of metabolic syndrome with growing epidemic syndrome Z in terms of risk factors and gender differences.

    Uyar, Meral; Davutoğlu, Vedat; Aydın, Neriman; Filiz, Ayten

    2013-05-01

    The aim of this study is to compare metabolic syndrome with syndrome Z growing epidemic in terms of risk factors, demographic variables, and gender differences in our large cohort at southeastern area in Turkey. Data of patients admitted to sleep clinic in University of Gaziantep from January 2006 to January 2011 were retrospectively evaluated. ATP III and JNC 7 were used for defining metabolic syndrome and hypertension. Data of 761 patients were evaluated. Hypertension, diabetes mellitus, coronary artery disease, pulmonary hypertension, and left ventricular hypertrophy were more common in patients with syndrome Z than in patients without metabolic syndrome. Age, waist/neck circumferences, BMI, triglyceride, glucose, and Epworth sleepiness scale score were detected higher, whereas the minimum oxygen saturation during sleep was lower in patients with syndrome Z. Metabolic syndrome was more common in sleep apneic subjects than in controls (58 versus 30 %). Female sleep apneics showed higher rate of metabolic syndrome than those of males (74 versus 52 %). Hypertension, diabetes mellitus, coronary artery disease, and left ventricular hypertrophy were detected higher in males with syndrome Z than in males without metabolic syndrome. Snoring and excessive daytime sleepiness were detected higher in females with syndrome Z than in females without metabolic syndrome. Systemic/pulmonary hypertension, diabetes mellitus, and left ventricular hypertrophy were more common in females with syndrome Z than in females without metabolic syndrome. Complaints of headache and systemic/pulmonary hypertension were more common among females than males with syndrome Z. Female syndrome Z patients had lower minimum oxygen saturation than male patients with syndrome Z. Metabolic syndrome in sleep apneic patients is more prevalent than in controls. All metabolic syndrome parameters were significantly different among obstructive sleep apneic patients with respect to gender with more severe

  11. Severity of periodontitis and metabolic syndrome: is there an association?

    Gomes-Filho, Isaac Suzart; Mercês, Magno Conceição; Soares, Johelle de Santana Passos; Cruz, Simone Seixas da; Barreto, Mauricio Lima; Costa, Maria da Conceição Nascimento

    2015-01-01

    Background: Metabolic syndrome (MetS) is a major factor for the occurrence of cardiovascular events. Causal factors for MetS are not well defined or yet unidentified. Preliminary investigations suggest that infections and inflammation may be involved in the etiology of this syndrome. This study aims to estimate the association between the severity of periodontitis (exposure) and MetS (outcome). Methods: A cross-sectional study was conducted with 419 participants recruited from the Di...

  12. Equine metabolic syndrome in Colombian creole horse: case report

    Castillo, C.A.; Jaramillo, C.; Loaiza, M.J.; Blanco, R.

    2017-01-01

    ABSTRACT The equine metabolic syndrome is a condition that can be recognized because of obesity, insulin resistance and laminitis. Genetic factors could play a role in the occurrence of this syndrome. Certain breeds such as ponies (including the South American creole horses) have a lower sensibility to insulin and a higher prevalence of hyperinsulinemia. The environment and management conditions, such as overfeeding and lack of exercise are factors that bring a propensity for obesity. The adi...

  13. HPLC-MS-Based Metabonomics Reveals Disordered Lipid Metabolism in Patients with Metabolic Syndrome

    Xinjie Zhao

    2011-12-01

    Full Text Available Ultra-high performance liquid chromatography/ quadrupole time of flight mass spectrometry-based metabonomics platform was employed to profile the plasma metabolites of patients with metabolic syndrome and the healthy controls. Data analysis revealed lots of differential metabolites between the two groups, and most of them were identified as lipids. Several fatty acids and lysophosphatidylcholines were of higher plasma levels in the patient group, indicating the occurrence of insulin resistance and inflammation. The identified ether phospholipids were decreased in the patient group, reflecting the oxidative stress and some metabolic disorders. These identified metabolites can also be used to aid diagnosis of patients with metabolic syndrome. These results showed that metabonomics was a promising and powerful method to study metabolic syndrome.

  14. Epigenomics, gestational programming and risk of metabolic syndrome.

    Desai, M; Jellyman, J K; Ross, M G

    2015-04-01

    Epigenetic mechanisms are emerging as mediators linking early environmental exposures during pregnancy with programmed changes in gene expression that alter offspring growth and development. There is irrefutable evidence from human and animal studies that nutrient and environmental agent exposures (for example, endocrine disruptors) during pregnancy may affect fetal/newborn development resulting in offspring obesity and obesity-associated metabolic abnormalities (metabolic syndrome). This concept of 'gestational programming' is associated with alterations to the epigenome (nongenomic) rather than changes in the DNA sequence (genomic). Epigenetic alterations induced by suboptimal maternal nutrition/endocrine factors include DNA methylation, histone modifications, chromatin remodeling and/or regulatory feedback by microRNAs, all of which have the ability to modulate gene expression and promote the metabolic syndrome phenotype. Recent studies have shown tissue-specific transcriptome patterns and phenotypes not only in the exposed individual, but also in subsequent progeny. Notably, the transmission of gestational programming effects to subsequent generations occurs in the absence of continued adverse environmental exposures, thus propagating the cycle of obesity and metabolic syndrome. This phenomenon may be attributed to an extrinsic process resulting from the maternal phenotype and the associated nutrient alterations occurring within each pregnancy. In addition, epigenetic inheritance may occur through somatic cells or through the germ line involving both maternal and paternal lineages. Since epigenetic gene modifications may be reversible, understanding how epigenetic mechanisms contribute to transgenerational transmission of obesity and metabolic dysfunction is crucial for the development of novel early detection and prevention strategies for programmed metabolic syndrome. In this review we discuss the evidence in human and animal studies for the role of

  15. The metabolic syndrome and severity of diabetic retinopathy

    Chen JJ

    2015-04-01

    Full Text Available John J Chen,1,2,* Lucas J Wendel,1,3,* Emily S Birkholz,1 John G Vallone,4 Anne L Coleman,5,6 Fei Yu,7 Vinit B Mahajan1,3,8 1Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA; 2Mayo Clinic, Rochester, MN, USA; 3Vitreoretinal Service, University of Iowa, Iowa City, IA, USA; 4Department of Pathology, University of Southern California, 5Department of Ophthalmology, 6Department of Epidemiology, School of Public Health, 7Department of Biostatistics, University of California, Los Angeles, CA, USA; 8Omics Laboratory, University of Iowa, Iowa City, IA, USA *These authors contributed equally to this work Background: While metabolic syndrome has been strongly implicated as a risk factor for macrovascular diseases, such as stroke and cardiovascular disease, its relationship with microvascular diseases, including diabetic retinopathy, has been less defined. The purpose of this pilot study was to investigate the association between metabolic syndrome and the presence and severity of diabetic retinopathy.Methods: A retrospective case–control chart review at the University of Iowa ophthalmology and primary care clinics included 100 patients with proliferative diabetic retinopathy (PDR, 100 patients with nonproliferative diabetic retinopathy (NPDR, 100 diabetic patients without diabetic retinopathy, and 100 nondiabetic patients who were randomly selected. Using the International Diabetes Foundation definition, the prevalence of metabolic syndrome and the number of components of metabolic syndrome were compared among these groups.Results: The prevalence of metabolic syndrome in patients with diabetes was 69.3%, which was significantly higher than that in patients without diabetes (27%; P<0.0001 (odds ratio [OR] =6.28; 95% confidence interval [CI]: 3.76–10.49; P=0.0004. However, there was no significant difference in the prevalence of metabolic syndrome between diabetics with and without diabetic retinopathy, with rates

  16. Toxigenic and metabolic causes of ketosis and ketoacidotic syndromes.

    Cartwright, Martina M; Hajja, Waddah; Al-Khatib, Sofian; Hazeghazam, Maryam; Sreedhar, Dharmashree; Li, Rebecca Na; Wong-McKinstry, Edna; Carlson, Richard W

    2012-10-01

    Ketoacidotic syndromes are frequently encountered in acute care medicine. This article focuses on ketosis and ketoacidotic syndromes associated with intoxications, alcohol abuse, starvation, and certain dietary supplements as well as inborn errors of metabolism. Although all of these various processes are characterized by the accumulation of ketone bodies and metabolic acidosis, there are differences in the mechanisms, clinical presentations, and principles of therapy for these heterogeneous disorders. Pathophysiologic mechanisms that account for these disorders are presented, as well as guidance regarding identification and management. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Endocrine and metabolic aspects of the Wolfram syndrome.

    Boutzios, Georgios; Livadas, Sarantis; Marinakis, Evangelos; Opie, Nicole; Economou, Frangiskos; Diamanti-Kandarakis, Evanthia

    2011-08-01

    Wolfram syndrome (WS), also known as DIDMOAD (Diabetes Insipidus, Diabetes Mellitus, Optic Atrophy and Deafness), is a neurodegenerative disease with autosomal recessive inheritance with incomplete penetrance. DIDMOAD is a very rare disease with an estimated prevalence of 1 in 770,000 and it is believed to occur in 1 of 150 patients with juvenile-onset insulin-dependent diabetes mellitus. Additionally, WS may also present with different endocrine and metabolic abnormalities such as anterior and posterior pituitary gland dysfunction. This mini-review summarizes the variable presentation of WS and the need of screening for other metabolic and hormonal abnormalities, coexisting in this rare syndrome.

  18. Lifestyle and metabolic syndrome in college students: Differences by gender

    María Araceli Álvarez Gasca

    2014-07-01

    Full Text Available The relationship between lifestyle and metabolic syndrome in college students as well as differences between men and women are analyzed. 970 students (67.4% women, 32.6% men were randomly selected and assessed on lifestyle (EV, central obesity, and metabolic syndrome(SM. Results showed 4.63% with SM and 36.65% with obesity, women predominated. Predominant EV was good and better in men than women, highest frequency of SM was in bad EV. Relationship between gender, obesity, and SM was significant for the studied population. Differences were found between men and women.

  19. Association of metabolic syndrome in patients with osteoarthritis

    Malik, S.; Salim, B.; Khalil, Z.; Nasim, A.

    2015-01-01

    Objective: To determine association of osteoarthritis (OA) with metabolic syndrome in a tertiary care hospital of Pakistan. Methodology: A cross-sectional study was conducted at Fauji Foundation Hospital, Rawalpindi, Pakistan. Patients were randomly interviewed in the Female Rheumatology department and a total of 240 patients with single rheumatologic disease and age >35 years were selected. Informed consent was taken and patients were interviewed using a self-made questionnaire to evaluate their medical history, physical and laboratory examination. SPSS version 17 was used to analyze the data. Results: Out of 240 subjects, 81 patients had OA and another 81 patients were randomly selected from the age and gender matched control (non-OA) group. The mean age of patients in OA and non-OA group was 56.68 ± 09.76 and 53.57 ± 11.01 years, respectively. In OA group, 48.1% and in non-OA group 22.2% of patients were falling in category of being obese/morbidly obese. According to AHA criteria for Metabolic Syndrome, percentage of OA patients labeled to have metabolic syndrome was 58.8% as compared to 19.5% in non-OA group. Conclusion: There was a strong association of metabolic syndrome with OA and would surely make a foreground for future studies to be conducted on developing preventive strategies and ultimately reducing the morbidities and mortalities associated with Metabolic Osteoarthritis. (author)

  20. Obesity and metabolic syndrome in COPD: Is exercise the answer?

    James, Benjamin D; Jones, Amy V; Trethewey, Ruth E; Evans, Rachael A

    2018-05-01

    Approximately half of all patients with chronic obstructive pulmonary disease (COPD) attending pulmonary rehabilitation (PR) programmes are overweight or obese which negatively impacts upon dyspnoea and