WorldWideScience

Sample records for metabolic stress-induced necrosis

  1. Implication of snail in metabolic stress-induced necrosis.

    Directory of Open Access Journals (Sweden)

    Cho Hee Kim

    2011-03-01

    Full Text Available Necrosis, a type of cell death accompanied by the rupture of the plasma membrane, promotes tumor progression and aggressiveness by releasing the pro-inflammatory and angiogenic cytokine high mobility group box 1. It is commonly found in the core region of solid tumors due to hypoxia and glucose depletion (GD resulting from insufficient vascularization. Thus, metabolic stress-induced necrosis has important clinical implications for tumor development; however, its regulatory mechanisms have been poorly investigated.Here, we show that the transcription factor Snail, a key regulator of epithelial-mesenchymal transition, is induced in a reactive oxygen species (ROS-dependent manner in both two-dimensional culture of cancer cells, including A549, HepG2, and MDA-MB-231, in response to GD and the inner regions of a multicellular tumor spheroid system, an in vitro model of solid tumors and of human tumors. Snail short hairpin (sh RNA inhibited metabolic stress-induced necrosis in two-dimensional cell culture and in multicellular tumor spheroid system. Snail shRNA-mediated necrosis inhibition appeared to be linked to its ability to suppress metabolic stress-induced mitochondrial ROS production, loss of mitochondrial membrane potential, and mitochondrial permeability transition, which are the primary events that trigger necrosis.Taken together, our findings demonstrate that Snail is implicated in metabolic stress-induced necrosis, providing a new function for Snail in tumor progression.

  2. Homeobox gene Dlx-2 is implicated in metabolic stress-induced necrosis

    Directory of Open Access Journals (Sweden)

    Lim Sung-Chul

    2011-09-01

    Full Text Available Abstract Background In contrast to tumor-suppressive apoptosis and autophagic cell death, necrosis promotes tumor progression by releasing the pro-inflammatory and tumor-promoting cytokine high mobility group box 1 (HMGB1, and its presence in tumor patients is associated with poor prognosis. Thus, necrosis has important clinical implications in tumor development; however, its molecular mechanism remains poorly understood. Results In the present study, we show that Distal-less 2 (Dlx-2, a homeobox gene of the Dlx family that is involved in embryonic development, is induced in cancer cell lines dependently of reactive oxygen species (ROS in response to glucose deprivation (GD, one of the metabolic stresses occurring in solid tumors. Increased Dlx-2 expression was also detected in the inner regions, which experience metabolic stress, of human tumors and of a multicellular tumor spheroid, an in vitro model of solid tumors. Dlx-2 short hairpin RNA (shRNA inhibited metabolic stress-induced increase in propidium iodide-positive cell population and HMGB1 and lactate dehydrogenase (LDH release, indicating the important role(s of Dlx-2 in metabolic stress-induced necrosis. Dlx-2 shRNA appeared to exert its anti-necrotic effects by preventing metabolic stress-induced increases in mitochondrial ROS, which are responsible for triggering necrosis. Conclusions These results suggest that Dlx-2 may be involved in tumor progression via the regulation of metabolic stress-induced necrosis.

  3. Regulation of Tumor Progression by Programmed Necrosis

    Directory of Open Access Journals (Sweden)

    Su Yeon Lee

    2018-01-01

    Full Text Available Rapidly growing malignant tumors frequently encounter hypoxia and nutrient (e.g., glucose deprivation, which occurs because of insufficient blood supply. This results in necrotic cell death in the core region of solid tumors. Necrotic cells release their cellular cytoplasmic contents into the extracellular space, such as high mobility group box 1 (HMGB1, which is a nonhistone nuclear protein, but acts as a proinflammatory and tumor-promoting cytokine when released by necrotic cells. These released molecules recruit immune and inflammatory cells, which exert tumor-promoting activity by inducing angiogenesis, proliferation, and invasion. Development of a necrotic core in cancer patients is also associated with poor prognosis. Conventionally, necrosis has been thought of as an unregulated process, unlike programmed cell death processes like apoptosis and autophagy. Recently, necrosis has been recognized as a programmed cell death, encompassing processes such as oncosis, necroptosis, and others. Metabolic stress-induced necrosis and its regulatory mechanisms have been poorly investigated until recently. Snail and Dlx-2, EMT-inducing transcription factors, are responsible for metabolic stress-induced necrosis in tumors. Snail and Dlx-2 contribute to tumor progression by promoting necrosis and inducing EMT and oncogenic metabolism. Oncogenic metabolism has been shown to play a role(s in initiating necrosis. Here, we discuss the molecular mechanisms underlying metabolic stress-induced programmed necrosis that promote tumor progression and aggressiveness.

  4. Paracetamol: overdose-induced oxidative stress toxicity, metabolism, and protective effects of various compounds in vivo and in vitro.

    Science.gov (United States)

    Wang, Xu; Wu, Qinghua; Liu, Aimei; Anadón, Arturo; Rodríguez, José-Luis; Martínez-Larrañaga, María-Rosa; Yuan, Zonghui; Martínez, María-Aránzazu

    2017-11-01

    Paracetamol (APAP) is one of the most widely used and popular over-the-counter analgesic and antipyretic drugs in the world when used at therapeutic doses. APAP overdose can cause severe liver injury, liver necrosis and kidney damage in human beings and animals. Many studies indicate that oxidative stress is involved in the various toxicities associated with APAP, and various antioxidants were evaluated to investigate their protective roles against APAP-induced liver and kidney toxicities. To date, almost no review has addressed the APAP toxicity in relation to oxidative stress. This review updates the research conducted over the past decades into the production of reactive oxygen species (ROS), reactive nitrogen species (RNS), and oxidative stress as a result of APAP treatments, and ultimately their correlation with the toxicity and metabolism of APAP. The metabolism of APAP involves various CYP450 enzymes, through which oxidative stress might occur, and such metabolic factors are reviewed within. The therapeutics of a variety of compounds against APAP-induced organ damage based on their anti-oxidative effects is also discussed, in order to further understand the role of oxidative stress in APAP-induced toxicity. This review will throw new light on the critical roles of oxidative stress in APAP-induced toxicity, as well as on the contradictions and blind spots that still exist in the understanding of APAP toxicity, the cellular effects in terms of organ injury and cell signaling pathways, and finally strategies to help remedy such against oxidative damage.

  5. Chlorhexidine-induced apoptosis or necrosis in L929 fibroblasts: A role for endoplasmic reticulum stress

    International Nuclear Information System (INIS)

    Faria, Gisele; Cardoso, Cristina R.B.; Larson, Roy E.; Silva, Joao S.; Rossi, Marcos A.

    2009-01-01

    Chlorhexidine (CHX), widely used as antiseptic and therapeutic agent in medicine and dentistry, has a toxic effect both in vivo and in vitro. The intrinsic mechanism underlying CHX-induced cytotoxicity in eukaryotic cells is, however, still unknown. A recent study from our laboratory has suggested that CHX may induce death in cultured L929 fibroblasts via endoplasmic reticulum (ER) stress. This hypothesis was further tested by means of light and electron microscopy, quantification of apoptosis and necrosis by flow cytometry, fluorescence visualization of the cytoskeleton and endoplasmic reticulum, and evaluation of the expression of 78-kDa glucose-regulated protein 78 (Grp78), a marker of activation of the unfolded protein response (UPR) in cultured L929 fibroblasts. Our finding showing increased Grp 78 expression in CHX-treated cells and the results of flow cytometry, cytoskeleton and endoplasmic reticulum fluorescence visualization, and scanning and transmission electron microscopy allowed us to suggest that CHX elicits accumulation of proteins in the endoplasmic reticulum, which causes ER overload, resulting in ER stress and cell death either by necrosis or apoptosis. It must be pointed out, however, that this does not necessarily mean that ER stress is the only way that CHX kills L929 fibroblasts, but rather that ER stress is an important target or indicator of cell death induced by this drug

  6. Dietary phenolic acids reverse insulin resistance, hyperglycaemia, dyslipidaemia, inflammation and oxidative stress in high-fructose diet-induced metabolic syndrome rats.

    Science.gov (United States)

    Ibitoye, Oluwayemisi B; Ajiboye, Taofeek O

    2017-12-20

    This study investigated the influence of caffeic, ferulic, gallic and protocatechuic acids on high-fructose diet-induced metabolic syndrome in rats. Oral administration of the phenolic acids significantly reversed high-fructose diet-mediated increase in body mass index and blood glucose. Furthermore, phenolic acids restored high-fructose diet-mediated alterations in metabolic hormones (insulin, leptin and adiponectin). Similarly, elevated tumour necrosis factor-α, interleukin-6 and -8 were significantly lowered. Administration of phenolic acids restored High-fructose diet-mediated increase in the levels of lipid parameters and indices of atherosclerosis, cardiac and cardiovascular diseases. High-fructose diet-mediated decrease in activities of antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glucose 6-phosphate dehydrogenase) and increase in oxidative stress biomarkers (reduced glutathione, lipid peroxidation products, protein oxidation and fragmented DNA) were significantly restored by the phenolic acids. The result of this study shows protective influence of caffeic acid, ferulic acid, gallic acid and protocatechuic acid in high-fructose diet-induced metabolic syndrome.

  7. Auranofin induces apoptosis and necrosis in HeLa cells via oxidative stress and glutathione depletion.

    Science.gov (United States)

    You, Bo Ra; Shin, Hye Rim; Han, Bo Ram; Kim, Suhn Hee; Park, Woo Hyun

    2015-02-01

    Auranofin (Au), an inhibitor of thioredoxin reductase, is a known anti‑cancer drug. In the present study, the anti‑growth effect of Au on HeLa cervical cancer cells was examined in association with levels of reactive oxygen species (ROS) and glutathione (GSH). Au inhibited the growth of HeLa cells with an IC50 of ~2 µM at 24 h. This agent induced apoptosis and necrosis, accompanied by the cleavage of poly (ADP‑ribose) polymerase and loss of mitochondrial membrane potential. The pan‑caspase inhibitor, benzyloxycarbonyl‑Val‑Ala‑Asp‑fluoromethylketone, prevented apoptotic cell death and each of the assessed caspase inhibitors inhibited necrotic cell death induced by Au. With respect to the levels of ROS and GSH, Au increased intracellular O2•- in the HeLa cells and induced GSH depletion. The pan‑caspase inhibitor reduced the levels of O2•- and GSH depletion in Au‑treated HeLa cells. The antioxidant, N‑acetyl cysteine, not only attenuated apoptosis and necrosis in the Au‑treated HeLa cells, but also decreased the levels of O2•- and GSH depletion in the cells. By contrast, L‑buthionine sulfoximine, a GSH synthesis inhibitor, intensified cell death O2•- and GSH depletion in the Au‑treated HeLa cells. In conclusion, Au induced apoptosis and necrosis in HeLa cells via the induction of oxidative stress and the depletion of GSH.

  8. Asiatic Acid Alleviates Hemodynamic and Metabolic Alterations via Restoring eNOS/iNOS Expression, Oxidative Stress, and Inflammation in Diet-Induced Metabolic Syndrome Rats

    Directory of Open Access Journals (Sweden)

    Poungrat Pakdeechote

    2014-01-01

    Full Text Available Asiatic acid is a triterpenoid isolated from Centella asiatica. The present study aimed to investigate whether asiatic acid could lessen the metabolic, cardiovascular complications in rats with metabolic syndrome (MS induced by a high-carbohydrate, high-fat (HCHF diet. Male Sprague-Dawley rats were fed with HCHF diet with 15% fructose in drinking water for 12 weeks to induce MS. MS rats were treated with asiatic acid (10 or 20 mg/kg/day or vehicle for a further three weeks. MS rats had an impairment of oral glucose tolerance, increases in fasting blood glucose, serum insulin, total cholesterol, triglycerides, mean arterial blood pressure, heart rate, and hindlimb vascular resistance; these were related to the augmentation of vascular superoxide anion production, plasma malondialdehyde and tumor necrosis factor-alpha (TNF-α levels (p < 0.05. Plasma nitrate and nitrite (NOx were markedly high with upregulation of inducible nitric oxide synthase (iNOS expression, but dowregulation of endothelial nitric oxide synthase (eNOS expression (p < 0.05. Asiatic acid significantly improved insulin sensitivity, lipid profiles, hemodynamic parameters, oxidative stress markers, plasma TNF-α, NOx, and recovered abnormality of eNOS/iNOS expressions in MS rats (p < 0.05. In conclusion, asiatic acid improved metabolic, hemodynamic abnormalities in MS rats that could be associated with its antioxidant, anti-inflammatory effects and recovering regulation of eNOS/iNOS expression.

  9. 'Femoral head necrosis' in metabolic and hormonal osteopathies

    International Nuclear Information System (INIS)

    Heuck, F.H.W.; Treugut, H.

    1984-01-01

    The pathogenesis of bone necrosis is discussed with special attention and with respect to metabolic, hormonal, and vascular factors. The influence of statics and dynamics of the hip joint bones for the development of aseptic necrosis are discussed. 45 patients with ''idiopathic femoral head necroses'' were observed, including 6 cases of renal osteopathy following renal transplantation and immune suppression therapy, 14 cases of long term corticoid therapy, and 11 cases of liver diseases of different genesis. The femoral head necrosis understood as complication of an osteopathy. In our patients there were 31 males and 14 females - which means higher involvement of males. Plain radiological findings and CT-findings of changes of the femoral heat structure in different stages of the disease are described. Early diagnosis of metabolic and hormonal osteopathies is demanded for a joint keeping therapy of the beginning femoral head necrosis. (orig.) [de

  10. Necrosis-Driven Systemic Immune Response Alters SAM Metabolism through the FOXO-GNMT Axis

    Directory of Open Access Journals (Sweden)

    Fumiaki Obata

    2014-05-01

    Full Text Available Sterile inflammation triggered by endogenous factors is thought to contribute to the pathogenesis of acute and chronic inflammatory diseases. Here, we demonstrate that apoptosis-deficient mutants spontaneously develop a necrosis-driven systemic immune response in Drosophila and provide an in vivo model for studying the organismal response to sterile inflammation. Metabolomic analysis of hemolymph from apoptosis-deficient mutants revealed increased sarcosine and reduced S-adenosyl-methionine (SAM levels due to glycine N-methyltransferase (Gnmt upregulation. We showed that Gnmt was elevated in response to Toll activation induced by the local necrosis of wing epidermal cells. Necrosis-driven inflammatory conditions induced dFoxO hyperactivation, leading to an energy-wasting phenotype. Gnmt was cell-autonomously upregulated by dFoxO in the fat body as a possible rheostat for controlling energy loss, which functioned during fasting as well as inflammatory conditions. We propose that the dFoxO-Gnmt axis is essential for the maintenance of organismal SAM metabolism and energy homeostasis.

  11. Reduced endothelial thioredoxin-interacting protein protects arteries from damage induced by metabolic stress in vivo.

    Science.gov (United States)

    Bedarida, Tatiana; Domingues, Alison; Baron, Stephanie; Ferreira, Chrystophe; Vibert, Francoise; Cottart, Charles-Henry; Paul, Jean-Louis; Escriou, Virginie; Bigey, Pascal; Gaussem, Pascale; Leguillier, Teddy; Nivet-Antoine, Valerie

    2018-06-01

    Although thioredoxin-interacting protein (TXNIP) is involved in a variety of biologic functions, the contribution of endothelial TXNIP has not been well defined. To investigate the endothelial function of TXNIP, we generated a TXNIP knockout mouse on the Cdh5-cre background (TXNIP fl/fl cdh5 cre ). Control (TXNIP fl/fl ) and TXNIP fl/fl cdh5 cre mice were fed a high protein-low carbohydrate (HP-LC) diet for 3 mo to induce metabolic stress. We found that TXNIP fl/fl and TXNIP fl/fl cdh5 cre mice on an HP-LC diet displayed impaired glucose tolerance and dyslipidemia concretizing the metabolic stress induced. We evaluated the impact of this metabolic stress on mice with reduced endothelial TXNIP expression with regard to arterial structure and function. TXNIP fl/fl cdh5 cre mice on an HP-LC diet exhibited less endothelial dysfunction than littermate mice on an HP-LC diet. These mice were protected from decreased aortic medial cell content, impaired aortic distensibility, and increased plasminogen activator inhibitor 1 secretion. This protective effect came with lower oxidative stress and lower inflammation, with a reduced NLRP3 inflammasome expression, leading to a decrease in cleaved IL-1β. We also show the major role of TXNIP in inflammation with a knockdown model, using a TXNIP-specific, small interfering RNA included in a lipoplex. These findings demonstrate a key role for endothelial TXNIP in arterial impairments induced by metabolic stress, making endothelial TXNIP a potential therapeutic target.-Bedarida, T., Domingues, A., Baron, S., Ferreira, C., Vibert, F., Cottart, C.-H., Paul, J.-L., Escriou, V., Bigey, P., Gaussem, P., Leguillier, T., Nivet-Antoine, V. Reduced endothelial thioredoxin-interacting protein protects arteries from damage induced by metabolic stress in vivo.

  12. Multivoxel proton MRS for differentiation of radiation-induced necrosis and tumor recurrence after gamma knife radiosurgery for brain metastases

    International Nuclear Information System (INIS)

    Chernov, M.F.; Hayashi, Motohiro; Izawa, Masahiro

    2006-01-01

    Multivoxel proton magnetic resonance spectroscopy (MRS) was used for differentiation of radiation-induced necrosis and tumor recurrence after gamma knife radiosurgery for intracranial metastases in 33 consecutive cases. All patients presented with enlargement of the treated lesion, increase of perilesional brain edema, and aggravation or appearance of neurological signs and symptoms on average 9.3±4.9 months after primary treatment. Metabolic imaging defined four types of lesions: pure tumor recurrence (11 cases), partial tumor recurrence (11 cases), radiation-induced tumor necrosis (10 cases), and radiation-induced necrosis of the peritumoral brain (1 case). In 1 patient, radiation-induced tumor necrosis was diagnosed 9 months after radiosurgery; however, partial tumor recurrence was identified 6 months later. With the exception of midline shift, which was found to be more typical for radiation-induced necrosis (P<0.01), no one clinical, radiologic, or radiosurgical parameter either at the time of primary treatment or at the time of deterioration showed a statistically significant association with the type of the lesion. Proton MRS-based diagnosis was confirmed histologically in all surgically treated patients (7 cases) and corresponded well to the clinical course in others. In conclusion, multivoxel proton MRS is an effective diagnostic modality for identification of radiation-induced necrosis and tumor recurrence that can be used for monitoring of metabolic changes in intracranial neoplasms after radiosurgical treatment. It can be also helpful for differentiation of radiation-induced necrosis of the tumor and that of the peritumoral brain, which may have important clinical and medicolegal implications. (author)

  13. LEDGF/p75 Overexpression Attenuates Oxidative Stress-Induced Necrosis and Upregulates the Oxidoreductase ERP57/PDIA3/GRP58 in Prostate Cancer.

    Directory of Open Access Journals (Sweden)

    Anamika Basu

    Full Text Available Prostate cancer (PCa mortality is driven by highly aggressive tumors characterized by metastasis and resistance to therapy, and this aggressiveness is mediated by numerous factors, including activation of stress survival pathways in the pro-inflammatory tumor microenvironment. LEDGF/p75, also known as the DFS70 autoantigen, is a stress transcription co-activator implicated in cancer, HIV-AIDS, and autoimmunity. This protein is targeted by autoantibodies in certain subsets of patients with PCa and inflammatory conditions, as well as in some apparently healthy individuals. LEDGF/p75 is overexpressed in PCa and other cancers, and promotes resistance to chemotherapy-induced cell death via the transactivation of survival proteins. We report in this study that overexpression of LEDGF/p75 in PCa cells attenuates oxidative stress-induced necrosis but not staurosporine-induced apoptosis. This finding was consistent with the observation that while LEDGF/p75 was robustly cleaved in apoptotic cells into a p65 fragment that lacks stress survival activity, it remained relatively intact in necrotic cells. Overexpression of LEDGF/p75 in PCa cells led to the upregulation of transcript and protein levels of the thiol-oxidoreductase ERp57 (also known as GRP58 and PDIA3, whereas its depletion led to ERp57 transcript downregulation. Chromatin immunoprecipitation and transcription reporter assays showed LEDGF/p75 binding to and transactivating the ERp57 promoter, respectively. Immunohistochemical analysis revealed significantly elevated co-expression of these two proteins in clinical prostate tumor tissues. Our results suggest that LEDGF/p75 is not an inhibitor of apoptosis but rather an antagonist of oxidative stress-induced necrosis, and that its overexpression in PCa leads to ERp57 upregulation. These findings are of significance in clarifying the role of the LEDGF/p75 stress survival pathway in PCa.

  14. Psychological stress-induced cerebrovascular dysfunction: the role of metabolic syndrome and exercise.

    Science.gov (United States)

    Brooks, Steven; Brnayan, Kayla W; DeVallance, Evan; Skinner, Roy; Lemaster, Kent; Sheets, J Whitney; Pitzer, Christopher R; Asano, Shinichi; Bryner, Randall W; Olfert, I Mark; Frisbee, Jefferson C; Chantler, Paul D

    2018-05-01

    What is the central question of this study? How does chronic stress impact cerebrovascular function and does metabolic syndrome accelerate the cerebrovascular adaptations to stress? What role does exercise training have in preventing cerebrovascular changes to stress and metabolic syndrome? What is the main finding and its importance? Stressful conditions lead to pathological adaptations of the cerebrovasculature via an oxidative nitric oxide pathway, and the presence of metabolic syndrome produces a greater susceptibility to stress-induced cerebrovascular dysfunction. The results also provide insight into the mechanisms that may contribute to the influence of stress and the role of exercise in preventing the negative actions of stress on cerebrovascular function and structure. Chronic unresolvable stress leads to the development of depression and cardiovascular disease. There is a high prevalence of depression with the metabolic syndrome (MetS), but to what extent the MetS concurrent with psychological stress affects cerebrovascular function is unknown. We investigated the differential effect of MetS on cerebrovascular structure/function in rats (16-17 weeks old) following 8 weeks of unpredictable chronic mild stress (UCMS) and whether exercise training could limit any cerebrovascular dysfunction. In healthy lean Zucker rats (LZR), UCMS decreased (28%, P stress and increased production of nitric oxide in the cerebral vessels. In conclusion, UCMS significantly impaired MCA structure and function, but the effects of UCMS were more substantial in OZR vs. LZR. Importantly, aerobic exercise when combined with UCMS prevented the MCA dysfunction through subtle shifts in nitric oxide and oxidative stress in the cerebral microvasculature. © 2018 The Authors. Experimental Physiology © 2018 The Physiological Society.

  15. Fibroblast growth factor 21 participates in adaptation to endoplasmic reticulum stress and attenuates obesity-induced hepatic metabolic stress.

    Science.gov (United States)

    Kim, Seong Hun; Kim, Kook Hwan; Kim, Hyoung-Kyu; Kim, Mi-Jeong; Back, Sung Hoon; Konishi, Morichika; Itoh, Nobuyuki; Lee, Myung-Shik

    2015-04-01

    Fibroblast growth factor 21 (FGF21) is an endocrine hormone that exhibits anti-diabetic and anti-obesity activity. FGF21 expression is increased in patients with and mouse models of obesity or nonalcoholic fatty liver disease (NAFLD). However, the functional role and molecular mechanism of FGF21 induction in obesity or NAFLD are not clear. As endoplasmic reticulum (ER) stress is triggered in obesity and NAFLD, we investigated whether ER stress affects FGF21 expression or whether FGF21 induction acts as a mechanism of the unfolded protein response (UPR) adaptation to ER stress induced by chemical stressors or obesity. Hepatocytes or mouse embryonic fibroblasts deficient in UPR signalling pathways and liver-specific eIF2α mutant mice were employed to investigate the in vitro and in vivo effects of ER stress on FGF21 expression, respectively. The in vivo importance of FGF21 induction by ER stress and obesity was determined using inducible Fgf21-transgenic mice and Fgf21-null mice with or without leptin deficiency. We found that ER stressors induced FGF21 expression, which was dependent on a PKR-like ER kinase-eukaryotic translation factor 2α-activating transcription factor 4 pathway both in vitro and in vivo. Fgf21-null mice exhibited increased expression of ER stress marker genes and augmented hepatic lipid accumulation after tunicamycin treatment. However, these changes were attenuated in inducible Fgf21-transgenic mice. We also observed that Fgf21-null mice with leptin deficiency displayed increased hepatic ER stress response and liver injury, accompanied by deteriorated metabolic variables. Our results suggest that FGF21 plays an important role in the adaptive response to ER stress- or obesity-induced hepatic metabolic stress.

  16. 'Femoral head necrosis' in metabolic and hormonal osteopathies

    Energy Technology Data Exchange (ETDEWEB)

    Heuck, F.H.W.; Treugut, H.

    1984-07-01

    The pathogenesis of bone necrosis is discussed with special attention and with respect to metabolic, hormonal, and vascular factors. The influence of statics and dynamics of the hip joint bones for the development of aseptic necrosis are discussed. 45 patients with ''idiopathic femoral head necroses'' were observed, including 6 cases of renal osteopathy following renal transplantation and immune suppression therapy, 14 cases of long term corticoid therapy, and 11 cases of liver diseases of different genesis. The femoral head necrosis understood as complication of an osteopathy. In our patients there were 31 males and 14 females - which means higher involvement of males. Plain radiological findings and CT-findings of changes of the femoral heat structure in different stages of the disease are described. Early diagnosis of metabolic and hormonal osteopathies is demanded for a joint keeping therapy of the beginning femoral head necrosis. 90 refs.

  17. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury

    Science.gov (United States)

    Azzam, Edouard I.; Jay-Gerin, Jean-Paul; Pain, Debkumar

    2013-01-01

    Cellular exposure to ionizing radiation leads to oxidizing events that alter atomic structure through direct interactions of radiation with target macromolecules or via products of water radiolysis. Further, the oxidative damage may spread from the targeted to neighboring, non-targeted bystander cells through redox-modulated intercellular communication mechanisms. To cope with the induced stress and the changes in the redox environment, organisms elicit transient responses at the molecular, cellular and tissue levels to counteract toxic effects of radiation. Metabolic pathways are induced during and shortly after the exposure. Depending on radiation dose, dose-rate and quality, these protective mechanisms may or may not be sufficient to cope with the stress. When the harmful effects exceed those of homeostatic biochemical processes, induced biological changes persist and may be propagated to progeny cells. Physiological levels of reactive oxygen and nitrogen species play critical roles in many cellular functions. In irradiated cells, levels of these reactive species may be increased due to perturbations in oxidative metabolism and chronic inflammatory responses, thereby contributing to the long-term effects of exposure to ionizing radiation on genomic stability. Here, in addition to immediate biological effects of water radiolysis on DNA damage, we also discuss the role of mitochondria in the delayed outcomes of ionization radiation. Defects in mitochondrial functions lead to accelerated aging and numerous pathological conditions. Different types of radiation vary in their linear energy transfer (LET) properties, and we discuss their effects on various aspects of mitochondrial physiology. These include short and long-term in vitro and in vivo effects on mitochondrial DNA, mitochondrial protein import and metabolic and antioxidant enzymes. PMID:22182453

  18. REPEATED ACUTE STRESS INDUCED ALTERATIONS IN CARBOHYDRATE METABOLISM IN RAT

    Directory of Open Access Journals (Sweden)

    Nirupama R.

    2010-09-01

    Full Text Available Acute stress induced alterations in the activity levels of rate limiting enzymes and concentration of intermediates of different pathways of carbohydrate metabolism have been studied. Adult male Wistar rats were restrained (RS for 1 h and after an interval of 4 h they were subjected to forced swimming (FS exercise and appropriate controls were maintained. Five rats were killed before the commencement of the experiment (initial controls, 5 control and equal number of stressed rats were killed 2 h after RS and remaining 5 rats in each group were killed 4 h after FS. There was a significant increase in the adrenal 3β- hydroxy steroid dehydrogenase activity following RS, which showed further increase after FS compared to controls and thereby indicated stress response of rats. There was a significant increase in the blood glucose levels following RS which showed further increase and reached hyperglycemic condition after FS. The hyperglycemic condition due to stress was accompanied by significant increases in the activities of glutamate- pyruvate transaminase, glutamate- oxaloacetate transaminase, glucose -6- phosphatase and lactate dehydrogenase and significant decrease in the glucose -6- phosphate dehydrogenase and pyruvate dehydrogenase activities, whereas pyruvate kinase activity did not show any alteration compared to controls. Further, the glycogen and total protein contents of the liver were decreased whereas those of pyruvate and lactate showed significant increase compared to controls after RS as well as FS.The results put together indicate that acute stress induced hyperglycemia results due to increased gluconeogenesis and glycogenolysis without alteration in glycolysis. The study first time reveals that after first acute stress exposure, the subsequent stressful experience augments metabolic stress response leading to hyperglycemia. The results have relevance to human health as human beings are exposed to several stressors in a day and

  19. The effect of psychological stress on diet-induced thermogenesis and resting metabolic rate.

    Science.gov (United States)

    Weststrate, J A; Van der Kooy, K; Deurenberg, P; Hautvast, J G

    1990-04-01

    The effect of psychological stress on resting metabolic rate (RMR) and diet-induced thermogenesis (DIT) was assessed in 12 healthy young non-obese men of body weight 70.2 +/- 1.2 kg (mean +/- s.e.m.) and age 25 +/- 0.6 years. Two types of commercially available motion pictures (video films) were shown to the subjects during the measurements, ie stress-inducing horror films and as a control, romantic family films. The study was conducted according to a cross-over design. RMR and respiratory quotients were not significantly influenced by the type of film shown to the subjects. DIT, assessed over 4 h, was significantly increased by the stress-inducing treatment, 0.95 +/- 0.05 kJ/min (mean +/- s.e.m.) versus 0.76 +/- 0.06 kJ/min (control). No significant effect was observed of psychological stress on postprandial substrate oxidation rates, nutrient balances, and urinary catecholamine excretion.

  20. Indomethacin induced avascular necrosis of head of femur

    Science.gov (United States)

    Prathapkumar, K; Smith, I; Attara, G

    2000-01-01

    Chemically induced avascular necrosis of bone is a well documented entity. Indomethacin is one of the causes of this condition but is often difficult to recognise. Review of the literature shows that only one case of indomethacin induced avascular necrosis has been reported in the English language between 1966 and the present.
The case of a young healthy man, who developed avascular necrosis of head of femur after prolonged administration of indomethacin, is reported here.


Keywords: indomethacin; avascular necrosis PMID:10964124

  1. Angiotensin II receptor blocker ameliorates stress-induced adipose tissue inflammation and insulin resistance.

    Directory of Open Access Journals (Sweden)

    Motoharu Hayashi

    Full Text Available A strong causal link exists between psychological stress and insulin resistance as well with hypertension. Meanwhile, stress-related responses play critical roles in glucose metabolism in hypertensive patients. As clinical trials suggest that angiotensin-receptor blocker delays the onset of diabetes in hypertensive patients, we investigated the effects of irbesartan on stress-induced adipose tissue inflammation and insulin resistance. C57BL/6J mice were subjected to 2-week intermittent restraint stress and orally treated with vehicle, 3 and 10 mg/kg/day irbesartan. The plasma concentrations of lipid and proinflammatory cytokines [Monocyte Chemoattractant Protein-1 (MCP-1, tumor necrosis factor-α, and interleukin-6] were assessed with enzyme-linked immunosorbent assay. Monocyte/macrophage accumulation in inguinal white adipose tissue (WAT was observed with CD11b-positive cell counts and mRNA expressions of CD68 and F4/80 using immunohistochemistry and RT-PCR methods respectively. The mRNA levels of angiotensinogen, proinflammatory cytokines shown above, and adiponectin in WAT were also assessed with RT-PCR method. Glucose metabolism was assessed by glucose tolerance tests (GTTs and insulin tolerance tests, and mRNA expression of insulin receptor substrate-1 (IRS-1 and glucose transporter 4 (GLUT4 in WAT. Restraint stress increased monocyte accumulation, plasma free fatty acids, expression of angiotensinogen and proinflammatory cytokines including MCP-1, and reduced adiponectin. Irbesartan reduced stress-induced monocyte accumulation in WAT in a dose dependent manner. Irbesartan treatment also suppressed induction of adipose angiotensinogen and proinflammatory cytokines in WAT and blood, and reversed changes in adiponectin expression. Notably, irbesartan suppressed stress-induced reduction in adipose tissue weight and free fatty acid release, and improved insulin tolerance with restoration of IRS-1 and GLUT4 mRNA expressions in WAT. The results

  2. Heat stress induced changes in metabolic regulators of donkeys from arid tracts in India

    Directory of Open Access Journals (Sweden)

    Kataria N.

    2012-05-01

    Full Text Available To find out heat stress induced changes in metabolic regulators of donkeys from arid tracts in India, blood samples were collected to harvest the serum during moderate and extreme hot ambiences. The metabolic enzymes determined were sorbitol dehydrogenase, malate dehydrogenase, glucose-6-phosphate dehydrogenase, glutamate dehydrogenase, ornithine carbamoyl transferase, gammaglutamayl transferase, 5’nucleotidase, glucose-6-phosphatase, arginase, and aldolase. The mean values of all the serum enzymes increased significantly (p≤0.05 during hot ambience as compared to respective values during moderate ambience. It was concluded that increased activity of all the enzymes in the serum was due to modulation of metabolic reactions to combat the effect of hot ambience on the animals. Activation of gluconeogenesis along with hexose monophosphate shunt and urea cycle probably helped the animals to combat the heat stress.

  3. 3-Bromopyruvate treatment induces alterations of metabolic and stress-related pathways in glioblastoma cells.

    Science.gov (United States)

    Chiasserini, Davide; Davidescu, Magdalena; Orvietani, Pier Luigi; Susta, Federica; Macchioni, Lara; Petricciuolo, Maya; Castigli, Emilia; Roberti, Rita; Binaglia, Luciano; Corazzi, Lanfranco

    2017-01-30

    Glioblastoma (GBM) is the most common and aggressive brain tumour of adults. The metabolic phenotype of GBM cells is highly dependent on glycolysis; therefore, therapeutic strategies aimed at interfering with glycolytic pathways are under consideration. 3-Bromopyruvate (3BP) is a potent antiglycolytic agent, with a variety of targets and possible effects on global cell metabolism. Here we analyzed the changes in protein expression on a GBM cell line (GL15 cells) caused by 3BP treatment using a global proteomic approach. Validation of differential protein expression was performed with immunoblotting and enzyme activity assays in GL15 and U251 cell lines. The results show that treatment of GL15 cells with 3BP leads to extensive changes in the expression of glycolytic enzymes and stress related proteins. Importantly, other metabolisms were also affected, including pentose phosphate pathway, aminoacid synthesis, and glucose derivatives production. 3BP elicited the activation of stress response proteins, as shown by the phosphorylation of HSPB1 at serine 82, caused by the concomitant activation of the p38 pathway. Our results show that inhibition of glycolysis in GL15 cells by 3BP influences different but interconnected pathways. Proteome analysis may help in the molecular characterization of the glioblastoma response induced by pharmacological treatment with antiglycolytic agents. Alteration of the glycolytic pathway characterizes glioblastoma (GBM), one of the most common brain tumours. Metabolic reprogramming with agents able to inhibit carbohydrate metabolism might be a viable strategy to complement the treatment of these tumours. The antiglycolytic agent 3-bromopyruvate (3BP) is able to strongly inhibit glycolysis but it may affect also other cellular pathways and its precise cellular targets are currently unknown. To understand the protein expression changes induced by 3BP, we performed a global proteomic analysis of a GBM cell line (GL15) treated with 3BP. We

  4. STRESS INDUCED OBESITY: LESSONS FROM RODENT MODELS OF STRESS

    Directory of Open Access Journals (Sweden)

    Zachary Robert Patterson

    2013-07-01

    Full Text Available Stress is defined as the behavioral and physiological responses generated in the face of, or in anticipation of, a perceived threat. The stress response involves activation of the sympathetic nervous system and recruitment of the hypothalamic-pituitary-adrenal (HPA axis. When an organism encounters a stressor (social, physical, etc., these endogenous stress systems are stimulated in order to generate a fight-or-flight response, and manage the stressful situation. As such, an organism is forced to liberate energy resources in attempt to meet the energetic demands posed by the stressor. A change in the energy homeostatic balance is thus required to exploit an appropriate resource and deliver useable energy to the target muscles and tissues involved in the stress response. Acutely, this change in energy homeostasis and the liberation of energy is considered advantageous, as it is required for the survival of the organism. However, when an organism is subjected to a prolonged stressor, as is the case during chronic stress, a continuous irregularity in energy homeostasis is considered detrimental and may lead to the development of metabolic disturbances such as cardiovascular disease, type II diabetes mellitus and obesity. This concept has been studied extensively using animal models, and the neurobiological underpinnings of stress induced metabolic disorders are beginning to surface. However, different animal models of stress continue to produce divergent metabolic phenotypes wherein some animals become anorexic and loose body mass while others increase food intake and body mass and become vulnerable to the development of metabolic disturbances. It remains unclear exactly what factors associated with stress models can be used to predict the metabolic outcome of the organism. This review will explore a variety of rodent stress models and discuss the elements that influence the metabolic outcome in order to further our understanding of stress-induced

  5. Skeletal muscle PGC-1α1 modulates kynurenine metabolism and mediates resilience to stress-induced depression

    DEFF Research Database (Denmark)

    Agudelo, Leandro Z; Femenía, Teresa; Orhan, Funda

    2014-01-01

    Depression is a debilitating condition with a profound impact on quality of life for millions of people worldwide. Physical exercise is used as a treatment strategy for many patients, but the mechanisms that underlie its beneficial effects remain unknown. Here, we describe a mechanism by which...... skeletal muscle PGC-1α1 induced by exercise training changes kynurenine metabolism and protects from stress-induced depression. Activation of the PGC-1α1-PPARα/δ pathway increases skeletal muscle expression of kynurenine aminotransferases, thus enhancing the conversion of kynurenine into kynurenic acid......, a metabolite unable to cross the blood-brain barrier. Reducing plasma kynurenine protects the brain from stress-induced changes associated with depression and renders skeletal muscle-specific PGC-1α1 transgenic mice resistant to depression induced by chronic mild stress or direct kynurenine administration...

  6. PINK1-Parkin alleviates metabolic stress induced by obesity in adipose tissue and in 3T3-L1 preadipocytes.

    Science.gov (United States)

    Cui, Chen; Chen, Shihong; Qiao, Jingting; Qing, Li; Wang, Lingshu; He, Tianyi; Wang, Chuan; Liu, Fuqiang; Gong, Lei; Chen, Li; Hou, Xinguo

    2018-04-06

    Mitochondria play an important role in cellular metabolism and are closely related with metabolic stress. Recently, several studies have shown that mitophagy mediated by PTEN-induced putative kinase 1 (PINK1) and Parkin may play a critical role in clearing the damaged mitochondria and maintaining the overall balance of intracellular mitochondria in quality and quantity. A previous study showed that PINK1 and Parkin were overexpressed in adipose tissue in obese subjects. However, it is still unclear whether a direct relationship exists between obesity and mitophagy. In this study, we created a high-fat-diet (HFD)-induced obese mouse model and examined the expression of PINK1 and Parkin in adipose tissue using western blot and real-time quantitative PCR. After we confirmed that there is an interesting difference between regular-chow-fed mice and HFD-induced obese mice in the expression of PINK1 and Parkin in vivo, we further tested the expression of PINK1 and Parkin in 3T3-L1 preadipocytes in vitro by treating cells with palmitic acid (PA) to induce metabolic stress. To better understand the role of PINK1 and Parkin in metabolic stress, 3T3-L1 preadipocytes were transfected with small interfering RNA (siRNA) of PINK1 and Parkin followed by PA treatment. Our results showed that under lower concentrations of PA, PINK1 and Parkin can be activated and play a protective role in resisting the harmful effects of PA, including protecting the mitochondrial function and resisting cellular death, while under higher concentrations of PA, the expression of PINK1 and Parkin can be inhibited. These results suggest that PINK1-Parkin can protect mitochondrial function against metabolic stress induced by obesity or PA to a certain degree. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. 2-deoxy-D-glucose-induced metabolic stress enhances resistance to Listeria monocytogenes infection in mice

    Science.gov (United States)

    Miller, E. S.; Bates, R. A.; Koebel, D. A.; Fuchs, B. B.; Sonnenfeld, G.

    1998-01-01

    Exposure to different forms of psychological and physiological stress can elicit a host stress response, which alters normal parameters of neuroendocrine homeostasis. The present study evaluated the influence of the metabolic stressor 2-deoxy-D-glucose (2-DG; a glucose analog, which when administered to rodents, induces acute periods of metabolic stress) on the capacity of mice to resist infection with the facultative intracellular bacterial pathogen Listeria monocytogenes. Female BDF1 mice were injected with 2-DG (500 mg/kg b. wt.) once every 48 h prior to, concurrent with, or after the onset of a sublethal dose of virulent L. monocytogenes. Kinetics of bacterial growth in mice were not altered if 2-DG was applied concurrently or after the start of the infection. In contrast, mice exposed to 2-DG prior to infection demonstrated an enhanced resistance to the listeria challenge. The enhanced bacterial clearance in vivo could not be explained by 2-DG exerting a toxic effect on the listeria, based on the results of two experiments. First, 2-DG did not inhibit listeria replication in trypticase soy broth. Second, replication of L. monocytogenes was not inhibited in bone marrow-derived macrophage cultures exposed to 2-DG. Production of neopterin and lysozyme, indicators of macrophage activation, were enhanced following exposure to 2-DG, which correlated with the increased resistance to L. monocytogenes. These results support the contention that the host response to 2-DG-induced metabolic stress can influence the capacity of the immune system to resist infection by certain classes of microbial pathogens.

  8. Alzheimer-associated Aβ oligomers impact the central nervous system to induce peripheral metabolic deregulation

    Science.gov (United States)

    Clarke, Julia R; Lyra e Silva, Natalia M; Figueiredo, Claudia P; Frozza, Rudimar L; Ledo, Jose H; Beckman, Danielle; Katashima, Carlos K; Razolli, Daniela; Carvalho, Bruno M; Frazão, Renata; Silveira, Marina A; Ribeiro, Felipe C; Bomfim, Theresa R; Neves, Fernanda S; Klein, William L; Medeiros, Rodrigo; LaFerla, Frank M; Carvalheira, Jose B; Saad, Mario J; Munoz, Douglas P; Velloso, Licio A; Ferreira, Sergio T; De Felice, Fernanda G

    2015-01-01

    Alzheimer's disease (AD) is associated with peripheral metabolic disorders. Clinical/epidemiological data indicate increased risk of diabetes in AD patients. Here, we show that intracerebroventricular infusion of AD-associated Aβ oligomers (AβOs) in mice triggered peripheral glucose intolerance, a phenomenon further verified in two transgenic mouse models of AD. Systemically injected AβOs failed to induce glucose intolerance, suggesting AβOs target brain regions involved in peripheral metabolic control. Accordingly, we show that AβOs affected hypothalamic neurons in culture, inducing eukaryotic translation initiation factor 2α phosphorylation (eIF2α-P). AβOs further induced eIF2α-P and activated pro-inflammatory IKKβ/NF-κB signaling in the hypothalamus of mice and macaques. AβOs failed to trigger peripheral glucose intolerance in tumor necrosis factor-α (TNF-α) receptor 1 knockout mice. Pharmacological inhibition of brain inflammation and endoplasmic reticulum stress prevented glucose intolerance in mice, indicating that AβOs act via a central route to affect peripheral glucose homeostasis. While the hypothalamus has been largely ignored in the AD field, our findings indicate that AβOs affect this brain region and reveal novel shared molecular mechanisms between hypothalamic dysfunction in metabolic disorders and AD. PMID:25617315

  9. Ketoconazole attenuates radiation-induction of tumor necrosis factor

    Energy Technology Data Exchange (ETDEWEB)

    Hallahan, D.E.; Virudachalam, S.; Kufe, D.W.; Weichselbaum, R.R. [Dana Farber Cancer Institute, Boston, MA (United States)

    1994-07-01

    Previous work has demonstrated that inhibitors of phospholipase A2 attenuate ionizing radiation-induced arachidonic acid production, protein kinase C activation, and prevent subsequent induction of the tumor necrosis factor gene. Because arachidonic acid contributes to radiation-induced tumor necrosis factor expression, the authors analyzed the effects of agents which alter arachidonate metabolism on the regulation of this gene. Phospholipase A2 inhibitors quinicrine, bromphenyl bromide, and pentoxyfylline or the inhibitor of lipoxygenase (ketoconazole) or the inhibitor of cycloxygenase (indomethacine) were added to cell culture 1 h prior to irradiation. Radiation-induced tumor necrosis factor gene expression was attenuated by each of the phospholipase A2 inhibitors (quinicrine, bromphenylbromide, and pentoxyfylline). Furthermore, ketoconazole attenuated X ray induced tumor necrosis factor gene expression. Conversely, indomethacin enhanced tumor necrosis factor expression following irradiation. The finding that radiation-induced tumor necrosis factor gene expression was attenuated by ketoconazole suggests that the lipoxygenase pathway participates in signal transduction preceding tumor necrosis factor induction. Enhancement of tumor necrosis factor expression by indomethacin following irradiation suggests that prostaglandins produced by cyclooxygenase act as negative regulators of tumor necrosis factor expression. Inhibitors of tumor necrosis factor induction ameliorate acute and subacute sequelae of radiotherapy. The authors propose therefore, that ketoconazole may reduce acute radiation sequelae such as mucositis and esophagitis through a reduction in tumor necrosis factor induction or inhibition of phospholipase A2 in addition to its antifungal activity. 25 refs., 2 figs.

  10. Drug-Induced Liver Injury: Cascade of Events Leading to Cell Death, Apoptosis or Necrosis

    Directory of Open Access Journals (Sweden)

    Andrea Iorga

    2017-05-01

    Full Text Available Drug-induced liver injury (DILI can broadly be divided into predictable and dose dependent such as acetaminophen (APAP and unpredictable or idiosyncratic DILI (IDILI. Liver injury from drug hepatotoxicity (whether idiosyncratic or predictable results in hepatocyte cell death and inflammation. The cascade of events leading to DILI and the cell death subroutine (apoptosis or necrosis of the cell depend largely on the culprit drug. Direct toxins to hepatocytes likely induce oxidative organelle stress (such as endoplasmic reticulum (ER and mitochondrial stress leading to necrosis or apoptosis, while cell death in idiosyncratic DILI (IDILI is usually the result of engagement of the innate and adaptive immune system (likely apoptotic, involving death receptors (DR. Here, we review the hepatocyte cell death pathways both in direct hepatotoxicity such as in APAP DILI as well as in IDILI. We examine the known signaling pathways in APAP toxicity, a model of necrotic liver cell death. We also explore what is known about the genetic basis of IDILI and the molecular pathways leading to immune activation and how these events can trigger hepatotoxicity and cell death.

  11. Exercise-induced maximum metabolic rate scaled to body mass by ...

    African Journals Online (AJOL)

    Exercise-induced maximum metabolic rate scaled to body mass by the fractal ... rate scaling is that exercise-induced maximum aerobic metabolic rate (MMR) is ... muscle stress limitation, and maximized oxygen delivery and metabolic rates.

  12. Nodularin induces tumor necrosis factor-alpha and mitogen-activated protein kinases (MAPK) and leads to induction of endoplasmic reticulum stress

    Energy Technology Data Exchange (ETDEWEB)

    Meili, Nicole; Christen, Verena [University of Applied Sciences and Arts Northwestern Switzerland (FHNW), Gründenstrasse 40, CH-4132 Muttenz (Switzerland); Fent, Karl, E-mail: karl.fent@fhnw.ch [University of Applied Sciences and Arts Northwestern Switzerland (FHNW), Gründenstrasse 40, CH-4132 Muttenz (Switzerland); Swiss Federal Institute of Technology Zürich (ETH Zürich), Department of Environmental Systems Science, CH-8092 Zürich (Switzerland)

    2016-06-01

    Nodularin is produced by the cyanobacterium Nodularia spumigena. It is of concern due to hepatotoxicity in humans and animals. Here we investigated unexplored molecular mechanisms by transcription analysis in human liver cells, focusing on induction of pro-inflammatory cytokines, the tumor necrosis factor α (TNF-α), endoplasmic reticulum (ER) stress and components of the activator protein-1 complex in human hepatoma cells (Huh7) exposed to non-cytotoxic (0.1 and 1 μM) and toxic concentrations (5 μM) for 24, 48, and 72 h. Transcripts of TNF-α and ER stress marker genes were strongly induced at 1 and 5 μM at all time-points. TNF-α led to induction of mitogen-activated protein kinases (MAPK), as demonstrated by induction of CJUN and CFOS, which form the AP-1 complex. Human primary liver cells reacted more sensitive than Huh7 cells. They showed higher cytotoxicity and induction of TNF-α and ER stress at 2.5 nM, while HepG2 cells were insensitive up to 10 μM due to low expression of organic anion transporting polypeptides. Furthermore, nodularin led to induction of TNF-α protein, and CCAAT/enhancer-binding protein-homologous (CHOP) protein. Our data indicate that nodularin induces inflammation and ER stress and leads to activation of MAPK in liver cells. All of these activated pathways, which were analysed here for the first time in detail, may contribute to the hepatotoxic, and tumorigenic action of nodularin. - Highlights: • Toxicity of nodularin and its mechanisms of action are poorly understood. • We investigated mechanisms of nodularin toxicity in human liver cell lines and human hepatocytes. • We identified several pathways involved in nodularin toxicity. • Nodularin induces TNF-α, MAPK pathway and ER stress • These activated pathways may contribute to the hepatotoxic and tumorigenic action of nodularin.

  13. Nodularin induces tumor necrosis factor-alpha and mitogen-activated protein kinases (MAPK) and leads to induction of endoplasmic reticulum stress

    International Nuclear Information System (INIS)

    Meili, Nicole; Christen, Verena; Fent, Karl

    2016-01-01

    Nodularin is produced by the cyanobacterium Nodularia spumigena. It is of concern due to hepatotoxicity in humans and animals. Here we investigated unexplored molecular mechanisms by transcription analysis in human liver cells, focusing on induction of pro-inflammatory cytokines, the tumor necrosis factor α (TNF-α), endoplasmic reticulum (ER) stress and components of the activator protein-1 complex in human hepatoma cells (Huh7) exposed to non-cytotoxic (0.1 and 1 μM) and toxic concentrations (5 μM) for 24, 48, and 72 h. Transcripts of TNF-α and ER stress marker genes were strongly induced at 1 and 5 μM at all time-points. TNF-α led to induction of mitogen-activated protein kinases (MAPK), as demonstrated by induction of CJUN and CFOS, which form the AP-1 complex. Human primary liver cells reacted more sensitive than Huh7 cells. They showed higher cytotoxicity and induction of TNF-α and ER stress at 2.5 nM, while HepG2 cells were insensitive up to 10 μM due to low expression of organic anion transporting polypeptides. Furthermore, nodularin led to induction of TNF-α protein, and CCAAT/enhancer-binding protein-homologous (CHOP) protein. Our data indicate that nodularin induces inflammation and ER stress and leads to activation of MAPK in liver cells. All of these activated pathways, which were analysed here for the first time in detail, may contribute to the hepatotoxic, and tumorigenic action of nodularin. - Highlights: • Toxicity of nodularin and its mechanisms of action are poorly understood. • We investigated mechanisms of nodularin toxicity in human liver cell lines and human hepatocytes. • We identified several pathways involved in nodularin toxicity. • Nodularin induces TNF-α, MAPK pathway and ER stress • These activated pathways may contribute to the hepatotoxic and tumorigenic action of nodularin.

  14. Early Diagnosis of Avascular Necrosis of Bone Following Renal Transplantation By Bone Scan

    International Nuclear Information System (INIS)

    Shin, Hyun Ho; Kim, Han Su; Ihn, Chun Gyoo; Kim, Myung Jae

    1982-01-01

    Avascular necrosis of bone has become a well-recognized complication of renal transplantation. While preexisting metabolic bone disease, especially hyperparathyroidism, and metabolic disturbances induced by steroids have been implicated as etiological factors, the pathogenesis is controversial. The diagnosis of avascular necrosis of bone had been based on a history of joint pain and radiographic demonstration of bone necrosis. Recently the bone scan using 99m Tc-methylene diphosphonate is helpful in determining the early stage of bone necrosis. We report two cases of avascular necrosis of femur head, of which diagnosis was made by the bone scan using 99m Tc-methylene diphosphonate.

  15. Metabolic epidermal necrosis in two dogs with different underlying diseases.

    Science.gov (United States)

    Bond, R; McNeil, P E; Evans, H; Srebernik, N

    1995-05-06

    Two dogs with metabolic epidermal necrosis had hyperkeratosis of the footpads accompanied by erythematous, erosive and crusting lesions affecting the muzzle, external genitalia, perineum and periocular regions. Histopathological examination of skin biopsies revealed a superficial hydropic dermatitis with marked parakeratosis. Both dogs had high plasma activities of alkaline phosphatase and alanine aminotransferase and high concentrations of glucose, and also a marked hypoaminoacidaemia. Despite these similarities, the cutaneous eruptions were associated with different underlying diseases. One dog had a pancreatic carcinoma which had metastasised widely; the primary tumour and the metastases showed glucagon immunoreactivity on immunocytochemical staining, and the dog's plasma glucagon concentration was markedly greater than that of control dogs. The other dog had diffuse hepatic disease; its plasma glucagon concentration was similar to that of control samples and cirrhosis was identified post mortem. Metabolic epidermal necrosis in dogs is a distinct cutaneous reaction pattern which may be associated with different underlying systemic diseases; however, the pathogenesis of the skin lesions remains unclear.

  16. Piroxicam induced submassive necrosis of the liver.

    Science.gov (United States)

    Paterson, D; Kerlin, P; Walker, N; Lynch, S; Strong, R

    1992-01-01

    Several widely used non-steroidal anti-inflammatory drugs have been reported as causing severe hepatitis. Three cases of severe acute hepatitis have been reported in association with piroxicam. A fatal submassive necrosis that occurred in a 68 year old lady who had received piroxicam for 15 months is described. A 48 year old man who developed submassive hepatic necrosis six weeks after beginning piroxicam but was successfully treated with orthotopic liver transplantation is also reported. Piroxicam may induce submassive necrosis of the liver, probably as an idiosyncratic reaction. Images Figure 1 Figure 2 Figure 3 PMID:1446877

  17. Superimposition of maximal stress and necrosis areas at the top of the femoral head in hip aseptic osteonecrosis.

    Science.gov (United States)

    Escudier, J-C; Ollivier, M; Donnez, M; Parratte, S; Lafforgue, P; Argenson, J-N

    2018-05-01

    Recent reports described possible mechanical factors in the development and aggravation of osteonecrosis of the femoral head (OFH), but these have yet to be confirmed on dedicated mechanical study. We therefore developed a 3D finite element model based on in-vivo data from patients with incipient OFH, with a view to determining whether the necrosis area was superimposed on the maximal stress area on the femoral head. The location of the necrosis area is determined by stress on the femoral head. All patients from the rheumatology department with early stage OFH in our center were investigated. Analysis of CT scans showed stress distribution on the head by 3D finite elements models, enabling determination of necrosis volume within the maximal stress area and of the percentage intersection of necrosis within the stress area (%I n/s: necrosis volume in stress area divided by total stress area volume and multiplied by 100) and of stress within the necrosis area (%I s/n: stress volume in necrosis area divided by total necrosis area volume and multiplied by 100). Nineteen of the 161 patients assessed retrospectively for the period between 2006 and 2015 had incipient unilateral OFH, 10 of whom (4 right, 6 left) had CT scans of sufficient quality for inclusion. Mean age was 52 years (range, 37-81 years). Mean maximal stress was 1.63MPa, mean maximal exported stress volume was 2,236.9 mm 3 and mean necrosis volume 6,291.1 mm 3 . Mean %I n/s was 83% and mean %I s/n 35%, with no significant differences according to gender, age, side or stress volume. There was a strong inverse correlation between necrosis volume and %I s/n (R 2 =-0.92) and a strong direct correlation between exported stress volume and %I s/n (R 2 =0.55). %I s/n was greater in small necrosis (stress area on the femoral head. The present results need confirmation by larger-scale studies. We consider it essential to take account of these mechanical parameters to reduce failure rates in conservative treatment of

  18. Impact of adrenaline and metabolic stress on exercise-induced intracellular signaling and PGC-1α mRNA response in human skeletal muscle

    DEFF Research Database (Denmark)

    Brandt, Nina; Gunnarsson, Thomas Gunnar Petursson; Hostrup, Morten

    2016-01-01

    This study tested the hypothesis that elevated plasma adrenaline or metabolic stress enhances exercise-induced PGC-1α mRNA and intracellular signaling in human muscle. Trained (VO2-max: 53.8 ± 1.8 mL min(-1) kg(-1)) male subjects completed four different exercise protocols (work load of the legs...... exercise than at rest in all protocols, and higher (P adrenaline nor muscle metabolic stress determines the magnitude of PGC-1α mRNA response in human muscle. Furthermore, higher exercise-induced changes in AMPK, p38, and CREB...

  19. Early Diagnosis of Avascular Necrosis of Bone Following Renal Transplantation By Bone Scan

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hyun Ho; Kim, Han Su; Ihn, Chun Gyoo; Kim, Myung Jae [Kyung Hee University College of Medicine, Seoul (Korea, Republic of)

    1982-09-15

    Avascular necrosis of bone has become a well-recognized complication of renal transplantation. While preexisting metabolic bone disease, especially hyperparathyroidism, and metabolic disturbances induced by steroids have been implicated as etiological factors, the pathogenesis is controversial. The diagnosis of avascular necrosis of bone had been based on a history of joint pain and radiographic demonstration of bone necrosis. Recently the bone scan using {sup 99m}Tc-methylene diphosphonate is helpful in determining the early stage of bone necrosis. We report two cases of avascular necrosis of femur head, of which diagnosis was made by the bone scan using {sup 99m}Tc-methylene diphosphonate.

  20. Favorable effects of vildagliptin on metabolic and cognitive dysfunctions in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    El Batsh, Maha M; El Batch, Manal M; Shafik, Noha M; Younos, Ibrahim H

    2015-12-15

    Progression of diabetes mellitus is accompanied by metabolic disorders together with psychological deficits including cognitive dysfunctions. Herein, we used a murine streptozotocin (STZ)-induced diabetes to investigate the beneficial effects of vildagliptin not only on metabolic abnormalities, but also on diabetes-induced cognitive decline. Sixty rats were divided randomly and equally into 2 groups; one remains normal and the other serves as STZ- induced diabetic. Both groups were further divided equally into 2 groups; one received vehicle and the other received oral vildagliptin for 8 weeks. Cognitive behavior was assessed using novel object recognition test. Blood samples were collected to measure metabolic parameters and dipeptidyl peptidase (DPP)-IV activity. Brains were removed and investigated for the levels of inflammatory and oxidative stress markers malondialdehyde (MDA), superoxide dismutase (SOD) and tumor necrosis factor-α (TNF-α), in addition to brain-derived neurotrophic factor (BDNF) and relative expression of nuclear factor kappa B (NF-κB)/p65. Treatment of STZ-induced diabetic rats with vildagliptin increased their body weight and corrected diabetes-induced memory and learning impairment. Moreover, vildagliptin significantly decreased serum levels of glucose and lipids (except high density lipoprotein) together with brain MDA, TNF-α, serum DPP-IV activities and NF-κB/p65 gene expression. On the other hand, vildagliptin significantly increased brain BDNF, SOD as well as serum insulin. Results suggested that vildagliptin has a protective role in counteracting both metabolic abnormalities and memory deficits in diabetic rats, possibly via its anti-hyperglycemic, anti-inflammatory, antioxidant effects, together with reduction of brain NF-κB/p65 over expression. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Attenuation of cold stress-induced exacerbation of cardiac and adipose tissue pathology and metabolic disorders in a rat model of metabolic syndrome by the glucocorticoid receptor antagonist RU486.

    Science.gov (United States)

    Nagasawa, K; Matsuura, N; Takeshita, Y; Ito, S; Sano, Y; Yamada, Y; Uchinaka, A; Murohara, T; Nagata, K

    2016-04-25

    Chronic stress affects the central nervous system as well as endocrine, metabolic and immune systems. However, the effects of cold stress on cardiovascular and metabolic disorders in metabolic syndrome (MetS) have remained unclear. We recently characterized DahlS.Z-Lepr(fa)/Lepr(fa) (DS/obese) rats, derived from a cross between Dahl salt-sensitive and Zucker rats, as a new animal model of MetS. We have now investigated the effects of chronic cold stress and glucocorticoid receptor (GR) blockade on cardiac and adipose tissue pathology as well as on metabolic parameters in this model. DS/obese rats were exposed to cold stress (immersion in ice-cold water to a depth of 1-2 cm for 2 h per day) with or without subcutaneous injection of the GR antagonist RU486 (2 mg kg(-1)day(-1)) for 4 weeks beginning at 9 weeks of age. Age-matched homozygous lean (DahlS.Z-Lepr(+)/Lepr(+)) littermates served as a control. Chronic cold stress exacerbated hypertension as well as left ventricular (LV) hypertrophy, fibrosis and diastolic dysfunction in DS/obese rats in a manner sensitive to RU486 treatment. Cold stress with or without RU486 did not affect body weight or fat mass. In contrast, cold stress further increased cardiac oxidative stress as well as macrophage infiltration and proinflammatory gene expression in LV and visceral fat tissue, with all of these effects being attenuated by RU486. Cold stress also further increased GR and 11β-hydroxysteroid dehydrogenase type 1 mRNA and protein abundance in LV and visceral adipose tissue, and these effects were again inhibited by RU486. In addition, RU486 ameliorated the stress-induced aggravation of dyslipidemia, glucose intolerance and insulin resistance in DS/obese rats. Our results implicate GR signaling in cold stress-induced exacerbation of cardiac and adipose tissue pathology as well as of abnormal glucose and lipid metabolism in a rat model of MetS.

  2. Bevacizumab as a treatment option for radiation-induced cerebral necrosis

    Energy Technology Data Exchange (ETDEWEB)

    Matuschek, Christiane; Boelke, Edwin; Budach, Wilfried [Univ. Hospital Duesseldorf (Germany). Dept. of Radiation Oncology; Nawatny, Jens [Univ. Hospital Duesseldorf (Germany). Dept. of Radiology; Hoffmann, Thomas K. [Duisburg-Essen Univ., Essen (Germany). Dept. of Otorhinolaryngology; Peiper, Matthias; Orth, Klaus [Hospital Essen-Sued, Essen (Germany). Dept. of Surgery; Gerber, Peter Arne [Univ. Hospital Duesseldorf (Germany). Dept. of Dermatology; Rusnak, Ethelyn [State Univ. of New York, Buffalo, NY (United States). Dept. of Anesthesiology; Lammering, Guido [Univ. Hospital Duesseldorf (Germany). Dept. of Radiation Oncology; MAASTRO Clinic, Maastricht (Netherlands). Radiation Oncology

    2011-02-15

    Radiation necrosis of normal CNS tissue represents one of the main risk factors of brain irradiation, occurring more frequently and earlier at higher total doses and higher doses per fraction. At present, it is believed that the necrosis results due to increasing capillary permeability caused by cytokine release leading to extracellular edema. This process is sustained by endothelial dysfunction, tissue hypoxia, and subsequent necrosis. Consequently, blocking the vascular endothelial growth factor (VEGF) at an early stage could be an option to reduce the development of radiation necrosis by decreasing the vascular permeability. This might help to reverse the pathological mechanisms, improve the symptoms and prevent further progression. A patient with radiation-induced necrosis was treated with an anti-VEGF antibody (bevacizumab), in whom neurologic signs and symptoms improved in accordance with a decrease in T1-weighted fluid-attenuated inversion recovery signals. Our case report together with the current literature suggests bevacizumab as a treatment option for patients with symptoms and radiological signs of cerebral necrosis induced by radiotherapy. (orig.)

  3. Bevacizumab as a treatment option for radiation-induced cerebral necrosis

    International Nuclear Information System (INIS)

    Matuschek, Christiane; Boelke, Edwin; Budach, Wilfried; Nawatny, Jens; Hoffmann, Thomas K.; Peiper, Matthias; Orth, Klaus; Gerber, Peter Arne; Rusnak, Ethelyn; Lammering, Guido; MAASTRO Clinic, Maastricht

    2011-01-01

    Radiation necrosis of normal CNS tissue represents one of the main risk factors of brain irradiation, occurring more frequently and earlier at higher total doses and higher doses per fraction. At present, it is believed that the necrosis results due to increasing capillary permeability caused by cytokine release leading to extracellular edema. This process is sustained by endothelial dysfunction, tissue hypoxia, and subsequent necrosis. Consequently, blocking the vascular endothelial growth factor (VEGF) at an early stage could be an option to reduce the development of radiation necrosis by decreasing the vascular permeability. This might help to reverse the pathological mechanisms, improve the symptoms and prevent further progression. A patient with radiation-induced necrosis was treated with an anti-VEGF antibody (bevacizumab), in whom neurologic signs and symptoms improved in accordance with a decrease in T1-weighted fluid-attenuated inversion recovery signals. Our case report together with the current literature suggests bevacizumab as a treatment option for patients with symptoms and radiological signs of cerebral necrosis induced by radiotherapy. (orig.)

  4. Similar post-stress metabolic trajectories in young and old flies.

    Science.gov (United States)

    Colinet, Hervé; Renault, David

    2018-02-01

    Homeostenosis (i.e. decline in stress resistance and resilience with age) is a fundamental notion of the biogerontology and physiology of aging. Stressful situations typically challenge metabolic homeostasis and the capacity to recover from a stress-induced metabolic disorder might be particularly compromised in senescent individuals. In the present work, we report the effects of aging on low temperature stress tolerance and metabolic profiles in Drosophila melanogaster females of different ages. Adult flies aged 4, 16, 30 and 44days were subjected to acute and chronic cold stress, and data confirmed a strong decline in cold tolerance and resilience of old flies compared to young counterparts. Using quantitative target GC-MS analysis, we found distinct metabolic phenotypes between young (4day-old) and old (44day-old) flies, with glycolytic pathways being differentially affected between the two age groups. We also compared the robustness of metabolic homeostasis in young vs. old flies when exposed to cold stress using time-series metabolic analysis. In both age groups, we found evidence of strong alteration of metabolic profiles when flies were exposed to low temperature stress. Interestingly, the temporal metabolic trajectories during the recovery period were similar in young and old flies, despite strong differences in thermotolerance. In conclusion, metabolic signatures markedly changed with age and homeostenosis was observed in the phenotypic response to cold stress. However, these changes did not reflect in different temporal homeostatic response at metabolic level. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Exogenous FABP4 induces endoplasmic reticulum stress in HepG2 liver cells.

    Science.gov (United States)

    Bosquet, Alba; Guaita-Esteruelas, Sandra; Saavedra, Paula; Rodríguez-Calvo, Ricardo; Heras, Mercedes; Girona, Josefa; Masana, Lluís

    2016-06-01

    Fatty acid binding protein 4 (FABP4) is an intracellular fatty acid (FA) carrier protein that is, in part, secreted into circulation. Circulating FABP4 levels are increased in obesity, diabetes and other insulin resistance (IR) diseases. FAs contribute to IR by promoting endoplasmic reticulum stress (ER stress) and altering the insulin signaling pathway. The effect of FABP4 on ER stress in the liver is not known. The aim of this study was to investigate whether exogenous FABP4 (eFABP4) is involved in the lipid-induced ER stress in the liver. HepG2 cells were cultured with eFABP4 (40 ng/ml) with or without linoleic acid (LA, 200 μM) for 18 h. The expression of ER stress-related markers was determined by Western blotting (ATF6, EIF2α, IRE1 and ubiquitin) and real-time PCR (ATF6, CHOP, EIF2α and IRE1). Apoptosis was studied by flow cytometry using Annexin V-FITC and propidium iodide staining. eFABP4 increased the ER stress markers ATF6 and IRE1 in HepG2 cells. This effect led to insulin resistance mediated by changes in AKT and JNK phosphorylation. Furthermore, eFABP4 significantly induced both apoptosis, as assessed by flow cytometry, and CHOP expression, without affecting necrosis and ubiquitination. The presence of LA increased the ER stress response induced by eFABP4. eFABP4, per se, induces ER stress and potentiates the effect of LA in HepG2 cells, suggesting that FABP4 could be a link between obesity-associated metabolic abnormalities and hepatic IR mechanisms. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Inflammasomes: sensors of metabolic stresses for vascular inflammation

    OpenAIRE

    Yin, Ying; Pastrana, Jahaira Lopez; Li, Xinyuan; Huang, Xiao; Mallilankaraman, karthik; Choi, Eric T.; Madesh, Muniswamy; Wang, Hong; Yang, Xiao-Feng

    2013-01-01

    Metabolic syndrome is a major health issue in the western world. An elevated pro-inflammatory state is often found in patients with metabolic diseases such as type 2 diabetes and obesity. Atherosclerosis is one such clinical manifestation of pro-inflammatory state associated with the vasculature. The exact mechanism by which metabolic stress induces this pro-inflammatory status and promotes atherogenesis remained elusive until the discovery of the inflammasome protein complex. This complex is...

  7. Neuropeptide Y acts directly in the periphery on fat tissue and mediates stress-induced obesity and metabolic syndrome.

    Science.gov (United States)

    Kuo, Lydia E; Kitlinska, Joanna B; Tilan, Jason U; Li, Lijun; Baker, Stephen B; Johnson, Michael D; Lee, Edward W; Burnett, Mary Susan; Fricke, Stanley T; Kvetnansky, Richard; Herzog, Herbert; Zukowska, Zofia

    2007-07-01

    The relationship between stress and obesity remains elusive. In response to stress, some people lose weight, whereas others gain. Here we report that stress exaggerates diet-induced obesity through a peripheral mechanism in the abdominal white adipose tissue that is mediated by neuropeptide Y (NPY). Stressors such as exposure to cold or aggression lead to the release of NPY from sympathetic nerves, which in turn upregulates NPY and its Y2 receptors (NPY2R) in a glucocorticoid-dependent manner in the abdominal fat. This positive feedback response by NPY leads to the growth of abdominal fat. Release of NPY and activation of NPY2R stimulates fat angiogenesis, macrophage infiltration, and the proliferation and differentiation of new adipocytes, resulting in abdominal obesity and a metabolic syndrome-like condition. NPY, like stress, stimulates mouse and human fat growth, whereas pharmacological inhibition or fat-targeted knockdown of NPY2R is anti-angiogenic and anti-adipogenic, while reducing abdominal obesity and metabolic abnormalities. Thus, manipulations of NPY2R activity within fat tissue offer new ways to remodel fat and treat obesity and metabolic syndrome.

  8. HIV protease inhibitors disrupt lipid metabolism by activating endoplasmic reticulum stress and inhibiting autophagy activity in adipocytes.

    Directory of Open Access Journals (Sweden)

    Beth S Zha

    Full Text Available HIV protease inhibitors (PI are core components of Highly Active Antiretroviral Therapy (HAART, the most effective treatment for HIV infection currently available. However, HIV PIs have now been linked to lipodystrophy and dyslipidemia, which are major risk factors for cardiovascular disease and metabolic syndrome. Our previous studies have shown that HIV PIs activate endoplasmic reticulum (ER stress and disrupt lipid metabolism in hepatocytes and macrophages. Yet, little is known on how HIV PIs disrupt lipid metabolism in adipocytes, a major cell type involved in the pathogenesis of metabolic syndrome.Cultured and primary mouse adipocytes and human adipocytes were used to examine the effect of frequently used HIV PIs in the clinic, lopinavir/ritonavir, on adipocyte differentiation and further identify the underlying molecular mechanism of HIV PI-induced dysregulation of lipid metabolism in adipocytes. The results indicated that lopinavir alone or in combination with ritonavir, significantly activated the ER stress response, inhibited cell differentiation, and induced cell apoptosis in adipocytes. In addition, HIV PI-induced ER stress was closely linked to inhibition of autophagy activity. We also identified through the use of primary adipocytes of CHOP(-/- mice that CHOP, the major transcriptional factor of the ER stress signaling pathway, is involved in lopinavir/ritonavir-induced inhibition of cell differentiation in adipocytes. In addition, lopinavir/ritonavir-induced ER stress appears to be associated with inhibition of autophagy activity in adipocytes.Activation of ER stress and impairment of autophagy activity are involved in HIV PI-induced dysregulation of lipid metabolism in adipocytes. The key components of ER stress and autophagy signaling pathways are potential therapeutic targets for HIV PI-induced metabolic side effects in HIV patients.

  9. Metabolic and oxidative stress markers in Wistar rats after 2?months on a high-fat diet

    OpenAIRE

    Auberval, Nathalie; Dal, St?phanie; Bietiger, William; Pinget, Michel; Jeandidier, Nathalie; Maillard-Pedracini, Elisa; Schini-Kerth, Val?rie; Sigrist, S?verine

    2014-01-01

    Background Metabolic syndrome is associated with an increased risk of cardiovascular and hepatic complications. Oxidative stress in metabolic tissues has emerged as a universal feature of metabolic syndrome and its co-morbidities. We aimed to develop a rapidly and easily induced model of metabolic syndrome in rats to evaluate its impact on plasma and tissue oxidative stress. Materials and methods Metabolic syndrome was induced in rats using a high-fat diet (HFD), and these rats were compared ...

  10. Aqueous seed extract of Hunteria umbellata (K. Schum.) Hallier f. (Apocynaceae) palliates hyperglycemia, insulin resistance, dyslipidemia, inflammation and oxidative stress in high-fructose diet-induced metabolic syndrome in rats.

    Science.gov (United States)

    Ajiboye, T O; Hussaini, A A; Nafiu, B Y; Ibitoye, O B

    2017-02-23

    Hunteria umbellata is used in the management and treatment of diabetes and obesity in Nigeria. This study evaluates the effect of aqueous seed extract of Hunteria umbellata on insulin resistance, dyslipidemia, inflammation and oxidative stress in high-fructose diet-induced metabolic syndrome MATERIALS AND METHODS: Rats were randomized into seven groups (A-G). Control (group A) and group C rats received control diet for nine weeks while rats in groups B, D - G were placed on high-fructose diet for 9 weeks. In addition to the diets, groups C - F rats orally received 400, 100, 200 and 400mg/kg body weight aqueous seed extract of Hunteria umbellata for 3 weeks starting from 6th - 9th week. High-fructose diet (when compared to control rats) mediated a significant (phigh-density lipoprotein cholesterol was decreased significantly. Levels of proinflammatory factor, tumour necrosis factor-α, interleukin-6 and 8 were also increased by the high fructose diet. Moreover, it mediated decrease in activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glucose 6-phosphate dehydrogenase and level of glutathione reduced. Conversely, levels of malondialdehyde, conjugated dienes, lipid hydroperoxides, protein carbonyl and fragmented DNA were elevated. Aqueous seed extract of Hunteria umbellata significantly ameliorated the high fructose diet-mediated alterations. From this study, it is concluded that aqueous seed extract of Hunteria umbellata possesses hypoglycemic, hypolipidemic and antioxidants abilities as evident from its capability to extenuate insulin resistance, dyslipidemia, inflammation and oxidative stress in high-fructose diet-induced metabolic syndrome rats. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  11. Dioscoreophyllum cumminsii (Stapf) Diels leaves halt high-fructose induced metabolic syndrome: Hyperglycemia, insulin resistance, inflammation and oxidative stress.

    Science.gov (United States)

    Ajiboye, T O; Aliyu, H; Tanimu, M A; Muhammad, R M; Ibitoye, O B

    2016-11-04

    Dioscoreophyllum cumminsii is widely used in the management and treatment of diabetes and obesity in Nigeria. This study evaluates the effect of aqueous leaf extract of D. cumminsii on high-fructose diet-induced metabolic syndrome. Seventy male rats were randomized into seven groups. All rats were fed with high-fructose diet for 9 weeks except groups A and C rats, which received control diet. In addition to the diet treatment, groups A and B rats received distilled water for 3 weeks starting from the seventh week of the experimental period. Rats in groups C-F orally received 400, 100, 200 and 400mg/kg body weight of aqueous leaf extract of D. cumminsii respectively, while group G received 300mg/kg bodyweight of metformin for 3 weeks starting from the seventh week. There was significant (phigh-fructose diet-mediated increase in body weight, body mass index, abdominal circumference, blood glucose, insulin, leptin and insulin resistance by aqueous leaf extract of D. cumminsii. Conversely, high-fructose diet-mediated decrease in adiponectin was reversed by the extract. Increased levels of cholesterol, triglycerides, low-density lipoprotein cholesterol, very low-density lipoprotein cholesterol, atherogenic index, cardiac index and coronary artery index were significantly lowered by the extract, while high-fructose diet mediated decrease in high-density lipoprotein cholesterol was increased by the extract. Tumour necrosis factor-α, interleukin-6 and interleukin-8 levels increased significantly in high-fructose diet-fed rats, which were significantly reversed by the extract. High-fructose mediated-decrease in superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glucose 6-phosphate dehydrogenase and glutathione reduced were significantly reversed by aqueous leaf extract of D. cumminsii. Conversely, elevated levels of malondialdehyde, conjugated dienes, lipid hydroperoxides, protein carbonyl and fragmented DNA were significantly lowered by the

  12. Bacteroides fragilis induce necrosis on mice peritoneal macrophages: In vitro and in vivo assays

    International Nuclear Information System (INIS)

    Vieira, J.M.B.D.; Seabra, S.H.; Vallim, D.C.; Americo, M.A.; Fracallanza, S.E.L.; Vommaro, R.C.; Domingues, R.M.C.P.

    2009-01-01

    Bacteroides fragilis is an anaerobic bacteria component of human intestinal microbiota and agent of infections. In the host B. fragilis interacts with macrophages, which produces toxic radicals like NO. The interaction of activated mice peritoneal macrophages with four strains of B. fragilis was evaluated on this study. Previously was shown that such strains could cause metabolic and morphologic alterations related to macrophage death. In this work propidium iodide staining showed the strains inducing macrophage necrosis in that the labeling was evident. Besides nitroblue tetrazolium test showed that B. fragilis stimulates macrophage to produce oxygen radicals. In vivo assays performed in BalbC mice have results similar to those for in vitro tests as well as scanning electron microscopy, which showed the same surface pore-like structures observed in vitro before. The results revealed that B. fragilis strains studied lead to macrophage death by a process similar to necrosis.

  13. Bacteroides fragilis induce necrosis on mice peritoneal macrophages: In vitro and in vivo assays

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, J.M.B.D., E-mail: jmanya@terra.com.br [Laboratorio de Tecnologia em Cultura de Celulas, UEZO, Rio de Janeiro (Brazil); Laboratorio de Biologia de Anaerobios, IMPPG, UFRJ, Rio de Janeiro (Brazil); Seabra, S.H. [Laboratorio de Tecnologia em Cultura de Celulas, UEZO, Rio de Janeiro (Brazil); Vallim, D.C. [Instituto Oswaldo Cruz, Rio de Janeiro (Brazil); Americo, M.A.; Fracallanza, S.E.L. [Laboratorio de Bacteriologia Medica, IMPPG, UFRJ, Rio de Janeiro (Brazil); Vommaro, R.C. [Laboratorio de Ultra-estrutura Celular Hertha Meyer, IBCCF, UFRJ (Brazil); Domingues, R.M.C.P. [Laboratorio de Biologia de Anaerobios, IMPPG, UFRJ, Rio de Janeiro (Brazil)

    2009-10-02

    Bacteroides fragilis is an anaerobic bacteria component of human intestinal microbiota and agent of infections. In the host B. fragilis interacts with macrophages, which produces toxic radicals like NO. The interaction of activated mice peritoneal macrophages with four strains of B. fragilis was evaluated on this study. Previously was shown that such strains could cause metabolic and morphologic alterations related to macrophage death. In this work propidium iodide staining showed the strains inducing macrophage necrosis in that the labeling was evident. Besides nitroblue tetrazolium test showed that B. fragilis stimulates macrophage to produce oxygen radicals. In vivo assays performed in BalbC mice have results similar to those for in vitro tests as well as scanning electron microscopy, which showed the same surface pore-like structures observed in vitro before. The results revealed that B. fragilis strains studied lead to macrophage death by a process similar to necrosis.

  14. Intracellular serpins, firewalls and tissue necrosis.

    Science.gov (United States)

    Marciniak, Stefan J; Lomas, David A

    2008-02-01

    Luke and colleagues have recently attributed a new role to a member of the serpin superfamily of serine proteinase inhibitors. They have used Caenorhabditis elegans to show that an intracellular serpin is crucial for maintaining lysosomal integrity. We examine the role of this firewall in preventing necrosis and attempt to integrate this with current theories of stress-induced protein degradation. We discuss how mutant serpins cause disease either through polymerization or now, perhaps, by unleashing necrosis.

  15. Metabolic and oxidative stress markers in Wistar rats after 2 months on a high-fat diet.

    Science.gov (United States)

    Auberval, Nathalie; Dal, Stéphanie; Bietiger, William; Pinget, Michel; Jeandidier, Nathalie; Maillard-Pedracini, Elisa; Schini-Kerth, Valérie; Sigrist, Séverine

    2014-01-01

    Metabolic syndrome is associated with an increased risk of cardiovascular and hepatic complications. Oxidative stress in metabolic tissues has emerged as a universal feature of metabolic syndrome and its co-morbidities. We aimed to develop a rapidly and easily induced model of metabolic syndrome in rats to evaluate its impact on plasma and tissue oxidative stress. Metabolic syndrome was induced in rats using a high-fat diet (HFD), and these rats were compared to rats fed a normal diet (ND) for 2 months. Metabolic control was determined by measuring body weight, blood glucose, triglycerides, lipid peroxidation and protein carbonylation in plasma. Insulinemia was evaluated through the measure of C-peptide. Histological analysis was performed on the pancreas, liver and blood vessels. After 2 months, the HFD induced an increase in body weight, insulin and triglycerides. Liver steatosis was also observed in the HFD group, which was associated with an increase in glycogen storage. In the pancreas, the HFD induced islet hyperplasia. Tissue oxidative stress was also increased in the liver, pancreas and blood vessels, but plasma oxidative stress remained unchanged. This paper reports the development of a fast and easy model of rat metabolic syndrome associated with tissue oxidative stress. This model may be a good tool for the biological validation of drugs or antioxidants to limit or prevent the complications of metabolic syndrome.

  16. [Effects of occupational stress on serum tumor necrosis factor-α and interleukins].

    Science.gov (United States)

    Zhou, Wen-Hui; Yu, Shan-Fa; Jiang, Kai-You

    2010-12-01

    To explore the effect of occupational stress on serum tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-2 and IL-4. A cross-sectional epidemiological study was conducted in 200 workers from the refrigerator assembly line in Henan province in China. Psychosocial work conditions were measured by using the job demand-control model, the effort-reward imbalance model questionnaires and occupational stress measurement scale. Serum TNF-α, IL-1β, IL-2, and IL-4 concentrations were measured by radioimmunoassay or immunoradiometric assay method respectively. Serum TNF-α concentration was statistically significantly different between workers with higher affective balance level and control groups [(1.947 ± 0.173) and (2.029 ± 0.240) fmol/ml] (P life stress level and control groups [(1.759 ± 0.361) and (1.606 ± 0.381) ng/ml] (P life stress and role ambiguity were the predictors of serum IL-2 (R(2) was 0.040, 0.078 and 0.104, respectively). Reward was the predictor of serum IL-4 (R(2) = 0.030). Unhealthy psychological stress factor might be induce a marked increase in the concentrations of serum TNF-α, IL-1β, IL-2, as well as IL-4.

  17. Magnesium deficiency and metabolic syndrome: stress and inflammation may reflect calcium activation.

    Science.gov (United States)

    Rayssiguier, Yves; Libako, Patrycja; Nowacki, Wojciech; Rock, Edmond

    2010-06-01

    Magnesium (Mg) intake is inadequate in the western diet and metabolic syndrome is highly prevalent in populations around the world. Epidemiological studies suggest that high Mg intake may reduce the risk but the possibility of confounding factors exists, given the strong association between Mg and other beneficial nutriments (vegetables, fibers, cereals). The concept that metabolic syndrome is an inflammatory condition may explain the role of Mg.Mg deficiency results in a stress effect and increased susceptibility to physiological damage produced by stress. Stress activates the hypothalamic-pituitary-adrenal axis (HPA) axis and the sympathetic nervous system. The activation of the renin-angiotensin-aldosterone system is a factor in the development of insulin resistance by increasing oxidative stress. In both humans and rats, aldosteronism results in an immunostimulatory state and leads to an inflammatory phenotype. Stress response induces the release of large quantities of excitatory amino acids and activates the nuclear factor NFkappaB, promoting translation of molecules involved in cell regulation, metabolism and apoptosis. The rise in neuropeptides is also well documented. Stress-induced HPA activation has been identified to play an important role in the preferential body fat accumulation but evidence that Mg is involved in body weight regulation is lacking. One of the earliest events in the acute response to stress is endothelial dysfunction. Endothelial cells actively contribute to inflammation by elaborating cytokines, synthesizing chemical mediators and expressing adhesion molecules. Experimental Mg deficiency in rats induces a clinical inflammatory syndrome characterized by leukocyte and macrophage activation, synthesis of inflammatory cytokines and acute phase proteins, extensive production of free radicals. An increase in extracellular Mg concentration decreases inflammatory effects, while reduction in extracellular Mg results in cell activation. The

  18. Human Cytomegalovirus: Coordinating Cellular Stress, Signaling, and Metabolic Pathways.

    Science.gov (United States)

    Shenk, Thomas; Alwine, James C

    2014-11-01

    Viruses face a multitude of challenges when they infect a host cell. Cells have evolved innate defenses to protect against pathogens, and an infecting virus may induce a stress response that antagonizes viral replication. Further, the metabolic, oxidative, and cell cycle state may not be conducive to the viral infection. But viruses are fabulous manipulators, inducing host cells to use their own characteristic mechanisms and pathways to provide what the virus needs. This article centers on the manipulation of host cell metabolism by human cytomegalovirus (HCMV). We review the features of the metabolic program instituted by the virus, discuss the mechanisms underlying these dramatic metabolic changes, and consider how the altered program creates a synthetic milieu that favors efficient HCMV replication and spread.

  19. Systemic anti-tumor necrosis factor antibody treatment exacerbates endotoxin-induced uveitis in the rat

    NARCIS (Netherlands)

    de Vos, A. F.; van Haren, M. A.; Verhagen, C.; Hoekzema, R.; Kijlstra, A.

    1995-01-01

    Tumor necrosis factor is released in the circulation and aqueous humor during endotoxin-induced uveitis, and induces acute uveitis when injected intraocularly in rats. To elucidate the role of tumor necrosis factor in the development of endotoxin-induced uveitis we analysed the effect of

  20. Diarachidonoylphosphoethanolamine induces necrosis/necroptosis of malignant pleural mesothelioma cells.

    Science.gov (United States)

    Kaku, Yoshiko; Tsuchiya, Ayako; Kanno, Takeshi; Nakano, Takashi; Nishizaki, Tomoyuki

    2015-09-01

    The present study investigated 1,2-diarachidonoyl-sn-glycero-3-phosphoethanolamine (DAPE)-induced cell death in malignant pleural mesothelioma (MPM) cells. DAPE reduced cell viability in NCI-H28, NCI-H2052, NCI-H2452, and MSTO-211H MPM cell lines in a concentration (1-100μM)-dependent manner. In the flow cytometry using propidium iodide (PI) and annexin V (AV), DAPE significantly increased the population of PI-positive and AV-negative cells, corresponding to primary necrosis, and that of PI-positive and AV-positive cells, corresponding to late apoptosis/secondary necrosis, in NCI-H28 cells. DAPE-induced reduction of NCI-H28 cell viability was partially inhibited by necrostatin-1, an inhibitor of RIP1 kinase to induce necroptosis, or knocking-down RIP1. DAPE generated reactive oxygen species (ROS) followed by disruption of mitochondrial membrane potentials in NCI-H28 cells. DAPE-induced mitochondrial damage was attenuated by cyclosporin A, an inhibitor of cyclophilin D (CypD). DAPE did not affect expression and mitochondrial localization of p53 protein in NCI-H28 cells. DAPE significantly decreased intracellular ATP concentrations in NCI-H28 cells. Overall, the results of the present study indicate that DAPE induces necroptosis and necrosis of MPM cells; the former is mediated by RIP1 kinase and the latter is caused by generating ROS and opening CypD-dependent mitochondrial permeability transition pore, to reduce intracellular ATP concentrations. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Altered expression of long non-coding RNAs during genotoxic stress-induced cell death in human glioma cells.

    Science.gov (United States)

    Liu, Qian; Sun, Shanquan; Yu, Wei; Jiang, Jin; Zhuo, Fei; Qiu, Guoping; Xu, Shiye; Jiang, Xuli

    2015-04-01

    Long non-coding RNAs (lncRNAs), a recently discovered class of non-coding genes, are transcribed throughout the genome. Emerging evidence suggests that lncRNAs may be involved in modulating various aspects of tumor biology, including regulating gene activity in response to external stimuli or DNA damage. No data are available regarding the expression of lncRNAs during genotoxic stress-induced apoptosis and/or necrosis in human glioma cells. In this study, we detected a change in the expression of specific candidate lncRNAs (neat1, GAS5, TUG1, BC200, Malat1, MEG3, MIR155HG, PAR5, and ST7OT1) during DNA damage-induced apoptosis in human glioma cell lines (U251 and U87) using doxorubicin (DOX) and resveratrol (RES). We also detected the expression pattern of these lncRNAs in human glioma cell lines under necrosis induced using an increased dose of DOX. Our results reveal that the lncRNA expression patterns are distinct between genotoxic stress-induced apoptosis and necrosis in human glioma cells. The sets of lncRNA expressed during genotoxic stress-induced apoptosis were DNA-damaging agent-specific. Generally, MEG3 and ST7OT1 are up-regulated in both cell lines under apoptosis induced using both agents. The induction of GAS5 is only clearly detected during DOX-induced apoptosis, whereas the up-regulation of neat1 and MIR155HG is only found during RES-induced apoptosis in both cell lines. However, TUG1, BC200 and MIR155HG are down regulated when necrosis is induced using a high dose of DOX in both cell lines. In conclusion, our findings suggest that the distinct regulation of lncRNAs may possibly involve in the process of cellular defense against genotoxic agents.

  2. Enoxaparin-induced skin necrosis at injection site after total knee arthroplasty

    Directory of Open Access Journals (Sweden)

    Max Haffner, BS

    2018-03-01

    Full Text Available Enoxaparin is a widely used low-molecular-weight heparin for perioperative thromboembolic prophylaxis. Enoxaparin-induced skin necrosis in the setting of arthroplasty has been rarely reported in the literature with varying outcomes and management decisions. Our patient developed skin necrosis at his injection site and thrombocytopenia 10 days following left total knee arthroplasty surgery and after receiving subcutaneous Lovenox injections postoperatively. The patient was started on an alternative anticoagulation based on a high suspicion for heparin-induced thrombocytopenia and the wound was monitored without surgical debridement. Our case highlights the key clinical management decisions when facing this potentially life-threatening adverse reaction. Keywords: Lovenox, Enoxaparin, Skin necrosis, Adverse reaction, Arthroplasty

  3. PEG-induced osmotic stress in Mentha x piperita L.: Structural features and metabolic responses.

    Science.gov (United States)

    Búfalo, Jennifer; Rodrigues, Tatiane Maria; de Almeida, Luiz Fernando Rolim; Tozin, Luiz Ricardo Dos Santos; Marques, Marcia Ortiz Mayo; Boaro, Carmen Silvia Fernandes

    2016-08-01

    The present study investigated whether osmotic stress induced by the exposure of peppermint (Mentha x piperita L.) to moderate and severe stress for short periods of time changes the plant's physiological parameters, leaf anatomy and ultrastructure and essential oil. Plants were exposed to two levels of polyethyleneglycol (50 g L(-1) and 100 g L(-1) of PEG) in a hydroponic experiment. The plants exposed to 50 g L(-1) maintained metabolic functions similar to those of the control group (0 g L(-1)) without changes in gas exchange or structural characteristics. The increase in antioxidant enzyme activity reduced the presence of free radicals and protected membranes, including chloroplasts and mitochondria. In contrast, the osmotic stress caused by 100 g L(-1) of PEG inhibited leaf gas exchange, reduced the essential oil content and changed the oil composition, including a decrease in menthone and an increase in menthofuran. These plants also showed an increase in peroxidase activity, but this increase was not sufficient to decrease the lipid peroxidation level responsible for damaging the membranes of organelles. Morphological changes were correlated with the evaluated physiological features: plants exposed to 100 g L(-1) of PEG showed areas with collapsed cells, increases in mesophyll thickness and the area of the intercellular space, cuticle shrinkage, morphological changes in plastids, and lysis of mitochondria. In summary, our results revealed that PEG-induced osmotic stress in M. x piperita depends on the intensity level of the osmotic stress applied; severe osmotic stress changed the structural characteristics, caused damage at the cellular level, and reduced the essential oil content and quality. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Prenatal caffeine ingestion induces transgenerational neuroendocrine metabolic programming alteration in second generation rats

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Hanwen [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Deng, Zixin; Liu, Lian; Shen, Lang; Kou, Hao; He, Zheng [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Ping, Jie; Xu, Dan [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China); Ma, Lu [Department of Epidemiology and Health Statistics, Public Health School of Wuhan University, Wuhan 430071 (China); Chen, Liaobin, E-mail: lbchen@whu.edu.cn [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Wang, Hui, E-mail: wanghui19@whu.edu.cn [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China)

    2014-02-01

    Our previous studies have demonstrated that prenatal caffeine ingestion induces an increased susceptibility to metabolic syndrome with alterations of glucose and lipid metabolic phenotypes in adult first generation (F1) of intrauterine growth retardation (IUGR) rats, and the underlying mechanism is originated from a hypothalamic–pituitary–adrenal (HPA) axis-associated neuroendocrine metabolic programming alteration in utero. This study aims to investigate the transgenerational effects of this programming alteration in adult second generation (F2). Pregnant Wistar rats were administered with caffeine (120 mg/kg·d) from gestational day 11 until delivery. Four groups in F2 were set according to the cross-mating between control and caffeine-induced IUGR rats. F2 were subjected to a fortnight ice water swimming stimulus on postnatal month 4, and blood samples were collected before and after stress. Results showed that the majority of the activities of HPA axis and phenotypes of glucose and lipid metabolism were altered in F2. Particularly, comparing with the control group, caffeine groups had an enhanced corticosterone levels after chronic stress. Compared with before stress, the serum glucose levels were increased in some groups whereas the triglyceride levels were decreased. Furthermore, total cholesterol gain rates were enhanced but the high-density lipoprotein-cholesterol gain rates were decreased in most caffeine groups after stress. These transgenerational effects were characterized partially with gender and parental differences. Taken together, these results indicate that the reproductive and developmental toxicities and the neuroendocrine metabolic programming mechanism by prenatal caffeine ingestion have transgenerational effects in rats, which may help to explain the susceptibility to metabolic syndrome and associated diseases in F2. - Highlights: • Caffeine-induced neuroendocrine metabolic programming of HPA has hereditary effect. • Caffeine-induced

  5. Prenatal caffeine ingestion induces transgenerational neuroendocrine metabolic programming alteration in second generation rats

    International Nuclear Information System (INIS)

    Luo, Hanwen; Deng, Zixin; Liu, Lian; Shen, Lang; Kou, Hao; He, Zheng; Ping, Jie; Xu, Dan; Ma, Lu; Chen, Liaobin; Wang, Hui

    2014-01-01

    Our previous studies have demonstrated that prenatal caffeine ingestion induces an increased susceptibility to metabolic syndrome with alterations of glucose and lipid metabolic phenotypes in adult first generation (F1) of intrauterine growth retardation (IUGR) rats, and the underlying mechanism is originated from a hypothalamic–pituitary–adrenal (HPA) axis-associated neuroendocrine metabolic programming alteration in utero. This study aims to investigate the transgenerational effects of this programming alteration in adult second generation (F2). Pregnant Wistar rats were administered with caffeine (120 mg/kg·d) from gestational day 11 until delivery. Four groups in F2 were set according to the cross-mating between control and caffeine-induced IUGR rats. F2 were subjected to a fortnight ice water swimming stimulus on postnatal month 4, and blood samples were collected before and after stress. Results showed that the majority of the activities of HPA axis and phenotypes of glucose and lipid metabolism were altered in F2. Particularly, comparing with the control group, caffeine groups had an enhanced corticosterone levels after chronic stress. Compared with before stress, the serum glucose levels were increased in some groups whereas the triglyceride levels were decreased. Furthermore, total cholesterol gain rates were enhanced but the high-density lipoprotein-cholesterol gain rates were decreased in most caffeine groups after stress. These transgenerational effects were characterized partially with gender and parental differences. Taken together, these results indicate that the reproductive and developmental toxicities and the neuroendocrine metabolic programming mechanism by prenatal caffeine ingestion have transgenerational effects in rats, which may help to explain the susceptibility to metabolic syndrome and associated diseases in F2. - Highlights: • Caffeine-induced neuroendocrine metabolic programming of HPA has hereditary effect. • Caffeine-induced

  6. Mitochondrial Dysfunction, Through Impaired Autophagy, Leads to Endoplasmic Reticulum Stress, Deregulated Lipid Metabolism, and Pancreatitis in Animal Models.

    Science.gov (United States)

    Biczo, Gyorgy; Vegh, Eszter T; Shalbueva, Natalia; Mareninova, Olga A; Elperin, Jason; Lotshaw, Ethan; Gretler, Sophie; Lugea, Aurelia; Malla, Sudarshan R; Dawson, David; Ruchala, Piotr; Whitelegge, Julian; French, Samuel W; Wen, Li; Husain, Sohail Z; Gorelick, Fred S; Hegyi, Peter; Rakonczay, Zoltan; Gukovsky, Ilya; Gukovskaya, Anna S

    2018-02-01

    Little is known about the signaling pathways that initiate and promote acute pancreatitis (AP). The pathogenesis of AP has been associated with abnormal increases in cytosolic Ca 2+ , mitochondrial dysfunction, impaired autophagy, and endoplasmic reticulum (ER) stress. We analyzed the mechanisms of these dysfunctions and their relationships, and how these contribute to development of AP in mice and rats. Pancreatitis was induced in C57BL/6J mice (control) and mice deficient in peptidylprolyl isomerase D (cyclophilin D, encoded by Ppid) by administration of L-arginine (also in rats), caerulein, bile acid, or an AP-inducing diet. Parameters of pancreatitis, mitochondrial function, autophagy, ER stress, and lipid metabolism were measured in pancreatic tissue, acinar cells, and isolated mitochondria. Some mice with AP were given trehalose to enhance autophagic efficiency. Human pancreatitis tissues were analyzed by immunofluorescence. Mitochondrial dysfunction in pancreas of mice with AP was induced by either mitochondrial Ca 2+ overload or through a Ca 2+ overload-independent pathway that involved reduced activity of ATP synthase (80% inhibition in pancreatic mitochondria isolated from rats or mice given L-arginine). Both pathways were mediated by cyclophilin D and led to mitochondrial depolarization and fragmentation. Mitochondrial dysfunction caused pancreatic ER stress, impaired autophagy, and deregulation of lipid metabolism. These pathologic responses were abrogated in cyclophilin D-knockout mice. Administration of trehalose largely prevented trypsinogen activation, necrosis, and other parameters of pancreatic injury in mice with L-arginine AP. Tissues from patients with pancreatitis had markers of mitochondrial damage and impaired autophagy, compared with normal pancreas. In different animal models, we find a central role for mitochondrial dysfunction, and for impaired autophagy as its principal downstream effector, in development of AP. In particular, the

  7. Bilateral streptococcal corneoscleritis complicating β irradiation induced scleral necrosis

    International Nuclear Information System (INIS)

    Moriarty, A.P.; Crawford, G.J.; McAllister, I.L.; Constable, I.J.

    1993-01-01

    Bacterial corneoscleritis may complicate scleral necrosis induced by β irradiation following pterygium removal. Previous cases have been unilateral. The authors report a case of severe bilateral corneoscleritis caused by Streptococcus pneumoniae. (author)

  8. TRAIL-induced programmed necrosis as a novel approach to eliminate tumor cells

    International Nuclear Information System (INIS)

    Voigt, Susann; Kalthoff, Holger; Adam, Dieter; Philipp, Stephan; Davarnia, Parvin; Winoto-Morbach, Supandi; Röder, Christian; Arenz, Christoph; Trauzold, Anna; Kabelitz, Dieter; Schütze, Stefan

    2014-01-01

    The cytokine TRAIL represents one of the most promising candidates for the apoptotic elimination of tumor cells, either alone or in combination therapies. However, its efficacy is often limited by intrinsic or acquired resistance of tumor cells to apoptosis. Programmed necrosis is an alternative, molecularly distinct mode of programmed cell death that is elicited by TRAIL under conditions when the classical apoptosis machinery fails or is actively inhibited. The potential of TRAIL-induced programmed necrosis in tumor therapy is, however, almost completely uncharacterized. We therefore investigated its impact on a panel of tumor cell lines of wide-ranging origin. Cell death/viability was measured by flow cytometry/determination of intracellular ATP levels/crystal violet staining. Cell surface expression of TRAIL receptors was detected by flow cytometry, expression of proteins by Western blot. Ceramide levels were quantified by high-performance thin layer chromatography and densitometric analysis, clonogenic survival of cells was determined by crystal violet staining or by soft agarose cloning. TRAIL-induced programmed necrosis killed eight out of 14 tumor cell lines. Clonogenic survival was reduced in all sensitive and even one resistant cell lines tested. TRAIL synergized with chemotherapeutics in killing tumor cell lines by programmed necrosis, enhancing their effect in eight out of 10 tested tumor cell lines and in 41 out of 80 chemotherapeutic/TRAIL combinations. Susceptibility/resistance of the investigated tumor cell lines to programmed necrosis seems to primarily depend on expression of the pro-necrotic kinase RIPK3 rather than the related kinase RIPK1 or cell surface expression of TRAIL receptors. Furthermore, interference with production of the lipid ceramide protected all tested tumor cell lines. Our study provides evidence that TRAIL-induced programmed necrosis represents a feasible approach for the elimination of tumor cells, and that this treatment may

  9. Effects of sucralfate on gastric irritant-induced necrosis and apoptosis in cultured guinea pig gastric mucosal cells.

    Science.gov (United States)

    Hoshino, Tatsuya; Takano, Tatsunori; Tomisato, Wataru; Tsutsumi, Shinji; Hwang, Hyun-Jung; Koura, Yuko; Nishimoto, Kiyo; Tsuchiya, Tomofusa; Mizushima, Tohru

    2003-01-01

    We previously reported that several gastric irritants, including ethanol, hydrogen peroxide, and hydrochloric acid, induced both necrosis and apoptosis in cultured gastric mucosal cells. In the present study, we examined the effects of sucralfate, a unique gastroprotective drug, on gastric irritant-induced necrosis and apoptosis produced in vitro. Sucralfate strongly inhibited ethanol-induced necrosis in primary cultures of guinea pig gastric mucosal cells. The preincubation of cells with sucralfate was not necessary for its cytoprotective effect to be observed, thus making its mechanism of action different from that of other gastroprotective drugs. Necrosis of gastric mucosal cells induced by hydrogen peroxide or indomethacin was also suppressed by sucralfate. On the other hand, sucralfate only weakly inhibited ethanol-induced apoptosis. These results suggest that the cytoprotective effect of sucralfate on gastric mucosa in vivo can be explained, at least in part, by its inhibitory effect on gastric irritant-induced necrosis.

  10. Naringin Reverses Hepatocyte Apoptosis and Oxidative Stress Associated with HIV-1 Nucleotide Reverse Transcriptase Inhibitors-Induced Metabolic Complications

    Directory of Open Access Journals (Sweden)

    Oluwafeyisetan O. Adebiyi

    2015-12-01

    Full Text Available Nucleoside Reverse Transcriptase Inhibitors (NRTIs have not only improved therapeutic outcomes in the treatment of HIV infection but have also led to an increase in associated metabolic complications of NRTIs. Naringin’s effects in mitigating NRTI-induced complications were investigated in this study. Wistar rats, randomly allotted into seven groups (n = 7 were orally treated daily for 56 days with 100 mg/kg zidovudine (AZT (groups I, II III, 50 mg/kg stavudine (d4T (groups IV, V, VI and 3 mL/kg of distilled water (group VII. Additionally, rats in groups II and V were similarly treated with 50 mg/kg naringin, while groups III and VI were treated with 45 mg/kg vitamin E. AZT or d4T treatment significantly reduced body weight and plasma high density lipoprotein concentrations but increased liver weights, plasma triglycerides and total cholesterol compared to controls, respectively. Furthermore, AZT or d4T treatment significantly increased oxidative stress, adiposity index and expression of Bax protein, but reduced Bcl-2 protein expression compared to controls, respectively. However, either naringin or vitamin E significantly mitigated AZT- or d4T-induced weight loss, dyslipidemia, oxidative stress and hepatocyte apoptosis compared to AZT- or d4T-only treated rats. Our results suggest that naringin reverses metabolic complications associated with NRTIs by ameliorating oxidative stress and apoptosis. This implies that naringin supplements could mitigate lipodystrophy and dyslipidemia associated with NRTI therapy.

  11. Regulation of longevity by FGF21: Interaction between energy metabolism and stress responses.

    Science.gov (United States)

    Salminen, Antero; Kaarniranta, Kai; Kauppinen, Anu

    2017-08-01

    Fibroblast growth factor 21 (FGF21) is a hormone-like member of FGF family which controls metabolic multiorgan crosstalk enhancing energy expenditure through glucose and lipid metabolism. In addition, FGF21 acts as a stress hormone induced by endoplasmic reticulum stress and dysfunctions of mitochondria and autophagy in several tissues. FGF21 also controls stress responses and metabolism by modulating the functions of somatotropic axis and hypothalamic-pituitary-adrenal (HPA) pathway. FGF21 is a potent longevity factor coordinating interactions between energy metabolism and stress responses. Recent studies have revealed that FGF21 treatment can alleviate many age-related metabolic disorders, e.g. atherosclerosis, obesity, type 2 diabetes, and some cardiovascular diseases. In addition, transgenic mice overexpressing FGF21 have an extended lifespan. However, chronic metabolic and stress-related disorders involving inflammatory responses can provoke FGF21 resistance and thus disturb healthy aging process. First, we will describe the role of FGF21 in interorgan energy metabolism and explain how its functions as a stress hormone can improve healthspan. Next, we will examine both the induction of FGF21 expression via the integrated stress response and the molecular mechanism through which FGF21 enhances healthy aging. Finally, we postulate that FGF21 resistance, similarly to insulin resistance, jeopardizes human healthspan and accelerates the aging process. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Trovafloxacin-induced replication stress sensitizes HepG2 cells to tumor necrosis factor-alpha-induced cytotoxicity mediated by extracellular signal-regulated kinase and ataxia telangiectasia and Rad3-related

    International Nuclear Information System (INIS)

    Beggs, Kevin M.; Maiuri, Ashley R.; Fullerton, Aaron M.; Poulsen, Kyle L.; Breier, Anna B.; Ganey, Patricia E.; Roth, Robert A.

    2015-01-01

    Use of the fluoroquinolone antibiotic trovafloxacin (TVX) was restricted due to idiosyncratic, drug-induced liver injury (IDILI). Previous studies demonstrated that tumor necrosis factor-alpha (TNF) and TVX interact to cause death of hepatocytes in vitro that was associated with prolonged activation of c-Jun N-terminal kinase (JNK), activation of caspases 9 and 3, and DNA damage. The purpose of this study was to explore further the mechanism by which TVX interacts with TNF to cause cytotoxicity. Treatment with TVX caused cell cycle arrest, enhanced expression of p21 and impaired proliferation, but cell death only occurred after cotreatment with TVX and TNF. Cell death involved activation of extracellular signal-related kinase (ERK), which in turn activated caspase 3 and ataxia telangiectasia and Rad3-related (ATR), both of which contributed to cytotoxicity. Cotreatment of HepG2 cells with TVX and TNF caused double-strand breaks in DNA, and ERK contributed to this effect. Inhibition of caspase activity abolished the DNA strand breaks. The data suggest a complex interaction of TVX and TNF in which TVX causes replication stress, and the downstream effects are exacerbated by TNF, leading to hepatocellular death. These results raise the possibility that IDILI from TVX results from MAPK and ATR activation in hepatocytes initiated by interaction of cytokine signaling with drug-induced replication stress

  13. HCV-Induced Oxidative Stress: Battlefield-Winning Strategy

    Directory of Open Access Journals (Sweden)

    Khadija Rebbani

    2016-01-01

    Full Text Available About 150 million people worldwide are chronically infected with hepatitis C virus (HCV. The persistence of the infection is controlled by several mechanisms including the induction of oxidative stress. HCV relies on this strategy to redirect lipid metabolism machinery and escape immune response. The 3β-hydroxysterol Δ24-reductase (DHCR24 is one of the newly discovered host markers of oxidative stress. This protein, as HCV-induced oxidative stress responsive protein, may play a critical role in the pathogenesis of HCV chronic infection and associated liver diseases, when aberrantly expressed. The sustained expression of DHCR24 in response to HCV-induced oxidative stress results in suppression of nuclear p53 activity by blocking its acetylation and increasing its interaction with MDM2 in the cytoplasm leading to its degradation, which may induce hepatocarcinogenesis.

  14. Oxidative stress and cardiomyocyte necrosis with elevated serum troponins: pathophysiologic mechanisms.

    Science.gov (United States)

    Robinson, Antwon D; Ramanathan, Kodangudi B; McGee, Jesse E; Newman, Kevin P; Weber, Karl T

    2011-08-01

    The progressive nature of heart failure is linked to multiple factors, including an ongoing loss of cardiomyocytes and necrosis. Necrotic cardiomyocytes leave behind several footprints: the spillage of their contents leading to elevations in serum troponins; and morphologic evidence of tissue repair with scarring. The pathophysiologic origins of cardiomyocyte necrosis relates to neurohormonal activation, including the adrenergic nervous system. Catecholamine-initiated excessive intracellular Ca accumulation and mitochondria Ca overloading in particular initiate a mitochondriocentric signal-transducer-effector pathway to necrosis and which includes the induction of oxidative stress and opening of their inner membrane permeability transition pore. Hypokalemia, ionized hypocalcemia and hypomagnesemia, where consequent elevations in parathyroid hormone further account for excessive intracellular Ca accumulation, hypozincemia and hyposelenemia each compromise metalloenzyme-based antioxidant defenses. The necrotic loss of cardiomyocytes and adverse structural remodeling of myocardium is related to the central role played by a mitochondriocentric pathway initiated by neurohormonal activation.

  15. Concurrence of High Fat Diet and APOE Gene Induces Allele Specific Metabolic and Mental Stress Changes in an AD Model

    Directory of Open Access Journals (Sweden)

    Yifat Segev

    2016-09-01

    Full Text Available Aging is the main risk factor for neurodegenerative diseases, including Alzheimer’s disease (AD. However, evidence indicates that the pathological process begins long before actual cognitive or pathological symptoms are apparent. The long asymptomatic phase and complex integration between genetic, environmental, and metabolic factors make it one of the most challenging diseases to understand and cure. In the present study, we asked whether an environmental factor such as high-fat diet would synergize with a genetic factor to affect the metabolic and cognitive state in the ApoE4 mouse model of AD. Our data suggest that a high-fat diet induces diabetes mellitus-like metabolism in ApoE4 mice, as well as changes in BACE1 protein levels between the two ApoE strains. Furthermore, high-fat diet induces anxiety in this AD mouse model. Our results suggest that young ApoE4 carriers are prone to psychological stress and metabolic abnormalities related to AD, which can easily be triggered via high-fat nutrition.

  16. Autophagic pathways and metabolic stress.

    Science.gov (United States)

    Kaushik, S; Singh, R; Cuervo, A M

    2010-10-01

    Autophagy is an essential intracellular process that mediates degradation of intracellular proteins and organelles in lysosomes. Autophagy was initially identified for its role as alternative source of energy when nutrients are scarce but, in recent years, a previously unknown role for this degradative pathway in the cellular response to stress has gained considerable attention. In this review, we focus on the novel findings linking autophagic function with metabolic stress resulting either from proteins or lipids. Proper autophagic activity is required in the cellular defense against proteotoxicity arising in the cytosol and also in the endoplasmic reticulum, where a vast amount of proteins are synthesized and folded. In addition, autophagy contributes to mobilization of intracellular lipid stores and may be central to lipid metabolism in certain cellular conditions. In this review, we focus on the interrelation between autophagy and different types of metabolic stress, specifically the stress resulting from the presence of misbehaving proteins within the cytosol or in the endoplasmic reticulum and the stress following a lipogenic challenge. We also comment on the consequences that chronic exposure to these metabolic stressors could have on autophagic function and on how this effect may underlie the basis of some common metabolic disorders. © 2010 Blackwell Publishing Ltd.

  17. N-Acetylcysteine treatment of dystrophic mdx mice results in protein thiol modifications and inhibition of exercise induced myofibre necrosis.

    Science.gov (United States)

    Terrill, Jessica R; Radley-Crabb, Hannah G; Grounds, Miranda D; Arthur, Peter G

    2012-05-01

    Oxidative stress is implicated as a factor that increases necrosis of skeletal muscles in Duchenne Muscular Dystrophy (DMD) and the dystrophic mdx mouse. Consequently, drugs that minimize oxidative stress are potential treatments for muscular dystrophy. This study examined the in vivo benefits to mdx mice of an antioxidant treatment with the cysteine precursor N-acetylcysteine (NAC), administered in drinking water. NAC was completely effective in preventing treadmill exercise-induced myofibre necrosis (assessed histologically) and the increased blood creatine kinase levels (a measure of sarcolemma leakiness) following exercise were significantly lower in the NAC treated mice. While NAC had no effect on malondialdehyde level or protein carbonylation (two indicators of irreversible oxidative damage), treatment with NAC for one week significantly decreased the oxidation of glutathione and protein thiols, and enhanced muscle protein thiol content. These data provide in vivo evidence for protective benefits of NAC treatment on dystropathology, potentially via protein thiol modifications. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Ursolic acid protects monocytes against metabolic stress-induced priming and dysfunction by preventing the induction of Nox4

    Directory of Open Access Journals (Sweden)

    Sarah L. Ullevig

    2014-01-01

    Conclusion: UA protects THP-1 monocytes against dysfunction by suppressing metabolic stress-induced Nox4 expression, thereby preventing the Nox4-dependent dysregulation of redox-sensitive processes, including actin turnover and MAPK-signaling, two key processes that control monocyte migration and adhesion. This study provides a novel mechanism for the anti-inflammatory and athero- and renoprotective properties of UA and suggests that dysfunctional blood monocytes may be primary targets of UA and related compounds.

  19. Nutritional Ketosis Affects Metabolism and Behavior in Sprague-Dawley Rats in Both Control and Chronic Stress Environments

    Directory of Open Access Journals (Sweden)

    Milene L. Brownlow

    2017-05-01

    Full Text Available Nutritional ketosis may enhance cerebral energy metabolism and has received increased interest as a way to improve or preserve performance and resilience. Most studies to date have focused on metabolic or neurological disorders while anecdotal evidence suggests that ketosis may enhance performance in the absence of underlying dysfunction. Moreover, decreased availability of glucose in the brain following stressful events is associated with impaired cognition, suggesting the need for more efficient energy sources. We tested the hypotheses that ketosis induced by endogenous or exogenous ketones could: (a augment cognitive outcomes in healthy subjects; and (b prevent stress-induced detriments in cognitive parameters. Adult, male, Sprague Dawley rats were used to investigate metabolic and behavioral outcomes in 3 dietary conditions: ketogenic (KD, ketone supplemented (KS, or NIH-31 control diet in both control or chronic stress conditions. Acute administration of exogenous ketones resulted in reduction in blood glucose and sustained ketosis. Chronic experiments showed that in control conditions, only KD resulted in pronounced metabolic alterations and improved performance in the novel object recognition test. The hypothalamic-pituitary-adrenal (HPA axis response revealed that KD-fed rats maintained peripheral ketosis despite increases in glucose whereas no diet effects were observed in ACTH or CORT levels. Both KD and KS-fed rats decreased escape latencies on the third day of water maze, whereas only KD prevented stress-induced deficits on the last testing day and improved probe test performance. Stress-induced decrease in hippocampal levels of β-hydroxybutyrate was attenuated in KD group while both KD and KS prevented stress effects on BDNF levels. Mitochondrial enzymes associated with ketogenesis were increased in both KD and KS hippocampal samples and both endothelial and neuronal glucose transporters were affected by stress but only in the

  20. ER Stress and Lipid Metabolism in Adipocytes

    Directory of Open Access Journals (Sweden)

    Beth S. Zha

    2012-01-01

    Full Text Available The role of endoplasmic reticulum (ER stress is a rapidly emerging field of interest in the pathogenesis of metabolic diseases. Recent studies have shown that chronic activation of ER stress is closely linked to dysregulation of lipid metabolism in several metabolically important cells including hepatocytes, macrophages, β-cells, and adipocytes. Adipocytes are one of the major cell types involved in the pathogenesis of the metabolic syndrome. Recent advances in dissecting the cellular and molecular mechanisms involved in the regulation of adipogenesis and lipid metabolism indicate that activation of ER stress plays a central role in regulating adipocyte function. In this paper, we discuss the current understanding of the potential role of ER stress in lipid metabolism in adipocytes. In addition, we touch upon the interaction of ER stress and autophagy as well as inflammation. Inhibition of ER stress has the potential of decreasing the pathology in adipose tissue that is seen with energy overbalance.

  1. ER-tethered Transcription Factor CREBH Regulates Hepatic Lipogenesis, Fatty Acid Oxidation, and Lipolysis upon Metabolic Stress

    OpenAIRE

    Zhang, Chunbin; Wang, Guohui; Zheng, Ze; Maddipati, Krishna Rao; Zhang, Xuebao; Dyson, Gregory; Williams, Paul; Duncan, Stephen A.; Kaufman, Randal J.; Zhang, Kezhong

    2012-01-01

    CREBH is a liver-specific transcription factor that is localized in the endoplasmic reticulum (ER) membrane. Our previous work demonstrated that CREBH is activated by ER stress or inflammatory stimuli to induce an acute-phase hepatic inflammation. Here we demonstrate that CREBH is a key metabolic regulator of hepatic lipogenesis, fatty acid (FA) oxidation, and lipolysis under metabolic stress. Saturated FA, insulin signals, or an atherogenic high-fat diet can induce CREBH activation in the li...

  2. Vitamin C deficiency aggravates tumor necrosis factor α-induced insulin resistance.

    Science.gov (United States)

    Qing, Zhou; Xiao-Hui, Wu; Xi-Mei, Wu; Chao-Chun, Zou

    2018-06-15

    Chronic low-grade inflammation plays a major role in the development of insulin resistance. The potential role and underlying mechanism of vitamin C, an antioxidant and anti-inflammatory agent, was investigated in tumor necrosis factor-α (TNF-α)-induced insulin resistance. Gulonolactone oxidase knockout (Gulo -/- ) mice genetically unable to synthesize vitamin C were used to induce insulin resistance by continuously pumping small doses of TNF-α for seven days, and human liver hepatocellular carcinoma cells (HepG2 cells) were used to induce insulin resistance by treatment with TNF-α. Vitamin C deficiency aggravated TNF-α-induced insulin resistance in Gulo -/- mice, resulting in worse glucose tolerance test (GTT) results, higher fasting plasma insulin level, and the inactivation of the protein kinase B (AKT)/glycogen synthase kinase-3β (GSK3β) pathway in the liver. Vitamin C deficiency also worsened liver lipid accumulation and inflammation in TNF-α-treated Gulo -/- mice. In HepG2 cells, vitamin C reversed the TNF-α-induced reduction of glucose uptake and glycogen synthesis, which were mediated by increasing GLUT2 levels and the activation of the insulin receptor substrate (IRS-1)/AKT/GSK3β pathway. Furthermore, vitamin C inhibited the TNF-α-induced activation of not only the mitogen-activated protein kinase (MAPKs), but also nuclear factor-kappa B (NF-κB) signaling. Taken together, vitamin C is essential for preventing and improving insulin resistance, and the supplementing with vitamin C may be an effective therapeutic intervention for metabolic disorders. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Aerobic exercise modulation of mental stress-induced responses in cultured endothelial progenitor cells from healthy and metabolic syndrome subjects.

    Science.gov (United States)

    Rocha, Natalia G; Sales, Allan R K; Miranda, Renan L; Silva, Mayra S; Silva, Jemima F R; Silva, Bruno M; Santos, Aline A; Nóbrega, Antonio C L

    2015-02-15

    Numerous studies have demonstrated that exercise acutely prevents the reduction in flow-mediated dilation induced by mental stress in subjects with metabolic syndrome (MetS). However, it is unknown whether a similar effect occurs in endothelial progenitors cells (EPCs). This study investigated whether exercise protects from the deleterious effect of mental stress on cultured EPCs in healthy subjects and those with MetS. Ten healthy subjects (aged 31±2) and ten subjects with MetS (aged 36±2) were enrolled. Subjects underwent a mental stress test, followed immediately by either 40 min of leg cycling or rest across two randomized sessions: mental stress+non-exercise control (MS) and mental stress+exercise (MS+EXE). The Stroop Color-Word Test was used to elicit mental stress. Blood samples were drawn at baseline and following sessions to isolate mononuclear cells. These cells were cultured in fibronectin-coated plates for seven days, and EPCs were identified by immunofluorescence (acLDL(+)/ UEA-I Lectin(+)). All subjects presented similar increases in mean blood pressure and heart rate during the mental stress test (P0.05). The EPC response to MS and MS+EXE was increased in healthy subjects, whereas it was decreased in subjects with MetS (Pexercise session increased EPCs in healthy subjects but did not prevent the EPC reduction induced by mental stress among subjects with MetS. © 2015.

  4. Bevacizumab for the Treatment of Gammaknife Radiosurgery-Induced Brain Radiation Necrosis.

    Science.gov (United States)

    Ma, Yifang; Zheng, Chutian; Feng, Yiping; Xu, Qingsheng

    2017-09-01

    Radiation necrosis is one of the complications of Gammaknife radiosurgery. The traditional treatment of radiation necrosis carries a high risk of failure, Bevacizumab is an antiangiogenic monoclonal antibody against vascular endothelial growth factor, a known mediator of cerebral edema. It can be used to successfully treat brain radiation necrosis. Two patients with a history of small cell lung cancer presented with metastatic disease to the brain. They underwent Gammaknife radiosurgery to brain metastases. Several months later, magnetic resonance imaging showed radiation necrosis with significant surrounding edema. The patients had a poor response to treatment with dexamethasone. They were eventually treated with bevacizumab (5 mg/kg every 2 weeks, 7.5 mg/kg every 3 weeks, respectively), and the treatment resulted in significant clinical and radiographic improvement. Bevacizumab can be successfully used to treat radiation necrosis induced by Gammaknife radiosurgery in patients with cerebral metastases. It is of particular benefit in patients with poor reaction to corticosteroids and other medications.

  5. High Dose Ascorbate Causes Both Genotoxic and Metabolic Stress in Glioma Cells

    Science.gov (United States)

    Castro, Maria Leticia; Carson, Georgia M.; McConnell, Melanie J.; Herst, Patries M.

    2017-01-01

    We have previously shown that exposure to high dose ascorbate causes double stranded breaks (DSBs) and a build-up in S-phase in glioblastoma (GBM) cell lines. Here we investigated whether or not this was due to genotoxic stress as well as metabolic stress generated by exposure to high dose ascorbate, radiation, ascorbate plus radiation and H2O2 in established and primary GBM cell lines. Genotoxic stress was measured as phosphorylation of the variant histone protein, H2AX, 8-oxo-7,8-dihydroguanine (8OH-dG) positive cells and cells with comet tails. Metabolic stress was measured as a decrease in NADH flux, mitochondrial membrane potential (by CMXRos), ATP levels (by ATP luminescence) and mitochondrial superoxide production (by mitoSOX). High dose ascorbate, ascorbate plus radiation, and H2O2 treatments induced both genotoxic and metabolic stress. Exposure to high dose ascorbate blocked DNA synthesis in both DNA damaged and undamaged cell of ascorbate sensitive GBM cell lines. H2O2 treatment blocked DNA synthesis in all cell lines with and without DNA damage. DNA synthesis arrest in cells with damaged DNA is likely due to both genotoxic and metabolic stress. However, arrest in DNA synthesis in cells with undamaged DNA is likely due to oxidative damage to components of the mitochondrial energy metabolism pathway. PMID:28737676

  6. Prediction and measurement of thermally induced cambial tissue necrosis in tree stems

    Science.gov (United States)

    Joshua L. Jones; Brent W. Webb; Bret W. Butler; Matthew B. Dickinson; Daniel Jimenez; James Reardon; Anthony S. Bova

    2006-01-01

    A model for fire-induced heating in tree stems is linked to a recently reported model for tissue necrosis. The combined model produces cambial tissue necrosis predictions in a tree stem as a function of heating rate, heating time, tree species, and stem diameter. Model accuracy is evaluated by comparison with experimental measurements in two hardwood and two softwood...

  7. ORIGINAL ARTICLES Warfarin-induced skin necrosis in HIV-1 ...

    African Journals Online (AJOL)

    F Bhaijee, H Wainwright, G Meintjes, R J Wilkinson, G Todd, E de Vries, D J Pepper. Warfarin-induced skin necrosis (WISN) is a rare complication of warfarin ..... first few days of warfarin therapy.2,11 Warfarin is a vitamin K antagonist and ...

  8. Metabolic syndrome induced by anticancer treatment in childhood cancer survivors.

    Science.gov (United States)

    Chueh, Hee Won; Yoo, Jae Ho

    2017-06-01

    The number of childhood cancer survivors is increasing as survival rates improve. However, complications after treatment have not received much attention, particularly metabolic syndrome. Metabolic syndrome comprises central obesity, dyslipidemia, hypertension, and insulin resistance, and cancer survivors have higher risks of cardiovascular events compared with the general population. The mechanism by which cancer treatment induces metabolic syndrome is unclear. However, its pathophysiology can be categorized based on the cancer treatment type administered. Brain surgery or radiotherapy may induce metabolic syndrome by damaging the hypothalamic-pituitary axis, which may induce pituitary hormone deficiencies. Local therapy administered to particular endocrine organs directly damages the organs and causes hormone deficiencies, which induce obesity and dyslipidemia leading to metabolic syndrome. Chemotherapeutic agents interfere with cell generation and growth, damage the vascular endothelial cells, and increase the cardiovascular risk. Moreover, chemotherapeutic agents induce oxidative stress, which also induces metabolic syndrome. Physical inactivity caused by cancer treatment or the cancer itself, dietary restrictions, and the frequent use of antibiotics may also be risk factors for metabolic syndrome. Since childhood cancer survivors with metabolic syndrome have higher risks of cardiovascular events at an earlier age, early interventions should be considered. The optimal timing of interventions and drug use has not been established, but lifestyle modifications and exercise interventions that begin during cancer treatment might be beneficial and tailored education and interventions that account for individual patients' circumstances are needed. This review evaluates the recent literature that describes metabolic syndrome in cancer survivors, with a focus on its pathophysiology.

  9. Myricetin protects against diet-induced obesity and ameliorates oxidative stress in C57BL/6 mice.

    Science.gov (United States)

    Su, Hong-Ming; Feng, Li-Na; Zheng, Xiao-Dong; Chen, Wei

    2016-06-01

    Myricetin is a naturally occurring antioxidant commonly found in various plants. However, little information is available with respect to its direct anti-obesity effects. This study was undertaken to investigate the effect of myricetin on high-fat diet (HFD)-induced obesity in C57BL/6 mice. Administration of myricetin dramatically reduced the body weight of diet-induced obese mice compared with solely HFD-induced mice. Several parameters related to obesity including serum glucose, triglyceride, and cholesterol were significantly decreased in myricetin-treated mice. Moreover, obesity-associated oxidative stress (glutathione peroxidase (GPX) activity, total antioxidant capacity (T-AOC), and malondialdehyde (MDA)) and inflammation (tumor necrosis factor-α (TNF-α)) were ameliorated in myricetin-treated mice. Further investigation revealed that the protective effect of myricetin against HFD-induced obesity in mice appeared to be partially mediated through the down-regulation of mRNA expression of adipogenic transcription factors peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα), and lipogenic transcription factor sterol regulatory element-binding protein 1c (SREBP-1c). Consumption of myricetin may help to prevent obesity and obesity-related metabolic complications.

  10. Ethanol exposure induces the cancer-associated fibroblast phenotype and lethal tumor metabolism

    Science.gov (United States)

    Sanchez-Alvarez, Rosa; Martinez-Outschoorn, Ubaldo E.; Lin, Zhao; Lamb, Rebecca; Hulit, James; Howell, Anthony; Sotgia, Federica; Rubin, Emanuel; Lisanti, Michael P.

    2013-01-01

    Little is known about how alcohol consumption promotes the onset of human breast cancer(s). One hypothesis is that ethanol induces metabolic changes in the tumor microenvironment, which then enhances epithelial tumor growth. To experimentally test this hypothesis, we used a co-culture system consisting of human breast cancer cells (MCF7) and hTERT-immortalized fibroblasts. Here, we show that ethanol treatment (100 mM) promotes ROS production and oxidative stress in cancer-associated fibroblasts, which is sufficient to induce myofibroblastic differentiation. Oxidative stress in stromal fibroblasts also results in the onset of autophagy/mitophagy, driving the induction of ketone body production in the tumor microenvironment. Interestingly, ethanol has just the opposite effect in epithelial cancer cells, where it confers autophagy resistance, elevates mitochondrial biogenesis and induces key enzymes associated with ketone re-utilization (ACAT1/OXCT1). During co-culture, ethanol treatment also converts MCF7 cells from an ER(+) to an ER(-) status, which is thought to be associated with “stemness,” more aggressive behavior and a worse prognosis. Thus, ethanol treatment induces ketone production in cancer-associated fibroblasts and ketone re-utilization in epithelial cancer cells, fueling tumor cell growth via oxidative mitochondrial metabolism (OXPHOS). This “two-compartment” metabolic model is consistent with previous historical observations that ethanol is first converted to acetaldehyde (which induces oxidative stress) and then ultimately to acetyl-CoA (a high-energy mitochondrial fuel), or can be used to synthesize ketone bodies. As such, our results provide a novel mechanism by which alcohol consumption could metabolically convert “low-risk” breast cancer patients to “high-risk” status, explaining tumor recurrence or disease progression. Hence, our findings have clear implications for both breast cancer prevention and therapy. Remarkably, our results

  11. Detection of radiation-induced brain necrosis in live rats using label-free time-resolved fluorescence spectroscopy (TRFS) (Conference Presentation)

    Science.gov (United States)

    Hartl, Brad A.; Ma, Htet S. W.; Sridharan, Shamira; Hansen, Katherine; Klich, Melanie; Perks, Julian; Kent, Michael; Kim, Kyoungmi; Fragoso, Ruben; Marcu, Laura

    2017-02-01

    Differentiating radiation-induced necrosis from recurrent tumor in the brain remains a significant challenge to the neurosurgeon. Clinical imaging modalities are not able to reliably discriminate the two tissue types, making biopsy location selection and surgical management difficult. Label-free fluorescence lifetime techniques have previously been shown to be able to delineate human brain tumor from healthy tissues. Thus, fluorescence lifetime techniques represent a potential means to discriminate the two tissues in real-time during surgery. This study aims to characterize the endogenous fluorescence lifetime signatures from radiation induced brain necrosis in a tumor-free rat model. Fischer rats received a single fraction of 60 Gy of radiation to the right hemisphere using a linear accelerator. Animals underwent a terminal live surgery after gross necrosis had developed, as verified with MRI. During surgery, healthy and necrotic brain tissue was measured with a fiber optic needle connected to a multispectral fluorescence lifetime system. Measurements of the necrotic tissue showed a 48% decrease in intensity and 20% increase in lifetimes relative to healthy tissue. Using a support vector machine classifier and leave-one-out validation technique, the necrotic tissue was correctly classified with 94% sensitivity and 97% specificity. Spectral contribution analysis also confirmed that the primary source of fluorescence contrast lies within the redox and bound-unbound population shifts of nicotinamide adenine dinucleotide. A clinical trial is presently underway to measure these tissue types in humans. These results show for the first time that radiation-induced necrotic tissue in the brain contains significantly different metabolic signatures that are detectable with label-free fluorescence lifetime techniques.

  12. Myostatin induces mitochondrial metabolic alteration and typical apoptosis in cancer cells

    Science.gov (United States)

    Liu, Y; Cheng, H; Zhou, Y; Zhu, Y; Bian, R; Chen, Y; Li, C; Ma, Q; Zheng, Q; Zhang, Y; Jin, H; Wang, X; Chen, Q; Zhu, D

    2013-01-01

    Myostatin, a member of the transforming growth factor-β superfamily, regulates the glucose metabolism of muscle cells, while dysregulated myostatin activity is associated with a number of metabolic disorders, including muscle cachexia, obesity and type II diabetes. We observed that myostatin induced significant mitochondrial metabolic alterations and prolonged exposure of myostatin induced mitochondria-dependent apoptosis in cancer cells addicted to glycolysis. To address the underlying mechanism, we found that the protein levels of Hexokinase II (HKII) and voltage-dependent anion channel 1 (VDAC1), two key regulators of glucose metabolisms as well as metabolic stress-induced apoptosis, were negatively correlated. In particular, VDAC1 was dramatically upregulated in cells that are sensitive to myostatin treatment whereas HKII was downregulated and dissociated from mitochondria. Myostatin promoted the translocation of Bax from cytosol to mitochondria, and knockdown of VDAC1 inhibited myostatin-induced Bax translocation and apoptosis. These apoptotic changes can be partially rescued by repletion of ATP, or by ectopic expression of HKII, suggesting that perturbation of mitochondrial metabolism is causally linked with subsequent apoptosis. Our findings reveal novel function of myostatin in regulating mitochondrial metabolism and apoptosis in cancer cells. PMID:23412387

  13. Reduced α-MSH Underlies Hypothalamic ER-Stress-Induced Hepatic Gluconeogenesis.

    Science.gov (United States)

    Schneeberger, Marc; Gómez-Valadés, Alicia G; Altirriba, Jordi; Sebastián, David; Ramírez, Sara; Garcia, Ainhoa; Esteban, Yaiza; Drougard, Anne; Ferrés-Coy, Albert; Bortolozzi, Analía; Garcia-Roves, Pablo M; Jones, John G; Manadas, Bruno; Zorzano, Antonio; Gomis, Ramon; Claret, Marc

    2015-07-21

    Alterations in ER homeostasis have been implicated in the pathophysiology of obesity and type-2 diabetes (T2D). Acute ER stress induction in the hypothalamus produces glucose metabolism perturbations. However, the neurobiological basis linking hypothalamic ER stress with abnormal glucose metabolism remains unknown. Here, we report that genetic and induced models of hypothalamic ER stress are associated with alterations in systemic glucose homeostasis due to increased gluconeogenesis (GNG) independent of body weight changes. Defective alpha melanocyte-stimulating hormone (α-MSH) production underlies this metabolic phenotype, as pharmacological strategies aimed at rescuing hypothalamic α-MSH content reversed this phenotype at metabolic and molecular level. Collectively, our results posit defective α-MSH processing as a fundamental mediator of enhanced GNG in the context of hypothalamic ER stress and establish α-MSH deficiency in proopiomelanocortin (POMC) neurons as a potential contributor to the pathophysiology of T2D. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Diglycolic acid is the nephrotoxic metabolite in diethylene glycol poisoning inducing necrosis in human proximal tubule cells in vitro.

    Science.gov (United States)

    Landry, Greg M; Martin, Sarah; McMartin, Kenneth E

    2011-11-01

    Diethylene glycol (DEG), a solvent and chemical intermediate, can produce an acute toxic syndrome, the hallmark of which is acute renal failure due to cortical tubular degeneration and proximal tubular necrosis. DEG is metabolized to two primary metabolites, 2-hydroxyethoxyacetic acid (2-HEAA) and diglycolic acid (DGA), which are believed to be the proximate toxicants. The precise mechanism of toxicity has yet to be elucidated, so these studies were designed to determine which metabolite was responsible for the proximal tubule cell death. Human proximal tubule (HPT) cells in culture, obtained from normal cortical tissue and passaged 3-6 times, were incubated with increasing concentrations of DEG, 2-HEAA, or DGA separately and in combination for 48 h at pH 6 or 7.4, and various parameters of necrotic and apoptotic cell death were measured. DEG and 2-HEAA did not produce any cell death. DGA produced dose-dependent necrosis at concentrations above 25 mmol/l. DGA did not affect caspase-3 activity and increased annexin V staining only in propidium iodide-stained cells. Hence, DGA induced necrosis, not apoptosis, as corroborated by severe depletion of cellular adenosine triphosphate levels. DGA is structurally similar to citric acid cycle intermediates that are taken up by specific transporters in kidney cells. HPT cells, incubated with N-(p-amylcinnamoyl)anthranilic acid, a sodium dicarboxylate-1 transporter inhibitor showed significantly decreased cell death compared with DGA alone. These studies demonstrate that DGA is the toxic metabolite responsible for DEG-induced proximal tubular necrosis and suggest a possible transporter-mediated uptake of DGA leading to toxic accumulation and cellular dysfunction.

  15. Lifestyle-induced metabolic inflexibility and accelerated ageing syndrome: insulin resistance, friend or foe?

    Directory of Open Access Journals (Sweden)

    Bell Jimmy D

    2009-04-01

    Full Text Available Abstract The metabolic syndrome may have its origins in thriftiness, insulin resistance and one of the most ancient of all signalling systems, redox. Thriftiness results from an evolutionarily-driven propensity to minimise energy expenditure. This has to be balanced with the need to resist the oxidative stress from cellular signalling and pathogen resistance, giving rise to something we call 'redox-thriftiness'. This is based on the notion that mitochondria may be able to both amplify membrane-derived redox growth signals as well as negatively regulate them, resulting in an increased ATP/ROS ratio. We suggest that 'redox-thriftiness' leads to insulin resistance, which has the effect of both protecting the individual cell from excessive growth/inflammatory stress, while ensuring energy is channelled to the brain, the immune system, and for storage. We also suggest that fine tuning of redox-thriftiness is achieved by hormetic (mild stress signals that stimulate mitochondrial biogenesis and resistance to oxidative stress, which improves metabolic flexibility. However, in a non-hormetic environment with excessive calories, the protective nature of this system may lead to escalating insulin resistance and rising oxidative stress due to metabolic inflexibility and mitochondrial overload. Thus, the mitochondrially-associated resistance to oxidative stress (and metabolic flexibility may determine insulin resistance. Genetically and environmentally determined mitochondrial function may define a 'tipping point' where protective insulin resistance tips over to inflammatory insulin resistance. Many hormetic factors may induce mild mitochondrial stress and biogenesis, including exercise, fasting, temperature extremes, unsaturated fats, polyphenols, alcohol, and even metformin and statins. Without hormesis, a proposed redox-thriftiness tipping point might lead to a feed forward insulin resistance cycle in the presence of excess calories. We therefore suggest

  16. Surgical techniques in radiation induced temporal lobe necrosis in nasopharyngeal carcinoma patients.

    Science.gov (United States)

    Alfotih, Gobran Taha Ahmed; Zheng, Mei Guang; Cai, Wang Qing; Xu, Xin Ke; Hu, Zhen; Li, Fang Cheng

    2016-01-01

    Radiation induced brain injury ranges from acute reversible edema to late, irreversible radiation necrosis. Radiation induced temporal lobe necrosis is associated with permanent neurological deficits and occasionally progresses to death. We present our experience with surgery on radiation induced temporal lobe necrosis (RTLN) in nasopharyngeal carcinoma (NPC) patients with special consideration of clinical presentation, surgical technique, and outcomes. This retrospective study includes 12 patients with RTLN treated by the senior author between January 2010 and December 2014. Patients initially sought medical treatment due to headache; other symptoms were hearing loss, visual deterioration, seizure, hemiparesis, vertigo, memory loss and agnosia. A temporal approach through a linear incision was performed for all cases. RTLN was found in one side in 7 patients, and bilaterally in 5. 4 patients underwent resection of necrotic tissue bilaterally and 8 patients on one side. No death occurred in this series of cases. There were no post-operative complications, except 1 patient who developed aseptic meningitis. All 12 patients were free from headache. No seizure occurred in patients with preoperative epilepsy. Other symptoms such as hemiparesis and vertigo improved in all patients. Memory loss, agnosia and hearing loss did not change post-operatively in all cases. The follow-up MR images demonstrated no recurrence of necrotic lesions in all 12 patients. Neurosurgical intervention through a temporal approach with linear incision is warranted in patients with radiation induced temporal lobe necrosis with significant symptoms and signs of increased intracranial pressure, minimum space occupying effect on imaging, or neurological deterioration despite conservative management. Copyright © 2016 Polish Neurological Society. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  17. Ask yeast how to burn your fats: lessons learned from the metabolic adaptation to salt stress.

    Science.gov (United States)

    Pascual-Ahuir, Amparo; Manzanares-Estreder, Sara; Timón-Gómez, Alba; Proft, Markus

    2018-02-01

    Here, we review and update the recent advances in the metabolic control during the adaptive response of budding yeast to hyperosmotic and salt stress, which is one of the best understood signaling events at the molecular level. This environmental stress can be easily applied and hence has been exploited in the past to generate an impressively detailed and comprehensive model of cellular adaptation. It is clear now that this stress modulates a great number of different physiological functions of the cell, which altogether contribute to cellular survival and adaptation. Primary defense mechanisms are the massive induction of stress tolerance genes in the nucleus, the activation of cation transport at the plasma membrane, or the production and intracellular accumulation of osmolytes. At the same time and in a coordinated manner, the cell shuts down the expression of housekeeping genes, delays the progression of the cell cycle, inhibits genomic replication, and modulates translation efficiency to optimize the response and to avoid cellular damage. To this fascinating interplay of cellular functions directly regulated by the stress, we have to add yet another layer of control, which is physiologically relevant for stress tolerance. Salt stress induces an immediate metabolic readjustment, which includes the up-regulation of peroxisomal biomass and activity in a coordinated manner with the reinforcement of mitochondrial respiratory metabolism. Our recent findings are consistent with a model, where salt stress triggers a metabolic shift from fermentation to respiration fueled by the enhanced peroxisomal oxidation of fatty acids. We discuss here the regulatory details of this stress-induced metabolic shift and its possible roles in the context of the previously known adaptive functions.

  18. Diclofenac inhibits tumor necrosis factor-α-induced nuclear factor-κB activation causing synergistic hepatocyte apoptosis.

    Science.gov (United States)

    Fredriksson, Lisa; Herpers, Bram; Benedetti, Giulia; Matadin, Quraisha; Puigvert, Jordi C; de Bont, Hans; Dragovic, Sanja; Vermeulen, Nico P E; Commandeur, Jan N M; Danen, Erik; de Graauw, Marjo; van de Water, Bob

    2011-06-01

    Drug-induced liver injury (DILI) is an important clinical problem. It involves crosstalk between drug toxicity and the immune system, but the exact mechanism at the cellular hepatocyte level is not well understood. Here we studied the mechanism of crosstalk in hepatocyte apoptosis caused by diclofenac and the proinflammatory cytokine tumor necrosis factor α (TNF-α). HepG2 cells were treated with diclofenac followed by TNF-α challenge and subsequent evaluation of necrosis and apoptosis. Diclofenac caused a mild apoptosis of HepG2 cells, which was strongly potentiated by TNF-α. A focused apoptosis machinery short interference RNA (siRNA) library screen identified that this TNF-α-mediated enhancement involved activation of caspase-3 through a caspase-8/Bid/APAF1 pathway. Diclofenac itself induced sustained activation of c-Jun N-terminal kinase (JNK) and inhibition of JNK decreased both diclofenac and diclofenac/TNF-α-induced apoptosis. Live cell imaging of GFPp65/RelA showed that diclofenac dampened the TNF-α-mediated nuclear factor kappaB (NF-κB) translocation oscillation in association with reduced NF-κB transcriptional activity. This was associated with inhibition by diclofenac of the TNF-α-induced phosphorylation of the inhibitor of NF-κB alpha (IκBα). Finally, inhibition of IκB kinase β (IKKβ) with BMS-345541 as well as stable lentiviral short hairpin RNA (shRNA)-based knockdown of p65/RelA sensitized hepatocytes towards diclofenac/TNF-α-induced cytotoxicity. Together, our data suggest a model whereby diclofenac-mediated stress signaling suppresses TNF-α-induced survival signaling routes and sensitizes cells to apoptosis. Copyright © 2011 American Association for the Study of Liver Diseases.

  19. Endoplasmic Reticulum Stress Cooperates in Zearalenone-Induced Cell Death of RAW 264.7 Macrophages

    Directory of Open Access Journals (Sweden)

    Fenglei Chen

    2015-08-01

    Full Text Available Zearalenone (ZEA is a fungal mycotoxin that causes cell apoptosis and necrosis. However, little is known about the molecular mechanisms of ZEA toxicity. The objective of this study was to explore the effects of ZEA on the proliferation and apoptosis of RAW 264.7 macrophages and to uncover the signaling pathway underlying the cytotoxicity of ZEA in RAW 264.7 macrophages. This study demonstrates that the endoplasmic reticulum (ER stress pathway cooperated in ZEA-induced cell death of the RAW 264.7 macrophages. Our results show that ZEA treatment reduced the viability of RAW 264.7 macrophages in a dose- and time-dependent manner as shown by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay (MTT and flow cytometry assay. Western blots analysis revealed that ZEA increased the expression of glucose-regulated protein 78 (GRP78 and CCAAT/enhancer binding protein homologous protein (CHOP, two ER stress-related marker genes. Furthermore, treating the cells with the ER stress inhibitors 4-phenylbutyrate (4-PBA or knocking down CHOP, using lentivirus encoded short hairpin interfering RNAs (shRNAs, significantly diminished the ZEA-induced increases in GRP78 and CHOP, and cell death. In summary, our results suggest that ZEA induces the apoptosis and necrosis of RAW 264.7 macrophages in a dose- and time-dependent manner via the ER stress pathway in which the activation of CHOP plays a critical role.

  20. Pravastatin Protects Against Avascular Necrosis of Femoral Head via Autophagy.

    Science.gov (United States)

    Liao, Yun; Zhang, Ping; Yuan, Bo; Li, Ling; Bao, Shisan

    2018-01-01

    Autophagy serves as a stress response and may contribute to the pathogenesis of avascular necrosis of the femoral head induced by steroids. Statins promote angiogenesis and ameliorate endothelial functions through apoptosis inhibition and necrosis of endothelial progenitor cells, however the process used by statins to modulate autophagy in avascular necrosis of the femoral head remains unclear. This manuscript determines whether pravastatin protects against dexamethasone-induced avascular necrosis of the femoral head by activating endothelial progenitor cell autophagy. Pravastatin was observed to enhance the autophagy activity in endothelial progenitor cells, specifically by upregulating LC3-II/Beclin-1 (autophagy related proteins), and autophagosome formation in vivo and in vitro . An autophagy inhibitor, 3-MA, reduced pravastatin protection in endothelial progenitor cells exposed to dexamethasone by attenuating pravastatin-induced autophagy. Adenosine monophosphate-activated protein kinase (AMPK) is a key autophagy regulator by sensing cellular energy changes, and indirectly suppressing activation of the mammalian target of rapamycin (mTOR). We found that phosphorylation of AMPK was upregulated however phosphorylation of mTOR was downregulated in pravastatin-treated endothelial progenitor cells, which was attenuated by AMPK inhibitor compound C. Furthermore, liver kinase B1 (a phosphorylase of AMPK) knockdown eliminated pravastatin regulated autophagy protein LC3-II in endothelial progenitor cells in vitro . We therefore demonstrated pravastatin rescued endothelial progenitor cells from dexamethasone-induced autophagy dysfunction through the AMPK-mTOR signaling pathway in a liver kinase B1-dependent manner. Our results provide useful information for the development of novel therapeutics for management of glucocorticoids-induced avascular necrosis of the femoral head.

  1. The cathepsin B inhibitor z-FA-CMK induces cell death in leukemic T cells via oxidative stress.

    Science.gov (United States)

    Liow, K Y; Chow, Sek C

    2018-01-01

    The cathepsin B inhibitor benzyloxycarbonyl-phenylalanine-alanine-chloromethyl ketone (z-FA-CMK) was recently found to induce apoptosis at low concentrations in Jurkat T cells, while at higher concentrations, the cells die of necrosis. In the present study, we showed that z-FA-CMK readily depletes intracellular glutathione (GSH) with a concomitant increase in reactive oxygen species (ROS) generation. The toxicity of z-FA-CMK in Jurkat T cells was completely abrogated by N-acetylcysteine (NAC), suggesting that the toxicity mediated by z-FA-CMK is due to oxidative stress. We found that L-buthionine sulfoximine (BSO) which depletes intracellular GSH through the inhibition of GSH biosynthesis in Jurkat T cells did not promote ROS increase or induce cell death. However, NAC was still able to block z-FA-CMK toxicity in Jurkat T cells in the presence of BSO, indicating that the protective effect of NAC does not involve GSH biosynthesis. This is further corroborated by the protective effect of the non-metabolically active D-cysteine on z-FA-CMK toxicity. Furthermore, in BSO-treated cells, z-FA-CMK-induced ROS increased which remains unchanged, suggesting that the depletion of GSH and increase in ROS generation mediated by z-FA-CMK may be two separate events. Collectively, our results demonstrated that z-FA-CMK toxicity is mediated by oxidative stress through the increase in ROS generation.

  2. LKB1 promotes metabolic flexibility in response to energy stress.

    Science.gov (United States)

    Parker, Seth J; Svensson, Robert U; Divakaruni, Ajit S; Lefebvre, Austin E; Murphy, Anne N; Shaw, Reuben J; Metallo, Christian M

    2017-09-01

    The Liver Kinase B1 (LKB1) tumor suppressor acts as a metabolic energy sensor to regulate AMP-activated protein kinase (AMPK) signaling and is commonly mutated in various cancers, including non-small cell lung cancer (NSCLC). Tumor cells deficient in LKB1 may be uniquely sensitized to metabolic stresses, which may offer a therapeutic window in oncology. To address this question we have explored how functional LKB1 impacts the metabolism of NSCLC cells using 13 C metabolic flux analysis. Isogenic NSCLC cells expressing functional LKB1 exhibited higher flux through oxidative mitochondrial pathways compared to those deficient in LKB1. Re-expression of LKB1 also increased the capacity of cells to oxidize major mitochondrial substrates, including pyruvate, fatty acids, and glutamine. Furthermore, LKB1 expression promoted an adaptive response to energy stress induced by anchorage-independent growth. Finally, this diminished adaptability sensitized LKB1-deficient cells to combinatorial inhibition of mitochondrial complex I and glutaminase. Together, our data implicate LKB1 as a major regulator of adaptive metabolic reprogramming and suggest synergistic pharmacological strategies for mitigating LKB1-deficient NSCLC tumor growth. Copyright © 2016. Published by Elsevier Inc.

  3. Diabetic Cardiovascular Disease Induced by Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Yosuke Kayama

    2015-10-01

    Full Text Available Cardiovascular disease (CVD is the leading cause of morbidity and mortality among patients with diabetes mellitus (DM. DM can lead to multiple cardiovascular complications, including coronary artery disease (CAD, cardiac hypertrophy, and heart failure (HF. HF represents one of the most common causes of death in patients with DM and results from DM-induced CAD and diabetic cardiomyopathy. Oxidative stress is closely associated with the pathogenesis of DM and results from overproduction of reactive oxygen species (ROS. ROS overproduction is associated with hyperglycemia and metabolic disorders, such as impaired antioxidant function in conjunction with impaired antioxidant activity. Long-term exposure to oxidative stress in DM induces chronic inflammation and fibrosis in a range of tissues, leading to formation and progression of disease states in these tissues. Indeed, markers for oxidative stress are overexpressed in patients with DM, suggesting that increased ROS may be primarily responsible for the development of diabetic complications. Therefore, an understanding of the pathophysiological mechanisms mediated by oxidative stress is crucial to the prevention and treatment of diabetes-induced CVD. The current review focuses on the relationship between diabetes-induced CVD and oxidative stress, while highlighting the latest insights into this relationship from findings on diabetic heart and vascular disease.

  4. Modulation of Hypercholesterolemia-Induced Oxidative/Nitrative Stress in the Heart

    Science.gov (United States)

    Sárközy, Márta; Pipicz, Márton; Dux, László; Csont, Tamás

    2016-01-01

    Hypercholesterolemia is a frequent metabolic disorder associated with increased risk for cardiovascular morbidity and mortality. In addition to its well-known proatherogenic effect, hypercholesterolemia may exert direct effects on the myocardium resulting in contractile dysfunction, aggravated ischemia/reperfusion injury, and diminished stress adaptation. Both preclinical and clinical studies suggested that elevated oxidative and/or nitrative stress plays a key role in cardiac complications induced by hypercholesterolemia. Therefore, modulation of hypercholesterolemia-induced myocardial oxidative/nitrative stress is a feasible approach to prevent or treat deleterious cardiac consequences. In this review, we discuss the effects of various pharmaceuticals, nutraceuticals, some novel potential pharmacological approaches, and physical exercise on hypercholesterolemia-induced oxidative/nitrative stress and subsequent cardiac dysfunction as well as impaired ischemic stress adaptation of the heart in hypercholesterolemia. PMID:26788247

  5. Metabolic and vascular pattern in medial pterygoid muscle is altered by chronic stress in an animal model of hypodontia.

    Science.gov (United States)

    Fernández, Rodrigo Alberto Restrepo; Pereira, Yamba Carla Lara; Iyomasa, Daniela Mizusaki; Calzzani, Ricardo Alexandre; Leite-Panissi, Christie Ramos Andrade; Iyomasa, Mamie Mizusaki; Nascimento, Glauce Crivelaro

    2018-03-01

    Psychological stress is an important perpetuating, worsening and risk factor for temporomandibular disorders of muscular or articular origin. Occlusion instability, by the way, is considered a risk factor of this pathology and can be reproduced in some experimental animal models. The exact physiologic mechanism underlying these relations however, remains unclear. Our purpose was to test the hypothesis that chronic stress and unilateral exodontia induce metabolic and vascular changes in the medial pterygoid muscle of rats. Adult Wistar rats were submitted to chronic unpredictable stress and/or unilateral exodontia and their plasma and medial pterygoid muscle were removed for analysis. The parameters evaluated included plasma levels of corticosterone, metabolic activity by succinate dehydrogenase, oxidative capacity by nicotinamide adenine dinucleotide diaphorase, capillary density by laminin and alfa-CD staining and reactive oxidative species production. Chronic unpredictable stress as an isolated factor, increased oxidative metabolism, capillary density and reactive oxygen species production at medial pterygoid muscle. Conversely, exodontia has a main effect in metabolism, promoting glycolytic transformation of muscle fibers. Association of both factors induced a major glycolytic pattern in muscle and vascular changes. Our findings provide insights into the mechanisms, possibly inducing metabolic and vascular alterations on medial pterygoid muscle of rats, by which chronic stress and occlusal instabilities might be involved as risk factors in the pathophysiology of temporomandibular disorders with muscular components. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. [Experimental study on avascular necrosis of femoral head in chickens induced by different glucocorticoides].

    Science.gov (United States)

    Xiao, Chun-Sheng; Lin, Na; Lin, Shi-Fu; Wan, Rong; Chen, Wei-Heng

    2010-03-01

    To study the effects of Methylprednisolone and Dexamethasone on the avascular necrosis of femoral head in chickens. Thirty-six chickens were randomly divided into 6 groups (n = 6): control group (group A), Methylprednisolone low dose group (group B), Methylprednisolone large dose group (group C), small dose Dexamethasone and horse serum group (group D), middle dose Dexamethasone and horse serum group (group E), and Dexamethasone large dose group (group F). On the 6th and 12th weeks, blood samples were obtained to determine the level of total cholesterol triglyeride (TG), high density lipoprotein (HDL) and low density lipoprotein (LDL). On the 12th week, femoral heads were taken off. Paraffin tissue sections were prepared to detect histopathologic change with hematoxylin and eosin staining. On the 6th week, compared with group A, the level of CHO increased significantly in group C and group F (P < 0.05), and TG increased in group B, C and group E, while HDL decreased in group B, C and group E. On the 12th week, the level of TG and CHO increased in group B, C, E and group F, and HDL decreased in group C, D and group E (P < 0.05). LDL was not detected in most chickens. The ratio of empty lacuna was higher in group C and group E compared with those of the control group (P < 0.05). Methylprednisolone is easier to induce osteonecrosis of femoral head than Dexamethasone. The condition of metabolic disorder in blood may be the basic pathomechanism of steroid-induced necrosis of femoral head.

  7. The effects of vitamin-E on oxidative stress and metabolic imbalance induced by acute unilateral ureteral obstruction in anaesthetized rats

    Directory of Open Access Journals (Sweden)

    Shirazi M

    2008-12-01

    Full Text Available "nBackground: Obstructive nephropathy has been associated with disorders in metabolism state and oxidative balance of kidney. Stress oxidative play a key role in the pathophysiological processes of renal diseases. The objective of this study was to investigate effects of vitamin-E, as a powerful antioxidant, on renal oxidative stress and metabolism defect induced by 24-hr unilateral ureteral obstruction (UUO. "nMethods: Anesthetized male Sprague-Dawley rats (n=10 in each group were sterilely operated to occlude the left ureter. In UUO+NS, we had a single dose normal saline injection and in UUO+VitE and UUO+OO groups, D-α-tocopherol (50 mg/kg, the main component of vitamin-E, and its vehicle (Olive Oil, respectively, were twicely infused I.P. before and after UUO-induction. There were also sham-operated and control groups. 24-hr after of UUO-induction, both kidneys were removed and stored in -70°C. To determine metabolism condition, the levels of ATP and ADP; and to evaluate redox state, the levels of malondialdehyde (MDA and ferric reducing/antioxidant power (FRAP of kidneys were assessed. "nResults: The comparisons between UUO+NS and sham groups indicated that UUO increased MDA (p<0.001 and ADP (p<0.05, but decreased FRAP, and ATP/ADP ratio in obstructed kidney (all p<0.001. In UUO+VitE group, MDA and FRAP were equal to their levels in sham group, while ATP, ADP and ATP/ADP ratio were not different from those of UUO+NS group in obstructed kidney. "nConclusion: Twenty four hour of UUO caused renal reduction in oxidative metabolism and elevations in reactive oxygen species; and administration of vitamin-E, although considerably ameliorated the oxidative stress, could not improve the defected metabolism.

  8. MutY DNA Glycosylase Protects Cells From Tumor Necrosis Factor Alpha-Induced Necroptosis.

    Science.gov (United States)

    Tran, An Hue Vy; Han, Se Hee; Kim, Joon; Grasso, Francesca; Kim, In San; Han, Ye Sun

    2017-07-01

    Numerous studies have implied that mutY DNA glycosylase (MYH) is involved in the repair of post-replicative mispairs and plays a critical role in the base excision repair pathway. Recent in vitro studies have shown that MYH interacts with tumor necrosis factor receptor type 1-associated death domain (TRADD), a key effector protein of tumor necrosis factor receptor-1 (TNFR1) signaling. The association between MYH and TRADD is reversed during tumor necrosis factor alpha (TNF-α)- and camptothecin (CPT)-induced apoptosis, and enhanced during TNF-α-induced survival. After investigating the role of MYH interacts with various proteins following TNF-α stimulation, here, we focus on MYH and TRADD interaction functions in necroptosis and its effects to related proteins. We report that the level of the MYH and TRADD complex was also reduced during necroptosis induced by TNF-α and zVAD-fmk. In particular, we also found that MYH is a biologically important necrosis suppressor. Under combined TNF-α and zVAD-fmk treatment, MYH-deficient cells were induced to enter the necroptosis pathway but primary mouse embryonic fibroblasts (MEFs) were not. Necroptosis in the absence of MYH proceeds via the inactivation of caspase-8, followed by an increase in the formation of the kinase receptor- interacting protein 1 (RIP1)-RIP3 complex. Our results suggested that MYH, which interacts with TRADD, inhibits TNF-α necroptotic signaling. Therefore, MYH inactivation is essential for necroptosis via the downregulation of caspase-8. J. Cell. Biochem. 118: 1827-1838, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Oxidative burst-dependent NETosis is implicated in the resolution of necrosis-associated sterile inflammation

    Directory of Open Access Journals (Sweden)

    Mona Helena Biermann

    2016-12-01

    Full Text Available Necrosis is associated with a profound inflammatory response. The regulation of necrosis-associated inflammation, particularly the mechanisms responsible for resolution of inflammation are incompletely characterized. Nanoparticles are known to induce plasma membrane damage and necrosis followed by sterile inflammation. We observed that injection of metabolically inert nanodiamonds resulted in paw edema in WT and Ncf1** mice. However, while inflammation quickly resolved in WT mice, it persisted over several weeks in Ncf1** mice indicating failure of resolution of inflammation. Mechanistically, NOX2-dependent reactive oxygen species (ROS production and formation of neutrophil extracellular traps (NETs were essential for the resolution of necrosis-induced inflammation: Hence, by evaluating the fate of the particles at the site of inflammation, we observed that Ncf1** mice deficient in NADPH-dependent ROS failed to generate granulation tissue therefore being unable to trap the nanodiamonds. These data suggest that NOX2-dependent NETosis is crucial for preventing the chronification of the inflammatory response to tissue necrosis by forming NETosis-dependent barriers between the necrotic and healthy surrounding tissue.

  10. Effects of propofol on damage of rat intestinal epithelial cells induced by heat stress and lipopolysaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Tang, J.; Jiang, Y. [Southern Medical University, Nanfang Hospital, Department of Anesthesia, Guangzhou, China, Department of Anesthesia, Nanfang Hospital, Southern Medical University, Guangzhou (China); Tang, Y.; Chen, B. [Guangzhou General Hospital of Guangzhou Military Command, Department of Intensive Care Unit, Guangzhou, China, Department of Intensive Care Unit, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou (China); Sun, X. [Laboratory of Traditional Chinese Medicine Syndrome, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou (China); Su, L.; Liu, Z. [Guangzhou General Hospital of Guangzhou Military Command, Department of Intensive Care Unit, Guangzhou, China, Department of Intensive Care Unit, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou (China)

    2013-06-25

    Gut-derived endotoxin and pathogenic bacteria have been proposed as important causative factors of morbidity and death during heat stroke. However, it is still unclear what kind of damage is induced by heat stress. In this study, the rat intestinal epithelial cell line (IEC-6) was treated with heat stress or a combination of heat stress and lipopolysaccharide (LPS). In addition, propofol, which plays an important role in anti-inflammation and organ protection, was applied to study its effects on cellular viability and apoptosis. Heat stress, LPS, or heat stress combined with LPS stimulation can all cause intestinal epithelial cell damage, including early apoptosis and subsequent necrosis. However, propofol can alleviate injuries caused by heat stress, LPS, or the combination of heat stress and LPS. Interestingly, propofol can only mitigate LPS-induced intestinal epithelial cell apoptosis, and has no protective role in heat-stress-induced apoptosis. This study developed a model that can mimic the intestinal heat stress environment. It demonstrates the effects on intestinal epithelial cell damage, and indicated that propofol could be used as a therapeutic drug for the treatment of heat-stress-induced intestinal injuries.

  11. Effects of propofol on damage of rat intestinal epithelial cells induced by heat stress and lipopolysaccharides

    International Nuclear Information System (INIS)

    Tang, J.; Jiang, Y.; Tang, Y.; Chen, B.; Sun, X.; Su, L.; Liu, Z.

    2013-01-01

    Gut-derived endotoxin and pathogenic bacteria have been proposed as important causative factors of morbidity and death during heat stroke. However, it is still unclear what kind of damage is induced by heat stress. In this study, the rat intestinal epithelial cell line (IEC-6) was treated with heat stress or a combination of heat stress and lipopolysaccharide (LPS). In addition, propofol, which plays an important role in anti-inflammation and organ protection, was applied to study its effects on cellular viability and apoptosis. Heat stress, LPS, or heat stress combined with LPS stimulation can all cause intestinal epithelial cell damage, including early apoptosis and subsequent necrosis. However, propofol can alleviate injuries caused by heat stress, LPS, or the combination of heat stress and LPS. Interestingly, propofol can only mitigate LPS-induced intestinal epithelial cell apoptosis, and has no protective role in heat-stress-induced apoptosis. This study developed a model that can mimic the intestinal heat stress environment. It demonstrates the effects on intestinal epithelial cell damage, and indicated that propofol could be used as a therapeutic drug for the treatment of heat-stress-induced intestinal injuries

  12. Concurrence of High Fat Diet and APOE Gene Induces Allele Specific Metabolic and Mental Stress Changes in a Mouse Model of Alzheimer's Disease.

    Science.gov (United States)

    Segev, Yifat; Livne, Adva; Mints, Meshi; Rosenblum, Kobi

    2016-01-01

    Aging is the main risk factor for neurodegenerative diseases, including Alzheimer's disease (AD). However, evidence indicates that the pathological process begins long before actual cognitive or pathological symptoms are apparent. The long asymptomatic phase and complex integration between genetic, environmental and metabolic factors make it one of the most challenging diseases to understand and cure. In the present study, we asked whether an environmental factor such as high-fat (HF) diet would synergize with a genetic factor to affect the metabolic and cognitive state in the Apolipoprotein E (ApoE4) mouse model of AD. Our data suggest that a HF diet induces diabetes mellitus (DM)-like metabolism in ApoE4 mice, as well as changes in β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) protein levels between the two ApoE strains. Furthermore, HF diet induces anxiety in this AD mouse model. Our results suggest that young ApoE4 carriers are prone to psychological stress and metabolic abnormalities related to AD, which can easily be triggered via HF nutrition.

  13. Metabolic consequences of stress during childhood and adolescence.

    Science.gov (United States)

    Pervanidou, Panagiota; Chrousos, George P

    2012-05-01

    Stress, that is, the state of threatened or perceived as threatened homeostasis, is associated with activation of the stress system, mainly comprised by the hypothalamic-pituitary-adrenal axis and the arousal/sympathetic nervous systems. The stress system normally functions in a circadian manner and interacts with other systems to regulate a variety of behavioral, endocrine, metabolic, immune, and cardiovascular functions. However, the experience of acute intense physical or emotional stress, as well as of chronic stress, may lead to the development of or may exacerbate several psychologic and somatic conditions, including anxiety disorders, depression, obesity, and the metabolic syndrome. In chronically stressed individuals, both behavioral and neuroendocrine mechanisms promote obesity and metabolic abnormalities: unhealthy lifestyles in conjunction with dysregulation of the stress system and increased secretion of cortisol, catecholamines, and interleukin-6, with concurrently elevated insulin concentrations, lead to development of central obesity, insulin resistance, and the metabolic syndrome. Fetal life, childhood, and adolescence are particularly vulnerable periods of life to the effects of intense acute or chronic stress. Similarly, these life stages are crucial for the later development of behavioral, metabolic, and immune abnormalities. Developing brain structures and functions related to stress regulation, such as the amygdala, the hippocampus, and the mesocorticolimbic system, are more vulnerable to the effects of stress compared with mature structures in adults. Moreover, chronic alterations in cortisol secretion in children may affect the timing of puberty, final stature, and body composition, as well as cause early-onset obesity, metabolic syndrome, and type 2 diabetes mellitus. The understanding of stress mechanisms leading to metabolic abnormalities in early life may lead to more effective prevention and intervention strategies of obesity

  14. Ruminant Nutrition Symposium: ruminant production and metabolic responses to heat stress.

    Science.gov (United States)

    Baumgard, L H; Rhoads, R P

    2012-06-01

    Heat stress compromises efficient animal production by marginalizing nutrition, management, and genetic selection efforts to maximize performance endpoints. Modifying farm infrastructure has yielded modest success in mitigating heat stress-related losses, yet poor production during the summer remains arguably the costliest issue facing livestock producers. Reduced output (e.g., milk yield and muscle growth) during heat stress was traditionally thought to result from decreased nutrient intake (i.e., a classic biological response shared by all animals during environmental-induced hyperthermia). Our recent observations have begun to challenge this belief and indicate heat-stressed animals employ novel homeorhetic strategies to direct metabolic and fuel selection priorities independently of nutrient intake or energy balance. Alterations in systemic physiology support a shift in carbohydrate metabolism, evident by increased basal and stimulated circulating insulin concentrations. Perhaps most intriguing given the energetic shortfall of the heat-stressed animal is the apparent lack of basal adipose tissue mobilization coupled with a reduced responsiveness to lipolytic stimuli. Thus, the heat stress response markedly alters postabsorptive carbohydrate, lipid, and protein metabolism independently of reduced feed intake through coordinated changes in fuel supply and utilization by multiple tissues. Interestingly, the systemic, cellular, and molecular changes appear conserved amongst different species and physiological states. Ultimately, these changes result in the reprioritization of fuel selection during heat stress, which appears to be primarily responsible for reduced ruminant animal productivity during the warm summer months.

  15. Heat stress induces different forms of cell death in sea anemones and their endosymbiotic algae depending on temperature and duration.

    Science.gov (United States)

    Dunn, S R; Thomason, J C; Le Tissier, M D A; Bythell, J C

    2004-11-01

    Bleaching of reef building corals and other symbiotic cnidarians due to the loss of their dinoflagellate algal symbionts (=zooxanthellae), and/or their photosynthetic pigments, is a common sign of environmental stress. Mass bleaching events are becoming an increasingly important cause of mortality and reef degradation on a global scale, linked by many to global climate change. However, the cellular mechanisms of stress-induced bleaching remain largely unresolved. In this study, the frequency of apoptosis-like and necrosis-like cell death was determined in the symbiotic sea anemone Aiptasia sp. using criteria that had previously been validated for this symbiosis as indicators of programmed cell death (PCD) and necrosis. Results indicate that PCD and necrosis occur simultaneously in both host tissues and zooxanthellae subject to environmentally relevant doses of heat stress. Frequency of PCD in the anemone endoderm increased within minutes of treatment. Peak rates of apoptosis-like cell death in the host were coincident with the timing of loss of zooxanthellae during bleaching. The proportion of apoptosis-like host cells subsequently declined while cell necrosis increased. In the zooxanthellae, both apoptosis-like and necrosis-like activity increased throughout the duration of the experiment (6 days), dependent on temperature dose. A stress-mediated PCD pathway is an important part of the thermal stress response in the sea anemone symbiosis and this study suggests that PCD may play different roles in different components of the symbiosis during bleaching.

  16. 3,3'-diindolylmethane potentiates tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis of gastric cancer cells.

    Science.gov (United States)

    Ye, Yang; Miao, Shuhan; Wang, Yan; Zhou, Jianwei; Lu, Rongzhu

    2015-05-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) specifically kills cancer cells without destroying the majority of healthy cells. However, numerous types of cancer cell, including gastric cancer cells, tend to be resistant to TRAIL. The bioactive product 3,3'-diindolylmethane (DIM), which is derived from cruciferous vegetables, is also currently recognized as a candidate anticancer agent. In the present study, a Cell Counting Kit 8 cell growth assay and an Annexin V-fluorescein isothiocyanate apoptosis assay were performed to investigate the potentiating effect of DIM on TRAIL-induced apoptosis in gastric cancer cells, and the possible mechanisms of this potentiation. The results obtained demonstrated that, compared with TRAIL or DIM treatment alone, co-treatment with TRAIL (25 or 50 ng/ml) and DIM (10 µmol/l) induced cytotoxic and apoptotic effects in BGC-823 and SGC-7901 gastric cancer cells. Furthermore, western blot analysis revealed that the protein expression levels of death receptor 5 (DR5), CCAAT/enhancer binding protein homologous protein (CHOP) and glucose-regulated protein 78 (GRP78) were upregulated in the co-treated gastric cancer cells. To the best of our knowledge, the present study is the first to provide evidence that DIM sensitizes TRAIL-induced inhibition of proliferation and apoptosis in gastric cancer cells, accompanied by the upregulated expression of DR5, CHOP and GRP78 proteins, which may be involved in endoplasmic reticulum stress mechanisms.

  17. Susceptibility of human head and neck cancer cells to combined inhibition of glutathione and thioredoxin metabolism.

    Directory of Open Access Journals (Sweden)

    Arya Sobhakumari

    Full Text Available Increased glutathione (GSH and thioredoxin (Trx metabolism are mechanisms that are widely implicated in resistance of cancer cells to chemotherapy. The current study determined if simultaneous inhibition of GSH and Trx metabolism enhanced cell killing of human head and neck squamous cell carcinoma (HNSCC cells by a mechanism involving oxidative stress. Inhibition of GSH and Trx metabolism with buthionine sulfoximine (BSO and auranofin (AUR, respectively, induced significant decreases in clonogenic survival compared to either drug alone in FaDu, Cal-27 and SCC-25 HNSCC cells in vitro and in vivo in Cal-27 xenografts. BSO+AUR significantly increased glutathione and thioredoxin oxidation and suppressed peroxiredoxin activity in vitro. Pre-treatment with N-acetylcysteine completely reversed BSO+AUR-induced cell killing in FaDu and Cal-27 cells, while catalase and selenium supplementation only inhibited BSO+AUR-induced cell killing in FaDu cells. BSO+AUR decreased caspase 3/7 activity in HNSCC cells and significantly reduced the viability of both Bax/Bak double knockout (DKO and DKO-Bax reconstituted hematopoietic cells suggesting that necrosis was involved. BSO+AUR also significantly sensitized FaDu, Cal-27, SCC-25 and SQ20B cells to cell killing induced by the EGFR inhibitor Erlotinib in vitro. These results support the conclusion that simultaneous inhibition of GSH and Trx metabolism pathways induces oxidative stress and clonogenic killing in HNSCCs and this strategy may be useful in sensitizing HNSCCs to EGFR inhibitors.

  18. Synergistic effects of drought stress and photoperiods on phenology and secondary metabolism of Silybum marianum.

    Science.gov (United States)

    Zahir, Adnan; Abbasi, Bilal Haider; Adil, Muhammad; Anjum, Sumaira; Zia, Muhammad; Ihsan-Ul-Haq

    2014-09-01

    Silybum marianum is an important medicinal plant of the family Asteraceae, well known for its set of bioactive isomeric mixture of secondary metabolites "silymarin", primarily acting as a hepato-protective agent. Abiotic stress augments plant secondary metabolism in different plant tissues to withstand harsh environmental fluctuations. In the current study, our aim was to induce drought stress in vitro on S. marianum under the influence of different photoperiod treatments to study the effects, with respect to variations in secondary metabolic profile and plant growth and development. S. marianum was extremely vulnerable to different levels of mannitol-induced drought stress. Water deficiency inhibited root induction completely and retarded plant growth was observed; however, phytochemical analysis revealed enhanced accumulation of total phenolic content (TPC), total flavonoid content (TFC), and total protein content along with several antioxidative enzymes. Secondary metabolic content was positively regulated with increasing degree of drought stress. A dependent correlation of seed germination frequency at mild drought stress and antioxidative activities was established with 2 weeks dark + 2 weeks 16/8 h photoperiod treatment, respectively, whereas a positive correlation existed for TPC and TFC when 4 weeks 16/8 h photoperiod treatment was applied. The effects of drought stress are discussed in relation to phenology, seed germination frequency, biomass build up, antioxidative potential, and secondary metabolites accumulation.

  19. Sodium nitroprusside (SNP) alleviates the oxidative stress induced ...

    African Journals Online (AJOL)

    Oxidative damage is often induced by abiotic stress, nitric oxide (NO) is considered as a functional molecule in modulating antioxidant metabolism of plants. In the present study, effects of sodium nitroprusside (SNP), a NO donor, on the phenotype, antioxidant capacity and chloroplast ultrastructure of cucumber leaves were ...

  20. Diet-induced obesity associated with steatosis, oxidative stress, and inflammation in liver.

    Science.gov (United States)

    Peng, Yanhua; Rideout, Drew; Rakita, Steven; Lee, James; Murr, Michel

    2012-01-01

    Obesity induces steatosis and increases oxidative stress, as well as chronic inflammation in the liver. The balance between lipogenesis and lipolysis is disrupted in obese animals. At a cellular level, the changes in metabolic sensors and energy regulators are poorly understood. We hypothesized that diet-induced steatosis increases oxidative stress, inflammation, and changes the metabolic regulators to promote energy storage in mice. The setting was a university-affiliated basic science research laboratory. Four-week-old C57BL mice were fed a high-fat diet (n = 8) or regular chow (n = 8) for 7 weeks. The liver sections were stained for fat content and immunofluorescence. Liver homogenates were used for protein analysis by immunoblotting and mRNA analysis by reverse transcriptase-polymerase chain reaction. The gels were quantified using densitometry P ≤ .05 was considered significant. The high-fat diet upregulated protein kinase-C atypical isoforms ζ and λ and decreased glucose tolerance and the interaction of insulin receptor substrate 2 with phosphoinositide kinase-3. The high-fat diet increased the transcriptional factors liver X receptor (4321 ± 98 versus 2981 ± 80) and carbohydrate response element-binding protein (5132 ± 135 versus 3076 ± 91), the lipogenesis genes fatty acid binding protein 5, stearoyl-co-enzyme A desaturase-1, and acetyl-co-enzyme A carboxylase protein, and fatty acid synthesis. The high-fat diet decreased 5'-adenosine monophosphate-activated protein kinase (2561 ± 78 versus 1765 ± 65), glucokinase-3β (2.214 ± 34 versus 3356 ± 86), and SIRT1 (2015 ± 76 versus 3567 ± 104) and increased tumor necrosis factor-α (3415 ± 112 versus 2042 ± 65), nuclear factor kappa B (5123 ± 201 versus 2562 ± 103), cyclooxygenase-2 (4230 ± 113 versus 2473 ± 98), nicotinamide-adenine dinucleotide phosphate oxidase (3501 ± 106 versus 1600 ± 69) and reactive oxygen species production (all P high-fat diet impairs glucose tolerance and hepatic

  1. Silymarin Suppresses Cellular Inflammation By Inducing Reparative Stress Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Lovelace, Erica S.; Wagoner, Jessica; MacDonald, James; Bammler, Theo; Bruckner, Jacob; Brownell, Jessica; Beyer, Richard; Zink, Erika M.; Kim, Young-Mo; Kyle, Jennifer E.; Webb-Robertson, Bobbie-Jo M.; Waters, Katrina M.; Metz, Thomas O.; Farin, Federico; Oberlies, Nicholas H.; Polyak, Steve

    2015-08-28

    Silymarin (SM), a natural product, is touted as a liver protectant and preventer of both chronic inflammation and diseases. To define how SM elicits these effects at a systems level, we performed transcriptional profiling, metabolomics, and signaling studies in human liver and T cell lines. Multiple pathways associated with cellular stress and metabolism were modulated by SM treatment within 0.5 to four hours: activation of Activating Transcription Factor 4 (ATF-4) and adenosine monophosphate protein kinase (AMPK) and inhibition of mammalian target of rapamycin (mTOR) signaling, the latter being associated with induction of DNA-damage-inducible transcript 4 (DDIT4). Metabolomics analyses revealed suppression of glycolytic, TCA cycle, and amino acid metabolism by SM treatment. Antiinflammatory effects arose with prolonged (i.e. 24 hours) SM exposure, with suppression of multiple proinflammatory mRNAs and nuclear factor kappa B (NF-κB) and forkhead box O (FOXO) signaling. Studies with murine knock out cells revealed that SM inhibition of both mTOR and NF-κB was partially AMPK dependent, while SM inhibition of the mTOR pathway in part required DDIT4. Thus, SM activates stress and repair responses that culminate in an anti-inflammatory phenotype. Other natural products induced similar stress responses, which correlated with their ability to suppress inflammation. Therefore, natural products like SM may be useful as tools to define how metabolic, stress, and repair pathways regulate cellular inflammation.

  2. Comparative metabolic responses and adaptive strategies of wheat (Triticum aestivum) to salt and alkali stress.

    Science.gov (United States)

    Guo, Rui; Yang, Zongze; Li, Feng; Yan, Changrong; Zhong, Xiuli; Liu, Qi; Xia, Xu; Li, Haoru; Zhao, Long

    2015-07-07

    It is well known that salinization (high-pH) has been considered as a major environmental threat to agricultural systems. The aim of this study was to investigate the differences between salt stress and alkali stress in metabolic profiles and nutrient accumulation of wheat; these parameters were also evaluated to determine the physiological adaptive mechanisms by which wheat tolerates alkali stress. The harmful effect of alkali stress on the growth and photosynthesis of wheat were stronger than those of salt stress. High-pH of alkali stress induced the most of phosphate and metal ions to precipitate; as a result, the availability of nutrients significantly declined. Under alkali stress, Ca sharply increased in roots, however, it decreased under salt stress. In addition, we detected the 75 metabolites that were different among the treatments according to GC-MS analysis, including organic acids, amino acids, sugars/polyols and others. The metabolic data showed salt stress and alkali stress caused different metabolic shifts; alkali stress has a stronger injurious effect on the distribution and accumulation of metabolites than salt stress. These outcomes correspond to specific detrimental effects of a highly pH environment. Ca had a significant positive correlation with alkali tolerates, and increasing Ca concentration can immediately trigger SOS Na exclusion system and reduce the Na injury. Salt stress caused metabolic shifts toward gluconeogenesis with increased sugars to avoid osmotic stress; energy in roots and active synthesis in leaves were needed by wheat to develop salt tolerance. Alkali stress (at high pH) significantly inhibited photosynthetic rate; thus, sugar production was reduced, N metabolism was limited, amino acid production was reduced, and glycolysis was inhibited.

  3. Metabolic targeting of lactate efflux by malignant glioma inhibits invasiveness and induces necrosis: an in vivo study.

    Science.gov (United States)

    Colen, Chaim B; Shen, Yimin; Ghoddoussi, Farhad; Yu, Pingyang; Francis, Todd B; Koch, Brandon J; Monterey, Michael D; Galloway, Matthew P; Sloan, Andrew E; Mathupala, Saroj P

    2011-07-01

    Glioblastoma multiforme (GBM) are the most malignant among brain tumors. They are frequently refractory to chemotherapy and radiotherapy with mean patient survival of approximately 6 months, despite surgical intervention. The highly glycolytic nature of glioblastomas describes their propensity to metabolize glucose to lactic acid at an elevated rate. To survive, GBMs efflux lactic acid to the tumor microenvironment through transmembrane transporters denoted monocarboxylate transporters (MCTs). We hypothesized that inhibition of MCT function would impair the glycolytic metabolism and affect both glioma invasiveness and survival. We examined the effect on invasiveness with α-cyano-4-hydroxy-cinnamic acid (ACCA, 4CIN, CHCA), a small-molecule inhibitor of lactate transport, through Matrigel-based and organotypic (brain) slice culture invasive assays using U87-MG and U251-MG glioma cells. We then conducted studies in immunodeficient rats by stereotaxic intracranial implantation of the glioma cells followed by programmed orthotopic application of ACCA through osmotic pumps. Effect on the implanted tumor was monitored by small-animal magnetic resonance imaging. Our assays indicated that glioma invasion was markedly impaired when lactate efflux was inhibited. Convection-enhanced delivery of inhibitor to the tumor bed caused tumor necrosis, with 50% of the animals surviving beyond the experimental end points (3 months after inhibitor exhaustion). Most importantly, control animals did not display any adverse neurologic effects during orthotopic administration of ACCA to brain through programmed delivery. These results indicate the clinical potential of targeting lactate efflux in glioma through delivery of small-molecule inhibitors of MCTs either to the tumor bed or to the postsurgical resection cavity.

  4. Metabolic Targeting of Lactate Efflux by Malignant Glioma Inhibits Invasiveness and Induces Necrosis: An In Vivo Study

    Directory of Open Access Journals (Sweden)

    Chaim B Colen

    2011-07-01

    Full Text Available Glioblastoma multiforme (GBM are the most malignant among brain tumors. They are frequently refractory to chemotherapy and radiotherapy with mean patient survival of approximately 6 months, despite surgical intervention. The highly glycolytic nature of glioblastomas describes their propensity to metabolize glucose to lactic acid at an elevated rate. To survive, GBMs efflux lactic acid to the tumor microenvironment through transmembrane transporters denoted monocarboxylate transporters (MCTs. We hypothesized that inhibition of MCT function would impair the glycolytic metabolism and affect both glioma invasiveness and survival. We examined the effect on invasiveness with α-cyano-4-hydroxy-cinnamic acid (ACCA, 4CIN, CHCA, a small-molecule inhibitor of lactate transport, through Matrigel-based and organotypic (brain slice culture invasive assays using U87-MG and U251-MG glioma cells. We then conducted studies in immunodeficient rats by stereotaxic intracranial implantation of the glioma cells followed by programmed orthotopic application of ACCA through osmotic pumps. Effect on the implanted tumor was monitored by small-animal magnetic resonance imaging. Our assays indicated that glioma invasion was markedly impaired when lactate efflux was inhibited. Convection-enhanced delivery of inhibitor to the tumor bed caused tumor necrosis, with 50% of the animals surviving beyond the experimental end points (3 months after inhibitor exhaustion. Most importantly, control animals did not display any adverse neurologic effects during orthotopic administration of ACCA to brain through programmed delivery. These results indicate the clinical potential of targeting lactate efflux in glioma through delivery of small-molecule inhibitors of MCTs either to the tumor bed or to the postsurgical resection cavity.

  5. A fluorescence-coupled assay for gamma aminobutyric acid (GABA reveals metabolic stress-induced modulation of GABA content in neuroendocrine cancer.

    Directory of Open Access Journals (Sweden)

    Joseph E Ippolito

    Full Text Available Pathways involved in the synthesis of the neurotransmitter gamma-aminobutyric acid (GABA have been implicated in the pathogenesis of high grade neuroendocrine (NE neoplasms as well as neoplasms from a non-NE lineage. Using The Cancer Genome Atlas, overexpression of the GABA synthetic enzyme, glutamate decarboxylase 1 (GAD1, was found to be associated with decreased disease free-survival in prostate adenocarcinoma and decreased overall survival in clear cell renal cell carcinomas. Furthermore, GAD1 was found to be expressed in castrate-resistant prostate cancer cell lines, but not androgen-responsive cell lines. Using a novel fluorescence-coupled enzymatic microplate assay for GABA mediated through reduction of resazurin in a prostate neuroendocrine carcinoma (PNEC cell line, acid microenvironment-induced stress increased GABA levels while alkaline microenvironment-induced stress decreased GABA through modulation of GAD1 and glutamine synthetase (GLUL activities. Moreover, glutamine but not glucose deprivation decreased GABA through modulation of GLUL. Consistent with evidence in prokaryotic and eukaryotic organisms that GABA synthesis mediated through GAD1 may play a crucial role in surviving stress, GABA may be an important mediator of stress survival in neoplasms. These findings identify GABA synthesis and metabolism as a potentially important pathway for regulating cancer cell stress response as well as a potential target for therapeutic strategies.

  6. Regulatory landscape of AGE-RAGE-oxidative stress axis and its modulation by PPARγ activation in high fructose diet-induced metabolic syndrome.

    Science.gov (United States)

    Cannizzaro, Luca; Rossoni, Giuseppe; Savi, Federica; Altomare, Alessandra; Marinello, Cristina; Saethang, Thammakorn; Carini, Marina; Payne, D Michael; Pisitkun, Trairak; Aldini, Giancarlo; Leelahavanichkul, Asada

    2017-01-01

    The AGE-RAGE-oxidative stress (AROS) axis is involved in the onset and progression of metabolic syndrome induced by a high-fructose diet (HFD). PPARγ activation is known to modulate metabolic syndrome; however a systems-level investigation looking at the protective effects of PPARγ activation as related to the AROS axis has not been performed. The aim of this work is to simultaneously characterize multiple molecular parameters within the AROS axis, using samples taken from different body fluids and tissues of a rat model of HFD-induced metabolic syndrome, in the presence or absence of a PPARγ agonist, Rosiglitazone (RGZ). Rats were fed with 60% HFD for the first half of the treatment duration (21 days) then continued with either HFD alone or HFD plus RGZ for the second half. Rats receiving HFD alone showed metabolic syndrome manifestations including hypertension, dyslipidemia, increased glucose levels and insulin resistance, as well as abnormal kidney and inflammatory parameters. Systolic blood pressure, plasma triglyceride and glucose levels, plasma creatinine, and albuminuria were significantly improved in the presence of RGZ. The following molecular parameters of the AROS axis were significantly upregulated in our rat model: carboxymethyl lysine (CML) in urine and liver; carboxyethyl lysine (CEL) in urine; advanced glycation end products (AGEs) in plasma; receptor for advanced glycation end products (RAGE) in liver and kidney; advanced oxidation protein products (AOPP) in plasma; and 4-hydroxynonenal (HNE) in plasma, liver, and kidney. Conversely, with RGZ administration, the upregulation of AOPP and AGEs in plasma, CML and CEL in urine, RAGE in liver as well as HNE in plasma and liver was significantly counteracted/prevented. Our data demonstrate (i) the systems-level regulatory landscape of HFD-induced metabolic syndrome involving multiple molecular parameters, including HNE, AGEs and their receptor RAGE, and (ii) attenuation of metabolic syndrome by

  7. Role of tumor necrosis factor in flavone acetic acid-induced tumor vasculature shutdown

    International Nuclear Information System (INIS)

    Mahadevan, V.; Malik, S.T.; Meager, A.; Fiers, W.; Lewis, G.P.; Hart, I.R.

    1990-01-01

    Flavone acetic acid (FAA), a novel investigational antitumor agent, has been shown to cause early vascular shutdown in several experimental murine tumors, and this phenomenon is believed to be crucial to FAA's antitumor effects. However, the basis of this FAA-induced tumor vascular shutdown is unknown. In this study a radioactive tracer-clearance technique has been used as an objective indication of tumor blood flow to show that i.p. administered FAA induces a progressive and sustained reduction in blood flow in a colon 26 tumor growing s.c. in syngeneic mice. As early as 1 h after administration, there was a significant increase in the t1/2 clearance value for intratumorally injected 133Xe, reaching a peak at 3 h (117.3 +/- 36.4 versus 7.8 +/- 0.85 min for controls). Significant inhibition of blood flow was still apparent 48 h after a single injection of drug. This FAA-induced vascular shutdown was virtually abolished in tumor-bearing mice pretreated with an antiserum against tumor necrosis factor, while no such effect was observed in controls pretreated with nonimmune serum (t1/2 of 10.8 +/- 1.2 versus 65.6 +/- 8.0 min for controls). Furthermore, in vitro FAA was seen to induce tumor necrosis factor secretion from murine peritoneal cells and splenocytes. These studies suggest that FAA-induced tumor vascular shutdown in the colon 26 tumor is mediated by tumor necrosis factor

  8. Laforin prevents stress-induced polyglucosan body formation and Lafora disease progression in neurons.

    Science.gov (United States)

    Wang, Yin; Ma, Keli; Wang, Peixiang; Baba, Otto; Zhang, Helen; Parent, Jack M; Zheng, Pan; Liu, Yang; Minassian, Berge A; Liu, Yan

    2013-08-01

    Glycogen, the largest cytosolic macromolecule, is soluble because of intricate construction generating perfect hydrophilic-surfaced spheres. Little is known about neuronal glycogen function and metabolism, though progress is accruing through the neurodegenerative epilepsy Lafora disease (LD) proteins laforin and malin. Neurons in LD exhibit Lafora bodies (LBs), large accumulations of malconstructed insoluble glycogen (polyglucosans). We demonstrated that the laforin-malin complex reduces LBs and protects neuronal cells against endoplasmic reticulum stress-induced apoptosis. We now show that stress induces polyglucosan formation in normal neurons in culture and in the brain. This is mediated by increased glucose-6-phosphate allosterically hyperactivating muscle glycogen synthase (GS1) and is followed by activation of the glycogen digesting enzyme glycogen phosphorylase. In the absence of laforin, stress-induced polyglucosans are undigested and accumulate into massive LBs, and in laforin-deficient mice, stress drastically accelerates LB accumulation and LD. The mechanism through which laforin-malin mediates polyglucosan degradation remains unclear but involves GS1 dephosphorylation by laforin. Our work uncovers the presence of rapid polyglucosan metabolism as part of the normal physiology of neuroprotection. We propose that deficiency in the degradative phase of this metabolism, leading to LB accumulation and resultant seizure predisposition and neurodegeneration, underlies LD.

  9. Role of NAD, Oxidative Stress, and Tryptophan Metabolism in Autism Spectrum Disorders

    Directory of Open Access Journals (Sweden)

    Musthafa Mohamed Essa

    2013-01-01

    Full Text Available Autism spectrum disorder (ASD is a pervasive neuro-developmental disorder characterized by impaired social interaction, reduced/absent verbal and non-verbal communication, and repetitive behavior during early childhood. The etiology of this developmental disorder is poorly understood, and no biomarkers have been identified. Identification of novel biochemical markers related to autism would be advantageous for earlier clinical diagnosis and intervention. Studies suggest that oxidative stress-induced mechanisms and reduced antioxidant defense, mitochondrial dysfunction, and impaired energy metabolism (NAD + , NADH, ATP, pyruvate, and lactate, are major causes of ASD. This review provides renewed insight regarding current autism research related to oxidative stress, mitochondrial dysfunction, and altered tryptophan metabolism in ASD.

  10. Delayed radiation-induced necrosis of the brain stem

    International Nuclear Information System (INIS)

    Yukawa, Osamu; Kodama, Yasunori; Kyoda, Jun; Yuki, Kiyoshi; Taniguchi, Eiji; Katayama, Shoichi; Hiroi, Tadashi; Uozumi, Toru.

    1993-01-01

    A 46-year-old man had surgery for a mixed glioma of the frontotemporal lobe. Postoperatively he received 50 Gy of irradiation. Sixteen months later he developed left hemiparesis and left facial palsy. MRI revealed lesion brain stem and basal ganglia. Despite chemotherapy and an additional 50 Gy dose, the patient deteriorated. Autopsy revealed a wide spread radiation-induced necrosis in the right cerebral hemisphere, midbrain and pons. In radiation therapy, great care must be taken to protect the normal brain tissue. (author)

  11. Bactericidal Antibiotics Induce Toxic Metabolic Perturbations that Lead to Cellular Damage

    Directory of Open Access Journals (Sweden)

    Peter Belenky

    2015-11-01

    Full Text Available Understanding how antibiotics impact bacterial metabolism may provide insight into their mechanisms of action and could lead to enhanced therapeutic methodologies. Here, we profiled the metabolome of Escherichia coli after treatment with three different classes of bactericidal antibiotics (β-lactams, aminoglycosides, quinolones. These treatments induced a similar set of metabolic changes after 30 min that then diverged into more distinct profiles at later time points. The most striking changes corresponded to elevated concentrations of central carbon metabolites, active breakdown of the nucleotide pool, reduced lipid levels, and evidence of an elevated redox state. We examined potential end-target consequences of these metabolic perturbations and found that antibiotic-treated cells exhibited cytotoxic changes indicative of oxidative stress, including higher levels of protein carbonylation, malondialdehyde adducts, nucleotide oxidation, and double-strand DNA breaks. This work shows that bactericidal antibiotics induce a complex set of metabolic changes that are correlated with the buildup of toxic metabolic by-products.

  12. Iron Overload Is Associated With Oxidative Stress and Nutritional Immunity During Viral Infection in Fish.

    Science.gov (United States)

    Tarifeño-Saldivia, Estefanía; Aguilar, Andrea; Contreras, David; Mercado, Luis; Morales-Lange, Byron; Márquez, Katherine; Henríquez, Adolfo; Riquelme-Vidal, Camila; Boltana, Sebastian

    2018-01-01

    Iron is a trace element, essential to support life due to its inherent ability to exchange electrons with a variety of molecules. The use of iron as a cofactor in basic metabolic pathways is essential to both pathogenic microorganisms and their hosts. During evolution, the shared requirement of micro- and macro-organisms for this important nutrient has shaped the pathogen-host relationship. Infectious pancreatic necrosis virus (IPNv) affects salmonids constituting a sanitary problem for this industry as it has an important impact on post-smolt survival. While immune modulation induced by IPNv infection has been widely characterized on Salmo salar , viral impact on iron host metabolism has not yet been elucidated. In the present work, we evaluate short-term effect of IPNv on several infected tissues from Salmo salar . We observed that IPNv displayed high tropism to headkidney, which directly correlates with a rise in oxidative stress and antiviral responses. Transcriptional profiling on headkidney showed a massive modulation of gene expression, from which biological pathways involved with iron metabolism were remarkable. Our findings suggest that IPNv infection increase oxidative stress on headkidney as a consequence of iron overload induced by a massive upregulation of genes involved in iron metabolism.

  13. Colonic Necrosis in a 4-Year-Old with Hyperlipidemic Acute Pancreatitis

    Directory of Open Access Journals (Sweden)

    Tiffany J. Patton

    2016-01-01

    Full Text Available Here we report the case of a 4-year-old male with severe acute pancreatitis due to hyperlipidemia, who presented with abdominal pain, metabolic abnormalities, and colonic necrosis. This colonic complication was secondary to the extension of a large peripancreatic fluid collection causing direct serosal autodigestion by pancreatic enzymes. Two weeks following the initial presentation, the peripancreatic fluid collection developed into a mature pancreatic pseudocyst, which was percutaneously drained. To our knowledge, this is the youngest documented pediatric case of colonic necrosis due to severe pancreatitis and the first descriptive pediatric case of a colonic complication due to hyperlipidemia-induced acute pancreatitis.

  14. ER Stress Inhibits Liver Fatty Acid Oxidation while Unmitigated Stress Leads to Anorexia-Induced Lipolysis and Both Liver and Kidney Steatosis

    Directory of Open Access Journals (Sweden)

    Diane DeZwaan-McCabe

    2017-05-01

    Full Text Available The unfolded protein response (UPR, induced by endoplasmic reticulum (ER stress, regulates the expression of factors that restore protein folding homeostasis. However, in the liver and kidney, ER stress also leads to lipid accumulation, accompanied at least in the liver by transcriptional suppression of metabolic genes. The mechanisms of this accumulation, including which pathways contribute to the phenotype in each organ, are unclear. We combined gene expression profiling, biochemical assays, and untargeted lipidomics to understand the basis of stress-dependent lipid accumulation, taking advantage of enhanced hepatic and renal steatosis in mice lacking the ER stress sensor ATF6α. We found that impaired fatty acid oxidation contributed to the early development of steatosis in the liver but not the kidney, while anorexia-induced lipolysis promoted late triglyceride and free fatty acid accumulation in both organs. These findings provide evidence for both direct and indirect regulation of peripheral metabolism by ER stress.

  15. ER Stress Inhibits Liver Fatty Acid Oxidation while Unmitigated Stress Leads to Anorexia-Induced Lipolysis and Both Liver and Kidney Steatosis.

    Science.gov (United States)

    DeZwaan-McCabe, Diane; Sheldon, Ryan D; Gorecki, Michelle C; Guo, Deng-Fu; Gansemer, Erica R; Kaufman, Randal J; Rahmouni, Kamal; Gillum, Matthew P; Taylor, Eric B; Teesch, Lynn M; Rutkowski, D Thomas

    2017-05-30

    The unfolded protein response (UPR), induced by endoplasmic reticulum (ER) stress, regulates the expression of factors that restore protein folding homeostasis. However, in the liver and kidney, ER stress also leads to lipid accumulation, accompanied at least in the liver by transcriptional suppression of metabolic genes. The mechanisms of this accumulation, including which pathways contribute to the phenotype in each organ, are unclear. We combined gene expression profiling, biochemical assays, and untargeted lipidomics to understand the basis of stress-dependent lipid accumulation, taking advantage of enhanced hepatic and renal steatosis in mice lacking the ER stress sensor ATF6α. We found that impaired fatty acid oxidation contributed to the early development of steatosis in the liver but not the kidney, while anorexia-induced lipolysis promoted late triglyceride and free fatty acid accumulation in both organs. These findings provide evidence for both direct and indirect regulation of peripheral metabolism by ER stress. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. A study of radiation-induced cerebral vascular injury in nasopharyngeal carcinoma patients with radiation-induced temporal lobe necrosis.

    Directory of Open Access Journals (Sweden)

    Jianhong Ye

    Full Text Available To investigate radiation-induced carotid and cerebral vascular injury and its relationship with radiation-induced temporal lobe necrosis in nasopharyngeal carcinoma (NPC patients.Fifty eight NPC patients with radiation-induced temporal lobe necrosis (TLN were recruited in the study. Duplex ultrasonography was used to scan bilateral carotid arterials to evaluate the intima-media thickness (IMT and occurrence of plaque formation. Flow velocities of bilateral middle cerebral arteries (MCAs, internal carotid arteries (ICAs and basal artery (BA were estimated through Transcranial Color Doppler (TCD. The results were compared with data from 33 patients who were free from radiation-induced temporal lobe necrosis after radiotherapy and 29 healthy individuals.Significant differences in IMT, occurrence of plaques of ICAs and flow velocities of both MCAs and ICAs were found between patients after radiotherapy and healthy individuals (p<0.05. IMT had positive correlation with post radiation interval (p = 0.049. Compared with results from patients without radiation-induced TLN, the mean IMT was significantly thicker in patients with TLN (p<0.001. Plaques were more common in patients with TLN than patients without TLN (p = 0.038. In addition, flow velocities of MCAs and ICAs in patients with TLN were much faster (p<0.001, p<0.001. Among patients with unilateral TLN, flow velocity of MCAs was significantly different between ipsilateral and contralateral sides to the lesion (p = 0.001.Thickening of IMT, occurrence of plaque formation and hemodynamic abnormality are more common in patients after radiotherapy, especially in those with TLN, compared with healthy individuals.

  17. Short-Term Fructose Feeding Induces Inflammation and Oxidative Stress in the Hippocampus of Young and Adult Rats.

    Science.gov (United States)

    Cigliano, Luisa; Spagnuolo, Maria Stefania; Crescenzo, Raffaella; Cancelliere, Rosa; Iannotta, Lucia; Mazzoli, Arianna; Liverini, Giovanna; Iossa, Susanna

    2018-04-01

    The drastic increase in the consumption of fructose encouraged the research to focus on its effects on brain physio-pathology. Although young and adults differ largely by their metabolic and physiological profiles, most of the previous studies investigated brain disturbances induced by long-term fructose feeding in adults. Therefore, we investigated whether a short-term consumption of fructose (2 weeks) produces early increase in specific markers of inflammation and oxidative stress in the hippocampus of young and adult rats. After the high-fructose diet, plasma lipopolysaccharide and tumour necrosis factor (TNF)-alpha were found significantly increased in parallel with hippocampus inflammation, evidenced by a significant rise in TNF-alpha and glial fibrillar acidic protein concentrations in both the young and adult groups. The fructose-induced inflammatory condition was associated with brain oxidative stress, as increased levels of lipid peroxidation and nitro-tyrosine were detected in the hippocampus. The degree of activation of the protein kinase B, extracellular signal-regulated kinase 1/2, and insulin receptor substrate 1 pathways found in the hippocampus after fructose feeding indicates that the detrimental effects of the fructose-rich diet might largely depend on age. Mitochondrial function in the hippocampus, together with peroxisome proliferator-activated receptor gamma coactivator 1-alpha content, was found significantly decreased in fructose-treated adult rats. In vitro studies with BV-2 microglial cells confirmed that fructose treatment induces TNF-alpha production as well as oxidative stress. In conclusion, these results suggest that unbalanced diet, rich in fructose, may be highly deleterious in young people as in adults and must be strongly discouraged for the prevention of diet-associated neuroinflammation and neurological diseases.

  18. Early life stress induces attention-deficit hyperactivity disorder (ADHD)-like behavioral and brain metabolic dysfunctions: functional imaging of methylphenidate treatment in a novel rodent model.

    Science.gov (United States)

    Bock, J; Breuer, S; Poeggel, G; Braun, K

    2017-03-01

    In a novel animal model Octodon degus we tested the hypothesis that, in addition to genetic predisposition, early life stress (ELS) contributes to the etiology of attention-deficit hyperactivity disorder-like behavioral symptoms and the associated brain functional deficits. Since previous neurochemical observations revealed that early life stress impairs dopaminergic functions, we predicted that these symptoms can be normalized by treatment with methylphenidate. In line with our hypothesis, the behavioral analysis revealed that repeated ELS induced locomotor hyperactivity and reduced attention towards an emotionally relevant acoustic stimulus. Functional imaging using ( 14 C)-2-fluoro-deoxyglucose-autoradiography revealed that the behavioral symptoms are paralleled by metabolic hypoactivity of prefrontal, mesolimbic and subcortical brain areas. Finally, the pharmacological intervention provided further evidence that the behavioral and metabolic dysfunctions are due to impaired dopaminergic neurotransmission. Elevating dopamine in ELS animals by methylphenidate normalized locomotor hyperactivity and attention-deficit and ameliorated brain metabolic hypoactivity in a dose-dependent manner.

  19. Nutritional mitigation of winter thermal stress in gilthead seabream associated metabolic pathways and potential indicators of nutritional state

    DEFF Research Database (Denmark)

    Richard, Nadege; Silva, Tomé S.; Wulff, Tune

    2016-01-01

    and phenylalanine/tyrosine catabolism, and induced higher aerobic metabolism and gluconeogenesis. Results support the notion that WF diet had a positive effect on fish nutritional state by partially counteracting the effect of thermal stress and underlined the sensitivity of proteome data for nutritional....... A total of 404 protein spots, out of 1637 detected, were differentially expressed between the two groups of fish. Mass spectrometry analysis of selected spots suggested that WF diet improved oxidative stress defense, reduced endoplasmic reticulum stress, enhanced metabolic flux through methionine cycle...... and metabolic profiling purposes. Intragroup variability and co-measured information were also used to pinpoint which proteins displayed a stronger relation with fish nutritional state....

  20. Exogenous spermidine is enhancing tomato tolerance to salinity-alkalinity stress by regulating chloroplast antioxidant system and chlorophyll metabolism.

    Science.gov (United States)

    Li, Jianming; Hu, Lipan; Zhang, Li; Pan, Xiongbo; Hu, Xiaohui

    2015-12-29

    Salinity-alkalinity stress is known to adversely affect a variety of processes in plants, thus inhibiting growth and decreasing crop yield. Polyamines protect plants against a variety of environmental stresses. However, whether exogenous spermidine increases the tolerance of tomato seedlings via effects on chloroplast antioxidant enzymes and chlorophyll metabolism is unknown. In this study, we examined the effect of exogenous spermidine on chlorophyll synthesis and degradation pathway intermediates and related enzyme activities, as well as chloroplast ultrastructure, gene expression, and antioxidants in salinity-alkalinity-stressed tomato seedlings. Salinity-alkalinity stress disrupted chlorophyll metabolism and hindered uroorphyrinogen III conversion to protoporphyrin IX. These effects were more pronounced in seedlings of cultivar Zhongza No. 9 than cultivar Jinpengchaoguan. Under salinity-alkalinity stress, exogenous spermidine alleviated decreases in the contents of total chlorophyll and chlorophyll a and b in seedlings of both cultivars following 4 days of stress. With extended stress, exogenous spermidine reduced the accumulation of δ-aminolevulinic acid, porphobilinogen, and uroorphyrinogen III and increased the levels of protoporphyrin IX, Mg-protoporphyrin IX, and protochlorophyllide, suggesting that spermidine promotes the conversion of uroorphyrinogen III to protoporphyrin IX. The effect occurred earlier in cultivar Jinpengchaoguan than in cultivar Zhongza No. 9. Exogenous spermidine also alleviated the stress-induced increases in malondialdehyde content, superoxide radical generation rate, chlorophyllase activity, and expression of the chlorophyllase gene and the stress-induced decreases in the activities of antioxidant enzymes, antioxidants, and expression of the porphobilinogen deaminase gene. In addition, exogenous spermidine stabilized the chloroplast ultrastructure in stressed tomato seedlings. The tomato cultivars examined exhibited different

  1. MECHANISMS IN ENDOCRINOLOGY: Nutrition as a mediator of oxidative stress in metabolic and reproductive disorders in women.

    Science.gov (United States)

    Diamanti-Kandarakis, Evanthia; Papalou, Olga; Kandaraki, Eleni A; Kassi, Georgia

    2017-02-01

    Nutrition can generate oxidative stress and trigger a cascade of molecular events that can disrupt oxidative and hormonal balance. Nutrient ingestion promotes a major inflammatory and oxidative response at the cellular level in the postprandial state, altering the metabolic state of tissues. A domino of unfavorable metabolic changes is orchestrated in the main metabolic organs, including adipose tissue, skeletal muscle, liver and pancreas, where subclinical inflammation, endothelial dysfunction, mitochondrial deregulation and impaired insulin response and secretion take place. Simultaneously, in reproductive tissues, nutrition-induced oxidative stress can potentially violate delicate oxidative balance that is mandatory to secure normal reproductive function. Taken all the above into account, nutrition and its accompanying postprandial oxidative stress, in the unique context of female hormonal background, can potentially compromise normal metabolic and reproductive functions in women and may act as an active mediator of various metabolic and reproductive disorders. © 2017 European Society of Endocrinology.

  2. The Ablation of Mitochondrial Protein Phosphatase Pgam5 Confers Resistance Against Metabolic Stress.

    Science.gov (United States)

    Sekine, Shiori; Yao, Akari; Hattori, Kazuki; Sugawara, Sho; Naguro, Isao; Koike, Masato; Uchiyama, Yasuo; Takeda, Kohsuke; Ichijo, Hidenori

    2016-03-01

    Phosphoglycerate mutase family member 5 (PGAM5) is a mitochondrial protein phosphatase that has been reported to be involved in various stress responses from mitochondrial quality control to cell death. However, its roles in vivo are largely unknown. Here, we show that Pgam5-deficient mice are resistant to several metabolic insults. Under cold stress combined with fasting, Pgam5-deficient mice better maintained body temperature than wild-type mice and showed an extended survival rate. Serum triglycerides and lipid content in brown adipose tissue (BAT), a center of adaptive thermogenesis, were severely reduced in Pgam5-deficient mice. Moreover, although Pgam5 deficiency failed to maintain proper mitochondrial integrity in BAT, it reciprocally resulted in the dramatic induction of fibroblast growth factor 21 (FGF21) that activates various functions of BAT including thermogenesis. Thus, the enhancement of lipid metabolism and FGF21 may contribute to the cold resistance of Pgam5-deficient mice under fasting condition. Finally, we also found that Pgam5-deficient mice are resistant to high-fat-diet-induced obesity. Our study uncovered that PGAM5 is involved in the whole-body metabolism in response to stresses that impose metabolic challenges on mitochondria.

  3. Ethanol exposure induces the cancer-associated fibroblast phenotype and lethal tumor metabolism: implications for breast cancer prevention.

    Science.gov (United States)

    Sanchez-Alvarez, Rosa; Martinez-Outschoorn, Ubaldo E; Lin, Zhao; Lamb, Rebecca; Hulit, James; Howell, Anthony; Sotgia, Federica; Rubin, Emanuel; Lisanti, Michael P

    2013-01-15

    Little is known about how alcohol consumption promotes the onset of human breast cancer(s). One hypothesis is that ethanol induces metabolic changes in the tumor microenvironment, which then enhances epithelial tumor growth. To experimentally test this hypothesis, we used a co-culture system consisting of human breast cancer cells (MCF7) and hTERT-immortalized fibroblasts. Here, we show that ethanol treatment (100 mM) promotes ROS production and oxidative stress in cancer-associated fibroblasts, which is sufficient to induce myofibroblastic differentiation. Oxidative stress in stromal fibroblasts also results in the onset of autophagy/mitophagy, driving the induction of ketone body production in the tumor microenvironment. Interestingly, ethanol has just the opposite effect in epithelial cancer cells, where it confers autophagy resistance, elevates mitochondrial biogenesis and induces key enzymes associated with ketone re-utilization (ACAT1/OXCT1). During co-culture, ethanol treatment also converts MCF7 cells from an ER(+) to an ER(-) status, which is thought to be associated with "stemness," more aggressive behavior and a worse prognosis. Thus, ethanol treatment induces ketone production in cancer-associated fibroblasts and ketone re-utilization in epithelial cancer cells, fueling tumor cell growth via oxidative mitochondrial metabolism (OXPHOS). This "two-compartment" metabolic model is consistent with previous historical observations that ethanol is first converted to acetaldehyde (which induces oxidative stress) and then ultimately to acetyl-CoA (a high-energy mitochondrial fuel), or can be used to synthesize ketone bodies. As such, our results provide a novel mechanism by which alcohol consumption could metabolically convert "low-risk" breast cancer patients to "high-risk" status, explaining tumor recurrence or disease progression. Hence, our findings have clear implications for both breast cancer prevention and therapy. Remarkably, our results also show that

  4. Nitrogen Metabolism in Adaptation of Photosynthesis to Water Stress in Rice Grown under Different Nitrogen Levels

    Directory of Open Access Journals (Sweden)

    Chu Zhong

    2017-06-01

    Full Text Available To investigate the role of nitrogen (N metabolism in the adaptation of photosynthesis to water stress in rice, a hydroponic experiment supplying with low N (0.72 mM, moderate N (2.86 mM, and high N (7.15 mM followed by 150 g⋅L-1 PEG-6000 induced water stress was conducted in a rainout shelter. Water stress induced stomatal limitation to photosynthesis at low N, but no significant effect was observed at moderate and high N. Non-photochemical quenching was higher at moderate and high N. In contrast, relative excessive energy at PSII level (EXC was declined with increasing N level. Malondialdehyde and hydrogen peroxide (H2O2 contents were in parallel with EXC. Water stress decreased catalase and ascorbate peroxidase activities at low N, resulting in increased H2O2 content and severer membrane lipid peroxidation; whereas the activities of antioxidative enzymes were increased at high N. In accordance with photosynthetic rate and antioxidative enzymes, water stress decreased the activities of key enzymes involving in N metabolism such as glutamate synthase and glutamate dehydrogenase, and photorespiratory key enzyme glycolate oxidase at low N. Concurrently, water stress increased nitrate content significantly at low N, but decreased nitrate content at moderate and high N. Contrary to nitrate, water stress increased proline content at moderate and high N. Our results suggest that N metabolism appears to be associated with the tolerance of photosynthesis to water stress in rice via affecting CO2 diffusion, antioxidant capacity, and osmotic adjustment.

  5. Elicitor-induced transcription factors for metabolic reprogramming of secondary metabolism in Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Dixon Richard A

    2008-12-01

    Full Text Available Abstract Background Exposure of Medicago truncatula cell suspension cultures to pathogen or wound signals leads to accumulation of various classes of flavonoid and/or triterpene defense molecules, orchestrated via a complex signalling network in which transcription factors (TFs are essential components. Results In this study, we analyzed TFs responding to yeast elicitor (YE or methyl jasmonate (MJ. From 502 differentially expressed TFs, WRKY and AP2/EREBP gene families were over-represented among YE-induced genes whereas Basic Helix-Loop-Helix (bHLH family members were more over-represented among the MJ-induced genes. Jasmonate ZIM-domain (JAZ transcriptional regulators were highly induced by MJ treatment. To investigate potential involvement of WRKY TFs in signalling, we expressed four Medicago WRKY genes in tobacco. Levels of soluble and wall bound phenolic compounds and lignin were increased in all cases. WRKY W109669 also induced tobacco endo-1,3-β-glucanase (NtPR2 and enhanced the systemic defense response to tobacco mosaic virus in transgenic tobacco plants. Conclusion These results confirm that Medicago WRKY TFs have broad roles in orchestrating metabolic responses to biotic stress, and that they also represent potentially valuable reagents for engineering metabolic changes that impact pathogen resistance.

  6. Metabolic Targeting of Lactate Efflux by Malignant Glioma Inhibits Invasiveness and Induces Necrosis: An In Vivo Study1

    Science.gov (United States)

    Colen, Chaim B; Shen, Yimin; Ghoddoussi, Farhad; Yu, Pingyang; Francis, Todd B; Koch, Brandon J; Monterey, Michael D; Galloway, Matthew P; Sloan, Andrew E; Mathupala, Saroj P

    2011-01-01

    Glioblastoma multiforme (GBM) are the most malignant among brain tumors. They are frequently refractory to chemotherapy and radiotherapy with mean patient survival of approximately 6 months, despite surgical intervention. The highly glycolytic nature of glioblastomas describes their propensity to metabolize glucose to lactic acid at an elevated rate. To survive, GBMs efflux lactic acid to the tumor microenvironment through transmembrane transporters denoted monocarboxylate transporters (MCTs). We hypothesized that inhibition of MCT function would impair the glycolytic metabolism and affect both glioma invasiveness and survival. We examined the effect on invasiveness with α-cyano-4-hydroxy-cinnamic acid (ACCA, 4CIN, CHCA), a small-molecule inhibitor of lactate transport, through Matrigel-based and organotypic (brain) slice culture invasive assays using U87-MG and U251-MG glioma cells. We then conducted studies in immunodeficient rats by stereotaxic intracranial implantation of the glioma cells followed by programmed orthotopic application of ACCA through osmotic pumps. Effect on the implanted tumor was monitored by small-animal magnetic resonance imaging. Our assays indicated that glioma invasion was markedly impaired when lactate efflux was inhibited. Convection-enhanced delivery of inhibitor to the tumor bed caused tumor necrosis, with 50% of the animals surviving beyond the experimental end points (3 months after inhibitor exhaustion). Most importantly, control animals did not display any adverse neurologic effects during orthotopic administration of ACCA to brain through programmed delivery. These results indicate the clinical potential of targeting lactate efflux in glioma through delivery of small-molecule inhibitors of MCTs either to the tumor bed or to the postsurgical resection cavity. PMID:21750656

  7. The role of heat shock protein 70 in oxidant stress and inflammatory injury in quail spleen induced by cold stress.

    Science.gov (United States)

    Ren, Jiayi; Liu, Chunpeng; Zhao, Dan; Fu, Jing

    2018-05-15

    The aim of this study was to investigate the role of heat shock protein 70 (Hsp70) in oxidative stress and inflammatory damage in the spleen of quails which were induced by cold stress. One hundred ninety-two 15-day-old male quails were randomly divided into 12 groups and kept at 12 ± 1 °C to examine acute and chronic cold stress. We first detected the changes in activities of antioxidant enzymes in the spleen tissue under acute and chronic cold stress. The activities of glutathione peroxidase (GSH-Px) fluctuated in acute cold stress groups, while they were significantly decreased (p stress. The activities of superoxide dismutase (SOD), inducible nitric oxide synthase (iNOS), and nitric oxide (NO) content were decreased significantly (p stress groups. Malondialdehyde (MDA) content was significantly increased (p stress except the 0.5 h group of acute cold stress. Besides, histopathological analysis showed that quail's spleen tissue was inflammatory injured seriously in both the acute and chronic cold stress groups. Additionally, the inflammatory factors (cyclooxygenase-2 (COX-2), prostaglandin E synthase (PTGES), iNOS, nuclear factor-kappa B (NF-κB), and tumor necrosis factor-a (TNF-α)) and Hsp70 mRNA levels were increased in both of the acute and chronic cold stress groups compared with the control groups. These results suggest that oxidative stress and inflammatory injury could be induced by cold stress in spleen tissues of quails. Furthermore, the increased expression of Hsp70 may play a role in protecting the spleen against oxidative stress and inflammatory damage caused by cold stress.

  8. The tumor necrosis factor-alpha-induced protein 8 family in immune homeostasis and inflammatory cancer diseases.

    Science.gov (United States)

    Luan, Y Y; Yao, Y M; Sheng, Z Y

    2013-01-01

    Within the immune system homeostasis is maintained by a myriad of mechanisms that include the regulation of immune cell activation and programmed cell death. The breakdown of immune homeostasis may lead to fatal inflammatory diseases. We set out to identify genes of tumor necrosis factor-alpha-induced protein 8 (TNFAIP8) family that has a functional role in the process of immune homeostasis. Tumor necrosis factor-alpha-induced protein 8 (TNFAIP8), which functions as an oncogenic molecule, is also associated with enhanced cell survival and inhibition of apoptosis. Tumor necrosis factor-alpha-induced protein 8-like 2 (TIPE2) governs immune homeostasis in both the innate and adaptive immune system and prevents hyper-responsiveness by negatively regulating signaling via T cell receptors and Toll-like receptors (TLRs). There also exist two highly homologous but uncharacterized proteins, TIPE1 and TIPE3. This review is an attempt to provide a summary of TNFAIP8 family associated with immune homeostasis and inflammatory cancer diseases.

  9. Maternal high-fat diet induces metabolic stress response disorders in offspring hypothalamus.

    Science.gov (United States)

    Nguyen, Long The; Saad, Sonia; Tan, Yi; Pollock, Carol; Chen, Hui

    2017-07-01

    Maternal obesity has been shown to increase the risk of obesity and related disorders in the offspring, which has been partially attributed to changes of appetite regulators in the offspring hypothalamus. On the other hand, endoplasmic reticulum (ER) stress and autophagy have been implicated in hypothalamic neuropeptide dysregulation, thus may also play important roles in such transgenerational effect. In this study, we show that offspring born to high-fat diet-fed dams showed significantly increased body weight and glucose intolerance, adiposity and plasma triglyceride level at weaning. Hypothalamic mRNA level of the orexigenic neuropeptide Y (NPY) was increased, while the levels of the anorexigenic pro-opiomelanocortin (POMC), NPY1 receptor (NPY1R) and melanocortin-4 receptor (MC4R) were significantly downregulated. In association, the expression of unfolded protein response (UPR) markers including glucose-regulated protein (GRP)94 and endoplasmic reticulum DNA J domain-containing protein (Erdj)4 was reduced. By contrast, protein levels of autophagy-related genes Atg5 and Atg7, as well as mitophagy marker Parkin, were slightly increased. The administration of 4-phenyl butyrate (PBA), a chemical chaperone of protein folding and UPR activator, in the offspring from postnatal day 4 significantly reduced their body weight, fat deposition, which were in association with increased activating transcription factor (ATF)4, immunoglobulin-binding protein (BiP) and Erdj4 mRNA as well as reduced Parkin, PTEN-induced putative kinase (PINK)1 and dynamin-related protein (Drp)1 protein expression levels. These results suggest that hypothalamic ER stress and mitophagy are among the regulatory factors of offspring metabolic changes due to maternal obesity. © 2017 Society for Endocrinology.

  10. Metabolic and vascular effects of tumor necrosis factor-alpha blockade with etanercept in obese patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Dominguez, Helena; Storgaard, Heidi; Rask-Madsen, Christian

    2005-01-01

    OBJECTIVE: The pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) impairs insulin action in insulin-sensitive tissues, such as fat, muscle and endothelium, and causes endothelial dysfunction. We hypothesized that TNF-alpha blockade with etanercept could reverse vascular and metabolic...... glucose uptake remained unchanged as well. Beta-cell function tended to improve. CONCLUSION: Although short-term etanercept treatment had a significant beneficial effect on systemic inflammatory markers, no improvement of vascular or metabolic insulin sensitivity was observed....

  11. MRI study of avascular necrosis of the knee

    Energy Technology Data Exchange (ETDEWEB)

    Simizu, Koh; Suguro, Toru; Tsuchiya, Akihiro; Moriya, Hideshige; Nishikawa, Satoru; Arimizu, Noboru [Chiba Univ. (Japan). School of Medicine

    1990-10-01

    Magnetic resonance (MR) images of 70 joints were reviewed in 38 patients with avascular necrosis of the knee or hip joint, whose ages ranged from 19 to 62 years with an average of 41 years. According to causes, steroid induced avascular necrosis was the commonest, accounting for 87% of cases. The remainer of the cases were alcoholic avascular necrosis (8%) and idiopathic avascular necrosis (5%). Steroid induced avascular necrosis was greatly different from idiopathic avascular necrosis in view of clinical manifestations, common sites, and complications of femur head necrosis. Idiopathic avascular necrosis was common in the central part of internal condyle and was confined to one joint. Steroid induced avascular necrosis was common in the posterior part of external condyle and was frequently associated with multiple necroses of the diaphysis. Seventy five percent of the cases were associated with avascular necrosis of the knee. The diagnostic accuracy of the other imaging modalities in avascular necrosis was low (33% for plain roentgenography and 50% for RI examination). Thus, MR was the imaging procedure of choice for detecting avascular necrotic lesions. (N.K.).

  12. MRI study of avascular necrosis of the knee

    International Nuclear Information System (INIS)

    Simizu, Koh; Suguro, Toru; Tsuchiya, Akihiro; Moriya, Hideshige; Nishikawa, Satoru; Arimizu, Noboru

    1990-01-01

    Magnetic resonance (MR) images of 70 joints were reviewed in 38 patients with avascular necrosis of the knee or hip joint, whose ages ranged from 19 to 62 years with an average of 41 years. According to causes, steroid induced avascular necrosis was the commonest, accounting for 87% of cases. The remainer of the cases were alcoholic avascular necrosis (8%) and idiopathic avascular necrosis (5%). Steroid induced avascular necrosis was greatly different from idiopathic avascular necrosis in view of clinical manifestations, common sites, and complications of femur head necrosis. Idiopathic avascular necrosis was common in the central part of internal condyle and was confined to one joint. Steroid induced avascular necrosis was common in the posterior part of external condyle and was frequently associated with multiple necroses of the diaphysis. Seventy five percent of the cases were associated with avascular necrosis of the knee. The diagnostic accuracy of the other imaging modalities in avascular necrosis was low (33% for plain roentgenography and 50% for RI examination). Thus, MR was the imaging procedure of choice for detecting avascular necrotic lesions. (N.K.)

  13. Targeting Cellular Stress Mechanisms and Metabolic Homeostasis by Chinese Herbal Drugs for Neuroprotection

    Directory of Open Access Journals (Sweden)

    Hsiao-Chien Ting

    2018-01-01

    Full Text Available Traditional Chinese medicine has been practiced for centuries in East Asia. Herbs are used to maintain health and cure disease. Certain Chinese herbs are known to protect and improve the brain, memory, and nervous system. To apply ancient knowledge to modern science, some major natural therapeutic compounds in herbs were extracted and evaluated in recent decades. Emerging studies have shown that herbal compounds have neuroprotective effects or can ameliorate neurodegenerative diseases. To understand the mechanisms of herbal compounds that protect against neurodegenerative diseases, we summarize studies that discovered neuroprotection by herbal compounds and compound-related mechanisms in neurodegenerative disease models. Those compounds discussed herein show neuroprotection through different mechanisms, such as cytokine regulation, autophagy, endoplasmic reticulum (ER stress, glucose metabolism, and synaptic function. The interleukin (IL-1β and tumor necrosis factor (TNF-α signaling pathways are inhibited by some compounds, thus attenuating the inflammatory response and protecting neurons from cell death. As to autophagy regulation, herbal compounds show opposite regulatory effects in different neurodegenerative models. Herbal compounds that inhibit ER stress prevent neuronal death in neurodegenerative diseases. Moreover, there are compounds that protect against neuronal death by affecting glucose metabolism and synaptic function. Since the progression of neurodegenerative diseases is complicated, and compound-related mechanisms for neuroprotection differ, therapeutic strategies may need to involve multiple compounds and consider the type and stage of neurodegenerative diseases.

  14. Effects of various types of stress on the metabolism of reserve carbohydrates in Saccharomyces cerevisiae: genetic evidence for a stress-induced recycling of glycogen and trehalose.

    Science.gov (United States)

    Parrou, J L; Teste, M A; François, J

    1997-06-01

    It is well known that glycogen and trehalose accumulate in yeast under nutrient starvation or entering into the stationary phase of growth, and that high levels of trehalose are found in heat-shocked cells. However, effects of various types of stress on trehalose, and especially on glycogen, are poorly documented. Taking into account that almost all genes encoding the enzymes involved in the metabolism of these two reserve carbohydrates contain between one and several copies of the stress-responsive element (STRE), an investigation was made of the possibility of a link between the potential transcriptional induction of these genes and the accumulation of glycogen and trehalose under different stress conditions. Using transcriptional fusions, it was found that all these genes were induced in a similar fashion, although to various extents, by temperature, osmotic and oxidative stresses. Experiments performed with an msn2/msn4 double mutant proved that the transcriptional induction of the genes encoding glycogen synthase (GSY2) and trehalose-6-phosphate synthase (TPS1) was needed for the small increase in glycogen and trehalose upon exposure to a mild heat stress and salt shock. However, the extent of transcriptional activation of these genes upon stresses in wild-type strains was not correlated with a proportional rise in either glycogen or trehalose. The major explanation for this lack of correlation comes from the fact that genes encoding the enzymes of the biosynthetic and of the biodegradative pathways were almost equally induced. Hence, trehalose and glycogen accumulated to much higher levels in cells lacking neutral trehalose or glycogen phosphorylase exposed to stress conditions, which suggested that one of the major effects of stress in yeast is to induce a wasteful expenditure of energy by increasing the recycling of these molecules. We also found that transcriptional induction of STRE-controlled genes was abolished at temperatures above 40 degree C, while

  15. The metabolic ER stress sensor IRE1α suppresses alternative activation of macrophages and impairs energy expenditure in obesity.

    Science.gov (United States)

    Shan, Bo; Wang, Xiaoxia; Wu, Ying; Xu, Chi; Xia, Zhixiong; Dai, Jianli; Shao, Mengle; Zhao, Feng; He, Shengqi; Yang, Liu; Zhang, Mingliang; Nan, Fajun; Li, Jia; Liu, Jianmiao; Liu, Jianfeng; Jia, Weiping; Qiu, Yifu; Song, Baoliang; Han, Jing-Dong J; Rui, Liangyou; Duan, Sheng-Zhong; Liu, Yong

    2017-05-01

    Obesity is associated with metabolic inflammation and endoplasmic reticulum (ER) stress, both of which promote metabolic disease progression. Adipose tissue macrophages (ATMs) are key players orchestrating metabolic inflammation, and ER stress enhances macrophage activation. However, whether ER stress pathways underlie ATM regulation of energy homeostasis remains unclear. Here, we identified inositol-requiring enzyme 1α (IRE1α) as a critical switch governing M1-M2 macrophage polarization and energy balance. Myeloid-specific IRE1α abrogation in Ern1 f/f ; Lyz2-Cre mice largely reversed high-fat diet (HFD)-induced M1-M2 imbalance in white adipose tissue (WAT) and blocked HFD-induced obesity, insulin resistance, hyperlipidemia and hepatic steatosis. Brown adipose tissue (BAT) activity, WAT browning and energy expenditure were significantly higher in Ern1 f/f ; Lyz2-Cre mice. Furthermore, IRE1α ablation augmented M2 polarization of macrophages in a cell-autonomous manner. Thus, IRE1α senses protein unfolding and metabolic and immunological states, and consequently guides ATM polarization. The macrophage IRE1α pathway drives obesity and metabolic syndrome through impairing BAT activity and WAT browning.

  16. Salidroside Suppresses HUVECs Cell Injury Induced by Oxidative Stress through Activating the Nrf2 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Yao Zhu

    2016-08-01

    Full Text Available Oxidative stress plays an important role in the pathogenesis of cardiovascular diseases. Salidroside (SAL, one of the main effective constituents of Rhodiola rosea, has been reported to suppress oxidative stress-induced cardiomyocyte injury and necrosis by promoting transcription of nuclear factor E2-related factor 2 (Nrf2-regulated genes such as heme oxygenase-1 (HO-1 and NAD(PH dehydrogenase (quinone1 (NQO1. However, it has not been indicated whether SAL might ameliorate endothelial injury induced by oxidative stress. Here, our study demonstrated that SAL might suppress HUVEC cell injury induced by oxidative stress through activating the Nrf2 signaling pathway. The results of our study indicated that SAL decreased the levels of intercellular reactive oxygen species (ROS and malondialdehyde (MDA, and improved the activities of superoxide dismutase (SOD and catalase (CAT, resulting in protective effects against oxidative stress-induced cell damage in HUVECs. It suppressed oxidative stress damage by inducing Nrf2 nuclear translocation and activating the expression of Nrf2-regulated antioxidant enzyme genes such as HO-1 and NQO1 in HUVECs. Knockdown of Nrf2 with siRNA abolished the cytoprotective effects against oxidative stress, decreased the expression of Nrf2, HO-1, and NQO1, and inhibited the nucleus translocation of Nrf2 in HUVECs. This study is the first to demonstrate that SAL suppresses HUVECs cell injury induced by oxidative stress through activating the Nrf2 signaling pathway.

  17. Prickly pear cactus (Opuntia ficus indica var. saboten) protects against stress-induced acute gastric lesions in rats.

    Science.gov (United States)

    Kim, Seung Hyun; Jeon, Byung Ju; Kim, Dae Hyun; Kim, Tae Il; Lee, Hee Kyoung; Han, Dae Seob; Lee, Jong-Hwan; Kim, Tae Bum; Kim, Jung Wha; Sung, Sang Hyun

    2012-11-01

    The protective activity of prickly pear cactus (Opuntia ficus indica var. saboten) fruit juice and its main constituent, betanin, were evaluated against stress-induced acute gastric lesions in rats. After 6 h of water immersion restraint stress (WIRS), gastric mucosal lesions with bleeding were induced in Sprague-Dawley rats. Pretreatment of a lyophilized powder containing O. ficus indica var. saboten fruit juice and maltodextrin (OFSM) and betanin significantly reduced stress lesions (800-1600 mg/kg). Both OFSM and betanin effectively prevented the decrease in gastric mucus content as detected by alcian blue staining. In addition, OFSM significantly suppressed WIRS-induced increases in the level of gastric mucosal tumor necrosis factor-α and myeloperoxidase (MPO). Betanin alone was only effective in decreasing MPO. These results revealed the protective activity of OFSM against stress-induced acute gastric lesions and that betanin may contribute to OFSM's gastric protective activity, at least in part. When OFSM and betanin were taken together, OFSM exerted gastroprotective activity against stress-induced gastric lesions by maintaining gastric mucus, which might be related to the attenuation of MPO-mediated damage and proinflammatory cytokine production.

  18. A liver stress-endocrine nexus promotes metabolic integrity during dietary protein dilution

    DEFF Research Database (Denmark)

    Maida, Adriano; Zota, Annika; Sjøberg, Kim Anker

    2016-01-01

    of impaired glucose homeostasis independently of obesity and food intake. DPD-mediated metabolic inefficiency and improvement of glucose homeostasis were independent of uncoupling protein 1 (UCP1), but required expression of liver-derived fibroblast growth factor 21 (FGF21) in both lean and obese mice. FGF21...... expression and secretion as well as the associated metabolic remodeling induced by DPD also required induction of liver-integrated stress response-driven nuclear protein 1 (NUPR1). Insufficiency of select nonessential amino acids (NEAAs) was necessary and adequate for NUPR1 and subsequent FGF21 induction...... and secretion in hepatocytes in vitro and in vivo. Taken together, these data indicate that DPD promotes improved glucose homeostasis through an NEAA insufficiency-induced liver NUPR1/FGF21 axis....

  19. Acetaminophen-induced liver injury in rats and mice: Comparison of protein adducts, mitochondrial dysfunction, and oxidative stress in the mechanism of toxicity

    International Nuclear Information System (INIS)

    McGill, Mitchell R.; Williams, C. David; Xie, Yuchao; Ramachandran, Anup; Jaeschke, Hartmut

    2012-01-01

    Acetaminophen (APAP) overdose is the most common cause of acute liver failure in the West. In mice, APAP hepatotoxicity can be rapidly induced with a single dose. Because it is both clinically relevant and experimentally convenient, APAP intoxication has become a popular model of liver injury. Early data demonstrated that rats are resistant to APAP toxicity. As a result, mice are the preferred species for mechanistic studies. Furthermore, recent work has shown that the mechanisms of APAP toxicity in humans are similar to mice. Nevertheless, some investigators still use rats. New mechanistic information from the last forty years invites a reevaluation of the differences between these species. Comparison may provide interesting insights and confirm or exclude the rat as an option for APAP studies. To this end, we treated rats and mice with APAP and measured parameters of liver injury, APAP metabolism, oxidative stress, and activation of the c-Jun N-terminal kinase (JNK). Consistent with earlier data, we found that rats were highly resistant to APAP toxicity. Although overall APAP metabolism was similar in both species, mitochondrial protein adducts were significantly lower in rats. Accordingly, rats also had less oxidative stress. Finally, while mice showed extensive activation and mitochondrial translocation of JNK, this could not be detected in rat livers. These data support the hypothesis that mitochondrial dysfunction is critical for the development of necrosis after APAP treatment. Because mitochondrial damage also occurs in humans, rats are not a clinically relevant species for studies of APAP hepatotoxicity. Highlights: ► Acetaminophen overdose causes severe liver injury only in mice but not in rats. ► APAP causes hepatic GSH depletion and protein adduct formation in rats and mice. ► Less protein adducts were measured in rat liver mitochondria compared to mouse. ► No oxidant stress, peroxynitrite formation or JNK activation was present in rats. ► The

  20. Evaluation of oxidative stress in D-serine induced nephrotoxicity

    International Nuclear Information System (INIS)

    Orozco-Ibarra, Marisol; Medina-Campos, Omar Noel; Sanchez-Gonzalez, Dolores Javier; Martinez-Martinez, Claudia Maria; Floriano-Sanchez, Esau; Santamaria, Abel; Ramirez, Victoria; Bobadilla, Norma A.; Pedraza-Chaverri, Jose

    2007-01-01

    It has been suggested that oxidative stress is involved in D-serine-induced nephrotoxicity. The purpose of this study was to assess if oxidative stress is involved in this experimental model using several approaches including (a) the determination of several markers of oxidative stress and the activity of some antioxidant enzymes in kidney and (b) the use of compounds with antioxidant or prooxidant effects. Rats were sacrificed at several periods of time (from 3 to 24 h) after a single i.p. injection of D-serine (400 mg/kg). Control rats were injected with L-serine (400 mg/kg) and sacrificed 24 h after. The following markers were used to assess the temporal aspects of renal damage: (a) urea nitrogen (BUN) and creatinine in blood serum, (b) kidney injury molecule (KIM-1) mRNA levels, and (c) tubular necrotic damage. In addition, creatinine clearance, proteinuria, and urinary excretion of N-acetyl-β-D-glucosaminidase (NAG) were measured 24 h after D-serine injection. Protein carbonyl content, malondialdehyde (MDA), 4-hydroxy-2-nonenal (4-HNE), fluorescent products of lipid peroxidation, reactive oxygen species (ROS), glutathione (GSH) content, and heme oxygenase-1 (HO-1) expression were measured as markers of oxidative stress in the kidney. Additional experiments were performed using the following compounds with antioxidant or pro-oxidant effects before D-serine injection: (a) α-phenyl-tert-butyl-nitrone (PBN), a spin trapping agent; (b) 5,10,15,20-tetrakis (4-sulfonatophenyl) porphyrinato iron(III) (FeTPPS), a soluble complex able to metabolize peroxynitrite; (c) aminotriazole (ATZ), a catalase (CAT) inhibitor; (d) stannous chloride (SnCl 2 ), an HO-1 inductor; (e) tin mesoporphyrin (SnMP), an HO inhibitor. In the time-course study, serum creatinine and BUN increased significantly on 15-24 and 20-24 h, respectively, and KIM-1 mRNA levels increased significantly on 6-24 h. Histological analyses revealed tubular necrosis at 12 h. The activity of antioxidant enzymes

  1. The obesity-induced transcriptional regulator TRIP-Br2 mediates visceral fat endoplasmic reticulum stress-induced inflammation.

    Science.gov (United States)

    Qiang, Guifen; Kong, Hyerim Whang; Fang, Difeng; McCann, Maximilian; Yang, Xiuying; Du, Guanhua; Blüher, Matthias; Zhu, Jinfang; Liew, Chong Wee

    2016-04-25

    The intimate link between location of fat accumulation and metabolic disease risk and depot-specific differences is well established, but how these differences between depots are regulated at the molecular level remains largely unclear. Here we show that TRIP-Br2 mediates endoplasmic reticulum (ER) stress-induced inflammatory responses in visceral fat. Using in vitro, ex vivo and in vivo approaches, we demonstrate that obesity-induced circulating factors upregulate TRIP-Br2 specifically in visceral fat via the ER stress pathway. We find that ablation of TRIP-Br2 ameliorates both chemical and physiological ER stress-induced inflammatory and acute phase response in adipocytes, leading to lower circulating levels of inflammatory cytokines. Using promoter assays, as well as molecular and pharmacological experiments, we show that the transcription factor GATA3 is responsible for the ER stress-induced TRIP-Br2 expression in visceral fat. Taken together, our study identifies molecular regulators of inflammatory response in visceral fat that-given that these pathways are conserved in humans-might serve as potential therapeutic targets in obesity.

  2. Carbon and nitrogen metabolism in arbuscular mycorrhizal maize plants under low-temperature stress

    DEFF Research Database (Denmark)

    Zhu, Xian-Can; Song, Feng-Bin; Liu, Fulai

    2015-01-01

    Effects of the arbuscular mycorrhizal (AM) fungus Glomus tortuosum on carbon (C) and nitrogen (N) metabolism of Zea mays L. grown under low-temperature stress was investigated. Maize plants inoculated or not inoculated with AM fungus were grown in a growth chamber at 258C for 4 weeks...... temperature regimes. AM symbiosis modulated C metabolic enzymes, thereby inducing an accumulation of soluble sugars, which may have contributed to an increased tolerance to low temperature, and therefore higher Pn in maize plants....

  3. IgE-mediated basophil tumour necrosis factor alpha induces matrix metalloproteinase-9 from monocytes

    DEFF Research Database (Denmark)

    Falkencrone, Sidsel; Poulsen, Lars K.; Bindslev-Jensen, Carsten

    2013-01-01

    IgE-mediated activation of mast cells has been reported to induce the release of tumour necrosis alpha (TNF-α), which may display autocrine effects on these cells by inducing the generation of the tissue remodelling protease matrix metalloproteinase-9 (MMP-9). While mast cells and basophils have...

  4. Transcription regulator TRIP-Br2 mediates ER stress-induced brown adipocytes dysfunction.

    Science.gov (United States)

    Qiang, Guifen; Whang Kong, Hyerim; Gil, Victoria; Liew, Chong Wee

    2017-01-09

    In contrast to white adipose tissue, brown adipose tissue (BAT) is known to play critical roles for both basal and inducible energy expenditure. Obesity is associated with reduction of BAT function; however, it is not well understood how obesity promotes BAT dysfunction, especially at the molecular level. Here we show that the transcription regulator TRIP-Br2 mediates ER stress-induced inhibition of lipolysis and thermogenesis in BAT. Using in vitro, ex vivo, and in vivo approaches, we demonstrate that obesity-induced inflammation upregulates brown adipocytes TRIP-Br2 expression via the ER stress pathway and amelioration of ER stress in mice completely abolishes high fat diet-induced upregulation of TRIP-Br2 in BAT. We find that increased TRIP-Br2 significantly inhibits brown adipocytes thermogenesis. Finally, we show that ablation of TRIP-Br2 ameliorates ER stress-induced inhibition on lipolysis, fatty acid oxidation, oxidative metabolism, and thermogenesis in brown adipocytes. Taken together, our current study demonstrates a role for TRIP-Br2 in ER stress-induced BAT dysfunction, and inhibiting TRIP-Br2 could be a potential approach for counteracting obesity-induced BAT dysfunction.

  5. Therapeutic Roles of Heme Oxygenase-1 in Metabolic Diseases: Curcumin and Resveratrol Analogues as Possible Inducers of Heme Oxygenase-1

    Directory of Open Access Journals (Sweden)

    Yong Son

    2013-01-01

    Full Text Available Metabolic diseases, such as insulin resistance, type II diabetes, and obesity, are associated with a low-grade chronic inflammation (inflammatory stress, oxidative stress, and endoplasmic reticulum (ER stress. Because the integration of these stresses is critical to the pathogenesis of metabolic diseases, agents and cellular molecules that can modulate these stress responses are emerging as potential targets for intervention and treatment of metabolic diseases. It has been recognized that heme oxygenase-1 (HO-1 plays an important role in cellular protection. Because HO-1 can reduce inflammatory stress, oxidative stress, and ER stress, in part by exerting antioxidant, anti-inflammatory, and antiapoptotic effects, HO-1 has been suggested to play important roles in pathogenesis of metabolic diseases. In the present review, we will explore our current understanding of the protective mechanisms of HO-1 in metabolic diseases and present some emerging therapeutic options for HO-1 expression in treating metabolic diseases, together with the therapeutic potential of curcumin and resveratrol analogues that have their ability to induce HO-1 expression.

  6. Gold nanoparticles induced cloudy swelling to hydropic degeneration, cytoplasmic hyaline vacuolation, polymorphism, binucleation, karyopyknosis, karyolysis, karyorrhexis and necrosis in the liver

    Directory of Open Access Journals (Sweden)

    Jarrar Bashir M

    2011-09-01

    with the accumulated residues resulting from metabolic and structural disturbances caused by these NPs. These alterations were size-dependent with smaller ones induced the most effects and related with time exposure of GNPs. The appearance of hepatocytes cytoplasmic degeneration and nuclear destruction may suggest that GNPs interact with proteins and enzymes of the hepatic tissue interfering with the antioxidant defense mechanism and leading to reactive oxygen species (ROS generation which in turn may induce stress in the hepatocytes to undergo atrophy and necrosis. More histomorphologcal, histochemical and ultrastrucural investigations are needed in relation of the application of GNPs with their potential role as a therapeutic and diagnostic tool.

  7. Acrolein-induced cell death in PC12 cells: role of mitochondria-mediated oxidative stress.

    Science.gov (United States)

    Luo, Jian; Robinson, J Paul; Shi, Riyi

    2005-12-01

    Oxidative stress has been implicated in acrolein cytotoxicity in various cell types, including mammalian spinal cord tissue. In this study we report that acrolein also decreases PC12 cell viability in a reactive oxygen species (ROS)-dependent manner. Specifically, acrolein-induced cell death, mainly necrosis, is accompanied by the accumulation of cellular ROS. Elevating ROS scavengers can alleviate acrolein-induced cell death. Furthermore, we show that exposure to acrolein leads to mitochondrial dysfunction, denoted by the loss of mitochondrial transmembrane potential, reduction of cellular oxygen consumption, and decrease of ATP level. This raises the possibility that the cellular accumulation of ROS could result from the increased production of ROS in the mitochondria of PC12 cells as a result of exposure to acrolein. The acrolein-induced significant decrease of ATP production in mitochondria may also explain why necrosis, not apoptosis, is the dominant type of cell death. In conclusion, our data suggest that one possible mechanism of acrolein-induced cell death could be through mitochondria as its initial target. The subsequent increase of ROS then inflicts cell death and further worsens mitochondria function. Such mechanism may play an important role in CNS trauma and neurodegenerative diseases.

  8. Metabolic oxidative stress in cancer biology and therapy

    International Nuclear Information System (INIS)

    Spitz, Douglas R.

    2014-01-01

    Cancer cells (relative to normal cells) exhibit increased glycolysis and pentose cycle activity. These metabolic alterations were thought to arise from damage to the respiratory mechanism and cancer cells were thought to compensate for this defect by increasing glycolysis (Science 132:309). In addition to its role in ATP production, glucose metabolism results in the formation of pyruvate and NADPH which both play an integral role in peroxide detoxification (Ann. NY Acad. Sci. 899:349). Recently, cancer cells have been shown to have enhanced susceptibility to glucose deprivation-induced oxidative stress, relative to normal cells, that is mediated by reactive oxygen species (ROS; Biochem.J. 418:29-37). These results support the hypothesis that cancer cells may have a defect in mitochondrial respiration leading to increased steady-state levels of ROS (i.e., O 2 and H 2 O 2 ) and glucose metabolism may be increased to provide reducing equivalents to compensate for this defect. The application of these findings to developing new combined modality cancer therapy protocols will be discussed. (author)

  9. The Ablation of Mitochondrial Protein Phosphatase Pgam5 Confers Resistance Against Metabolic Stress

    Directory of Open Access Journals (Sweden)

    Shiori Sekine

    2016-03-01

    Full Text Available Phosphoglycerate mutase family member 5 (PGAM5 is a mitochondrial protein phosphatase that has been reported to be involved in various stress responses from mitochondrial quality control to cell death. However, its roles in vivo are largely unknown. Here, we show that Pgam5-deficient mice are resistant to several metabolic insults. Under cold stress combined with fasting, Pgam5-deficient mice better maintained body temperature than wild-type mice and showed an extended survival rate. Serum triglycerides and lipid content in brown adipose tissue (BAT, a center of adaptive thermogenesis, were severely reduced in Pgam5-deficient mice. Moreover, although Pgam5 deficiency failed to maintain proper mitochondrial integrity in BAT, it reciprocally resulted in the dramatic induction of fibroblast growth factor 21 (FGF21 that activates various functions of BAT including thermogenesis. Thus, the enhancement of lipid metabolism and FGF21 may contribute to the cold resistance of Pgam5-deficient mice under fasting condition. Finally, we also found that Pgam5-deficient mice are resistant to high-fat-diet-induced obesity. Our study uncovered that PGAM5 is involved in the whole-body metabolism in response to stresses that impose metabolic challenges on mitochondria.

  10. Cre-mediated stress affects sirtuin expression levels, peroxisome biogenesis and metabolism, antioxidant and proinflammatory signaling pathways.

    Directory of Open Access Journals (Sweden)

    Yu Xiao

    Full Text Available Cre-mediated excision of loxP sites is widely used in mice to manipulate gene function in a tissue-specific manner. To analyze phenotypic alterations related to Cre-expression, we have used AMH-Cre-transgenic mice as a model system. Different Cre expression levels were obtained by investigation of C57BL/6J wild type as well as heterozygous and homozygous AMH-Cre-mice. Our results indicate that Cre-expression itself in Sertoli cells already has led to oxidative stress and lipid peroxidation (4-HNE lysine adducts, inducing PPARα/γ, peroxisome proliferation and alterations of peroxisome biogenesis (PEX5, PEX13 and PEX14 as well as metabolic proteins (ABCD1, ABCD3, MFP1, thiolase B, catalase. In addition to the strong catalase increase, a NRF2- and FOXO3-mediated antioxidative response (HMOX1 of the endoplasmic reticulum and mitochondrial SOD2 and a NF-κB activation were noted. TGFβ1 and proinflammatory cytokines like IL1, IL6 and TNFα were upregulated and stress-related signaling pathways were induced. Sertoli cell mRNA-microarray analysis revealed an increase of TNFR2-signaling components. 53BP1 recruitment and expression levels for DNA repair genes as well as for p53 were elevated and the ones for related sirtuin deacetylases affected (SIRT 1, 3-7 in Sertoli cells. Under chronic Cre-mediated DNA damage conditions a strong downregulation of Sirt1 was observed, suggesting that the decrease of this important coordinator between DNA repair and metabolic signaling might induce the repression release of major transcription factors regulating metabolic and cytokine-mediated stress pathways. Indeed, caspase-3 was activated and increased germ cell apoptosis was observed, suggesting paracrine effects. In conclusion, the observed wide stress-induced effects and metabolic alterations suggest that it is essential to use the correct control animals (Cre/Wt with matched Cre expression levels to differentiate between Cre-mediated and specific gene-knock out

  11. Cre-Mediated Stress Affects Sirtuin Expression Levels, Peroxisome Biogenesis and Metabolism, Antioxidant and Proinflammatory Signaling Pathways

    Science.gov (United States)

    Xiao, Yu; Karnati, Srikanth; Qian, Guofeng; Nenicu, Anca; Fan, Wei; Tchatalbachev, Svetlin; Höland, Anita; Hossain, Hamid; Guillou, Florian; Lüers, Georg H.; Baumgart-Vogt, Eveline

    2012-01-01

    Cre-mediated excision of loxP sites is widely used in mice to manipulate gene function in a tissue-specific manner. To analyze phenotypic alterations related to Cre-expression, we have used AMH-Cre-transgenic mice as a model system. Different Cre expression levels were obtained by investigation of C57BL/6J wild type as well as heterozygous and homozygous AMH-Cre-mice. Our results indicate that Cre-expression itself in Sertoli cells already has led to oxidative stress and lipid peroxidation (4-HNE lysine adducts), inducing PPARα/γ, peroxisome proliferation and alterations of peroxisome biogenesis (PEX5, PEX13 and PEX14) as well as metabolic proteins (ABCD1, ABCD3, MFP1, thiolase B, catalase). In addition to the strong catalase increase, a NRF2- and FOXO3-mediated antioxidative response (HMOX1 of the endoplasmic reticulum and mitochondrial SOD2) and a NF-κB activation were noted. TGFβ1 and proinflammatory cytokines like IL1, IL6 and TNFα were upregulated and stress-related signaling pathways were induced. Sertoli cell mRNA-microarray analysis revealed an increase of TNFR2-signaling components. 53BP1 recruitment and expression levels for DNA repair genes as well as for p53 were elevated and the ones for related sirtuin deacetylases affected (SIRT 1, 3-7) in Sertoli cells. Under chronic Cre-mediated DNA damage conditions a strong downregulation of Sirt1 was observed, suggesting that the decrease of this important coordinator between DNA repair and metabolic signaling might induce the repression release of major transcription factors regulating metabolic and cytokine-mediated stress pathways. Indeed, caspase-3 was activated and increased germ cell apoptosis was observed, suggesting paracrine effects. In conclusion, the observed wide stress-induced effects and metabolic alterations suggest that it is essential to use the correct control animals (Cre/Wt) with matched Cre expression levels to differentiate between Cre-mediated and specific gene-knock out

  12. Hypothalamic kappa opioid receptor mediates both diet-induced and melanin concentrating hormone-induced liver damage through inflammation and endoplasmic reticulum stress.

    Science.gov (United States)

    Imbernon, Monica; Sanchez-Rebordelo, Estrella; Romero-Picó, Amparo; Kalló, Imre; Chee, Melissa J; Porteiro, Begoña; Al-Massadi, Omar; Contreras, Cristina; Fernø, Johan; Senra, Ana; Gallego, Rosalia; Folgueira, Cintia; Seoane, Luisa M; van Gestel, Margriet; Adan, Roger A; Liposits, Zsolt; Dieguez, Carlos; López, Miguel; Nogueiras, Ruben

    2016-10-01

    The opioid system is widely known to modulate the brain reward system and thus affect the behavior of humans and other animals, including feeding. We hypothesized that the hypothalamic opioid system might also control energy metabolism in peripheral tissues. Mice lacking the kappa opioid receptor (κOR) and adenoviral vectors overexpressing or silencing κOR were stereotaxically delivered in the lateral hypothalamic area (LHA) of rats. Vagal denervation was performed to assess its effect on liver metabolism. Endoplasmic reticulum (ER) stress was inhibited by pharmacological (tauroursodeoxycholic acid) and genetic (overexpression of the chaperone glucose-regulated protein 78 kDa) approaches. The peripheral effects on lipid metabolism were assessed by histological techniques and western blot. We show that in the LHA κOR directly controls hepatic lipid metabolism through the parasympathetic nervous system, independent of changes in food intake and body weight. κOR colocalizes with melanin concentrating hormone receptor 1 (MCH-R1) in the LHA, and genetic disruption of κOR reduced melanin concentrating hormone-induced liver steatosis. The functional relevance of these findings was given by the fact that silencing of κOR in the LHA attenuated both methionine choline-deficient, diet-induced and choline-deficient, high-fat diet-induced ER stress, inflammation, steatohepatitis, and fibrosis, whereas overexpression of κOR in this area promoted liver steatosis. Overexpression of glucose-regulated protein 78 kDa in the liver abolished hypothalamic κOR-induced steatosis by reducing hepatic ER stress. This study reveals a novel hypothalamic-parasympathetic circuit modulating hepatic function through inflammation and ER stress independent of changes in food intake or body weight; these findings might have implications for the clinical use of opioid receptor antagonists. (Hepatology 2016;64:1086-1104). © 2016 The Authors. (Hepatology published by Wiley Periodicals, Inc., on

  13. Molecular imaging of tumor photoimmunotherapy: Evidence of photosensitized tumor necrosis and hemodynamic changes

    DEFF Research Database (Denmark)

    Kishimoto, Shun; Oshima, Nobu; Yamamoto, Kazutoshi

    2018-01-01

    Near-infrared photoimmunotherapy (NIR PIT) employs the photoabsorbing dye IR700 conjugated to antibodies specific for cell surface epidermal growth factor receptor (EGFR). NIR PIT has shown highly selective cytotoxicity in vitro and in vivo. Cell necrosis is thought to be the main mode of cytotox......Near-infrared photoimmunotherapy (NIR PIT) employs the photoabsorbing dye IR700 conjugated to antibodies specific for cell surface epidermal growth factor receptor (EGFR). NIR PIT has shown highly selective cytotoxicity in vitro and in vivo. Cell necrosis is thought to be the main mode...... of cytotoxicity based mainly on in vitro studies. To better understand the acute effects of NIR PIT, molecular imaging studies were performed to assess its cellular and vascular effects.In addition to in vitro studies for cytotoxicity of NIR PIT, the in vivo tumoricidal effects and hemodynamic changes induced....... Following NIR PIT, metabolic MRI using hyperpolarized fumarate showed the production of malate in EGFR-expressing A431 tumor xenografts, providing direct evidence for photosensitized tumor necrosis induced by NIR PIT. R2* mapping studies showed temporal changes in oxygenation, with an accompanying increase...

  14. Astragalus membranaceus-Polysaccharides Ameliorates Obesity, Hepatic Steatosis, Neuroinflammation and Cognition Impairment without Affecting Amyloid Deposition in Metabolically Stressed APPswe/PS1dE9 Mice

    Directory of Open Access Journals (Sweden)

    Yung-Cheng Huang

    2017-12-01

    Full Text Available Astragalus membranaceus is commonly used in traditional Chinese medicine for strengthening the host defense system. Astragalus membranaceus-polysaccharides is an effective component with various important bioactivities, such as immunomodulation, antioxidant, anti-diabetes, anti-inflammation and neuroprotection. In the present study, we determine the effects of Astragalus membranaceus-polysaccharides on metabolically stressed transgenic mice in order to develop this macromolecules for treatment of sporadic Alzheimer’s disease, a neurodegenerative disease with metabolic risk factors. Transgenic mice, at 10 weeks old prior to the appearance of senile plaques, were treated in combination of administrating high-fat diet and injecting low-dose streptozotocin to create the metabolically stressed mice model. Astragalus membranaceus-polysaccharides was administrated starting at 14 weeks for 7 weeks. We found that Astragalus membranaceus-polysaccharides reduced metabolic stress-induced increase of body weight, insulin and insulin and leptin level, insulin resistance, and hepatic triglyceride. Astragalus membranaceus-polysaccharides also ameliorated metabolic stress-exacerbated oral glucose intolerance, although the fasting blood glucose was only temporally reduced. In brain, metabolic stress-elicited astrogliosis and microglia activation in the vicinity of plaques was also diminished by Astragalus membranaceus-polysaccharides administration. The plaque deposition, however, was not significantly affected by Astragalus membranaceus-polysaccharides administration. These findings suggest that Astragalus membranaceus-polysaccharides may be used to ameliorate metabolic stress-induced diabesity and the subsequent neuroinflammation, which improved the behavior performance in metabolically stressed transgenic mice.

  15. Aluminium-induced excessive ROS causes cellular damage and metabolic shifts in black gram Vigna mungo (L.) Hepper.

    Science.gov (United States)

    Chowra, Umakanta; Yanase, Emiko; Koyama, Hiroyuki; Panda, Sanjib Kumar

    2017-01-01

    Aluminium-induced oxidative damage caused by excessive ROS production was evaluated in black gram pulse crop. Black gram plants were treated with different aluminium (Al 3+ ) concentrations (10, 50 and 100 μM with pH 4.7) and further the effects of Al 3+ were characterised by means of root growth inhibition, histochemical assay, ROS content analysis, protein carbonylation quantification and 1 H-NMR analysis. The results showed that aluminium induces excessive ROS production which leads to cellular damage, root injury, stunt root growth and other metabolic shifts. In black gram, Al 3+ induces cellular damage at the earliest stage of stress which was characterised from histochemical analysis. From this study, it was observed that prolonged stress can activate certain aluminium detoxification defence mechanism. Probably excessive ROS triggers such defence mechanism in black gram. Al 3+ can induce excessive ROS initially in the root region then transported to other parts of the plant. As much as the Al 3+ concentration increases, the rate of cellular injury and ROS production also increases. But after 72 h of stress, plants showed a lowered ROS level and cellular damage which indicates the upregulation of defensive mechanisms. Metabolic shift analysis also showed that the black gram plant under stress has less metabolic content after 24 h of treatment, but gradually, it was increased after 72 h of treatment. It was assumed that ROS played the most important role as a signalling molecule for aluminium stress in black gram.

  16. Central l-proline attenuates stress-induced dopamine and serotonin metabolism in the chick forebrain.

    Science.gov (United States)

    Hamasu, Kousuke; Shigemi, Kazutaka; Kabuki, Yusuke; Tomonaga, Shozo; Denbow, D Michael; Furuse, Mitsuhiro

    2009-08-21

    Using microdialysis, we investigated the effect of l-proline on monoamine release in the medio-rostral neostriatum/hyperstriatum ventrale (MNH) of freely moving and restricted chicks. A 30 min handling-stress resulted in a significant increase in extracellular homovallinic acid (HVA), a dopamine metabolite, and 5-hydroxyindoleacetic acid (5-HIAA), a serotonin metabolite, in the MNH. l-Proline, perfused through the microdialysis probe into the MNH during the stressed condition, significantly attenuated the average dialysate concentration of HVA produced by handling-stress. Handling-stress resulted in a significant increase in 5-HIAA levels in the control group, which were attenuated by profusion with l-proline. l-Proline did not significantly modify basal concentrations of HVA or 5-HIAA in the MNH during control conditions. These results show that perfusion of l-proline modified the turnover/metabolism of dopamine and serotonin in the MNH caused by handling-stress.

  17. The effect of early-life stress and chronic high-sucrose diet on metabolic outcomes in female rats.

    Science.gov (United States)

    Maniam, Jayanthi; Antoniadis, Christopher P; Morris, Margaret J

    2015-01-01

    Early-life stress affects metabolic outcomes and choice of diet influences the development of metabolic disease. Here we tested the hypothesis that chronic sugar intake exacerbates metabolic deficits induced by early-life stress. Early-life stress was induced in Sprague-Dawley rats using limited nesting material in early lactation (LN, postnatal days 2-9), and siblings were given chow alone or with additional sucrose post weaning (n = 9-17 per group). Female control and LN siblings had unlimited access to either chow plus water, or chow and water plus 25% sucrose solution (Sucrose), from 3-15 weeks of age. Weekly body weight and food intake were measured. Glucose and insulin tolerance were tested at 13 and 14 weeks of age, respectively. Rats were killed at 15 weeks. Hepatic triglyceride and markers of lipid synthesis - fatty acid synthase, acetyl-CoA carboxylase alpha and oxidation - and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (Pgc-1α) were examined. Mediators of hepatic glucocorticoid metabolism, specifically 11-beta hydroxysteroid dehydrogenase-1 (11βHSD-1), 5-α reductase, and glucocorticoid and mineralocorticoid receptor mRNAs were also measured. Sucrose increased caloric intake in both groups, but overall energy intake was not altered by LN exposure. LN exposure had no further impact on sucrose-induced glucose intolerance and increased plasma and liver triglycerides. Hepatic markers of fat synthesis and oxidation were concomitantly activated and 11βHSD-1 mRNA expression was increased by 53% in LN-Sucrose versus Con-Sucrose rats. Adiposity was increased by 26% in LN-Sucrose versus Con-Sucrose rats. Thus, LN exposure had minimal adverse metabolic effects despite high-sugar diet postweaning.

  18. A review: oxidative stress in fish induced by pesticides.

    Science.gov (United States)

    Slaninova, Andrea; Smutna, Miriam; Modra, Helena; Svobodova, Zdenka

    2009-01-01

    The knowledge in oxidative stress in fish has a great importance for environmental and aquatic toxicology. Because oxidative stress is evoked by many chemicals including some pesticides, pro-oxidant factors' action in fish organism can be used to assess specific area pollution or world sea pollution. Hepatotoxic effect of DDT may be related with lipid peroxidation. Releasing of reactive oxygen species (ROS) after HCB exposure can be realized via two ways: via the uncoupling of the electron transport chain from monooxygenase activity and via metabolism of HCB major metabolite pentachlorophenol. Chlorothalonil disrupts mitochondrial metabolism due to the impairment of NADPH oxidase function. Activation of spleen macrophages and a decrease of catalase (CAT) activity have been observed after endosulfan exposure. Excessive release of superoxide radicals after etoxazole exposure can cause a decrease of CAT activity and increase phagocytic activity of splenocytes. Anticholinergic activity of organophosphates leads to the accumulation of ROS and resulting lipid peroxidation. Carbaryl induces changes in the content of glutathione and antioxidant enzymes activities. The antioxidant enzymes changes have been observed after actuation of pesticides deltamethrin and cypermethrin. Bipyridyl herbicides are able to form redox cycles and thereby cause oxidative stress. Low concentrations of simazine do not cause oxidative stress in carps during sub-chronic tests while sublethal concentrations of atrazin can induce oxidative stress in bluegill sunfish. Butachlor causes increased activity of superoxide dismutase -catalase system in the kidney. Rotenon can inhibit the electron transport in mitochondria and thereby increase ROS production. Dichloroaniline, the metabolite of diuron, has oxidative effects. Oxidative damage from fenpyroximate actuation is related to the disruption of mitochondrial redox respiratory chain. Low concentration of glyphosate can cause mild oxidative stress.

  19. Magnetic Resonance Imaging of Therapy-Induced Necrosis Using Gadolinium-Chelated Polyglutamic Acids

    International Nuclear Information System (INIS)

    Jackson, Edward F.; Esparza-Coss, Emilio; Wen Xiaoxia; Ng, Chaan S.; Daniel, Sherita L.; Price, Roger E.; Rivera, Belinda; Charnsangavej, Chusilp; Gelovani, Juri G.; Li Chun

    2007-01-01

    Purpose: Necrosis is the most common morphologic alteration found in tumors and surrounding normal tissues after radiation therapy or chemotherapy. Accurate measurement of necrosis may provide an early indication of treatment efficacy or associated toxicity. The purpose of this report is to evaluate the selective accumulation of polymeric paramagnetic magnetic resonance (MR) contrast agents-gadolinium p-aminobenzyl-diethylenetriaminepentaacetic acid-poly(glutamic acid) (L-PG-DTPA-Gd and D-PG-DTPA-Gd)-in necrotic tissue. Methods and Materials: Two different solid tumor models, human Colo-205 xenograft and syngeneic murine OCA-1 ovarian tumors, were used in this study. Necrotic response was induced by treatment with poly(L-glutamic acid)-paclitaxel conjugate (PG-TXL). T 1 -weighted spin-echo images were obtained immediately and up to 4 days after contrast injection and compared with corresponding histologic specimens. Two low-molecular-weight contrast agents, DTPA-Gd and oligomeric(L-glutamic acid)-DTPA-Gd, were used as nonspecific controls. Results: Initially, there was minimal tumor enhancement after injection of either L-PG-DTPA-Gd or D-PG-DTPA-Gd, but rapid enhancement after injection of low-molecular-weight agents. However, polymeric contrast agents, but not low-molecular-weight contrast agents, caused sustained enhancement in regions of tumor necrosis in both tumors treated with PG-TXL and untreated tumors. These data indicate that high molecular weight, rather than in vivo biodegradation, is necessary for the specific localization of polymeric MR contrast agents to necrotic tissue. Moreover, biotinylated L-PG-DTPA-Gd colocalized with macrophages in the tumor necrotic areas, suggesting that selective accumulation of L- and D-PG-DTPA-Gd in necrotic tissue was mediated through residing macrophages. Conclusions: Our data suggest that MR imaging with PG-DTPA-Gd may be a useful technique for noninvasive characterization of treatment-induced necrosis

  20. Combined effect of water loss and wounding stress on gene activation of metabolic pathways associated with phenolic biosynthesis in carrot

    Directory of Open Access Journals (Sweden)

    Alejandro eBecerra-Moreno

    2015-10-01

    Full Text Available Abstract: The application of postharvest abiotic stresses is an effective strategy to activate the primary and secondary metabolism of plants inducing the accumulation of antioxidant phenolic compounds. In the present study, the effect of water stress applied alone and in combination with wounding stress on the activation of primary (shikimic acid and secondary (phenylpropanoid metabolic pathways related with the accumulation of phenolic compound in plants was evaluated. Carrot (Daucus carota was used as model system for this study, and the effect of abiotic stresses was evaluated at the gene expression level and on the accumulation of metabolites. As control of the study, whole carrots were stored under the same conditions. Results demonstrated that water stress activated the primary and secondary metabolism of carrots, favoring the lignification process. Likewise, wounding stress induced higher activation of the primary and secondary metabolism of carrots as compared to water stress alone, leading to higher accumulation of shikimic acid, phenolic compounds and lignin. Additional water stress applied on wounded carrots exerted a synergistic effect on the wound-response at the gene expression level. For instance, when wounded carrots were treated with water stress, the tissue showed 20- and 14-fold increases in the relative expression of 3-deoxy-D-arabino-heptulosanate synthase and phenylalanine ammonia-lyase genes, respectively. However, since lignification was increased, lower accumulation of phenolic compounds was detected. Indicatively, at 48 h of storage, wounded carrots treated with water stress showed ~31% lower levels of phenolic compounds and ~23% higher lignin content as compared with wounded controls. In the present study, it was demonstrated that water stress is one of the pivotal mechanism of the wound-response in carrot. Results allowed the elucidation of strategies to induce the accumulation of specific primary or secondary

  1. Tumor necrosis factor-alpha potentiates the cytotoxicity of amiodarone in Hepa1c1c7 cells: roles of caspase activation and oxidative stress.

    Science.gov (United States)

    Lu, Jingtao; Miyakawa, Kazuhisa; Roth, Robert A; Ganey, Patricia E

    2013-01-01

    Amiodarone (AMD), a class III antiarrhythmic drug, causes idiosyncratic hepatotoxicity in human patients. We demonstrated previously that tumor necrosis factor-alpha (TNF-α) plays an important role in a rat model of AMD-induced hepatotoxicity under inflammatory stress. In this study, we developed a model in vitro to study the roles of caspase activation and oxidative stress in TNF potentiation of AMD cytotoxicity. AMD caused cell death in Hepa1c1c7 cells, and TNF cotreatment potentiated its toxicity. Activation of caspases 9 and 3/7 was observed in AMD/TNF-cotreated cells, and caspase inhibitors provided minor protection from cytotoxicity. Intracellular reactive oxygen species (ROS) generation and lipid peroxidation were observed after treatment with AMD and were further elevated by TNF cotreatment. Adding water-soluble antioxidants (trolox, N-acetylcysteine, glutathione, or ascorbate) produced only minor attenuation of AMD/TNF-induced cytotoxicity and did not influence the effect of AMD alone. On the other hand, α-tocopherol (TOCO), which reduced lipid peroxidation and ROS generation, prevented AMD toxicity and caused pronounced reduction in cytotoxicity from AMD/TNF cotreatment. α-TOCO plus a pancaspase inhibitor completely abolished AMD/TNF-induced cytotoxicity. In summary, activation of caspases and oxidative stress were observed after AMD/TNF cotreatment, and caspase inhibitors and a lipid-soluble free-radical scavenger attenuated AMD/TNF-induced cytotoxicity.

  2. Effects of pistachio nuts on body composition, metabolic, inflammatory and oxidative stress parameters in Asian Indians with metabolic syndrome: a 24-wk, randomized control trial.

    Science.gov (United States)

    Gulati, Seema; Misra, Anoop; Pandey, Ravindra Mohan; Bhatt, Surya Prakash; Saluja, Shelza

    2014-02-01

    The aim of this study was to evaluate the effects of pistachio nuts as an adjunct to diet and exercise on body composition, metabolic, inflammatory, and oxidative stress parameters in Asian Indians with metabolic syndrome. In this 24-wk randomized control trial, 60 individuals with the metabolic syndrome were randomized to either pistachio (intervention group) or control group (diet as per weight and physical activity profile, modulated according to dietary guidelines for Asian Indians) after 3 wk of a diet and exercise run in. In the first group, unsalted pistachios (20% energy) were given daily. A standard diet and exercise protocol was followed for both groups. Body weight, waist circumference (WC), magnetic resonance imaging estimation of intraabdominal adipose tissue and subcutaneous abdominal adipose tissue, fasting blood glucose (FBG), fasting serum insulin, glycosylated hemoglobin, lipid profile, high-sensitivity C-reactive protein (hs-CRP), adiponectin, free fatty acids (FFAs), tumor necrosis factor (TNF)-α, leptin, and thiobarbituric acid reactive substances (TBARS) were assessed before and after the intervention. Statistically significant improvement in mean values for various parameters in the intervention group compared with control group were as follows: WC (P pistachios leads to beneficial effects on the cardiometabolic profile of Asian Indians with metabolic syndrome. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. High Glucose-Induced Oxidative Stress Mediates Apoptosis and Extracellular Matrix Metabolic Imbalances Possibly via p38 MAPK Activation in Rat Nucleus Pulposus Cells

    Directory of Open Access Journals (Sweden)

    Xiaofei Cheng

    2016-01-01

    Full Text Available Objectives. To investigate whether high glucose-induced oxidative stress is implicated in apoptosis of rat nucleus pulposus cells (NPCs and abnormal expression of critical genes involved in the metabolic balance of extracellular matrix (ECM. Methods. NPCs were cultured with various concentrations of glucose to detect cell viability and apoptosis. Cells cultured with high glucose (25 mM were untreated or pretreated with N-acetylcysteine or a p38 MAPK inhibitor SB 202190. Reactive oxygen species (ROS production was evaluated. Activation of p38 MAPK was measured by Western blot. The expression of ECM metabolism-related genes, including type II collagen, aggrecan, SRY-related high-mobility-group box 9 (Sox-9, matrix metalloproteinase 3 (MMP-3, and tissue inhibitor of metalloproteinase 1 (TIMP-1, was analyzed by semiquantitative RT-PCR. Results. High glucose reduced viability of NPCs and induced apoptosis. High glucose resulted in increased ROS generation and p38 MAPK activation. In addition, it negatively regulated the expression of type II collagen, aggrecan, Sox-9, and TIMP-1 and positively regulated MMP-3 expression. These results were changed by pretreatment with N-acetylcysteine or SB 202190. Conclusions. High glucose might promote apoptosis of NPCs, trigger ECM catabolic pathways, and inhibit its anabolic activities, possibly through a p38 MAPK-dependent oxidative stress mechanism.

  4. Paradoxical Reaction to Golimumab: Tumor Necrosis Factor α Inhibitor Inducing Psoriasis Pustulosa

    Directory of Open Access Journals (Sweden)

    Marien Siqueira Soto Lopes

    2013-11-01

    Full Text Available Importance: Golimumab is a human monoclonal antibody, used for rheumatoid arthritis, psoriatic arthritis and ankylosing spondylitis. Adverse reactions are increasing with this class of medication (tumor necrosis factor α inhibitors. Observations: The authors present a case of a female patient who presented with psoriasis pustulosa after the use of golimumab for rheumatoid arthritis. Conclusions and Relevance: Paradoxically, in this case, golimumab, which is used for psoriasis, induced the pustular form of this disease. We are observing an increasing number of patients who develop collateral effects with tumor necrosis factor α inhibitors, and the understanding of the mechanism of action and how these adverse reactions occur may contribute to avoid these sometimes severe situations.

  5. Ozone induces glucose intolerance and systemic metabolic effects in young and aged brown Norway rats

    International Nuclear Information System (INIS)

    Bass, V.; Gordon, C.J.; Jarema, K.A.; MacPhail, R.C.; Cascio, W.E.; Phillips, P.M.; Ledbetter, A.D.; Schladweiler, M.C.; Andrews, D.; Miller, D.; Doerfler, D.L.; Kodavanti, U.P.

    2013-01-01

    Air pollutants have been associated with increased diabetes in humans. We hypothesized that ozone would impair glucose homeostasis by altering insulin signaling and/or endoplasmic reticular (ER) stress in young and aged rats. One, 4, 12, and 24 month old Brown Norway (BN) rats were exposed to air or ozone, 0.25 or 1.0 ppm, 6 h/day for 2 days (acute) or 2 d/week for 13 weeks (subchronic). Additionally, 4 month old rats were exposed to air or 1.0 ppm ozone, 6 h/day for 1 or 2 days (time-course). Glucose tolerance tests (GTT) were performed immediately after exposure. Serum and tissue biomarkers were analyzed 18 h after final ozone for acute and subchronic studies, and immediately after each day of exposure in the time-course study. Age-related glucose intolerance and increases in metabolic biomarkers were apparent at baseline. Acute ozone caused hyperglycemia and glucose intolerance in rats of all ages. Ozone-induced glucose intolerance was reduced in rats exposed for 13 weeks. Acute, but not subchronic ozone increased α 2 -macroglobulin, adiponectin and osteopontin. Time-course analysis indicated glucose intolerance at days 1 and 2 (2 > 1), and a recovery 18 h post ozone. Leptin increased day 1 and epinephrine at all times after ozone. Ozone tended to decrease phosphorylated insulin receptor substrate-1 in liver and adipose tissues. ER stress appeared to be the consequence of ozone induced acute metabolic impairment since transcriptional markers of ER stress increased only after 2 days of ozone. In conclusion, acute ozone exposure induces marked systemic metabolic impairments in BN rats of all ages, likely through sympathetic stimulation. - Highlights: • Air pollutants have been associated with increased diabetes in humans. • Acute ozone exposure produces profound metabolic alterations in rats. • Age influences metabolic risk factors in aging BN rats. • Acute metabolic effects are reversible and repeated exposure reduces these effects. • Ozone metabolic

  6. Ozone induces glucose intolerance and systemic metabolic effects in young and aged brown Norway rats

    Energy Technology Data Exchange (ETDEWEB)

    Bass, V. [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Gordon, C.J.; Jarema, K.A.; MacPhail, R.C. [Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Cascio, W.E. [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Phillips, P.M. [Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Ledbetter, A.D.; Schladweiler, M.C. [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Andrews, D. [Research Cores Unit, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Miller, D. [Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC (United States); Doerfler, D.L. [Research Cores Unit, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Kodavanti, U.P., E-mail: kodavanti.urmila@epa.gov [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States)

    2013-12-15

    Air pollutants have been associated with increased diabetes in humans. We hypothesized that ozone would impair glucose homeostasis by altering insulin signaling and/or endoplasmic reticular (ER) stress in young and aged rats. One, 4, 12, and 24 month old Brown Norway (BN) rats were exposed to air or ozone, 0.25 or 1.0 ppm, 6 h/day for 2 days (acute) or 2 d/week for 13 weeks (subchronic). Additionally, 4 month old rats were exposed to air or 1.0 ppm ozone, 6 h/day for 1 or 2 days (time-course). Glucose tolerance tests (GTT) were performed immediately after exposure. Serum and tissue biomarkers were analyzed 18 h after final ozone for acute and subchronic studies, and immediately after each day of exposure in the time-course study. Age-related glucose intolerance and increases in metabolic biomarkers were apparent at baseline. Acute ozone caused hyperglycemia and glucose intolerance in rats of all ages. Ozone-induced glucose intolerance was reduced in rats exposed for 13 weeks. Acute, but not subchronic ozone increased α{sub 2}-macroglobulin, adiponectin and osteopontin. Time-course analysis indicated glucose intolerance at days 1 and 2 (2 > 1), and a recovery 18 h post ozone. Leptin increased day 1 and epinephrine at all times after ozone. Ozone tended to decrease phosphorylated insulin receptor substrate-1 in liver and adipose tissues. ER stress appeared to be the consequence of ozone induced acute metabolic impairment since transcriptional markers of ER stress increased only after 2 days of ozone. In conclusion, acute ozone exposure induces marked systemic metabolic impairments in BN rats of all ages, likely through sympathetic stimulation. - Highlights: • Air pollutants have been associated with increased diabetes in humans. • Acute ozone exposure produces profound metabolic alterations in rats. • Age influences metabolic risk factors in aging BN rats. • Acute metabolic effects are reversible and repeated exposure reduces these effects. • Ozone

  7. Oxidative Metabolism Genes Are Not Responsive to Oxidative Stress in Rodent Beta Cell Lines

    Directory of Open Access Journals (Sweden)

    Faer Morrison

    2012-01-01

    Full Text Available Altered expression of oxidative metabolism genes has been described in the skeletal muscle of individuals with type 2 diabetes. Pancreatic beta cells contain low levels of antioxidant enzymes and are particularly susceptible to oxidative stress. In this study, we explored the effect of hyperglycemia-induced oxidative stress on a panel of oxidative metabolism genes in a rodent beta cell line. We exposed INS-1 rodent beta cells to low (5.6 mmol/L, ambient (11 mmol/L, and high (28 mmol/L glucose conditions for 48 hours. Increases in oxidative stress were measured using the fluorescent probe dihydrorhodamine 123. We then measured the expression levels of a panel of 90 oxidative metabolism genes by real-time PCR. Elevated reactive oxygen species (ROS production was evident in INS-1 cells after 48 hours (P<0.05. TLDA analysis revealed a significant (P<0.05 upregulation of 16 of the 90 genes under hyperglycemic conditions, although these expression differences did not reflect differences in ROS. We conclude that although altered glycemia may influence the expression of some oxidative metabolism genes, this effect is probably not mediated by increased ROS production. The alterations to the expression of oxidative metabolism genes previously observed in human diabetic skeletal muscle do not appear to be mirrored in rodent pancreatic beta cells.

  8. Ionomic and metabolic responses to neutral salt or alkaline salt stresses in maize (Zea mays L.) seedlings.

    Science.gov (United States)

    Guo, Rui; Shi, LianXuan; Yan, Changrong; Zhong, Xiuli; Gu, FengXue; Liu, Qi; Xia, Xu; Li, Haoru

    2017-02-10

    Soil salinity and alkalinity present a serious threat to global agriculture. However, most of the studies have focused on neutral salt stress, and the information on the metabolic responses of plants to alkaline salt stress is limited. This investigation aimed at determining the influence of neutral salt and alkaline salt stresses on the content of metal elements and metabolites in maize plant tissues, by using mixtures of various proportions of NaCl, NaHCO 3 , Na 2 SO 4 , and Na 2 CO 3 . We found that alkaline salt stress suppressed more pronouncedly the photosynthesis and growth of maize plants than salinity stress. Under alkaline salt stress conditions, metal ions formed massive precipitates, which ultimately reduced plant nutrient availability. On the other hand, high neutral salt stress induced metabolic changes in the direction of gluconeogenesis leading to the enhanced formation of sugars as a reaction contributing to the mitigation of osmotic stress. Thus, the active synthesis of sugars in shoots was essential to the development of salt tolerance. However, the alkaline salt stress conditions characterized by elevated pH values suppressed substantially the levels of photosynthesis, N metabolism, glycolysis, and the production of sugars and amino acids. These results indicate the presence of different defensive mechanisms responsible for the plant responses to neutral salt and alkaline salt stresses. In addition, the increased concentration of organic acids and enhanced metabolic energy might be potential major factors that can contribute to the maintenance intracellular ion balance in maize plants and counteract the negative effects of high pH under alkaline salt stress.

  9. Comparative proteome analysis of metabolic proteins from seeds of durum wheat (cv. Svevo) subjected to heat stress

    DEFF Research Database (Denmark)

    Laino, Paolo; Shelton, Dale; Finnie, Christine

    2010-01-01

    of nonprolamin proteins were monitored to identify polypeptides affected by heat stress during grain fill. This study shows that heat stress alters significantly the durum wheat seed proteome, although the changes range is only between 1.2- and 2.2-fold. This analysis revealed 132 differentially expressed...... include proteins with metabolic activity or structural function. In order to investigate the consequences of heat stress on the accumulation of nonprolamin proteins in mature durum wheat kernels, the Italian cultivar Svevo was subjected to two thermal regimes (heat stress versus control). The 2-D patterns...... polypeptides, 47 of which were identified by MALDI-TOF and MALDI-TOF-TOF MS and included HSPs, proteins involved in the glycolysis and carbohydrate metabolism, as well as stress-related proteins. Many of the heat-induced polypeptides are considered to be allergenic for sensitive individuals....

  10. Stevia Prevents Acute and Chronic Liver Injury Induced by Carbon Tetrachloride by Blocking Oxidative Stress through Nrf2 Upregulation

    Science.gov (United States)

    Ramos-Tovar, Erika; Hernández-Aquino, Erika; Casas-Grajales, Sael; Buendia-Montaño, Laura D.; Tsutsumi, Víctor

    2018-01-01

    The effect of stevia on liver cirrhosis has not been previously investigated. In the present study, the antioxidant and anti-inflammatory properties of stevia leaves were studied in male Wistar rats with carbon tetrachloride- (CCl4-) induced acute and chronic liver damage. Acute and chronic liver damage induced oxidative stress, necrosis, and cholestasis, which were significantly ameliorated by stevia. Chronic CCl4 treatment resulted in liver cirrhosis, as evidenced by nodules of hepatocytes surrounded by thick bands of collagen and distortion of the hepatic architecture, and stevia significantly prevented these alterations. Subsequently, the underlying mechanism of action of the plant was analyzed. Our study for the first time shows that stevia upregulated Nrf2, thereby counteracting oxidative stress, and prevented necrosis and cholestasis through modulation of the main proinflammatory cytokines via NF-κB inhibition. These multitarget mechanisms led to the prevention of experimental cirrhosis. Given the reasonable safety profile of stevia, our results indicated that it may be useful for the clinical treatment of acute and chronic liver diseases. PMID:29849889

  11. Rescue of Fructose-Induced Metabolic Syndrome by Antibiotics or Faecal Transplantation in a Rat Model of Obesity.

    Science.gov (United States)

    Di Luccia, Blanda; Crescenzo, Raffaella; Mazzoli, Arianna; Cigliano, Luisa; Venditti, Paola; Walser, Jean-Claude; Widmer, Alex; Baccigalupi, Loredana; Ricca, Ezio; Iossa, Susanna

    2015-01-01

    A fructose-rich diet can induce metabolic syndrome, a combination of health disorders that increases the risk of diabetes and cardiovascular diseases. Diet is also known to alter the microbial composition of the gut, although it is not clear whether such alteration contributes to the development of metabolic syndrome. The aim of this work was to assess the possible link between the gut microbiota and the development of diet-induced metabolic syndrome in a rat model of obesity. Rats were fed either a standard or high-fructose diet. Groups of fructose-fed rats were treated with either antibiotics or faecal samples from control rats by oral gavage. Body composition, plasma metabolic parameters and markers of tissue oxidative stress were measured in all groups. A 16S DNA-sequencing approach was used to evaluate the bacterial composition of the gut of animals under different diets. The fructose-rich diet induced markers of metabolic syndrome, inflammation and oxidative stress, that were all significantly reduced when the animals were treated with antibiotic or faecal samples. The number of members of two bacterial genera, Coprococcus and Ruminococcus, was increased by the fructose-rich diet and reduced by both antibiotic and faecal treatments, pointing to a correlation between their abundance and the development of the metabolic syndrome. Our data indicate that in rats fed a fructose-rich diet the development of metabolic syndrome is directly correlated with variations of the gut content of specific bacterial taxa.

  12. Rescue of Fructose-Induced Metabolic Syndrome by Antibiotics or Faecal Transplantation in a Rat Model of Obesity.

    Directory of Open Access Journals (Sweden)

    Blanda Di Luccia

    Full Text Available A fructose-rich diet can induce metabolic syndrome, a combination of health disorders that increases the risk of diabetes and cardiovascular diseases. Diet is also known to alter the microbial composition of the gut, although it is not clear whether such alteration contributes to the development of metabolic syndrome. The aim of this work was to assess the possible link between the gut microbiota and the development of diet-induced metabolic syndrome in a rat model of obesity. Rats were fed either a standard or high-fructose diet. Groups of fructose-fed rats were treated with either antibiotics or faecal samples from control rats by oral gavage. Body composition, plasma metabolic parameters and markers of tissue oxidative stress were measured in all groups. A 16S DNA-sequencing approach was used to evaluate the bacterial composition of the gut of animals under different diets. The fructose-rich diet induced markers of metabolic syndrome, inflammation and oxidative stress, that were all significantly reduced when the animals were treated with antibiotic or faecal samples. The number of members of two bacterial genera, Coprococcus and Ruminococcus, was increased by the fructose-rich diet and reduced by both antibiotic and faecal treatments, pointing to a correlation between their abundance and the development of the metabolic syndrome. Our data indicate that in rats fed a fructose-rich diet the development of metabolic syndrome is directly correlated with variations of the gut content of specific bacterial taxa.

  13. Bile acids induce necrosis in pancreatic stellate cells dependent on calcium entry and sodium‐driven bile uptake

    Science.gov (United States)

    Jakubowska, Monika A.; Gerasimenko, Julia V.; Gerasimenko, Oleg V.; Petersen, Ole H.

    2016-01-01

    Key points Acute biliary pancreatitis is a sudden and severe condition initiated by bile reflux into the pancreas.Bile acids are known to induce Ca2+ signals and necrosis in isolated pancreatic acinar cells but the effects of bile acids on stellate cells are unexplored.Here we show that cholate and taurocholate elicit more dramatic Ca2+ signals and necrosis in stellate cells compared to the adjacent acinar cells in pancreatic lobules; whereas taurolithocholic acid 3‐sulfate primarily affects acinar cells.Ca2+ signals and necrosis are strongly dependent on extracellular Ca2+ as well as Na+; and Na+‐dependent transport plays an important role in the overall bile acid uptake in pancreatic stellate cells.Bile acid‐mediated pancreatic damage can be further escalated by bradykinin‐induced signals in stellate cells and thus killing of stellate cells by bile acids might have important implications in acute biliary pancreatitis. Abstract Acute biliary pancreatitis, caused by bile reflux into the pancreas, is a serious condition characterised by premature activation of digestive enzymes within acinar cells, followed by necrosis and inflammation. Bile acids are known to induce pathological Ca2+ signals and necrosis in acinar cells. However, bile acid‐elicited signalling events in stellate cells remain unexplored. This is the first study to demonstrate the pathophysiological effects of bile acids on stellate cells in two experimental models: ex vivo (mouse pancreatic lobules) and in vitro (human cells). Sodium cholate and taurocholate induced cytosolic Ca2+ elevations in stellate cells, larger than those elicited simultaneously in the neighbouring acinar cells. In contrast, taurolithocholic acid 3‐sulfate (TLC‐S), known to induce Ca2+ oscillations in acinar cells, had only minor effects on stellate cells in lobules. The dependence of the Ca2+ signals on extracellular Na+ and the presence of sodium–taurocholate cotransporting polypeptide (NTCP) indicate a Na

  14. Clinical and CT imaging features of abdominal fat necrosis

    International Nuclear Information System (INIS)

    Zhao Jinkun; Bai Renju

    2013-01-01

    Fat necrosis is a common pathological change at abdominal cross-sectional imaging, and it may cause abdominal pain, mimic pathological change of acute abdomen, or be asymptomatic and accompany other pathophysiologic processes. Fat necrosis is actually the result of steatosis by metabolism or mechanical injury. Common processes that are present in fat necrosis include epiploic appendagitis, infarction of the greater omentum, pancreatitis, and fat necrosis related to trauma or ischemia. As a common fat disease, fat necrosis should be known by clinicians and radiologists. Main content of this text is the clinical symptoms and CT findings of belly fat necrosis and related diseases. (authors)

  15. Effects of Combined Low Glutathione with Mild Oxidative and Low Phosphorus Stress on the Metabolism of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Atsushi Fukushima

    2017-08-01

    Full Text Available Plants possess highly sensitive mechanisms that monitor environmental stress levels for a dose-dependent fine-tuning of their growth and development. Differences in plant responses to severe and mild abiotic stresses have been recognized. Although many studies have revealed that glutathione can contribute to plant tolerance to various environmental stresses, little is known about the relationship between glutathione and mild abiotic stress, especially the effect of stress-induced altered glutathione levels on the metabolism. Here, we applied a systems biology approach to identify key pathways involved in the gene-to-metabolite networks perturbed by low glutathione content under mild abiotic stress in Arabidopsis thaliana. We used glutathione synthesis mutants (cad2-1 and pad2-1 and plants overexpressing the gene encoding γ-glutamylcysteine synthetase, the first enzyme of the glutathione biosynthetic pathway. The plants were exposed to two mild stress conditions—oxidative stress elicited by methyl viologen and stress induced by the limited availability of phosphate. We observed that the mutants and transgenic plants showed similar shoot growth as that of the wild-type plants under mild abiotic stress. We then selected the synthesis mutants and performed multi-platform metabolomics and microarray experiments to evaluate the possible effects on the overall metabolome and the transcriptome. As a common oxidative stress response, several flavonoids that we assessed showed overaccumulation, whereas the mild phosphate stress resulted in increased levels of specific kaempferol- and quercetin-glycosides. Remarkably, in addition to a significant increased level of sugar, osmolytes, and lipids as mild oxidative stress-responsive metabolites, short-chain aliphatic glucosinolates over-accumulated in the mutants, whereas the level of long-chain aliphatic glucosinolates and specific lipids decreased. Coordinated gene expressions related to glucosinolate and

  16. Aryl hydrocarbon receptor protects lung adenocarcinoma cells against cigarette sidestream smoke particulates-induced oxidative stress

    International Nuclear Information System (INIS)

    Cheng, Ya-Hsin; Huang, Su-Chin; Lin, Chun-Ju; Cheng, Li-Chuan; Li, Lih-Ann

    2012-01-01

    Environmental cigarette smoke has been suggested to promote lung adenocarcinoma progression through aryl hydrocarbon receptor (AhR)-signaled metabolism. However, whether AhR facilitates metabolic activation or detoxification in exposed adenocarcinoma cells remains ambiguous. To address this question, we have modified the expression level of AhR in two human lung adenocarcinoma cell lines and examined their response to an extract of cigarette sidestream smoke particulates (CSSP). We found that overexpression of AhR in the CL1-5 cell line reduced CSSP-induced ROS production and oxidative DNA damage, whereas knockdown of AhR expression increased ROS level in CSSP-exposed H1355 cells. Oxidative stress sensor Nrf2 and its target gene NQO1 were insensitive to AhR expression level and CSSP treatment in human lung adenocarcinoma cells. In contrast, induction of AhR expression concurrently increased mRNA expression of xenobiotic-metabolizing genes CYP1B1, UGT1A8, and UGT1A10 in a ligand-independent manner. It appeared that AhR accelerated xenobiotic clearing and diminished associated oxidative stress by coordinate regulation of a set of phase I and II metabolizing genes. However, the AhR-signaled protection could not shield cells from constant oxidative stress. Prolonged exposure to high concentrations of CSSP induced G0/G1 cell cycle arrest via the p53–p21–Rb1 signaling pathway. Despite no effect on DNA repair rate, AhR facilitated the recovery of cells from growth arrest when CSSP exposure ended. AhR-overexpressing lung adenocarcinoma cells exhibited an increased anchorage-dependent and independent proliferation when recovery from exposure. In summary, our data demonstrated that AhR protected lung adenocarcinoma cells against CSSP-induced oxidative stress and promoted post-exposure clonogenicity. -- Highlights: ► AhR expression level influences cigarette sidestream smoke-induced ROS production. ► AhR reduces oxidative stress by coordinate regulation of

  17. Aryl hydrocarbon receptor protects lung adenocarcinoma cells against cigarette sidestream smoke particulates-induced oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Ya-Hsin [Graduate Institute of Basic Medical Science, School of Medicine, China Medical University, Taichung 40402, Taiwan, ROC (China); Huang, Su-Chin; Lin, Chun-Ju; Cheng, Li-Chuan [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC (China); Li, Lih-Ann, E-mail: lihann@nhri.org.tw [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC (China)

    2012-03-15

    Environmental cigarette smoke has been suggested to promote lung adenocarcinoma progression through aryl hydrocarbon receptor (AhR)-signaled metabolism. However, whether AhR facilitates metabolic activation or detoxification in exposed adenocarcinoma cells remains ambiguous. To address this question, we have modified the expression level of AhR in two human lung adenocarcinoma cell lines and examined their response to an extract of cigarette sidestream smoke particulates (CSSP). We found that overexpression of AhR in the CL1-5 cell line reduced CSSP-induced ROS production and oxidative DNA damage, whereas knockdown of AhR expression increased ROS level in CSSP-exposed H1355 cells. Oxidative stress sensor Nrf2 and its target gene NQO1 were insensitive to AhR expression level and CSSP treatment in human lung adenocarcinoma cells. In contrast, induction of AhR expression concurrently increased mRNA expression of xenobiotic-metabolizing genes CYP1B1, UGT1A8, and UGT1A10 in a ligand-independent manner. It appeared that AhR accelerated xenobiotic clearing and diminished associated oxidative stress by coordinate regulation of a set of phase I and II metabolizing genes. However, the AhR-signaled protection could not shield cells from constant oxidative stress. Prolonged exposure to high concentrations of CSSP induced G0/G1 cell cycle arrest via the p53–p21–Rb1 signaling pathway. Despite no effect on DNA repair rate, AhR facilitated the recovery of cells from growth arrest when CSSP exposure ended. AhR-overexpressing lung adenocarcinoma cells exhibited an increased anchorage-dependent and independent proliferation when recovery from exposure. In summary, our data demonstrated that AhR protected lung adenocarcinoma cells against CSSP-induced oxidative stress and promoted post-exposure clonogenicity. -- Highlights: ► AhR expression level influences cigarette sidestream smoke-induced ROS production. ► AhR reduces oxidative stress by coordinate regulation of

  18. Impact of high cholesterol and endoplasmic reticulum stress on metabolic diseases: An updated mini-review

    Directory of Open Access Journals (Sweden)

    Erdi Sozen

    2017-08-01

    Full Text Available Endoplasmic reticulum (ER is the major site of protein folding and calcium storage. Beside the role of ER in protein homeostasis, it controls the cholesterol production and lipid-membrane biosynthesis as well as surviving and cell death signaling mechanisms in the cell. It is well-documented that elevated plasma cholesterol induces adverse effects in cardiovascular diseases (CVDs, liver disorders, such as non-alcoholic fatty liver disease (NAFLD, non-alcoholic steatosis hepatitis (NASH, and metabolic diseases which are associated with oxidative and ER stress. Recent animal model and human studies have showed high cholesterol and ER stress as an emerging factors involved in the development of many metabolic diseases. In this review, we will summarize the crucial effects of hypercholesterolemia and ER stress response in the pathogenesis of CVDs, NAFLD/NASH, diabetes and obesity which are major health problems in western countries. Keywords: Endoplasmic reticulum stress, High cholesterol, Cardiovascular diseases, Non-alcoholic fatty liver disease, Non-alcoholic steatosis hepatitis

  19. Modulators of Response to Tumor Necrosis-Related Apoptosis-Inducing Ligand (TRAIL) Therapy in Ovarian Cancer

    National Research Council Canada - National Science Library

    Behbakht, Kian

    2008-01-01

    .... More effective therapies are urgently needed. One of the most promising therapies in development for ovarian cancer is the use of either the Tumor Necrosis Factor-related Apoptosis Inducing Ligand (TRAIL...

  20. Mechanisms of Alcohol-Induced Endoplasmic Reticulum Stress and Organ Injuries

    Directory of Open Access Journals (Sweden)

    Cheng Ji

    2012-01-01

    Full Text Available Alcohol is readily distributed throughout the body in the blood stream and crosses biological membranes, which affect virtually all biological processes inside the cell. Excessive alcohol consumption induces numerous pathological stress responses, part of which is endoplasmic reticulum (ER stress response. ER stress, a condition under which unfolded/misfolded protein accumulates in the ER, contributes to alcoholic disorders of major organs such as liver, pancreas, heart, and brain. Potential mechanisms that trigger the alcoholic ER stress response are directly or indirectly related to alcohol metabolism, which includes toxic acetaldehyde and homocysteine, oxidative stress, perturbations of calcium or iron homeostasis, alterations of S-adenosylmethionine to S-adenosylhomocysteine ratio, and abnormal epigenetic modifications. Interruption of the ER stress triggers is anticipated to have therapeutic benefits for alcoholic disorders.

  1. Microarray-based screening of differentially expressed genes in glucocorticoid-induced avascular necrosis

    Science.gov (United States)

    Huang, Gangyong; Wei, Yibing; Zhao, Guanglei; Xia, Jun; Wang, Siqun; Wu, Jianguo; Chen, Feiyan; Chen, Jie; Shi, Jingshen

    2017-01-01

    The underlying mechanisms of glucocorticoid (GC)-induced avascular necrosis of the femoral head (ANFH) have yet to be fully understood, in particular the mechanisms associated with the change of gene expression pattern. The present study aimed to identify key genes with a differential expression pattern in GC-induced ANFH. E-MEXP-2751 microarray data were downloaded from the ArrayExpress database. Differentially expressed genes (DEGs) were identified in 5 femoral head samples of steroid-induced ANFH rats compared with 5 placebo-treated rat samples. Gene Ontology (GO) and pathway enrichment analyses were performed upon these DEGs. A total 93 DEGs (46 upregulated and 47 downregulated genes) were identified in GC-induced ANFH samples. These DEGs were enriched in different GO terms and pathways, including chondrocyte differentiation and detection of chemical stimuli. The enrichment map revealed that skeletal system development was interconnected with several other GO terms by gene overlap. The literature mined network analysis revealed that 5 upregulated genes were associated with femoral necrosis, including parathyroid hormone receptor 1 (PTHR1), vitamin D (1,25-Dihydroxyvitamin D3) receptor (VDR), collagen, type II, α1, proprotein convertase subtilisin/kexin type 6 and zinc finger protein 354C (ZFP354C). In addition, ZFP354C and VDR were identified to transcription factors. Furthermore, PTHR1 was revealed to interact with VDR, and α-2-macroglobulin (A2M) interacted with fibronectin 1 (FN1) in the PPI network. PTHR1 may be involved in GC-induced ANFH via interacting with VDR. A2M may also be involved in the development of GC-induced ANFH through interacting with FN1. An improved understanding of the molecular mechanisms underlying GC-induced ANFH may provide novel targets for diagnostics and therapeutic treatment. PMID:28393228

  2. Microarray‑based screening of differentially expressed genes in glucocorticoid‑induced avascular necrosis.

    Science.gov (United States)

    Huang, Gangyong; Wei, Yibing; Zhao, Guanglei; Xia, Jun; Wang, Siqun; Wu, Jianguo; Chen, Feiyan; Chen, Jie; Shi, Jingshen

    2017-06-01

    The underlying mechanisms of glucocorticoid (GC)‑induced avascular necrosis of the femoral head (ANFH) have yet to be fully understood, in particular the mechanisms associated with the change of gene expression pattern. The present study aimed to identify key genes with a differential expression pattern in GC‑induced ANFH. E‑MEXP‑2751 microarray data were downloaded from the ArrayExpress database. Differentially expressed genes (DEGs) were identified in 5 femoral head samples of steroid‑induced ANFH rats compared with 5 placebo‑treated rat samples. Gene Ontology (GO) and pathway enrichment analyses were performed upon these DEGs. A total 93 DEGs (46 upregulated and 47 downregulated genes) were identified in GC‑induced ANFH samples. These DEGs were enriched in different GO terms and pathways, including chondrocyte differentiation and detection of chemical stimuli. The enrichment map revealed that skeletal system development was interconnected with several other GO terms by gene overlap. The literature mined network analysis revealed that 5 upregulated genes were associated with femoral necrosis, including parathyroid hormone receptor 1 (PTHR1), vitamin D (1,25‑Dihydroxyvitamin D3) receptor (VDR), collagen, type II, α1, proprotein convertase subtilisin/kexin type 6 and zinc finger protein 354C (ZFP354C). In addition, ZFP354C and VDR were identified to transcription factors. Furthermore, PTHR1 was revealed to interact with VDR, and α‑2‑macroglobulin (A2M) interacted with fibronectin 1 (FN1) in the PPI network. PTHR1 may be involved in GC‑induced ANFH via interacting with VDR. A2M may also be involved in the development of GC‑induced ANFH through interacting with FN1. An improved understanding of the molecular mechanisms underlying GC‑induced ANFH may provide novel targets for diagnostics and therapeutic treatment.

  3. Loss of the co-repressor GPS2 sensitizes macrophage activation upon metabolic stress induced by obesity and type 2 diabetes.

    Science.gov (United States)

    Fan, Rongrong; Toubal, Amine; Goñi, Saioa; Drareni, Karima; Huang, Zhiqiang; Alzaid, Fawaz; Ballaire, Raphaelle; Ancel, Patricia; Liang, Ning; Damdimopoulos, Anastasios; Hainault, Isabelle; Soprani, Antoine; Aron-Wisnewsky, Judith; Foufelle, Fabienne; Lawrence, Toby; Gautier, Jean-Francois; Venteclef, Nicolas; Treuter, Eckardt

    2016-07-01

    Humans with obesity differ in their susceptibility to developing insulin resistance and type 2 diabetes (T2D). This variation may relate to the extent of adipose tissue (AT) inflammation that develops as their obesity progresses. The state of macrophage activation has a central role in determining the degree of AT inflammation and thus its dysfunction, and these states are driven by epigenomic alterations linked to gene expression. The underlying mechanisms that regulate these alterations, however, are poorly defined. Here we demonstrate that a co-repressor complex containing G protein pathway suppressor 2 (GPS2) crucially controls the macrophage epigenome during activation by metabolic stress. The study of AT from humans with and without obesity revealed correlations between reduced GPS2 expression in macrophages, elevated systemic and AT inflammation, and diabetic status. The causality of this relationship was confirmed by using macrophage-specific Gps2-knockout (KO) mice, in which inappropriate co-repressor complex function caused enhancer activation, pro-inflammatory gene expression and hypersensitivity toward metabolic-stress signals. By contrast, transplantation of GPS2-overexpressing bone marrow into two mouse models of obesity (ob/ob and diet-induced obesity) reduced inflammation and improved insulin sensitivity. Thus, our data reveal a potentially reversible disease mechanism that links co-repressor-dependent epigenomic alterations in macrophages to AT inflammation and the development of T2D.

  4. Aerobic exercise acutely prevents the endothelial dysfunction induced by mental stress among subjects with metabolic syndrome: the role of shear rate.

    Science.gov (United States)

    Sales, Allan R K; Fernandes, Igor A; Rocha, Natália G; Costa, Lucas S; Rocha, Helena N M; Mattos, João D M; Vianna, Lauro C; Silva, Bruno M; Nóbrega, Antonio C L

    2014-04-01

    Mental stress induces transient endothelial dysfunction, which is an important finding for subjects at cardiometabolic risk. Thus, we tested whether aerobic exercise prevents this dysfunction among subjects with metabolic syndrome (MetS) and whether an increase in shear rate during exercise plays a role in this phenomenon. Subjects with MetS participated in two protocols. In protocol 1 (n = 16), endothelial function was assessed using brachial artery flow-mediated dilation (FMD). Subjects then underwent a mental stress test followed by either 40 min of leg cycling or rest across two randomized sessions. FMD was assessed again at 30 and 60 min after exercise or rest, with a second mental stress test in between. Mental stress reduced FMD at 30 and 60 min after the rest session (baseline: 7.7 ± 0.4%, 30 min: 5.4 ± 0.5%, and 60 min: 3.9 ± 0.5%, P exercise prevented this reduction (baseline: 7.5 ± 0.4%, 30 min: 7.2 ± 0.7%, and 60 min: 8.7 ± 0.8%, P > 0.05 vs. baseline). Protocol 2 (n = 5) was similar to protocol 1 except that the first period of mental stress was followed by either exercise in which the brachial artery shear rate was attenuated via forearm cuff inflation or exercise without a cuff. Noncuffed exercise prevented the reduction in FMD (baseline: 7.5 ± 0.7%, 30 min: 7.0 ± 0.7%, and 60 min: 8.7 ± 0.8%, P > 0.05 vs. baseline), whereas cuffed exercise failed to prevent this reduction (baseline: 7.5 ± 0.6%, 30 min: 5.4 ± 0.8%, and 60 min: 4.1 ± 0.9%, P exercise prevented mental stress-induced endothelial dysfunction among subjects with MetS, and an increase in shear rate during exercise mediated this effect.

  5. Early Life Stress Increases Metabolic Risk, HPA Axis Reactivity, and Depressive-Like Behavior When Combined with Postweaning Social Isolation in Rats.

    Science.gov (United States)

    Vargas, Javier; Junco, Mariana; Gomez, Carlos; Lajud, Naima

    2016-01-01

    Early-life stress is associated with depression and metabolic abnormalities that increase the risk of cardiovascular disease and diabetes. Such associations could be due to increased glucocorticoid levels. Periodic maternal separation in the neonate and rearing in social isolation are potent stressors that increase hypothalamus-pituitary-adrenal axis activity. Moreover, social isolation promotes feed intake and body weight gain in rats subjected to periodic maternal separation; however, its effects on metabolic risks have not been described. In the present study, we evaluated whether periodic maternal separation, social isolation rearing, and a combination of these two stressors (periodic maternal separation + social isolation rearing) impair glucose homeostasis and its relation to the hypothalamus-pituitary-adrenal axis and depressive-like behavior. Periodic maternal separation increased basal corticosterone levels, induced a passive coping strategy in the forced swimming test, and was associated with a mild (24%) increase in fasting glucose, insulin resistance, and dyslipidemia. Rearing in social isolation increased stress reactivity in comparison to both controls and in combination with periodic maternal separation, without affecting the coping strategy associated with the forced swimming test. However, social isolation also increased body weight gain, fasting glucose (120%), and insulin levels in rats subjected to periodic maternal separation. Correlation analyses showed that stress-induced effects on coping strategy on the forced swimming test (but not on metabolic risk markers) are associated with basal corticosterone levels. These findings suggest that maternal separation and postweaning social isolation affect stress and metabolic vulnerability differentially and that early-life stress-related effects on metabolism are not directly dependent on glucocorticoid levels. In conclusion, our study supports the cumulative stress hypothesis, which suggests that

  6. Role of interleukin 1 and tumor necrosis factor on energy metabolism in rabbits

    International Nuclear Information System (INIS)

    Tredget, E.E.; Yu, Y.M.; Zhong, S.; Burini, R.; Okusawa, S.; Gelfand, J.A.; Dinarello, C.A.; Young, V.R.; Burke, J.F.

    1988-01-01

    A study of the combined effects of intravenous infusion of the recombinant cytokines beta-interleukin 1 (IL-1) and alpha-tumor necrosis factor (TNF) on energy substrate metabolism in awake, conditioned, adult rabbits was performed. After a 2-h basal or control period, 48-h fasted rabbits were administered TNF and IL-1 as a bolus (5 micrograms/kg) followed by a continuous intravenous infusion (25 ng.kg-1.min-1) for 3 h. Significant increases in plasma lactate (P less than 0.01), glucose (P less than 0.01), and triglycerides (P less than 0.05) occurred during the combined infusion of IL-1 and TNF, whereas neither cytokine alone had no effect. There was a 33% increase in the rate of glucose appearance (P less than 0.05), but glucose clearance was not altered compared with the control period. Glucose oxidation increased during the combined cytokine infusion period and glucose recycling increased by 600% (P less than 0.002). Lactic acidosis and decreased oxygen consumption, as a result of the cytokine infusions, indicated development of anaerobic glycolytic metabolism. A reduction in the activity state of hepatic mitochondrial pyruvate dehydrogenase (65 vs. 82% in control animals, P less than 0.05) was consistent with the observed increase in anaerobic glycolysis. Thus the combined infusion of IL-1 and TNF in rabbits produces metabolic manifestations seen in severe injury and sepsis in human patients and, as such, may account for the profound alterations of energy metabolism seen in these conditions

  7. Role of interleukin 1 and tumor necrosis factor on energy metabolism in rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Tredget, E.E.; Yu, Y.M.; Zhong, S.; Burini, R.; Okusawa, S.; Gelfand, J.A.; Dinarello, C.A.; Young, V.R.; Burke, J.F.

    1988-12-01

    A study of the combined effects of intravenous infusion of the recombinant cytokines beta-interleukin 1 (IL-1) and alpha-tumor necrosis factor (TNF) on energy substrate metabolism in awake, conditioned, adult rabbits was performed. After a 2-h basal or control period, 48-h fasted rabbits were administered TNF and IL-1 as a bolus (5 micrograms/kg) followed by a continuous intravenous infusion (25 ng.kg-1.min-1) for 3 h. Significant increases in plasma lactate (P less than 0.01), glucose (P less than 0.01), and triglycerides (P less than 0.05) occurred during the combined infusion of IL-1 and TNF, whereas neither cytokine alone had no effect. There was a 33% increase in the rate of glucose appearance (P less than 0.05), but glucose clearance was not altered compared with the control period. Glucose oxidation increased during the combined cytokine infusion period and glucose recycling increased by 600% (P less than 0.002). Lactic acidosis and decreased oxygen consumption, as a result of the cytokine infusions, indicated development of anaerobic glycolytic metabolism. A reduction in the activity state of hepatic mitochondrial pyruvate dehydrogenase (65 vs. 82% in control animals, P less than 0.05) was consistent with the observed increase in anaerobic glycolysis. Thus the combined infusion of IL-1 and TNF in rabbits produces metabolic manifestations seen in severe injury and sepsis in human patients and, as such, may account for the profound alterations of energy metabolism seen in these conditions.

  8. Hormonal enhancement of insecticide efficacy in Tribolium castaneum: oxidative stress and metabolic aspects.

    Science.gov (United States)

    Plavšin, Ivana; Stašková, Tereza; Šerý, Michal; Smýkal, Vlastimil; Hackenberger, Branimir K; Kodrík, Dalibor

    2015-04-01

    Insect anti-stress responses, including those induced by insecticides, are controlled by adipokinetic hormones (AKHs). We examined the physiological consequences of Pyrap-AKH application on Tribolium castaneum adults (AKH-normal and AKH-deficient prepared by the RNAi technique) treated by two insecticides, pirimiphos-methyl and deltamethrin. Co-application of pirimiphos-methyl and/or deltamethrin with AKH significantly increased beetle mortality compared with application of the insecticides alone. This co-treatment was accompanied by substantial stimulation of general metabolism, as monitored by carbon dioxide production. Further, the insecticide treatment alone affected some basic markers of oxidative stress: it lowered total antioxidative capacity as well as the activity of superoxide dismutase in the beetle body; in addition, it enhanced the activity of catalase and glutathione-S-transferase. However, these discrepancies in oxidative stress markers were eliminated/reduced by co-application with Pyrap-AKH. We suggest that the elevation of metabolism, which is probably accompanied with faster turnover of toxins, might be responsible for the higher mortality that results after AKH and insecticide co-application. Changes in oxidative stress markers are probably not included in the mechanisms responsible for increased mortality. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Time course of regional myocardial glucose metabolism after transient ischemia assessed by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Hoshizaki, Hiroshi (Gunma Univ., Maebashi (Japan). School of Medicine)

    1992-11-01

    The purpose of this study was to examine the significance of glucose metabolism in ischemic canine myocardium after reperfusion. Transient ischemia was induced by 90 or 180 minutes occlusion of the left anterior descending coronary artery. Twelve hours and 4 weeks after reperfusion, myocardial blood flow (MBF) and glucose metabolism were assessed (with H[sub 2][sup 15]O and [sup 18]F-FDG, respectively) by positron emission tomography (PET) under the fasting state, and the metabolic findings were compared with the histologic examination. Glucose metabolism in ischemic regions was inversely related to the amount of tissue necrosis 12 hours and 4 weeks after reperfusion (r=-0.89 and r=-0.82, respectively). The perfusion-metabolism mismatch pattern was seen in the area with less than 10 percent necrosis 12 hours after reperfusion, but this pattern disappeared after 4 weeks. The area with 10 to 50 percent necrosis showed the mismatch pattern until 4 weeks after reperfusion, and in the area with more than 50 percent necrosis, perfusion-metabolism concordantly decreased. Thus, metabolic index assessed early after reperfusion by PET identified myocardial viability, and the perfusion-metabolism mismatch pattern sustained in relation to the degree of ischemic injury. Since some regions estimated to be irreversible by PET were viable by the histologic examination, PET study might underestimate the myocardial viability. (author).

  10. Caenorhabditis elegans: A Useful Model for Studying Metabolic Disorders in Which Oxidative Stress Is a Contributing Factor

    Directory of Open Access Journals (Sweden)

    Elizabeth Moreno-Arriola

    2014-01-01

    Full Text Available Caenorhabditis elegans is a powerful model organism that is invaluable for experimental research because it can be used to recapitulate most human diseases at either the metabolic or genomic level in vivo. This organism contains many key components related to metabolic and oxidative stress networks that could conceivably allow us to increase and integrate information to understand the causes and mechanisms of complex diseases. Oxidative stress is an etiological factor that influences numerous human diseases, including diabetes. C. elegans displays remarkably similar molecular bases and cellular pathways to those of mammals. Defects in the insulin/insulin-like growth factor-1 signaling pathway or increased ROS levels induce the conserved phase II detoxification response via the SKN-1 pathway to fight against oxidative stress. However, it is noteworthy that, aside from the detrimental effects of ROS, they have been proposed as second messengers that trigger the mitohormetic response to attenuate the adverse effects of oxidative stress. Herein, we briefly describe the importance of C. elegans as an experimental model system for studying metabolic disorders related to oxidative stress and the molecular mechanisms that underlie their pathophysiology.

  11. Metabolic enhancer piracetam attenuates rotenone induced oxidative stress: a study in different rat brain regions.

    Science.gov (United States)

    Verma, Dinesh Kumar; Joshi, Neeraj; Raju, Kunumuri Sivarama; Wahajuddin, Muhammad; Singh, Rama Kant; Singh, Sarika

    2015-01-01

    Piracetam is clinically being used nootropic drug but the details of its neuroprotective mechanism are not well studied. The present study was conducted to assess the effects of piracetam on rotenone induced oxidative stress by using both ex vivo and in vivo test systems. Rats were treated with piracetam (600 mg/kg b.w. oral) for seven constitutive days prior to rotenone administration (intracerebroventricular, 12 µg) in rat brain. Rotenone induced oxidative stress was assessed after 1 h and 24 h of rotenone administration. Ex vivo estimations were performed by using two experimental designs. In one experimental design the rat brain homogenate was treated with rotenone (1 mM, 2 mM and 4 mM) and rotenone+piracetam (10 mM) for 1 h. While in second experimental design the rats were pretreated with piracetam for seven consecutive days. On eighth day the rats were sacrificed, brain homogenate was prepared and treated with rotenone (1 mM, 2 mM and 4mM) for 1h. After treatment the glutathione (GSH) and malondialdehyde (MDA) levels were estimated in brain homogenate. In vivo study showed that pretreatment of piracetam offered significant protection against rotenone induced decreased GSH and increased MDA level though the protection was region specific. But the co-treatment of piracetam with rotenone did not offer significant protection against rotenone induced oxidative stress in ex vivo study. Whereas ex vivo experiments in rat brain homogenate of piracetam pretreated rats, showed the significant protection against rotenone induced oxidative stress. Findings indicated that pretreatment of piracetam significantly attenuated the rotenone induced oxidative stress though the protection was region specific. Piracetam treatment to rats led to its absorption and accumulation in different brain regions as assessed by liquid chromatography mass spectrometry/mass spectrometry. In conclusion, study indicates the piracetam is able to enhance the antioxidant capacity in brain cells

  12. NDRG2 overexpression suppresses hepatoma cells survival during metabolic stress through disturbing the activation of fatty acid oxidation

    International Nuclear Information System (INIS)

    Pan, Tao; Zhang, Mei; Zhang, Fang; Yan, Guang; Ru, Yi; Wang, Qinhao; Zhang, Yao; Wei, Xuehui; Xu, Xinyuan; Shen, Lan; Zhang, Jian; Wu, Kaichun; Yao, Libo; Li, Xia

    2017-01-01

    Because of the high nutrient consumption and inadequate vascularization, solid tumor constantly undergoes metabolic stress during tumor development. Oncogenes and tumor suppressor genes participated in cancer cells' metabolic reprogramming. N-Myc downstream regulated gene 2 (NDRG2) is a recently identified tumor suppressor gene, but its function in cancer metabolism, particularly during metabolic stress, remains unclear. In this study, we found that NDRG2 overexpression significantly reduced hepatoma cell proliferation and enhanced cell apoptosis under glucose limitation. Moreover, NDRG2 overexpression aggravated energy imbalance and oxidative stress by decreasing the intracellular ATP and NADPH generation and increasing ROS levels. Strikingly, NDRG2 inhibited the activation of fatty acid oxidation (FAO), which preserves ATP and NADPH purveyance in the absence of glucose. Finally, mechanistic investigation showed that NDRG2 overexpression suppressed the glucose-deprivation induced AMPK/ACC pathway activation in hepatoma cells, whereas the expression of a constitutively active form of AMPK abrogated glucose-deprivation induced AMPK activation and cell apoptosis. Thus, as a negative regulator of AMPK, NDRG2 disturbs the induction of FAO genes by glucose limitation, leading to dysregulation of ATP and NADPH, and thus reduces the tolerance of hepatoma cells to glucose limitation. - Highlights: • NDRG2 overexpression reduces the tolerance of hepatoma cells to glucose limitation. • NDRG2 overexpression aggravates energy imbalance and oxidative stress under glucose deprivation. • NDRG2 overexpression disturbs the activation of FAO in hepatoma cells under glucose limitation. • NDRG2 overexpression inhibits the activation of AMPK/ACC pathway in hepatoma cells during glucose starvation.

  13. Endoplasmic reticulum stress is involved in arsenite-induced oxidative injury in rat brain

    International Nuclear Information System (INIS)

    Lin, Anya M.Y.; Chao, P.L.; Fang, S.F.; Chi, C.W.; Yang, C.H.

    2007-01-01

    The mechanism underlying sodium arsenite (arsenite)-induced neurotoxicity was investigated in rat brain. Arsenite was locally infused in the substantia nigra (SN) of anesthetized rat. Seven days after infusion, lipid peroxidation in the infused SN was elevated and dopamine level in the ipsilateral striatum was reduced in a concentration-dependent manner (0.3-5 nmol). Furthermore, local infusion of arsenite (5 nmol) decreased GSH content and increased expression of heat shock protein 70 and heme oxygenase-1 in the infused SN. Aggregation of α-synuclein, a putative pathological protein involved in several CNS neurodegenerative diseases, was elevated in the arsenite-infused SN. From the breakdown pattern of α-spectrin, both necrosis and apoptosis were involved in the arsenite-induced neurotoxicity. Pyknotic nuclei, cellular shrinkage and cytoplasmic disintegration, indicating necrosis, and TUNEL-positive cells and DNA ladder, indicating apoptosis was observed in the arsenite-infused SN. Arsenite-induced apoptosis was mediated via two different organelle pathways, mitochondria and endoplasmic reticulum (ER). For mitochondrial activation, cytosolic cytochrome c and caspase-3 levels were elevated in the arsenite-infused SN. In ER pathway, arsenite increased activating transcription factor-4, X-box binding protein 1, C/EBP homologues protein (CHOP) and cytosolic immunoglobulin binding protein levels. Moreover, arsenite reduced procaspase 12 levels, an ER-specific enzyme in the infused SN. Taken together, our study suggests that arsenite is capable of inducing oxidative injury in CNS. In addition to mitochondria, ER stress was involved in the arsenite-induced apoptosis. Arsenite-induced neurotoxicity clinically implies a pathophysiological role of arsenite in CNS neurodegeneration

  14. Protective effects of l-carnitine and piracetam against mitochondrial permeability transition and PC3 cell necrosis induced by simvastatin.

    Science.gov (United States)

    Costa, Rute A P; Fernandes, Mariana P; de Souza-Pinto, Nadja C; Vercesi, Aníbal E

    2013-02-15

    Mitochondrial oxidative stress followed by membrane permeability transition (MPT) has been considered as a possible mechanism for statins cytotoxicity. Statins use has been associated with reduced risk of cancer incidence, especially prostate cancer. Here we investigated the pathways leading to simvastatin-induced prostate cancer cell death as well as the mechanisms of cell death protection by l-carnitine or piracetam. These compounds are known to prevent and/or protect against cell death mediated by oxidative mitochondrial damage induced by a variety of conditions, either in vivo or in vitro. The results provide evidence that simvastatin induced MPT and cell necrosis were sensitive to either l-carnitine or piracetam in a dose-dependent fashion and mediated by additive mechanisms. When combined, l-carnitine and piracetam acted at concentrations significantly lower than they act individually. These results shed new light into both the cytotoxic mechanisms of statins and the mechanisms underlying the protection against MPT and cell death by the compounds l-carnitine and piracetam. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Altered oxidative stress and carbohydrate metabolism in canine mammary tumors

    Directory of Open Access Journals (Sweden)

    K. Jayasri

    2016-12-01

    Full Text Available Aim: Mammary tumors are the most prevalent type of neoplasms in canines. Even though cancer induced metabolic alterations are well established, the clinical data describing the metabolic profiles of animal tumors is not available. Hence, our present investigation was carried out with the aim of studying changes in carbohydrate metabolism along with the level of oxidative stress in canine mammary tumors. Materials and Methods: Fresh mammary tumor tissues along with the adjacent healthy tissues were collected from the college surgical ward. The levels of thiobarbituric acid reactive substances (TBARS, glutathione, protein, hexose, hexokinase, glucose-6-phosphatase, fructose-1, 6-bisphosphatase, and glucose-6-phosphate dehydrogenase (G6PD were analyzed in all the tissues. The results were analyzed statistically. Results: More than two-fold increase in TBARS and three-fold increase in glutathione levels were observed in neoplastic tissues. Hexokinase activity and hexose concentration (175% was found to be increased, whereas glucose-6-phosphatase (33%, fructose-1, 6-bisphosphatase (42%, and G6PD (5 fold activities were reduced in tumor mass compared to control. Conclusion: Finally, it was revealed that lipid peroxidation was increased with differentially altered carbohydrate metabolism in canine mammary tumors.

  16. Comparative analyses reveal different consequences of two oxidative stress inducers, gamma irradiation and potassium tellurite, in the extremophile Deinococcus radiodurans

    International Nuclear Information System (INIS)

    Narasimha, Anaganti; Basu, Bhakti; Apte, Shree Kumar

    2014-01-01

    Proteomic and mass spectrometric analyses revealed differential responses of D. radiodurans to two oxidative stressors. While both elicited oxidative stress alleviation response, major divergence was observed at the level of DNA repair, metabolic pathways and protein homeostasis. Response to gamma irradiation was focused on DNA repair and ROS scavenging but supported metabolism as well as protein homeostasis. Tellurite, induced oxidative stress alleviation but decreased reducing affected and adversely affected metabolism and protein homeostasis

  17. Cytoprotection by fructose and other ketohexoses during bile salt-induced apoptosis of hepatocytes.

    Science.gov (United States)

    Zeid, I M; Bronk, S F; Fesmier, P J; Gores, G J

    1997-01-01

    Toxic bile salts cause hepatocyte necrosis at high concentrations and apoptosis at lower concentrations. Although fructose prevents bile salt-induced necrosis, the effect of fructose on bile salt-induced apoptosis is unclear. Our aim was to determine if fructose also protects against bile salt-induced apoptosis. Fructose inhibited glycochenodeoxycholate (GCDC)-induced apoptosis in a concentration-dependent manner with a maximum inhibition of 72% +/- 10% at 10 mmol/L. First, we determined if fructose inhibited apoptosis by decreasing adenosine triphosphate (ATP) and intracellular pH (pHi). Although fructose decreased ATP to effects, alterations in the expression of bcl-2, or metal chelation, we next determined if the poorly metabolized ketohexoses, tagatose and sorbose, also inhibited apoptosis; unexpectedly, both ketohexoses inhibited apoptosis. Because bile salt-induced apoptosis and necrosis are inhibited by fructose, these data suggest that similar processes initiate bile salt-induced hepatocyte necrosis and apoptosis. In contrast, acidosis, which inhibits necrosis, potentiates apoptosis. Thus, ketohexose-sensitive pathways appear to initiate both bile salt-induced cell apoptosis and necrosis, whereas dissimilar, pH-sensitive, effector mechanisms execute these two different cell death processes.

  18. Transcript profiles uncover temporal and stress-induced changes of metabolic pathways in germinating sugar beet seeds

    Directory of Open Access Journals (Sweden)

    Windhövel Andrea

    2008-12-01

    Full Text Available Abstract Background With a cultivation area of 1.75 Mio ha and sugar yield of 16.7 Mio tons in 2006, sugar beet is a crop of great economic importance in Europe. The productivity of sugar beet is determined significantly by seed vigour and field emergence potential; however, little is known about the molecular mechanisms underlying these traits. Both traits exhibit large variations within sugar beet germplasm that have been difficult to ascribe to either environmental or genetic causes. Among potential targets for trait improvement, an enhancement of stress tolerance is considered because of the high negative influence of environmental stresses on trait parameters. Extending our knowledge of genetic and molecular determinants of sugar beet germination, stress response and adaptation mechanisms would facilitate the detection of new targets for breeding crop with an enhanced field emergence potential. Results To gain insight into the sugar beet germination we initiated an analysis of gene expression in a well emerging sugar beet hybrid showing high germination potential under various environmental conditions. A total of 2,784 ESTs representing 2,251 'unigenes' was generated from dry mature and germinating seeds. Analysis of the temporal expression of these genes during germination under non-stress conditions uncovered drastic transcriptional changes accompanying a shift from quiescent to metabolically active stages of the plant life cycle. Assay of germination under stressful conditions revealed 157 genes showing significantly different expression patterns in response to stress. As deduced from transcriptome data, stress adaptation mechanisms included an alteration in reserve mobilization pathways, an accumulation of the osmoprotectant glycine betaine, late embryogenesis abundant proteins and detoxification enzymes. The observed transcriptional changes are supposed to be regulated by ABA-dependent signal transduction pathway. Conclusion This study

  19. Biologically Synthesized Gold Nanoparticles Ameliorate Cold and Heat Stress-Induced Oxidative Stress in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Xi-Feng Zhang

    2016-06-01

    Full Text Available Due to their unique physical, chemical, and optical properties, gold nanoparticles (AuNPs have recently attracted much interest in the field of nanomedicine, especially in the areas of cancer diagnosis and photothermal therapy. Because of the enormous potential of these nanoparticles, various physical, chemical, and biological methods have been adopted for their synthesis. Synthetic antioxidants are dangerous to human health. Thus, the search for effective, nontoxic natural compounds with effective antioxidative properties is essential. Although AuNPs have been studied for use in various biological applications, exploration of AuNPs as antioxidants capable of inhibiting oxidative stress induced by heat and cold stress is still warranted. Therefore, one goal of our study was to produce biocompatible AuNPs using biological methods that are simple, nontoxic, biocompatible, and environmentally friendly. Next, we aimed to assess the antioxidative effect of AuNPs against oxidative stress induced by cold and heat in Escherichia coli, which is a suitable model for stress responses involving AuNPs. The response of aerobically grown E. coli cells to cold and heat stress was found to be similar to the oxidative stress response. Upon exposure to cold and heat stress, the viability and metabolic activity of E. coli was significantly reduced compared to the control. In addition, levels of reactive oxygen species (ROS and malondialdehyde (MDA and leakage of proteins and sugars were significantly elevated, and the levels of lactate dehydrogenase activity (LDH and adenosine triphosphate (ATP significantly lowered compared to in the control. Concomitantly, AuNPs ameliorated cold and heat-induced oxidative stress responses by increasing the expression of antioxidants, including glutathione (GSH, glutathione S-transferase (GST, super oxide dismutase (SOD, and catalase (CAT. These consistent physiology and biochemical data suggest that AuNPs can ameliorate cold and

  20. FGF-2 Transcriptionally Down-Regulates the Expression of BNIP3L via PI3K/Akt/FoxO3a Signaling and Inhibits Necrosis and Mitochondrial Dysfunction Induced by High Concentrations of Hydrogen Peroxide in H9c2 Cells

    Directory of Open Access Journals (Sweden)

    Qian Chen

    2016-12-01

    Full Text Available Background/Aims: Cardiovascular disease is a growing major global public health problem. Necrosis is one of the main forms of cardiomyocyte death in heart disease. Oxidative stress is regarded as one of the key regulators of cardiac necrosis, which eventually leads to cardiovascular disease. Many pharmacological and in vitro studies have suggested that FGF-2 can act directly on cardiomyocytes to maintain the integrity and function of the myocardium and prevent damage during oxidative stress. However, the mechanisms by which FGF-2 rescues the myocardium from oxidative stress damage in cardiovascular disease remain unclear. The present study explored the protective effects of FGF-2 in the H2O2-induced necrosis of H9C2 cardiomyocytes as well as the possible signaling pathways involved. Methods: Necrosis of H9c2 cardiomyocytes was induced by H2O2 and assessed using a Cell Counting Kit-8 (CCK8 assay and flow cytometry analysis. The cells were pretreated with the PI3K/Akt inhibitor Wortmannin to investigate the possible involvement of the PI3K/Akt pathway in the protection by FGF-2. The levels of Akt, p-Akt, FoxO3a, p-FoxO3a, and BNIP3L were detected by Western blot. Chromatin immuno-precipitation (ChIP analysis was used to test whether FoxO3a binds directly to the BNIP3L promoter region. A luciferase assay was used to study the effects of FoxO3a on BNIP3L gene promoter activity. Mitochondrial ΔΨM was quantified using tetramethylrhodamine methyl ester perchlorate (TMRM. The mitochondrial oxygen consumption rate (OCR was assessed with a Seahorse XF24 Analyzer. Results: Treatment with H2O2 decreased the phosphorylation of Akt and FoxO3a, and it induced the nuclear localization of FoxO3a and the necrosis of H9c2 cells. These effects of H2O2 were abrogated by pretreatment with FGF-2. Furthermore, the protective effects of FGF-2 were abolished by the PI3K/Akt inhibitor Wortmannin. ChIP analyses indicated that FoxO3a binds directly to the BNIP3L promoter

  1. Liver-Specific Deletion of Protein-Tyrosine Phosphatase 1B (PTP1B) Improves Metabolic Syndrome and Attenuates Diet-Induced Endoplasmic Reticulum Stress

    Science.gov (United States)

    Delibegovic, Mirela; Zimmer, Derek; Kauffman, Caitlin; Rak, Kimberly; Hong, Eun-Gyoung; Cho, You-Ree; Kim, Jason K.; Kahn, Barbara B.; Neel, Benjamin G.; Bence, Kendra K.

    2009-01-01

    OBJECTIVE—The protein tyrosine phosphatase PTP1B is a negative regulator of insulin signaling; consequently, mice deficient in PTP1B are hypersensitive to insulin. Because PTP1B−/− mice have diminished fat stores, the extent to which PTP1B directly regulates glucose homeostasis is unclear. Previously, we showed that brain-specific PTP1B−/− mice are protected against high-fat diet–induced obesity and glucose intolerance, whereas muscle-specific PTP1B−/− mice have increased insulin sensitivity independent of changes in adiposity. Here we studied the role of liver PTP1B in glucose homeostasis and lipid metabolism. RESEARCH DESIGN AND METHODS—We analyzed body mass/adiposity, insulin sensitivity, glucose tolerance, and lipid metabolism in liver-specific PTP1B−/− and PTP1Bfl/fl control mice, fed a chow or high-fat diet. RESULTS—Compared with normal littermates, liver-specific PTP1B−/− mice exhibit improved glucose homeostasis and lipid profiles, independent of changes in adiposity. Liver-specific PTP1B−/− mice have increased hepatic insulin signaling, decreased expression of gluconeogenic genes PEPCK and G-6-Pase, enhanced insulin-induced suppression of hepatic glucose production, and improved glucose tolerance. Liver-specific PTP1B−/− mice exhibit decreased triglyceride and cholesterol levels and diminished expression of lipogenic genes SREBPs, FAS, and ACC. Liver-specific PTP1B deletion also protects against high-fat diet–induced endoplasmic reticulum stress response in vivo, as evidenced by decreased phosphorylation of p38MAPK, JNK, PERK, and eIF2α and lower expression of the transcription factors C/EBP homologous protein and spliced X box-binding protein 1. CONCLUSIONS—Liver PTP1B plays an important role in glucose and lipid metabolism, independent of alterations in adiposity. Inhibition of PTP1B in peripheral tissues may be useful for the treatment of metabolic syndrome and reduction of cardiovascular risk in addition to

  2. Lipids and Oxidative Stress Associated with Ethanol-Induced Neurological Damage

    Directory of Open Access Journals (Sweden)

    José A. Hernández

    2016-01-01

    Full Text Available The excessive intake of alcohol is a serious public health problem, especially given the severe damage provoked by chronic or prenatal exposure to alcohol that affects many physiological processes, such as memory, motor function, and cognitive abilities. This damage is related to the ethanol oxidation in the brain. The metabolism of ethanol to acetaldehyde and then to acetate is associated with the production of reactive oxygen species that accentuate the oxidative state of cells. This metabolism of ethanol can induce the oxidation of the fatty acids in phospholipids, and the bioactive aldehydes produced are known to be associated with neurotoxicity and neurodegeneration. As such, here we will review the role of lipids in the neuronal damage induced by ethanol-related oxidative stress and the role that lipids play in the related compensatory or defense mechanisms.

  3. Associations between APOE variants and metabolic traits and the impact of psychological stress

    DEFF Research Database (Denmark)

    Kring, Sofia Inez Iqbal; Barefoot, John; Brummett, Berverly H.

    2011-01-01

    In a previous study, we observed that associations between APOE rs439401 and metabolic traits were moderated by chronic stress. Thus, in a population of stressed and non-stressed Danish men, we examined whether associations between APOE rs439401 and a panel of metabolic quantitative traits, all m...... metabolic traits which may lead to T2D and CVD were moderated by psychological stress....

  4. Delayed radiation-induced necrosis of the brain stem; A case report

    Energy Technology Data Exchange (ETDEWEB)

    Yukawa, Osamu; Kodama, Yasunori; Kyoda, Jun; Yuki, Kiyoshi; Taniguchi, Eiji; Katayama, Shoichi; Hiroi, Tadashi (National Kure Hospital, Hiroshima (Japan)); Uozumi, Toru

    1993-03-01

    A 46-year-old man had surgery for a mixed glioma of the frontotemporal lobe. Postoperatively he received 50 Gy of irradiation. Sixteen months later he developed left hemiparesis and left facial palsy. MRI revealed lesion brain stem and basal ganglia. Despite chemotherapy and an additional 50 Gy dose, the patient deteriorated. Autopsy revealed a wide spread radiation-induced necrosis in the right cerebral hemisphere, midbrain and pons. In radiation therapy, great care must be taken to protect the normal brain tissue. (author).

  5. Hydroxytyrosol prevents diet-induced metabolic syndrome and attenuates mitochondrial abnormalities in obese mice.

    Science.gov (United States)

    Cao, Ke; Xu, Jie; Zou, Xuan; Li, Yuan; Chen, Cong; Zheng, Adi; Li, Hao; Li, Hua; Szeto, Ignatius Man-Yau; Shi, Yujie; Long, Jiangang; Liu, Jiankang; Feng, Zhihui

    2014-02-01

    A Mediterranean diet rich in olive oil has profound influence on health outcomes including metabolic syndrome. However, the active compound and detailed mechanisms still remain unclear. Hydroxytyrosol (HT), a major polyphenolic compound in virgin olive oil, has received increased attention for its antioxidative activity and regulation of mitochondrial function. Here, we investigated whether HT is the active compound in olive oil exerting a protective effect against metabolic syndrome. In this study, we show that HT could prevent high-fat-diet (HFD)-induced obesity, hyperglycemia, hyperlipidemia, and insulin resistance in C57BL/6J mice after 17 weeks supplementation. Within liver and skeletal muscle tissues, HT could decrease HFD-induced lipid deposits through inhibition of the SREBP-1c/FAS pathway, ameliorate HFD-induced oxidative stress by enhancing antioxidant enzyme activities, normalize expression of mitochondrial complex subunits and mitochondrial fission marker Drp1, and eventually inhibit apoptosis activation. Moreover, in muscle tissue, the levels of mitochondrial carbonyl protein were decreased and mitochondrial complex activities were significantly improved by HT supplementation. In db/db mice, HT significantly decreased fasting glucose, similar to metformin. Notably, HT decreased serum lipid, at which metformin failed. Also, HT was more effective at decreasing the oxidation levels of lipids and proteins in both liver and muscle tissue. Similar to the results in the HFD model, HT decreased muscle mitochondrial carbonyl protein levels and improved mitochondrial complex activities in db/db mice. Our study links the olive oil component HT to diabetes and metabolic disease through changes that are not limited to decreases in oxidative stress, suggesting a potential pharmaceutical or clinical use of HT in metabolic syndrome treatment. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Postneonatal Mortality and Liver Changes in Cloned Pigs Associated with Human Tumor Necrosis Factor Receptor I-Fc and Human Heme Oxygenase-1 Overexpression.

    Science.gov (United States)

    Kim, Geon A; Jin, Jun-Xue; Lee, Sanghoon; Taweechaipaisankul, Anukul; Oh, Hyun Ju; Hwang, Joing-Ik; Ahn, Curie; Saadeldin, Islam M; Lee, Byeong Chun

    2017-01-01

    Soluble human tumor necrosis factor (shTNFRI-Fc) and human heme oxygenase 1 (hHO-1) are key regulators for protection against oxidative and inflammatory injury for xenotransplantation. Somatic cells with more than 10 copy numbers of shTNFRI-Fc and hHO-1 were employed in somatic cell nuclear transfer to generate cloned pigs, thereby resulting in seven cloned piglets. However, produced piglets were all dead within 24 hours after birth. Obviously, postnatal death with liver apoptosis was reported in the higher copy number of shTNFRI-Fc and hHO-1 piglets. In liver, the transcript levels of ferritin heavy chain, light chain, transferrin, and inducible nitric oxide synthase were significantly highly expressed compared to those of lower copy number of shTNFRI-Fc and hHO-1 piglets ( P hHO-1 piglets ( P hHO-1 overexpression may apparently induce free iron in the liver and exert oxidative stress by enhancing reactive oxygen species production and block normal postneonatal liver metabolism.

  7. Menadione-Induced Oxidative Stress Re-Shapes the Oxylipin Profile of Aspergillus flavus and Its Lifestyle.

    Science.gov (United States)

    Zaccaria, Marco; Ludovici, Matteo; Sanzani, Simona Marianna; Ippolito, Antonio; Cigliano, Riccardo Aiese; Sanseverino, Walter; Scarpari, Marzia; Scala, Valeria; Fanelli, Corrado; Reverberi, Massimo

    2015-10-23

    Aspergillus flavus is an efficient producer of mycotoxins, particularly aflatoxin B₁, probably the most hepatocarcinogenic naturally-occurring compound. Although the inducing agents of toxin synthesis are not unanimously identified, there is evidence that oxidative stress is one of the main actors in play. In our study, we use menadione, a quinone extensively implemented in studies on ROS response in animal cells, for causing stress to A. flavus. For uncovering the molecular determinants that drive A. flavus in challenging oxidative stress conditions, we have evaluated a wide spectrum of several different parameters, ranging from metabolic (ROS and oxylipin profile) to transcriptional analysis (RNA-seq). There emerges a scenario in which A. flavus activates several metabolic processes under oxidative stress conditions for limiting the ROS-associated detrimental effects, as well as for triggering adaptive and escape strategies.

  8. Exercise reverses metabolic syndrome in high-fat diet-induced obese rats.

    Science.gov (United States)

    Touati, Sabeur; Meziri, Fayçal; Devaux, Sylvie; Berthelot, Alain; Touyz, Rhian M; Laurant, Pascal

    2011-03-01

    Chronic consumption of a high-fat diet induces obesity. We investigated whether exercise would reverse the cardiometabolic disorders associated with obesity without it being necessary to change from a high- to normal-fat diet. Sprague-Dawley rats were placed on a high-fat (HFD) or control diet (CD) for 12 wk. HFD rats were then divided into four groups: sedentary HFD (HFD-S), exercise trained (motor treadmill for 12 wk) HFD (HFD-Ex), modified diet (HFD to CD; HF/CD-S), and exercise trained with modified diet (HF/CD-Ex). Cardiovascular risk parameters associated with metabolic syndrome were measured, and contents of aortic Akt, phospho-Akt at Ser (473), total endothelial nitric oxide synthase (eNOS), and phospho-eNOS at Ser (1177) were determined by Western blotting. Chronic consumption of HFD induced a metabolic syndrome. Exercise and dietary modifications reduced adiposity, improved glucose and insulin levels and plasma lipid profile, and exerted an antihypertensive effect. Exercise was more effective than dietary modification in improving plasma levels of thiobarbituric acid-reacting substance and in correcting the endothelium-dependent relaxation to acetylcholine and insulin. Furthermore, independent of the diet used, exercise increased Akt and eNOS phosphorylation. Metabolic syndrome induced by HFD is reversed by exercise and diet modification. It is demonstrated that exercise training induces these beneficial effects without the requirement for dietary modification, and these beneficial effects may be mediated by shear stress-induced Akt/eNOS pathway activation. Thus, exercise may be an effective strategy to reverse almost all the atherosclerotic risk factors linked to obesity, particularly in the vasculature.

  9. Tumor necrosis factor-alpha inhibits differentiation of myogenic cells in human urethral rhabdosphincter.

    Science.gov (United States)

    Shinohara, Mayuka; Sumino, Yasuhiro; Sato, Fuminori; Kiyono, Tohru; Hashimoto, Naohiro; Mimata, Hiromitsu

    2017-06-01

    To examine the inhibitory effects of tumor necrosis factor-α on myogenic differentiation of human urethral rhabdosphincter cells. A rhabdosphincter sample was obtained from a patient who underwent total cystectomy. To expand the lifespan of the primary cultured cells, rhabdosphincter myogenic cells were immortalized with mutated cyclin-dependent kinase 4, cyclin D1 and telomerase. The differential potential of the cells was investigated. The transfected human rhabdosphincter cells were induced for myogenic differentiation with recombinant human tumor necrosis factor-α and/or the tumor necrosis factor-α antagonist etanercept at different concentrations, and activation of signaling pathways was monitored. Human rhabdosphincter cells were selectively cultured for at least 40 passages. Molecular analysis confirmed the expression of myosin heavy chain, which is a specific marker of differentiated muscle cells, significantly increased after differentiation induction. Although tumor necrosis factor-α treatment reduced the myosin heavy chain expression in a concentration-dependent manner, etanercept inhibited this suppression. Tumor necrosis factor-α suppressed phosphorylation of protein kinase B and p38, whereas etanercept pretreatment promoted phosphorylation and myosin heavy chain expression in a concentration-dependent manner. Tumor necrosis factor-α inhibits differentiation of urethral rhabdosphincter cells in part through the p38 mitogen-activated protein kinase and phosphoinositide 3-kinase pathways. Inhibition of tumor necrosis factor-α might be a useful strategy to treat stress urinary incontinence. © 2017 The Japanese Urological Association.

  10. Apoptosis and Necrosis in the Liver

    Science.gov (United States)

    Guicciardi, Maria Eugenia; Malhi, Harmeet; Mott, Justin L.; Gores, Gregory J.

    2013-01-01

    Because of its unique function and anatomical location, the liver is exposed to a multitude of toxins and xenobiotics, including medications and alcohol, as well as to infection by hepatotropic viruses, and therefore, is highly susceptible to tissue injury. Cell death in the liver occurs mainly by apoptosis or necrosis, with apoptosis also being the physiologic route to eliminate damaged or infected cells and to maintain tissue homeostasis. Liver cells, especially hepatocytes and cholangiocytes, are particularly susceptible to death receptor-mediated apoptosis, given the ubiquitous expression of the death receptors in the organ. In a quite unique way, death receptor-induced apoptosis in these cells is mediated by both mitochondrial and lysosomal permeabilization. Signaling between the endoplasmic reticulum and the mitochondria promotes hepatocyte apoptosis in response to excessive free fatty acid generation during the metabolic syndrome. These cell death pathways are partially regulated by microRNAs. Necrosis in the liver is generally associated with acute injury (i.e., ischemia/reperfusion injury) and has been long considered an unregulated process. Recently, a new form of “programmed” necrosis (named necroptosis) has been described: the role of necroptosis in the liver has yet to be explored. However, the minimal expression of a key player in this process in the liver suggests this form of cell death may be uncommon in liver diseases. Because apoptosis is a key feature of so many diseases of the liver, therapeutic modulation of liver cell death holds promise. An updated overview of these concepts is given in this article. PMID:23720337

  11. Structural and functional alterations of catalase induced by acriflavine, a compound causing apoptosis and necrosis.

    Science.gov (United States)

    Attar, Farnoosh; Khavari-Nejad, Sarah; Keyhani, Jacqueline; Keyhani, Ezzatollah

    2009-08-01

    Acriflavine is an antiseptic agent causing both apoptosis and necrosis in yeast. In this work, its effect on the structure and function of catalase, a vital enzyme actively involved in protection against oxidative stress, was investigated. In vitro kinetic studies showed that acriflavine inhibited the enzymatic activity in a competitive manner. The residual activity detectable after preincubation of catalase (1.5 nmol/L) with various concentrations of acriflavine went from 50% to 20% of the control value as the acriflavine concentration increased from 30 to 90 micromol/L. Correlatively with the decrease in activity, alterations in the enzyme's conformation were observed as indicated by fluorescence spectroscopy, circular dichroism spectroscopy, and electronic absorption spectroscopy. The enzyme's intrinsic fluorescence obtained upon excitation at either 297 nm (tryptophan residues) or 280 nm (tyrosine and tryptophan residues) decreased as a function of acriflavine concentration. Circular dichroism studies showed alterations of the protein structure by acriflavine with up to 13% decrease in alpha helix, 16% increase in beta-sheet content, 17% increase in random coil, and 4% increase in beta turns. Spectrophotometric studies showed a blueshift and modifications in the chromicity of catalase at 405 nm, corresponding to an absorbance band due to the enzyme's prosthetic group. Thus, acriflavine induced in vitro a profound change in the structure of catalase so that the enzyme could no longer function. Our results showed that acriflavine, a compound producing apoptosis and necrosis, can have a direct effect on vital functions in cells by disabling key enzymes.

  12. TNF-α from hippocampal microglia induces working memory deficits by acute stress in mice.

    Science.gov (United States)

    Ohgidani, Masahiro; Kato, Takahiro A; Sagata, Noriaki; Hayakawa, Kohei; Shimokawa, Norihiro; Sato-Kasai, Mina; Kanba, Shigenobu

    2016-07-01

    The role of microglia in stress responses has recently been highlighted, yet the underlying mechanisms of action remain unresolved. The present study examined disruption in working memory due to acute stress using the water-immersion resistant stress (WIRS) test in mice. Mice were subjected to acute WIRS, and biochemical, immunohistochemical, and behavioral assessments were conducted. Spontaneous alternations (working memory) significantly decreased after exposure to acute WIRS for 2h. We employed a 3D morphological analysis and site- and microglia-specific gene analysis techniques to detect microglial activity. Morphological changes in hippocampal microglia were not observed after acute stress, even when assessing ramification ratios and cell somata volumes. Interestingly, hippocampal tumor necrosis factor (TNF)-α levels were significantly elevated after acute stress, and acute stress-induced TNF-α was produced by hippocampal-ramified microglia. Conversely, plasma concentrations of TNF-α were not elevated after acute stress. Etanercept (TNF-α inhibitor) recovered working memory deficits in accordance with hippocampal TNF-α reductions. Overall, results suggest that TNF-α from hippocampal microglia is a key contributor to early-stage stress-to-mental responses. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Metabolic responses of Beauveria bassiana to hydrogen peroxide-induced oxidative stress using an LC-MS-based metabolomics approach.

    Science.gov (United States)

    Zhang, Chen; Wang, Wei; Lu, Ruili; Jin, Song; Chen, Yihui; Fan, Meizhen; Huang, Bo; Li, Zengzhi; Hu, Fenglin

    2016-06-01

    The entomopathogenic fungus, Beauveria bassiana, is commonly used as a biological agent for pest control. Environmental and biological factors expose the fungus to oxidative stress; as a result, B. bassiana has adopted a number of anti-oxidant mechanisms. In this study, we investigated metabolites of B. bassiana that are formed in response to oxidative stress from hydrogen peroxide (H2O2) by using a liquid chromatography mass spectrometry (LC-MS) approach. Partial least-squares discriminant analysis (PLS-DA) revealed differences between the control and the H2O2-treated groups. Hierarchical cluster analysis (HCA) showed 18 up-regulated metabolites and 25 down-regulated metabolites in the H2O2-treated fungus. Pathway analysis indicated that B. bassiana may be able to alleviate oxidative stress by enhancing lipid catabolism and glycometabolism, thus decreasing membrane polarity and preventing polar H2O2 or ROS from permeating into fungal cells and protecting cells against oxidative injury. Meanwhile, most of the unsaturated fatty acids that are derived from glycerophospholipids hydrolysis can convert into oxylipins through autoxidation, which can prevent the reactive oxygen of H2O2 from attacking important macromolecules of the fungus. Results showed also that H2O2 treatment can enhance mycotoxins production which implies that oxidative stress may be able to increase the virulence of the fungus. In comparison to the control group, citric acid and UDP-N-acetylglucosamine were down-regulated, which suggested that metabolic flux was occurring to the TCA cycle and enhancing carbohydrate metabolism. The findings from this study will contribute to the understanding of how the molecular mechanisms of fungus respond to environmental and biological stress factors as well as how the manipulation of such metabolisms may lead to selection of more effective fungal strains for pest control. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Tumor necrosis factor related apoptosis inducing ligand triggers apoptosis in dividing but not in differentiating human epidermal keratinocytes

    NARCIS (Netherlands)

    Jansen, Bastiaan J. H.; van Ruissen, Fred; Cerneus, Stefanie; Cloin, Wendy; Bergers, Mieke; van Erp, Piet E. J.; Schalkwijk, Joost

    2003-01-01

    Using serial analysis of gene expression we have previously identified the expression of several pro-apoptotic and anti-apoptotic genes in cultured human primary epidermal keratinocytes, including tumor necrosis factor related apoptosis inducing ligand (TRAIL). TRAIL is a potent inducer of apoptosis

  15. Hepatoprotective effects of fermented Curcuma longa L. on carbon tetrachloride-induced oxidative stress in rats.

    Science.gov (United States)

    Kim, Yongjae; You, Yanghee; Yoon, Ho-Geun; Lee, Yoo-Hyun; Kim, Kyungmi; Lee, Jeongmin; Kim, Min Soo; Kim, Jong-Choon; Jun, Woojin

    2014-05-15

    The hepatoprotective effect of fermented Curcuma longa L. (FC) was investigated in rats under CCl4-induced oxidative stress. FC at a dose of 30 or 300 mg/kg body weight (b.w.) was orally administered for 14 days followed by a single dose of CCl4 (1.25 mL/kg b.w. in 20% corn oil) on day 14. Pretreatment with FC drastically prevented the elevated activities of serum AST, ALT, LDH, and ALP caused by CCl4-induced hepatotoxicity. Histopathologically evident hepatic necrosis was significantly ameliorated by FC pretreatment. When compared to the CCl4-alone treated group, rats pretreated with FC displayed the reduced level of malondialdehyde. Furthermore, FC enhanced antioxidant capacities with higher activities of catalase, glutathione-S-transferase, glutathione reductase, and glutathione peroxidase, and level of reduced glutathione. These results suggest that FC could be a candidate used for the prevention against various liver diseases induced by oxidative stress via elevating antioxidative potentials and decreasing lipid peroxidation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Secoisolariciresinol diglucoside abrogates oxidative stress-induced damage in cardiac iron overload condition.

    Directory of Open Access Journals (Sweden)

    Stephanie Puukila

    Full Text Available Cardiac iron overload is directly associated with cardiac dysfunction and can ultimately lead to heart failure. This study examined the effect of secoisolariciresinol diglucoside (SDG, a component of flaxseed, on iron overload induced cardiac damage by evaluating oxidative stress, inflammation and apoptosis in H9c2 cardiomyocytes. Cells were incubated with 50 μ5M iron for 24 hours and/or a 24 hour pre-treatment of 500 μ M SDG. Cardiac iron overload resulted in increased oxidative stress and gene expression of the inflammatory mediators tumor necrosis factor-α, interleukin-10 and interferon γ, as well as matrix metalloproteinases-2 and -9. Increased apoptosis was evident by increased active caspase 3/7 activity and increased protein expression of Forkhead box O3a, caspase 3 and Bax. Cardiac iron overload also resulted in increased protein expression of p70S6 Kinase 1 and decreased expression of AMP-activated protein kinase. Pre-treatment with SDG abrogated the iron-induced increases in oxidative stress, inflammation and apoptosis, as well as the increased p70S6 Kinase 1 and decreased AMP-activated protein kinase expression. The decrease in superoxide dismutase activity by iron treatment was prevented by pre-treatment with SDG in the presence of iron. Based on these findings we conclude that SDG was cytoprotective in an in vitro model of iron overload induced redox-inflammatory damage, suggesting a novel potential role for SDG in cardiac iron overload.

  17. Paroxetine ameliorates changes in hippocampal energy metabolism in chronic mild stress-exposed rats

    Directory of Open Access Journals (Sweden)

    Khedr LH

    2015-11-01

    Full Text Available Lobna H Khedr, Noha N Nassar, Ezzeldin S El-Denshary, Ahmed M Abdel-tawab 1Department of Pharmacology, Faculty of Pharmacy, Misr International University, 2Department of Pharmacology, Faculty of Pharmacy, Cairo University, 3Department of Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt Abstract: The molecular mechanisms underlying stress-induced depression have not been fully outlined. Hence, the current study aimed at testing the link between behavioral changes in chronic mild stress (CMS model and changes in hippocampal energy metabolism and the role of paroxetine (PAROX in ameliorating these changes. Male Wistar rats were divided into three groups: vehicle control, CMS-exposed rats, and CMS-exposed rats receiving PAROX (10 mg/kg/day intraperitoneally. Sucrose preference, open-field, and forced swimming tests were carried out. Corticosterone (CORT was measured in serum, while adenosine triphosphate and its metabolites, cytosolic cytochrome-c (Cyt-c, caspase-3 (Casp-3, as well as nitric oxide metabolites (NOx were measured in hippocampal tissue homogenates. CMS-exposed rats showed a decrease in sucrose preference as well as body weight compared to control, which was reversed by PAROX. The latter further ameliorated the CMS-induced elevation of CORT in serum (91.71±1.77 ng/mL vs 124.5±4.44 ng/mL, P<0.001 as well as the changes in adenosine triphosphate/adenosine diphosphate (3.76±0.02 nmol/mg protein vs 1.07±0.01 nmol/mg protein, P<0.001. Furthermore, PAROX reduced the expression of Cyt-c and Casp-3, as well as restoring NOx levels. This study highlights the role of PAROX in reversing depressive behavior associated with stress-induced apoptosis and changes in hippocampal energy metabolism in the CMS model of depression. Keywords: rats, CMS, hippocampus, paroxetine, apoptosis, adenine nucleotides, cytochrome-c, caspase-3

  18. [Supposed role of "metabolic memory" in formation of response reaction to stress-factors in young and adult organisms].

    Science.gov (United States)

    Bozhkov, A I; Dlubovskaia, V L; Dmitriev, Iu V; Meshaĭkina, N I; Maleev, V A; Klimova, E M

    2009-01-01

    The influence of the combined long-lasted influences of sulfur sulfate and diet restriction in young (3 month age) and adult (21 month age) Vistar rats on activity of glucose-6-phospatase, alaninaminotranspherase (ALT), aspartataminotranspherase (AST), and on phosphorilating activity of liver mitochondria was studied to investigate the role of metabolic memory on the peculiarities of response reaction. The young animals not differed from adult ones in the possibility of inducing activity of glucose-6-phospatase, ALT, and on phosphorilating activity after the influence of sulfur sulfate and diet restriction. The age-related differences in glucose-6-phospatase and transpherases and phosphorilating activity existing in control disappeared after the long-lasted action of sulfur sulfate and diet restriction. The answer reaction in enzyme activity to stress factors applied many times depends upon the metabolic memory formed in the process of adaptation, and the age of animals have no influence on it. In some relation the ontogenesis may be considered as a result of adaptation genesis. The metabolic memory can change the answer of the system to the stress influence. There are three types of modification of the answer to stress factors: the answer remains unchanged (metabolic memory), "paradox answer" formation, and super activation of the metabolic system.

  19. Effects of non-fatiguing respiratory muscle loading induced by expiratory flow limitation during strenuous incremental cycle exercise on metabolic stress and circulating natural killer cells.

    Science.gov (United States)

    Rolland-Debord, Camille; Morelot-Panzini, Capucine; Similowski, Thomas; Duranti, Roberto; Laveneziana, Pierantonio

    2017-12-01

    Exercise induces release of cytokines and increase of circulating natural killers (NK) lymphocyte during strong activation of respiratory muscles. We hypothesised that non-fatiguing respiratory muscle loading during exercise causes an increase in NK cells and in metabolic stress indices. Heart rate (HR), ventilation (VE), oesophageal pressure (Pes), oxygen consumption (VO 2 ), dyspnoea and leg effort were measured in eight healthy humans (five men and three women, average age of 31 ± 4 years and body weight of 68 ± 10 kg), performing an incremental exercise testing on a cycle ergometer under control condition and expiratory flow limitation (FL) achieved by putting a Starling resistor. Blood samples were obtained at baseline, at peak of exercise and at iso-workload corresponding to that reached at the peak of FL exercise during control exercise. Diaphragmatic fatigue was evaluated by measuring the tension time index of the diaphragm. Respiratory muscle overloading caused an earlier interruption of exercise. Diaphragmatic fatigue did not occur in the two conditions. At peak of flow-limited exercise compared to iso-workload, HR, peak inspiratory and expiratory Pes, NK cells and norepinephrine were significantly higher. The number of NK cells was significantly related to ΔPes (i.e. difference between the most and the less negative Pes) and plasmatic catecholamines. Loading of respiratory muscles is able to cause an increase of NK cells provided that activation of respiratory muscles is intense enough to induce a significant metabolic stress.

  20. Work stress and metabolic and hemostatic risk factors

    NARCIS (Netherlands)

    Vrijkotte, T. G.; van Doornen, L. J.; de Geus, E. J.

    1999-01-01

    A high level of work stress has been associated with cardiovascular disease. However, the pathophysiological mechanisms underlying this association remain unclear. This study examined the effect of work stress on a cluster of metabolic and hemostatic risk factors. Blood was collected three times, on

  1. Stress-induced cytokinin synthesis increases drought tolerance through the coordinated regulation of carbon and nitrogen assimilation in rice.

    Science.gov (United States)

    Reguera, Maria; Peleg, Zvi; Abdel-Tawab, Yasser M; Tumimbang, Ellen B; Delatorre, Carla A; Blumwald, Eduardo

    2013-12-01

    The effects of water deficit on carbon and nitrogen metabolism were investigated in flag leaves of wild-type and transgenic rice (Oryza sativa japonica 'Kitaake') plants expressing ISOPENTENYLTRANSFERASE (IPT; encoding the enzyme that mediates the rate-limiting step in cytokinin synthesis) under the control of P(SARK), a maturation- and stress-induced promoter. While the wild-type plants displayed inhibition of photosynthesis and nitrogen assimilation during water stress, neither carbon nor nitrogen assimilation was affected by stress in the transgenic P(SARK)::IPT plants. In the transgenic plants, photosynthesis was maintained at control levels during stress and the flag leaf showed increased sucrose (Suc) phosphate synthase activity and reduced Suc synthase and invertase activities, leading to increased Suc contents. The sustained carbon assimilation in the transgenic P(SARK)::IPT plants was well correlated with enhanced nitrate content, higher nitrate reductase activity, and sustained ammonium contents, indicating that the stress-induced cytokinin synthesis in the transgenic plants played a role in maintaining nitrate acquisition. Protein contents decreased and free amino acids increased in wild-type plants during stress, while protein content was preserved in the transgenic plants. Our results indicate that the stress-induced cytokinin synthesis in the transgenic plants promoted sink strengthening through a cytokinin-dependent coordinated regulation of carbon and nitrogen metabolism that facilitates an enhanced tolerance of the transgenic plants to water deficit.

  2. High salt diet induces metabolic alterations in multiple biological processes of Dahl salt-sensitive rats.

    Science.gov (United States)

    Wang, Yanjun; Liu, Xiangyang; Zhang, Chen; Wang, Zhengjun

    2018-06-01

    High salt induced renal disease is a condition resulting from the interactions of genetic and dietary factors causing multiple complications. To understand the metabolic alterations associated with renal disease, we comprehensively analyzed the metabonomic changes induced by high salt intake in Dahl salt-sensitive (SS) rats using GC-MS technology and biochemical analyses. Physiological features, serum chemistry, and histopathological data were obtained as complementary information. Our results showed that high salt (HS) intake for 16 weeks caused significant metabolic alterations in both the renal medulla and cortex involving a variety pathways involved in the metabolism of organic acids, amino acids, fatty acids, and purines. In addition, HS enhanced glycolysis (hexokinase, phosphofructokinase and pyruvate kinase) and amino acid metabolism and suppressed the TCA (citrate synthase and aconitase) cycle. Finally, HS intake caused up-regulation of the pentose phosphate pathway (glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase), the ratio of NADPH/NADP + , NADPH oxidase activity and ROS production, suggesting that increased oxidative stress was associated with an altered PPP pathway. The metabolic pathways identified may serve as potential targets for the treatment of renal damage. Our findings provide comprehensive biochemical details about the metabolic responses to a high salt diet, which may contribute to the understanding of renal disease and salt-induced hypertension in SS rats. Copyright © 2018. Published by Elsevier Inc.

  3. Enhanced 15-HPETE production during oxidant stress induces apoptosis of endothelial cells.

    Science.gov (United States)

    Sordillo, Lorraine M; Weaver, James A; Cao, Yu-Zhang; Corl, Chris; Sylte, Matt J; Mullarky, Isis K

    2005-05-01

    Oxidant stress plays an important role in the etiology of vascular diseases by increasing rates of endothelial cell apoptosis, but few data exist on the mechanisms involved. Using a unique model of oxidative stress based on selenium deficiency (-Se), the effects of altered eicosanoid production on bovine aortic endothelial cells (BAEC) apoptosis was evaluated. Oxidant stress significantly increased the immediate oxygenation product of arachidonic acid metabolized by the 15-lipoxygenase pathway, 15-hydroxyperoxyeicosatetraenoic acid (15-HPETE). Treatment of -Se BAEC with TNFalpha/cyclohexamide (CHX) exhibited elevated levels of apoptosis, which was significantly reduced by the addition of a specific 15-lipoxygenase inhibitor PD146176. Furthermore, the addition of 15-HPETE to PD146176-treated BAEC, partially restored TNF/CHX-induced apoptosis. Increased exposure to 15-HPETE induced apoptosis, as determined by internucleosomal DNA fragmentation, chromatin condensation, caspase-3 activation, and caspase-9 activation, which suggests mitochondrial dysfunction. The expression of Bcl-2 protein also was decreased in -Se BAEC. Addition of a caspase-9 inhibitor (LEHD-fmk) completely blocked 15-HPETE-induced chromatin condensation in -Se BAEC, suggesting that 15-HPETE-induced apoptosis is caspase-9 dependent. Increased apoptosis of BAEC as a result of oxidant stress and subsequent production of 15-HPETE may play a critical role in a variety of inflammatory based diseases.

  4. Exercise training and work task induced metabolic and stress-related mRNA and protein responses in myalgic muscles

    DEFF Research Database (Denmark)

    Sjøgaard, Gisela; Zebis, Mette Kreutzfeldt; Kiilerich, Kristian

    2013-01-01

    healthy controls. Those with myalgia performed similar to 7 hrs repetitive stressful work and were subsequently randomized to 10 weeks of specific strength training, general fitness training, or reference intervention. Muscles biopsies were taken from the trapezius muscle at baseline, after work and after...... 10 weeks intervention. The main findings are that the capacity of carbohydrate oxidation was reduced in myalgic compared with healthy muscle. Repetitive stressful work increased mRNA content for heat shock proteins and decreased levels of key regulators for growth and oxidative metabolism......The aim was to assess mRNA and/or protein levels of heat shock proteins, cytokines, growth regulating, and metabolic proteins in myalgic muscle at rest and in response to work tasks and prolonged exercise training. A randomized controlled trial included 28 females with trapezius myalgia and 16...

  5. Menadione-Induced Oxidative Stress Re-Shapes the Oxylipin Profile of Aspergillus flavus and Its Lifestyle

    Science.gov (United States)

    Zaccaria, Marco; Ludovici, Matteo; Sanzani, Simona Marianna; Ippolito, Antonio; Aiese Cigliano, Riccardo; Sanseverino, Walter; Scarpari, Marzia; Scala, Valeria; Fanelli, Corrado; Reverberi, Massimo

    2015-01-01

    Aspergillus flavus is an efficient producer of mycotoxins, particularly aflatoxin B1, probably the most hepatocarcinogenic naturally-occurring compound. Although the inducing agents of toxin synthesis are not unanimously identified, there is evidence that oxidative stress is one of the main actors in play. In our study, we use menadione, a quinone extensively implemented in studies on ROS response in animal cells, for causing stress to A. flavus. For uncovering the molecular determinants that drive A. flavus in challenging oxidative stress conditions, we have evaluated a wide spectrum of several different parameters, ranging from metabolic (ROS and oxylipin profile) to transcriptional analysis (RNA-seq). There emerges a scenario in which A. flavus activates several metabolic processes under oxidative stress conditions for limiting the ROS-associated detrimental effects, as well as for triggering adaptive and escape strategies. PMID:26512693

  6. Menadione-Induced Oxidative Stress Re-Shapes the Oxylipin Profile of Aspergillus flavus and Its Lifestyle

    Directory of Open Access Journals (Sweden)

    Marco Zaccaria

    2015-10-01

    Full Text Available Aspergillus flavus is an efficient producer of mycotoxins, particularly aflatoxin B1, probably the most hepatocarcinogenic naturally-occurring compound. Although the inducing agents of toxin synthesis are not unanimously identified, there is evidence that oxidative stress is one of the main actors in play. In our study, we use menadione, a quinone extensively implemented in studies on ROS response in animal cells, for causing stress to A. flavus. For uncovering the molecular determinants that drive A. flavus in challenging oxidative stress conditions, we have evaluated a wide spectrum of several different parameters, ranging from metabolic (ROS and oxylipin profile to transcriptional analysis (RNA-seq. There emerges a scenario in which A. flavus activates several metabolic processes under oxidative stress conditions for limiting the ROS-associated detrimental effects, as well as for triggering adaptive and escape strategies.

  7. Fasting-induced liver GADD45β restrains hepatic fatty acid uptake and improves metabolic health.

    Science.gov (United States)

    Fuhrmeister, Jessica; Zota, Annika; Sijmonsma, Tjeerd P; Seibert, Oksana; Cıngır, Şahika; Schmidt, Kathrin; Vallon, Nicola; de Guia, Roldan M; Niopek, Katharina; Berriel Diaz, Mauricio; Maida, Adriano; Blüher, Matthias; Okun, Jürgen G; Herzig, Stephan; Rose, Adam J

    2016-06-01

    Recent studies have demonstrated that repeated short-term nutrient withdrawal (i.e. fasting) has pleiotropic actions to promote organismal health and longevity. Despite this, the molecular physiological mechanisms by which fasting is protective against metabolic disease are largely unknown. Here, we show that, metabolic control, particularly systemic and liver lipid metabolism, is aberrantly regulated in the fasted state in mouse models of metabolic dysfunction. Liver transcript assays between lean/healthy and obese/diabetic mice in fasted and fed states uncovered "growth arrest and DNA damage-inducible" GADD45β as a dysregulated gene transcript during fasting in several models of metabolic dysfunction including ageing, obesity/pre-diabetes and type 2 diabetes, in both mice and humans. Using whole-body knockout mice as well as liver/hepatocyte-specific gain- and loss-of-function strategies, we revealed a role for liver GADD45β in the coordination of liver fatty acid uptake, through cytoplasmic retention of FABP1, ultimately impacting obesity-driven hyperglycaemia. In summary, fasting stress-induced GADD45β represents a liver-specific molecular event promoting adaptive metabolic function. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  8. Diet-induced metabolic hamster model of nonalcoholic fatty liver disease

    Directory of Open Access Journals (Sweden)

    Bhathena J

    2011-06-01

    Full Text Available Jasmine Bhathena, Arun Kulamarva, Christopher Martoni, Aleksandra Malgorzata Urbanska, Meenakshi Malhotra, Arghya Paul, Satya PrakashBiomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Artificial Cells and Organs Research Centre, Faculty of Medicine, McGill University, Montreal, Québec, CanadaBackground: Obesity, hypercholesterolemia, elevated triglycerides, and type 2 diabetes are major risk factors for metabolic syndrome. Hamsters, unlike rats or mice, respond well to diet-induced obesity, increase body mass and adiposity on group housing, and increase food intake due to social confrontation-induced stress. They have a cardiovascular and hepatic system similar to that of humans, and can thus be a useful model for human pathophysiology.Methods: Experiments were planned to develop a diet-induced Bio F1B Golden Syrian hamster model of dyslipidemia and associated nonalcoholic fatty liver disease in the metabolic syndrome. Hamsters were fed a normal control diet, a high-fat/high-cholesterol diet, a high-fat/high-cholesterol/methionine-deficient/choline-devoid diet, and a high-fat/high-cholesterol/choline-deficient diet. Serum total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, glucose, atherogenic index, and body weight were quantified biweekly. Fat deposition in the liver was observed and assessed following lipid staining with hematoxylin and eosin and with oil red O.Results: In this study, we established a diet-induced Bio F1B Golden Syrian hamster model for studying dyslipidemia and associated nonalcoholic fatty liver disease in the metabolic syndrome. Hyperlipidemia and elevated serum glucose concentrations were induced using this diet. Atherogenic index was elevated, increasing the risk for a cardiovascular event. Histological analysis of liver specimens at the end of four weeks showed increased fat deposition in the liver of animals fed

  9. Oxidative Inactivation of Liver Mitochondria in High Fructose Diet-Induced Metabolic Syndrome in Rats: Effect of Glycyrrhizin Treatment.

    Science.gov (United States)

    Sil, Rajarshi; Chakraborti, Abhay Sankar

    2016-09-01

    Metabolic syndrome is a serious health problem in the present world. Glycyrrhizin, a triterpenoid saponin of licorice (Glycyrrhiza glabra) root, has been reported to ameliorate the primary complications and hepatocellular damage in rats with the syndrome. In this study, we have explored metabolic syndrome-induced changes in liver mitochondrial function and effect of glycyrrhizin against the changes. Metabolic syndrome was induced in rats by high fructose (60%) diet for 6 weeks. The rats were then treated with glycyrrhizin (50 mg/kg body weight) by single intra-peritoneal injection. After 2 weeks of the treatment, the rats were sacrificed to collect liver tissue. Elevated mitochondrial ROS, lipid peroxidation and protein carbonyl, and decreased reduced glutathione content indicated oxidative stress in metabolic syndrome. Loss of mitochondrial inner membrane cardiolipin was observed. Mitochondrial complex I activity did not change but complex IV activity decreased significantly. Mitochondrial MTT reduction ability, membrane potential, phosphate utilisation and oxygen consumption decreased in metabolic syndrome. Reduced mitochondrial aconitase activity and increased aconitase carbonyl content suggested oxidative damage of the enzyme. Elevated Fe(2+) ion level in mitochondria might be associated with increased ROS generation in metabolic syndrome. Glycyrrhizin effectively attenuated mitochondrial oxidative stress and aconitase degradation, and improved electron transport chain activity. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Stress transgenerationally programs metabolic pathways linked to altered mental health.

    Science.gov (United States)

    Kiss, Douglas; Ambeskovic, Mirela; Montina, Tony; Metz, Gerlinde A S

    2016-12-01

    Stress is among the primary causes of mental health disorders, which are the most common reason for disability worldwide. The ubiquity of these disorders, and the costs associated with them, lends a sense of urgency to the efforts to improve prediction and prevention. Down-stream metabolic changes are highly feasible and accessible indicators of pathophysiological processes underlying mental health disorders. Here, we show that remote and cumulative ancestral stress programs central metabolic pathways linked to mental health disorders. The studies used a rat model consisting of a multigenerational stress lineage (the great-great-grandmother and each subsequent generation experienced stress during pregnancy) and a transgenerational stress lineage (only the great-great-grandmother was stressed during pregnancy). Urine samples were collected from adult male F4 offspring and analyzed using 1 H NMR spectroscopy. The results of variable importance analysis based on random variable combination were used for unsupervised multivariate principal component analysis and hierarchical clustering analysis, as well as metabolite set enrichment analysis (MSEA) and pathway analysis. We identified distinct metabolic profiles associated with the multigenerational and transgenerational stress phenotype, with consistent upregulation of hippurate and downregulation of tyrosine, threonine, and histamine. MSEA and pathway analysis showed that these metabolites are involved in catecholamine biosynthesis, immune responses, and microbial host interactions. The identification of metabolic signatures linked to ancestral programming assists in the discovery of gene targets for future studies of epigenetic regulation in pathogenic processes. Ultimately, this research can lead to biomarker discovery for better prediction and prevention of mental health disorders.

  11. Stress and obesity/metabolic syndrome in childhood and adolescence.

    Science.gov (United States)

    Pervanidou, Panagiota; Chrousos, George P

    2011-09-01

    Chronic distress contributes to the development of obesity and comorbid states. Stress is the disturbance of the complex dynamic equilibrium that all organisms must maintain, and is associated with activation of the Stress system comprising of the hypothalamic-pituitary-adrenal axis and the arousal/sympathetic nervous systems. The stress system functions in a baseline circadian fashion and interacts with other systems of the organism to regulate a variety of behavioral, endocrine, metabolic, immune and cardiovascular functions. The experience of perceived or real uncontrollable intense and/or chronic stress (distress) may lead to several psychopathologic conditions, including anxiety, depressive and psychosomatic disorders, substance abuse, obesity and the metabolic syndrome, and osteoporosis, as well as impaired reproductive and immune functions. Developing children and adolescents are particularly vulnerable to the effects of chronic stress. Both behavioral and biological pathways are involved in the connection between chronic stress and obesity in adults and children. Emotional "comfort" eating, lack of sleep, impulsive behaviours and selection of specific foods often characterize stressed individuals. In addition to specific behaviours, dysregulation of the stress system through increased secretion of cortisol and catecholamines, especially in the evening hours, and in concert with concurrently elevated insulin concentrations, leads to development of central obesity, insulin resistance and the metabolic syndrome. In children, chronic alterations in cortisol secretion may have additional effects on cognitive and emotional development, timing of puberty and final stature. Obese children and adolescents are frequently entangled in a vicious cycle between distress, impairing self-image and distorted self-image, maintaining and worsening distress.

  12. Autophagy induction by SIRT6 is involved in oxidative stress-induced neuronal damage

    Directory of Open Access Journals (Sweden)

    Jiaxiang Shao

    2016-03-01

    Full Text Available Abstract SIRT6 is a NAD+-dependent histone deacetylase and has been implicated in the regulation of genomic stability, DNA repair, metabolic homeostasis and several diseases. The effect of SIRT6 in cerebral ischemia and oxygen/glucose deprivation (OGD has been reported, however the role of SIRT6 in oxidative stress damage remains unclear. Here we used SH-SY5Y neuronal cells and found that overexpression of SIRT6 led to decreased cell viability and increased necrotic cell death and reactive oxygen species (ROS production under oxidative stress. Mechanistic study revealed that SIRT6 induced autophagy via attenuation of AKT signaling and treatment with autophagy inhibitor 3-MA or knockdown of autophagy-related protein Atg5 rescued H2O2-induced neuronal injury. Conversely, SIRT6 inhibition suppressed autophagy and reduced oxidative stress-induced neuronal damage. These results suggest that SIRT6 might be a potential therapeutic target for neuroprotection.

  13. Metabolic profiles of flooding-tolerant mechanism in early-stage soybean responding to initial stress.

    Science.gov (United States)

    Wang, Xin; Zhu, Wei; Hashiguchi, Akiko; Nishimura, Minoru; Tian, Jingkui; Komatsu, Setsuko

    2017-08-01

    Metabolomic analysis of flooding-tolerant mutant and abscisic acid-treated soybeans suggests that accumulated fructose might play a role in initial flooding tolerance through regulation of hexokinase and phosphofructokinase. Soybean is sensitive to flooding stress, which markedly reduces plant growth. To explore the mechanism underlying initial-flooding tolerance in soybean, mass spectrometry-based metabolomic analysis was performed using flooding-tolerant mutant and abscisic-acid treated soybeans. Among the commonly-identified metabolites in both flooding-tolerant materials, metabolites involved in carbohydrate and organic acid displayed same profile at initial-flooding stress. Sugar metabolism was highlighted in both flooding-tolerant materials with the decreased and increased accumulation of sucrose and fructose, respectively, compared to flooded soybeans. Gene expression of hexokinase 1 was upregulated in flooded soybean; however, it was downregulated in both flooding-tolerant materials. Metabolites involved in carbohydrate/organic acid and proteins related to glycolysis/tricarboxylic acid cycle were integrated. Increased protein abundance of phosphofructokinase was identified in both flooding-tolerant materials, which was in agreement with its enzyme activity. Furthermore, sugar metabolism was pointed out as the tolerant-responsive process at initial-flooding stress with the integration of metabolomics, proteomics, and transcriptomics. Moreover, application of fructose declined the increased fresh weight of plant induced by flooding stress. These results suggest that fructose might be the critical metabolite through regulation of hexokinase and phosphofructokinase to confer initial-flooding stress in soybean.

  14. Andrographolide induces apoptotic and non-apoptotic death and enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in gastric cancer cells

    OpenAIRE

    Lim, Sung-Chul; Jeon, Ho Jong; Kee, Keun Hong; Lee, Mi Ja; Hong, Ran; Han, Song Iy

    2017-01-01

    Andrographolide, a natural compound isolated from Andrographis paniculata, has been reported to possess antitumor activity. In the present study, the effect of andrographolide in human gastric cancer (GC) cells was investigated. Andrographolide induced cell death with apoptotic and non-apoptotic features. At a low concentration, andrographolide potentiated apoptosis and reduction of clonogenicity triggered by recombinant human tumor necrosis factor-related apoptosis-inducing ligand (rhTRAIL)....

  15. Curcumin exerts neuroprotective effects against homocysteine intracerebroventricular injection-induced cognitive impairment and oxidative stress in rat brain.

    Science.gov (United States)

    Ataie, Amin; Sabetkasaei, Masoumeh; Haghparast, Abbas; Moghaddam, Akbar Hajizadeh; Ataee, Ramin; Moghaddam, Shiva Nasiraei

    2010-08-01

    Aging is the major risk factor for neurodegenerative diseases and oxidative stress and is involved in their pathophysiology. Oxidative stress can induce neuronal damage and modulate intracellular signaling, ultimately leading to neuronal death by apoptosis or necrosis. In this study we investigated the neuroprotective properties of the natural polyphenolic antioxidant compound, curcumin, against homocysteine (Hcy) neurotoxicity. Curcumin (5, 15, or 45 mg/kg) was injected intraperitoneally once daily for a period of 10 days beginning 5 days prior to Hcy (0.2 micromol/microl) intracerebroventricular injection in rats. Biochemical and behavioral studies, including passive avoidance learning and locomotor activity tests, were evaluated 24 hours after the last injection of curcumin or vehicle. Results indicated that Hcy induces lipid peroxidation and increases malondialdehyde (MDA) and superoxide anion (SOA) levels in whole rat brain. In addition, Hcy impaired memory retention in the passive avoidance learning test. However, curcumin treatment significantly decreased MDA and SOA levels and improved learning and memory in rats. These results suggest that Hcy may induce lipid peroxidation in rat brain and that polyphenol treatment (curcumin) improves learning and memory deficits by protecting the nervous system against oxidative stress.

  16. Biofluid metabotyping of occupationally exposed subjects to air pollution demonstrates high oxidative stress and deregulated amino acid metabolism

    Science.gov (United States)

    Pradhan, Surya Narayan; Das, Aleena; Meena, Ramovatar; Nanda, Ranjan Kumar; Rajamani, Paulraj

    2016-10-01

    Occupational exposure to air pollution induces oxidative stress and prolonged exposure increases susceptibility to cardiovascular and respiratory diseases in several working groups. Biofluid of these subjects may reflect perturbed metabolic phenotypes. In this study we carried out a comparative molecular profiling study using parallel biofluids collected from subjects (n = 85) belonging to auto rickshaw drivers (ARD), traffic cops (TC) and office workers (OW). Higher levels of oxidative stress and inflammation markers in serum of ARD subjects were observed as compared to OW and TC. Uni and multivariate analyses of metabolites identified in urine by 1H NMR revealed 11 deregulated molecules in ARD subjects and involved in phenylalanine, histidine, arginine and proline metabolism. Despite contribution of confounding factors like exposure period, dietary factors including smoking and alcohol status, our results demonstrate existence of exposure specific metabotypes in biofluids of ARD, OW and TC groups. Monitoring serum oxidative stress and inflammation markers and urine metabolites by NMR may be useful to characterize perturbed metabolic phenotypes in populations exposed to urban traffic air pollution.

  17. Negative regulatory role of PI3-kinase in TNF-induced tumor necrosis.

    Science.gov (United States)

    Matschurat, Susanne; Blum, Sabine; Mitnacht-Kraus, Rita; Dijkman, Henry B P M; Kanal, Levent; De Waal, Robert M W; Clauss, Matthias

    2003-10-20

    Tissue factor is the prime initiator of blood coagulation. Expression of tissue factor in tumor endothelial cells leads to thrombus formation, occlusion of vessels and development of hemorrhagic infarctions in the tumor tissue, often followed by regression of the tumor. Tumor cells produce endogenous vascular endothelial growth factor (VEGF), which sensitizes endothelial cells for systemically administered tumor necrosis factor alpha (TNF alpha) and synergistically enhances the TNF-induced expression of tissue factor. We have analyzed the pathways involved in the induction of tissue factor in human umbilical cord vein endothelial cells (HUVECs) after combined stimulation with TNF and VEGF. By using specific low molecular weight inhibitors, we demonstrated that protein kinase C (PKC), p44/42 and p38 mitogen-activated protein (MAP) kinases, and stress-activated protein kinase (JNK) are essentially involved in the induction of tissue factor. In contrast, the application of wortmannin, an inhibitor of phosphatidylinositol 3 (PI3)-kinase, led to strongly enhanced expression of tissue factor in TNF- and VEGF-treated cells, implicating a negative regulatory role for PI3-kinase. In vivo, the application of wortmannin promoted the formation of TNF-induced hemorrhages and intratumoral necroses in murine meth A tumors. The co-injection of wortmannin lowered the effective dose of applied TNF. Therefore, it is conceivable that the treatment of TNF-sensitive tumors with a combination of TNF and wortmannin will ensure the selective damage of the tumor endothelium and minimize the risk of systemic toxicity of TNF. TNF-treatment in combination with specific inhibition of PI3-kinase is a novel concept in anti-cancer therapy. Copyright 2003 Wiley-Liss, Inc.

  18. Oxidative stress and nerve damage: Role in chemotherapy induced peripheral neuropathy

    Directory of Open Access Journals (Sweden)

    Aparna Areti

    2014-01-01

    Full Text Available Peripheral neuropathy is a severe dose limiting toxicity associated with cancer chemotherapy. Ever since it was identified, the clear pathological mechanisms underlying chemotherapy induced peripheral neuropathy (CIPN remain sparse and considerable involvement of oxidative stress and neuroinflammation has been realized recently. Despite the empirical use of antioxidants in the therapy of CIPN, the oxidative stress mediated neuronal damage in peripheral neuropathy is still debatable. The current review focuses on nerve damage due to oxidative stress and mitochondrial dysfunction as key pathogenic mechanisms involved in CIPN. Oxidative stress as a central mediator of apoptosis, neuroinflammation, metabolic disturbances and bioenergetic failure in neurons has been highlighted in this review along with a summary of research on dietary antioxidants and other nutraceuticals which have undergone prospective controlled clinical trials in patients undergoing chemotherapy.

  19. Ciprofloxacin induces oxidative stress in duckweed (Lemna minor L.): Implications for energy metabolism and antibiotic-uptake ability.

    Science.gov (United States)

    Gomes, Marcelo Pedrosa; Gonçalves, Cíntia Almeida; de Brito, Júlio César Moreira; Souza, Amanda Miranda; da Silva Cruz, Fernanda Vieira; Bicalho, Elisa Monteze; Figueredo, Cleber Cunha; Garcia, Queila Souza

    2017-04-15

    We investigate the physiological responses and antibiotic-uptake capacity of Lemna minor exposed to ciprofloxacin. Ciprofloxacin (Cipro) induced toxic effects and hormesis in plants by significantly modifying photosynthesis and respiration pathways. A toxic effect was induced by a concentration ≥1.05mg ciprofloxacin l -1 while hormesis occurs at the lowest concentration studied (0.75mg ciprofloxacin l -1 ). By impairing normal electron flow in the respiratory electron transport chain, ciprofloxacin induces hydrogen peroxide (H 2 O 2 ) production. The ability of plants to cope with H 2 O 2 accumulation using antioxidant systems resulted in stimulation/deleterious effects to photosynthesis by Cipro. Cipro-induced oxidative stress was also associated with the ability of L. minor plants to uptake the antibiotic and, therefore, with plant-uptake capacity. Our results indicate that instead of being a photosystem II binding molecule, Cipro induces oxidative stress by targeting the mitochondrial ETC, which would explain the observed effects of the antibiotic on non-target eukaryotic organisms. The selection of plants species with a high capacity to tolerate oxidative stress may constitute a strategy to be used in Cipro-remediation programs. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants

    Directory of Open Access Journals (Sweden)

    Shabir H. Wani

    2016-06-01

    Full Text Available Abiotic stresses including drought, salinity, heat, cold, flooding, and ultraviolet radiation causes crop losses worldwide. In recent times, preventing these crop losses and producing more food and feed to meet the demands of ever-increasing human populations have gained unprecedented importance. However, the proportion of agricultural lands facing multiple abiotic stresses is expected only to rise under a changing global climate fueled by anthropogenic activities. Identifying the mechanisms developed and deployed by plants to counteract abiotic stresses and maintain their growth and survival under harsh conditions thus holds great significance. Recent investigations have shown that phytohormones, including the classical auxins, cytokinins, ethylene, and gibberellins, and newer members including brassinosteroids, jasmonates, and strigolactones may prove to be important metabolic engineering targets for producing abiotic stress-tolerant crop plants. In this review, we summarize and critically assess the roles that phytohormones play in plant growth and development and abiotic stress tolerance, besides their engineering for conferring abiotic stress tolerance in transgenic crops. We also describe recent successes in identifying the roles of phytohormones under stressful conditions. We conclude by describing the recent progress and future prospects including limitations and challenges of phytohormone engineering for inducing abiotic stress tolerance in crop plants.

  1. ONC201: Stressing tumors to death.

    Science.gov (United States)

    Endo Greer, Yoshimi; Lipkowitz, Stanley

    2016-02-16

    The small molecule ONC201 was identified in a screen for compounds that would induce expression of the gene encoding tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in tumors and thus cause an autocrine- or paracrine-induced death in tumor cells. Two Research Articles in this issue of Science Signaling by Ishizawa et al. and Kline et al. describe how ONC201 can also trigger cytotoxicity by inducing a stress response. The mechanisms of the stress response induced differ between hematological malignancies and solid tumors, highlighting the complexity of ONC201-induced toxicity and raising intriguing issues of tissue-specific pathways activated by the drug. Copyright © 2016, American Association for the Advancement of Science.

  2. Hydroxyurea-Induced Replication Stress

    Directory of Open Access Journals (Sweden)

    Kenza Lahkim Bennani-Belhaj

    2010-01-01

    Full Text Available Bloom's syndrome (BS displays one of the strongest known correlations between chromosomal instability and a high risk of cancer at an early age. BS cells combine a reduced average fork velocity with constitutive endogenous replication stress. However, the response of BS cells to replication stress induced by hydroxyurea (HU, which strongly slows the progression of replication forks, remains unclear due to publication of conflicting results. Using two different cellular models of BS, we showed that BLM deficiency is not associated with sensitivity to HU, in terms of clonogenic survival, DSB generation, and SCE induction. We suggest that surviving BLM-deficient cells are selected on the basis of their ability to deal with an endogenous replication stress induced by replication fork slowing, resulting in insensitivity to HU-induced replication stress.

  3. Obesity and Hepatic Steatosis Are Associated with Elevated Serum Amyloid Beta in Metabolically Stressed APPswe/PS1dE9 Mice.

    Directory of Open Access Journals (Sweden)

    Feng-Shiun Shie

    Full Text Available Diabesity-associated metabolic stresses modulate the development of Alzheimer's disease (AD. For further insights into the underlying mechanisms, we examine whether the genetic background of APPswe/PS1dE9 at the prodromal stage of AD affects peripheral metabolism in the context of diabesity. We characterized APPswe/PS1dE9 transgenic mice treated with a combination of high-fat diet with streptozotocin (HFSTZ in the early stage of AD. HFSTZ-treated APPswe/PS1dE9 transgenic mice exhibited worse metabolic stresses related to diabesity, while serum β-amyloid levels were elevated and hepatic steatosis became apparent. Importantly, two-way analysis of variance shows a significant interaction between HFSTZ and genetic background of AD, indicating that APPswe/PS1dE9 transgenic mice are more vulnerable to HFSTZ treatment. In addition, body weight gain, high hepatic triglyceride, and hyperglycemia were positively associated with serum β-amyloid, as validated by Pearson's correlation analysis. Our data suggests that the interplay between genetic background of AD and HFSTZ-induced metabolic stresses contributes to the development of obesity and hepatic steatosis. Alleviating metabolic stresses including dysglycemia, obesity, and hepatic steatosis could be critical to prevent peripheral β-amyloid accumulation at the early stage of AD.

  4. Ptpmt1 induced by HIF-2α regulates the proliferation and glucose metabolism in erythroleukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qin-Qin [High Altitude Medicine of Ministry of Chinese Education and Research Center for High Altitude Medicine, Qinghai University, Xining, 810001 (China); Qinghai Provincial People' s Hospital, Xining (China); Xiao, Feng-Jun; Sun, Hui-Yan [Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, 100850 (China); Shi, Xue-Feng [High Altitude Medicine of Ministry of Chinese Education and Research Center for High Altitude Medicine, Qinghai University, Xining, 810001 (China); Qinghai Provincial People' s Hospital, Xining (China); Wang, Hua; Yang, Yue-Feng; Li, Yu-Xiang [Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, 100850 (China); Wang, Li-Sheng, E-mail: wangls@bmi.ac.cn [Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, 100850 (China); Ge, Ri-Li, E-mail: geriligao@hotmail.com [High Altitude Medicine of Ministry of Chinese Education and Research Center for High Altitude Medicine, Qinghai University, Xining, 810001 (China)

    2016-03-18

    Hypoxia provokes metabolism misbalance, mitochondrial dysfunction and oxidative stress in both human and animal cells. However, the mechanisms which hypoxia causes mitochondrial dysfunction and energy metabolism misbalance still remain unclear. In this study, we presented evidence that mitochondrial phosphatase Ptpmt1 is a hypoxia response molecule that regulates cell proliferation, survival and glucose metabolism in human erythroleukemia TF-1 cells. Exposure to hypoxia or DFO treatment results in upregulation of HIF1-α, HIF-2α and Ptpmt1. Only inhibition of HIF-2α by shRNA transduction reduces Ptpmt1 expression in TF-1 cells under hypoxia. Ptpmt1 inhibitor suppresses the growth and induces apoptosis of TF-1 cells. Furthermore, we demonstrated that Ptpmt1 inhibition reduces the Glut1 and Glut3 expression and decreases the glucose consumption in TF-1 cells. In additional, Ptpmt1 knockdown also results in the mitochondrial dysfunction determined by JC1 staining. These results delineate a key role for HIF-2α-induced Ptpmt1 upregulation in proliferation, survival and glucose metabolism of erythroleukemia cells. It is indicated that Ptpmt1 plays important roles in hypoxia-induced cell metabolism and mitochondrial dysfunction. - Highlights: • Hypoxia induces upregulation of HIF-1α, HIF-2α and Ptpmt1; HIF-2a induces Ptpmt1 upregulation in TF-1 cells. • PTPMT-1 inhibition reduces growth and induces apoptosis of TF-1 cells. • PTPMT1 inhibition downregulates Glut-1, Glut-3 expression and reduces glucose consumption.

  5. Positive effect of combined exercise training in a model of metabolic syndrome and menopause: autonomic, inflammatory, and oxidative stress evaluations.

    Science.gov (United States)

    Conti, Filipe Fernandes; Brito, Janaina de Oliveira; Bernardes, Nathalia; Dias, Danielle da Silva; Malfitano, Christiane; Morris, Mariana; Llesuy, Susana Francisca; Irigoyen, Maria-Cláudia; De Angelis, Kátia

    2015-12-15

    It is now well established that after menopause cardiometabolic disorders become more common. Recently, resistance exercise has been recommended as a complement to aerobic (combined training, CT) for the treatment of cardiometabolic diseases. The aim of this study was to evaluate the effects of CT in hypertensive ovariectomized rats undergoing fructose overload in blood pressure variability (BPV), inflammation, and oxidative stress parameters. Female rats were divided into the following groups (n = 8/group): sedentary normotensive Wistar rats (C), and sedentary (FHO) or trained (FHOT) ovariectomized spontaneously hypertensive rats undergoing and fructose overload. CT was performed on a treadmill and ladder adapted to rats in alternate days (8 wk; 40-60% maximal capacity). Arterial pressure (AP) was directly measured. Oxidative stress and inflammation were measured on cardiac and renal tissues. The association of risk factors (hypertension + ovariectomy + fructose) promoted increase in insulin resistance, mean AP (FHO: 174 ± 4 vs. C: 108 ± 1 mmHg), heart rate (FHO: 403 ± 12 vs. C: 352 ± 11 beats/min), BPV, cardiac inflammation (tumor necrosis factor-α-FHO: 65.8 ± 9.9 vs. C: 23.3 ± 4.3 pg/mg protein), and oxidative stress cardiac and renal tissues. However, CT was able to reduce mean AP (FHOT: 158 ± 4 mmHg), heart rate (FHOT: 303 ± 5 beats/min), insulin resistance, and sympathetic modulation. Moreover, the trained rats presented increased nitric oxide bioavailability, reduced tumor necrosis factor-α (FHOT: 33.1 ± 4.9 pg/mg protein), increased IL-10 in cardiac tissue and reduced lipoperoxidation, and increased antioxidant defenses in cardiac and renal tissues. In conclusion, the association of risk factors promoted an additional impairment in metabolic, cardiovascular, autonomic, inflammatory, and oxidative stress parameters and combined exercise training was able to attenuate these dysfunctions. Copyright © 2015 the American Physiological Society.

  6. Endoplasmic reticulum (ER) stress and cAMP/PKA pathway mediated Zn-induced hepatic lipolysis.

    Science.gov (United States)

    Song, Yu-Feng; Hogstrand, Christer; Wei, Chuan-Chuan; Wu, Kun; Pan, Ya-Xiong; Luo, Zhi

    2017-09-01

    The present study was performed to determine the effect of Zn exposure influencing endoplasmic reticulum (ER) stress, explore the underlying molecular mechanism of Zn-induced hepatic lipolysis in a fish species of significance for aquaculture, yellow catfish Pelteobagrus fulvidraco. We found that waterborne Zn exposure evoked ER stress and unfolded protein response (UPR), and activated cAMP/PKA pathway, and up-regulated hepatic lipolysis. The increase in ER stress and lipolysis were associated with activation of cAMP/PKA signaling pathway. Zn also induced an increase in intracellular Ca 2+ level, which could be partially prevented by dantrolene (RyR receptor inhibitor) and 2-APB (IP3 receptor inhibitor), demonstrating that the disturbed Ca 2+ homeostasis in ER contributed to ER stress and dysregulation of lipolysis. Inhibition of ER stress by PBA attenuated UPR, inhibited the activation of cAMP/PKA pathway and resulted in down-regulation of lipolysis. Inhibition of protein kinase RNA-activated-like ER kinase (PERK) by GSK2656157 and inositol-requiring enzyme (IRE) by STF-083010 differentially influenced Zn-induced changes of lipid metabolism, indicating that PERK and IRE pathways played different regulatory roles in Zn-induced lipolysis. Inhibition of PKA by H89 blocked the Zn-induced activation of cAMP/PKA pathway with a concomitant inhibition of ER stress-mediated lipolysis. Taken together, our findings highlight the importance of the ER stress-cAMP/PKA axis in Zn-induced lipolysis, which provides new insights into Zn toxicology in fish and probably in other vertebrates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Chronic variable stress improves glucose tolerance in rats with sucrose-induced prediabetes

    Science.gov (United States)

    Packard, Amy E. B.; Ghosal, Sriparna; Herman, James P.; Woods, Stephen C.; Ulrich-Lai, Yvonne M.

    2014-01-01

    The incidence of type-2 diabetes (T2D) and the burden it places on individuals, as well as society as a whole, compels research into the causes, factors and progression of this disease. Epidemiological studies suggest that chronic stress exposure may contribute to the development and progression of T2D in human patients. To address the interaction between chronic stress and the progression of T2D, we developed a dietary model of the prediabetic state in rats utilizing unlimited access to 30% sucrose solution (in addition to unlimited access to normal chow and water), which led to impaired glucose tolerance despite elevated insulin levels. We then investigated the effects of a chronic variable stress paradigm (CVS; twice daily exposure to an unpredictable stressor for 2 weeks) on metabolic outcomes in this prediabetic model. Chronic stress improved glucose tolerance in prediabetic rats following a glucose challenge. Importantly, pair-fed control groups revealed that the beneficial effect of chronic stress did not result from the decreased food intake or body weight gain that occurred during chronic stress. The present work suggests that chronic stress in rodents can ameliorate the progression of diet-induced prediabetic disease independent of chronic stress-induced decreases in food intake and body weight. PMID:25001967

  8. Calorie-induced ER stress suppresses uroguanylin satiety signaling in diet-induced obesity.

    Science.gov (United States)

    Kim, G W; Lin, J E; Snook, A E; Aing, A S; Merlino, D J; Li, P; Waldman, S A

    2016-05-23

    The uroguanylin-GUCY2C gut-brain axis has emerged as one component regulating feeding, energy homeostasis, body mass and metabolism. Here, we explore a role for this axis in mechanisms underlying diet-induced obesity (DIO). Intestinal uroguanylin expression and secretion, and hypothalamic GUCY2C expression and anorexigenic signaling, were quantified in mice on high-calorie diets for 14 weeks. The role of endoplasmic reticulum (ER) stress in suppressing uroguanylin in DIO was explored using tunicamycin, an inducer of ER stress, and tauroursodeoxycholic acid (TUDCA), a chemical chaperone that inhibits ER stress. The impact of consumed calories on uroguanylin expression was explored by dietary manipulation. The role of uroguanylin in mechanisms underlying obesity was examined using Camk2a-Cre-ER(T2)-Rosa-STOP(loxP/loxP)-Guca2b mice in which tamoxifen induces transgenic hormone expression in brain. DIO suppressed intestinal uroguanylin expression and eliminated its postprandial secretion into the circulation. DIO suppressed uroguanylin through ER stress, an effect mimicked by tunicamycin and blocked by TUDCA. Hormone suppression by DIO reflected consumed calories, rather than the pathophysiological milieu of obesity, as a diet high in calories from carbohydrates suppressed uroguanylin in lean mice, whereas calorie restriction restored uroguanylin in obese mice. However, hypothalamic GUCY2C, enriched in the arcuate nucleus, produced anorexigenic signals mediating satiety upon exogenous agonist administration, and DIO did not impair these responses. Uroguanylin replacement by transgenic expression in brain repaired the hormone insufficiency and reconstituted satiety responses opposing DIO and its associated comorbidities, including visceral adiposity, glucose intolerance and hepatic steatosis. These studies reveal a novel pathophysiological mechanism contributing to obesity in which calorie-induced suppression of intestinal uroguanylin impairs hypothalamic mechanisms

  9. Lactoferrin dampens high-fructose corn syrup-induced hepatic manifestations of the metabolic syndrome in a murine model.

    Directory of Open Access Journals (Sweden)

    Yi-Chieh Li

    Full Text Available Hepatic manifestations of the metabolic syndrome are related obesity, type 2 diabetes/insulin resistance and non-alcoholic fatty liver disease. Here we investigated how the anti-inflammatory properties of lactoferrin can protect against the onset of hepatic manifestations of the metabolic syndrome by using a murine model administered with high-fructose corn syrup. Our results show that a high-fructose diet stimulates intestinal bacterial overgrowth and increases intestinal permeability, leading to the introduction of endotoxin into blood circulation and liver. Immunohistochemical staining of Toll-like receptor-4 and thymic stromal lymphopoietin indicated that lactoferrin can modulate lipopolysaccharide-mediated inflammatory cascade. The important regulatory roles are played by adipokines including interleukin-1β, interleukin-6, tumor necrosis factor-α, monocyte chemotactic protein-1, and adiponectin, ultimately reducing hepatitis and decreasing serum alanine aminotransferase release. These beneficial effects of lactoferrin related to the downregulation of the lipopolysaccharide-induced inflammatory cascade in the liver. Furthermore, lactoferrin reduced serum and hepatic triglycerides to prevent lipid accumulation in the liver, and reduced lipid peroxidation, resulting in 4-hydroxynonenal accumulation. Lactoferrin reduced oral glucose tolerance test and homeostasis model assessment-insulin resistance. Lactoferrin administration thus significantly lowered liver weight, resulting from a decrease in the triglyceride and cholesterol synthesis that activates hepatic steatosis. Taken together, these results suggest that lactoferrin protected against high-fructose corn syrup induced hepatic manifestations of the metabolic syndrome.

  10. Lactoferrin dampens high-fructose corn syrup-induced hepatic manifestations of the metabolic syndrome in a murine model.

    Science.gov (United States)

    Li, Yi-Chieh; Hsieh, Chang-Chi

    2014-01-01

    Hepatic manifestations of the metabolic syndrome are related obesity, type 2 diabetes/insulin resistance and non-alcoholic fatty liver disease. Here we investigated how the anti-inflammatory properties of lactoferrin can protect against the onset of hepatic manifestations of the metabolic syndrome by using a murine model administered with high-fructose corn syrup. Our results show that a high-fructose diet stimulates intestinal bacterial overgrowth and increases intestinal permeability, leading to the introduction of endotoxin into blood circulation and liver. Immunohistochemical staining of Toll-like receptor-4 and thymic stromal lymphopoietin indicated that lactoferrin can modulate lipopolysaccharide-mediated inflammatory cascade. The important regulatory roles are played by adipokines including interleukin-1β, interleukin-6, tumor necrosis factor-α, monocyte chemotactic protein-1, and adiponectin, ultimately reducing hepatitis and decreasing serum alanine aminotransferase release. These beneficial effects of lactoferrin related to the downregulation of the lipopolysaccharide-induced inflammatory cascade in the liver. Furthermore, lactoferrin reduced serum and hepatic triglycerides to prevent lipid accumulation in the liver, and reduced lipid peroxidation, resulting in 4-hydroxynonenal accumulation. Lactoferrin reduced oral glucose tolerance test and homeostasis model assessment-insulin resistance. Lactoferrin administration thus significantly lowered liver weight, resulting from a decrease in the triglyceride and cholesterol synthesis that activates hepatic steatosis. Taken together, these results suggest that lactoferrin protected against high-fructose corn syrup induced hepatic manifestations of the metabolic syndrome.

  11. Cellular stress induces a protective sleep-like state in C. elegans.

    Science.gov (United States)

    Hill, Andrew J; Mansfield, Richard; Lopez, Jessie M N G; Raizen, David M; Van Buskirk, Cheryl

    2014-10-20

    Sleep is recognized to be ancient in origin, with vertebrates and invertebrates experiencing behaviorally quiescent states that are regulated by conserved genetic mechanisms. Despite its conservation throughout phylogeny, the function of sleep remains debated. Hypotheses for the purpose of sleep include nervous-system-specific functions such as modulation of synaptic strength and clearance of metabolites from the brain, as well as more generalized cellular functions such as energy conservation and macromolecule biosynthesis. These models are supported by the identification of synaptic and metabolic processes that are perturbed during prolonged wakefulness. It remains to be seen whether perturbations of cellular homeostasis in turn drive sleep. Here we show that under conditions of cellular stress, including noxious heat, cold, hypertonicity, and tissue damage, the nematode Caenorhabditis elegans engages a behavioral quiescence program. The stress-induced quiescent state displays properties of sleep and is dependent on the ALA neuron, which mediates the conserved soporific effect of epidermal growth factor (EGF) ligand overexpression. We characterize heat-induced quiescence in detail and show that it is indeed dependent on components of EGF signaling, providing physiological relevance to the behavioral effects of EGF family ligands. We find that after noxious heat exposure, quiescence-defective animals show elevated expression of cellular stress reporter genes and are impaired for survival, demonstrating the benefit of stress-induced behavioral quiescence. These data provide evidence that cellular stress can induce a protective sleep-like state in C. elegans and suggest that a deeply conserved function of sleep is to mitigate disruptions of cellular homeostasis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. [Improving industrial microbial stress resistance by metabolic engineering: a review].

    Science.gov (United States)

    Fu, Ruiyan; Li, Yin

    2010-09-01

    Metabolic engineering is a technologic platform for industrial strain improvement and aims not only at modifying microbial metabolic fluxes, but also improving the physiological performance of industrial microbes. Microbes will meet multiple stresses in industrial processes. Consequently, elicited gene responses might result in a decrease in overall cell fitness and the efficiency of biotransformation. Thus, it is crucial to develop robust and productive microbial strains that can be integrated into industrial-scale bioprocesses. In this review, we focus on the progress of these novel methods and strategies for engineering stress-tolerance phenotypes referring to rational metabolic engineering and inverse metabolic engineering in recent years. In addition, we also address problems existing in this area and future research needs of microbial physiological functionality engineering.

  13. Melatonin as a Potent and Inducible Endogenous Antioxidant: Synthesis and Metabolism

    Directory of Open Access Journals (Sweden)

    Dun-Xian Tan

    2015-10-01

    Full Text Available Melatonin is a tryptophan-derived molecule with pleiotropic activities. It is present in almost all or all organisms. Its synthetic pathway depends on the species in which it is measured. For example, the tryptophan to melatonin pathway differs in plants and animals. It is speculated that the melatonin synthetic machinery in eukaryotes was inherited from bacteria as a result of endosymbiosis. However, melatonin’s synthetic mechanisms in microorganisms are currently unknown. Melatonin metabolism is highly complex with these enzymatic processes having evolved from cytochrome C. In addition to its enzymatic degradation, melatonin is metabolized via pseudoenzymatic and free radical interactive processes. The metabolic products of these processes overlap and it is often difficult to determine which process is dominant. However, under oxidative stress, the free radical interactive pathway may be featured over the others. Because of the complexity of the melatonin degradative processes, it is expected that additional novel melatonin metabolites will be identified in future investigations. The original and primary function of melatonin in early life forms such as in unicellular organisms was as a free radical scavenger and antioxidant. During evolution, melatonin was selected as a signaling molecule to transduce the environmental photoperiodic information into an endocrine message in multicellular organisms and for other purposes as well. As an antioxidant, melatonin exhibits several unique features which differ from the classic antioxidants. These include its cascade reaction with free radicals and its capacity to be induced under moderate oxidative stress. These features make melatonin a potent endogenously-occurring antioxidant that protects organisms from catastrophic oxidative stress.

  14. Bile acid-induced necrosis in primary human hepatocytes and in patients with obstructive cholestasis

    Energy Technology Data Exchange (ETDEWEB)

    Woolbright, Benjamin L.; Dorko, Kenneth [Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Antoine, Daniel J.; Clarke, Joanna I. [MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool (United Kingdom); Gholami, Parviz [Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS (United States); Li, Feng [Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Kumer, Sean C.; Schmitt, Timothy M.; Forster, Jameson [Department of Surgery, University of Kansas Medical Center, Kansas City, KS (United States); Fan, Fang [Department of Pathology, University of Kansas Medical Center, Kansas City, KS (United States); Jenkins, Rosalind E.; Park, B. Kevin [MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool (United Kingdom); Hagenbuch, Bruno [Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Olyaee, Mojtaba [Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS (United States); Jaeschke, Hartmut, E-mail: hjaeschke@kumc.edu [Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States)

    2015-03-15

    Accumulation of bile acids is a major mediator of cholestatic liver injury. Recent studies indicate bile acid composition between humans and rodents is dramatically different, as humans have a higher percent of glycine conjugated bile acids and increased chenodeoxycholate content, which increases the hydrophobicity index of bile acids. This increase may lead to direct toxicity that kills hepatocytes, and promotes inflammation. To address this issue, this study assessed how pathophysiological concentrations of bile acids measured in cholestatic patients affected primary human hepatocytes. Individual bile acid levels were determined in serum and bile by UPLC/QTOFMS in patients with extrahepatic cholestasis with, or without, concurrent increases in serum transaminases. Bile acid levels increased in serum of patients with liver injury, while biliary levels decreased, implicating infarction of the biliary tracts. To assess bile acid-induced toxicity in man, primary human hepatocytes were treated with relevant concentrations, derived from patient data, of the model bile acid glycochenodeoxycholic acid (GCDC). Treatment with GCDC resulted in necrosis with no increase in apoptotic parameters. This was recapitulated by treatment with biliary bile acid concentrations, but not serum concentrations. Marked elevations in serum full-length cytokeratin-18, high mobility group box 1 protein (HMGB1), and acetylated HMGB1 confirmed inflammatory necrosis in injured patients; only modest elevations in caspase-cleaved cytokeratin-18 were observed. These data suggest human hepatocytes are more resistant to human-relevant bile acids than rodent hepatocytes, and die through necrosis when exposed to bile acids. These mechanisms of cholestasis in humans are fundamentally different to mechanisms observed in rodent models. - Highlights: • Cholestatic liver injury is due to cytoplasmic bile acid accumulation in hepatocytes. • Primary human hepatocytes are resistant to BA-induced injury

  15. CTRP3 attenuates diet-induced hepatic steatosis by regulating triglyceride metabolism.

    Science.gov (United States)

    Peterson, Jonathan M; Seldin, Marcus M; Wei, Zhikui; Aja, Susan; Wong, G William

    2013-08-01

    CTRP3 is a secreted plasma protein of the C1q family that helps regulate hepatic gluconeogenesis and is downregulated in a diet-induced obese state. However, the role of CTRP3 in regulating lipid metabolism has not been established. Here, we used a transgenic mouse model to address the potential function of CTRP3 in ameliorating high-fat diet-induced metabolic stress. Both transgenic and wild-type mice fed a high-fat diet showed similar body weight gain, food intake, and energy expenditure. Despite similar adiposity to wild-type mice upon diet-induced obesity (DIO), CTRP3 transgenic mice were strikingly resistant to the development of hepatic steatosis, had reduced serum TNF-α levels, and demonstrated a modest improvement in systemic insulin sensitivity. Additionally, reduced hepatic triglyceride levels were due to decreased expression of enzymes (GPAT, AGPAT, and DGAT) involved in triglyceride synthesis. Importantly, short-term daily administration of recombinant CTRP3 to DIO mice for 5 days was sufficient to improve the fatty liver phenotype, evident as reduced hepatic triglyceride content and expression of triglyceride synthesis genes. Consistent with a direct effect on liver cells, recombinant CTRP3 treatment reduced fatty acid synthesis and neutral lipid accumulation in cultured rat H4IIE hepatocytes. Together, these results establish a novel role for CTRP3 hormone in regulating hepatic lipid metabolism and highlight its protective function and therapeutic potential in attenuating hepatic steatosis.

  16. Regorafenib impairs mitochondrial functions, activates AMP-activated protein kinase, induces autophagy, and causes rat hepatocyte necrosis.

    Science.gov (United States)

    Weng, Zuquan; Luo, Yong; Yang, Xi; Greenhaw, James J; Li, Haibo; Xie, Liming; Mattes, William B; Shi, Qiang

    2015-01-02

    The tyrosine kinase inhibitor regorafenib was approved by regulatory agencies for cancer treatment, albeit with strong warnings of severe hepatotoxicity included in the product label. The basis of this toxicity is unknown; one possible mechanism, that of mitochondrial damage, was tested. In isolated rat liver mitochondria, regorafenib directly uncoupled oxidative phosphorylation (OXPHOS) and promoted calcium overload-induced swelling, which were respectively prevented by the recoupler 6-ketocholestanol (KC) and the mitochondrial permeability transition (MPT) pore blocker cyclosporine A (CsA). In primary hepatocytes, regorafenib uncoupled OXPHOS, disrupted mitochondrial inner membrane potential (MMP), and decreased cellular ATP at 1h, and triggered MPT at 3h, which was followed by necrosis but not apoptosis at 7h and 24h, all of which were abrogated by KC. The combination of the glycolysis enhancer fructose plus the mitochondrial ATPase synthase inhibitor oligomycin A abolished regorafenib induced necrosis at 7h. This effect was not seen at 24h nor with the fructose or oligomycin A separately. CsA in combination with trifluoperazine, both MPT blockers, showed similar effects. Two compensatory mechanisms, activation of AMP-activated protein kinase (AMPK) to ameliorate ATP shortage and induction of autophagy to remove dysfunctional mitochondria, were found to be mobilized. Hepatocyte necrosis was enhanced either by the AMPK inhibitor Compound C or the autophagy inhibitor chloroquine, while autophagy inducer rapamycin was strongly cytoprotective. Remarkably, all toxic effects were observed at clinically-relevant concentrations of 2.5-15μM. These data suggest that uncoupling of OXPHOS and the resulting ATP shortage and MPT induction are the key mechanisms for regorafenib induced hepatocyte injury, and AMPK activation and autophagy induction serve as pro-survival pathways against such toxicity. Published by Elsevier Ireland Ltd.

  17. Stress-induced alterations in estradiol sensitivity increase risk for obesity in women.

    Science.gov (United States)

    Michopoulos, Vasiliki

    2016-11-01

    The prevalence of obesity in the United States continues to rise, increasing individual vulnerability to an array of adverse health outcomes. One factor that has been implicated causally in the increased accumulation of fat and excess food intake is the activity of the limbic-hypothalamic-pituitary-adrenal (LHPA) axis in the face of relentless stressor exposure. However, translational and clinical research continues to understudy the effects sex and gonadal hormones and LHPA axis dysfunction in the etiology of obesity even though women continue to be at greater risk than men for stress-induced disorders, including depression, emotional feeding and obesity. The current review will emphasize the need for sex-specific evaluation of the relationship between stress exposure and LHPA axis activity on individual risk for obesity by summarizing data generated by animal models currently being leveraged to determine the etiology of stress-induced alterations in feeding behavior and metabolism. There exists a clear lack of translational models that have been used to study female-specific risk. One translational model of psychosocial stress exposure that has proven fruitful in elucidating potential mechanisms by which females are at increased risk for stress-induced adverse health outcomes is that of social subordination in socially housed female macaque monkeys. Data from subordinate female monkeys suggest that increased risk for emotional eating and the development of obesity in females may be due to LHPA axis-induced changes in the behavioral and physiological sensitivity of estradiol. The lack in understanding of the mechanisms underlying these alterations necessitate the need to account for the effects of sex and gonadal hormones in the rationale, design, implementation, analysis and interpretation of results in our studies of stress axis function in obesity. Doing so may lead to the identification of novel therapeutic targets with which to combat stress-induced obesity

  18. Obesity-induced endoplasmic reticulum stress suppresses nuclear factor-Y expression.

    Science.gov (United States)

    Liu, Yulan; Zhang, Yuwei; Zhang, Yanjie; Zhang, Jinlong; Liu, Yin; Feng, Peiqun; Su, Zhiguang

    2017-02-01

    Nuclear transcription factor Y (NF-Y) is an evolutionarily conserved transcription factor composed of three subunits, NF-YA, NF-YB, and NF-YC. NF-Y plays crucial roles in pre-adipocyte maintenance and/or commitment to adipogenesis. NF-YA dysfunction in adipocyte resulted in an age-dependent progressive loss of adipose tissue associated with metabolic complications. Endoplasmic reticulum (ER) stress has emerged as an important mediator in the pathogenesis of obesity. However, it is not known if NF-YA is involved in the ER stress-mediated pathogenesis of obesity. We first examined the effects of ER stress on the NF-YA expression in cultured 3T3-L1 adipocytes; then in ob/ob genetic obesity mice, we tested the effect of chemical chaperones alleviating ER stress on the expression levels of NF-YA. Subsequently, we inhibited the new mRNA synthesis using actinomycin D in 3T3-L1 cells to explore the mechanism modulating NF-YA expression. Finally, we evaluated the involvement of PPARg in the regulation of NF-YA expression by ER stress. We demonstrated that both obesity- and chemical chaperone -induced ER stress suppressed NF-YA expression and alleviation of ER stress by chemical chaperone could recover NF-YA expression in ob/ob mice. Moreover, we showed that ER stress suppressed NF-YA mRNA transcription through the involvement of peroxisome proliferator-activated receptor gamma (PPARg). Activation of PPARg ameliorates the ER stress-induced NF-YA suppression. Our findings may point to a possible role of NF-YA in stress conditions that occur in chronic obesity, ER stress might be involved in the pathogenesis of obesity through NF-YA depletion.

  19. Comparison of ion balance and nitrogen metabolism in old and young leaves of alkali-stressed rice plants.

    Science.gov (United States)

    Wang, Huan; Wu, Zhihai; Han, Jiayu; Zheng, Wei; Yang, Chunwu

    2012-01-01

    Alkali stress is an important agricultural contaminant and has complex effects on plant metabolism. The aim of this study was to investigate whether the alkali stress has different effects on the growth, ion balance, and nitrogen metabolism in old and young leaves of rice plants, and to compare functions of both organs in alkali tolerance. The results showed that alkali stress only produced a small effect on the growth of young leaves, whereas strongly damaged old leaves. Rice protected young leaves from ion harm via the large accumulation of Na(+) and Cl(-) in old leaves. The up-regulation of OsHKT1;1, OsAKT1, OsHAK1, OsHAK7, OsHAK10 and OsHAK16 may contribute to the larger accumulation of Na(+) in old leaves under alkali stress. Alkali stress mightily reduced the NO(3)(-) contents in both organs. As old leaf cells have larger vacuole, under alkali stress these scarce NO(3)(-) was principally stored in old leaves. Accordingly, the expression of OsNRT1;1 and OsNRT1;2 in old leaves was up-regulated by alkali stress, revealing that the two genes might contribute to the accumulation of NO(3)(-) in old leaves. NO(3)(-) deficiency in young leaves under alkali stress might induce the reduction in OsNR1 expression and the subsequent lacking of NH(4)(+), which might be main reason for the larger down-regulation of OsFd-GOGAT and OsGS2 in young leaves. Our results strongly indicated that, during adaptation of rice to alkali stress, young and old leaves have distinct mechanisms of ion balance and nitrogen metabolism regulation. We propose that the comparative studies of young and old tissues may be important for abiotic stress tolerance research.

  20. Effect of Temporary Inactivation of Nucleus Accumbens on Chronic Stress Induced by Electric Shock to the Sole of the Foot in Female NMRI Mice

    Directory of Open Access Journals (Sweden)

    F Nicaeili

    2016-04-01

    Full Text Available BACKGROUND AND OBJECTIVE: Activity changes in the neurons of nucleus accumbens during stress have been previously identified. However, the role of nucleus accumbens in diminishing stress-induced side-effects is not fully understood. In this study, we aimed to evaluate the effects of temporary inactivation of nucleus accumbens on stress-induced metabolic changes in female mice. METHODS: This experimental study was performed on 48 female NMRI mice with an average 27±3 g. The nucleus accumbens was unilaterally and bilaterally cannulated. After one week of recovery, 2% lidocaine or saline was administered in mice for four consecutive days (5 min per day before inducing electric shock to the sole of the foot. Plasma corticosterone level, food and water intake, and delay in eating were assessed as stress-induced metabolic parameters. FINDINGS: Stress lonely, caused an increase in plasma corticosterone (17±0.8 compared with the control group (4.5±0.3 (p<0.001. It also, caused an increase delay in eating (%218±9.8, p<0.01 and, decrease water (%80±4.5 and food (%84±5.5 intake (p<0.05. Temporary inactivation of nucleus accumbens did not affect the stress-induced changes in plasma corticosterone, and it suppressed the effect of stress on the amount of water intake; inactivation of the left nucleus accumbens was more effective (%195±7.6, p<0.01. Temporary inactivation of nucleus accumbens neutralized the effect of stress on the amount of food intake. Temporary inactivation of the right nucleus accumbens augmented the effect of stress on delay in eating (%264±10.8, p<0.01, and inactivation of the left nucleus accumbens could suppress this effect. CONCLUSION: It seems that temporary inactivation of nucleus accumbens can be effective in diminishing stress-induced metabolic changes. However, this influence is indicative of asymmetry in the function of right and left nucleus accumbens. 

  1. Identification and characterization of Nip, necrosis-inducing virulence protein of Erwinia carotovora subsp. carotovora.

    Science.gov (United States)

    Mattinen, Laura; Tshuikina, Marina; Mäe, Andres; Pirhonen, Minna

    2004-12-01

    Erwinia carotovora subsp. carotovora is a gram-negative bacterium that causes soft rot disease of many cultivated crops. When a collection of E. carotovora subsp. carotovora isolates was analyzed on a Southern blot using the harpin-encoding gene hrpN as probe, several harpinless isolates were found. Regulation of virulence determinants in one of these, strain SCC3193, has been characterized extensively. It is fully virulent on potato and in Arabidopsis thaliana. An RpoS (SigmaS) mutant of SCC3193, producing elevated levels of secreted proteins, was found to cause lesions resembling the hypersensitive response when infiltrated into tobacco leaf tissue. This phenotype was evident only when bacterial cells had been cultivated on solid minimal medium at low pH and temperature. The protein causing'the cell death was purified and sequenced, and the corresponding gene was cloned. The deduced sequence of the necrosis-inducing protein (Nip) showed homology to necrosis- and ethylene-inducing elicitors of fungi and oomycetes. A mutant strain of E. carotovora subsp. carotovora lacking the nip gene showed reduced virulence in potato tuber assay but was unaffected in virulence in potato stem or on other tested host plants.

  2. Chemical chaperones reduce ER stress and adipose tissue inflammation in high fat diet-induced mouse model of obesity.

    Science.gov (United States)

    Chen, Yaqin; Wu, Zhihong; Zhao, Shuiping; Xiang, Rong

    2016-06-08

    Obesity, which is characteristic by chronic inflammation, is defined as abnormal or excessive fat accumulation in adipose tissues. Endoplasmic reticulum (ER) stress is increased in adipose tissue of obese state and is known to be strongly associated with chronic inflammation. The aim of this study was to investigate the effect of ER stress on adipokine secretion in obese mice and explore the potential mechanisms. In this study, we found high-fat diet induced-obesity contributed to strengthened ER stress and triggered chronic inflammation in adipose tissue. Chemical chaperones, 4-PBA and TUDCA, modified metabolic disorders and decreased the levels of inflammatory cytokines in obese mice fed a high-fat diet. The alleviation of ER stress is in accordance with the decrease of free cholesterol in adipose tissue. Furthermore chemical chaperones suppress NF-κB activity in adipose tissue of obese mice in vivo. In vitro studies showed IKK/NF-κB may be involved in the signal transduction of adipokine secretion dysfunction induced by ER stress. The present study revealed the possibility that inhibition of ER stress may be a novel drug target for metabolic abnormalities associated with obesity. Further studies are now needed to characterize the initial incentive of sustained ER stress in obese.

  3. Energetic stress: The reciprocal relationship between energy availability and the stress response.

    Science.gov (United States)

    Harrell, C S; Gillespie, C F; Neigh, G N

    2016-11-01

    The worldwide epidemic of metabolic syndromes and the recognized burden of mental health disorders have driven increased research into the relationship between the two. A maladaptive stress response is implicated in both mental health disorders and metabolic disorders, implicating the hypothalamic-pituitary-adrenal (HPA) axis as a key mediator of this relationship. This review explores how an altered energetic state, such as hyper- or hypoglycemia, as may be manifested in obesity or diabetes, affects the stress response and the HPA axis in particular. We propose that changes in energetic state or energetic demands can result in "energetic stress" that can, if prolonged, lead to a dysfunctional stress response. In this review, we summarize the role of the hypothalamus in modulating energy homeostasis and then briefly discuss the relationship between metabolism and stress-induced activation of the HPA axis. Next, we examine seven mechanisms whereby energetic stress interacts with neuroendocrine stress response systems, including by glucocorticoid signaling both within and beyond the HPA axis; by nutrient-induced changes in glucocorticoid signaling; by impacting the sympathetic nervous system; through changes in other neuroendocrine factors; by inducing inflammatory changes; and by altering the gut-brain axis. Recognizing these effects of energetic stress can drive novel therapies and prevention strategies for mental health disorders, including dietary intervention, probiotics, and even fecal transplant. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Risk assessment of silica nanoparticles on liver injury in metabolic syndrome mice induced by fructose.

    Science.gov (United States)

    Li, Jianmei; He, Xiwei; Yang, Yang; Li, Mei; Xu, Chenke; Yu, Rong

    2018-07-01

    This study aims to assess the effects and the mechanisms of silica nanoparticles (SiNPs) on hepatotoxicity in both normal and metabolic syndrome mouse models induced by fructose. Here, we found that SiNPs exposure lead to improved insulin resistance in metabolic syndrome mice, but markedly worsened hepatic ballooning, inflammation infiltration, and fibrosis. Moreover, SiNPs exposure aggravated liver injury in metabolic syndrome mice by causing serious DNA damage. Following SiNPs exposure, liver superoxide dismutase and catalase activities in metabolic syndrome mice were stimulated, which is accompanied by significantly increased malondialdehyde and 8-hydroxy-2-deoxyguanosine levels as compared to normal mice. Scanning electron microscope (SEM) revealed that SiNPs were more readily deposited in the liver mitochondria of metabolic syndrome mice, resulting in more severe mitochondrial injury as compared to normal mice. We speculated that SiNPs-induced mitochondrial injury might be the cause of hepatic oxidative stress, which further lead to a series of liver lesions as observed in mice following SiNPs exposure. Based on these results, it is likely that SiNPs will increase the risk and severity of liver disease in individuals with metabolic syndrome. Therefore, SiNPs should be used cautiously in food additives and clinical settings. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Differential diagnosis of metastases in bone scans: chemotherapy induced bone necrosis

    International Nuclear Information System (INIS)

    Reuland, P.

    1999-01-01

    Aim: Influenced by the incorrect diagnosis of a bone metastasis caused by bone necrosis we evaluated reasons and frequency of bone necrosis in patients referred for bone scanning in follow-up of tumors. Methods: Bone scans performed within two years on patients with primary bone tumors or tumors metastatic to bone were reviewed in respect to the final diagnosis bone necrosis. Results: We found the cases of three young patients who presented the appearance of hot spots on bone scintigrams which were finally diagnosed as bone necrosis. In two cases the diagnosis was based on histological findings, in one case the diagnosis was made evident by follow-up. All the three patients had been treated by chemotherapy and presented no other reason for the development of bone necrosis. Enhanced tracer uptake in all sites decreased within eight weeks up to two years without therapy. Conclusion: Single and multiple hot spots after chemotherapy may be originated by bone necrosis but mimikry metastases. (orig.) [de

  6. [Cellular adhesion signal transduction network of tumor necrosis factor-alpha induced hepatocellular carcinoma cells].

    Science.gov (United States)

    Zheng, Yongchang; Du, Shunda; Xu, Haifeng; Xu, Yiyao; Zhao, Haitao; Chi, Tianyi; Lu, Xin; Sang, Xinting; Mao, Yilei

    2014-11-18

    To systemically explore the cellular adhesion signal transduction network of tumor necrosis factor-alpha (TNF-α)-induced hepatocellular carcinoma cells with bioinformatics tools. Published microarray dataset of TNF-α-induced HepG2, human transcription factor database HTRI and human protein-protein interaction database HPRD were used to construct and analyze the signal transduction network. In the signal transduction network, MYC and SP1 were the key nodes of signaling transduction. Several genes from the network were closely related with cellular adhesion.Epidermal growth factor receptor (EGFR) is a possible key gene of effectively regulating cellular adhesion during the induction of TNF-α. EGFR is a possible key gene for TNF-α-induced metastasis of hepatocellular carcinoma.

  7. Stress-induced hyperthermia in translational stress research

    NARCIS (Netherlands)

    Vinkers, C.H.; Penning, R.; Ebbens, M.M.; Helhammer, J.; Verster, J.C.; Kalkman, C.J.; Olivier, B.

    2010-01-01

    The stress-induced hyperthermia (SIH) response is the transient change in body temperature in response to acute stress. This body temperature response is part of the autonomic stress response which also results in tachycardia and an increased blood pressure. So far, a SIH response has been found in

  8. Aluminium stress disrupts metabolic performance of Plantago almogravensis plantlets transiently.

    Science.gov (United States)

    Grevenstuk, Tomás; Moing, Annick; Maucourt, Mickaël; Deborde, Catherine; Romano, Anabela

    2015-12-01

    Little is known about how tolerant plants cope with internalized aluminium (Al). Tolerant plants are known to deploy efficient detoxification mechanisms, however it is not known to what extent the primary and secondary metabolism is affected by Al. The aim of this work was to study the metabolic repercussions of Al stress in the tolerant plant Plantago almogravensis. P. almogravensis is well adapted to acid soils where high concentrations of free Al are found and has been classified as a hyperaccumulator. In vitro reared plantlets were used for this purpose in order to control Al exposure rigorously. The metabolome of P. almogravensis plantlets as well as its metabolic response to the supply of sucrose was characterized. The supply of sucrose leads to an accumulation of amino acids and secondary metabolites and consumption of carbohydrates that result from increased metabolic activity. In Al-treated plantlets the synthesis of amino acids and secondary metabolites is transiently impaired, suggesting that P. almogravensis is able to recover from the Al treatment within the duration of the trials. In the presence of Al the consumption of carbohydrate resources is accelerated. The content of some metabolic stress markers also demonstrates that P. almogravensis is highly adapted to Al stress.

  9. Postnatal treatment with metyrapone attenuates the effects of diet-induced obesity in female rats exposed to early-life stress.

    Science.gov (United States)

    Murphy, Margaret O; Herald, Joseph B; Wills, Caleb T; Unfried, Stanley G; Cohn, Dianne M; Loria, Analia S

    2017-02-01

    Experimental studies in rodents have shown that females are more susceptible to exhibiting fat expansion and metabolic disease compared with males in several models of fetal programming. This study tested the hypothesis that female rat pups exposed to maternal separation (MatSep), a model of early-life stress, display an exacerbated response to diet-induced obesity compared with male rats. Also, we tested whether the postnatal treatment with metyrapone (MTP), a corticosterone synthase inhibitor, would attenuate this phenotype. MatSep was performed in WKY offspring by separation from the dam (3 h/day, postnatal days 2-14). Upon weaning, male and female rats were placed on a normal (ND; 18% kcal fat) or high-fat diet (HFD; 60% kcal fat). Nondisturbed littermates served as controls. In male rats, no diet-induced differences in body weight (BW), glucose tolerance, and fat tissue weight and morphology were found between MatSep and control male rats. However, female MatSep rats displayed increased BW gain, fat pad weights, and glucose intolerance compared with control rats (P obesity risk factors, including elevated adiposity, hyperleptinemia, and glucose intolerance. These findings show that exposure to stress hormones during early life could be a key event to enhance diet-induced obesity and metabolic disease in female rats. Thus, pharmacological and/or behavioral inflection of the stress levels is a potential therapeutic approach for prevention of early life stress-enhanced obesity and metabolic disease. Copyright © 2017 the American Physiological Society.

  10. Cardiovascular and metabolic consequences of the association between chronic stress and high-fat diet in rats.

    Science.gov (United States)

    Simas, Bruna B; Nunes, Everson A; Crestani, Carlos C; Speretta, Guilherme F

    2018-05-01

    Obesity and chronic stress are considered independent risk factors for the development of cardiovascular diseases and changes in autonomic system activity. However, the cardiovascular consequences induced by the association between high-fat diet (HFD) and chronic stress are not fully understood. We hypothesized that the association between HFD and exposure to a chronic variable stress (CVS) protocol for four weeks might exacerbate the cardiovascular and metabolic disturbances in rats when compared to these factors singly. To test this hypothesis, male Wistar rats were divided into four groups: control-standard chow diet (SD; n = 8); control-HFD (n = 8); CVS-SD (n = 8); and CVS-HFD (n = 8). The CVS consisted of repeated exposure of the rats to different inescapable and unpredictable stressors (restraint tress; damp sawdust, cold, swim stress and light cycle inversion). We evaluated cardiovascular function, autonomic activity, dietary intake, adiposity and metabolism. The HFD increased body weight, adiposity and blood glucose concentration (∼15%) in both control and CVS rats. The CVS-HFD rats showed decreased insulin sensitivity (25%) compared to CVS-SD rats. The control-HFD and CVS-HFD rats presented increased intrinsic heart rate (HR) values (∼8%). CVS increased cardiac sympathetic activity (∼65%) in both SD- and HFD-fed rats. The HFD increased basal HR (∼10%). Blood pressure and baroreflex analyzes showed no differences among the experimental groups. In conclusion, the present data indicate absence of interaction on autonomic imbalance evoked by either CVS or HFD. Additionally, HFD increased HR and evoked metabolic disruptions which are independent of stress exposure.

  11. Zinc prevents sickness behavior induced by lipopolysaccharides after a stress challenge in rats.

    Directory of Open Access Journals (Sweden)

    Thiago B Kirsten

    Full Text Available Sickness behavior is considered part of the specific beneficial adaptive behavioral and neuroimmune changes that occur in individuals in response to infectious/inflammatory processes. However, in dangerous and stressful situations, sickness behavior should be momentarily abrogated to prioritize survival behaviors, such as fight or flight. Taking this assumption into account, we experimentally induced sickness behavior in rats using lipopolysaccharides (LPS, an endotoxin that mimics infection by gram-negative bacteria, and then exposed these rats to a restraint stress challenge. Zinc has been shown to play a regulatory role in the immune and nervous systems. Therefore, the objective of this study was to examine the effects of zinc treatment on the sickness response of stress-challenged rats. We evaluated 22-kHz ultrasonic vocalizations, open-field behavior, tumor necrosis factor α (TNF-α, corticosterone, and brain-derived neurotrophic factor (BDNF plasma levels. LPS administration induced sickness behavior in rats compared to controls, i.e., decreases in the distance traveled, average velocity, rearing frequency, self-grooming, and number of vocalizations, as well as an increase in the plasma levels of TNF-α, compared with controls after a stressor challenge. LPS also decreased BDNF expression but did not influence anxiety parameters. Zinc treatment was able to prevent sickness behavior in LPS-exposed rats after the stress challenge, restoring exploratory/motor behaviors, communication, and TNF-α levels similar to those of the control group. Thus, zinc treatment appears to be beneficial for sick animals when they are facing risky/stressful situations.

  12. α-Amyrin attenuates high fructose diet-induced metabolic syndrome in rats.

    Science.gov (United States)

    Prabhakar, Pankaj; Reeta, K H; Maulik, Subir Kumar; Dinda, Amit Kumar; Gupta, Yogendra Kumar

    2017-01-01

    This study investigated the effect of α-amyrin (a pentacyclic triterpene) on high-fructose diet (HFD)-induced metabolic syndrome in rats. Male Wistar rats were randomly distributed into different groups. The control group was fed normal rat chow diet. The HFD group was fed HFD (60%; w/w) for 42 days. Pioglitazone (10 mg/kg, orally, once daily) was used as a standard drug. α-Amyrin was administered in 3 doses (50, 100, and 200 mg/kg, orally, once daily along with HFD). Plasma glucose, total cholesterol, triglycerides, and high-density lipoprotein cholesterol (HDL-C) were estimated. Changes in blood pressure, oral glucose tolerance, and insulin tolerance were measured. Hepatic oxidative stress as well as messenger RNA (mRNA) and protein levels of peroxisome proliferator-activated receptor alpha (PPAR-α) were analyzed. A significant increase in systolic blood pressure, plasma glucose, total cholesterol, and plasma triglycerides and a significant decrease in HDL-C were observed in HFD rats as compared with control rats. Glucose tolerance and insulin tolerance were also significantly impaired with HFD. α-Amyrin prevented these changes in a dose-dependent manner. Hepatic oxidative stress as well as micro- and macrovesicular fatty changes in hepatocytes caused by HFD were also attenuated by α-amyrin. α-Amyrin preserved the hepatic mRNA and protein levels of PPAR-α, which was reduced in HFD group. This study thus demonstrates that α-amyrin attenuates HFD-induced metabolic syndrome in rats.

  13. Diabetes induces metabolic alterations in dental pulp.

    Science.gov (United States)

    Leite, Mariana Ferreira; Ganzerla, Emily; Marques, Márcia Martins; Nicolau, José

    2008-10-01

    Diabetes can interfere in tissue nutrition and can impair dental pulp metabolism. This disease causes oxidative stress in cells and tissues. However, little is known about the antioxidant system in the dental pulp of diabetics. Thus, it would be of importance to study this system in this tissue in order to verify possible alterations indicative of oxidative stress. The aim of this study was to evaluate some parameters of antioxidant system of the dental pulp of healthy (n = 8) and diabetic rats (n = 8). Diabetes was induced by streptozotocin in rats. Six weeks after diabetes induction, a pool of the dental pulp of the 4 incisors of each rat (healthy and diabetic) was used for the determination of total protein and sialic acid concentrations and catalase and peroxidase activities. Data were compared by a Student t test (p pulps from both groups presented similar total protein concentrations and peroxidase activity. Dental pulps of diabetic rats exhibited significantly lower free, conjugated, and total sialic acid concentrations than those of control tissues. Catalase activity in diabetic dental pulps was significantly enhanced in comparison with that of control pulps. The result of the present study is indicative of oxidative stress in the dental pulp caused by diabetes. The increase of catalase activity and the reduction of sialic acid could be resultant of reactive oxygen species production.

  14. The Yeast Environmental Stress Response Regulates Mutagenesis Induced by Proteotoxic Stress

    Science.gov (United States)

    Shor, Erika; Fox, Catherine A.; Broach, James R.

    2013-01-01

    Conditions of chronic stress are associated with genetic instability in many organisms, but the roles of stress responses in mutagenesis have so far been elucidated only in bacteria. Here, we present data demonstrating that the environmental stress response (ESR) in yeast functions in mutagenesis induced by proteotoxic stress. We show that the drug canavanine causes proteotoxic stress, activates the ESR, and induces mutagenesis at several loci in an ESR-dependent manner. Canavanine-induced mutagenesis also involves translesion DNA polymerases Rev1 and Polζ and non-homologous end joining factor Ku. Furthermore, under conditions of chronic sub-lethal canavanine stress, deletions of Rev1, Polζ, and Ku-encoding genes exhibit genetic interactions with ESR mutants indicative of ESR regulating these mutagenic DNA repair processes. Analyses of mutagenesis induced by several different stresses showed that the ESR specifically modulates mutagenesis induced by proteotoxic stress. Together, these results document the first known example of an involvement of a eukaryotic stress response pathway in mutagenesis and have important implications for mechanisms of evolution, carcinogenesis, and emergence of drug-resistant pathogens and chemotherapy-resistant tumors. PMID:23935537

  15. Insulin resistance as a physiological defense against metabolic stress

    DEFF Research Database (Denmark)

    Nolan, Christopher J; Ruderman, Neil B; Kahn, Steven E

    2015-01-01

    Stratifying the management of type 2 diabetes (T2D) has to take into account marked variability in patient phenotype due to heterogeneity in its pathophysiology, different stages of the disease process, and multiple other patient factors including comorbidities. The focus here is on the very...... with intensive insulin therapy, could therefore be harmful. Treatments that nutrient off-load to lower glucose are more likely to be beneficial. The concepts of "IR as an adaptive defense mechanism" and "insulin-induced metabolic stress" may provide explanation for some of the unexpected outcomes of recent major...... clinical trials in T2D. Potential molecular mechanisms underlying these concepts; their clinical implications for stratification of T2D management, particularly in overweight and obese patients with difficult glycemic control; and future research requirements are discussed....

  16. PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes

    DEFF Research Database (Denmark)

    Foldbjerg, Rasmus; Olesen, Ping Liu; Hougaard, Mads

    2009-01-01

    , both Ag NPs and Ag+ were shown to induce apoptosis and necrosis in THP-1 cells depending on dose and exposure time. Furthermore, the presence of apoptosis could be confirmed by the TUNEL method. A number of studies have implicated the production of reactive oxygen species (ROS) in cytotoxicity mediated...... the effect of well characterized, PVP-coated Ag NPs (69 nm ± 3 nm) and Ag+ in a human monocytic cell line (THP-1). Characterization of the Ag NPs was conducted in both stock suspension and cell media with or without serum and antibiotics. By using the flowcytometric annexin V/propidium iodide (PI) assay...... by NPs. We used the fluorogenic probe, 2′,7′-dichlorofluorescein to assess the levels of intracellular ROS during exposure to Ag NPs and Ag+. A drastic increase in ROS levels could be detected after 6–24 h suggesting that oxidative stress is an important mediator of cytotoxicity caused by Ag NPs and Ag+....

  17. Ellagic acid attenuates high-carbohydrate, high-fat diet-induced metabolic syndrome in rats.

    Science.gov (United States)

    Panchal, Sunil K; Ward, Leigh; Brown, Lindsay

    2013-03-01

    Fruits and nuts may prevent or reverse common human health conditions such as obesity, diabetes and hypertension; together, these conditions are referred to as metabolic syndrome, an increasing problem. This study has investigated the responses to ellagic acid, present in many fruits and nuts, in a diet-induced rat model of metabolic syndrome. Eight- to nine-week-old male Wistar rats were divided into four groups for 16-week feeding with cornstarch diet (C), cornstarch diet supplemented with ellagic acid (CE), high-carbohydrate, high-fat diet (H) and high-carbohydrate, high-fat diet supplemented with ellagic acid (HE). CE and HE rats were given 0.8 g/kg ellagic acid in food from week 8 to 16 only. At the end of 16 weeks, cardiovascular, hepatic and metabolic parameters along with protein levels of Nrf2, NF-κB and CPT1 in the heart and the liver were characterised. High-carbohydrate, high-fat diet-fed rats developed cardiovascular remodelling, impaired ventricular function, impaired glucose tolerance, non-alcoholic fatty liver disease with increased protein levels of NF-κB and decreased protein levels of Nrf2 and CPT1 in the heart and the liver. Ellagic acid attenuated these diet-induced symptoms of metabolic syndrome with normalisation of protein levels of Nrf2, NF-κB and CPT1. Ellagic acid derived from nuts and fruits such as raspberries and pomegranates may provide a useful dietary supplement to decrease the characteristic changes in metabolism and in cardiac and hepatic structure and function induced by a high-carbohydrate, high-fat diet by suppressing oxidative stress and inflammation.

  18. Hierarchical Status Predicts Behavioral Vulnerability and Nucleus Accumbens Metabolic Profile Following Chronic Social Defeat Stress.

    Science.gov (United States)

    Larrieu, Thomas; Cherix, Antoine; Duque, Aranzazu; Rodrigues, João; Lei, Hongxia; Gruetter, Rolf; Sandi, Carmen

    2017-07-24

    Extensive data highlight the existence of major differences in individuals' susceptibility to stress [1-4]. While genetic factors [5, 6] and exposure to early life stress [7, 8] are key components for such neurobehavioral diversity, intriguing observations revealed individual differences in response to stress in inbred mice [9-12]. This raised the possibility that other factors might be critical in stress vulnerability. A key challenge in the field is to identify non-invasively risk factors for vulnerability to stress. Here, we investigated whether behavioral factors, emerging from preexisting dominance hierarchies, could predict vulnerability to chronic stress [9, 13-16]. We applied a chronic social defeat stress (CSDS) model of depression in C57BL/6J mice to investigate the predictive power of hierarchical status to pinpoint which individuals will exhibit susceptibility to CSDS. Given that the high social status of dominant mice would be the one particularly challenged by CSDS, we predicted and found that dominant individuals were the ones showing a strong susceptibility profile as indicated by strong social avoidance following CSDS, while subordinate mice were not affected. Data from 1 H-NMR spectroscopy revealed that the metabolic profile in the nucleus accumbens (NAc) relates to social status and vulnerability to stress. Under basal conditions, subordinates show lower levels of energy-related metabolites compared to dominants. In subordinates, but not dominants, levels of these metabolites were increased after exposure to CSDS. To the best of our knowledge, this is the first study that identifies non-invasively the origin of behavioral risk factors predictive of stress-induced depression-like behaviors associated with metabolic changes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Suppressor of cytokine signalling-3 inhibits Tumor necrosis factor-alpha induced apoptosis and signalling in beta cells

    DEFF Research Database (Denmark)

    Bruun, Christine; Heding, Peter E; Rønn, Sif G

    2009-01-01

    Tumor necrosis factor-alpha (TNFalpha) is a pro-inflammatory cytokine involved in the pathogenesis of several diseases including type 1 diabetes mellitus (T1DM). TNFalpha in combination with interleukin-1-beta (IL-1beta) and/or interferon-gamma (IFNgamma) induces specific destruction...

  20. Redox signalling and mitochondrial stress responses; lessons from inborn errors of metabolism

    DEFF Research Database (Denmark)

    Olsen, Rikke K J; Cornelius, Nanna; Gregersen, Niels

    2015-01-01

    Mitochondria play a key role in overall cell physiology and health by integrating cellular metabolism with cellular defense and repair mechanisms in response to physiological or environmental changes or stresses. In fact, dysregulation of mitochondrial stress responses and its consequences...... in the form of oxidative stress, has been linked to a wide variety of diseases including inborn errors of metabolism. In this review we will summarize how the functional state of mitochondria -- and especially the concentration of reactive oxygen species (ROS), produced in connection with the respiratory...... chain -- regulates cellular stress responses by redox regulation of nuclear gene networks involved in repair systems to maintain cellular homeostasis and health. Based on our own and other's studies we re-introduce the ROS triangle model and discuss how inborn errors of mitochondrial metabolism...

  1. Mercury-induced oxidative stress in Indian mustard (Brassica juncea L.).

    Science.gov (United States)

    Shiyab, Safwan; Chen, Jian; Han, Fengxiang X; Monts, David L; Matta, Fank B; Gu, Mengmeng; Su, Yi; Masad, Motasim A

    2009-10-01

    Mercury, a potent neurotoxin, is released to the environment in significant amounts by both natural processes and anthropogenic activities. No natural hyperaccumulator plant has been reported for mercury phytoremediation. Few studies have been conducted on the physiological responses of Indian mustard, a higher biomass plant with faster growth rates, to mercury pollution. This study investigated the phytotoxicity of mercury to Indian mustard (Brassica juncea L.) and mercury-induced oxidative stress in order to examine the potential application of Indian mustard to mercury phytoremediation. Two common cultivars (Florida Broadleaf and Longstanding) of Indian mustard were grown hydroponically in a mercury-spiked solution. Plant uptake, antioxidative enzymes, peroxides, and lipid peroxidation under mercury stress were investigated. Antioxidant enzymes (catalase, CAT; peroxidase, POD; and superoxide dismutase, SOD) were the most sensitive indices of mercury-induced oxidative response of Indian mustard plants. Indian mustard effectively generated an enzymatic antioxidant defense system (especially CAT) to scavenge H(2)O(2), resulting in lower H(2)O(2) in shoots with higher mercury concentrations. These two cultivars of Indian mustard demonstrated an efficient metabolic defense and adaptation system to mercury-induced oxidative stress. A majority of Hg was accumulated in the roots and low translocations of Hg from roots to shoots were found in two cultivars of Indian mustard. Thus Indian mustard might be a potential candidate plant for phytofiltration/phytostabilization of mercury contaminated waters and wastewater.

  2. Metabolomics changes in a rat model of obstructive jaundice: mapping to metabolism of amino acids, carbohydrates and lipids as well as oxidative stress.

    Science.gov (United States)

    Long, Yue; Dong, Xin; Yuan, Yawei; Huang, Jinqiang; Song, Jiangang; Sun, Yumin; Lu, Zhijie; Yang, Liqun; Yu, Weifeng

    2015-07-01

    The study examined the global metabolic and some biochemical changes in rats with cholestasis induced by bile duct ligation (BDL). Serum samples were collected in male Wistar rats with BDL (n = 8) and sham surgery (n = 8) at day 3 after surgery for metabolomics analysis using a combination of reversed phase chromatography and hydrophilic interaction chromatography (HILIC) and quadrupole-time-of-flight mass spectrometry (Q-TOF MS). The serum levels of malondialdehyde (MDA), total antioxidative capacity (T-AOC), glutathione (GSH) and glutathione disulfide (GSSG), the activities of superoxide dismutase (SOD) and glutathion peroxidase (GSH-Px) were measured to estimate the oxidative stress state. Key changes after BDL included increased levels of l-phenylalanine, l-glutamate, l-tyrosine, kynurenine, l-lactic acid, LysoPC(c) (14:0), glycine and succinic acid and decreased levels of l-valine, PC(b) (19:0/0:0), taurine, palmitic acid, l-isoleucine and citric acid metabolism products. And treatment with BDL significantly decreased the levels of GSH, T-AOC as well as SOD, GSH-Px activities, and upregulated MDA levels. The changes could be mapped to metabolism of amino acids and lipids, Krebs cycle and glycolysis, as well as increased oxidative stress and decreased antioxidant capability. Our study indicated that BDL induces major changes in the metabolism of all 3 major energy substances, as well as oxidative stress.

  3. RIP3-dependent necrosis induced inflammation exacerbates atherosclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Lingjun, E-mail: menglingjun@nibs.ac.cn [College of Biological Sciences, China Agricultural University, Beijing 100094 (China); National Institute of Biological Sciences, Beijing 102206 (China); Jin, Wei [Institute for Immunology, Tsinghua University, Beijing 100084 (China); Wang, Yuhui [Institute of Cardiovascular Sciences, Health Science Center, Peking University, Beijing 100191 (China); Huang, Huanwei; Li, Jia; Zhang, Cai [National Institute of Biological Sciences, Beijing 102206 (China)

    2016-04-29

    Atherothrombotic vascular disease is already the leading cause of mortality worldwide. Atherosclerosis shares features with diseases caused by chronic inflammation. More attention should concentrates on the innate immunity effect atherosclerosis progress. RIP3 (receptor-interacting protein kinase 3) act through the transcription factor named Nr4a3 (Nuclear orphan receptors) to regulate cytokine production. Deletion RIP3 decreases IL-1α production. Injection of anti-IL-1α antibody protects against the progress of atherosclerosis in ApoE −/− mice. RIP3 as a molecular switch in necrosis, controls macrophage necrotic death caused inflammation. Inhibiting necrosis will certainly reduce atherosclerosis through limit inflammation. Necrotic cell death caused systemic inflammation exacerbated cardiovascular disease. Inhibition of necrosis may yield novel therapeutic targets for treatment in years to come. - Highlights: • RIP3 regulate the Nr4a3 to control cytokine production. • Deletion RIP3 decreases IL-1a production. • Injection anti-IL-1a antibody protects against the progress of atherosclerosis. • RIP3 controls macrophage necrotic dead caused inflammation.

  4. RIP3-dependent necrosis induced inflammation exacerbates atherosclerosis

    International Nuclear Information System (INIS)

    Meng, Lingjun; Jin, Wei; Wang, Yuhui; Huang, Huanwei; Li, Jia; Zhang, Cai

    2016-01-01

    Atherothrombotic vascular disease is already the leading cause of mortality worldwide. Atherosclerosis shares features with diseases caused by chronic inflammation. More attention should concentrates on the innate immunity effect atherosclerosis progress. RIP3 (receptor-interacting protein kinase 3) act through the transcription factor named Nr4a3 (Nuclear orphan receptors) to regulate cytokine production. Deletion RIP3 decreases IL-1α production. Injection of anti-IL-1α antibody protects against the progress of atherosclerosis in ApoE −/− mice. RIP3 as a molecular switch in necrosis, controls macrophage necrotic death caused inflammation. Inhibiting necrosis will certainly reduce atherosclerosis through limit inflammation. Necrotic cell death caused systemic inflammation exacerbated cardiovascular disease. Inhibition of necrosis may yield novel therapeutic targets for treatment in years to come. - Highlights: • RIP3 regulate the Nr4a3 to control cytokine production. • Deletion RIP3 decreases IL-1a production. • Injection anti-IL-1a antibody protects against the progress of atherosclerosis. • RIP3 controls macrophage necrotic dead caused inflammation.

  5. Deciphering hepatocellular responses to metabolic and oncogenic stress

    Directory of Open Access Journals (Sweden)

    Kathrina L. Marcelo

    2015-08-01

    Full Text Available Each cell type responds uniquely to stress and fractionally contributes to global and tissue-specific stress responses. Hepatocytes, liver macrophages (MΦ, and sinusoidal endothelial cells (SEC play functionally important and interdependent roles in adaptive processes such as obesity and tumor growth. Although these cell types demonstrate significant phenotypic and functional heterogeneity, their distinctions enabling disease-specific responses remain understudied. We developed a strategy for the simultaneous isolation and quantification of these liver cell types based on antigenic cell surface marker expression. To demonstrate the utility and applicability of this technique, we quantified liver cell-specific responses to high-fat diet (HFD or diethylnitrosamine (DEN, a liver-specific carcinogen, and found that while there was only a marginal increase in hepatocyte number, MΦ and SEC populations were quantitatively increased. Global gene expression profiling of hepatocytes, MΦ and SEC identified characteristic gene signatures that define each cell type in their distinct physiological or pathological states. Integration of hepatic gene signatures with available human obesity and liver cancer microarray data provides further insight into the cell-specific responses to metabolic or oncogenic stress. Our data reveal unique gene expression patterns that serve as molecular “fingerprints” for the cell-centric responses to pathologic stimuli in the distinct microenvironment of the liver. The technical advance highlighted in this study provides an essential resource for assessing hepatic cell-specific contributions to metabolic and oncogenic stress, information that could unveil previously unappreciated molecular mechanisms for the cellular crosstalk that underlies the continuum from metabolic disruption to obesity and ultimately hepatic cancer.

  6. Icariin reverses corticosterone-induced depression-like behavior, decrease in hippocampal brain-derived neurotrophic factor (BDNF) and metabolic network disturbances revealed by NMR-based metabonomics in rats.

    Science.gov (United States)

    Gong, Meng-Juan; Han, Bin; Wang, Shu-mei; Liang, Sheng-wang; Zou, Zhong-jie

    2016-05-10

    Previously published reports have revealed the antidepressant-like effects of icariin in a chronic mild stress model of depression and in a social defeat stress model in mice. However, the therapeutic effect of icariin in an animal model of glucocorticoid-induced depression remains unclear. This study aimed to investigate antidepressant-like effect and the possible mechanisms of icariin in a rat model of corticosterone (CORT)-induced depression by using a combination of behavioral and biochemical assessments and NMR-based metabonomics. The depression model was established by subcutaneous injections of CORT for 21 consecutive days in rats, as evidenced by reduced sucrose intake and hippocampal brain-derived neurotrophic factor (BDNF) levels, together with an increase in immobility time in a forced swim test (FST). Icariin significantly increased sucrose intake and hippocampal BDNF level and decreased the immobility time in FST in CORT-induced depressive rats, suggesting its potent antidepressant activity. Moreover, metabonomic analysis identified eight, five and three potential biomarkers associated with depression in serum, urine and brain tissue extract, respectively. These biomarkers are primarily involved in energy metabolism, lipid metabolism, amino acid metabolism and gut microbe metabolism. Icariin reversed the pathological process of CORT-induced depression, partially via regulation of the disturbed metabolic pathways. These results provide important mechanistic insights into the protective effects of icariin against CORT-induced depression and metabolic dysfunction. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Thiamine deficiency induces endoplasmic reticulum stress and oxidative stress in human neurons derived from induced pluripotent stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xin; Xu, Mei; Frank, Jacqueline A. [Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536 (United States); Ke, Zun-ji [Department of Biochemistry, Shanghai University of Traditional Chinese Medicine, Shanghai, China 201203 (China); Luo, Jia, E-mail: jialuo888@uky.edu [Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536 (United States); Department of Biochemistry, Shanghai University of Traditional Chinese Medicine, Shanghai, China 201203 (China)

    2017-04-01

    Thiamine (vitamin B1) deficiency (TD) plays a major role in the etiology of Wernicke's encephalopathy (WE) which is a severe neurological disorder. TD induces selective neuronal cell death, neuroinflammation, endoplasmic reticulum (ER) stress and oxidative stress in the brain which are commonly observed in many aging-related neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and progressive supranuclear palsy (PSP). However, the underlying cellular and molecular mechanisms remain unclear. The progress in this line of research is hindered due to the lack of appropriate in vitro models. The neurons derived for the human induced pluripotent stem cells (hiPSCs) provide a relevant and powerful tool for the research in pharmaceutical and environmental neurotoxicity. In this study, we for the first time used human induced pluripotent stem cells (hiPSCs)-derived neurons (iCell neurons) to investigate the mechanisms of TD-induced neurodegeneration. We showed that TD caused a concentration- and duration-dependent death of iCell neurons. TD induced ER stress which was evident by the increase in ER stress markers, such as GRP78, XBP-1, CHOP, ATF-6, phosphorylated eIF2α, and cleaved caspase-12. TD also triggered oxidative stress which was shown by the increase in the expression 2,4-dinitrophenyl (DNP) and 4-hydroxynonenal (HNE). ER stress inhibitors (STF-083010 and salubrinal) and antioxidant N-acetyl cysteine (NAC) were effective in alleviating TD-induced death of iCell neurons, supporting the involvement of ER stress and oxidative stress. It establishes that the iCell neurons are a novel tool to investigate cellular and molecular mechanisms for TD-induced neurodegeneration. - Highlights: • Thiamine deficiency (TD) causes death of human neurons in culture. • TD induces both endoplasmic reticulum (ER) stress and oxidative stress. • Alleviating ER stress and oxidative stress reduces TD-induced

  8. Thiamine deficiency induces endoplasmic reticulum stress and oxidative stress in human neurons derived from induced pluripotent stem cells

    International Nuclear Information System (INIS)

    Wang, Xin; Xu, Mei; Frank, Jacqueline A.; Ke, Zun-ji; Luo, Jia

    2017-01-01

    Thiamine (vitamin B1) deficiency (TD) plays a major role in the etiology of Wernicke's encephalopathy (WE) which is a severe neurological disorder. TD induces selective neuronal cell death, neuroinflammation, endoplasmic reticulum (ER) stress and oxidative stress in the brain which are commonly observed in many aging-related neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and progressive supranuclear palsy (PSP). However, the underlying cellular and molecular mechanisms remain unclear. The progress in this line of research is hindered due to the lack of appropriate in vitro models. The neurons derived for the human induced pluripotent stem cells (hiPSCs) provide a relevant and powerful tool for the research in pharmaceutical and environmental neurotoxicity. In this study, we for the first time used human induced pluripotent stem cells (hiPSCs)-derived neurons (iCell neurons) to investigate the mechanisms of TD-induced neurodegeneration. We showed that TD caused a concentration- and duration-dependent death of iCell neurons. TD induced ER stress which was evident by the increase in ER stress markers, such as GRP78, XBP-1, CHOP, ATF-6, phosphorylated eIF2α, and cleaved caspase-12. TD also triggered oxidative stress which was shown by the increase in the expression 2,4-dinitrophenyl (DNP) and 4-hydroxynonenal (HNE). ER stress inhibitors (STF-083010 and salubrinal) and antioxidant N-acetyl cysteine (NAC) were effective in alleviating TD-induced death of iCell neurons, supporting the involvement of ER stress and oxidative stress. It establishes that the iCell neurons are a novel tool to investigate cellular and molecular mechanisms for TD-induced neurodegeneration. - Highlights: • Thiamine deficiency (TD) causes death of human neurons in culture. • TD induces both endoplasmic reticulum (ER) stress and oxidative stress. • Alleviating ER stress and oxidative stress reduces TD-induced

  9. Interactions between sleep, stress, and metabolism: From physiological to pathological conditions

    Directory of Open Access Journals (Sweden)

    Camila Hirotsu

    2015-11-01

    Full Text Available Poor sleep quality due to sleep disorders and sleep loss is highly prevalent in the modern society. Underlying mechanisms show that stress is involved in the relationship between sleep and metabolism through hypothalamic–pituitary–adrenal (HPA axis activation. Sleep deprivation and sleep disorders are associated with maladaptive changes in the HPA axis, leading to neuroendocrine dysregulation. Excess of glucocorticoids increase glucose and insulin and decrease adiponectin levels. Thus, this review provides overall view of the relationship between sleep, stress, and metabolism from basic physiology to pathological conditions, highlighting effective treatments for metabolic disturbances.

  10. Stress induced reorientation of vanadium hydride

    International Nuclear Information System (INIS)

    Beardsley, M.B.

    1977-10-01

    The critical stress for the reorientation of vanadium hydride was determined for the temperature range 180 0 to 280 0 K using flat tensile samples containing 50 to 500 ppM hydrogen by weight. The critical stress was observed to vary from a half to a third of the macroscopic yield stress of pure vanadium over the temperature range. The vanadium hydride could not be stress induced to precipitate above its stress-free precipitation temperature by uniaxial tensile stresses or triaxial tensile stresses induced by a notch

  11. Thiamine and benfotiamine prevent stress-induced suppression of hippocampal neurogenesis in mice exposed to predation without affecting brain thiamine diphosphate levels.

    Science.gov (United States)

    Vignisse, Julie; Sambon, Margaux; Gorlova, Anna; Pavlov, Dmitrii; Caron, Nicolas; Malgrange, Brigitte; Shevtsova, Elena; Svistunov, Andrey; Anthony, Daniel C; Markova, Natalyia; Bazhenova, Natalyia; Coumans, Bernard; Lakaye, Bernard; Wins, Pierre; Strekalova, Tatyana; Bettendorff, Lucien

    2017-07-01

    Thiamine is essential for normal brain function and its deficiency causes metabolic impairment, specific lesions, oxidative damage and reduced adult hippocampal neurogenesis (AHN). Thiamine precursors with increased bioavailability, especially benfotiamine, exert neuroprotective effects not only for thiamine deficiency (TD), but also in mouse models of neurodegeneration. As it is known that AHN is impaired by stress in rodents, we exposed C57BL6/J mice to predator stress for 5 consecutive nights and studied the proliferation (number of Ki67-positive cells) and survival (number of BrdU-positive cells) of newborn immature neurons in the subgranular zone of the dentate gyrus. In stressed mice, the number of Ki67- and BrdU-positive cells was reduced compared to non-stressed animals. This reduction was prevented when the mice were treated (200mg/kg/day in drinking water for 20days) with thiamine or benfotiamine, that were recently found to prevent stress-induced behavioral changes and glycogen synthase kinase-3β (GSK-3β) upregulation in the CNS. Moreover, we show that thiamine and benfotiamine counteract stress-induced bodyweight loss and suppress stress-induced anxiety-like behavior. Both treatments induced a modest increase in the brain content of free thiamine while the level of thiamine diphosphate (ThDP) remained unchanged, suggesting that the beneficial effects observed are not linked to the role of this coenzyme in energy metabolism. Predator stress increased hippocampal protein carbonylation, an indicator of oxidative stress. This effect was antagonized by both thiamine and benfotiamine. Moreover, using cultured mouse neuroblastoma cells, we show that in particular benfotiamine protects against paraquat-induced oxidative stress. We therefore hypothesize that thiamine compounds may act by boosting anti-oxidant cellular defenses, by a mechanism that still remains to be unveiled. Our study demonstrates, for the first time, that thiamine and benfotiamine prevent

  12. Water deficit stress-induced changes in carbon and nitrogen partitioning in Chenopodium quinoa Willd.

    Science.gov (United States)

    Bascuñán-Godoy, Luisa; Reguera, Maria; Abdel-Tawab, Yasser M; Blumwald, Eduardo

    2016-03-01

    Water deficit stress followed by re-watering during grain filling resulted in the induction of the ornithine pathway and in changes in Quinoa grain quality. The genetic diversity of Chenopodium quinoa Willd. (Quinoa) is accompanied by an outstanding environmental adaptability and high nutritional properties of the grains. However, little is known about the biochemical and physiological mechanisms associated with the abiotic stress tolerance of Quinoa. Here, we characterized carbon and nitrogen metabolic changes in Quinoa leaves and grains in response to water deficit stress analyzing their impact on the grain quality of two lowland ecotypes (Faro and BO78). Differences in the stress recovery response were found between genotypes including changes in the activity of nitrogen assimilation-associated enzymes that resulted in differences in grain quality. Both genotypes showed a common strategy to overcome water stress including the stress-induced synthesis of reactive oxygen species scavengers and osmolytes. Particularly, water deficit stress induced the stimulation of the ornithine and raffinose pathways. Our results would suggest that the regulation of C- and N partitioning in Quinoa during grain filling could be used for the improvement of the grain quality without altering grain yields.

  13. Endoplasmic reticulum stress-induced apoptosis accompanies enhanced expression of multiple inositol polyphosphate phosphatase 1 (Minpp1): a possible role for Minpp1 in cellular stress response.

    Science.gov (United States)

    Kilaparty, Surya P; Agarwal, Rakhee; Singh, Pooja; Kannan, Krishnaswamy; Ali, Nawab

    2016-07-01

    Inositol polyphosphates represent a group of differentially phosphorylated inositol metabolites, many of which are implicated to regulate diverse cellular processes such as calcium mobilization, vesicular trafficking, differentiation, apoptosis, etc. The metabolic network of these compounds is complex and tightly regulated by various kinases and phosphatases present predominantly in the cytosol. Multiple inositol polyphosphate phosphatase 1 (Minpp1) is the only known endoplasmic reticulum (ER) luminal enzyme that hydrolyzes various inositol polyphosphates in vitro as well as in vivo conditions. However, access of the Minpp1 to cytosolic substrates has not yet been demonstrated clearly and hence its physiological function. In this study, we examined a potential role for Minpp1 in ER stress-induced apoptosis. We generated a custom antibody and characterized its specificity to study the expression of Minpp1 protein in multiple mammalian cells under experimentally induced cellular stress conditions. Our results demonstrate a significant increase in the expression of Minpp1 in response to a variety of cellular stress conditions. The protein expression was corroborated with the expression of its mRNA and enzymatic activity. Further, in an attempt to link the role of Minpp1 to apoptotic stress, we studied the effect of Minpp1 expression on apoptosis following silencing of the Minpp1 gene by its specific siRNA. Our results suggest an attenuation of apoptotic parameters following knockdown of Minpp1. Thus, in addition to its known role in inositol polyphosphate metabolism, we have identified a novel role for Minpp1 as a stress-responsive protein. In summary, our results provide, for the first time, a probable link between ER stress-induced apoptosis and Minpp1 expression.

  14. Pulsating electromagnetic field stimulation of urothelial cells induces apoptosis and diminishes necrosis: new insight to magnetic therapy in urology.

    Science.gov (United States)

    Juszczak, K; Kaszuba-Zwoinska, J; Thor, P J

    2012-08-01

    The evidence of electromagnetic therapy (EMT) efficacy in stress and/or urge urinary incontinence, as well as in detrusor overactivity is generally lacking in the literature. The potential EMT action of neuromuscular tissue depolarization has been described. Because there is no data on the influence of pulsating electromagnetic fields (PEMF) on the urothelium, we evaluated the effect of PEMF stimulation on rat urothelial cultured cells (RUCC). In our study 15 Wistar rats were used for RUCC preparation. RUCC were exposed to PEMF (50 Hz, 45±5 mT) three times for 4 hours each with 24-hour intervals. The unexposed RUCC was in the same incubator, but in a distance of 35 cm from the PEMF generator. Annexin V-APC (AnV+) labelled was used to determine the percentage of apoptotic cells and propidium iodide (PI+), as standard flow cytometric viability probe to distinguish necrotic cells from viable ones. The results are presented in percentage values. The flow cytometric analysis was carried out on a FACS calibur flow cytometer using Cell-Quest software. In PEMF-unstimulated RUCC, the percentage of AnV+, PI+, and AnV+PI+ positive cells were 1.24±0.34%, 11.03±1.55%, and 12.43±1.96%, respectively. The percentages of AnV+, PI+, and AnV+PI+ positive cells obtained after PEMF stimulation were 1.45±0.16% (p=0.027), 7.03±1.76% (p<0.001), and 9.48±3.40% (p=0.003), respectively. The PEMF stimulation of RUCC induces apoptosis (increase of AnV+ cells) and inhibits necrosis (decrease of PI+ cells) of urothelial cells. This leads us to the conclusion that a low-frequency pulsating electromagnetic field stimulation induces apoptosis and diminishes necrosis of rat urothelial cells in culture.

  15. The Emerging Role of Skeletal Muscle Metabolism as a Biological Target and Cellular Regulator of Cancer-Induced Muscle Wasting

    Science.gov (United States)

    Carson, James A.; Hardee, Justin P.; VanderVeen, Brandon N.

    2015-01-01

    While skeletal muscle mass is an established primary outcome related to understanding cancer cachexia mechanisms, considerable gaps exist in our understanding of muscle biochemical and functional properties that have recognized roles in systemic health. Skeletal muscle quality is a classification beyond mass, and is aligned with muscle’s metabolic capacity and substrate utilization flexibility. This supplies an additional role for the mitochondria in cancer-induced muscle wasting. While the historical assessment of mitochondria content and function during cancer-induced muscle loss was closely aligned with energy flux and wasting susceptibility, this understanding has expanded to link mitochondria dysfunction to cellular processes regulating myofiber wasting. The primary objective of this article is to highlight muscle mitochondria and oxidative metabolism as a biological target of cancer cachexia and also as a cellular regulator of cancer-induced muscle wasting. Initially, we examine the role of muscle metabolic phenotype and mitochondria content in cancer-induced wasting susceptibility. We then assess the evidence for cancer-induced regulation of skeletal muscle mitochondrial biogenesis, dynamics, mitophagy, and oxidative stress. In addition, we discuss environments associated with cancer cachexia that can impact the regulation of skeletal muscle oxidative metabolism. The article also examines the role of cytokine-mediated regulation of mitochondria function regulation, followed by the potential role of cancer-induced hypogonadism. Lastly, a role for decreased muscle use in cancer-induced mitochondrial dysfunction is reviewed. PMID:26593326

  16. Role of Growth Arrest and DNA Damage–inducible α in Akt Phosphorylation and Ubiquitination after Mechanical Stress-induced Vascular Injury

    Science.gov (United States)

    Mitra, Sumegha; Sammani, Saad; Wang, Ting; Boone, David L.; Meyer, Nuala J.; Dudek, Steven M.; Moreno-Vinasco, Liliana; Garcia, Joe G. N.

    2011-01-01

    Rationale: The stress-induced growth arrest and DNA damage–inducible α (GADD45a) gene is up-regulated by mechanical stress with GADD45a knockout (GADD45a−/−) mice demonstrating both increased susceptibility to ventilator-induced lung injury (VILI) and reduced levels of the cell survival and vascular permeability signaling effector (Akt). However, the functional role of GADD45a in the pathogenesis of VILI is unknown. Objectives: We sought to define the role of GADD45a in the regulation of Akt activation induced by mechanical stress. Methods: VILI-challenged GADD45a−/− mice were administered a constitutively active Akt1 vector and injury was assessed by bronchoalveolar lavage cell counts and protein levels. Human pulmonary artery endothelial cells (EC) were exposed to 18% cyclic stretch (CS) under conditions of GADD45a silencing and used for immunoprecipitation, Western blotting or immunofluoresence. EC were also transfected with mutant ubiquitin vectors to characterize site-specific Akt ubiquitination. DNA methylation was measured using methyl-specific polymerase chain reaction assay. Measurements and Main Results: Studies exploring the linkage of GADD45a with mechanical stress and Akt regulation revealed VILI-challenged GADD45a−/− mice to have significantly reduced lung injury on overexpression of Akt1 transgene. Increased mechanical stress with 18% CS in EC induced Akt phosphorylation via E3 ligase tumor necrosis factor receptor–associated factor 6 (TRAF6)–mediated Akt K63 ubiquitination resulting in Akt trafficking and activation at the membrane. GADD45a is essential to this process because GADD45a-silenced endothelial cells and GADD45a−/− mice exhibited increased Akt K48 ubiquitination leading to proteasomal degradation. These events involve loss of ubiquitin carboxyl terminal hydrolase 1 (UCHL1), a deubiquitinating enzyme that normally removes K48 polyubiquitin chains bound to Akt thus promoting Akt K63 ubiquitination. Loss of GADD45a

  17. Effects of grafting with pumpkin rootstock on carbohydrate metabolism in cucumber seedlings under Ca(NO3)2 stress.

    Science.gov (United States)

    Xing, Wen-wen; Li, Lin; Gao, Pan; Li, He; Shao, Qiao-sai; Shu, Sheng; Sun, Jin; Guo, Shi-rong

    2015-02-01

    This study investigated the effects of grafting on the carbohydrate status and the enzymes of carbohydrate metabolism in self-grafted and grafted cucumber seedlings using the salt-tolerant pumpkin rootstock 'Qingzhen 1' (Cucurbita maxima × Cucurbita moschata) under 80 mM Ca(NO3)2 stress for 6 d. The growth of self-grafted seedlings was significantly inhibited after the treatment of Ca(NO3)2 stress, whereas the inhibition of growth was alleviated in pumpkin rootstock-grafted seedlings. Ca(NO3)2 stress increased the contents of the total soluble sugar, sucrose and fructose, but decreased the starch content in rootstock-grafted leaves. However, compared with self-grafted plants, rootstock-grafted seedlings were observed with a higher content of sucrose and total soluble sugar (TSS) under salt stress. Rootstock-grafted seedlings exhibited higher activities of acid invertase (AI), neutral invertase (NI) and phosphate sucrose synthase (SPS) of sucrose metabolism in leaves than that of self-grafted seedlings under salinity. Moreover, the activities of fructokinase (FK), hexokinase (HK), phosphofructokinase (PFK) and pyruvate kinase (PK) of glycolysis were maintained at a higher level in leaves of rootstock-grafted seedlings after Ca(NO3)2 stress. Additionally, rootstock-grafting decrease the high percentage enhancement of key enzymes gene expression in glycolysis in the scion leaves of cucumber seedlings induced by salt stress. These results suggest that the rootstock-grafting improved salt tolerance, which might play a role in elevated sucrose metabolism and a glycolytic pathway regulated by the pumpkin rootstock. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  18. Water avoidance stress induces frequency through cyclooxygenase-2 expression: a bladder rat model.

    Science.gov (United States)

    Yamamoto, Keisuke; Takao, Tetsuya; Nakayama, Jiro; Kiuchi, Hiroshi; Okuda, Hidenobu; Fukuhara, Shinichiro; Yoshioka, Iwao; Matsuoka, Yasuhiro; Miyagawa, Yasushi; Tsujimura, Akira; Nonomura, Norio

    2012-02-01

    Water avoidance stress is a potent psychological stressor and it is associated with visceral hyperalgesia, which shows degeneration of the urothelial layer mimicking interstitial cystitis. Cyclooxygenase-2 inhibitors have been recognized to ameliorate frequency both in clinical and experimental settings. We investigated the voiding pattern and cyclooxygenase-2 expression in a rat bladder model of water avoidance stress. After being subjected to water avoidance stress or a sham procedure, rats underwent metabolic cage analysis and cystometrography. Real time reverse transcription polymerase chain reaction was carried out to examine cyclooxygenase-2 messenger ribonucleic acid in bladders of rats. Protein expression of cyclooxygenase-2 was analyzed with immunohistochemistry and western blotting. Furthermore, the effects of the cyclooxygenase-2 inhibitor, etodolac, were investigated by carrying out cystometrography, immunohistochemistry and western blotting. Metabolic cage analysis and cystometrography showed significantly shorter intervals and less volume of voiding in water avoidance stress rats. Significantly higher expression of cyclooxygenase-2 messenger ribonucleic acid was verified by reverse transcription polymerase chain reaction. Immunohistochemistry and western blotting showed significantly higher cyclooxygenase-2 protein levels in water avoidance stress bladders. Furthermore, immunohistochemistry showed high cyclooxygenase-2 expression exclusively in smooth muscle cells. All water avoidance stress-induced changes were reduced by cyclooxygenase-2 inhibitor pretreatment. Chronic stress might cause frequency through cyclooxygenase-2 gene upregulation in bladder smooth muscle cells. Further study of cyclooxygenase-2 in the water avoidance stress bladder might provide novel therapeutic modalities for interstitial cystitis. © 2011 The Japanese Urological Association.

  19. The Role of Oxidative Stress in Apoptosis of Breast Cancer Cells

    National Research Council Canada - National Science Library

    Briehl, Margaret

    1997-01-01

    .... This project is testing the hypothesis that oxidative stress plays a critical role in the mechanism of apoptosis induced by treatment of human breast cancer cells with tumor necrosis factor-alpha (TNF...

  20. Oral administration of γ-aminobutyric acid and γ-oryzanol prevents stress-induced hypoadiponectinemia.

    Science.gov (United States)

    Ohara, Kazuyuki; Kiyotani, Yuka; Uchida, Asako; Nagasaka, Reiko; Maehara, Hiroyuki; Kanemoto, Shigeharu; Hori, Masatoshi; Ushio, Hideki

    2011-06-15

    Metabolic syndrome is a cluster of risk factors including insulin resistance and type 2 diabetes and is found to associate partly with chronic stress at work in human. Adiponectin circulates in mammal blood mainly as a low molecular weight (LMW) trimer, hexamer, and a high molecular weight (HMW) multimers. Low circulating levels of adiponectin are related to metabolic syndrome. We have then investigated the influence of immobilization stress on plasma adiponectin concentrations in mice. Relative LMW and HMW adiponectin levels were markedly reduced by immobilization stress (0.66±0.07 and 0.59±0.06 after 102 h, respectively), significantly different from the control values (p-oryzanol abundantly contained in germinated brown rice have some physiological functions. We further investigated the effect of GABA, γ-oryzanol, GABA plus γ-oryzanol on adiponectin levels in mice subjected to immobilization stress. GABA and γ-oryzanol significantly increased the relative LMW and HMW adiponectin levels under immobilization stress (1.10±0.11 and 0.99±0.19 after 102 h, respectively, for GABA; 1.08±0.17 and 1.15±0.17 after 102 h, respectively, for γ-oryzanol). Additionally, the co-administration of GABA and γ-oryzanol also increased both relative LMW and HMW adiponectin levels (1.02±0.07 and 0.99±0.10 after 102 h, respectively) and was effective in an earlier phase from 30 to 54 h. The results indicate that the co-administration of GABA and γ-oryzanol might be effective in preventing stress-induced hypoadiponectinemia in mice and be also a promising tool for improving metabolic syndrome aggravated by chronic stress. Copyright © 2011 Elsevier GmbH. All rights reserved.

  1. Orbital fluid shear stress promotes osteoblast metabolism, proliferation and alkaline phosphates activity in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Aisha, M.D. [Institute of Medical Molecular Biotechnology and Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor (Malaysia); Nor-Ashikin, M.N.K. [Institute of Medical Molecular Biotechnology and Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor (Malaysia); DDH, Universiti Teknologi MARA, ShahAlam 40450, Selangor (Malaysia); Sharaniza, A.B.R. [DDH, Universiti Teknologi MARA, ShahAlam 40450, Selangor (Malaysia); Nawawi, H. [Center for Pathology Diagnostic and Research Laboratories, Clinical Training Center, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor (Malaysia); I-PPerForM, Universiti Teknologi MARA, Selayang 47000 Selangor (Malaysia); Froemming, G.R.A., E-mail: gabriele@salam.uitm.edu.my [Institute of Medical Molecular Biotechnology and Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor (Malaysia); I-PPerForM, Universiti Teknologi MARA, Selayang 47000 Selangor (Malaysia)

    2015-09-10

    Prolonged disuse of the musculoskeletal system is associated with reduced mechanical loading and lack of anabolic stimulus. As a form of mechanical signal, the multidirectional orbital fluid shear stress transmits anabolic signal to bone forming cells in promoting cell differentiation, metabolism and proliferation. Signals are channeled through the cytoskeleton framework, directly modifying gene and protein expression. For that reason, we aimed to study the organization of Normal Human Osteoblast (NHOst) cytoskeleton with regards to orbital fluid shear (OFS) stress. Of special interest were the consequences of cytoskeletal reorganization on NHOst metabolism, proliferation, and osteogenic functional markers. Cells stimulated at 250 RPM in a shaking incubator resulted in the rearrangement of actin and tubulin fibers after 72 h. Orbital shear stress increased NHOst mitochondrial metabolism and proliferation, simultaneously preventing apoptosis. The ratio of RANKL/OPG was reduced, suggesting that orbital shear stress has the potential to inhibit osteoclastogenesis and osteoclast activity. Increase in ALP activity and OCN protein production suggests that stimulation retained osteoblast function. Shear stress possibly generated through actin seemed to hold an anabolic response as osteoblast metabolism and functional markers were enhanced. We hypothesize that by applying orbital shear stress with suitable magnitude and duration as a non-drug anabolic treatment can help improve bone regeneration in prolonged disuse cases. - Highlights: • OFS stress transmits anabolic signals to osteoblasts. • Actin and tubulin fibers are rearranged under OFS stress. • OFS stress increases mitochondrial metabolism and proliferation. • Reduced RANKL/OPG ratio in response to OFS inhibits osteoclastogenesis. • OFS stress prevents apoptosis and stimulates ALP and OCN.

  2. Stress-induced endocrine response and anxiety: the effects of comfort food in rats.

    Science.gov (United States)

    Ortolani, Daniela; Garcia, Márcia Carvalho; Melo-Thomas, Liana; Spadari-Bratfisch, Regina Celia

    2014-05-01

    The long-term effects of comfort food in an anxiogenic model of stress have yet to be analyzed. Here, we evaluated behavioral, endocrine and metabolic parameters in rats submitted or not to chronic unpredictable mild stress (CUMS), with access to commercial chow alone or to commercial chow and comfort food. Stress did not alter the preference for comfort food but decreased food intake. In the elevated plus-maze (EPM) test, stressed rats were less likely to enter/remain in the open arms, as well as being more likely to enter/remain in the closed arms, than were control rats, both conditions being more pronounced in the rats given access to comfort food. In the open field test, stress decreased the time spent in the centre, independent of diet; neither stress nor diet affected the number of crossing, rearing or grooming episodes. The stress-induced increase in serum corticosterone was attenuated in rats given access to comfort food. Serum concentration of triglycerides were unaffected by stress or diet, although access to comfort food increased total cholesterol and glucose. It is concluded that CUMS has an anorexigenic effect. Chronic stress and comfort food ingestion induced an anxiogenic profile although comfort food attenuated the endocrine stress response. The present data indicate that the combination of stress and access to comfort food, common aspects of modern life, may constitute a link among stress, feeding behavior and anxiety.

  3. Estrogen-induced disruption of intracellular iron metabolism leads to oxidative stress, membrane damage, and cell cycle arrest in MCF-7 cells.

    Science.gov (United States)

    Bajbouj, Khuloud; Shafarin, Jasmin; Abdalla, Maher Y; Ahmad, Iman M; Hamad, Mawieh

    2017-10-01

    It is well established that several forms of cancer associate with significant iron overload. Recent studies have suggested that estrogen (E2) disrupts intracellular iron homeostasis by reducing hepcidin synthesis and maintaining ferroportin integrity. Here, the ability of E2 to alter intracellular iron status and cell growth potential was investigated in MCF-7 cells treated with increasing concentrations of E2. Treated cells were assessed for intracellular iron status, the expression of key proteins involved in iron metabolism, oxidative stress, cell survival, growth, and apoptosis. E2 treatment resulted in a significant reduction in hepcidin expression and a significant increase in hypoxia-inducible factor 1 alpha, ferroportin, transferrin receptor, and ferritin expression; a transient decrease in labile iron pool; and a significant increase in total intracellular iron content mainly at 20 nM/48 h E2 dose. Treated cells also showed increased total glutathione and oxidized glutathione levels, increased superoxide dismutase activity, and increased hemoxygenase 1 expression. Treatment with E2 at 20 nM for 48 h resulted in a significant reduction in cell growth (0.35/1 migration rate) and decreased cell survival (iron metabolism and precipitates adverse effects concerning cell viability, membrane integrity, and growth potential.

  4. Acute putaminal necrosis and white matter demyelination in a child with subnormal copper metabolism in Wilson disease: MR imaging and spectroscopic findings

    International Nuclear Information System (INIS)

    Juan, Chun-Jung; Chung, Hsiao-Wen; Chen, Cheng-Yu.; Chin, Shy-Chy; Hsueh, Chun-Jen; Liu, Yi-Jui; Chu, Hsin; Zimmerman, Robert A.

    2005-01-01

    Wilson disease (WD) that manifests solely with acute and severe neurological damage in the absence of hepatic disease and Kayser-Fleischer ring of the cornea is rare and difficult to diagnose at the acute setting. This report describes unusual diffusion and proton spectroscopic magnetic resonance (MR) imaging findings in a 12-year-old boy with WD who presented with hemichorea and subnormal copper metabolism. The MR imaging findings of lactate accumulation, decrease of N-acerylaspartate/creatinine (NAA/Cr) ratio and markedly increased apparent diffusion coefficient (ADC) value of the asymmetrical edematous putaminal lesions in the early stage were suggestive of acute necrosis with anaerobic metabolism of glucose leading to poor clinical outcome at follow-up. (orig.)

  5. Acute putaminal necrosis and white matter demyelination in a child with subnormal copper metabolism in Wilson disease: MR imaging and spectroscopic findings

    Energy Technology Data Exchange (ETDEWEB)

    Juan, Chun-Jung; Chung, Hsiao-Wen [National Taiwan University, Department of Electrical Engineering, Taipei (Taiwan); Tri-Service General Hospital, Department of Radiology, Taipei (Taiwan); Chen, Cheng-Yu.; Chin, Shy-Chy; Hsueh, Chun-Jen [Tri-Service General Hospital, Department of Radiology, Taipei (Taiwan); Liu, Yi-Jui [Feng Chia University, Department of Automatic Control Engineering, Taichung (Taiwan); Chu, Hsin [National Defense Medical Center, Department of Neurology, Taipei (Taiwan); Zimmerman, Robert A. [Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, Pennsylvania (United States)

    2005-06-01

    Wilson disease (WD) that manifests solely with acute and severe neurological damage in the absence of hepatic disease and Kayser-Fleischer ring of the cornea is rare and difficult to diagnose at the acute setting. This report describes unusual diffusion and proton spectroscopic magnetic resonance (MR) imaging findings in a 12-year-old boy with WD who presented with hemichorea and subnormal copper metabolism. The MR imaging findings of lactate accumulation, decrease of N-acerylaspartate/creatinine (NAA/Cr) ratio and markedly increased apparent diffusion coefficient (ADC) value of the asymmetrical edematous putaminal lesions in the early stage were suggestive of acute necrosis with anaerobic metabolism of glucose leading to poor clinical outcome at follow-up. (orig.)

  6. Systemic N-terminal fragments of adrenocorticotropin reduce inflammation- and stress-induced anhedonia in rats.

    Science.gov (United States)

    Markov, Dmitrii D; Yatsenko, Ksenia A; Inozemtseva, Lyudmila S; Grivennikov, Igor A; Myasoedov, Nikolai F; Dolotov, Oleg V

    2017-08-01

    Emerging evidence implicates impaired self-regulation of the hypothalamic-pituitary-adrenal (HPA) axis and inflammation as important and closely related components of the pathophysiology of major depression. Antidepressants show anti-inflammatory effects and are suggested to enhance glucocorticoid feedback inhibition of the HPA axis. HPA axis activity is also negatively self-regulated by the adrenocorticotropic hormone (ACTH), a potent anti-inflammatory peptide activating five subtypes of melanocortin receptors (MCRs). There are indications that ACTH-mediated feedback can be activated by noncorticotropic N-terminal ACTH fragments such as a potent anti-inflammatory MC1/3/4/5R agonist α-melanocyte-stimulating hormone (α-MSH), corresponding to ACTH(1-13), and a MC3/5R agonist ACTH(4-10). We investigated whether intraperitoneal administration of rats with these peptides affects anhedonia, which is a core symptom of depression. Inflammation-related anhedonia was induced by a single intraperitoneal administration of a low dose (0.025mg/kg) of lipopolysaccharide (LPS). Stress-related anhedonia was induced by the chronic unpredictable stress (CUS) procedure. The sucrose preference test was used to detect anhedonia. We found that ACTH(4-10) pretreatment decreased LPS-induced increase in serum corticosterone and tumor necrosis factor (TNF)-α, and a MC3/4R antagonist SHU9119 blocked this effect. Both α-MSH and ACTH(4-10) alleviated LPS-induced anhedonia. In the CUS model, these peptides reduced anhedonia and normalized body weight gain. The data indicate that systemic α-MSH and ACTH(4-10) produce an antidepressant-like effect on anhedonia induced by stress or inflammation, the stimuli that trigger the release of ACTH and α-MSH into the bloodstream. The results suggest a counterbalancing role of circulating melanocortins in depression and point to a new approach for antidepressant treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Global Metabolic Stress of Isoeffort Continuous and High Intensity Interval Aerobic Exercise: A Comparative 1H NMR Metabonomic Study.

    Science.gov (United States)

    Zafeiridis, Andreas; Chatziioannou, Anastasia Chrysovalantou; Sarivasiliou, Haralambos; Kyparos, Antonios; Nikolaidis, Michalis G; Vrabas, Ioannis S; Pechlivanis, Alexandros; Zoumpoulakis, Panagiotis; Baskakis, Constantinos; Dipla, Konstantina; Theodoridis, Georgios A

    2016-12-02

    The overall metabolic/energetic stress that occurs during an acute bout of exercise is proposed to be the main driving force for long-term training adaptations. Continuous and high-intensity interval exercise protocols (HIIE) are currently prescribed to acquire the muscular and metabolic benefits of aerobic training. We applied 1 H NMR-based metabonomics to compare the overall metabolic perturbation and activation of individual bioenergetic pathways of three popular aerobic exercises matched for effort/strain. Nine men performed continuous, long-interval (3 min), and short-interval (30 s) bouts of exercise under isoeffort conditions. Blood was collected before and after exercise. The multivariate PCA and OPLS-DA models showed a distinct separation of pre- and postexercise samples in three protocols. The two models did not discriminate the postexercise overall metabolic profiles of the three exercise types. Analysis focused on muscle bioenergetic pathways revealed an extensive upregulation of carbohydrate-lipid metabolism and the TCA cycle in all three protocols; there were only a few differences among protocols in the postexercise abundance of molecules when long-interval bouts were performed. In conclusion, continuous and HIIE exercise protocols, when performed with similar effort/strain, induce comparable global metabolic response/stress despite their marked differences in work-bout intensities. This study highlights the importance of NMR metabonomics in comprehensive monitoring of metabolic consequences of exercise training in the blood of athletes and exercising individuals.

  8. Resolving the Role of Plant NAD-Glutamate Dehydrogenase: III. Overexpressing Individually or Simultaneously the Two Enzyme Subunits Under Salt Stress Induces Changes in the Leaf Metabolic Profile and Increases Plant Biomass Production.

    Science.gov (United States)

    Tercé-Laforgue, Thérèse; Clément, Gilles; Marchi, Laura; Restivo, Francesco M; Lea, Peter J; Hirel, Bertrand

    2015-10-01

    NAD-dependent glutamate dehydrogenase (NAD-GDH) of higher plants has a central position at the interface between carbon and nitrogen metabolism due to its ability to carry out the deamination of glutamate. In order to obtain a better understanding of the physiological function of NAD-GDH under salt stress conditions, transgenic tobacco (Nicotiana tabacum L.) plants that overexpress two genes from Nicotiana plumbaginifolia individually (GDHA and GDHB) or simultaneously (GDHA/B) were grown in the presence of 50 mM NaCl. In the different GDH overexpressors, the NaCl treatment induced an additional increase in GDH enzyme activity, indicating that a post-transcriptional mechanism regulates the final enzyme activity under salt stress conditions. A greater shoot and root biomass production was observed in the three types of GDH overexpressors following growth in 50 mM NaCl, when compared with the untransformed plants subjected to the same salinity stress. Changes in metabolites representative of the plant carbon and nitrogen status were also observed. They were mainly characterized by an increased amount of starch present in the leaves of the GDH overexpressors as compared with the wild type when plants were grown in 50 mM NaCl. Metabolomic analysis revealed that overexpressing the two genes GDHA and GDHB, individually or simultaneously, induced a differential accumulation of several carbon- and nitrogen-containing molecules involved in a variety of metabolic, developmental and stress-responsive processes. An accumulation of digalactosylglycerol, erythronate and porphyrin was found in the GDHA, GDHB and GDHA/B overexpressors, suggesting that these molecules could contribute to the improved performance of the transgenic plants under salinity stress conditions. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Tumor Necrosis Factor-α-Induced Ototoxicity in Mouse Cochlear Organotypic Culture.

    Directory of Open Access Journals (Sweden)

    Qian Wu

    Full Text Available Tumor necrosis factor (TNF-α is a cytokine involved in acute inflammatory phase reactions, and is the primary upstream mediator in the cochlear inflammatory response. Treatment of the organ of Corti with TNF-α can induce hair cell damage. However, the resulting morphological changes have not been systematically examined. In the present study, cochlear organotypic cultures from neonatal mice were treated with various concentrations and durations of TNF-α to induce inflammatory responses. Confocal microscopy was used to evaluate the condition of hair cells and supporting cells following immunohistochemical staining. In addition, the ultrastructure of the stereocilia bundle, hair cells, and supporting cells were examined by scanning and transmission electron microscopy. TNF-α treatment resulted in a fusion and loss of stereocilia bundles in hair cells, swelling of mitochondria, and vacuolation and degranulation of the endoplasmic reticulum. Disruption of tight junctions between hair cells and supporting cells was also observed at high concentrations. Hair cell loss was preceded by apoptosis of Deiters' and pillar cells. Taken together, these findings detail the morphological changes in the organ of Corti after TNF-α treatment, and provide an in vitro model of inflammatory-induced ototoxicity.

  10. Reducing properties, energy efficiency and carbohydrate metabolism in hyperhydric and normal carnation shoots cultured in vitro: a hypoxia stress?

    Science.gov (United States)

    Saher, Shady; Fernández-García, Nieves; Piqueras, Abel; Hellín, Eladio; Olmos, Enrique

    2005-06-01

    Hyperhydricity is considered as a physiological disorder that can be induced by different stressing conditions. In the present work we have studied the metabolic and energetic states of hyperhydric carnation shoots. We have evaluated the hypothesis that hypoxia stress is the main factor affecting the metabolism of hyperhydric leaves. Our results indicate a low level of ATP in hyperhydric tissues, but only slight modifications in pyridine nucleotide contents. Concurrently, the glucose-6-phosphate dehydrogenase (G-6-PDH; EC 1.1.1.49) activity in hyperhydric leaves was increased but glucokinase (GK; EC 2.7.1.2) activity was unchanged. We have observed that the metabolism of pyruvate was altered in hyperhydric tissues by the induction of pyruvate synthesis via NADP-dependent malic enzyme (EC 1.1.1.40). The enzymes of the fermentative metabolism pyruvate decarboxylase (PDC; EC 4.1.1.1) and alcohol dehydrogenase (ADH; EC 1.1.1.1) were highly increased in hyperhydric leaves. Sucrose metabolism was modified in hyperhydric leaves with a high increase in the activity of both synthesis and catabolic enzymes. The analysis of the sucrose, glucose and fructose contents indicated that all of these sugars were accumulated in hyperhydric leaves. However, the pinitol content was drastically decreased in hyperhydric leaves. We consider that these results suggest that hyperhydric leaves of carnation have adapted to hypoxia stress conditions by the induction of the oxidative pentose phosphate and fermentative pathways.

  11. Epstein–Barr Virus-Induced Metabolic Rearrangements in Human B-Cell Lymphomas

    Directory of Open Access Journals (Sweden)

    Pier P. Piccaluga

    2018-06-01

    Full Text Available Tumor metabolism has been the object of several studies in the past, leading to the pivotal observation of a consistent shift toward aerobic glycolysis (so-called Warburg effect. More recently, several additional investigations proved that tumor metabolism is profoundly affected during tumorigenesis, including glucose, lipid and amino-acid metabolism. It is noticeable that metabolic reprogramming can represent a suitable therapeutic target in many cancer types. Epstein–Barr virus (EBV was the first virus linked with cancer in humans when Burkitt lymphoma (BL was described. Besides other well-known effects, it was recently demonstrated that EBV can induce significant modification in cell metabolism, which may lead or contribute to neoplastic transformation of human cells. Similarly, virus-induced tumorigenesis is characterized by relevant metabolic abnormalities directly induced by the oncoviruses. In this article, the authors critically review the most recent literature concerning EBV-induced metabolism alterations in lymphomas.

  12. A hypothalamic–pituitary–adrenal axis-associated neuroendocrine metabolic programmed alteration in offspring rats of IUGR induced by prenatal caffeine ingestion

    Energy Technology Data Exchange (ETDEWEB)

    Xu, D. [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China); Wu, Y.; Liu, F.; Liu, Y.S.; Shen, L.; Lei, Y.Y.; Liu, J. [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Ping, J. [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China); Qin, J. [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Zhang, C. [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Chen, L.B. [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Magdalou, J. [UMR 7561 CNRS-Nancy Université, Faculté de Médicine, Vandoeuvre-lès-Nancy (France); Wang, H., E-mail: wanghui19@whu.edu.cn [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China)

    2012-11-01

    Caffeine is a definite factor of intrauterine growth retardation (IUGR). Previously, we have confirmed that prenatal caffeine ingestion inhibits the development of hypothalamic–pituitary–adrenal (HPA) axis, and alters the glucose and lipid metabolism in IUGR fetal rats. In this study, we aimed to verify a programmed alteration of neuroendocrine metabolism in prenatal caffeine ingested-offspring rats. The results showed that prenatal caffeine (120 mg/kg.day) ingestion caused low body weight and high IUGR rate of pups; the concentrations of blood adrenocorticotropic hormone (ACTH) and corticosterone in caffeine group were significantly increased in the early postnatal period followed by falling in late stage; the level of blood glucose was unchanged, while blood total cholesterol (TCH) and triglyceride (TG) were markedly enhanced in adult. After chronic stress, the concentrations and the gain rates of blood ACTH and corticosterone were obviously increased, meanwhile, the blood glucose increased while the TCH and TG decreased in caffeine group. Further, the hippocampal mineralocorticoid receptor (MR) expression in caffeine group was initially decreased and subsequently increased after birth. After chronic stress, the 11β-hydroxysteroid dehydrogenase-1, glucocorticoid receptor (GR), MR as well as the MR/GR ratio were all significantly decreased. These results suggested that prenatal caffeine ingestion induced the dysfunction of HPA axis and associated neuroendocrine metabolic programmed alteration in IUGR offspring rats, which might be related with the functional injury of hippocampus. These observations provide a valuable experimental basis for explaining the susceptibility of IUGR offspring to metabolic syndrome and associated diseases. -- Highlights: ► Prenatal caffeine ingestion induced HPA axis dysfunction in IUGR offspring rats. ► Caffeine induced a neuroendocrine metabolic programmed alteration in offspring rats. ► Caffeine induced a functional injury

  13. A hypothalamic–pituitary–adrenal axis-associated neuroendocrine metabolic programmed alteration in offspring rats of IUGR induced by prenatal caffeine ingestion

    International Nuclear Information System (INIS)

    Xu, D.; Wu, Y.; Liu, F.; Liu, Y.S.; Shen, L.; Lei, Y.Y.; Liu, J.; Ping, J.; Qin, J.; Zhang, C.; Chen, L.B.; Magdalou, J.; Wang, H.

    2012-01-01

    Caffeine is a definite factor of intrauterine growth retardation (IUGR). Previously, we have confirmed that prenatal caffeine ingestion inhibits the development of hypothalamic–pituitary–adrenal (HPA) axis, and alters the glucose and lipid metabolism in IUGR fetal rats. In this study, we aimed to verify a programmed alteration of neuroendocrine metabolism in prenatal caffeine ingested-offspring rats. The results showed that prenatal caffeine (120 mg/kg.day) ingestion caused low body weight and high IUGR rate of pups; the concentrations of blood adrenocorticotropic hormone (ACTH) and corticosterone in caffeine group were significantly increased in the early postnatal period followed by falling in late stage; the level of blood glucose was unchanged, while blood total cholesterol (TCH) and triglyceride (TG) were markedly enhanced in adult. After chronic stress, the concentrations and the gain rates of blood ACTH and corticosterone were obviously increased, meanwhile, the blood glucose increased while the TCH and TG decreased in caffeine group. Further, the hippocampal mineralocorticoid receptor (MR) expression in caffeine group was initially decreased and subsequently increased after birth. After chronic stress, the 11β-hydroxysteroid dehydrogenase-1, glucocorticoid receptor (GR), MR as well as the MR/GR ratio were all significantly decreased. These results suggested that prenatal caffeine ingestion induced the dysfunction of HPA axis and associated neuroendocrine metabolic programmed alteration in IUGR offspring rats, which might be related with the functional injury of hippocampus. These observations provide a valuable experimental basis for explaining the susceptibility of IUGR offspring to metabolic syndrome and associated diseases. -- Highlights: ► Prenatal caffeine ingestion induced HPA axis dysfunction in IUGR offspring rats. ► Caffeine induced a neuroendocrine metabolic programmed alteration in offspring rats. ► Caffeine induced a functional injury

  14. Associations between APOE variants and metabolic traits and the impact of psychological stress.

    Directory of Open Access Journals (Sweden)

    Sofia I Iqbal Kring

    2011-01-01

    Full Text Available In a previous study, we observed that associations between APOE rs439401 and metabolic traits were moderated by chronic stress. Thus, in a population of stressed and non-stressed Danish men, we examined whether associations between APOE rs439401 and a panel of metabolic quantitative traits, all metabolic traits which may lead to T2D and CVD were moderated by psychological stress.Obese young men (n = 475, BMI ≥ 31.0 kg/m(2 and a randomly selected control group (n = 709 identified from a population of 141,800 men were re-examined in two surveys (S-46: mean age 46, S-49: mean age 49 years where anthropometric and biochemical measures were available. Psychological stress factors were assessed by a self-administered 7-item questionnaire. Each item had the possible response categories "yes" and "no" and assessed familial problems and conflicts. Summing positive responses constituted a stress item score, which was then dichotomized into stressed and non-stressed. Logistic regression analysis, applying a recessive genetic model, was used to assess odds ratios (OR of the associations between APOE rs439401 genotypes and adverse levels of metabolic traits.The APOE rs439401 TT-genotype associated positively with BMI (OR = 1.09 [1.01; 1.17], waist circumference (OR = 1.09 [1.02; 1.17] in stressed men at S-46. Positive associations were observed for fasting plasma glucose (OR = 1.42 [1.07; 1.87], serum triglycerides (OR = 1.41 [1.05; 1.91] and with fasting plasma insulin (OR = 1.48 [1.05; 2.08] in stressed men at S-49. Rs439401 TT-genotype also associated positively with surrogate measures of insulin resistance (HOMA-IR; OR = 1.21 [1.03; 1.41] and inversely with insulin sensitivity (Stumvoll index; OR = 0.90 [0.82; 0.99], BIGTT-S(I; OR = 0.60 [0.43; 0.85] in stressed men. No significant associations were observed in non-stressed men, albeit the estimates showed similar but weaker trends as in stressed men.The present results suggest that the APOE rs439401

  15. The Role of Oxidative Stress in Apoptosis of Breast Cancer Cells

    National Research Council Canada - National Science Library

    Briehl, Margaret

    1998-01-01

    .... This project is aimed at testing the hypothesis that oxidative stress plays a critical role in the mechanism of apoptosis induced by treatment of human breast cancer cells with tumor necrosis factor-a (TNF...

  16. Stress-Induced Cytokinin Synthesis Increases Drought Tolerance through the Coordinated Regulation of Carbon and Nitrogen Assimilation in Rice1[C][W][OPEN

    Science.gov (United States)

    Reguera, Maria; Peleg, Zvi; Abdel-Tawab, Yasser M.; Tumimbang, Ellen B.; Delatorre, Carla A.; Blumwald, Eduardo

    2013-01-01

    The effects of water deficit on carbon and nitrogen metabolism were investigated in flag leaves of wild-type and transgenic rice (Oryza sativa japonica ‘Kitaake’) plants expressing ISOPENTENYLTRANSFERASE (IPT; encoding the enzyme that mediates the rate-limiting step in cytokinin synthesis) under the control of PSARK, a maturation- and stress-induced promoter. While the wild-type plants displayed inhibition of photosynthesis and nitrogen assimilation during water stress, neither carbon nor nitrogen assimilation was affected by stress in the transgenic PSARK::IPT plants. In the transgenic plants, photosynthesis was maintained at control levels during stress and the flag leaf showed increased sucrose (Suc) phosphate synthase activity and reduced Suc synthase and invertase activities, leading to increased Suc contents. The sustained carbon assimilation in the transgenic PSARK::IPT plants was well correlated with enhanced nitrate content, higher nitrate reductase activity, and sustained ammonium contents, indicating that the stress-induced cytokinin synthesis in the transgenic plants played a role in maintaining nitrate acquisition. Protein contents decreased and free amino acids increased in wild-type plants during stress, while protein content was preserved in the transgenic plants. Our results indicate that the stress-induced cytokinin synthesis in the transgenic plants promoted sink strengthening through a cytokinin-dependent coordinated regulation of carbon and nitrogen metabolism that facilitates an enhanced tolerance of the transgenic plants to water deficit. PMID:24101772

  17. Stress induces endotoxemia and low-grade inflammation by increasing barrier permeability

    Directory of Open Access Journals (Sweden)

    Karin ede Punder

    2015-05-01

    Full Text Available Chronic non-communicable diseases (NCDs are the leading causes of work absence, disability and mortality worldwide. Most of these diseases are associated with low-grade inflammation. Here we hypothesize that stresses (defined as homeostatic disturbances can induce low-grade inflammation by increasing the availability of water, sodium and energy-rich substances to meet the increased metabolic demand induced by the stressor. One way of triggering low-grade inflammation is by increasing intestinal barrier permeability through activation of various components of the stress system. Although beneficial to meet the demands necessary during stress, increased intestinal barrier permeability also raises the possibility of the translocation of bacteria and their toxins across the intestinal lumen into the blood circulation. In combination with modern life-style factors, the increase in bacteria/bacterial toxin translocation arising from a more permeable intestinal wall causes a low-grade inflammatory state. We support this hypothesis with numerous studies finding associations with NCDs and markers of endotoxemia, suggesting that this process plays a pivotal and perhaps even a causal role in the development of low-grade inflammation and its related diseases.

  18. Novel biomarker identification using metabolomic profiling to differentiate radiation necrosis and recurrent tumor following Gamma Knife radiosurgery.

    Science.gov (United States)

    Lu, Alex Y; Turban, Jack L; Damisah, Eyiyemisi C; Li, Jie; Alomari, Ahmed K; Eid, Tore; Vortmeyer, Alexander O; Chiang, Veronica L

    2017-08-01

    OBJECTIVE Following an initial response of brain metastases to Gamma Knife radiosurgery, regrowth of the enhancing lesion as detected on MRI may represent either radiation necrosis (a treatment-related inflammatory change) or recurrent tumor. Differentiation of radiation necrosis from tumor is vital for management decision making but remains difficult by imaging alone. In this study, gas chromatography with time-of-flight mass spectrometry (GC-TOF) was used to identify differential metabolite profiles of the 2 tissue types obtained by surgical biopsy to find potential targets for noninvasive imaging. METHODS Specimens of pure radiation necrosis and pure tumor obtained from patient brain biopsies were flash-frozen and validated histologically. These formalin-free tissue samples were then analyzed using GC-TOF. The metabolite profiles of radiation necrosis and tumor samples were compared using multivariate and univariate statistical analysis. Statistical significance was defined as p ≤ 0.05. RESULTS For the metabolic profiling, GC-TOF was performed on 7 samples of radiation necrosis and 7 samples of tumor. Of the 141 metabolites identified, 17 (12.1%) were found to be statistically significantly different between comparison groups. Of these metabolites, 6 were increased in tumor, and 11 were increased in radiation necrosis. An unsupervised hierarchical clustering analysis found that tumor had elevated levels of metabolites associated with energy metabolism, whereas radiation necrosis had elevated levels of metabolites that were fatty acids and antioxidants/cofactors. CONCLUSIONS To the authors' knowledge, this is the first tissue-based metabolomics study of radiation necrosis and tumor. Radiation necrosis and recurrent tumor following Gamma Knife radiosurgery for brain metastases have unique metabolite profiles that may be targeted in the future to develop noninvasive metabolic imaging techniques.

  19. Poly(adenosine 5'-diphosphate) ribose polymerase activation as a cause of metabolic dysfunction in critical illness.

    Science.gov (United States)

    Liaudet, Lucas

    2002-03-01

    Poly(adenosine 5'-diphosphate) ribose polymerase is a nuclear enzyme activated in response to genotoxic stress induced by a variety of DNA damaging agents. Several oxygen and nitrogen-centered free radicals, notably peroxynitrite, are strong inducers of DNA damage and poly(adenosine 5'-diphosphate) ribose polymerase activation in vitro and in vivo. Activation of this nuclear enzyme depletes the intracellular stores of its substrate nicotinamide adenine dinucleotide, slowing the rate of glycolysis, mitochondrial electron transport and adenosine triphosphate formation. This process triggers a severe energetic crisis within the cell, leading to acute cell dysfunction and cell necrosis. Poly(adenosine 5'-diphosphate) ribose polymerase also plays an important role in the regulation of inflammatory cascades, through a functional association with various transcription factors and transcription co-activators. Recent works identified this enzyme as a critical mediator of cellular metabolic dysfunction, inflammatory injury, and organ damage in conditions associated with overwhelming oxidative stress, including systemic inflammation, circulatory shock, and ischemia-reperfusion. Accordingly, pharmacological inhibitors of poly(adenosine 5'-diphosphate) ribose polymerase protect against cell death and tissue injury in such conditions, and may therefore represent novel therapeutic tools to limit multiple organ damage and dysfunction in critically ill patients.

  20. Effects of disturbed liver growth and oxidative stress of high-fat diet-fed dams on cholesterol metabolism in offspring mice.

    Science.gov (United States)

    Kim, Juyoung; Kim, Juhae; Kwon, Young Hye

    2016-08-01

    Changes in nutritional status during gestation and lactation have detrimental effects on offspring metabolism. Several animal studies have shown that maternal high-fat diet (HFD) can predispose the offspring to development of obesity and metabolic diseases, however the mechanisms underlying these transgenerational effects are poorly understood. Therefore, we examined the effect of maternal HFD consumption on metabolic phenotype and hepatic expression of involved genes in dams to determine whether any of these parameters were associated with the metabolic outcomes in the offspring. Female C57BL/6 mice were fed a low-fat diet (LFD: 10% calories from fat) or a high-fat diet (HFD: 45% calories from fat) for three weeks before mating, and during pregnancy and lactation. Dams and their male offspring were studied at weaning. Dams fed an HFD had significantly higher body and adipose tissue weights and higher serum triglyceride and cholesterol levels than dams fed an LFD. Hepatic lipid levels and mRNA levels of genes involved in lipid metabolism, including LXRα, SREBP-2, FXR, LDLR, and ABCG8 were significantly changed by maternal HFD intake. Significantly lower total liver DNA and protein contents were observed in dams fed an HFD, implicating the disturbed liver adaptation in the pregnancy-related metabolic demand. HFD feeding also induced significant oxidative stress in serum and liver of dams. Offspring of dams fed an HFD had significantly higher serum cholesterol levels, which were negatively correlated with liver weights of dams and positively correlated with hepatic lipid peroxide levels in dams. Maternal HFD consumption induced metabolic dysfunction, including altered liver growth and oxidative stress in dams, which may contribute to the disturbed cholesterol homeostasis in the early life of male mice offspring.

  1. Inflammatory cause of metabolic syndrome via brain stress and NF-κB

    Science.gov (United States)

    Cai, Dongsheng; Liu, Tiewen

    2012-01-01

    Metabolic syndrome, a network of medical disorders that greatly increase the risk for developing metabolic and cardiovascular diseases, has reached epidemic levels in many areas of today's world. Despite this alarming medicare situation, scientific understandings on the root mechanisms of metabolic syndrome are still limited, and such insufficient knowledge contributes to the relative lack of effective treatments or preventions for related diseases. Recent interdisciplinary studies from neuroendocrinology and neuroimmunology fields have revealed that overnutrition can trigger intracellular stresses to cause inflammatory changes mediated by molecules that control innate immunity. This type of nutrition-related molecular inflammation in the central nervous system, particularly in the hypothalamus, can form a common pathogenic basis for the induction of various metabolic syndrome components such as obesity, insulin resistance, and hypertension. Proinflammatory NF-κB pathway has been revealed as a key molecular system for pathologic induction of brain inflammation, which translates overnutrition and resulting intracellular stresses into central neuroendocrine and neural dysregulations of energy, glucose, and cardiovascular homeostasis, collectively leading to metabolic syndrome. This article reviews recent research advances in the neural mechanisms of metabolic syndrome and related diseases from the perspective of pathogenic induction by intracellular stresses and NF-κB pathway of the brain. PMID:22328600

  2. Pre-cold stress increases acid stress resistance and induces amino ...

    African Journals Online (AJOL)

    Pre-cold stress increases acid stress resistance and induces amino acid homeostasis in Lactococcus lactis NZ9000. ... Purpose: To investigate the effects of pre-cold stress treatments on subsequent acid stress resistance ... from 32 Countries:.

  3. [Pulmonary apoptosis and necrosis in hyperoxia-induced acute mouse lung injury].

    Science.gov (United States)

    Zhang, Xiang-feng; Foda, Hussein D

    2004-07-01

    To investigate the pathways to cell death in hyperoxia-induced lung injury and the functional significance of apoptosis in vivo in response to hyperoxia. Seventy-two mice were exposed in sealed cages > 98% oxygen (for 24 - 72 h) or room air, and the severity of lung injury and epithelium sloughing was evaluated. The extent and location of apoptosis in injured lung tissues were studied by terminal transferase dUTP end labeling assay (TUNEL), reverse transcript-polymerase chain reaction (RT-PCR) and immunohistochemistry. Hyperoxia caused acute lung injury; the hyperoxic stress resulted in marked epithelium sloughing. TUNEL assay exhibited increased apoptosis index both in alveolar epithelial cells and bronchial epithelial cells in sections from mice after 48 h hyperoxia compared with their control group (0.51 +/- 0.10, 0.46 +/- 0.08 verse 0.04 +/- 0.02, 0.02 +/- 0.01). This was accompanied by increased expression of caspase-3 mRNA in lung tissues after 48 h hyperoxia compared with their control group (0.53 +/- 0.09 verse 0.34 +/- 0.07), the expression was higher at 72 h of hyperoxia (0.60 +/- 0.08). Immunohistochemistry study showed caspase-3 protein was located in cytoplasm and nuclei of airway epithelial cells, alveolar epithelial cells and macrophage in hyperoxia mice. The expression of caspase-3 protein in airway epithelium significantly increased at 24 h of hyperoxia compared with their control group (41.62 +/- 3.46 verse 15.86 +/- 1.84), the expression level was highest at 72 h of hyperoxia (55.24 +/- 6.80). Both apoptosis and necrosis contribute to cell death during hyperoxia. Apoptosis plays an important role in alveolar damage and cell death from hyperoxia.

  4. Mitochondrial Modulation by Epigallocatechin 3-Gallate Ameliorates Cisplatin Induced Renal Injury through Decreasing Oxidative/Nitrative Stress, Inflammation and NF-kB in Mice

    Science.gov (United States)

    Wang, Xueping; Wang, Ping; Fu, Guanghou; Meng, Hongzhou; Wang, Yimin; Jin, Baiye

    2015-01-01

    Cancer chemotherapy drug cisplatin is known for its nephrotoxicity. The aim of this study is to investigate whether Epigallocatechin 3-Gallate (EGCG) can reduce cisplatin mediated side effect in kidney and to understand its mechanism of protection against tissue injury. We used a well-established 3-day cisplatin induced nephrotoxicity mice model where EGCG were administered. EGCG is a major active compound in Green Tea and have strong anti-oxidant and anti-inflammatory properties. EGCG protected against cisplatin induced renal dysfunction as measured by serum creatinine and blood urea nitrogen (BUN). EGCG improved cisplatin induced kidney structural damages such as tubular dilatation, cast formation, granulovaculoar degeneration and tubular cell necrosis as evident by PAS staining. Cisplatin induced kidney specific mitochondrial oxidative stress, impaired activities of mitochondrial electron transport chain enzyme complexes, impaired anti-oxidant defense enzyme activities such as glutathione peroxidase (GPX) and manganese superoxide dismutase (MnSOD) in mitochondria, inflammation (tumor necrosis factor α and interleukin 1β), increased accumulation of NF-κB in nuclear fraction, p53 induction, and apoptotic cell death (caspase 3 activity and DNA fragmentation). Treatment of mice with EGCG markedly attenuated cisplatin induced mitochondrial oxidative/nitrative stress, mitochondrial damages to electron transport chain activities and antioxidant defense enzyme activities in mitochondria. These mitochondrial modulations by EGCG led to protection mechanism against cisplatin induced inflammation and apoptotic cell death in mice kidney. As a result, EGCG improved renal function in cisplatin mediated kidney damage. In addition to that, EGCG attenuated cisplatin induced apoptotic cell death and mitochondrial reactive oxygen species (ROS) generation in human kidney tubular cell line HK-2. Thus, our data suggest that EGCG may represent new promising adjunct candidate for

  5. Sirtuin1 and autophagy protect cells from fluoride-induced cell stress

    Science.gov (United States)

    Suzuki, Maiko; Bartlett, John D.

    2014-01-01

    Sirtuin1 (SIRT1) is an (NAD+)-dependent deacetylase functioning in the regulation of metabolism, cell survival and organismal lifespan. Active SIRT1 regulates autophagy during cell stress, including calorie restriction, endoplasmic reticulum stress and oxidative stress. Previously, we reported that fluoride induces endoplasmic reticulum (ER) stress in ameloblasts responsible for enamel formation, suggesting that ER-stress plays a role in dental fluorosis. However, the molecular mechanism of how cells respond to fluoride-induced cell stress is unclear. Here, we demonstrate that fluoride activates SIRT1 and initiates autophagy to protect cells from fluoride exposure. Fluoride treatment of ameloblast-derived cells (LS8) significantly increased Sirt1 expression and induced SIRT1 phosphorylation resulting in the augmentation of SIRT1 deacetylase activity. To demonstrate that fluoride exposure initiates autophagy, we characterized the expression of autophagy related genes (Atg); Atg5, Atg7 and Atg8/LC3 and showed that both their transcript and protein levels were significantly increased following fluoride treatment. To confirm that SIRT1 plays a protective role in fluoride toxicity, we used resveratrol (RES) to augmented SIRT1 activity in fluoride treated LS8 cells. RES increased autophagy, inhibited apoptosis, and decreased fluoride cytotoxicity. Rats treated with fluoride (0, 50 and 100 ppm) in drinking water for 6 weeks had significantly elevated expression levels of Sirt1, Atg5, Atg7 and Atg8/LC3 in their maturation stage enamel organs. Increased protein levels of p-SIRT1, ATG5 and ATG8/LC3 were present in fluoride-treated rat maturation stage ameloblasts. Therefore, the SIRT1/autophagy pathway may play a critical role as a protective response to help prevent dental fluorosis. PMID:24296261

  6. Sirtuin1 and autophagy protect cells from fluoride-induced cell stress.

    Science.gov (United States)

    Suzuki, Maiko; Bartlett, John D

    2014-02-01

    Sirtuin1 (SIRT1) is a nicotinamide adenine dinucleotide (NAD(+))-dependent deacetylase functioning in the regulation of metabolism, cell survival and organismal lifespan. Active SIRT1 regulates autophagy during cell stress, including calorie restriction, endoplasmic reticulum (ER) stress and oxidative stress. Previously, we reported that fluoride induces ER-stress in ameloblasts responsible for enamel formation, suggesting that ER-stress plays a role in dental fluorosis. However, the molecular mechanism of how cells respond to fluoride-induced cell stress is unclear. Here, we demonstrate that fluoride activates SIRT1 and initiates autophagy to protect cells from fluoride exposure. Fluoride treatment of ameloblast-derived cells (LS8) significantly increased Sirt1 expression and induced SIRT1 phosphorylation resulting in the augmentation of SIRT1 deacetylase activity. To demonstrate that fluoride exposure initiates autophagy, we characterized the expression of autophagy related genes (Atg); Atg5, Atg7 and Atg8/LC3 and showed that both their transcript and protein levels were significantly increased following fluoride treatment. To confirm that SIRT1 plays a protective role in fluoride toxicity, we used resveratrol (RES) to augment SIRT1 activity in fluoride treated LS8 cells. RES increased autophagy, inhibited apoptosis, and decreased fluoride cytotoxicity. Rats treated with fluoride (0, 50, 100 and 125ppm) in drinking water for 6weeks had significantly elevated expression levels of Sirt1, Atg5, Atg7 and Atg8/LC3 in their maturation stage enamel organs. Increased protein levels of p-SIRT1, ATG5 and ATG8/LC3 were present in fluoride-treated rat maturation stage ameloblasts. Therefore, the SIRT1/autophagy pathway may play a critical role as a protective response to help prevent dental fluorosis. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Alcohol Dehydrogenase Protects against Endoplasmic Reticulum Stress-Induced Myocardial Contractile Dysfunction via Attenuation of Oxidative Stress and Autophagy: Role of PTEN-Akt-mTOR Signaling.

    Directory of Open Access Journals (Sweden)

    Jiaojiao Pang

    Full Text Available The endoplasmic reticulum (ER plays an essential role in ensuring proper folding of the newly synthesized proteins. Aberrant ER homeostasis triggers ER stress and development of cardiovascular diseases. ADH is involved in catalyzing ethanol to acetaldehyde although its role in cardiovascular diseases other than ethanol metabolism still remains elusive. This study was designed to examine the impact of ADH on ER stress-induced cardiac anomalies and underlying mechanisms involved using cardiac-specific overexpression of alcohol dehydrogenase (ADH.ADH and wild-type FVB mice were subjected to the ER stress inducer tunicamycin (1 mg/kg, i.p., for 48 hrs. Myocardial mechanical and intracellular Ca(2+ properties, ER stress, autophagy and associated cell signaling molecules were evaluated.ER stress compromised cardiac contractile function (evidenced as reduced fractional shortening, peak shortening, maximal velocity of shortening/relengthening, prolonged relengthening duration and impaired intracellular Ca(2+ homeostasis, oxidative stress and upregulated autophagy (increased LC3B, Atg5, Atg7 and p62, along with dephosphorylation of PTEN, Akt and mTOR, all of which were attenuated by ADH. In vitro study revealed that ER stress-induced cardiomyocyte anomaly was abrogated by ADH overexpression or autophagy inhibition using 3-MA. Interestingly, the beneficial effect of ADH was obliterated by autophagy induction, inhibition of Akt and mTOR. ER stress also promoted phosphorylation of the stress signaling ERK and JNK, the effect of which was unaffected by ADH transgene.Taken together, these findings suggested that ADH protects against ER stress-induced cardiac anomalies possibly via attenuation of oxidative stress and PTEN/Akt/mTOR pathway-regulated autophagy.

  8. Cytoskeleton-interacting LIM-domain protein CRP1 suppresses cell proliferation and protects from stress-induced cell death

    International Nuclear Information System (INIS)

    Latonen, Leena; Jaervinen, Paeivi M.; Laiho, Marikki

    2008-01-01

    Members of the cysteine-rich protein (CRP) family are actin cytoskeleton-interacting LIM-domain proteins known to act in muscle cell differentiation. We have earlier found that CRP1, a founding member of this family, is transcriptionally induced by UV radiation in human diploid fibroblasts [M. Gentile, L. Latonen, M. Laiho, Cell cycle arrest and apoptosis provoked by UV radiation-induced DNA damage are transcriptionally highly divergent responses, Nucleic Acids Res. 31 (2003) 4779-4790]. Here we show that CRP1 is induced by growth-inhibitory signals, such as increased cellular density, and cytotoxic stress induced by UV radiation or staurosporine. We found that high levels of CRP1 correlate with differentiation-associated morphology towards the myofibroblast lineage and that expression of ectopic CRP1 suppresses cell proliferation. Following UV- and staurosporine-induced stresses, expression of CRP1 provides a survival advantage evidenced by decreased cellular death and increased cellular metabolic activity and attachment. Our studies identify that CRP1 is a novel stress response factor, and provide evidence for its growth-inhibitory and cytoprotective functions

  9. Induced surface stress at crystal surfaces

    International Nuclear Information System (INIS)

    Dahmen, K.

    2002-05-01

    Changes of the surfaces stress Δτ (s) can be studied by observing the bending of thin crystalline plates. With this cantilever method one can gain the induced change of surface stress Δτ (s) from the bending of plates with the help of elasticity theory. For elastic isotropic substrates the relevant relations are known. Here the relations are generalized to elastic anisotropic crystals with a C 2v - Symmetry. The equilibrium shapes of crystalline plates oriented along the (100)-, (110)-, or (111)-direction which are clamped along one edge are calculated with a numeric method under the load of a homogeneous but pure isotropic or anisotropic surface stress. The results can be displayed with the dimensionality, so that the effect of clamping can be described in a systematic way. With these tabulated values one can evaluate cantilever experiments exactly. These results are generalized to cantilever methods for determining magnetoelastic constants. It is shown which magnetoelastic constants are measured in domains of thin films with ordered structures. The eigenshape and the eigenfrequency of plates constraint through a clamping at one side are calculated. These results give a deeper understanding of the elastic anisotropy. The induced surface stress of oxygen on the (110)-surface of molybdenum is measured along the principle directions Δτ [001] and Δτ [ anti 110] . The anisotropy of the surface stress is found for the p(2 x 2)-reconstruction. Lithium induces a tensile surface stress on the Molybdenum (110)-surface up to a coverage of Θ = 0, 3 monolayer. For a higher coverage the induced stress drops and reaches a level of less than -1, 2 N/m at one monolayer. It is shown, that cobalt induces a linear increasing stress with respect to the coverage on the (100)-surface of copper with a value of 2, 4GPa. The copper (100)-surface is bombarded with accelerated ions in the range between 800-2200 eV. The resulting induced compressive stress (Δτ (s) < 0) of the order

  10. Programmed necrosis and necroptosis – molecular mechanisms

    Directory of Open Access Journals (Sweden)

    Agata Giżycka

    2015-12-01

    Full Text Available Programmed necrosis has been proven vital for organism development and homeostasis maintenance. Its regulatory effects on functional activity of the immune system, as well as on pathways regulating the death mechanisms in cells with diminished apoptotic activity, including malignant cells, have been confirmed. There is also increasing evidence indicating necrosis involvement in many human pathologies. Contrary to previous beliefs, necrosis is not only a passive, pathological, gene-independent process. However, the current knowledge regarding molecular regulation of programmed necrosis is scarce. In part this is due to the multiplicity and complexity of signaling pathways involved in programmed necrosis, as well as the absence of specific cellular markers identifying this process, but also the ambiguous and imprecise international terminology. This review presents the current state of the art on molecular mechanisms of programmed necrosis. In particular, its specific and frequent form, necroptosis, is discussed. The role of RIP1 and RIP3 kinases in this process is presented, as well as the diverse pathways induced by ligation of tumor necrosis factor α, to its receptor, TNFR1, i.e. cell survival, apoptosis or necroptosis.

  11. Necrostatin-1 protects against reactive oxygen species (ROS-induced hepatotoxicity in acetaminophen-induced acute liver failure

    Directory of Open Access Journals (Sweden)

    Kenji Takemoto

    2014-01-01

    Full Text Available Excessive acetaminophen (APAP use is one of the most common causes of acute liver failure. Various types of cell death in the damaged liver are linked to APAP-induced hepatotoxicity, and, of these, necrotic cell death of hepatocytes has been shown to be involved in disease pathogenesis. Until recently, necrosis was commonly considered to be a random and unregulated form of cell death; however, recent studies have identified a previously unknown form of programmed necrosis called receptor-interacting protein kinase (RIPK-dependent necrosis (or necroptosis, which is controlled by the kinases RIPK1 and RIPK3. Although RIPK-dependent necrosis has been implicated in a variety of disease states, including atherosclerosis, myocardial organ damage, stroke, ischemia–reperfusion injury, pancreatitis, and inflammatory bowel disease. However its involvement in APAP-induced hepatocyte necrosis remains elusive. Here, we showed that RIPK1 phosphorylation, which is a hallmark of RIPK-dependent necrosis, was induced by APAP, and the expression pattern of RIPK1 and RIPK3 in the liver overlapped with that of CYP2E1, whose activity around the central vein area has been demonstrated to be critical for the development of APAP-induced hepatic injury. Moreover, a RIPK1 inhibitor ameliorated APAP-induced hepatotoxicity in an animal model, which was underscored by significant suppression of the release of hepatic enzymes and cytokine expression levels. RIPK1 inhibition decreased reactive oxygen species levels produced in APAP-injured hepatocytes, whereas CYP2E1 expression and the depletion rate of total glutathione were unaffected. Of note, RIPK1 inhibition also conferred resistance to oxidative stress in hepatocytes. These data collectively demonstrated a RIPK-dependent necrotic mechanism operates in the APAP-injured liver and inhibition of this pathway may be beneficial for APAP-induced fulminant hepatic failure.

  12. Nutritional mitigation of winter thermal stress in gilthead seabream: Associated metabolic pathways and potential indicators of nutritional state.

    Science.gov (United States)

    Richard, Nadège; Silva, Tomé S; Wulff, Tune; Schrama, Denise; Dias, Jorge P; Rodrigues, Pedro M L; Conceição, Luís E C

    2016-06-16

    A trial was carried out with gilthead seabream juveniles, aiming to investigate the ability of an enhanced dietary formulation (diet Winter Feed, WF, containing a higher proportion of marine-derived protein sources and supplemented in phospholipids, vitamin C, vitamin E and taurine) to assist fish in coping with winter thermal stress, compared to a low-cost commercial diet (diet CTRL). In order to identify the metabolic pathways affected by WF diet, a comparative two dimensional differential in-gel electrophoresis (2D-DIGE) analysis of fish liver proteome (pH 4–7) was undertaken at the end of winter. A total of 404 protein spots, out of 1637 detected, were differentially expressed between the two groups of fish. Mass spectrometry analysis of selected spots suggested that WF diet improved oxidative stress defense, reduced endoplasmic reticulum stress, enhanced metabolic flux through methionine cycle and phenylalanine/tyrosine catabolism, and induced higher aerobic metabolism and gluconeogenesis. Results support the notion that WF diet had a positive effect on fish nutritional state by partially counteracting the effect of thermal stress and underlined the sensitivity of proteome data for nutritional and metabolic profiling purposes. Intragroup variability and co-measured information were also used to pinpoint which proteins displayed a stronger relation with fish nutritional state. Winter low water temperature is a critical factor for gilthead seabream farming in the Mediterranean region, leading to a reduction of feed intake, which often results in metabolic and immunological disorders and stagnation of growth performances. In a recent trial, we investigated the ability of an enhanced dietary formulation (diet WF) to assist gilthead seabream in coping with winter thermal stress, compared to a standard commercial diet (diet CTRL). Within this context, in the present work, we identified metabolic processes that are involved in the stress-mitigating effect observed

  13. Porous Se@SiO2 nanospheres treated paraquat-induced acute lung injury by resisting oxidative stress

    Directory of Open Access Journals (Sweden)

    Zhu Y

    2017-09-01

    Full Text Available Yong Zhu,1,* Guoying Deng,2,* Anqi Ji,2 Jiayi Yao,1 Xiaoxiao Meng,1 Jinfeng Wang,1 Qian Wang,2 Qiugen Wang,2 Ruilan Wang1 1Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, 2Trauma Center, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China *These authors contributed equally to this work Abstract: Acute paraquat (PQ poisoning is one of the most common forms of pesticide poisoning. Oxidative stress and inflammation are thought to be important mechanisms in PQ-induced acute lung injury (ALI. Selenium (Se can scavenge intracellular free radicals directly or indirectly. In this study, we investigated whether porous Se@SiO2 nanospheres could alleviate oxidative stress and inflammation in PQ-induced ALI. Male Sprague Dawley rats and RLE-6TN cells were used in this study. Rats were categorized into 3 groups: control (n=6, PQ (n=18, and PQ + Se@SiO2 (n=18. The PQ and PQ + Se@SiO2 groups were randomly and evenly divided into 3 sub-groups according to different time points (24, 48 and 72 h after PQ treatment. Porous Se@SiO2 nanospheres 1 mg/kg (in the PQ + Se@SiO2 group were administered via intraperitoneal injection every 24 h. Expression levels of reduced glutathione, malondialdehyde, superoxide dismutase, reactive oxygen species (ROS, nuclear factor-κB (NF-κB, phosphorylated NF-κB (p-NF-κB, tumor necrosis factor-α and interleukin-1β were detected, and a histological analysis of rat lung tissues was performed. The results showed that the levels of ROS, malondialdehyde, NF-κB, p-NF-κB, tumor necrosis factor-α and interleukin-1β were markedly increased after PQ treatment. Glutathione and superoxide dismutase levels were reduced. However, treatment with porous Se@SiO2 nanospheres markedly alleviated PQ-induced oxidative stress and inflammation. Additionally, the results from histological examinations and wet-to-dry weight ratios of rat lung

  14. Tumor necrosis factor is not required for particle-induced genotoxicity and pulmonary inflammation

    Energy Technology Data Exchange (ETDEWEB)

    Saber, Anne T.; Bornholdt, Jette; Dybdahl, Marianne; Sharma, Anoop K.; Vogel, Ulla; Wallin, Haakan [National Institute of Occupational Health, Copenhagen (Denmark); Loft, Steffen [Copenhagen University, Institute of Public Health, Copenhagen (Denmark)

    2005-03-01

    Particle-induced carcinogenicity is not well understood, but might involve inflammation. The proinflammatory cytokine tumor necrosis factor (TNF) is considered to be an important mediator in inflammation. We investigated its role in particle-induced inflammation and DNA damage in mice with and without TNF signaling. TNF-/- mice and TNF+/+ mice were exposed by inhalation to 20 mg m{sup -3} carbon black (CB), 20 mg m{sup -3} diesel exhaust particles (DEP), or filtered air for 90 min on each of four consecutive days. DEP, but not CB particles, induced infiltration of neutrophilic granulocutes into the lung lining fluid (by the cellular fraction in the bronchoalveolar lavage fluid), and both particle types induced interleukin-6 mRNA in the lung tissue. Surprisingly, TNF-/- mice were intact in these inflammatory responses. There were more DNA strand breaks in the BAL cells of DEP-exposed TNF-/- mice and CB-exposed mice compared with the air-exposed mice. Thus, the CB-induced DNA damage in BAL-cells was independent of neutrophil infiltration. The data indicate that an inflammatory response was not a prerequisite for DNA damage, and TNF was not required for the induction of inflammation by DEP and CB particles. (orig.)

  15. Association of soluble Tumor necrosis factor-Related Apoptosis-Inducing Ligand (TRAIL) with central adiposity and low-density lipoprotein cholesterol.

    Science.gov (United States)

    Brombo, Gloria; Volpato, Stefano; Secchiero, Paola; Passaro, Angelina; Bosi, Cristina; Zuliani, Giovanni; Zauli, Giorgio

    2013-01-01

    Tumor necrosis factor-Related Apoptosis-Inducing Ligand (TRAIL), in addition to having a prognostic value in patients with cardiovascular disease, seems to interact with adiposity, insulin resistance and other cardiovascular risk factors. However, the results of previous clinical studies, focused on the association of TRAIL with selected metabolic or anthropometric indices were inconclusive. The aim of this study was to further investigate how soluble TRAIL concentrations independently correlate with major cardiovascular risk factors, including lipid, glycemic and anthropometric features. We examined the associations between serum soluble TRAIL concentrations, measured by ELISA, and lipid, glycemic and anthropometric features in 199 subjects recruited at our Metabolic Outpatient Clinic. Soluble TRAIL concentrations had a significant and direct correlation with total cholesterol (p = 0.046), LDL-cholesterol (p = 0.032), triglycerides (p = 0.01), body mass index (p = 0.046), waist circumference (p = 0.008), fat mass (p = 0.056) and insulin (p = 0.046) and an inverse correlation with HDL-cholesterol (p = 0.02). In multivariable regression analyses adjusted for potential confounders (age, gender, C-reactive protein, HDL-cholesterol, triglycerides, waist circumference, and insulin), TRAIL levels continued to have an independent correlation with LDL-cholesterol and waist circumference (r(2) = 0.04). Serum TRAIL levels were weakly but significantly and independently associated with waist circumference, a marker of visceral adiposity, and with LDL-cholesterol. Further studies are needed to clarify the biological basis of these relationships.

  16. Ameliorative effects of oleanolic acid on fluoride induced metabolic and oxidative dysfunctions in rat brain: Experimental and biochemical studies.

    Science.gov (United States)

    Sarkar, Chaitali; Pal, Sudipta; Das, Niranjan; Dinda, Biswanath

    2014-04-01

    Beneficial effects of oleanolic acid on fluoride-induced oxidative stress and certain metabolic dysfunctions were studied in four regions of rat brain. Male Wistar rats were treated with sodium fluoride at a dose of 20 mg/kg b.w./day (orally) for 30 days. Results indicate marked reduction in acidic, basic and neutral protein contents due to fluoride toxicity in cerebrum, cerebellum, pons and medulla. DNA, RNA contents significantly decreased in those regions after fluoride exposure. Activities of proteolytic enzymes (such as cathepsin, trypsin and pronase) were inhibited by fluoride, whereas transaminase enzyme (GOT and GPT) activities increased significantly in brain tissue. Fluoride appreciably elevated brain malondialdehyde level, free amino acid nitrogen, NO content and free OH radical generation. Additionally, fluoride perturbed GSH content and markedly reduced SOD, GPx, GR and CAT activities in brain tissues. Oral supplementation of oleanolic acid (a plant triterpenoid), at a dose of 5mg/kgb.w./day for last 14 days of fluoride treatment appreciably ameliorated fluoride-induced alteration of brain metabolic functions. Appreciable counteractive effects of oleanolic acid against fluoride-induced changes in protein and nucleic acid contents, proteolytic enzyme activities and other oxidative stress parameters indicate that oleanolic acid has potential antioxidative effects against fluoride-induced oxidative brain damage. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Thiamine deficiency induces endoplasmic reticulum stress and oxidative stress in human neurons derived from induced pluripotent stem cells.

    Science.gov (United States)

    Wang, Xin; Xu, Mei; Frank, Jacqueline A; Ke, Zun-Ji; Luo, Jia

    2017-04-01

    Thiamine (vitamin B1) deficiency (TD) plays a major role in the etiology of Wernicke's encephalopathy (WE) which is a severe neurological disorder. TD induces selective neuronal cell death, neuroinflammation, endoplasmic reticulum (ER) stress and oxidative stress in the brain which are commonly observed in many aging-related neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and progressive supranuclear palsy (PSP). However, the underlying cellular and molecular mechanisms remain unclear. The progress in this line of research is hindered due to the lack of appropriate in vitro models. The neurons derived for the human induced pluripotent stem cells (hiPSCs) provide a relevant and powerful tool for the research in pharmaceutical and environmental neurotoxicity. In this study, we for the first time used human induced pluripotent stem cells (hiPSCs)-derived neurons (iCell neurons) to investigate the mechanisms of TD-induced neurodegeneration. We showed that TD caused a concentration- and duration-dependent death of iCell neurons. TD induced ER stress which was evident by the increase in ER stress markers, such as GRP78, XBP-1, CHOP, ATF-6, phosphorylated eIF2α, and cleaved caspase-12. TD also triggered oxidative stress which was shown by the increase in the expression 2,4-dinitrophenyl (DNP) and 4-hydroxynonenal (HNE). ER stress inhibitors (STF-083010 and salubrinal) and antioxidant N-acetyl cysteine (NAC) were effective in alleviating TD-induced death of iCell neurons, supporting the involvement of ER stress and oxidative stress. It establishes that the iCell neurons are a novel tool to investigate cellular and molecular mechanisms for TD-induced neurodegeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Gustatory and metabolic perception of nutrient stress in Drosophila.

    Science.gov (United States)

    Linford, Nancy J; Ro, Jennifer; Chung, Brian Y; Pletcher, Scott D

    2015-02-24

    Sleep loss is an adaptive response to nutrient deprivation that alters behavior to maximize the chances of feeding before imminent death. Organisms must maintain systems for detecting the quality of the food source to resume healthy levels of sleep when the stress is alleviated. We determined that gustatory perception of sweetness is both necessary and sufficient to suppress starvation-induced sleep loss when animals encounter nutrient-poor food sources. We further find that blocking specific dopaminergic neurons phenocopies the absence of gustatory stimulation, suggesting a specific role for these neurons in transducing taste information to sleep centers in the brain. Finally, we show that gustatory perception is required for survival, specifically in a low nutrient environment. Overall, these results demonstrate an important role for gustatory perception when environmental food availability approaches zero and illustrate the interplay between sensory and metabolic perception of nutrient availability in regulating behavioral state.

  19. Diffusive and Metabolic Constraints to Photosynthesis in Quinoa during Drought and Salt Stress

    Directory of Open Access Journals (Sweden)

    Dilek Killi

    2017-10-01

    Full Text Available Quinoa (Chenopodium quinoa Willd. has been proposed as a hardy alternative to traditional grain crops in areas with warm-to-hot climates that are likely to experience increased drought and salt stress in the future. We characterised the diffusive and metabolic limitations to photosynthesis in quinoa exposed to drought and salt stress in isolation and combination. Drought-induced pronounced stomatal and mesophyll limitations to CO2 transport, but quinoa retained photosynthetic capacity and photosystem II (PSII performance. Saline water (300 mmol NaCl-equivalent to 60% of the salinity of sea-water supplied in identical volumes to the irrigation received by the control and drought treatments induced similar reductions in stomatal and mesophyll conductance, but also reduced carboxylation of ribulose-1,5-bisphosphate carboxylase/oxygenase, regeneration of ribulose-1,5-bisphosphate, increased non-photochemical dissipation of energy as heat and impaired PSII electron transport. This suggests that ion toxicity reduced PN via interference with photosynthetic enzymes and degradation of pigment–protein complexes within the thylakoid membranes. The results of this study demonstrate that the photosynthetic physiology of quinoa is resistant to the effects of drought, but quinoa may not be a suitable crop for areas subject to strong salt stress or irrigation with a concentration of saline water equivalent to a 300 mmol NaCl solution.

  20. Diffusive and Metabolic Constraints to Photosynthesis in Quinoa during Drought and Salt Stress

    Science.gov (United States)

    Killi, Dilek; Haworth, Matthew

    2017-01-01

    Quinoa (Chenopodium quinoa Willd.) has been proposed as a hardy alternative to traditional grain crops in areas with warm-to-hot climates that are likely to experience increased drought and salt stress in the future. We characterised the diffusive and metabolic limitations to photosynthesis in quinoa exposed to drought and salt stress in isolation and combination. Drought-induced pronounced stomatal and mesophyll limitations to CO2 transport, but quinoa retained photosynthetic capacity and photosystem II (PSII) performance. Saline water (300 mmol NaCl-equivalent to 60% of the salinity of sea-water) supplied in identical volumes to the irrigation received by the control and drought treatments induced similar reductions in stomatal and mesophyll conductance, but also reduced carboxylation of ribulose-1,5-bisphosphate carboxylase/oxygenase, regeneration of ribulose-1,5-bisphosphate, increased non-photochemical dissipation of energy as heat and impaired PSII electron transport. This suggests that ion toxicity reduced PN via interference with photosynthetic enzymes and degradation of pigment–protein complexes within the thylakoid membranes. The results of this study demonstrate that the photosynthetic physiology of quinoa is resistant to the effects of drought, but quinoa may not be a suitable crop for areas subject to strong salt stress or irrigation with a concentration of saline water equivalent to a 300 mmol NaCl solution. PMID:29039809

  1. Chronic sleep fragmentation during the sleep period induces hypothalamic endoplasmic reticulum stress and PTP1b-mediated leptin resistance in male mice.

    Science.gov (United States)

    Hakim, Fahed; Wang, Yang; Carreras, Alba; Hirotsu, Camila; Zhang, Jing; Peris, Eduard; Gozal, David

    2015-01-01

    Sleep fragmentation (SF) is highly prevalent and may constitute an important contributing factor to excessive weight gain and the metabolic syndrome. Increased endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR) leading to the attenuation of leptin receptor signaling in the hypothalamus leads to obesity and metabolic dysfunction. Mice were exposed to SF and sleep control (SC) for varying periods of time during which ingestive behaviors were monitored. UPR pathways and leptin receptor signaling were assessed in hypothalami. To further examine the mechanistic role of ER stress, changes in leptin receptor (ObR) signaling were also examined in wild-type mice treated with the ER chaperone tauroursodeoxycholic acid (TUDCA), as well as in CHOP-/+ transgenic mice. Fragmented sleep in male mice induced increased food intake starting day 3 and thereafter, which was preceded by increases in ER stress and activation of all three UPR pathways in the hypothalamus. Although ObR expression was unchanged, signal transducer and activator of transcription 3 (STAT3) phosphorylation was decreased, suggesting reduced ObR signaling. Unchanged suppressor of cytokine signaling-3 (SOCS3) expression and increases in protein-tyrosine phosphatase 1B (PTP1B) expression and activity emerged with SF, along with reduced p-STAT3 responses to exogenous leptin. SF-induced effects were reversed following TUDCA treatment and were absent in CHOP -/+ mice. SF induces hyperphagic behaviors and reduced leptin signaling in hypothalamus that are mediated by activation of ER stress, and ultimately lead to increased PTP1B activity. ER stress pathways are therefore potentially implicated in SF-induced weight gain and metabolic dysfunction, and may represent a viable therapeutic target. © 2014 Associated Professional Sleep Societies, LLC.

  2. [Association of occupational chronic psychological stress with heat shock protein 70 in serum and tumor necrosis factor-alpha expression levels].

    Science.gov (United States)

    Qiu, F Y; Tian, R L; Qiang, Y; He, K P; Liu, H R; Zhang, W; Song, H

    2016-05-01

    To investigate the relationship between occupational chronic psychological stress with heat shock protein 70 (HSP70) and tumor necrosis factor-alpha (TNF-α). Using case-control study design, we selected 622 cases in 20 to 60 years old and unrelated patients with metabolic syndrome as the case group between October 2011 and October 2012 at two hospitals of Ningxia hui autonomous region. At the same time, we selected 600 healthy people from health check-up crowd in the above two hospitals as control group. The the research objects were sex, age, nation, height, weight, smoking, drinking, exercise, and so on. After informed consent, all the research objects were collected fasting venous blood samples 10 ml in order to proceed laboratory testing of biochemical indicators. The expression of HSP70 and TNF-α in serum was determined by ELISA. Using the revised occupational stress inventory (OSI) to survey the occupational chronic psychological stress factors and stress level of research object. The correlation of occupational chronic psychological stress scores with HSP70 and TNF-α was investigated by partial correlation analysis. We built a multivariate linear regression equation With HSP70 and TNF alpha as the independent variable and occupational chronic psychological stress scores as the dependent variable, using equation of the determination coefficient R(2) to judge the degree of fitting equation. The total points of chronic stress factors in all respondents was (136.65±16.19). Among them, the mild stress level group was 313, moderate was 588, severe was 321, chronic heart stress factors scores were (119.96±13.30), (135.33±3.23), (155.33±13.55) points, respectively. In the case group subjects, the expression of HSP70 in mild, moderate and severe occupational chronic psychological stress levels were (29.88±30.08), (36.38±30.08), (27.16±23.77) ng/ml (F=6.85, P=0.001). The control group were (27.64±9.89), (39.78±29.77), (3.94±3.09) ng/ml (F=125.71, Pstress

  3. Effect of Fenugreek (Trigonella Foenum-Graecum) Supplementation on Radiation-Induced Oxidative Stress in Liver and Kidney of Rats

    Energy Technology Data Exchange (ETDEWEB)

    EI-Tawil, G A [Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo (Egypt)

    2009-07-01

    Whole body exposure to ionizing radiation provokes oxidative damage, organ dysfunction and metabolic disturbances. Fenugreek (Trigonella foenumgraecum L. Leguminosae), one of the oldest medicinal plants rich in polyphenolic compounds is known to possess antioxidant properties. The present study was designed to determine the possible protective effect of fenugreek, against {gamma}-radiation-induced oxidative stress in liver and kidney tissues of rats. In parallel, the alteration in the activity of serum alkaline phosphatase (ALP), aspartate aminotransferase (AST) and alanine aminotransferase (ALT), as markers of liver function, creatinine and urea levels as markers of kidney function. In addition, serum glucose and insulin levels were determined as markers for carbohydrate metabolism. Irradiated rats were whole body exposed to 3.5 Gy (Acute dose) {gamma}-radiations. Fenugreek-treated irradiated rats received 1g fenugreek seed powder/kg body weight/day, by gavages, during 7 days before irradiation. Animals were sacrificed on the 1 sl day after irradiation. The results obtained demonstrated that exposure to ionizing radiation induced significant decreases in SOD and CAT activities and GSH content associated to significant increase of TBARS levels in liver and kidney. Fenugreek treatment has significantly attenuated radiation-induced oxidative stress in both tissues, which was substantiated by the significant amelioration of serum ALP, AST and ALT activities, creatinine, urea, glucose, and insulin levels. It could be concluded that fenugreek would protect from oxidative damage and metabolic disturbances induced by ionizing irradiation.

  4. Effect of Fenugreek (Trigonella Foenum-Graecum) Supplementation on Radiation-Induced Oxidative Stress in Liver and Kidney of Rats

    International Nuclear Information System (INIS)

    EI-Tawil, G.A.

    2009-01-01

    Whole body exposure to ionizing radiation provokes oxidative damage, organ dysfunction and metabolic disturbances. Fenugreek (Trigonella foenumgraecum L. Leguminosae), one of the oldest medicinal plants rich in polyphenolic compounds is known to possess antioxidant properties. The present study was designed to determine the possible protective effect of fenugreek, against γ-radiation-induced oxidative stress in liver and kidney tissues of rats. In parallel, the alteration in the activity of serum alkaline phosphatase (ALP), aspartate aminotransferase (AST) and alanine aminotransferase (ALT), as markers of liver function, creatinine and urea levels as markers of kidney function. In addition, serum glucose and insulin levels were determined as markers for carbohydrate metabolism. Irradiated rats were whole body exposed to 3.5 Gy (Acute dose) γ-radiations. Fenugreek-treated irradiated rats received 1g fenugreek seed powder/kg body weight/day, by gavages, during 7 days before irradiation. Animals were sacrificed on the 1 sl day after irradiation. The results obtained demonstrated that exposure to ionizing radiation induced significant decreases in SOD and CAT activities and GSH content associated to significant increase of TBARS levels in liver and kidney. Fenugreek treatment has significantly attenuated radiation-induced oxidative stress in both tissues, which was substantiated by the significant amelioration of serum ALP, AST and ALT activities, creatinine, urea, glucose, and insulin levels. It could be concluded that fenugreek would protect from oxidative damage and metabolic disturbances induced by ionizing irradiation

  5. Encapsulation-Induced Stress Helps Saccharomyces cerevisiae Resist Convertible Lignocellulose Derived Inhibitors

    Directory of Open Access Journals (Sweden)

    Johan O. Westman

    2012-09-01

    Full Text Available The ability of macroencapsulated Saccharomyces cerevisiae CBS8066 to withstand readily and not readily in situ convertible lignocellulose-derived inhibitors was investigated in anaerobic batch cultivations. It was shown that encapsulation increased the tolerance against readily convertible furan aldehyde inhibitors and to dilute acid spruce hydrolysate, but not to organic acid inhibitors that cannot be metabolized anaerobically. Gene expression analysis showed that the protective effect arising from the encapsulation is evident also on the transcriptome level, as the expression of the stress-related genes YAP1, ATR1 and FLR1 was induced upon encapsulation. The transcript levels were increased due to encapsulation already in the medium without added inhibitors, indicating that the cells sensed low stress level arising from the encapsulation itself. We present a model, where the stress response is induced by nutrient limitation, that this helps the cells to cope with the increased stress added by a toxic medium, and that superficial cells in the capsules degrade convertible inhibitors, alleviating the inhibition for the cells deeper in the capsule.

  6. Radiation-induced acute necrosis of the pancreatic islet and the diabetic syndrome in the golden hamster (Mesocricetus auratus)

    Energy Technology Data Exchange (ETDEWEB)

    Tsubouchi, S; Suzuki, H; Ariyoshi, H [Aichi Cancer Center, Nagoya (Japan); Matsuzawa, T [Tohoku Univ., Sendai (Japan). Research Inst. for Tuberculosis and Cancer

    1981-07-01

    Exposure of golden hamsters to 35 000 rad of X-rays induced acute and specific necrosis of the cells of the islets of Langerhans of the pancreas within 4 hours, whereas no other tissue revealed any drastic changes which would lead to a critical illness until 36 hours. Animals began to show the characteristic signs of diabetes, that is, hyperglycaemia, hyperkalaemia, ketonemia, and acidosis at 12 hours and these continued until death, 56+-8 hours later. These were accompanied by the disappearance of ..beta..-cell granules and a decrease of plasma insulin. Treatment of irradiated animals with injections of insulin resulted in a reduction in high blood glucose and the prolongation of survival time up to 5 days, which is comparable to the survival time when the cause of death is gastrointestinal. It is concluded that this radiation-induced diabetic syndrome resulted from acute necrosis of the cells of the islets of Langerhans, a previously unreported lethal effect of radiation in golden hamsters.

  7. Retinal metabolic events in preconditioning light stress as revealed by wide-spectrum targeted metabolomics.

    Science.gov (United States)

    de la Barca, Juan Manuel Chao; Huang, Nuan-Ting; Jiao, Haihan; Tessier, Lydie; Gadras, Cédric; Simard, Gilles; Natoli, Riccardo; Tcherkez, Guillaume; Reynier, Pascal; Valter, Krisztina

    2017-01-01

    Light is the primary stimulus for vision, but may also cause damage to the retina. Pre-exposing the retina to sub-lethal amount of light (or preconditioning) improves chances for retinal cells to survive acute damaging light stress. This study aims at exploring the changes in retinal metabolome after mild light stress and identifying mechanisms that may be involved in preconditioning. Retinas from 12 rats exposed to mild light stress (1000 lux × for 12 h) and 12 controls were collected one and seven days after light stress (LS). One retina was used for targeted metabolomics analysis using the Biocrates p180 kit while the fellow retina was used for histological and immunohistochemistry analysis. Immunohistochemistry confirmed that in this experiment, a mild LS with retinal immune response and minimal photoreceptor loss occurred. Compared to controls, LS induced an increased concentration in phosphatidylcholines. The concentration in some amino acids and biogenic amines, particularly those related to the nitric oxide pathway (like asymmetric dimethylarginine (ADMA), arginine and citrulline) also increased 1 day after LS. 7 days after LS, the concentration in two sphingomyelins and phenylethylamine was found to be higher. We further found that in controls, retina metabolome was different between males and females: male retinas had an increased concentration in tyrosine, acetyl-ornithine, phosphatidylcholines and (acyl)-carnitines. Besides retinal sexual metabolic dimorphism, this study shows that preconditioning is mostly associated with re-organisation of lipid metabolism and changes in amino acid composition, likely reflecting the involvement of arginine-dependent NO signalling.

  8. Chronic mitochondrial uncoupling treatment prevents acute cold-induced oxidative stress in birds.

    Science.gov (United States)

    Stier, Antoine; Massemin, Sylvie; Criscuolo, François

    2014-12-01

    Endotherms have evolved two major types of thermogenesis that allow them to actively produce heat in response to cold exposure, either through muscular activity (i.e. shivering thermogenesis) or through futile electro-chemical cycles (i.e. non-shivering thermogenesis). Amongst the latter, mitochondrial uncoupling is of key importance because it is suggested to drive heat production at a low cost in terms of oxidative stress. While this has been experimentally shown in mammals, the oxidative stress consequences of cold exposure and mitochondrial uncoupling are clearly less understood in the other class of endotherms, the birds. We compared metabolic and oxidative stress responses of zebra finches chronically treated with or without a chemical mitochondrial uncoupler (2,4-dinitrophenol: DNP), undergoing an acute (24 h) and a chronic (4 weeks) cold exposure (12 °C). We predicted that control birds should present at least a transient elevation of oxidative stress levels in response to cold exposure. This oxidative stress cost should be more pronounced in control birds than in DNP-treated birds, due to their lower basal uncoupling state. Despite similar increase in metabolism, control birds presented elevated levels of DNA oxidative damage in response to acute (but not chronic) cold exposure, while DNP-treated birds did not. Plasma antioxidant capacity decreased overall in response to chronic cold exposure. These results show that acute cold exposure increases oxidative stress in birds. However, uncoupling mitochondrial functioning appears as a putative compensatory mechanism preventing cold-induced oxidative stress. This result confirms previous observations in mice and underlines non-shivering thermogenesis as a putative key mechanism for endotherms in mounting a response to cold at a low oxidative cost.

  9. Diabetes subdiagnosticado e necrose miocárdica: preditores de hiperglicemia no infarto do miocárdio Unrecognized diabetes and myocardial necrosis: predictors of hyperglycemia in myocardial infarction

    Directory of Open Access Journals (Sweden)

    Renata Teixeira Ladeira

    2013-05-01

    Full Text Available FUNDAMENTO: Hiperglicemia na fase aguda do infarto do miocárdio é importante fator prognóstico. Entretanto, sua fisiopatologia não está completamente elucidada. OBJETIVO: Analisar simultaneamente correlação entre hiperglicemia e marcadores bioquímicos relacionados ao estresse,metabolismo glicídico e lipídico, coagulação, inflamação e necrose miocárdica. MÉTODOS: Oitenta pacientes com infarto agudo do miocárdio foram incluídos prospectivamente. Os parâmetros analisados foram: glicose, hormônios do estresse (cortisol e norepinefrina, fatores do metabolismo glicídico [hemoglobina glicada (HbA1c, insulina], lipoproteínas (colesterol total, LDL, HDL, LDL eletronegativa minimamente modificada e adiponectina, glicerídeos (triglicérides, VLDL e ácido graxo, fatores da coagulação (fator VII, fibrinogênio,inibidor do ativador do plasminogênio-1, inflamação (proteína C reativa ultrassensível e necrose miocárdica (CK-MB e troponina. Variáveis contínuas foram convertidas em graus de pertinência por intermédio de lógica fuzzy. RESULTADOS: Houve correlação significativa entre hiperglicemia e metabolismo glicídico (p BACKGROUND: Hyperglycemia in the acute phase of myocardial infarction is an important prognostic factor. However, its pathophysiology is not fully understood. OBJECTIVE: To analyze simultaneously the correlation between hyperglycemia and biochemical markers related to stress, glucose and lipid metabolism, coagulation, inflammation, and myocardial necrosis. METHODS Eighty patients with acute myocardial infarction were prospectively included. The following parameters were analyzed: blood glucose; stress hormones (cortisol and norepinephrine; glucose metabolism factors [glycated hemoglobin (HbA1c; insulin]; lipoproteins (total cholesterol, LDL, HDL, minimally modified electronegative LDL, and adiponectin; glycerides (triglycerides, VLDL and fatty acids; coagulation factors (factor VII, fibrinogen, plasminogen

  10. The lipid lowering drug lovastatin protects against doxorubicin-induced hepatotoxicity

    International Nuclear Information System (INIS)

    Henninger, Christian; Huelsenbeck, Johannes; Huelsenbeck, Stefanie; Grösch, Sabine; Schad, Arno; Lackner, Karl J.; Kaina, Bernd; Fritz, Gerhard

    2012-01-01

    Liver is the main detoxifying organ and therefore the target of high concentrations of genotoxic compounds, such as environmental carcinogens and anticancer drugs. Here, we investigated the usefulness of lovastatin, which is nowadays widely used for lipid lowering purpose, as a hepatoprotective drug following the administration of the anthracycline derivative doxorubicin in vivo. To this end, BALB/c mice were exposed to either a single high dose or three consecutive low doses of doxorubicin. Acute and subacute hepatotoxicities were analyzed with or without lovastatin co-treatment. Lovastatin protected the liver against doxorubicin-induced acute pro-inflammatory and pro-fibrotic stress responses as indicated by an attenuated mRNA expression of tumor necrosis factor alpha (TNFα) and connective tissue growth factor (CTGF), respectively. Hepatoprotection by lovastatin was due to a reduced induction of DNA damage following doxorubicin treatment. The statin also mitigated subacute anthracycline-provoked hepatotoxicity as shown on the level of doxorubicin- and epirubicin-stimulated CTGF mRNA expression as well as histopathologically detectable fibrosis and serum concentration of marker enzymes of hepatotoxicity (GPT/GLDH). Kidney damage following doxorubicin exposure was not detectable under our experimental conditions. Moreover, lovastatin showed multiple inhibitory effects on doxorubicin-triggered hepatic expression of genes involved in oxidative stress response, drug transport, DNA repair, cell cycle progression and cell death. Doxorubicin also stimulated the formation of ceramides. Ceramide production, however, was not blocked by lovastatin, indicating that hepatoprotection by lovastatin is independent of the sphingolipid metabolism. Overall, the data show that lovastatin is hepatoprotective following genotoxic stress induced by anthracyclines. Based on the data, we hypothesize that statins might be suitable to lower hepatic injury following anthracycline

  11. The lipid lowering drug lovastatin protects against doxorubicin-induced hepatotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Henninger, Christian [Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz (Germany); Institute of Toxicology, University Duesseldorf, Medical Faculty, Universitätsstrasse 1, D-40225 Duesseldorf (Germany); Huelsenbeck, Johannes; Huelsenbeck, Stefanie [Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz (Germany); Grösch, Sabine [Institute of Clinical Pharmacology, Johann Wolfgang Goethe University Frankfurt, Theodor Stern Kai 7, D-60590 Frankfurt/Main (Germany); Schad, Arno [Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz (Germany); Lackner, Karl J. [Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz (Germany); Kaina, Bernd [Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz (Germany); Fritz, Gerhard, E-mail: fritz@uni-duesseldorf.de [Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz (Germany); Institute of Toxicology, University Duesseldorf, Medical Faculty, Universitätsstrasse 1, D-40225 Duesseldorf (Germany)

    2012-05-15

    Liver is the main detoxifying organ and therefore the target of high concentrations of genotoxic compounds, such as environmental carcinogens and anticancer drugs. Here, we investigated the usefulness of lovastatin, which is nowadays widely used for lipid lowering purpose, as a hepatoprotective drug following the administration of the anthracycline derivative doxorubicin in vivo. To this end, BALB/c mice were exposed to either a single high dose or three consecutive low doses of doxorubicin. Acute and subacute hepatotoxicities were analyzed with or without lovastatin co-treatment. Lovastatin protected the liver against doxorubicin-induced acute pro-inflammatory and pro-fibrotic stress responses as indicated by an attenuated mRNA expression of tumor necrosis factor alpha (TNFα) and connective tissue growth factor (CTGF), respectively. Hepatoprotection by lovastatin was due to a reduced induction of DNA damage following doxorubicin treatment. The statin also mitigated subacute anthracycline-provoked hepatotoxicity as shown on the level of doxorubicin- and epirubicin-stimulated CTGF mRNA expression as well as histopathologically detectable fibrosis and serum concentration of marker enzymes of hepatotoxicity (GPT/GLDH). Kidney damage following doxorubicin exposure was not detectable under our experimental conditions. Moreover, lovastatin showed multiple inhibitory effects on doxorubicin-triggered hepatic expression of genes involved in oxidative stress response, drug transport, DNA repair, cell cycle progression and cell death. Doxorubicin also stimulated the formation of ceramides. Ceramide production, however, was not blocked by lovastatin, indicating that hepatoprotection by lovastatin is independent of the sphingolipid metabolism. Overall, the data show that lovastatin is hepatoprotective following genotoxic stress induced by anthracyclines. Based on the data, we hypothesize that statins might be suitable to lower hepatic injury following anthracycline

  12. Manifestations of Renal Impairment in Fructose-induced Metabolic Syndrome.

    Science.gov (United States)

    Bratoeva, Kameliya; Stoyanov, George S; Merdzhanova, Albena; Radanova, Mariya

    2017-11-07

    Introduction International studies show an increased incidence of chronic kidney disease (CKD) in patients with metabolic syndrome (MS). It is assumed that the major components of MS - obesity, insulin resistance, dyslipidemia, and hypertension - are linked to renal damage through the systemic release of several pro-inflammatory mediators, such as uric acid (UA), C-reactive protein (CRP), and generalized oxidative stress. The aim of the present study was to investigate the extent of kidney impairment and manifestations of dysfunction in rats with fructose-induced MS. Methods We used a model of high-fructose diet in male Wistar rats with 35% glucose-fructose corn syrup in drinking water over a duration of 16 weeks. The experimental animals were divided into two groups: control and high-fructose drinking (HFD). Serum samples were obtained from both groups for laboratory study, and the kidneys were extracted for observation via light microscopy examination. Results All HFD rats developed obesity, hyperglycemia, hypertriglyceridemia, increased levels of CRP and UA (when compared to the control group), and oxidative stress with high levels of malondialdehyde and low levels of reduced glutathione. The kidneys of the HFD group revealed a significant increase in kidney weight in the absence of evidence of renal dysfunction and electrolyte disturbances. Under light microscopy, the kidneys of the HFD group revealed amyloid deposits in Kimmelstiel-Wilson-like nodules and the walls of the large caliber blood vessels, early-stage atherosclerosis with visible ruptures and scarring, hydropic change (vacuolar degeneration) in the epithelial cells covering the proximal tubules, and increased eosinophilia in the distant tubules when compared to the control group. Conclusion Under the conditions of a fructose-induced metabolic syndrome, high serum UA and CRP correlate to the development of early renal disorders without a clinical manifestation of renal dysfunction. These

  13. Adaptive stress response to menadione-induced oxidative stress in Saccharomyces cerevisiae KNU5377.

    Science.gov (United States)

    Kim, Il-Sup; Sohn, Ho-Yong; Jin, Ingnyol

    2011-10-01

    The molecular mechanisms involved in the ability of yeast cells to adapt and respond to oxidative stress are of great interest to the pharmaceutical, medical, food, and fermentation industries. In this study, we investigated the time-dependent, cellular redox homeostasis ability to adapt to menadione-induced oxidative stress, using biochemical and proteomic approaches in Saccharomyces cerevisiae KNU5377. Time-dependent cell viability was inversely proportional to endogenous amounts of ROS measured by a fluorescence assay with 2',7'-dichlorofluorescin diacetate (DCFHDA), and was hypersensitive when cells were exposed to the compound for 60 min. Morphological changes, protein oxidation and lipid peroxidation were also observed. To overcome the unfavorable conditions due to the presence of menadione, yeast cells activated a variety of cell rescue proteins including antioxidant enzymes, molecular chaperones, energy-generating metabolic enzymes, and antioxidant molecules such as trehalose. Thus, these results show that menadione causes ROS generation and high accumulation of cellular ROS levels, which affects cell viability and cell morphology and there is a correlation between resistance to menadione and the high induction of cell rescue proteins after cells enter into this physiological state, which provides a clue about the complex and dynamic stress response in yeast cells.

  14. Respiratory metabolism and calorie restriction relieve persistent endoplasmic reticulum stress induced by calcium shortage in yeast

    DEFF Research Database (Denmark)

    Busti, Stefano; Mapelli, Valeria; Tripodi, Farida

    2016-01-01

    respiration. Calcium homeostasis, protein biosynthesis and the unfolded protein response are tightly intertwined and the consequences of facing calcium starvation are determined by whether cellular energy production is balanced with demands for anabolic functions. Our findings confirm that the connections...... reticulum (ER stress) triggers the unfolded protein response (UPR) and generates a state of oxidative stress that decreases cell viability. These effects are severe during growth on rapidly fermentable carbon sources and can be mitigated by decreasing the protein synthesis rate or by inducing cellular...

  15. [Stress-induced cellular adaptive mutagenesis].

    Science.gov (United States)

    Zhu, Linjiang; Li, Qi

    2014-04-01

    The adaptive mutations exist widely in the evolution of cells, such as antibiotic resistance mutations of pathogenic bacteria, adaptive evolution of industrial strains, and cancerization of human somatic cells. However, how these adaptive mutations are generated is still controversial. Based on the mutational analysis models under the nonlethal selection conditions, stress-induced cellular adaptive mutagenesis is proposed as a new evolutionary viewpoint. The hypothetic pathway of stress-induced mutagenesis involves several intracellular physiological responses, including DNA damages caused by accumulation of intracellular toxic chemicals, limitation of DNA MMR (mismatch repair) activity, upregulation of general stress response and activation of SOS response. These responses directly affect the accuracy of DNA replication from a high-fidelity manner to an error-prone one. The state changes of cell physiology significantly increase intracellular mutation rate and recombination activity. In addition, gene transcription under stress condition increases the instability of genome in response to DNA damage, resulting in transcription-associated DNA mutagenesis. In this review, we summarize these two molecular mechanisms of stress-induced mutagenesis and transcription-associated DNA mutagenesis to help better understand the mechanisms of adaptive mutagenesis.

  16. Coenzyme Q Metabolism Is Disturbed in High Fat Diet-Induced Non Alcoholic Fatty Liver Disease in Rats

    Directory of Open Access Journals (Sweden)

    Kathleen M Botham

    2012-02-01

    Full Text Available Oxidative stress is believed to be a major contributory factor in the development of non alcoholic fatty liver disease (NAFLD, the most common liver disorder worldwide. In this study, the effects of high fat diet-induced NAFLD on Coenzyme Q (CoQ metabolism and plasma oxidative stress markers in rats were investigated. Rats were fed a standard low fat diet (control or a high fat diet (57% metabolizable energy as fat for 18 weeks. The concentrations of total (reduced + oxidized CoQ9 were increased by > 2 fold in the plasma of animals fed the high fat diet, while those of total CoQ10 were unchanged. Reduced CoQ levels were raised, but oxidized CoQ levels were not, thus the proportion in the reduced form was increased by about 75%. A higher percentage of plasma CoQ9 as compared to CoQ10 was in the reduced form in both control and high fat fed rats. Plasma protein thiol (SH levels were decreased in the high fat-fed rats as compared to the control group, but concentrations of lipid hydroperoxides and low density lipoprotein (LDL conjugated dienes were unchanged. These results indicate that high fat diet-induced NAFLD in rats is associated with altered CoQ metabolism and increased protein, but not lipid, oxidative stress.

  17. The effect of bacterial environmental and metabolic stresses on a laser-induced breakdown spectroscopy (LIBS) based identification of Escherichia coli and Streptococcus viridans.

    Science.gov (United States)

    Mohaidat, Qassem; Palchaudhuri, Sunil; Rehse, Steven J

    2011-04-01

    In this paper we investigate the effect that adverse environmental and metabolic stresses have on the laser-induced breakdown spectroscopy (LIBS) identification of bacterial specimens. Single-pulse LIBS spectra were acquired from a non-pathogenic strain of Escherichia coli cultured in two different nutrient media: a trypticase soy agar and a MacConkey agar with a 0.01% concentration of deoxycholate. A chemometric discriminant function analysis showed that the LIBS spectra acquired from bacteria grown in these two media were indistinguishable and easily discriminated from spectra acquired from two other non-pathogenic E. coli strains. LIBS spectra were obtained from specimens of a nonpathogenic E. coli strain and an avirulent derivative of the pathogen Streptococcus viridans in three different metabolic situations: live bacteria reproducing in the log-phase, bacteria inactivated on an abiotic surface by exposure to bactericidal ultraviolet irradiation, and bacteria killed via autoclaving. All bacteria were correctly identified regardless of their metabolic state. This successful identification suggests the possibility of testing specimens that have been rendered safe for handling prior to LIBS identification. This would greatly enhance personnel safety and lower the cost of a LIBS-based diagnostic test. LIBS spectra were obtained from pathogenic and non-pathogenic bacteria that were deprived of nutrition for a period of time ranging from one day to nine days by deposition on an abiotic surface at room temperature. All specimens were successfully classified by species regardless of the duration of nutrient deprivation. © 2011 Society for Applied Spectroscopy

  18. AMPKα in Exercise-Induced Substrate Metabolism and Exercise Training-Induced Metabolic and Mitochondrial Adaptations

    DEFF Research Database (Denmark)

    Fentz, Joachim

    in response to 4 weeks of voluntary running wheel exercise training. However, the acute exercise-induced increase in mRNA expression of several metabolic and mitochondrial marker genes is impaired in the mice lacking AMPKα1 and α2. In addition to the two studies and some currently unpublished data this thesis...

  19. Halobenzoquinone-Induced Alteration of Gene Expression Associated with Oxidative Stress Signaling Pathways.

    Science.gov (United States)

    Li, Jinhua; Moe, Birget; Liu, Yanming; Li, Xing-Fang

    2018-06-05

    Halobenzoquinones (HBQs) are emerging disinfection byproducts (DBPs) that effectively induce reactive oxygen species and oxidative damage in vitro. However, the impacts of HBQs on oxidative-stress-related gene expression have not been investigated. In this study, we examined alterations in the expression of 44 genes related to oxidative-stress-induced signaling pathways in human uroepithelial cells (SV-HUC-1) upon exposure to six HBQs. The results show the structure-dependent effects of HBQs on the studied gene expression. After 2 h of exposure, the expression levels of 9 to 28 genes were altered, while after 8 h of exposure, the expression levels of 29 to 31 genes were altered. Four genes ( HMOX1, NQO1, PTGS2, and TXNRD1) were significantly upregulated by all six HBQs at both exposure time points. Ingenuity pathway analysis revealed that the Nrf2 pathway was significantly responsive to HBQ exposure. Other canonical pathways responsive to HBQ exposure included GSH redox reductions, superoxide radical degradation, and xenobiotic metabolism signaling. This study has demonstrated that HBQs significantly alter the gene expression of oxidative-stress-related signaling pathways and contributes to the understanding of HBQ-DBP-associated toxicity.

  20. Oxidative stress-induced cognitive impairment in obesity can be reversed by vitamin D administration in rats.

    Science.gov (United States)

    Hajiluian, Ghazaleh; Abbasalizad Farhangi, Mahdieh; Nameni, Ghazaleh; Shahabi, Parviz; Megari-Abbasi, Mehran

    2017-07-06

    There is evidence that obesity leads to cognitive impairments via several markers of oxidative stress including glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase and malondialdehyde (MDA) in the hippocampus. Increased inflammatory markers in the brain have obesity triggering effects. In the current study we aimed to investigate the effects of vitamin D on cognitive function, nuclear factor (NF)-κB, tumor necrosis factor (TNF)-α concentration and markers of oxidative stress in the hippocampus of high-fat diet-induced obese rats. Forty male Wistar rats were divided into two groups: control diet (CD) and high-fat diet (HFD) for 16 weeks; then each group subdivided into two groups including: CD, CD + vitamin D, HFD and HFD + vitamin D. Vitamin D was administered at 500 IU/kg dosage for 5 weeks. Four weeks after supplementation, Morris water maze test was performed. NF-κB and TNF-α concentration in the hippocampus were determined using ELISA kits. Moreover, oxidative stress markers in the hippocampus including GPx, SOD, MDA and CAT concentrations were measured by spectrophotometry methods. HFD significantly increased TNF-α (P = 0.04) and NF-κB (P = 0.01) concentrations in the hippocampus compared with CD. Vitamin D treatment led to a significant reduction in hippocampus NF-κB concentrations in HFD + vitamin D group (P = 0.001); however, vitamin D had no effect on TNF-α concentrations. Moreover, HFD significantly induced oxidative stress by reducing GPx, SOD and increasing MDA concentrations in the hippocampus. Vitamin D supplementation in HFD group also significantly increased GPx, SOD and reduced MDA concentrations. Vitamin D improved hippocampus oxidative stress and inflammatory markers in HFD-induced obese rats and improved cognitive performance. Further studies are needed to better clarify the underlying mechanisms.

  1. Oxidative Stress Facilitates IFN-γ-Induced Mimic Extracellular Trap Cell Death in A549 Lung Epithelial Cancer Cells.

    Science.gov (United States)

    Lin, Chiou-Feng; Chen, Chia-Ling; Chien, Shun-Yi; Tseng, Po-Chun; Wang, Yu-Chih; Tsai, Tsung-Ting

    2016-01-01

    We previously demonstrated that IFN-γ induces an autophagy-regulated mimic extracellular trap cell death (ETosis) in A549 human lung cancer cells. Regarding reactive oxygen species (ROS) are involved in ETosis, this study investigated the role of oxidative stress. After IFN-γ stimulation, a necrosis-like cell death mimic ETosis occurred accompanied by the inhibition of cell growth, aberrant nuclear staining, and nucleosome release. ROS were generated in a time-dependent manner with an increase in NADPH oxidase component protein expression. STAT1-mediated IFN regulatory factor-1 activation was essential for upregulating ROS production. By genetically silencing p47phox, IFN-γ-induced ROS and mimic ETosis were significantly attenuated. This mechanistic study indicated that ROS may mediate DNA damage followed by histone H3 citrullination. Furthermore, ROS promoted IFN-γ-induced mimic ETosis in cooperation with autophagy. These findings further demonstrate that ROS regulates IFN-γ-induced mimic ETosis in lung epithelial malignancy.

  2. Increased oxidative stress and its relation with collagen metabolism in knee osteoarthritis.

    Science.gov (United States)

    Altindag, Ozlem; Erel, Ozcan; Aksoy, Nurten; Selek, Sahabettin; Celik, Hakim; Karaoglanoglu, Mustafa

    2007-02-01

    The purpose of this study was to determine serum oxidative/antioxidative status in patients with knee osteoarthritis and its relation with prolidase activity, which plays an important role in collagen metabolism. Serum antioxidative status was evaluated by measuring total antioxidant capacity (TAC), thiol level and catalase enzyme activity in patients with osteoarthritis and in healthy controls. Serum oxidative status was evaluated by measuring total peroxide (TP) and lipid hydroperoxide. Oxidative stress index (OSI) was calculated. Prolidase enzyme activity was measured to investigate the collagen metabolism. Serum TAC, thiol level, catalase activity and prolidase activity were significantly lower in patients than in controls (P antioxidant parameters decreased in patients with osteoarthritis; therefore, these patients may be exposed to a potent oxidative stress. Decreased collagen metabolism may be related with oxidative stress, which has a role in the ethiopathogenesis and/or in the progression of the disease.

  3. Dissecting rice polyamine metabolism under controlled long-term drought stress.

    Directory of Open Access Journals (Sweden)

    Phuc Thi Do

    Full Text Available A selection of 21 rice cultivars (Oryza sativa L. ssp. indica and japonica was characterized under moderate long-term drought stress by comprehensive physiological analyses and determination of the contents of polyamines and selected metabolites directly related to polyamine metabolism. To investigate the potential regulation of polyamine biosynthesis at the transcriptional level, the expression of 21 genes encoding enzymes involved in these pathways were analyzed by qRT-PCR. Analysis of the genomic loci revealed that 11 of these genes were located in drought-related QTL regions, in agreement with a proposed role of polyamine metabolism in rice drought tolerance. The cultivars differed widely in their drought tolerance and parameters such as biomass and photosynthetic quantum yield were significantly affected by drought treatment. Under optimal irrigation free putrescine was the predominant polyamine followed by free spermidine and spermine. When exposed to drought putrescine levels decreased markedly and spermine became predominant in all cultivars. There were no correlations between polyamine contents and drought tolerance. GC-MS analysis revealed drought-induced changes of the levels of ornithine/arginine (substrate, substrates of polyamine synthesis, proline, product of a competing pathway and GABA, a potential degradation product. Gene expression analysis indicated that ADC-dependent polyamine biosynthesis responded much more strongly to drought than the ODC-dependent pathway. Nevertheless the fold change in transcript abundance of ODC1 under drought stress was linearly correlated with the drought tolerance of the cultivars. Combining metabolite and gene expression data, we propose a model of the coordinate adjustment of polyamine biosynthesis for the accumulation of spermine under drought conditions.

  4. Successful tumour necrosis factor (TNF) blocking therapy suppresses oxidative stress and hypoxia-induced mitochondrial mutagenesis in inflammatory arthritis

    LENUS (Irish Health Repository)

    Biniecka, Monika

    2011-07-25

    Abstract Introduction To examine the effects of tumour necrosis factor (TNF) blocking therapy on the levels of early mitochondrial genome alterations and oxidative stress. Methods Eighteen inflammatory arthritis patients underwent synovial tissue oxygen (tpO2) measurements and clinical assessment of disease activity (DAS28-CRP) at baseline (T0) and three months (T3) after starting biologic therapy. Synovial tissue lipid peroxidation (4-HNE), T and B cell specific markers and synovial vascular endothelial growth factor (VEGF) were quantified by immunohistochemistry. Synovial levels of random mitochondrial DNA (mtDNA) mutations were assessed using Random Mutation Capture (RMC) assay. Results 4-HNE levels pre\\/post anti TNF-α therapy were inversely correlated with in vivo tpO2 (P < 0.008; r = -0.60). Biologic therapy responders showed a significantly reduced 4-HNE expression (P < 0.05). High 4-HNE expression correlated with high DAS28-CRP (P = 0.02; r = 0.53), tender joint count for 28 joints (TJC-28) (P = 0.03; r = 0.49), swollen joint count for 28 joints (SJC-28) (P = 0.03; r = 0.50) and visual analogue scale (VAS) (P = 0.04; r = 0.48). Strong positive association was found between the number of 4-HNE positive cells and CD4+ cells (P = 0.04; r = 0.60), CD8+ cells (P = 0.001; r = 0.70), CD20+ cells (P = 0.04; r = 0.68), CD68+ cells (P = 0.04; r = 0.47) and synovial VEGF expression (P = 0.01; r = 063). In patients whose in vivo tpO2 levels improved post treatment, significant reduction in mtDNA mutations and DAS28-CRP was observed (P < 0.05). In contrast in those patients whose tpO2 levels remained the same or reduced at T3, no significant changes for mtDNA mutations and DAS28-CRP were found. Conclusions High levels of synovial oxidative stress and mitochondrial mutation burden are strongly associated with low in vivo oxygen tension and synovial inflammation. Furthermore these significant mitochondrial genome alterations are rescued following successful anti TNF

  5. The Metabolic Syndrome, Oxidative Stress, Environment, and Cardiovascular Disease: The Great Exploration

    Science.gov (United States)

    Hutcheson, Rebecca; Rocic, Petra

    2012-01-01

    The metabolic syndrome affects 30% of the US population with increasing prevalence. In this paper, we explore the relationship between the metabolic syndrome and the incidence and severity of cardiovascular disease in general and coronary artery disease (CAD) in particular. Furthermore, we look at the impact of metabolic syndrome on outcomes of coronary revascularization therapies including CABG, PTCA, and coronary collateral development. We also examine the association between the metabolic syndrome and its individual component pathologies and oxidative stress. Related, we explore the interaction between the main external sources of oxidative stress, cigarette smoke and air pollution, and metabolic syndrome and the effect of this interaction on CAD. We discuss the apparent lack of positive effect of antioxidants on cardiovascular outcomes in large clinical trials with emphasis on some of the limitations of these trials. Finally, we present evidence for successful use of antioxidant properties of pharmacological agents, including metformin, statins, angiotensin II type I receptor blockers (ARBs), and angiotensin II converting enzyme (ACE) inhibitors, for prevention and treatment of the cardiovascular complications of the metabolic syndrome. PMID:22829804

  6. The Metabolic Syndrome, Oxidative Stress, Environment, and Cardiovascular Disease: The Great Exploration

    Directory of Open Access Journals (Sweden)

    Rebecca Hutcheson

    2012-01-01

    Full Text Available The metabolic syndrome affects 30% of the US population with increasing prevalence. In this paper, we explore the relationship between the metabolic syndrome and the incidence and severity of cardiovascular disease in general and coronary artery disease (CAD in particular. Furthermore, we look at the impact of metabolic syndrome on outcomes of coronary revascularization therapies including CABG, PTCA, and coronary collateral development. We also examine the association between the metabolic syndrome and its individual component pathologies and oxidative stress. Related, we explore the interaction between the main external sources of oxidative stress, cigarette smoke and air pollution, and metabolic syndrome and the effect of this interaction on CAD. We discuss the apparent lack of positive effect of antioxidants on cardiovascular outcomes in large clinical trials with emphasis on some of the limitations of these trials. Finally, we present evidence for successful use of antioxidant properties of pharmacological agents, including metformin, statins, angiotensin II type I receptor blockers (ARBs, and angiotensin II converting enzyme (ACE inhibitors, for prevention and treatment of the cardiovascular complications of the metabolic syndrome.

  7. The role of oxidative stress on the pathophysiology of metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Fabiane Valentini Francisqueti

    Full Text Available Summary Metabolic syndrome (MetS has a high prevalence around the world. Considering the components used to classify MetS, it is clear that it is closely related to obesity. These two conditions begin with an increase in abdominal adipose tissue, which is metabolically more active, containing a greater amount of resident macrophages compared to other fat deposits. Abdominal adiposity promotes inflammation and oxidative stress, which are precursors of various complications involving MetS components, namely insulin resistance, hypertension and hyperlipidemia. One way to block the effects of oxidative stress would be through the antioxidant defense system, which offsets the excess free radicals. It is known that individuals with metabolic syndrome and obesity have high consumption of fats and sugars originated from processed foods containing high levels of sodium as well as low intake of fruits and vegetables, thus maintaining a state of oxidative stress, that can speed up the onset of MetS. Healthy eating habits could prevent or delay MetS by adding antioxidant-rich foods into the diet.

  8. Interleukin-4 inhibits both paracrine and autocrine tumor necrosis factor-alpha-induced proliferation of B chronic lymphocytic leukemia cells

    NARCIS (Netherlands)

    van Kooten, C.; Rensink, I.; Aarden, L.; van Oers, R.

    1992-01-01

    The proliferative response of purified malignant B cells from 26 patients with chronic lymphocytic leukemia (CLL) was investigated in vitro. In the majority of these patients, a proliferative response could be induced by the combination of tumor necrosis factor (TNF)-alpha and PMA. The concentration

  9. Obesity-Induced Metabolic Stress Leads to Biased Effector Memory CD4+ T Cell Differentiation via PI3K p110δ-Akt-Mediated Signals.

    Science.gov (United States)

    Mauro, Claudio; Smith, Joanne; Cucchi, Danilo; Coe, David; Fu, Hongmei; Bonacina, Fabrizia; Baragetti, Andrea; Cermenati, Gaia; Caruso, Donatella; Mitro, Nico; Catapano, Alberico L; Ammirati, Enrico; Longhi, Maria P; Okkenhaug, Klaus; Norata, Giuseppe D; Marelli-Berg, Federica M

    2017-03-07

    Low-grade systemic inflammation associated to obesity leads to cardiovascular complications, caused partly by infiltration of adipose and vascular tissue by effector T cells. The signals leading to T cell differentiation and tissue infiltration during obesity are poorly understood. We tested whether saturated fatty acid-induced metabolic stress affects differentiation and trafficking patterns of CD4 + T cells. Memory CD4 + T cells primed in high-fat diet-fed donors preferentially migrated to non-lymphoid, inflammatory sites, independent of the metabolic status of the hosts. This was due to biased CD4 + T cell differentiation into CD44 hi -CCR7 lo -CD62L lo -CXCR3 + -LFA1 + effector memory-like T cells upon priming in high-fat diet-fed animals. Similar phenotype was observed in obese subjects in a cohort of free-living people. This developmental bias was independent of any crosstalk between CD4 + T cells and dendritic cells and was mediated via direct exposure of CD4 + T cells to palmitate, leading to increased activation of a PI3K p110δ-Akt-dependent pathway upon priming. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  10. Leptin ameliorates ischemic necrosis of the femoral head in rats with obesity induced by a high-fat diet.

    Science.gov (United States)

    Zhou, Lu; Jang, Kyu Yun; Moon, Young Jae; Wagle, Sajeev; Kim, Kyoung Min; Lee, Kwang Bok; Park, Byung-Hyun; Kim, Jung Ryul

    2015-03-23

    Obesity is a risk factor for ischemic necrosis of the femoral head (INFH). The purpose of this study was to determine if leptin treatment of INFH stimulates new bone formation to preserve femoral head shape in rats with diet-induced obesity. Rats were fed a high-fat diet (HFD) or normal chow diet (NCD) for 16 weeks to induce progressive development of obesity. Avascular necrosis of the femoral head (AVN) was surgically induced. Adenovirus-mediated introduction of the leptin gene was by intravenous injection 2 days before surgery-induced AVN. At 6 weeks post-surgery, radiologic and histomorphometric assessments were performed. Leptin signaling in tissues was examined by Western blot. Osteogenic markers were analyzed by real-time RT-PCR. Radiographs showed better preservation of femoral head architecture in the HFD-AVN-Leptin group than the HFD-AVN and HFD-AVN-LacZ groups. Histology and immunohistochemistry revealed the HFD-AVN-Leptin group had significantly increased osteoblastic proliferation and vascularity in infarcted femoral heads compared with the HFD-AVN and HFD-AVN-LacZ groups. Intravenous injection of leptin enhanced serum VEGF levels and activated HIF-1α pathways. Runx 2 and its target genes were significantly upregulated in the HFD-AVN-Leptin group. These results indicate that leptin resistance is important in INFH pathogenesis. Leptin therapy could be a new strategy for INFH.

  11. Perinatal BPA Exposure Induces Hyperglycemia, Oxidative Stress and Decreased Adiponectin Production in Later Life of Male Rat Offspring

    Directory of Open Access Journals (Sweden)

    Shunzhe Song

    2014-04-01

    Full Text Available The main object of the present study was to explore the effect of perinatal bisphenol A (BPA exposure on glucose metabolism in early and later life of male rat offspring, and to establish the potential mechanism of BPA-induced dysglycemia. Pregnant rats were treated with either vehicle or BPA by drinking water at concentrations of 1 and 10 µg/mL BPA from gestation day 6 through the end of lactation. We measured the levels of fasting serum glucose, insulin, adiponectin and parameters of oxidative stress on postnatal day (PND 50 and PND100 in male offspring, and adiponectin mRNA and protein expression in adipose tissue were also examined. Our results showed that perinatal exposure to 1 or 10 µg/mL BPA induced hyperglycemia with insulin resistance on PND100, but only 10 µg/mL BPA exposure had similar effects as early as PND50. In addition, increased oxidative stress and decreased adiponectin production were also observed in BPA exposed male offspring. Our findings indicated that perinatal exposure to BPA resulted in abnormal glucose metabolism in later life of male offspring, with an earlier and more exacerbated effect at higher doses. Down-regulated expression of adiponectin gene and increased oxidative stress induced by BPA may be associated with insulin resistance.

  12. Quantitative proteomic analysis of cabernet sauvignon grape cells exposed to thermal stresses reveals alterations in sugar and phenylpropanoid metabolism.

    Science.gov (United States)

    George, Iniga S; Pascovici, Dana; Mirzaei, Mehdi; Haynes, Paul A

    2015-09-01

    Grapes (Vitis vinifera) are a valuable fruit crop and wine production is a major industry. Global warming and expanded range of cultivation will expose grapes to more temperature stresses in future. Our study investigated protein level responses to abiotic stresses, with particular reference to proteomic changes induced by the impact of four different temperature stress regimes, including both hot and cold temperatures, on cultured grape cells. Cabernet Sauvignon cell suspension cultures grown at 26°C were subjected to 14 h of exposure to 34 and 42°C for heat stress, and 18 and 10°C for cold stress. Cells from the five temperatures were harvested in biological triplicates and label-free quantitative shotgun proteomic analysis was performed. A total of 2042 non-redundant proteins were identified from the five temperature points. Fifty-five proteins were only detected in extreme heat stress conditions (42°C) and 53 proteins were only detected at extreme cold stress conditions (10°C). Gene Ontology (GO) annotations of differentially expressed proteins provided insights into the metabolic pathways that are involved in temperature stress in grape cells. Sugar metabolism displayed switching between alternative and classical pathways during temperature stresses. Additionally, nine proteins involved in the phenylpropanoid pathway were greatly increased in abundance at extreme cold stress, and were thus found to be cold-responsive proteins. All MS data have been deposited in the ProteomeXchange with identifier PXD000977 (http://proteomecentral.proteomexchange.org/dataset/PXD000977). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. C1 metabolism plays an important role during formaldehyde metabolism and detoxification in petunia under liquid HCHO stress.

    Science.gov (United States)

    Zhang, Wei; Tang, Lijuan; Sun, Huiqun; Han, Shuang; Wang, Xinjia; Zhou, Shengen; Li, Kunzhi; Chen, Limei

    2014-10-01

    Petunia hybrida is a model ornamental plant grown worldwide. To understand the HCHO-uptake efficiency and metabolic mechanism of petunia, the aseptic petunia plants were treated in HCHO solutions. An analysis of HCHO-uptake showed that petunia plants effectively removed HCHO from 2, 4 and 6 mM HCHO solutions. The (13)C NMR analyses indicated that H(13)CHO was primarily used to synthesize [5-(13)C]methionine (Met) via C1 metabolism in petunia plants treated with 2 mM H(13)CHO. Pretreatment with cyclosporin A (CSA) or l-carnitine (LC), the inhibitors of mitochondrial permeability transition pores, did not affect the synthesis of [5-(13)C]Met in petunia plants under 2 mM H(13)CHO stress, indicating that the Met-generated pathway may function in the cytoplasm. Under 4 or 6 mM liquid H(13)CHO stress, H(13)CHO metabolism in petunia plants produced considerable amount of H(13)COOH and [2-(13)C]glycine (Gly) through C1 metabolism and a small amount of [U-(13)C]Gluc via the Calvin Cycle. Pretreatment with CSA or LC significantly inhibited the production of [2-(13)C]Gly in 6 mM H(13)CHO-treated petunia plants, which suggests that chloroplasts and peroxisomes might be involved in the generation of [2-(13)C]Gly. These results revealed that the C1 metabolism played an important role, whereas the Calvin Cycle had only a small contribution during HCHO metabolism and detoxification in petunia under liquid HCHO stress. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  14. Chronic Stress Contributes to Cognitive Dysfunction and Hippocampal Metabolic Abnormalities in APP/PS1 Mice

    Directory of Open Access Journals (Sweden)

    Bing Han

    2017-03-01

    Full Text Available Background/Aims: Stress response is determined by the brain, and the brain is a sensitive target for stress. Our previous experiments have confirmed that once the stress response is beyond the tolerable limit of the brain, particularly that of the hippocampus, it will have deleterious effects on hippocampal structure and function; however, the metabolic mechanisms for this are not well understood. Methods: Here, we used morris water maze, elisa and gas chromatography-time of flight/mass spectrometry to observe the changes in cognition, neuropathology and metabolomics in the hippocampus of APP/PS1 mice and wild-type (C57 mice caused by chronic unpredictable mild stress (CUMS, we also further explored the correlation between cognition and metabolomics. Results: We found that 4 weeks of CUMS aggravated cognitive impairment and increased amyloid-β deposition in APP/PS1 mice, but did not affect C57 mice. Under non-stress conditions, compared with C57 mice, there were 8 different metabolites in APP/PS1 mice. However, following CUMS, 3 different metabolites were changed compared with untreated C57 mice. Compared to APP/PS1 mice, there were 7 different metabolites in APP/PS1+CUMS mice. Among these alterations, 3-hydroxybutyric acid, valine, serine, beta-alanine and o-phosphorylethanolamine, which are involved in sphingolipid metabolism, synthesis and degradation of ketone bodies, and amino acid metabolism. Conclusion: The results indicate that APP/PS1 mice are more vulnerable to stress than C57 mice, and the metabolic mechanisms of stress-related cognitive impairment in APP/PS1 mice are related to multiple pathways and networks, including sphingolipid metabolism, synthesis and degradation of ketone bodies, and amino acid metabolism.

  15. Genome wide transcriptional response of Saccharomyces cerevisiae to stress-induced perturbations

    Directory of Open Access Journals (Sweden)

    Hilal eTaymaz-Nikerel

    2016-02-01

    Full Text Available Cells respond to environmental and/or genetic perturbations in order to survive and proliferate. Characterization of the changes after various stimuli at different -omics levels is crucial to comprehend the adaptation of cells to changing conditions. Genome wide quantification and analysis of transcript levels, the genes affected by perturbations, extends our understanding of cellular metabolism by pointing out the mechanisms that play role in sensing the stress caused by those perturbations and related signaling pathways, and in this way guides us to achieve endeavors such as rational engineering of cells or interpretation of disease mechanisms. Saccharomyces cerevisiae as a model system has been studied in response to different perturbations and corresponding transcriptional profiles were followed either statically or/and dynamically, short- and long- term. This review focuses on response of yeast cells to diverse stress inducing perturbations including nutritional changes, ionic stress, salt stress, oxidative stress, osmotic shock, as well as to genetic interventions such as deletion and over-expression of genes. It is aimed to conclude on common regulatory phenomena that allow yeast to organize its transcriptomic response after any perturbation under different external conditions.

  16. Effects of vanillin on potassium bromate-induced neurotoxicity in adult mice: impact on behavior, oxidative stress, genes expression, inflammation and fatty acid composition.

    Science.gov (United States)

    Ben Saad, Hajer; Kharrat, Nadia; Driss, Dorra; Gargouri, Manel; Marrakchi, Rim; Jammoussi, Kamel; Magné, Christian; Boudawara, Tahia; Ellouz Chaabouni, Samia; Zeghal, Khaled Mounir; Hakim, Ahmed; Ben Amara, Ibtissem

    2017-07-01

    Vanillin is known to possess important antioxidant activity. The current study was conducted to establish the therapeutic efficiency of vanillin against potassium bromate (KBrO 3 )-induced depression-like behavior and oxidative stress in mice. Mice were exposed during 15 days either to potassium bromate (KBrO 3 ), KBrO 3 + vanillin or to only vanillin. Our results revealed a significant modification in the fatty acid composition of the KBrO 3 -treated mice. In addition, KBrO 3 induced a significant reduction in enzymatic activities and gene expressions, Na +  -K +  and Mg 2+ -ATPases, acetylcholinesterase and butylcholinesterase activities. The gene expression of tumor necrosis factor-α, interleukin-1β, interleukin-6 and COX 2 , significantly increased in the cerebrum of KBrO 3 -treated group. Histopathological observations were consistent with these effects. Co-treatment with vanillin significantly attenuated KBrO 3 -induced oxidative stress and inflammation. This work suggests that vanillin mitigates KBrO 3 -induced depression, and that this neuroprotective effect proceeds through anti-oxidant and anti-inflammatory activities.

  17. Metabolic effects of dark chocolate consumption on energy, gut microbiota, and stress-related metabolism in free-living subjects.

    Science.gov (United States)

    Martin, Francois-Pierre J; Rezzi, Serge; Peré-Trepat, Emma; Kamlage, Beate; Collino, Sebastiano; Leibold, Edgar; Kastler, Jürgen; Rein, Dietrich; Fay, Laurent B; Kochhar, Sunil

    2009-12-01

    Dietary preferences influence basal human metabolism and gut microbiome activity that in turn may have long-term health consequences. The present study reports the metabolic responses of free living subjects to a daily consumption of 40 g of dark chocolate for up to 14 days. A clinical trial was performed on a population of 30 human subjects, who were classified in low and high anxiety traits using validated psychological questionnaires. Biological fluids (urine and blood plasma) were collected during 3 test days at the beginning, midtime and at the end of a 2 week study. NMR and MS-based metabonomics were employed to study global changes in metabolism due to the chocolate consumption. Human subjects with higher anxiety trait showed a distinct metabolic profile indicative of a different energy homeostasis (lactate, citrate, succinate, trans-aconitate, urea, proline), hormonal metabolism (adrenaline, DOPA, 3-methoxy-tyrosine) and gut microbial activity (methylamines, p-cresol sulfate, hippurate). Dark chocolate reduced the urinary excretion of the stress hormone cortisol and catecholamines and partially normalized stress-related differences in energy metabolism (glycine, citrate, trans-aconitate, proline, beta-alanine) and gut microbial activities (hippurate and p-cresol sulfate). The study provides strong evidence that a daily consumption of 40 g of dark chocolate during a period of 2 weeks is sufficient to modify the metabolism of free living and healthy human subjects, as per variation of both host and gut microbial metabolism.

  18. Effects of Various Drugs on Alcohol-induced Oxidative Stress in the Liver

    Directory of Open Access Journals (Sweden)

    Svetlana Trivic

    2008-09-01

    Full Text Available The major aim of this work was to investigate how alcohol-induced oxidative stress in combined chemotherapy changes the metabolic function of the liver in experimental animals. This research was conducted to establish how bromocriptine, haloperidol and azithromycin, applied to the experimental model, affected the antioxidative status of the liver. The following parameters were determined: reduced glutathione, activities of glutathione peroxidase, glutathione reductase, peroxidase, catalase, xanthine oxidase and lipid peroxidation intensity. Alanine transaminase was measured in serum. Alcohol stress (AO group reduced glutathione and the activity of xanthine oxidase and glutathione peroxidase, but increased catalase and alanine transaminase activity. The best protective effect was achieved with the bromocriptine (AB1 group, while other groups had similar effects on the studied parameters.

  19. Protective effect of zinc supplementation against cadmium-induced oxidative stress and the RANK/RANKL/OPG system imbalance in the bone tissue of rats

    International Nuclear Information System (INIS)

    Brzóska, Malgorzata M.; Rogalska, Joanna

    2013-01-01

    It was investigated whether protective influence of zinc (Zn) against cadmium (Cd)-induced disorders in bone metabolism may be related to its antioxidative properties and impact on the receptor activator of nuclear factor (NF)-κΒ (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) system. Numerous indices of oxidative/antioxidative status, and Cd and Zn were determined in the distal femur of the rats administered Zn (30 and 60 mg/l) or/and Cd (5 and 50 mg/l) for 6 months. Soluble RANKL (sRANKL) and OPG were measured in the bone and serum. Zn supplementation importantly protected from Cd-induced oxidative stress preventing protein, DNA, and lipid oxidation in the bone. Moreover, Zn protected from the Cd-induced increase in sRANKL concentration and the sRANKL/OPG ratio, and decrease in OPG concentration in the bone and serum. Numerous correlations were noted between indices of the oxidative/antioxidative bone status, concentrations of sRANKL and OPG in the bone and serum, as well as the bone concentrations of Zn and Cd, and previously reported by us in these animals (Brzóska et al., 2007) indices of bone turnover and bone mineral density. The results allow us to conclude that the ability of Zn to prevent from oxidative stress and the RANK/RANKL/OPG system imbalance may be implicated in the mechanisms of its protective impact against Cd-induced bone damage. This paper is the first report from an in vivo study providing evidence that beneficial Zn impact on the skeleton under exposure to Cd is related to the improvement of the bone tissue oxidative/antioxidative status and mediating the RANK/RANKL/OPG system. - Highlights: • Cd induces oxidative stress in the bone tissue. • Cd disturbs bone metabolism via disorder of the RANK/RANKL/OPG system balance. • Zn supplementation protects from Cd-induced oxidative stress in the bone tissue. • Zn protects from the RANK/RANKL/OPG system imbalance caused by Cd in the bone tissue. • Enhanced Zn intake protects from Cd-induced

  20. Protective effect of zinc supplementation against cadmium-induced oxidative stress and the RANK/RANKL/OPG system imbalance in the bone tissue of rats

    Energy Technology Data Exchange (ETDEWEB)

    Brzóska, Malgorzata M., E-mail: Malgorzata.Brzoska@umb.edu.pl; Rogalska, Joanna

    2013-10-01

    It was investigated whether protective influence of zinc (Zn) against cadmium (Cd)-induced disorders in bone metabolism may be related to its antioxidative properties and impact on the receptor activator of nuclear factor (NF)-κΒ (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) system. Numerous indices of oxidative/antioxidative status, and Cd and Zn were determined in the distal femur of the rats administered Zn (30 and 60 mg/l) or/and Cd (5 and 50 mg/l) for 6 months. Soluble RANKL (sRANKL) and OPG were measured in the bone and serum. Zn supplementation importantly protected from Cd-induced oxidative stress preventing protein, DNA, and lipid oxidation in the bone. Moreover, Zn protected from the Cd-induced increase in sRANKL concentration and the sRANKL/OPG ratio, and decrease in OPG concentration in the bone and serum. Numerous correlations were noted between indices of the oxidative/antioxidative bone status, concentrations of sRANKL and OPG in the bone and serum, as well as the bone concentrations of Zn and Cd, and previously reported by us in these animals (Brzóska et al., 2007) indices of bone turnover and bone mineral density. The results allow us to conclude that the ability of Zn to prevent from oxidative stress and the RANK/RANKL/OPG system imbalance may be implicated in the mechanisms of its protective impact against Cd-induced bone damage. This paper is the first report from an in vivo study providing evidence that beneficial Zn impact on the skeleton under exposure to Cd is related to the improvement of the bone tissue oxidative/antioxidative status and mediating the RANK/RANKL/OPG system. - Highlights: • Cd induces oxidative stress in the bone tissue. • Cd disturbs bone metabolism via disorder of the RANK/RANKL/OPG system balance. • Zn supplementation protects from Cd-induced oxidative stress in the bone tissue. • Zn protects from the RANK/RANKL/OPG system imbalance caused by Cd in the bone tissue. • Enhanced Zn intake protects from Cd-induced

  1. High-Fat Diet Induces Oxidative Stress and MPK2 and HSP83 Gene Expression in Drosophila melanogaster.

    Science.gov (United States)

    Trindade de Paula, Mariane; Poetini Silva, Márcia Rósula; Machado Araujo, Stífani; Cardoso Bortolotto, Vandreza; Barreto Meichtry, Luana; Zemolin, Ana Paula Pegoraro; Wallau, Gabriel L; Jesse, Cristiano Ricardo; Franco, Jeferson Luís; Posser, Thaís; Prigol, Marina

    2016-01-01

    The consumption of a high-fat diet (HFD) causes alteration in normal metabolism affecting lifespan of flies; however molecular mechanism associated with this damage in flies is not well known. This study evaluates the effects of ingestion of a diet supplemented with 10% and 20% of coconut oil, which is rich in saturated fatty acids, on oxidative stress and cells stress signaling pathways. After exposure to the diet for seven days, cellular and mitochondrial viability, lipid peroxidation and antioxidant enzymes SOD and CAT activity, and mRNA expression of antioxidant enzymes HSP83 and MPK2 were analyzed. To confirm the damage effect of diet on flies, survival and lifespan were investigated. The results revealed that the HFD augmented the rate of lipid peroxidation and SOD and CAT activity and induced a higher expression of HSP83 and MPK2 mRNA. In parallel, levels of enzymes involved in lipid metabolism (ACSL1 and ACeCS1) were increased. Our data demonstrate that association among metabolic changes, oxidative stress, and protein signalization might be involved in shortening the lifespan of flies fed with a HFD.

  2. High-Fat Diet Induces Oxidative Stress and MPK2 and HSP83 Gene Expression in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Mariane Trindade de Paula

    2016-01-01

    Full Text Available The consumption of a high-fat diet (HFD causes alteration in normal metabolism affecting lifespan of flies; however molecular mechanism associated with this damage in flies is not well known. This study evaluates the effects of ingestion of a diet supplemented with 10% and 20% of coconut oil, which is rich in saturated fatty acids, on oxidative stress and cells stress signaling pathways. After exposure to the diet for seven days, cellular and mitochondrial viability, lipid peroxidation and antioxidant enzymes SOD and CAT activity, and mRNA expression of antioxidant enzymes HSP83 and MPK2 were analyzed. To confirm the damage effect of diet on flies, survival and lifespan were investigated. The results revealed that the HFD augmented the rate of lipid peroxidation and SOD and CAT activity and induced a higher expression of HSP83 and MPK2 mRNA. In parallel, levels of enzymes involved in lipid metabolism (ACSL1 and ACeCS1 were increased. Our data demonstrate that association among metabolic changes, oxidative stress, and protein signalization might be involved in shortening the lifespan of flies fed with a HFD.

  3. Distinct age and differentiation-state dependent metabolic profiles of oligodendrocytes under optimal and stress conditions.

    Directory of Open Access Journals (Sweden)

    Vijayaraghava T S Rao

    Full Text Available Within the microenvironment of multiple sclerosis lesions, oligodendrocytes are subject to metabolic stress reflecting effects of focal ischemia and inflammation. Previous studies have shown that under optimal conditions in vitro, the respiratory activity of human adult brain-derived oligodendrocytes is lower and more predominantly glycolytic compared to oligodendrocytes differentiated in vitro from post natal rat brain oligodendrocyte progenitor cells. In response to sub-lethal metabolic stress, adult human oligodendrocytes reduce overall energy production rate impacting the capacity to maintain myelination. Here, we directly compare the metabolic profiles of oligodendrocytes derived from adult rat brain with oligodendrocytes newly differentiated in vitro from oligodendrocyte progenitor cells obtained from the post natal rat brain, under both optimal culture and metabolic stress (low/no glucose conditions. Oxygen consumption and extracellular acidification rates were measured using a Seahorse extracellular flux analyzer. Our findings indicate that under optimal conditions, adult rat oligodendrocytes preferentially use glycolysis whereas newly differentiated post natal rat oligodendrocytes, and the oligodendrocyte progenitor cells from which they are derived, mainly utilize oxidative phosphorylation to produce ATP. Metabolic stress increases the rate of ATP production via oxidative phosphorylation and significantly reduces glycolysis in adult oligodendrocytes. The rate of ATP production was relatively unchanged in newly differentiated post natal oligodendrocytes under these stress conditions, while it was significantly reduced in oligodendrocyte progenitor cells. Our study indicates that both age and maturation influence the metabolic profile under optimal and stressed conditions, emphasizing the need to consider these variables for in vitro studies that aim to model adult human disease.

  4. Interpretation of metabolic memory phenomenon using a physiological systems model: What drives oxidative stress following glucose normalization?

    Science.gov (United States)

    Voronova, Veronika; Zhudenkov, Kirill; Helmlinger, Gabriel; Peskov, Kirill

    2017-01-01

    Hyperglycemia is generally associated with oxidative stress, which plays a key role in diabetes-related complications. A complex, quantitative relationship has been established between glucose levels and oxidative stress, both in vitro and in vivo. For example, oxidative stress is known to persist after glucose normalization, a phenomenon described as metabolic memory. Also, uncontrolled glucose levels appear to be more detrimental to patients with diabetes (non-constant glucose levels) vs. patients with high, constant glucose levels. The objective of the current study was to delineate the mechanisms underlying such behaviors, using a mechanistic physiological systems modeling approach that captures and integrates essential underlying pathophysiological processes. The proposed model was based on a system of ordinary differential equations. It describes the interplay between reactive oxygen species production potential (ROS), ROS-induced cell alterations, and subsequent adaptation mechanisms. Model parameters were calibrated using different sources of experimental information, including ROS production in cell cultures exposed to various concentration profiles of constant and oscillating glucose levels. The model adequately reproduced the ROS excess generation after glucose normalization. Such behavior appeared to be driven by positive feedback regulations between ROS and ROS-induced cell alterations. The further oxidative stress-related detrimental effect as induced by unstable glucose levels can be explained by inability of cells to adapt to dynamic environment. Cell adaptation to instable high glucose declines during glucose normalization phases, and further glucose increase promotes similar or higher oxidative stress. In contrast, gradual ROS production potential decrease, driven by adaptation, is observed in cells exposed to constant high glucose.

  5. 5-HT2A receptor deficiency alters the metabolic and transcriptional, but not the behavioral, consequences of chronic unpredictable stress

    Directory of Open Access Journals (Sweden)

    Minal Jaggar

    2017-12-01

    Full Text Available Chronic stress enhances risk for psychiatric disorders, and in animal models is known to evoke depression-like behavior accompanied by perturbed neurohormonal, metabolic, neuroarchitectural and transcriptional changes. Serotonergic neurotransmission, including serotonin2A (5-HT2A receptors, have been implicated in mediating specific aspects of stress-induced responses. Here we investigated the influence of chronic unpredictable stress (CUS on depression-like behavior, serum metabolic measures, and gene expression in stress-associated neurocircuitry of the prefrontal cortex (PFC and hippocampus in 5-HT2A receptor knockout (5-HT2A−/− and wild-type mice of both sexes. While 5-HT2A−/− male and female mice exhibited a baseline reduced anxiety-like state, this did not alter the onset or severity of behavioral despair during and at the cessation of CUS, indicating that these mice can develop stress-evoked depressive behavior. Analysis of metabolic parameters in serum revealed a CUS-evoked dyslipidemia, which was abrogated in 5-HT2A−/− female mice with a hyperlipidemic baseline phenotype. 5-HT2A−/− male mice in contrast did not exhibit such a baseline shift in their serum lipid profile. Specific stress-responsive genes (Crh, Crhr1, Nr3c1, and Nr3c2, trophic factors (Bdnf, Igf1 and immediate early genes (IEGs (Arc, Fos, Fosb, Egr1-4 in the PFC and hippocampus were altered in 5-HT2A−/− mice both under baseline and CUS conditions. Our results support a role for the 5-HT2A receptor in specific metabolic and transcriptional, but not behavioral, consequences of CUS, and highlight that the contribution of the 5-HT2A receptor to stress-evoked changes is sexually dimorphic. Keywords: 5-HT2A−/− mice, Prefrontal cortex, Hippocampus, Gene expression, Sexual dimorphism, Despair

  6. Hepatoprotective and Renoprotective Effects of Lavender (Lavandula stoechas L.) Essential Oils Against Malathion-Induced Oxidative Stress in Young Male Mice.

    Science.gov (United States)

    Selmi, Slimen; Jallouli, Manel; Gharbi, Najoua; Marzouki, Lamjed

    2015-10-01

    We aimed in the present study to investigate the hepato- and nephroprotective effects of Lavandula stoechas essential oils (LSEO) against malathion-induced oxidative stress in young male mice as well as the possible mechanism implicated in such protection. Animals were divided into eight groups of 12 each: Control, malathion (200 mg/kg b.w.); Various doses of LSEO (10, 30, and 50 mg/kg b.w.), malathion+various doses of LSEO. Malathion and LSEO were daily per orally (p.o.) administered by intragastric gavage during 30 days. We initially found that malathion treatment induced body weight gain decrease as well as a clear nephro- and hepatotoxicity as assessed by significant relative liver and kidney weight increase and related hemodynamic parameters deregulation. Malathion exposure of mice also induced a considerable perturbation of metabolic parameters. On the other hand, we showed that malathion administration was accompanied by an oxidative stress status assessed by an increase of malondialdehyde (MDA) and hydrogen peroxide (H2O2) levels as well as a depletion of sulfhydril group content (-SH) and antioxidant enzyme activities such as catalase (CAT) and glutathione peroxidase (GPx), total superoxide dismutase (SOD), Cu/Zn-SOD, Mn-SOD, and Fe-SOD in the kidney and liver. More importantly, LSEO treatment abolished all malathion-induced body gain loss, liver and kidney relative weight increase, hemodynamic and metabolic disorders, as well as hepatic and renal oxidative stress. In conclusion, our data suggest that LSEO exerted potential hepato- and nephroprotective effects against malathion-induced oxidative stress in mice. The beneficial effect of LSEO might be related, in part, to its antioxidant properties.

  7. ATF4 is involved in the regulation of simulated microgravity induced integrated stress response

    Science.gov (United States)

    Li, Yingxian; Li, Qi; Wang, Xiaogang; Sun, Qiao; Wan, Yumin; Li, Yinghui; Bai, Yanqiang

    Objective: Many important metabolic and signaling pathways have been identified as being affected by microgravity, thereby altering cellular functions such as proliferation, differentiation, maturation and cell survival. It has been demonstrated that microgravity could induce all kinds of stress response such as endoplasmic reticulum stress and oxidative stress et al. ATF4 belongs to the ATF/CREB family of basic region leucine zipper transcription factors. ATF4 is induced by stress signals including anoxia/hypoxia, ER stress, amino acid deprivation and oxidative stress. ATF4 regulates the expression of genes involved in oxidative stress, amino acid synthesis, differentiation, metastasis and angiogenesis. The aim of this study was to examine the changes of ATF4 under microgravity, and to investigate the role of ATF4 in microgravity induced stress. MethodsMEF cells were cultured in clinostat to simulate microgravity. Reverse transcription polymerase chain reaction (RT-PCR) and western blotting were used to examine mRNA and protein levels of ATF4 expression under simulated microgravity in MEF cells. ROS levels were measured with the use of the fluorescent signal H2DCF-DA. GFP-XBP1 stably transfected cell lines was used to detect the extent of ER stress under microgravity by the intensity of GFP. Dual luciferase reporter assay was used to detect the activity of ATF4. Co-immunoprecipitation was performed to analyze protein interaction. Results: ATF4 protein levels in MEF cells increased under simulated microgravity. However, ATF4 mRNA levels were consistent. XBP1 splicing can be induced due to ER stress caused by simulated microgravity. At the same time, ROS levels were also increased. Increased ATF4 could promote the expression of CHOP, which is responsible for cell apoptosis. ATF4 also play an important role in cellular anti-oxidant stress. In ATF4 -/-MEF cells, the ROS levels after H2O2 treatment were obviously higher than that of wild type cells. HDAC4 was

  8. Acute restraint stress induces endothelial dysfunction: role of vasoconstrictor prostanoids and oxidative stress.

    Science.gov (United States)

    Carda, Ana P P; Marchi, Katia C; Rizzi, Elen; Mecawi, André S; Antunes-Rodrigues, José; Padovan, Claudia M; Tirapelli, Carlos R

    2015-01-01

    We hypothesized that acute stress would induce endothelial dysfunction. Male Wistar rats were restrained for 2 h within wire mesh. Functional and biochemical analyses were conducted 24 h after the 2-h period of restraint. Stressed rats showed decreased exploration on the open arms of an elevated-plus maze (EPM) and increased plasma corticosterone concentration. Acute restraint stress did not alter systolic blood pressure, whereas it increased the in vitro contractile response to phenylephrine and serotonin in endothelium-intact rat aortas. NG-nitro-l-arginine methyl ester (l-NAME; nitric oxide synthase, NOS, inhibitor) did not alter the contraction induced by phenylephrine in aortic rings from stressed rats. Tiron, indomethacin and SQ29548 reversed the increase in the contractile response to phenylephrine induced by restraint stress. Increased systemic and vascular oxidative stress was evident in stressed rats. Restraint stress decreased plasma and vascular nitrate/nitrite (NOx) concentration and increased aortic expression of inducible (i) NOS, but not endothelial (e) NOS. Reduced expression of cyclooxygenase (COX)-1, but not COX-2, was observed in aortas from stressed rats. Restraint stress increased thromboxane (TX)B(2) (stable TXA(2) metabolite) concentration but did not affect prostaglandin (PG)F2α concentration in the aorta. Restraint reduced superoxide dismutase (SOD) activity, whereas concentrations of hydrogen peroxide (H(2)O(2)) and reduced glutathione (GSH) were not affected. The major new finding of our study is that restraint stress increases vascular contraction by an endothelium-dependent mechanism that involves increased oxidative stress and the generation of COX-derived vasoconstrictor prostanoids. Such stress-induced endothelial dysfunction could predispose to the development of cardiovascular diseases.

  9. Association of soluble Tumor necrosis factor-Related Apoptosis-Inducing Ligand (TRAIL with central adiposity and low-density lipoprotein cholesterol.

    Directory of Open Access Journals (Sweden)

    Gloria Brombo

    Full Text Available OBJECTIVE: Tumor necrosis factor-Related Apoptosis-Inducing Ligand (TRAIL, in addition to having a prognostic value in patients with cardiovascular disease, seems to interact with adiposity, insulin resistance and other cardiovascular risk factors. However, the results of previous clinical studies, focused on the association of TRAIL with selected metabolic or anthropometric indices were inconclusive. The aim of this study was to further investigate how soluble TRAIL concentrations independently correlate with major cardiovascular risk factors, including lipid, glycemic and anthropometric features. MATERIALS/METHODS: We examined the associations between serum soluble TRAIL concentrations, measured by ELISA, and lipid, glycemic and anthropometric features in 199 subjects recruited at our Metabolic Outpatient Clinic. RESULTS: Soluble TRAIL concentrations had a significant and direct correlation with total cholesterol (p = 0.046, LDL-cholesterol (p = 0.032, triglycerides (p = 0.01, body mass index (p = 0.046, waist circumference (p = 0.008, fat mass (p = 0.056 and insulin (p = 0.046 and an inverse correlation with HDL-cholesterol (p = 0.02. In multivariable regression analyses adjusted for potential confounders (age, gender, C-reactive protein, HDL-cholesterol, triglycerides, waist circumference, and insulin, TRAIL levels continued to have an independent correlation with LDL-cholesterol and waist circumference (r(2 = 0.04. CONCLUSIONS: Serum TRAIL levels were weakly but significantly and independently associated with waist circumference, a marker of visceral adiposity, and with LDL-cholesterol. Further studies are needed to clarify the biological basis of these relationships.

  10. Relative Quantitative Proteomic Analysis of Brucella abortus Reveals Metabolic Adaptation to Multiple Environmental Stresses.

    Science.gov (United States)

    Zai, Xiaodong; Yang, Qiaoling; Yin, Ying; Li, Ruihua; Qian, Mengying; Zhao, Taoran; Li, Yaohui; Zhang, Jun; Fu, Ling; Xu, Junjie; Chen, Wei

    2017-01-01

    Brucella spp. are facultative intracellular pathogens that cause chronic brucellosis in humans and animals. The virulence of Brucella primarily depends on its successful survival and replication in host cells. During invasion of the host tissue, Brucella is simultaneously subjected to a variety of harsh conditions, including nutrient limitation, low pH, antimicrobial defenses, and extreme levels of reactive oxygen species (ROS) via the host immune response. This suggests that Brucella may be able to regulate its metabolic adaptation in response to the distinct stresses encountered during its intracellular infection of the host. An investigation into the differential proteome expression patterns of Brucella grown under the relevant stress conditions may contribute toward a better understanding of its pathogenesis and adaptive response. Here, we utilized a mass spectrometry-based label-free relative quantitative proteomics approach to investigate and compare global proteomic changes in B. abortus in response to eight different stress treatments. The 3 h short-term in vitro single-stress and multi-stress conditions mimicked the in vivo conditions of B. abortus under intracellular infection, with survival rates ranging from 3.17 to 73.17%. The proteomic analysis identified and quantified a total of 2,272 proteins and 74% of the theoretical proteome, thereby providing wide coverage of the B. abortus proteome. By including eight distinct growth conditions and comparing these with a control condition, we identified a total of 1,221 differentially expressed proteins (DEPs) that were significantly changed under the stress treatments. Pathway analysis revealed that most of the proteins were involved in oxidative phosphorylation, ABC transporters, two-component systems, biosynthesis of secondary metabolites, the citrate cycle, thiamine metabolism, and nitrogen metabolism; constituting major response mechanisms toward the reconstruction of cellular homeostasis and metabolic

  11. Improvement of cerebral hypometabolism after resection of radiation-induced necrotic lesion in a patient with cerebral arteriovenous malformation

    International Nuclear Information System (INIS)

    Harada, Yae; Hirata, Kenji; Nakayama, Naoki; Yamaguchi, Shigeru; Yoshida, Michiharu; Onodera, Shunsuke; Manabe, Osamu; Shiga, Tohru; Terae, Satoshi; Shirato, Hiroki; Tamaki, Nagara

    2015-01-01

    A 55-year-old woman underwent radiosurgery for a left cerebral hemisphere arteriovenous malformation (AVM) and developed radiation-induced necrosis causing a massive edema in the surrounding brain tissues. Despite various therapies, the edema expanded to the ipsilateral hemisphere and induced neurological symptoms. The radiation-induced necrotic lesion was surgically removed 4 years after radiosurgery. While the preoperative FDG PET revealed severe hypometabolism in the left cerebrum, the necrotomy significantly ameliorated the brain edema, glucose metabolism (postoperative FDG PET), and symptoms. This case indicates that radiation necrosis-induced neurological deficits may be associated with brain edema and hypometabolism, which could be reversed by appropriate necrotomy

  12. Exercise-induced myokines in health and metabolic diseases

    Directory of Open Access Journals (Sweden)

    Byunghun So

    2014-12-01

    Full Text Available Skeletal muscle has been emerging as a research field since the past 2 decades. Contraction of a muscle, which acts as a secretory organ, stimulates production, secretion, and expression of cytokines or other muscle fiber-derived peptides, i.e., myokines. Exercise-induced myokines influence crosstalk between different organs in an autocrine, endocrine, or paracrine fashion. Myokines are recently recognized as potential candidates for treating metabolic diseases through their ability to stimulate AMP-activated protein kinase signaling, increase glucose uptake, and improve lipolysis. Myokines may have positive effects on metabolic disorders, type 2 diabetes, or obesity. Numerous studies on myokines suggested that myokines offer a potential treatment option for preventing metabolic diseases. This review summarizes the current understanding of the positive effects of exercise-induced myokines, such as interleukin-15, brain-derived neurotrophic factor, leukemia inhibitory factor, irisin, fibroblast growth factor 21, and secreted protein acidic and rich in cysteine, on metabolic diseases.

  13. Effect of Artocarpus communis Extract on UVB Irradiation-Induced Oxidative Stress and Inflammation in Hairless Mice

    Directory of Open Access Journals (Sweden)

    Feng-Lin Yen

    2013-02-01

    Full Text Available Administration of antioxidants and anti-inflammatory agents is an effective strategy for preventing ultraviolet (UV irradiation-induced skin damage. Artocarpus communis possesses several pharmacological activities, such as antioxidant, anticancer and anti-inflammation. However, the photoprotective activity of methanol extract of A. communis heartwood (ACM in ultraviolet irradiation-induced skin damage has not yet been investigated. The present study was performed using ultraviolet absorption, histopathological observation, antioxidant and anti-inflammation assays to elucidate the mechanism of the photoprotective activity of ACM. Our results indicated that ACM displayed a UVA and UVB absorption effect and then effectively decreased scaly skin, epidermis thickness and sunburn cells during ultraviolet irradiation in hairless mice. ACM not only decreased ultraviolet irradiation-mediated oxidative stress, including lowering the overproduction of reactive oxygen species and lipid peroxidation (p < 0.05, but also reduced the levels of pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α and interleukin 1β. Additionally, ACM can decrease the synthesis of cytosolic phospholipase A2, cyclooxygenase, inducible nitric oxide synthase and vascular cell adhesion molecular-1 via inhibiting TNF-α-independent pathways (p < 0.05 in UVB-mediated inflammation and formation of sunburn cells. Consequently, we concluded that ACM extract has a photoprotective effect against UVB-induced oxidative stress and inflammation due to its sunscreen property, and its topical formulations may be developed as therapeutic and/or cosmetic products in further studies.

  14. Molecular insights into the mechanisms of liver-associated diseases in early-lactating dairy cows: hypothetical role of endoplasmic reticulum stress.

    Science.gov (United States)

    Ringseis, R; Gessner, D K; Eder, K

    2015-08-01

    The transition period represents the most critical period in the productive life of high-yielding dairy cows due to both metabolic and inflammatory stimuli, which challenge the liver and predispose dairy cows to develop liver-associated diseases such as fatty liver and ketosis. Despite the fact that all high-yielding dairy cows are affected by marked metabolic stress due to a severe negative energy balance (NEB) during early lactation, not all cows develop liver-associated diseases. Although the reason for this is largely unknown, this indicates that the capacity of the liver to cope with metabolic and inflammatory challenges varies between individual high-yielding dairy cows. Convincing evidence exists that endoplasmic reticulum (ER) stress plays a key role in the development of fatty liver, and it has been recently shown that ER stress occurs in the liver of high-yielding dairy cows. This indicates that ER stress may be involved in the development of liver-associated diseases in dairy cows. The present review shows that the liver of dairy cows during early lactation is exposed to several metabolic and inflammatory challenges, such as non-esterified fatty acids, tumour necrosis factor α, interleukin-1β, reactive oxygen species and lipopolysaccharides, which are known inducers of ER stress. Thus, ER stress may represent a molecular basis for fatty liver development and account for the frequent occurrence of fatty liver and ketosis in high-yielding dairy cows. Interindividual differences between dairy cows in the activation of hepatic stress response pathways, such as nuclear factor E2-related factor 2, which is activated during ER stress and reduces the sensitivity of tissues to oxidative and inflammatory damage, might provide an explanation at the molecular level for differences in the capacity to cope with pathological inflammatory challenges during early lactation and the susceptibility to develop liver-associated diseases between early-lactating dairy cows

  15. Chronic psychological stress and high-fat high-fructose diet disrupt metabolic and inflammatory gene networks in the brain, liver, and gut and promote behavioral deficits in mice.

    Science.gov (United States)

    de Sousa Rodrigues, Maria Elizabeth; Bekhbat, Mandakh; Houser, Madelyn C; Chang, Jianjun; Walker, Douglas I; Jones, Dean P; Oller do Nascimento, Claudia M P; Barnum, Christopher J; Tansey, Malú G

    2017-01-01

    The mechanisms underlying the association between chronic psychological stress, development of metabolic syndrome (MetS), and behavioral impairment in obesity are poorly understood. The aim of the present study was to assess the effects of mild chronic psychological stress on metabolic, inflammatory, and behavioral profiles in a mouse model of diet-induced obesity. We hypothesized that (1) high-fat high-fructose diet (HFHF) and psychological stress would synergize to mediate the impact of inflammation on the central nervous system in the presence of behavioral dysfunction, and that (2) HFHF and stress interactions would impact insulin and lipid metabolism. C57Bl/6 male mice underwent a combination of HFHF and two weeks of chronic psychological stress. MetS-related conditions were assessed using untargeted plasma metabolomics, and structural and immune changes in the gut and liver were evaluated. Inflammation was measured in plasma, liver, gut, and brain. Our results show a complex interplay of diet and stress on gut alterations, energetic homeostasis, lipid metabolism, and plasma insulin levels. Psychological stress and HFHF diet promoted changes in intestinal tight junctions proteins and increases in insulin resistance and plasma cholesterol, and impacted the RNA expression of inflammatory factors in the hippocampus. Stress promoted an adaptive anti-inflammatory profile in the hippocampus that was abolished by diet treatment. HFHF increased hippocampal and hepatic Lcn2 mRNA expression as well as LCN2 plasma levels. Behavioral changes were associated with HFHF and stress. Collectively, these results suggest that diet and stress as pervasive factors exacerbate MetS-related conditions through an inflammatory mechanism that ultimately can impact behavior. This rodent model may prove useful for identification of possible biomarkers and therapeutic targets to treat metabolic syndrome and mood disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Stress and Withdrawal from Chronic Ethanol Induce Selective Changes in Neuroimmune mRNAs in Differing Brain Sites

    Directory of Open Access Journals (Sweden)

    Darin J. Knapp

    2016-07-01

    Full Text Available Stress is a strong risk factor in alcoholic relapse and may exert effects that mimic aspects of chronic alcohol exposure on neurobiological systems. With the neuroimmune system becoming a prominent focus in the study of the neurobiological consequences of stress, as well as chronic alcohol exposure proving to be a valuable focus in this regard, the present study sought to compare the effects of stress and chronic ethanol exposure on induction of components of the neuroimmune system. Rats were exposed to either 1 h exposure to a mild stressor (restraint or exposure to withdrawal from 15 days of chronic alcohol exposure (i.e., withdrawal from chronic ethanol, WCE and assessed for neuroimmune mRNAs in brain. Restraint stress alone elevated chemokine (C–C motif ligand 2 (CCL2, interleukin-1-beta (IL-1β, tumor necrosis factor alpha (TNFα and toll-like receptor 4 (TLR4 mRNAs in the cerebral cortex within 4 h with a return to a control level by 24 h. These increases were not accompanied by an increase in corresponding proteins. Withdrawal from WCE also elevated cytokines, but did so to varying degrees across different cytokines and brain regions. In the cortex, stress and WCE induced CCL2, TNFα, IL-1β, and TLR4 mRNAs. In the hypothalamus, only WCE induced cytokines (CCL2 and IL-1β while in the hippocampus, WCE strongly induced CCL2 while stress and WCE induced IL-1β. In the amygdala, only WCE induced CCL2. Finally—based on the previously demonstrated role of corticotropin-releasing factor 1 (CRF1 receptor inhibition in blocking WCE-induced cytokine mRNAs—the CRF1 receptor antagonist CP154,526 was administered to a subgroup of stressed rats and found to be inactive against induction of CCL2, TNFα, or IL-1β mRNAs. These differential results suggest that stress and WCE manifest broad neuroimmune effects in brain depending on the cytokine and brain region, and that CRF inhibition may not be a relevant mechanism in non-alcohol exposed animals

  17. The Stress-Metabolic Syndrome Relationship in Adolescents: An Examination of the Moderating Potential of Physical Activity.

    Science.gov (United States)

    Holmes, Megan E; Pivarnik, Jim; Pfeiffer, Karin; Maier, Kimberly S; Eisenmann, Joey C; Ewing, Martha

    2016-10-01

    The role of psychosocial stress in the development of obesity and metabolic syndrome is receiving increased attention and has led to examination of whether physical activity may moderate the stress-metabolic syndrome relationship. The current study examined relationships among physical activity, stress, and metabolic syndrome in adolescents. Participants (N = 126; 57 girls, 69 boys) were assessed for anthropometry, psychosocial stress, physical activity, and metabolic syndrome variables; t tests were used to examine sex differences, and regression analysis was used to assess relationships among variables controlling for sex and maturity status. Mean body mass index approached the 75th percentile for both sexes. Typical sex differences were observed for systolic blood pressure, time spent in moderate and vigorous physical activity, and perceived stress. Although stress was not associated with MetS (β = -.001, P = .82), a modest, positive relationship was observed with BMI (β = .20, P = .04). Strong relationships between physical activity and stress with MetS or BMI were not found in this sample. Results may be partially explained by overall good physical health status of the participants. Additional research in groups exhibiting varying degrees of health is needed.

  18. Perinatal programming of metabolic dysfunction and obesity-induced inflammation

    DEFF Research Database (Denmark)

    Ingvorsen, Camilla; Hellgren, Lars; Pedersen, Susanne Brix

    The number of obese women in the childbearing age is drastically increasing globally. As a consequence, more children are born by obese mothers. Unfortunately, maternal obesity and/ or high fat intake during pregnancy increase the risk of developing obesity, type-2 diabetes, cardiovascular disease...... and non-alcoholic fatty liver disease in the children, which passes obesity and metabolic dysfunction on from generation to generation. Several studies try to elucidate causative effects of maternal metabolic markers on the metabolic imprinting in the children; however diet induced obesity is also...... associated with chronic low grade inflammation. Nobody have yet investigated the role of this inflammatory phenotype, but here we demonst rate that obesity induced inflammation is reversed during pregnancy in mice, and is therefore less likely to affect the fetal programming of metabolic dysfunction. Instead...

  19. Serotonergic involvement in stress-induced vasopressin and oxytocin secretion

    DEFF Research Database (Denmark)

    Jørgensen, Henrik; Knigge, Ulrich; Kjaer, Andreas

    2002-01-01

    OBJECTIVE: To investigate the involvement of serotonin (5-hydroxytryptamine - 5-HT) receptors in mediation of stress-induced arginine vasopressin (AVP) and oxytocin (OT) secretion in male rats. DESIGN: Experiments on laboratory rats with control groups. METHODS: Different stress paradigms were...... the swim stress-induced OT response. CONCLUSION: 5-HT(2A), 5-HT(2C) and possibly 5-HT(3) and 5-HT(4) receptors, but not 5-HT(1A) receptors, are involved in the restraint stress-induced AVP secretion. 5-HT does not seem to be involved in the dehydration- or hemorrhage-induced AVP response. The restraint...... stress-induced OT response seems to be mediated via 5-HT(1A), 5-HT(2A) and 5-HT(2C) receptors. The dehydration and hemorrhage-induced OT responses are at least mediated by the 5-HT(2A) and 5-HT(2C) receptors. The 5-HT(3) and 5-HT(4) receptors are not involved in stress-induced OT secretion....

  20. Characterization of the salt stress vulnerability of three invasive freshwater plant species using a metabolic profiling approach.

    Science.gov (United States)

    Thouvenot, Lise; Deleu, Carole; Berardocco, Solenne; Haury, Jacques; Thiébaut, Gabrielle

    2015-03-01

    The effects of salt stress on freshwater plants has been little studied up to now, despite the fact that they are expected to present different levels of salt sensitivity or salt resistance depending on the species. The aim of this work was to assess the effect of NaCl at two concentrations on three invasive freshwater species, Elodea canadensis, Myriophyllum aquaticum and Ludwigia grandiflora, by examining morphological and physiological parameters and using metabolic profiling. The growth rate (biomass and stem length) was reduced for all species, whatever the salt treatment, but the response to salt differed between the three species, depending on the NaCl concentration. For E. canadensis, the physiological traits and metabolic profiles were only slightly modified in response to salt, whereas M. aquaticum and L. grandiflora showed great changes. In both of these species, root number, photosynthetic pigment content, amino acids and carbohydrate metabolism were affected by the salt treatments. Moreover, we are the first to report the salt-induced accumulation of compatible solutes in both species. Indeed, in response to NaCl, L. grandiflora mainly accumulated sucrose. The response of M. aquaticum was more complex, because it accumulated not only sucrose and myo-inositol whatever the level of salt stress, but also amino acids such as proline and GABA, but only at high NaCl concentrations. These responses are the metabolic responses typically found in terrestrial plants. Copyright © 2014 Elsevier GmbH. All rights reserved.

  1. Indices of heart rate variability as potential early markers of metabolic stress and compromised regulatory capacity in dried-off high-yielding dairy cows.

    Science.gov (United States)

    Erdmann, S; Mohr, E; Derno, M; Tuchscherer, A; Schäff, C; Börner, S; Kautzsch, U; Kuhla, B; Hammon, H M; Röntgen, M

    2017-10-25

    High performing dairy cows experience distinct metabolic stress during periods of negative energy balance. Subclinical disorders of the cow's energy metabolism facilitate failure of adaptational responses resulting in health problems and reduced performance. The autonomic nervous system (ANS) with its sympathetic and parasympathetic branches plays a predominant role in adaption to inadequate energy and/or fuel availability and mediation of the stress response. Therefore, we hypothesize that indices of heart rate variability (HRV) that reflect ANS activity and sympatho-vagal balance could be early markers of metabolic stress, and possibly useful to predict cows with compromised regulatory capacity. In this study we analysed the autonomic regulation and stress level of 10 pregnant dried-off German Holstein cows before, during and after a 10-h fasting period by using a wide range of HRV parameters. In addition heat production (HP), energy balance, feed intake, rumen fermentative activity, physical activity, non-esterified fatty acids, β-hydroxybutyric acid, cortisol and total ghrelin plasma concentrations, and body temperature (BT) were measured. In all cows fasting induced immediate regulatory adjustments including increased lipolysis (84%) and total ghrelin levels (179%), reduction of HP (-16%), standing time (-38%) and heart rate (-15%). However, by analysing frequency domain parameters of HRV (high-frequency (HF) and low-frequency (LF) components, ratio LF/HF) cows could be retrospectively assigned to groups reacting to food removal with increased or decreased activity of the parasympathetic branch of the ANS. Regression analysis reveals that under control conditions (feeding ad libitum) group differences were best predicted by the nonlinear domain HRV component Maxline (L MAX, R 2=0.76, threshold; TS=258). Compared with cows having L MAX values above TS (>L MAX: 348±17), those with L MAX values below TS (fasting with a shift of their sympatho-vagal balance

  2. Arctigenin preferentially induces tumor cell death under glucose deprivation by inhibiting cellular energy metabolism.

    Science.gov (United States)

    Gu, Yuan; Qi, Chunting; Sun, Xiaoxiao; Ma, Xiuquan; Zhang, Haohao; Hu, Lihong; Yuan, Junying; Yu, Qiang

    2012-08-15

    Selectively eradicating cancer cells with minimum adverse effects on normal cells is a major challenge in the development of anticancer therapy. We hypothesize that nutrient-limiting conditions frequently encountered by cancer cells in poorly vascularized solid tumors might provide an opportunity for developing selective therapy. In this study, we investigated the function and molecular mechanisms of a natural compound, arctigenin, in regulating tumor cell growth. We demonstrated that arctigenin selectively promoted glucose-starved A549 tumor cells to undergo necrosis by inhibiting mitochondrial respiration. In doing so, arctigenin elevated cellular level of reactive oxygen species (ROS) and blocked cellular energy metabolism in the glucose-starved tumor cells. We also demonstrated that cellular ROS generation was caused by intracellular ATP depletion and played an essential role in the arctigenin-induced tumor cell death under the glucose-limiting condition. Furthermore, we combined arctigenin with the glucose analogue 2-deoxyglucose (2DG) and examined their effects on tumor cell growth. Interestingly, this combination displayed preferential cell-death inducing activity against tumor cells compared to normal cells. Hence, we propose that the combination of arctigenin and 2DG may represent a promising new cancer therapy with minimal normal tissue toxicity. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  3. Root inoculation with Pseudomonas putida KT2440 induces transcriptional and metabolic changes and systemic resistance in maize plants

    Directory of Open Access Journals (Sweden)

    Chantal ePlanchamp

    2015-01-01

    Full Text Available Pseudomonas putida KT2440 (KT2440 rhizobacteria colonize a wide range of plants. They have been extensively studied for their capacity to adhere to maize seeds, to tolerate toxic secondary metabolites produced by maize roots and to be attracted by maize roots. However, the response of maize plants to KT2440 colonization has not been investigated yet. Maize roots were inoculated with KT2440 and the local (roots and systemic (leaves early plant responses were investigated. The colonization behavior of KT2440 following application to maize seedlings was investigated and transcriptional analysis of stress- and defense-related genes as well as metabolite profiling of local and systemic maize tissues of KT2440-inoculated were performed. The local and systemic responses differed and more pronounced changes were observed in roots compared to leaves. Early in the interaction roots responded via jasmonic acid- and abscisic acid-dependent signaling. Interestingly, during later steps, the salicylic acid pathway was suppressed. Metabolite profiling revealed the importance of plant phospholipids in KT2440-maize interactions. An additional important maize secondary metabolite, a form of benzoxazinone, was also found to be differently abundant in roots three days after KT2440 inoculation. However, the transcriptional and metabolic changes observed in bacterized plants early during the interaction were minor and became even less pronounced with time, indicating an accommodation state of the plant to the presence of KT2440. Since the maize plants reacted to the presence of KT2440 in the rhizosphere, we also investigated the ability of these bacteria to trigger induced systemic resistance (ISR against the maize anthracnose fungus Colletotrichum graminicola. The observed resistance was expressed as strongly reduced leaf necrosis and fungal development in infected bacterized plants compared to non-bacterized controls, showing the potential of KT2440 to act as

  4. Avascular Necrosis

    Science.gov (United States)

    ... Financial Reports Watchdog Ratings Feedback Contact Select Page Avascular Necrosis Home > Cancer Resources > Late Effects of Treatment > Avascular Necrosis Avascular necrosis (AVN) is a disorder resulting from ...

  5. Interindividual differences in stress sensitivity: basal and stress-induced cortisol levels differentially predict neural vigilance processing under stress.

    Science.gov (United States)

    Henckens, Marloes J A G; Klumpers, Floris; Everaerd, Daphne; Kooijman, Sabine C; van Wingen, Guido A; Fernández, Guillén

    2016-04-01

    Stress exposure is known to precipitate psychological disorders. However, large differences exist in how individuals respond to stressful situations. A major marker for stress sensitivity is hypothalamus-pituitary-adrenal (HPA)-axis function. Here, we studied how interindividual variance in both basal cortisol levels and stress-induced cortisol responses predicts differences in neural vigilance processing during stress exposure. Implementing a randomized, counterbalanced, crossover design, 120 healthy male participants were exposed to a stress-induction and control procedure, followed by an emotional perception task (viewing fearful and happy faces) during fMRI scanning. Stress sensitivity was assessed using physiological (salivary cortisol levels) and psychological measures (trait questionnaires). High stress-induced cortisol responses were associated with increased stress sensitivity as assessed by psychological questionnaires, a stronger stress-induced increase in medial temporal activity and greater differential amygdala responses to fearful as opposed to happy faces under control conditions. In contrast, high basal cortisol levels were related to relative stress resilience as reflected by higher extraversion scores, a lower stress-induced increase in amygdala activity and enhanced differential processing of fearful compared with happy faces under stress. These findings seem to reflect a critical role for HPA-axis signaling in stress coping; higher basal levels indicate stress resilience, whereas higher cortisol responsivity to stress might facilitate recovery in those individuals prone to react sensitively to stress. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  6. Exogenous Application of GABA Improves PEG-Induced Drought Tolerance Positively Associated with GABA-Shunt, Polyamines, and Proline Metabolism in White Clover.

    Science.gov (United States)

    Yong, Bin; Xie, Huan; Li, Zhou; Li, Ya-Ping; Zhang, Yan; Nie, Gang; Zhang, Xin-Quan; Ma, Xiao; Huang, Lin-Kai; Yan, Yan-Hong; Peng, Yan

    2017-01-01

    In order to investigate the physiological effects of exogenous γ-aminobutyric acid (GABA) on drought tolerance in white clover (Trifolium repens), GABA shunt, polyamines (PAs), and proline (Pro) metabolism were examined after plants pretreated with or without GABA (8 mM) and then exposed to water or 15% PEG-induced drought stress in growth chamber. In this study, exogenous application of GABA effectively alleviated drought-induced damage in leaves, as reflected by significantly higher relative water content, lower electrolyte leakage, lipid peroxidation, and leaf wilt. Exogenous GABA further promoted drought-induced increases in GABA transaminase and alpha ketone glutarate dehydrogenase activities, but inhibited glutamate decarboxylase activity under both control and drought conditions, resulting in an increase in endogenous glutamate (Glu) and GABA content. Besides, exogenous GABA could well accelerated PAs synthesis and suppressed PAs catabolism, which lead to the extremely enhanced different types of PAs content (free Put and Spd, insoluble bound Spd and Spm, soluble conjugated Spd and Spm, and total Put, Spd and Spm) under drought stress. In addition, exogenous GABA application further activated drought-induced Δ 1 -pyrroline-5-carboxylate synthetase and proline dehydrogenase activities, but suppressed drought-facilitated ornithine -δ-amino transferase activities, leading to a higher Pro accumulation and metabolism in GABA-pretreated plants in the middle and last period of drought. The results suggested that increased endogenous GABA by exogenous GABA treatment could improve drought tolerance of white clover associated with a positive regulation in the GABA-shunt, PAs and Pro metabolism.

  7. Mechanisms of induced susceptibility to Diplodia tip blight in drought-stressed Austrian pine.

    Science.gov (United States)

    Sherwood, Patrick; Villari, Caterina; Capretti, Paolo; Bonello, Pierluigi

    2015-05-01

    Plants experiencing drought stress are frequently more susceptible to pathogens, likely via alterations in physiology that create favorable conditions for pathogens. Common plant responses to drought include the production of reactive oxygen species (ROS) and the accumulation of free amino acids (AAs), particularly proline. These same phenomena also frequently occur during pathogenic attack. Therefore, drought-induced perturbations in AA and ROS metabolism could potentially contribute to the observed enhanced susceptibility. Furthermore, nitrogen (N) availability can influence AA accumulation and affect plant resistance, but its contributions to drought-induced susceptibility are largely unexplored. Here we show that drought induces accumulation of hydrogen peroxide (H2O2) in Austrian pine (Pinus nigra Arnold) shoots, but that shoot infection by the blight and canker pathogen Diplodia sapinea (Fr.) Fuckel leads to large reductions in H2O2 levels in droughted plants. In in vitro assays, H2O2 was toxic to D. sapinea, and the fungus responded to this oxidative stress by increasing catalase and peroxidase activities, resulting in substantial H2O2 degradation. Proline increased in response to drought and infection when examined independently, but unlike all other AAs, proline further increased in infected shoots of droughted trees. In the same tissues, the proline precursor, glutamate, decreased significantly. Proline was found to protect D. sapinea from H2O2 damage, while also serving as a preferred N source in vitro. Fertilization increased constitutive and drought-induced levels of some AAs, but did not affect plant resistance. A new model integrating interactions of proline and H2O2 metabolism with drought and fungal infection of plants is proposed. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. 3-Bromopyruvate induces rapid human prostate cancer cell death by affecting cell energy metabolism, GSH pool and the glyoxalase system.

    Science.gov (United States)

    Valenti, Daniela; Vacca, Rosa A; de Bari, Lidia

    2015-12-01

    3-bromopyruvate (3-BP) is an anti-tumour drug effective on hepatocellular carcinoma and other tumour cell types, which affects both glycolytic and mitochondrial targets, depleting cellular ATP pool. Here we tested 3-BP on human prostate cancer cells showing, differently from other tumour types, efficient ATP production and functional mitochondrial metabolism. We found that 3-BP rapidly induced cultured androgen-insensitive (PC-3) and androgen-responsive (LNCaP) prostate cancer cell death at low concentrations (IC(50) values of 50 and 70 μM, respectively) with a multimodal mechanism of action. In particular, 3-BP-treated PC-3 cells showed a selective, strong reduction of glyceraldeide 3-phosphate dehydrogenase activity, due to the direct interaction of the drug with the enzyme. Moreover, 3-BP strongly impaired both glutamate/malate- and succinate-dependent mitochondrial respiration, membrane potential generation and ATP synthesis, concomitant with the inhibition of respiratory chain complex I, II and ATP synthase activities. The drastic reduction of cellular ATP levels and depletion of GSH pool, associated with significant increase in cell oxidative stress, were found after 3-BP treatment of PC-3 cells. Interestingly, the activity of both glyoxalase I and II, devoted to the elimination of the cytotoxic methylglyoxal, was strongly inhibited by 3-BP. Both N-acetylcysteine and aminoguanidine, GSH precursor and methylglyoxal scavenger, respectively, prevented 3-BP-induced PC-3 cell death, showing that impaired cell antioxidant and detoxifying capacities are crucial events leading to cell death. The provided information on the multi-target cytotoxic action of 3-BP, finally leading to PC-3 cell necrosis, might be useful for future development of 3-BP as a therapeutic option for prostate cancer treatment.

  9. Physiological and metabolic changes of purslane (Portulaca oleracea L. in response to drought, heat and combined stresses

    Directory of Open Access Journals (Sweden)

    Rui eJin

    2016-01-01

    Full Text Available Purslane (Portulaca oleracea L. is a fleshy herbaceous plant. So far, little information is available on the response of this plant to combined drought and heat stress. In this study, changes in physiological and metabolic levels were characterized after treatments with drought, heat and combined stresses. Both individual and combined stress treatments increased malondialdehyde (MDA, electrolyte leakage (EL, O2•− and activities of superoxide dismutase (SOD, peroxidase (POD, while declined chlorophyll content. No significant differences were found between control and treatments in leaf water content (LWC and catalase (CAT activity. Additionally, 37 metabolic compounds were detected in purslane. Through pathway analysis, 17 metabolites were directly involved in the glycolysis metabolic pathway. The present study indicated that combined drought and heat stress caused more serious damage in purslane than individual stress. To survive, purslane has a high capability to cope with environmental stress conditions through activation of physiological and metabolic pathways.

  10. Physiological and Metabolic Changes of Purslane (Portulaca oleracea L.) in Response to Drought, Heat, and Combined Stresses

    Science.gov (United States)

    Jin, Rui; Wang, Yanping; Liu, Ruijie; Gou, Junbo; Chan, Zhulong

    2016-01-01

    Purslane (Portulaca oleracea L.) is a fleshy herbaceous plant. So far, little information is available on the response of this plant to combined drought and heat stress. In this study, changes in physiological and metabolic levels were characterized after treatments with drought, heat and combined stresses. Both individual and combined stress treatments increased malondialdehyde (MDA), electrolyte leakage (EL), O2•− and activities of superoxide dismutase (SOD), peroxidase (POD), while declined chlorophyll content. No significant differences were found between control and treatments in leaf water content (LWC) and catalase (CAT) activity. Additionally, 37 metabolic compounds were detected in purslane. Through pathway analysis, 17 metabolites were directly involved in the glycolysis metabolic pathway. The present study indicated that combined drought and heat stress caused more serious damage in purslane than individual stress. To survive, purslane has a high capability to cope with environmental stress conditions through activation of physiological and metabolic pathways. PMID:26779204

  11. Phorate-induced oxidative stress, DNA damage and transcriptional activation of p53 and caspase genes in male Wistar rats

    Energy Technology Data Exchange (ETDEWEB)

    Saquib, Quaiser [Department of Zoology, College of Science, King Saud University, Riyadh (Saudi Arabia); Attia, Sabry M. [Department of Pharmacology, College of Pharmacy, King Saud University, Riyadh (Saudi Arabia); Siddiqui, Maqsood A. [Department of Zoology, College of Science, King Saud University, Riyadh (Saudi Arabia); Aboul-Soud, Mourad A.M. [Department of Zoology, College of Science, King Saud University, Riyadh (Saudi Arabia); Biochemistry Department, Faculty of Agriculture, Cairo University, 12613 Giza (Egypt); Al-Khedhairy, Abdulaziz A. [Department of Zoology, College of Science, King Saud University, Riyadh (Saudi Arabia); Giesy, John P. [Department of Zoology, College of Science, King Saud University, Riyadh (Saudi Arabia); Department of Biomedical and Veterinary Biosciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Canada S7N 5B3 (Canada); Zoology Department and Center for Integrative Toxicology, Michigan State University, East Lansing 48824 (United States); Musarrat, Javed, E-mail: musarratj1@yahoo.com [Department of Zoology, College of Science, King Saud University, Riyadh (Saudi Arabia); Department of Microbiology, Faculty of Agricultural Sciences, AMU, Aligarh (India)

    2012-02-15

    Male Wistar rats exposed to a systemic organophosphorus insecticide, phorate [O,O-diethyl S-[(ethylthio) methyl] phosphorothioate] at varying oral doses of 0.046, 0.092 or 0.184 mg phorate/kg bw for 14 days, exhibited substantial oxidative stress, cellular DNA damage and activation of apoptosis-related p53, caspase 3 and 9 genes. The histopathological changes including the pyknotic nuclei, inflammatory leukocyte infiltrations, renal necrosis, and cardiac myofiber degeneration were observed in the liver, kidney and heart tissues. Biochemical analysis of catalase and glutathione revealed significantly lesser activities of antioxidative enzymes and lipid peroxidation in tissues of phorate exposed rats. Furthermore, generation of intracellular reactive oxygen species and reduced mitochondrial membrane potential in bone marrow cells confirmed phorate-induced oxidative stress. Significant DNA damage was measured through comet assay in terms of the Olive tail moment in bone marrow cells of treated animals as compared to control. Cell cycle analysis also demonstrated the G{sub 2}/M arrest and appearance of a distinctive SubG{sub 1} peak, which signified induction of apoptosis. Up-regulation of tumor suppressor p53 and caspase 3 and 9 genes, determined by quantitative real-time PCR and enzyme-linked immunosorbent assay, elucidated the activation of intrinsic apoptotic pathways in response to cellular stress. Overall, the results suggest that phorate induces genetic alterations and cellular toxicity, which can adversely affect the normal cellular functioning in rats. -- Highlights: ► This is the first report on molecular toxicity of phorate in an in vivo test system. ► Phorate induces biochemical and histological changes in liver, kidney and heart. ► Rats treated with phorate exhibited DNA damage in bone marrow cells. ► Phorate induces apoptosis, oxidative stress and alters mitochondrial fluorescence. ► Phorate induces transcriptional changes and enhanced

  12. Phorate-induced oxidative stress, DNA damage and transcriptional activation of p53 and caspase genes in male Wistar rats

    International Nuclear Information System (INIS)

    Saquib, Quaiser; Attia, Sabry M.; Siddiqui, Maqsood A.; Aboul-Soud, Mourad A.M.; Al-Khedhairy, Abdulaziz A.; Giesy, John P.; Musarrat, Javed

    2012-01-01

    Male Wistar rats exposed to a systemic organophosphorus insecticide, phorate [O,O-diethyl S-[(ethylthio) methyl] phosphorothioate] at varying oral doses of 0.046, 0.092 or 0.184 mg phorate/kg bw for 14 days, exhibited substantial oxidative stress, cellular DNA damage and activation of apoptosis-related p53, caspase 3 and 9 genes. The histopathological changes including the pyknotic nuclei, inflammatory leukocyte infiltrations, renal necrosis, and cardiac myofiber degeneration were observed in the liver, kidney and heart tissues. Biochemical analysis of catalase and glutathione revealed significantly lesser activities of antioxidative enzymes and lipid peroxidation in tissues of phorate exposed rats. Furthermore, generation of intracellular reactive oxygen species and reduced mitochondrial membrane potential in bone marrow cells confirmed phorate-induced oxidative stress. Significant DNA damage was measured through comet assay in terms of the Olive tail moment in bone marrow cells of treated animals as compared to control. Cell cycle analysis also demonstrated the G 2 /M arrest and appearance of a distinctive SubG 1 peak, which signified induction of apoptosis. Up-regulation of tumor suppressor p53 and caspase 3 and 9 genes, determined by quantitative real-time PCR and enzyme-linked immunosorbent assay, elucidated the activation of intrinsic apoptotic pathways in response to cellular stress. Overall, the results suggest that phorate induces genetic alterations and cellular toxicity, which can adversely affect the normal cellular functioning in rats. -- Highlights: ► This is the first report on molecular toxicity of phorate in an in vivo test system. ► Phorate induces biochemical and histological changes in liver, kidney and heart. ► Rats treated with phorate exhibited DNA damage in bone marrow cells. ► Phorate induces apoptosis, oxidative stress and alters mitochondrial fluorescence. ► Phorate induces transcriptional changes and enhanced activities of

  13. Fetal Programming of Body Composition, Obesity, and Metabolic Function: The Role of Intrauterine Stress and Stress Biology

    Directory of Open Access Journals (Sweden)

    Sonja Entringer

    2012-01-01

    Full Text Available Epidemiological, clinical, physiological, cellular, and molecular evidence suggests that the origins of obesity and metabolic dysfunction can be traced back to intrauterine life and supports an important role for maternal nutrition prior to and during gestation in fetal programming. The elucidation of underlying mechanisms is an area of interest and intense investigation. In this perspectives paper we propose that in addition to maternal nutrition-related processes it may be important to concurrently consider the potential role of intrauterine stress and stress biology. We frame our arguments in the larger context of an evolutionary-developmental perspective that supports roles for both nutrition and stress as key environmental conditions driving natural selection and developmental plasticity. We suggest that intrauterine stress exposure may interact with the nutritional milieu, and that stress biology may represent an underlying mechanism mediating the effects of diverse intrauterine perturbations, including but not limited to maternal nutritional insults (undernutrition and overnutrition, on brain and peripheral targets of programming of body composition, energy balance homeostasis, and metabolic function. We discuss putative maternal-placental-fetal endocrine and immune/inflammatory candidate mechanisms that may underlie the long-term effects of intrauterine stress. We conclude with a commentary of the implications for future research and clinical practice.

  14. Induction and regulation of tumor necrosis factor-related apoptosis-inducing ligand/Apo-2 ligand-mediated apoptosis in renal cell carcinoma.

    Science.gov (United States)

    Griffith, Thomas S; Fialkov, Jonathan M; Scott, David L; Azuhata, Takeo; Williams, Richard D; Wall, Nathan R; Altieri, Dario C; Sandler, Anthony D

    2002-06-01

    The lack of effective therapy for disseminated renal cell carcinoma (RCC) has stimulated the search for novel treatments including immunotherapeutic strategies. However, poor therapeutic responses and marked toxicity associated with immunological agents has limited their use. The tumor necrosis factor family member tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)/Apo-2 ligand induces apoptosis in a variety of tumor cell types, while having little cytotoxic activity against normal cells. In this study the activation and regulation of TRAIL-induced apoptosis and TRAIL receptor expression in human RCC cell lines and pathologic specimens was examined. TRAIL induced caspase-mediated apoptotic death of RCC cells with variable sensitivities among the cell lines tested. Compared with TRAIL-sensitive RCC cell lines (A-498, ACHN, and 769-P), the TRAIL-resistant RCC cell line (786-O) expressed lesser amounts of the death-inducing TRAIL receptors, and greater amounts of survivin, an inhibitor of apoptosis. Incubation of 786-O with actinomycin D increased the expression of the death-inducing TRAIL receptors and, concomitantly, decreased the intracellular levels of survivin, resulting in TRAIL-induced apoptotic death. The link between survivin and TRAIL regulation was confirmed when an increase in TRAIL resistance was observed after overexpression of survivin in the TRAIL-sensitive, survivin-negative RCC line A-498. These findings, along with our observation that TRAIL receptors are expressed in RCC tumor tissue, suggest that TRAIL may be useful as a therapeutic agent for RCC and that survivin may partially regulate TRAIL-induced cell death.

  15. Metabolic and stress-related roles of prolactin-releasing peptide.

    Science.gov (United States)

    Onaka, Tatsushi; Takayanagi, Yuki; Leng, Gareth

    2010-05-01

    In the modern world, improvements in human health can be offset by unhealthy lifestyle factors, including the deleterious consequences of stress and obesity. For energy homeostasis, humoral factors and neural afferents from the gastrointestinal tract, in combination with long-term nutritional signals, communicate information to the brain to regulate energy intake and expenditure. Energy homeostasis and stress interact with each other, and stress affects both food intake and energy expenditure. Prolactin-releasing peptide, synthesized in discrete neuronal populations in the hypothalamus and brainstem, plays an important role in integrating these responses. This review describes how prolactin-releasing peptide neurons receive information concerning both internal metabolic states and environmental conditions, and play a key role in energy homeostasis and stress responses. 2010 Elsevier Ltd. All rights reserved.

  16. Stress-induced magnetic anisotropy in nanocrystalline alloys

    International Nuclear Information System (INIS)

    Varga, L.K.; Gercsi, Zs.; Kovacs, Gy.; Kakay, A.; Mazaleyrat, F.

    2003-01-01

    Stress-annealing experiments were extended to both nanocrystalline alloy families, Finemet and Nanoperm (Hitperm), and, for comparison, to amorphous Fe 62 Nb 8 B 30 alloy. For both Finemet and bulk amorphous, stress-annealing results in a strong induced transversal anisotropy (flattening of hysteresis loop) but yields longitudinal induced anisotropy (square hysteresis loop) in Nanoperm and Hitperm. These results are interpreted in terms of back-stress theory

  17. Avascular necrosis ofbone following renal transplantation

    African Journals Online (AJOL)

    and avascular necrosis was reported in 1957 in a patient ... Onset of pain ranged from 2 months to 36 months .... and corticosteroid-induced diabetes); (iv) severe sec- ... reponed in the shoulder and elbow joints, i.e. humeral head, distal ...

  18. Effects of Tumor Necrosis Factor Blocker on Salicylate-Induced Tinnitus in Mice.

    Science.gov (United States)

    Hwang, Juen-Haur; Huang, David Chang-Wei; Lu, Yin-Chang; Yang, Wei-Shiung; Liu, Tien-Chen

    2017-06-01

    Neuroinflammation is considered a novel mechanism for acute tinnitus. Here, we investigated the effects of a tumor necrosis factor (TNF) blocker on the gene expression of inflammatory-cytokine in the cochlea in a tinnitus animal model. Enbrel® (30 mg/kg, intraperitoneally (i.p.)) were administrated to the mice with the salicylate induced tinnitus for 3 days. Tinnitus score and mRNA expression levels of TNFR1, TNFR2, and N-methyl-d-aspartate receptor subunit 2B (NR2B) and its downstream regulatory element antagonist modulator (DREAM) in the cochlea of mice were measured and compared to the control. The tinnitus score significantly decreased in the Enbrel® treated group. The mRNA levels of both TNFR1 and TNFR2 were significantly lower in the treatment than in the control group. The mRNA levels of NR2B and DREAM followed a similar trend. we found that treatment with 30 mg/ kg Enbrel® decreased salicylate-induced behavior associated with tinnitus and reduced the mRNA expression levels of TNFR1/R2, NR2B, and DREAM in the cochlea of mice. These findings supported the hypothesis that neuroinflammation might be a novel mechanism for salicylate-induced tinnitus.

  19. Age-related effects of chronic restraint stress on ethanol drinking, ethanol-induced sedation, and on basal and stress-induced anxiety response.

    Science.gov (United States)

    Fernández, Macarena Soledad; Fabio, María Carolina; Miranda-Morales, Roberto Sebastián; Virgolini, Miriam B; De Giovanni, Laura N; Hansen, Cristian; Wille-Bille, Aranza; Nizhnikov, Michael E; Spear, Linda P; Pautassi, Ricardo Marcos

    2016-03-01

    Adolescents are sensitive to the anxiolytic effect of ethanol, and evidence suggests that they may be more sensitive to stress than adults. Relatively little is known, however, about age-related differences in stress modulation of ethanol drinking or stress modulation of ethanol-induced sedation and hypnosis. We observed that chronic restraint stress transiently exacerbated free-choice ethanol drinking in adolescent, but not in adult, rats. Restraint stress altered exploration patterns of a light-dark box apparatus in adolescents and adults. Stressed animals spent significantly more time in the white area of the maze and made significantly more transfers between compartments than their non-stressed peers. Behavioral response to acute stress, on the other hand, was modulated by prior restraint stress only in adults. Adolescents, unlike adults, exhibited ethanol-induced motor stimulation in an open field. Stress increased the duration of loss of the righting reflex after a high ethanol dose, yet this effect was similar at both ages. Ethanol-induced sleep time was much higher in adult than in adolescent rats, yet stress diminished ethanol-induced sleep time only in adults. The study indicates age-related differences that may increase the risk for initiation and escalation in alcohol drinking. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Cerebral energy metabolism during induced mitochondrial dysfunction

    DEFF Research Database (Denmark)

    Nielsen, T H; Bindslev, TT; Pedersen, S M

    2013-01-01

    In patients with traumatic brain injury as well as stroke, impaired cerebral oxidative energy metabolism may be an important factor contributing to the ultimate degree of tissue damage. We hypothesize that mitochondrial dysfunction can be diagnosed bedside by comparing the simultaneous changes...... in brain tissue oxygen tension (PbtO(2)) and cerebral cytoplasmatic redox state. The study describes cerebral energy metabolism during mitochondrial dysfunction induced by sevoflurane in piglets....

  1. Metabolic regulation of hematopoietic and leukemic stem/progenitor cells under homeostatic and stress conditions.

    Science.gov (United States)

    Karigane, Daiki; Takubo, Keiyo

    2017-07-01

    Hematopoietic stem cells (HSCs) exhibit multilineage differentiation and self-renewal activities that maintain the entire hematopoietic system during an organism's lifetime. These abilities are sustained by intrinsic transcriptional programs and extrinsic cues from the microenvironment or niche. Recent studies using metabolomics technologies reveal that metabolic regulation plays an essential role in HSC maintenance. Metabolic pathways provide energy and building blocks for other factors functioning at steady state and in stress. Here we review recent advances in our understanding of metabolic regulation in HSCs relevant to cell cycle quiescence, symmetric/asymmetric division, and proliferation following stress and lineage commitment, and discuss the therapeutic potential of targeting metabolic factors or pathways to treat hematological malignancies.

  2. Targeting Inflammation-Induced Obesity and Metabolic Diseases by Curcumin and Other Nutraceuticals

    Science.gov (United States)

    Aggarwal, Bharat B.

    2011-01-01

    Extensive research within the past two decades has revealed that obesity, a major risk factor for type 2 diabetes, atherosclerosis, cancer, and other chronic diseases, is a proinflammatory disease. Several spices have been shown to exhibit activity against obesity through antioxidant and anti-inflammatory mechanisms. Among them, curcumin, a yellow pigment derived from the spice turmeric (an essential component of curry powder), has been investigated most extensively as a treatment for obesity and obesity-related metabolic diseases. Curcumin directly interacts with adipocytes, pancreatic cells, hepatic stellate cells, macrophages, and muscle cells. There, it suppresses the proinflammatory transcription factors nuclear factor-kappa B, signal transducer and activators of transcription-3, and Wnt/β-catenin, and it activates peroxisome proliferator-activated receptor-γ and Nrf2 cell-signaling pathways, thus leading to the downregulation of adipokines, including tumor necrosis factor, interleukin-6, resistin, leptin, and monocyte chemotactic protein-1, and the upregulation of adiponectin and other gene products. These curcumin-induced alterations reverse insulin resistance, hyperglycemia, hyperlipidemia, and other symptoms linked to obesity. Other structurally homologous nutraceuticals, derived from red chili, cinnamon, cloves, black pepper, and ginger, also exhibit effects against obesity and insulin resistance. PMID:20420526

  3. Evaluation of Cucurbita maxima extract against scopolamine-induced amnesia in rats: implication of tumour necrosis factor alpha.

    Science.gov (United States)

    Jawaid, Talha; Shakya, Ashok K; Siddiqui, Hefazat Hussain; Kamal, Mehnaz

    2014-01-01

    Cucurbita maxima (CM) seed oil is commonly used in Indian folk medicine to treat various ailments. We have investigated the effect of CM seed oil on memory impairment induced by scopolamine in rats. Male adult Wistar rats were administered scopolamine 1 mg/kg body weight, i.p. or 1.25 mg/kg body weight, s.c. to induce memory impairment. The nootropic agent piracetam 100 mg/kg body weight, i.p. and CM seed oil 100 and 200 mg/kg body weight, p.o. were administered daily for five consecutive days. The memory function was evaluated in the Morris water maze (MWM) test, the social recognition test (SRT), the elevated plus maze (EPM) test, and the pole climbing test (PCT). Acetylcholinesterase (AChE) activity and oxidative stress parameters were estimated in the cortex, hippocampus, and cerebellum of the brains after completion of the behavioural studies. The effects of scopolamine on the levels of the tumour necrosis factor alpha (TNF-α) transcript were also investigated. Scopolamine caused memory impairment in all the behavioural paradigms along with a significant increase in the AChE activity and oxidative stress in the brain. Scopolamine also caused a significant increase in the expression of TNF-α in the hippocampus. CM seed oil exhibited antiamnesic activity as indicated by a significant reduction in the latency time in the MWM test and decreased social interaction during trial 2 in the SRT. Further, treatment with CM seed oil significantly decreased the AChE activity and malondialdehyde levels and increased the glutathione level in brain regions. CM seed oil also significantly decreased the expression of TNF-α in the hippocampus. The effect of CM seed oil on behavioural and biochemical parameters was comparable to that observed in rats treated with piracetam. These results indicate that CM seed oil may exert antiamnesic activity which may be attributed to the inhibition of AChE and inflammation as well as its antioxidant activity in the brain.

  4. Bactericidal peptidoglycan recognition protein induces oxidative stress in Escherichia coli through a block in respiratory chain and increase in central carbon catabolism.

    Science.gov (United States)

    Kashyap, Des R; Kuzma, Marcin; Kowalczyk, Dominik A; Gupta, Dipika; Dziarski, Roman

    2017-09-01

    Mammalian Peptidoglycan Recognition Proteins (PGRPs) kill both Gram-positive and Gram-negative bacteria through simultaneous induction of oxidative, thiol and metal stress responses in bacteria. However, metabolic pathways through which PGRPs induce these bactericidal stress responses are unknown. We screened Keio collection of Escherichia coli deletion mutants and revealed that deleting genes for respiratory chain flavoproteins or for tricarboxylic acid (TCA) cycle resulted in increased resistance of E. coli to PGRP killing. PGRP-induced killing depended on the production of hydrogen peroxide, which required increased supply of NADH for respiratory chain oxidoreductases from central carbon catabolism (glycolysis and TCA cycle), and was controlled by cAMP-Crp. Bactericidal PGRP induced a rapid decrease in respiration, which suggested that the main source of increased production of hydrogen peroxide was a block in respiratory chain and diversion of electrons from NADH oxidoreductases to oxygen. CpxRA two-component system was a negative regulator of PGRP-induced oxidative stress. By contrast, PGRP-induced thiol stress (depletion of thiols) and metal stress (increase in intracellular free Zn 2+ through influx of extracellular Zn 2+ ) were mostly independent of oxidative stress. Thus, manipulating pathways that induce oxidative, thiol and metal stress in bacteria could be a useful strategy to design new approaches to antibacterial therapy. © 2017 John Wiley & Sons Ltd.

  5. The influence of heat stress on metabolic status of cows

    Directory of Open Access Journals (Sweden)

    Horvat Jožef

    2014-01-01

    Full Text Available It is considered that high air temperature and humidity during the summer are the main factors which adversely affect both the health and production-reproductive performance of high yielding dairy cows. The resulting heath stress leads to a series of changes in endocrine regulation of homeostasis. The changes in hormonal status reflect in some way to the indicators of metabolic status of the cows. The objective of this work was to investigate the influence of heat stress on metabolic status of cows. The experiment was carried out on 20 cows of Holstein-Friesian breed during the summer, in the period from 18th to 45th day of lactation. During the performance of the experiment, the value of heat index (THI was determined hourly and then the value of average morning (from 10 pm the previous day to 9 am the current day, afternoon (from 10 am to 9 pm the current day and all-day THI was calculated. Blood sampling was carried out on the 1st, 2nd, 8th, 11th, 14th, 18th, 25th, 29th and 37th day of the experiment, in the morning and the afternoon. On the basis of hourly THI values, whole experimental period was divided into three periods: period A during which the cows were exposed to a extreme high heat stress (THI≥78 at least 7 hours in 24 hours; period B during which the cows were exposed to a moderate heat stress (72≥THI≤78 at least 7 hours in 24 hours; period C during which the cows were not exposed to a heat stress (THI≤72 in 24 hours. The average daily THI in period A (73,25±0,89 was significantly higher (p<0,01, individually in regard to period B (71,45±0,96 and period C (65,41±2,09. THI was significantly higher in the period B than in the period C (p<0,01. Significantly lower blood glucose value (p<0,05 during the afternoon period in the cows exposed to the extreme heat stress (3,02±0,31 mmol/L in regard to the morning period (3,14±0,41 mmol/L points to the fact that in such conditions, metabolism redirects to use of glucose as an

  6. Long-term salt stress responsive growth, carbohydrate metabolism ...

    African Journals Online (AJOL)

    We investigated the long-term responses of tobacco tissues to salt stress, with a particular interest for growth parameters, proline (Pro) accumulation, and carbohydrate metabolism. Exposure of 17-day-old tobacco plants to 0.2 M NaCl was followed by a higher decrease in dry matter in roots than shoots with a decrease of ...

  7. Temperature-induced physiological stress and reproductive characteristics of the migratory seahorse Hippocampus erectus during a thermal stress simulation.

    Science.gov (United States)

    Qin, Geng; Johnson, Cara; Zhang, Yuan; Zhang, Huixian; Yin, Jianping; Miller, Glen; Turingan, Ralph G; Guisbert, Eric; Lin, Qiang

    2018-05-15

    Inshore-offshore migration occurs frequently in seahorse species either because of prey opportunities or because it is driven by reproduction, and variations in water temperature may dramatically change migratory seahorse behavior and physiology. The present study investigated the behavioral and physiological responses of the lined seahorse Hippocampus erectus under thermal stress and evaluated the potential effects of different temperatures on its reproduction. The results showed that the thermal tolerance of the seahorses was time dependent. Acute thermal stress (30°C, 2-10 hours) increased the basal metabolic rate (breathing rate) and the expression of stress response genes ( Hsp genes) significantly and further stimulated seahorse appetite. Chronic thermal treatment (30°C, 4 weeks) led to a persistently higher basal metabolic rate, higher stress response gene expression, and higher mortality, indicating that the seahorses could not acclimate to chronic thermal stress and might experience massive mortality due to excessive basal metabolic rates and stress damage. Additionally, no significant negative effects on gonad development or reproductive endocrine regulation genes were observed in response to chronic thermal stress, suggesting that seahorse reproductive behavior could adapt to higher-temperature conditions during migration and within seahorse breeding grounds. In conclusion, this simulation experiment indicated that temperature variations during inshore-offshore migration have no effect on reproduction but promote basal metabolic rates and stress responses significantly. Therefore, we suggest that the high observed tolerance of seahorse reproduction was in line with the inshore-offshore reproductive migration pattern of lined seahorse. © 2018. Published by The Company of Biologists Ltd.

  8. Involvement of glucocorticoid prereceptor metabolism and signaling in rat visceral adipose tissue lipid metabolism after chronic stress combined with high-fructose diet.

    Science.gov (United States)

    Bursać, Biljana; Djordjevic, Ana; Veličković, Nataša; Milutinović, Danijela Vojnović; Petrović, Snježana; Teofilović, Ana; Gligorovska, Ljupka; Preitner, Frederic; Tappy, Luc; Matić, Gordana

    2018-05-03

    Both fructose overconsumption and increased glucocorticoids secondary to chronic stress may contribute to overall dyslipidemia. In this study we specifically assessed the effects and interactions of dietary fructose and chronic stress on lipid metabolism in the visceral adipose tissue (VAT) of male Wistar rats. We analyzed the effects of 9-week 20% high fructose diet and 4-week chronic unpredictable stress, separately and in combination, on VAT histology, glucocorticoid prereceptor metabolism, glucocorticoid receptor subcellular redistribution and expression of major metabolic genes. Blood triglycerides and fatty acid composition were also measured to assess hepatic Δ9 desaturase activity. The results showed that fructose diet increased blood triglycerides and Δ9 desaturase activity. On the other hand, stress led to corticosterone elevation, glucocorticoid receptor activation and decrease in adipocyte size, while phosphoenolpyruvate carboxykinase, adipose tissue triglyceride lipase, FAT/CD36 and sterol regulatory element binding protein-1c (SREBP-1c) were increased, pointing to VAT lipolysis and glyceroneogenesis. The combination of stress and fructose diet was associated with marked stimulation of fatty acid synthase and acetyl-CoA carboxylase mRNA level and with increased 11β-hydroxysteroid dehydrogenase type 1 and hexose-6-phosphate dehydrogenase protein levels, suggesting a coordinated increase in hexose monophosphate shunt and de novo lipogenesis. It however did not influence the level of peroxisome proliferator-activated receptor-gamma, SREBP-1c and carbohydrate responsive element-binding protein. In conclusion, our results showed that only combination of dietary fructose and stress increase glucocorticoid prereceptor metabolism and stimulates lipogenic enzyme expression suggesting that interaction between stress and fructose may be instrumental in promoting VAT expansion and dysfunction. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Fasting ameliorates metabolism, immunity, and oxidative stress in carbon tetrachloride-intoxicated rats.

    Science.gov (United States)

    Sadek, Km; Saleh, Ea

    2014-12-01

    Fasting has been recently discovered to improve overall health, but its beneficial effects in the presence of hepatic insufficiency have not been proven. The influence of fasting on the metabolism, immunological aspects, and oxidative stress of 40 male carbon tetrachloride (CCl4)-intoxicated Wistar rats was investigated in the present study. The rats were divided into four groups, including a placebo group, CCl4-intoxicated rats, which were injected subcutaneously with 1.0 ml/kg of CCl4 solution, a fasting group, which was fasted 12 h/day for 30 days, and a fourth group, which was injected with CCl4 and fasted. The metabolism, immunity, and oxidative stress improved in CCl4-intoxicated rats fasted for 12 h/day for 30 days, as evidenced in significant increase (p fasting improved metabolism, immunity, and oxidative stress in CCl4-intoxicated rats. Thus, fasting during Ramadan is safe for patients with hepatic disorders, as the prophet Mohammed (S) said "Keep the fast, keep your health". © The Author(s) 2014.

  10. Overexpression of a water-forming NADH oxidase improves the metabolism and stress tolerance of Saccharmyces cerevisiae in aerobic fermenation

    Directory of Open Access Journals (Sweden)

    Xinchi Shi

    2016-09-01

    Full Text Available Redox homeostasis is fundamental to the maintenance of metabolism. Redox imbalance can cause oxidative stress, which affects metabolism and growth. Water-forming NADH oxidase regulates the redox balance by oxidizing cytosolic NADH to NAD+, which relieves cytosolic NADH accumulation through rapid glucose consumption in Saccharomyces cerevisiae, thus decreasing the production of the byproduct glycerol in industrial ethanol production. Here, we studied the effects of overexpression of a water-forming NADH oxidase from Lactococcus lactis on the stress response of S. cerevisiae in aerobic batch fermentation, and we constructed an interaction network of transcriptional regulation and metabolic networks to study the effects of and mechanisms underlying NADH oxidase regulation. The oxidase-overexpressing strain (NOX showed increased glucose consumption, growth, and ethanol production, while glycerol production was remarkably lower. Glucose was exhausted by NOX at 26 h, while 18.92 ± 0.94 g/L residual glucose was left in the fermentation broth of the control strain (CON at this time point. At 29.5 h, the ethanol concentration for NOX peaked at 35.25 ± 1.76 g/L, which was 14.37 % higher than that for CON (30.82 ± 1.54 g/L. Gene expression involved in the synthesis of thiamine, which is associated with stress responses in various organisms, was increased in NOX. The transcription factor HAP4 was significantly upregulated in NOX at the late-exponential phase, indicating a diauxic shift in response to starvation. The apoptosis-inducing factor Nuc1 was downregulated while the transcription factor Sok2, which regulates the production of the small signaling molecule ammonia, was upregulated at the late-exponential phase, benefiting young cells on the rim. Reactive oxygen species production was decreased by 10% in NOX, supporting a decrease in apoptosis. The HOG pathway was not activated, although the osmotic stress was truly higher, indicating improved

  11. Pathogenesis of Chronic Hyperglycemia: From Reductive Stress to Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Liang-Jun Yan

    2014-01-01

    Full Text Available Chronic overnutrition creates chronic hyperglycemia that can gradually induce insulin resistance and insulin secretion impairment. These disorders, if not intervened, will eventually be followed by appearance of frank diabetes. The mechanisms of this chronic pathogenic process are complex but have been suggested to involve production of reactive oxygen species (ROS and oxidative stress. In this review, I highlight evidence that reductive stress imposed by overflux of NADH through the mitochondrial electron transport chain is the source of oxidative stress, which is based on establishments that more NADH recycling by mitochondrial complex I leads to more electron leakage and thus more ROS production. The elevated levels of both NADH and ROS can inhibit and inactivate glyceraldehyde 3-phosphate dehydrogenase (GAPDH, respectively, resulting in blockage of the glycolytic pathway and accumulation of glycerol 3-phospate and its prior metabolites along the pathway. This accumulation then initiates all those alternative glucose metabolic pathways such as the polyol pathway and the advanced glycation pathways that otherwise are minor and insignificant under euglycemic conditions. Importantly, all these alternative pathways lead to ROS production, thus aggravating cellular oxidative stress. Therefore, reductive stress followed by oxidative stress comprises a major mechanism of hyperglycemia-induced metabolic syndrome.

  12. Oxidative stress biomarkers and metabolic changes associated with ...

    African Journals Online (AJOL)

    Cadmium (Cd)-induced stress in hyacinth bean (Lablab purpureus) was investigated by growing seedlings in a nutrient solution containing increasing cadmium concentrations (0 to 50 μM), under strictly controlled growth conditions. Changes consequent to Cd uptake in growth parameters, enzyme activities and other stress ...

  13. Relative Quantitative Proteomic Analysis of Brucella abortus Reveals Metabolic Adaptation to Multiple Environmental Stresses

    Directory of Open Access Journals (Sweden)

    Xiaodong Zai

    2017-11-01

    Full Text Available Brucella spp. are facultative intracellular pathogens that cause chronic brucellosis in humans and animals. The virulence of Brucella primarily depends on its successful survival and replication in host cells. During invasion of the host tissue, Brucella is simultaneously subjected to a variety of harsh conditions, including nutrient limitation, low pH, antimicrobial defenses, and extreme levels of reactive oxygen species (ROS via the host immune response. This suggests that Brucella may be able to regulate its metabolic adaptation in response to the distinct stresses encountered during its intracellular infection of the host. An investigation into the differential proteome expression patterns of Brucella grown under the relevant stress conditions may contribute toward a better understanding of its pathogenesis and adaptive response. Here, we utilized a mass spectrometry-based label-free relative quantitative proteomics approach to investigate and compare global proteomic changes in B. abortus in response to eight different stress treatments. The 3 h short-term in vitro single-stress and multi-stress conditions mimicked the in vivo conditions of B. abortus under intracellular infection, with survival rates ranging from 3.17 to 73.17%. The proteomic analysis identified and quantified a total of 2,272 proteins and 74% of the theoretical proteome, thereby providing wide coverage of the B. abortus proteome. By including eight distinct growth conditions and comparing these with a control condition, we identified a total of 1,221 differentially expressed proteins (DEPs that were significantly changed under the stress treatments. Pathway analysis revealed that most of the proteins were involved in oxidative phosphorylation, ABC transporters, two-component systems, biosynthesis of secondary metabolites, the citrate cycle, thiamine metabolism, and nitrogen metabolism; constituting major response mechanisms toward the reconstruction of cellular

  14. A study on anti-stress property of Nardostachys jatamamsi on stress induced Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Shilpashree R.

    2011-09-01

    Full Text Available Stress is a feeling that’s created when we react to particular events. It s the body’s way of rising to a challenge and preparing to meet a tough situation with focus, strength, stamina, and heightened alertness. As a result of the stress immune system can be suppressed by chronic stress opening to increased infections and increasing the risk of autoimmune diseases. So one has to learn away to overcome stress. Here is an attempt made to overcome the stress induced in Drosophila melanogaster a model organism, in this study. Methotrexate is used to induce the stress at different concentration taking different group of flies and a Nardostachys jatamamsi plant extract having antistress property is used to relieve the stress induced. This stress relieve measured by the various stress related enzymes like catalase and Superoxide dismutase by this antistress property of the plant Nardostachys jatamamsi was shown.

  15. Cell Wall Metabolism in Response to Abiotic Stress

    Science.gov (United States)

    Gall, Hyacinthe Le; Philippe, Florian; Domon, Jean-Marc; Gillet, Françoise; Pelloux, Jérôme; Rayon, Catherine

    2015-01-01

    This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic), transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i) an increased level in xyloglucan endotransglucosylase/hydrolase (XTH) and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii) an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions. PMID:27135320

  16. Protective effects of agmatine against D-galactosamine and lipopolysaccharide-induced fulminant hepatic failure in mice.

    Science.gov (United States)

    El-Agamy, Dina S; Makled, Mirhan N; Gamil, Nareman M

    2014-06-01

    Fulminant hepatic failure (FHF) is a life-threatening syndrome characterized by massive hepatic necrosis and high mortality. There is no effective therapy for the disease other than liver transplantation. This study aimed to investigate the effect of agmatine, inducible nitric oxide synthase (iNOS) inhibitor, on D-galactosamine and lipopolysaccharide (GalN/LPS)-induced FHF in mice and explore its possible mechanism(s). Male Swiss albino mice were injected with a single dose agmatine (14 mg/kg, IP) 8 h prior to challenge with a single intraperitoneal injection of both GalN (800 mg/kg) and LPS (50 μg/kg). Agmatine significantly attenuated all GalN/LPS-induced biochemical and pathological changes in liver. It prevented the increase of serum transaminases and alkaline phosphatase (ALP). In addition, agmatine markedly attenuated GalN/LPS-induced necrosis and inflammation. Agmatine significantly reduced oxidative stress and enhanced antioxidant enzymes. Importantly, agmatine decreased total nitric oxide (NO) and pro-inflammatory cytokine, tumor necrosis factor-alpha (TNF-α). These findings reveal that agmatine has hepatoprotective effects against GalN/LPS-induced FHF in mice that may be related to its ability to suppress oxidative stress, NO synthesis and TNF-α production. Therefore, agmatine may serve as a novel therapeutic strategy for hepatic inflammatory diseases.

  17. Ion beam induced stress formation and relaxation in germanium

    Energy Technology Data Exchange (ETDEWEB)

    Steinbach, T., E-mail: Tobias.Steinbach@uni-jena.de [Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena (Germany); Reupert, A.; Schmidt, E.; Wesch, W. [Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena (Germany)

    2013-07-15

    Ion irradiation of crystalline solids leads not only to defect formation and amorphization but also to mechanical stress. In the past, many investigations in various materials were performed focusing on the ion beam induced damage formation but only several experiments were done to investigate the ion beam induced stress evolution. Especially in microelectronic devices, mechanical stress leads to several unwanted effects like cracking and peeling of surface layers as well as changing physical properties and anomalous diffusion of dopants. To study the stress formation and relaxation process in semiconductors, crystalline and amorphous germanium samples were irradiated with 3 MeV iodine ions at different ion fluence rates. The irradiation induced stress evolution was measured in situ with a laser reflection technique as a function of ion fluence, whereas the damage formation was investigated by means of Rutherford backscattering spectrometry. The investigations show that mechanical stress builds up at low ion fluences as a direct consequence of ion beam induced point defect formation. However, further ion irradiation causes a stress relaxation which is attributed to the accumulation of point defects and therefore the creation of amorphous regions. A constant stress state is reached at high ion fluences if a homogeneous amorphous surface layer was formed and no further ion beam induced phase transition took place. Based on the results, we can conclude that the ion beam induced stress evolution seems to be mainly dominated by the creation and accumulation of irradiation induced structural modification.

  18. Erythropoietin Action in Stress Response, Tissue Maintenance and Metabolism

    Directory of Open Access Journals (Sweden)

    Yuanyuan Zhang

    2014-06-01

    Full Text Available Erythropoietin (EPO regulation of red blood cell production and its induction at reduced oxygen tension provides for the important erythropoietic response to ischemic stress. The cloning and production of recombinant human EPO has led to its clinical use in patients with anemia for two and half decades and has facilitated studies of EPO action. Reports of animal and cell models of ischemic stress in vitro and injury suggest potential EPO benefit beyond red blood cell production including vascular endothelial response to increase nitric oxide production, which facilitates oxygen delivery to brain, heart and other non-hematopoietic tissues. This review discusses these and other reports of EPO action beyond red blood cell production, including EPO response affecting metabolism and obesity in animal models. Observations of EPO activity in cell and animal model systems, including mice with tissue specific deletion of EPO receptor (EpoR, suggest the potential for EPO response in metabolism and disease.

  19. Effect of edaravone on radiation-induced brain necrosis in patients with nasopharyngeal carcinoma after radiotherapy: a randomized controlled trial.

    Science.gov (United States)

    Tang, Yamei; Rong, Xiaoming; Hu, Weihan; Li, Guoqian; Yang, Xiaoxia; Yang, Jianhua; Xu, Pengfei; Luo, Jinjun

    2014-11-01

    Excessive generation of free radicals plays a critical role in the pathogenesis of radiation-induced brain injury. This study was designed to evaluate the protective effect of edaravone, a free radical scavenger, on radiation-induced brain necrosis in patients with nasopharyngeal carcinoma. Eligible patients were randomized 1:1 to the control group and the edaravone group (intravenous 30 mg twice per day for 2 weeks). Both groups received intravenous conventional steroid therapy and were monitored by brain MRI and LENT/SOMA scales prior to the entry of the trial and at 3-months after completing the trial. The primary end point was a 3-month response rate of the proportional changes determined by MRI. The trial is registered at Clinicaltrials.gov Identifier: NCT01865201. Between 2009 and 2012, we enrolled 154 patients. Of whom 137 were eligible for analysis. The volumes of necrosis estimated on T(2)-weighted image showed that 55.6 % edaravone-treated patients (40 out of 72) showed edema decreases ≥25 %, which was significantly higher than that in the control group (35.4 %, 23 out of 65, p = 0.025). Forty-four patients treated with edaravone (61.1 %) reported improvement in neurologic symptoms and signs evaluated by LENT/SOMA scales, while the rate was 38.5 % in the control group (p = 0.006). MRI of the edaravone group showed a significant decrease in area of T(1)-weighted contrast enhancement (1.67 ± 4.69 cm(2), p = 0.004) and the T(2)-weighted edema (5.08 ± 10.32 cm(2), p = 0.000). Moreover, compared with those in control group, patients with edaravone exhibited significantly better radiological improvement measured by T(2)-weighted image (p = 0.042). Administration of edaravone, in adjunct to steroid regimen, might provide a better outcome in patients with radiation-induced brain necrosis.

  20. Laser-induced stresses versus mechanical stress power measurements during laser ablation of solids

    International Nuclear Information System (INIS)

    Shannon, M.A.; Russo, R.E.

    1995-01-01

    Laser-induced stresses resulting from high-power laser-material interactions have been studied extensively. However, the rate of change in mechanical energy, or stress power, due to laser-induced stresses has only recently been investigated. An unanswered question for monitoring laser-material interactions in the far-field is whether stress power differs from stresses measured, particularly with respect to laser-energy coupling to a solid target. This letter shows experimental acoustic data which demonstrate that stress power measured in the far field of the target shows changes in laser-energy coupling, whereas the stresses measured do not. For the ambient medium above the target, stress power and stress together reflect changes in laser-energy coupling. copyright 1995 American Institute of Physics

  1. Glucose metabolism in different regions of the rat brain under hypokinetic stress influence

    Science.gov (United States)

    Konitzer, K.; Voigt, S.

    1980-01-01

    Glucose metabolism in rats kept under long term hypokinetic stress was studied in 7 brain regions. Determination was made of the regional levels of glucose, lactate, glutamate, glutamine, aspartate, gamma-aminobutyrate and the incorporation of C-14 from plasma glucose into these metabolites, in glycogen and protein. From the content and activity data the regional glucose flux was approximated quantitatively. Under normal conditions the activity gradient cortex and frontal pole cerebellum, thalamus and mesencephalon, hypothalamus and pons and medulla is identical with that of the regional blood supply (measured with I131 serum albumin as the blood marker). Within the first days of immobilization a functional hypoxia occurred in all brain regions and the utilization of cycle amino acids for protein synthesis was strongly diminished. After the first week of stress the capillary volumes of all regions increased, aerobic glucose metabolism was enhanced (factors 1.3 - 2.0) and the incorporation of glucose C-14 via cycle amino acids into protein was considerably potentiated. The metabolic parameters normalized between the 7th and 11th week of stress. Blood supply and metabolic rate increased most in the hypothalamus.

  2. RAGE-Specific Inhibitor FPS-ZM1 Attenuates AGEs-Induced Neuroinflammation and Oxidative Stress in Rat Primary Microglia.

    Science.gov (United States)

    Shen, Chao; Ma, Yingjuan; Zeng, Ziling; Yin, Qingqing; Hong, Yan; Hou, Xunyao; Liu, Xueping

    2017-10-01

    Advanced glycation end products (AGEs) enhance microglial activation and intensify the inflammatory response and oxidative stress in the brain. This process may occur due to direct cytotoxicity or interacting with AGEs receptors (RAGE), which are expressed on the surface of microglia. FPS-ZM1 is a high-affinity but nontoxic RAGE-specific inhibitor that has been recently shown to attenuate the Aβ-induced inflammatory response by blocking the ligation of Aβ to RAGE. In this study, we further investigated the effect of FPS-ZM1 on the AGEs/RAGE interaction and downstream elevation of neuroinflammation and oxidative stress in primary microglia cells. The results suggested that FPS-ZM1 significantly suppressed AGEs-induced RAGE overexpression, RAGE-dependent microglial activation, nuclear translocation of nuclear factor kappaB p65 (NF-κB p65), and the expression of downstream inflammatory mediators such as tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), cyclooxygenase 2 (COX-2)/prostaglandin E2 (PGE2) and inducible nitric oxide synthase (iNOS)/nitric oxide (NO). Furthermore, FPS-ZM1 attenuated AGEs-stimulated NADPH oxidase (NOX) activation and reactive oxygen species (ROS) expression. Finally, FPS-ZM1 elevated the levels of transcription factors nuclear-factor (erythroid-derived 2)-like 2 (Nrf2) and heme oxygenase-1 (HO-1), as well as decreased antioxidant capacity and increased production of oxidative species. Our results suggest that FPS-ZM1 may be neuroprotective through attenuating microglial activation, oxidative stress and inflammation by blocking RAGE.

  3. Predictive Risk of Radiation Induced Cerebral Necrosis in Pediatric Brain Cancer Patients after VMAT Versus Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Freund, Derek; Zhang, Rui, E-mail: rzhang@marybird.com [Department of Radiation Oncology, Mary Bird Perkins Cancer Center, 4950 Essen Ln., Baton Rouge, LA 70809 (United States); Department of Physics and Astronomy, Louisiana State University, Nicholson Hall, Tower Dr., Baton Rouge, LA 70810 (United States); Sanders, Mary [Department of Radiation Oncology, Mary Bird Perkins Cancer Center, 4950 Essen Ln., Baton Rouge, LA 70809 (United States); Newhauser, Wayne [Department of Radiation Oncology, Mary Bird Perkins Cancer Center, 4950 Essen Ln., Baton Rouge, LA 70809 (United States); Department of Physics and Astronomy, Louisiana State University, Nicholson Hall, Tower Dr., Baton Rouge, LA 70810 (United States)

    2015-04-13

    Cancer of the brain and central nervous system (CNS) is the second most common of all pediatric cancers. Treatment of many of these cancers includes radiation therapy of which radiation induced cerebral necrosis (RICN) can be a severe and potentially devastating side effect. Risk factors for RICN include brain volume irradiated, the dose given per fraction and total dose. Thirteen pediatric patients were selected for this study to determine the difference in predicted risk of RICN when treating with volumetric modulated arc therapy (VMAT) compared to passively scattered proton therapy (PSPT) and intensity modulated proton therapy (IMPT). Plans were compared on the basis of dosimetric endpoints in the planned treatment volume (PTV) and brain and a radiobiological endpoint of RICN calculated using the Lyman-Kutcher-Burman probit model. Uncertainty tests were performed to determine if the predicted risk of necrosis was sensitive to positional errors, proton range errors and selection of risk models. Both PSPT and IMPT plans resulted in a significant increase in the maximum dose to the brain, a significant reduction in the total brain volume irradiated to low doses, and a significant lower predicted risk of necrosis compared with the VMAT plans. The findings of this study were upheld by the uncertainty analysis.

  4. Predictive Risk of Radiation Induced Cerebral Necrosis in Pediatric Brain Cancer Patients after VMAT Versus Proton Therapy

    Directory of Open Access Journals (Sweden)

    Derek Freund

    2015-04-01

    Full Text Available Cancer of the brain and central nervous system (CNS is the second most common of all pediatric cancers. Treatment of many of these cancers includes radiation therapy of which radiation induced cerebral necrosis (RICN can be a severe and potentially devastating side effect. Risk factors for RICN include brain volume irradiated, the dose given per fraction and total dose. Thirteen pediatric patients were selected for this study to determine the difference in predicted risk of RICN when treating with volumetric modulated arc therapy (VMAT compared to passively scattered proton therapy (PSPT and intensity modulated proton therapy (IMPT. Plans were compared on the basis of dosimetric endpoints in the planned treatment volume (PTV and brain and a radiobiological endpoint of RICN calculated using the Lyman-Kutcher-Burman probit model. Uncertainty tests were performed to determine if the predicted risk of necrosis was sensitive to positional errors, proton range errors and selection of risk models. Both PSPT and IMPT plans resulted in a significant increase in the maximum dose to the brain, a significant reduction in the total brain volume irradiated to low doses, and a significant lower predicted risk of necrosis compared with the VMAT plans. The findings of this study were upheld by the uncertainty analysis.

  5. Adrenal Gland Microenvironment and Its Involvement in the Regulation of Stress-induced Hormone Secretion during Sepsis.

    Directory of Open Access Journals (Sweden)

    Waldemar Kanczkowski

    2016-12-01

    Full Text Available Survival of all living organisms depends on maintenance of a steady state of homeostasis, which process relies on its ability to react and adapt to various physical and emotional threats. The defense against stress is executed by the hypothalamic-pituitary-adrenal axis and the sympathetic-adrenal medullary system. Adrenal gland is a major effector organ of stress system. During stress adrenal gland rapidly respond with increased secretion of glucocorticoids and catecholamines into circulation, which hormones, in turn, affect metabolism, to provide acutely energy, vasculature to increase blood pressure and the immune system to prevent it from extensive activation. Sepsis resulting from microbial infections is a sustained and extreme example of stress situation. In many critical ill patients levels of both corticotropin-releasing hormone and adrenocorticotropin, two major regulators of adrenal hormone production, are suppressed. Levels of glucocorticoids however, remain normal or are elevated in these patients, suggesting a shift from central to local intraadrenal regulation of adrenal stress response. Among many mechanisms potentially involved in this process, reduced glucocorticoid metabolism and local intraadrenal activation of hormone production mediated by adrenocortical and chromaffin cell interactions, the adrenal vascular system and the immune-adrenal crosstalk play a key role. Consequently, any impairment in function of these systems, can ultimately affect adrenal stress response. The purpose of this mini review is to present and discuss recent advances in our understanding of the adrenal gland microenvironment, and its role in regulation of stress-induced hormone secretion.

  6. Nitric oxide released from JS-K induces cell death by mitotic catastrophe as part of necrosis in glioblastoma multiforme.

    Science.gov (United States)

    Günzle, Jessica; Osterberg, Nadja; Saavedra, Joseph E; Weyerbrock, Astrid

    2016-09-01

    The nitric oxide (NO) donor JS-K is specifically activated by glutathione S-transferases (GSTs) in GST-overexpressing cells. We have shown the induction of cell death in glioblastoma multiforme (GBM) cells at high JS-K doses but the mechanism remains unclear. The aim of this study was to determine whether NO-induced cell death is triggered by induction of apoptotic or necrotic pathways. For the first time, we demonstrate that NO induces cell death via mitotic catastrophe (MC) with non-apoptotic mechanisms in GBM cells. Moreover, the level of morphological changes indicating MC correlates with increased necrosis. Therefore, we conclude that MC is the main mechanism by which GBM cells undergo cell death after treatment with JS-K associated with necrosis rather than apoptosis. In addition, we show that PARP1 is not an exclusive marker for late apoptosis but is also involved in MC. Activating an alternative way of cell death can be useful for the multimodal cancer therapy of GBM known for its strong anti-apoptotic mechanisms and drug resistance.

  7. Perceived stress correlates with visceral obesity and lipid parameters of the metabolic syndrome: A systematic review and meta-analysis.

    Science.gov (United States)

    Tenk, Judit; Mátrai, Péter; Hegyi, Péter; Rostás, Ildikó; Garami, András; Szabó, Imre; Hartmann, Petra; Pétervári, Erika; Czopf, László; Hussain, Alizadeh; Simon, Mária; Szujó, Szabina; Balaskó, Márta

    2018-05-12

    Perceived stress has been proposed as a risk factor of metabolic syndrome. However, correlations between perceived stress and parameters of the metabolic syndrome have not been properly analyzed despite extensive research data on the topic. Our current meta-analysis aimed to examine the mutual association between perceived stress of patients and parameters of metabolic syndrome. This systematic review has been registered on the PROSPERO database (registration number CRD42017055293). Eligible studies divided participants based on their stress level or on the presence of metabolic syndrome. They reported at least one parameter of the metabolic syndrome or the stress level of the participants measured with some stress scale. Data from 17 articles met the eligibility criteria and were included. Random effects model with the DerSimonian and Laird weighting methods was applied. I-squared indicator and Q test were performed to assess heterogeneity. Although the majority of individual studies failed to demonstrate correlations between stress and their analyzed parameters of metabolic syndrome, our meta-analysis showed a significant association between stress and BMI [average effect size (ES) with 95% confidence interval (95%CI), ES = 0.65, 95%CI 0.16, 1.14), waist circumference (ES = 1.84 cm, 95%CI 0.79, 2.89) and serum triglyceride level (ES = 7.52 mg/dl, 95%CI 0.07, 14.96). Additional analysis confirmed effects of stress on serum HDL (ES = - 1.699 mg/dl, 95%CI -2.966, -0.432) and diastolic blood pressure (ES = 1.04 mmHg, 95%CI 0.18, 1.89). No correlations were found for fasting glucose or systolic blood pressure. No association between metabolic syndrome and stress level of patients was detected either. The potentially key role of visceral obesity in the association between perceived stress and dyslipidemia or diastolic blood pressure are discussed together with potential moderators (e.g. gender-differences, variations in stress assessment and

  8. Bicyclol attenuates tetracycline-induced fatty liver associated with inhibition of hepatic ER stress and apoptosis in mice.

    Science.gov (United States)

    Yao, Xiao-Min; Li, Yue; Li, Hong-Wei; Cheng, Xiao-Yan; Lin, Ai-Bin; Qu, Jun-Ge

    2016-01-01

    Endoplasmic reticulum (ER) stress is known to be involved in the development of several metabolic disorders, including non-alcoholic fatty liver disease (NAFLD). Tetracycline can cause hepatic steatosis, and ER stress may be involved in tetracycline-induced fatty liver. Our previous study showed that bicyclol has been proven to protect against tetracycline-induced fatty liver in mice, and ER stress may also be involved in bicyclol's hepatoprotective effect. Therefore, this study was performed to investigate the underlying mechanisms associated with ER stress and apoptosis, by which bicyclol attenuated tetracycline-induced fatty liver in mice. Bicyclol (300 mg/kg) was given to mice by gavage 3 times. Tetracycline (200 mg/kg, intraperitoneally) was injected at 1 h after the last dose of bicyclol. At 6 h and 24 h after single dose of tetracycline injection, serum ALT, AST, TG, CHO and hepatic histopathological examinations were performed to evaluate liver injuries. Hepatic steatosis was assessed by the accumulation of hepatic TG and CHO. Moreover, hepatic apoptosis and ER stress related markers were determined by TUNEL, real-time PCR, and western blot. As a result, bicyclol significantly protected against tetracycline-induced fatty liver as evidenced by the decrease of elevated serum transaminases and hepatic triglyceride, and the attenuation of histopathological changes in mice. In addition, bicyclol remarkably alleviated hepatic apoptosis and the gene expression of caspase-3, and increased the gene expression of XIAP. The gene expressions of ER stress-related markers, including CHOP, GRP78, IRE-1α, and ATF6, which were downregulated by bicyclol pretreatment in tetracycline-injected mice. These results suggested that bicyclol protected tetracycline-induced fatty liver partly due to its ability of anti-apoptosis associated with ER stress.

  9. Finite element calculation of stress induced heating of superconductors

    International Nuclear Information System (INIS)

    Akin, J.E.; Moazed, A.

    1976-01-01

    This research is concerned with the calculation of the amount of heat generated due to the development of mechanical stresses in superconducting composites. An emperical equation is used to define the amount of stress-induced heat generation per unit volume. The equation relates the maximum applied stress and the experimental measured hysteresis loop of the composite stress-strain diagram. It is utilized in a finite element program to calculate the total stress-induced heat generation for the superconductor. An example analysis of a solenoid indicates that the stress-induced heating can be of the same order of magnitude as eddy current effects

  10. Cancer treatment induced metabolic syndrome : Improving outcome with lifestyle

    NARCIS (Netherlands)

    Westerink, M. D. N. L.; Nuver, J.; Lefrandt, J. D.; Vrieling, A. H.; Gietema, J. A.; Walenkamp, A. M. E.

    2016-01-01

    Increasing numbers of long-term cancer survivors face important treatment related adverse effects. Cancer treatment induced metabolic syndrome (CTIMetS) is an especially prevalent and harmful condition. The aetiology of CTIMetS likely differs from metabolic syndrome in the general population, but

  11. Evaluation of chronic stress indicators in geriatric and oncologic caregivers: a cross-sectional study.

    Science.gov (United States)

    Aguiló, Sira; García, Esther; Arza, Adriana; Garzón-Rey, Jorge M; Aguiló, Jordi

    2018-01-01

    Caregiving induces chronic stress with physical and psychological impact on informal caregivers health. Therefore, subjective and objective indicators are needed for the early diagnosis of pathologic stress to prevent the risk of developing stress-related diseases in caregivers. Our aim was to assess the self-perceived stress, that is, how and how much the stressor affects the individual, through endocrine, metabolic, and immunologic biomarkers levels in geriatric and oncologic informal caregivers. Informal caregivers and non-caregivers were invited to participate in a cross-sectional study at the Clinic Hospital of Barcelona. Demographic and lifestyle characteristics, self-perceived stress (Perceived Stress Scale, State-Trait Anxiety Inventory and Stress Visual Analogue Scale), and biomarkers (copeptin, glucose, glycated hemoglobin, low-density lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol (HDL), cholesterol, triglycerides, α-amylase, cortisol, tumor necrosis factor (TNF-α), and Interleukins (IL-6 and IL-10)) were evaluated. Descriptive and non-parametric statistical data analysis were performed. Fifty-six subjects (19 non-caregivers, 17 geriatric caregivers, and 20 oncologic caregivers) participated. Median age (IQR) was 57 years (47-66) and 71.46% were women. Self-perceived stress was higher in oncologic caregivers than geriatric caregivers in all psychometric test analyzed (Wilcoxon Rank Sum test, p value  .05). These findings suggest that perceived stress is not homogeneous in the caregivers community and thus these two groups could be differentiated. These results provide the baseline information to initiate social actions addressed to each group of caregivers to increase their wellbeing.

  12. [The study on metabolic difference of human body affected by active stress and passive stress under special events].

    Science.gov (United States)

    Guo, Guang-hong; Gu, Feng; Dong, Zhen-nan; Yuan, Xin-hong; Wang, Ling; Tian, Ya-ping

    2010-05-01

    To study the metabolic difference of body influenced by active stress and passive stress under special events. To detect serum multiple biochemistry index of 57 earthquake rescue medical team and 13 victims of a natural calamity in Wenchuan earthquake by using Hitachi 7600 automatic analyzer. Stress affected biochemistry index deeply. To compared with rescue medical team, the serum ADA, ALP and TG of victims increased obviously and TP, ALB, MAO, Cr, UA, K, Na, Cl, Ca, ApoA1 and HDL decreased obviously. Many biochemistry index have been changed under stress and it relate with stress extent. The human body function status was better in active stress than in passive stress.

  13. Growth and nitrogen metabolism changes in NaCl-stressed tobacco ...

    African Journals Online (AJOL)

    Growth and nitrogen metabolism changes in NaCl-stressed tobacco (Nicotiana rustica L. var. Souffi) seedlings. Chokri Zaghdoud, Houda Maâroufi-Dguimi, Youssef Ouni, Mokhtar Guerfel, Houda Gouia, Kamel-Eddine Negaz, Ali Ferchichi, Mohamed Debouba ...

  14. In vitro culture of oocytes and granulosa cells collected from normal, obese, emaciated and metabolically stressed ewes.

    Science.gov (United States)

    Tripathi, S K; Farman, M; Nandi, S; Mondal, S; Gupta, Psp; Kumar, V Girish

    2016-07-01

    The present study was undertaken to investigate the oocyte morphology, its fertilizing capacity and granulosa cell functions in ewes (obese, normal, metabolic stressed and emaciated). Ewes (Ovis aries) of approximately 3 years of age (Bellary breed) from a local village were screened, chosen and categorized into a) normal b) obese but not metabolically stressed, c) Emaciated but not metabolically stressed d) Metabolically stressed based on body condition scoring and blood markers. Oocytes and granulosa cells were collected from ovaries of the ewes of all categories after slaughter and were classified into good (oocytes with more than three layers of cumulus cells and homogenous ooplasm), fair (oocytes one or two layers of cumulus cells and homogenous ooplasm) and poor (denuded oocytes or with dark ooplasm). The good and fair quality oocytes were in vitro matured and cultured with fresh semen present and the fertilization, cleavage and blastocyst development were observed. The granulosa cells were cultured for evaluation of metabolic activity by use of the MTT assay, and cell viability, cell number as well as estrogen and progesterone production were assessed. It was observed that the good and fair quality oocytes had greater metabolic activity when collected from normal and obese ewes compared with those from emaciated and metabolically stressed ewes. No significant difference was observed in oocyte quality and maturation amongst the oocytes collected from normal and obese ewes. The cleavage and blastocyst production rates were different for the various body condition classifications and when ranked were: normal>obese>metabolically stressed>emaciated. Lesser metabolic activity was observed in granulosa cells obtained from ovaries of emaciated ewes. However, no changes were observed in viability and cell number of granulosa cells obtained from ewes with the different body condition categories. Estrogen and progesterone production from cultured granulosa cells were

  15. Activation of AMPKα2 is not crucial for mitochondrial uncoupling-induced metabolic effects but required to maintain skeletal muscle integrity.

    Directory of Open Access Journals (Sweden)

    Mario Ost

    Full Text Available Transgenic (UCP1-TG mice with ectopic expression of UCP1 in skeletal muscle (SM show a phenotype of increased energy expenditure, improved glucose tolerance and increase substrate metabolism in SM. To investigate the potential role of skeletal muscle AMPKα2 activation in the metabolic phenotype of UCP1-TG mice we generated double transgenic (DTG mice, by crossing of UCP1-TG mice with DN-AMPKα2 mice overexpressing a dominant negative α2 subunit of AMPK in SM which resulted in an impaired AMPKα2 activity by 90±9% in SM of DTG mice. Biometric analysis of young male mice showed decreased body weight, lean and fat mass for both UCP1-TG and DTG compared to WT and DN-AMPKα2 mice. Energy intake and weight-specific total energy expenditure were increased, both in UCP1-TG and DTG mice. Moreover, glucose tolerance, insulin sensitivity and fatty acid oxidation were not altered in DTG compared to UCP1-TG. Also uncoupling induced induction and secretion of fibroblast growth factor 21 (FGF21 from SM was preserved in DTG mice. However, voluntary physical cage activity as well as ad libitum running wheel access during night uncovered a severe activity intolerance of DTG mice. Histological analysis showed a progressive degenerative morphology in SM of DTG mice which was not observed in SM of UCP1-TG mice. Moreover, ATP-depletion related cellular stress response via heat shock protein 70 was highly induced, whereas capillarization regulator VEGF was suppressed in DTG muscle. In addition, AMPKα2-mediated induction of mitophagy regulator ULK1 was suppressed in DTG mice, as well as mitochondrial respiratory capacity and content. In conclusion, we demonstrate that AMPKα2 is dispensable for SM mitochondrial uncoupling induced metabolic effects on whole body energy balance, glucose homeostasis and insulin sensitivity. But strikingly, activation of AMPKα2 seems crucial for maintaining SM function, integrity and the ability to compensate chronic metabolic stress

  16. TEM and SEM observation of uranium induced renal necrosis and the result of chelates treatment on rats

    International Nuclear Information System (INIS)

    Sun Shiquan; Li Baoxing; Lai Chixiang; You Zhanyun

    1987-01-01

    The TEM (transmission electron microscope) and SEM (scanning electron microscope) observation of uranium induced renal necrosis and the result of chelates treatment on rats are reported. Ultrastructural changes in kidney related with the impairment of intracellular fluid transportation can be found after acute uranium intoxication in rats, such as: condensation and swelling of mitochondria, matrix edema, dilatation of intercellular space, disappearance of basal folds, thickening of basal web, intensification of basal lamina of the proximal convoluted tubule epithelium cells, and foot processes swelling, diminishing of endothelium fenestrae of the renal glomerulus. Heavy metal chelates DTPA and H-73-10 treatment may result in intracellular fluid accumulation and condensed grannule formation in lysosome. Treatment with these chelates in the critical stage of uranium intoxication may accelerate the necrosis instead of diminishing. This may be related to the augment of the load of lysosome and intracellular system of fluid transportation

  17. Postneonatal Mortality and Liver Changes in Cloned Pigs Associated with Human Tumor Necrosis Factor Receptor I-Fc and Human Heme Oxygenase-1 Overexpression

    Directory of Open Access Journals (Sweden)

    Geon A. Kim

    2017-01-01

    Full Text Available Soluble human tumor necrosis factor (shTNFRI-Fc and human heme oxygenase 1 (hHO-1 are key regulators for protection against oxidative and inflammatory injury for xenotransplantation. Somatic cells with more than 10 copy numbers of shTNFRI-Fc and hHO-1 were employed in somatic cell nuclear transfer to generate cloned pigs, thereby resulting in seven cloned piglets. However, produced piglets were all dead within 24 hours after birth. Obviously, postnatal death with liver apoptosis was reported in the higher copy number of shTNFRI-Fc and hHO-1 piglets. In liver, the transcript levels of ferritin heavy chain, light chain, transferrin, and inducible nitric oxide synthase were significantly highly expressed compared to those of lower copy number of shTNFRI-Fc and hHO-1 piglets (P<0.05. Also, H2O2 contents were increased, and superoxide dismutase was significantly lower in the higher copy number of shTNFRI-Fc and hHO-1 piglets (P<0.05. These results indicate that TNFRI-Fc and hHO-1 overexpression may apparently induce free iron in the liver and exert oxidative stress by enhancing reactive oxygen species production and block normal postneonatal liver metabolism.

  18. Oxidative Stress and Programmed Cell Death in Yeast

    International Nuclear Information System (INIS)

    Farrugia, Gianluca; Balzan, Rena

    2012-01-01

    Yeasts, such as Saccharomyces cerevisiae, have long served as useful models for the study of oxidative stress, an event associated with cell death and severe human pathologies. This review will discuss oxidative stress in yeast, in terms of sources of reactive oxygen species (ROS), their molecular targets, and the metabolic responses elicited by cellular ROS accumulation. Responses of yeast to accumulated ROS include upregulation of antioxidants mediated by complex transcriptional changes, activation of pro-survival pathways such as mitophagy, and programmed cell death (PCD) which, apart from apoptosis, includes pathways such as autophagy and necrosis, a form of cell death long considered accidental and uncoordinated. The role of ROS in yeast aging will also be discussed.

  19. 3-Keto-1,5-bisphosphonates Alleviate Serum-Oxidative Stress in the High-fat Diet Induced Obesity in Rats.

    Science.gov (United States)

    Lahbib, Karima; Aouani, Iyadh; Cavalier, Jean-François; Touil, Soufiane

    2015-09-01

    Obesity has become a leading global health problem owing to its strong association with a high incidence of oxidative stress. Many epidemiologic studies showed that an antioxidant supplementation decreases the state of oxidative stress. In the present work, a HFD-induced rat obesity and oxidative stress were used to investigate the link between fat deposition and serum-oxidative stress markers. We also studied the effect of a chronic administration of 3-keto-1,5-bisphosphonates 1 (a & b) (40 μg/kg/8 weeks/i.p.). Exposure of rats to HFD during 16 weeks induced fat deposition, weight gain and metabolic disruption characterized by an increase in cholesterol, triglyceride and glycemia levels, and a decrease in ionizable calcium and free iron concentrations. HFD also induced serum-oxidative stress status vocalized by an increase in ROS (H2 O2 ), MDA and PC levels, with a decrease in antioxidant enzyme activity (CAT, GPx, SOD). Importantly, 3-keto-1,5-bisphosphonates corrected all the deleterious effects of HFD treatment in vivo, but it failed to inhibit lipases in vitro and in vivo. These studies suggest that 3-keto-1,5-bisphosphonates 1 could be considered as safe antioxidant agents that should also find other potential biological applications. © 2014 John Wiley & Sons A/S.

  20. Stress- and glucocorticoid-induced priming of neuroinflammatory responses: potential mechanisms of stress-induced vulnerability to drugs of abuse.

    Science.gov (United States)

    Frank, Matthew G; Watkins, Linda R; Maier, Steven F

    2011-06-01

    Stress and stress-induced glucocorticoids (GCs) sensitize drug abuse behavior as well as the neuroinflammatory response to a subsequent pro-inflammatory challenge. Stress also predisposes or sensitizes individuals to develop substance abuse. There is an emerging evidence that glia and glia-derived neuroinflammatory mediators play key roles in the development of drug abuse. Drugs of abuse such as opioids, psychostimulants, and alcohol induce neuroinflammatory mediators such as pro-inflammatory cytokines (e.g. interleukin (IL)-1β), which modulate drug reward, dependence, and tolerance as well as analgesic properties. Drugs of abuse may directly activate microglial and astroglial cells via ligation of Toll-like receptors (TLRs), which mediate the innate immune response to pathogens as well as xenobiotic agents (e.g. drugs of abuse). The present review focuses on understanding the immunologic mechanism(s) whereby stress primes or sensitizes the neuroinflammatory response to drugs of abuse and explores whether stress- and GC-induced sensitization of neuroimmune processes predisposes individuals to drug abuse liability and the role of neuroinflammatory mediators in the development of drug addiction. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Spirulina platensis Improves Mitochondrial Function Impaired by Elevated Oxidative Stress in Adipose-Derived Mesenchymal Stromal Cells (ASCs) and Intestinal Epithelial Cells (IECs), and Enhances Insulin Sensitivity in Equine Metabolic Syndrome (EMS) Horses.

    Science.gov (United States)

    Nawrocka, Daria; Kornicka, Katarzyna; Śmieszek, Agnieszka; Marycz, Krzysztof

    2017-08-03

    Equine Metabolic Syndrome (EMS) is a steadily growing life-threatening endocrine disorder linked to insulin resistance, oxidative stress, and systemic inflammation. Inflammatory microenvironment of adipose tissue constitutes the direct tissue milieu for various cell populations, including adipose-derived mesenchymal stromal cells (ASCs), widely considered as a potential therapeutic cell source in the course of the treatment of metabolic disorders. Moreover, elevated oxidative stress induces inflammation in intestinal epithelial cells (IECs)-the first-line cells exposed to dietary compounds. In the conducted research, we showed that in vitro application of Spirulina platensis contributes to the restoration of ASCs' and IECs' morphology and function through the reduction of cellular oxidative stress and inflammation. Enhanced viability, suppressed senescence, and improved proliferation of ASCs and IECs isolated from metabolic syndrome-affected individuals were evident following exposition to Spirulina. A protective effect of the investigated extract against mitochondrial dysfunction and degeneration was also observed. Moreover, our data demonstrate that Spirulina extract effectively suppressed LPS-induced inflammatory responses in macrophages. In vivo studies showed that horses fed with a diet based on Spirulina platensis supplementation lost weight and their insulin sensitivity improved. Thus, our results indicate the engagement of Spirulina platensis nourishing as an interesting alternative approach for supporting the conventional treatment of equine metabolic syndrome.

  2. Hypoxia-induced decrease of UCP3 gene expression in rat heart parallels metabolic gene switching but fails to affect mitochondrial respiratory coupling.

    Science.gov (United States)

    Essop, M Faadiel; Razeghi, Peter; McLeod, Chris; Young, Martin E; Taegtmeyer, Heinrich; Sack, Michael N

    2004-02-06

    Mitochondrial uncoupling proteins 2 and 3 (UCP2 and UCP3) are postulated to contribute to antioxidant defense, nutrient partitioning, and energy efficiency in the heart. To distinguish isotype function in response to metabolic stress we measured cardiac mitochondrial function and cardiac UCP gene expression following chronic hypobaric hypoxia. Isolated mitochondrial O(2) consumption and ATP synthesis rate were reduced but respiratory coupling was unchanged compared to normoxic groups. Concurrently, left ventricular UCP3 mRNA levels were significantly decreased with hypoxia (pheart as opposed to uncoupling of mitochondria. Moreover, the divergent hypoxia-induced regulation of UCP2 and UCP3 supports distinct mitochondrial regulatory functions of these inner mitochondrial membrane proteins in the heart in response to metabolic stress.

  3. Effects of PEG-induced osmotic stress on growth and dhurrin levels of forage sorghum

    DEFF Research Database (Denmark)

    O'Donnell, Natalie H.; Møller, Birger Lindberg; Neale, Alan D.

    2013-01-01

    Sorghum (Sorghum bicolor L. Moench) is a valuable forage crop in regions with low soil moisture. Sorghum may accumulate high concentrations of the cyanogenic glucoside dhurrin when drought stressed resulting in possible cyanide (HCN) intoxication of grazing animals. In addition, high concentratio...... of plant growth and root activity, increasing the rate of nitrate uptake. Data presented in this article support a role for cyanogenic glucosides in mitigating oxidative stress....... of nitrate, also potentially toxic to ruminants, may accumulate during or shortly after periods of drought. Little is known about the degree and duration of drought-stress required to induce dhurrin accumulation, or how changes in dhurrin concentration are influenced by plant size or nitrate metabolism....... Given that finely regulating soil moisture under controlled conditions is notoriously difficult, we exposed sorghum plants to varying degrees of osmotic stress by growing them for different lengths of time in hydroponic solutions containing polyethylene glycol (PEG). Plants grown in medium containing 20...

  4. Altered Gravity Induces Oxidative Stress in Drosophila Melanogaster

    Science.gov (United States)

    Bhattacharya, Sharmila; Hosamani, Ravikumar

    2015-01-01

    Altered gravity environments can induce increased oxidative stress in biological systems. Microarray data from our previous spaceflight experiment (FIT experiment on STS-121) indicated significant changes in the expression of oxidative stress genes in adult fruit flies after spaceflight. Currently, our lab is focused on elucidating the role of hypergravity-induced oxidative stress and its impact on the nervous system in Drosophila melanogaster. Biochemical, molecular, and genetic approaches were combined to study this effect on the ground. Adult flies (2-3 days old) exposed to acute hypergravity (3g, for 1 hour and 2 hours) showed significantly elevated levels of Reactive Oxygen Species (ROS) in fly brains compared to control samples. This data was supported by significant changes in mRNA expression of specific oxidative stress and antioxidant defense related genes. As anticipated, a stress-resistant mutant line, Indy302, was less vulnerable to hypergravity-induced oxidative stress compared to wild-type flies. Survival curves were generated to study the combined effect of hypergravity and pro-oxidant treatment. Interestingly, many of the oxidative stress changes that were measured in flies showed sex specific differences. Collectively, our data demonstrate that altered gravity significantly induces oxidative stress in Drosophila, and that one of the organs where this effect is evident is the brain.

  5. Intracellular photoinduced oxidative stress by zinc phthalocyanine photosensitization: a study of the early events in real time using confocal microscopy

    Science.gov (United States)

    Alexandratou, Eleni; Yova, Dido; Handris, Panagiotis; Kletsas, Dimitris; Loukas, Spyros

    2003-10-01

    Oxidative stress has been implicated in several biological and pathological aspects. Reactive oxygen species (ROS) have been proposed to act as signal transduction molecules activating reactions leading to cell rescue or to cell apoptosis/necrosis. In the present study, oxidative stress was induced by photosensitization of zinc phthalocyanine (ZnPc) in human fibroblasts using a photodynamic dose that did not lead to apoptosis or necrosis. The induction of oxidative stress was performed at the microscope stage in preassigned time. The cascade of phenomena evoked was studied in real time and at the single cell level using confocal laser scanning microscopy. Using specific vital fluorescent probes, alterations induced by oxidative stress in mitochondria membrane potential, in intracellular pH and in calcium concentration were recorded. Image processing and analysis techniques were used to quantify the observed changes. Subcellular localization of the photosensitizer was studied in order to determine the primary and immediate ROS target. It was found that ZnPc is mainly localized in the mitochondria region.

  6. Biological effects of laser-induced stress waves

    International Nuclear Information System (INIS)

    Doukas, A.; Lee, S.; McAuliffe, D.

    1995-01-01

    Laser-induced stress waves can be generated by one of the following mechanisms: Optical breakdown, ablation or rapid heating of an absorbing medium. These three modes of laser interaction with matter allow the investigation of cellular and tissue responses to stress waves with different characteristics and under different conditions. The most widely studied phenomena are those of the collateral damage seen in photodisruption in the eye and in 193 run ablation of cornea and skin. On the other hand, the therapeutic application of laser-induced stress waves has been limited to the disruption of noncellular material such as renal stones, atheromatous plaque and vitreous strands. The effects of stress waves to cells and tissues can be quite disparate. Stress waves can fracture tissue, damage cells, and increase the permeability of the plasma membrane. The viability of cell cultures exposed to stress waves increases with the peak stress and the number of pulses applied. The rise time of the stress wave also influences the degree of cell injury. In fact, cell viability, as measured by thymidine incorporation, correlates better with the stress gradient than peak stress. Recent studies have also established that stress waves induce a transient increase of the permeability of the plasma membrane in vitro. In addition, if the stress gradient is below the damage threshhold, the cells remain viable. Thus, stress waves can be useful as a means of drug delivery, increasing the intracellular drug concentration and allowing the use of drugs which are impermeable to the cell membrane. The present studies show that it is important to create controllable stress waves. The wavelength tunability and the micropulse structure of the free electron laser is ideal for generating stress waves with independently adjustable parameters, such as rise time, duration and peak stress

  7. Functional role of CCCTC binding factor (CTCF) in stress-induced apoptosis

    International Nuclear Information System (INIS)

    Li Tie; Lu Luo

    2007-01-01

    CTCF, a nuclear transcriptional factor, is a multifunctional protein and involves regulation of growth factor- and cytokine-induced cell proliferation/differentiation. In the present study, we investigated the role of CTCF in protecting stress-induced apoptosis in various human cell types. We found that UV irradiation and hyper-osmotic stress induced human corneal epithelial (HCE) and hematopoietic myeloid cell apoptosis detected by significantly increased caspase 3 activity and decreased cell viability. The stress-induced apoptotic response in these cells requires down-regulation of CTCF at both mRNA and protein levels, suggesting that CTCF may play an important role in downstream events of stress-induced signaling pathways. Inhibition of NFκB activity prevented stress-induced down-regulation of CTCF and increased cell viability against stress-induced apoptosis. The anti-apoptotic effect of CTCF was further studied by manipulating CTCF activities in HCE and hematopoietic cells. Transient transfection of cDNAs encoding full-length human CTCF markedly suppressed stress-induced apoptosis in these cells. In contrast, knocking down of CTCF mRNA using siRNA specific to CTCF significantly promoted stress-induced apoptosis. Thus, our results reveal that CTCF is a down stream target of stress-induced signaling cascades and it plays a significant anti-apoptotic role in regulation of stress-induced cellular responses in HCE and hematopoietic myeloid cells

  8. [Association between occupational stress and aminotransferase activity in patients with metabolic syndrome].

    Science.gov (United States)

    Zhao, H; Song, L; Qiang, Y; Liu, H R; Qiu, F Y; Li, X Z; Song, H

    2016-12-20

    Objective: To investigate the association between occupational stress and activity of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in patients with metabolic syndrome. Methods: A case-control study was performed. According to inclusion and exclusion criteria, among the staff members of enterprises and public institutions aged 20~60 years who underwent physical examination in The Affiliated Hospital of Ningxia Medical University and The People's Hospital of Wuzhong from October 2011 to October 2012, 622 patients with metabolic syndrome who did not have a blood relationship with each other were enrolled as case group, and 600 healthy staff members who also did not have a blood relationshipwith each otherwere enrolled as control group. Questionnaire investigation, chronic occupational stress investigation, physical examination, and laboratory tests were performed for all subjects. Results: Compared with the control group, the case group had significantly higher serum levels and abnormal rates of AST and ALT ( t =-4.338 and-5.485, χ(2)=11.168 and 34.302, all P occupational stresses in both groups ( F =2.192 and 2.567, χ(2)=2.694 and 5.402, all P >0.05) , but there were significant differencesbetween the subgroups in all subjects ( F =5.005, χ(2)=6.398, all P occupational stresses in the case group, the control group, and all subjects ( F =0.845, 0.450, and 1.416, χ(2)=2.564, 1.344, and 3.147, all P >0.05) . The partial correlation analysis showed that the total score of occupational stress was positively correlated withthe serum level of AST ( r =0.071, P 0.05) , and that the serum level of AST was positively correlated with that of ALT ( r =0.736, P occupational stress was positively correlated with the serum level of AST ( r =0.069, P 0.05) , and the serum level of AST was positively correlated with that of ALT ( r =0.730, P occupational stress ( b =0.131, P =0.013) . Conclusion: Occupational stress is associated with increased serum level

  9. Protective Effect of Argan and Olive Oils against LPS-Induced Oxidative Stress and Inflammation in Mice Livers

    Directory of Open Access Journals (Sweden)

    Soufiane El Kamouni

    2017-10-01

    Full Text Available Sepsis causes severe dysregulation of organ functions, via the development of oxidative stress and inflammation. These pathophysiological mechanisms are mimicked in mice injected with bacterial lipopolysaccharide (LPS. Here, protective properties of argan oil against LPS-induced oxidative stress and inflammation are explored in the murine model. Mice received standard chow, supplemented with argan oil (AO or olive oil (OO for 25 days, before septic shock was provoked with a single intraperitoneal injection of LPS, 16 hours prior to animal sacrifice. In addition to a rise in oxidative stress and inflammatory markers, injected LPS also caused hepatotoxicity, accompanied by hyperglycemia, hypercholesterolemia and hyperuremia. These LPS-associated toxic effects were blunted by AO pretreatment, as corroborated by normal plasma parameters and cell stress markers (glutathione: GSH and antioxidant enzymology (catalase, CAT; superoxide dismutase, SOD and glutathione peroxidase, GPx. Hematoxylin–eosin staining revealed that AO can protect against acute liver injury, maintaining a normal status, which is pointed out by absent or reduced LPS-induced hepatic damage markers (i.e., alanine aminotransferase (ALT and aspartate transaminase (AST. Our work also indicated that AO displayed anti-inflammatory activity, due to down-regulations of genes encoding pro-inflammatory cytokines Interleukin-6 (IL-6 and Tumor Necrosis Factor-α (TNF-α and in up-regulations of the expression of anti-inflammatory genes encoding Interleukin-4 (IL-4 and Interleukin-10 (IL-10. OO provided animals with similar, though less extensive, protective changes. Collectively our work adds compelling evidence to the protective mechanisms of AO against LPS-induced liver injury and hence therapeutic potentialities, in regard to the management of human sepsis. Activations of IL-4/Peroxisome Proliferator-Activated Receptors (IL-4/PPARs signaling and, under LPS, an anti-inflammatory IL-10/Liver

  10. Effects of induced stress on seismic forward modelling and inversion

    Science.gov (United States)

    Tromp, Jeroen; Trampert, Jeannot

    2018-05-01

    We demonstrate how effects of induced stress may be incorporated in seismic modelling and inversion. Our approach is motivated by the accommodation of pre-stress in global seismology. Induced stress modifies both the equation of motion and the constitutive relationship. The theory predicts that induced pressure linearly affects the unstressed isotropic moduli with a slope determined by their adiabatic pressure derivatives. The induced deviatoric stress produces anisotropic compressional and shear wave speeds; the latter result in shear wave splitting. For forward modelling purposes, we determine the weak form of the equation of motion under induced stress. In the context of the inverse problem, we determine induced stress sensitivity kernels, which may be used for adjoint tomography. The theory is illustrated by considering 2-D propagation of SH waves and related Fréchet derivatives based on a spectral-element method.

  11. Pre-cold stress increases acid stress resistance and induces amino ...

    African Journals Online (AJOL)

    pre-adapted to cold stress revealed induction of amino acid homeostasis and energy ... substrate, thereby reducing yeast and mould ..... spontaneous mutation of llmg_1816 (gdpp) induced by .... species to UV-B-induced damage in bacteria. J.

  12. The JCR:LA-cp rat: a novel rodent model of cystic medial necrosis.

    Science.gov (United States)

    Pung, Yuh Fen; Chilian, William M; Bennett, Martin R; Figg, Nichola; Kamarulzaman, Mohd Hamzah

    2017-03-01

    Although there are multiple rodent models of the metabolic syndrome, very few develop vascular complications. In contrast, the JCR:LA-cp rat develops both metabolic syndrome and early atherosclerosis in predisposed areas. However, the pathology of the normal vessel wall has not been described. We examined JCR:LA control (+/+) or cp/cp rats fed normal chow diet for 6 or 18 mo. JCR:LA-cp rats developed multiple features of advanced cystic medial necrosis including "cysts," increased collagen formation and proteoglycan deposition around cysts, apoptosis of vascular smooth muscle cells, and spotty medial calcification. These appearances began within 6 mo and were extensive by 18 mo. JCR:LA-cp rats had reduced medial cellularity, increased medial thickness, and vessel hypoxia that was most marked in the adventitia. In conclusion, the normal chow-fed JCR:LA-cp rat represents a novel rodent model of cystic medial necrosis, associated with multiple metabolic abnormalities, vascular smooth muscle cell apoptosis, and vessel hypoxia. NEW & NOTEWORTHY Triggers for cystic medial necrosis (CMN) have been difficult to study due to lack of animal models to recapitulate the pathologies seen in humans. Our study is the first description of CMN in the rat. Thus the JCR:LA-cp rat represents a useful model to investigate the underlying molecular changes leading to the development of CMN. Copyright © 2017 the American Physiological Society.

  13. Differential gene expression during thermal stress and bleaching in the Caribbean coral Montastraea faveolata.

    Science.gov (United States)

    DeSalvo, M K; Voolstra, C R; Sunagawa, S; Schwarz, J A; Stillman, J H; Coffroth, M A; Szmant, A M; Medina, M

    2008-09-01

    The declining health of coral reefs worldwide is likely to intensify in response to continued anthropogenic disturbance from coastal development, pollution, and climate change. In response to these stresses, reef-building corals may exhibit bleaching, which marks the breakdown in symbiosis between coral and zooxanthellae. Mass coral bleaching due to elevated water temperature can devastate coral reefs on a large geographical scale. In order to understand the molecular and cellular basis of bleaching in corals, we have measured gene expression changes associated with thermal stress and bleaching using a complementary DNA microarray containing 1310 genes of the Caribbean coral Montastraea faveolata. In a first experiment, we identified differentially expressed genes by comparing experimentally bleached M. faveolata fragments to control non-heat-stressed fragments. In a second experiment, we identified differentially expressed genes during a time course experiment with four time points across 9 days. Results suggest that thermal stress and bleaching in M. faveolata affect the following processes: oxidative stress, Ca(2+) homeostasis, cytoskeletal organization, cell death, calcification, metabolism, protein synthesis, heat shock protein activity, and transposon activity. These results represent the first medium-scale transcriptomic study focused on revealing the cellular foundation of thermal stress-induced coral bleaching. We postulate that oxidative stress in thermal-stressed corals causes a disruption of Ca(2+) homeostasis, which in turn leads to cytoskeletal and cell adhesion changes, decreased calcification, and the initiation of cell death via apoptosis and necrosis.

  14. Hepcidin is an antibacterial, stress-inducible peptide of the biliary system.

    Directory of Open Access Journals (Sweden)

    Pavel Strnad

    Full Text Available BACKGROUND/AIMS: Hepcidin (gene name HAMP, an IL-6-inducible acute phase peptide with antimicrobial properties, is the key negative regulator of iron metabolism. Liver is the primary source of HAMP synthesis, but it is also produced by other tissues such as kidney or heart and is found in body fluids such as urine or cerebrospinal fluid. While the role of hepcidin in biliary system is unknown, a recent study demonstrated that conditional gp130-knockout mice display diminished hepcidin levels and increased rate of biliary infections. METHODS: Expression and localization of HAMP in biliary system was analyzed by real time RT-PCR, in-situ hybridization, immunostaining and -blotting, while prohepcidin levels in human bile were determined by ELISA. RESULTS: Hepcidin was detected in mouse/human gallbladder and bile duct epithelia. Biliary HAMP is stress-inducible, in that it is increased in biliary cell lines upon IL-6 stimulation and in gallbladder mucosa of patients with acute cholecystitis. Hepcidin is also present in the bile and elevated prohepcidin levels were observed in bile of primary sclerosing cholangitis (PSC patients with concurrent bacterial cholangitis compared to PSC subjects without bacterial infection (median values 22.3 vs. 8.9; p = 0.03. In PSC-cholangitis subjects, bile prohepcidin levels positively correlated with C-reactive protein and bilirubin levels (r = 0.48 and r = 0.71, respectively. In vitro, hepcidin enhanced the antimicrobial capacity of human bile (p<0.05. CONCLUSION: Hepcidin is a stress-inducible peptide of the biliary epithelia and a potential marker of biliary stress. In the bile, hepcidin may serve local functions such as protection from bacterial infections.

  15. Effect of salicylic acid on the growth photosynthesis and carbohydrate metabolism in salt stressed maize plants

    International Nuclear Information System (INIS)

    Moussa, H.R.; Khodary, S.E.A.

    2003-01-01

    Aqueous solutions of salicylic acid as a spray to Na CI-treated corn (Zea mays L,) significantly increased the growth of shoots and roots as measured after seven days of treatment. Spraying of salicylic acid caused significant increases in the activity of both ribulose 1,5 bisphosphate carboxylase (rubisco) enzyme and photosynthetic pigments. Moreover, salicylic acid treatment induced high values of soluble carbohydrate fractions in salt stressed plants as compared with salicylic acid treated samples. These data suggest that salicylic acid might improve the growth pattern of NaCl-treated maize plants via increasing the rate of photosynthesis and carbohydrate metabolism

  16. Foliar-applied urea modulates nitric oxide synthesis metabolism and glycinebetaine accumulation in drought-stressed maize

    International Nuclear Information System (INIS)

    Zhang, L.; Tian, L.; Lai, J.; Zheng, P.; Liang, Z.; Alva, A

    2014-01-01

    Foliar urea has been proved to play a better positive role in enhancing accumulation of nitric oxide (NO) and glycinebetaine (GB) in maize (Zea mays L.) under drought stress (DS). However, it is unclear how foliar urea affects biosynthetic metabolism of NO and its relationship with GB accumulation. This study was on investigating the effect of foliar- applied urea on seedlings of maize cultivar Zhengdan 958 grown in a hydroponic medium under DS or No DS. Contents of NO and GB and nitric oxide synthase (NOS) activity increased and peaked 12 h after the treatment. Nitrate reductase activity (NRA) followed the similar pattern 6h after the treatment. Under DS foliar urea application increased NR and NOS activity and, thereby, increased NO formation. Therefore, enhancement in activities of both NRA and NOS resulted in an increase of NO accumulation. Foliar- applied urea could induce an increased NO burst by enhanced NO synthesis metabolism as a nitrogen signal, possibly resulting in GB accumulation under DS. (author)

  17. Glycine Increases Insulin Sensitivity and Glutathione Biosynthesis and Protects against Oxidative Stress in a Model of Sucrose-Induced Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Mohammed El-Hafidi

    2018-01-01

    Full Text Available Oxidative stress and redox status play a central role in the link between insulin resistance (IR and lipotoxicity in metabolic syndrome. This mechanistic link may involve alterations in the glutathione redox state. We examined the effect of glycine supplementation to diet on glutathione biosynthesis, oxidative stress, IR, and insulin cell signaling in liver from sucrose-fed (SF rats characterized by IR and oxidative stress. Our hypothesis is that the correction of glutathione levels by glycine treatment leads to reduced oxidative stress, a mechanism associated with improved insulin signaling and IR. Glycine treatment decreases the levels of oxidative stress markers in liver from SF rats and increases the concentrations of glutathione (GSH and γ-glutamylcysteine and the amount of γ-glutamylcysteine synthetase (γ-GCS, a key enzyme of GSH biosynthesis in liver from SF rats. In liver from SF rats, glycine also decreases the insulin-induced phosphorylation of insulin receptor substrate-1 (ISR-1 in serine residue and increases the phosphorylation of insulin receptor β-subunit (IR-β in tyrosine residue. Thus, supplementing diets with glycine to correct GSH deficiency and to reduce oxidative stress provides significant metabolic benefits to SF rats by improving insulin sensitivity.

  18. Loss of 5‐lipoxygenase activity protects mice against paracetamol‐induced liver toxicity

    Science.gov (United States)

    Pu, Shiyun; Ren, Lin; Liu, Qinhui; Kuang, Jiangying; Shen, Jing; Cheng, Shihai; Zhang, Yuwei; Jiang, Wei; Zhang, Zhiyong; Jiang, Changtao

    2015-01-01

    Background and Purpose Paracetamol (acetaminophen) is the most widely used over‐the‐counter analgesic and overdosing with paracetamol is the leading cause of hospital admission for acute liver failure. 5‐Lipoxygenase (5‐LO) catalyses arachidonic acid to form LTs, which lead to inflammation and oxidative stress. In this study, we examined whether deletion or pharmacological inhibition of 5‐LO could protect mice against paracetamol‐induced hepatic toxicity. Experimental Approach Both genetic deletion and pharmacological inhibition of 5‐LO in C57BL/6J mice were used to study the role of this enzyme in paracetamol induced liver toxicity. Serum and tissue biochemistry, H&E staining, and real‐time PCR were used to assess liver toxicity. Key Results Deletion or pharmacological inhibition of 5‐LO in mice markedly ameliorated paracetamol‐induced hepatic injury, as shown by decreased serum alanine transaminase and aspartate aminotransferase levels and hepatic centrilobular necrosis. The hepatoprotective effect of 5‐LO inhibition was associated with induction of the antitoxic phase II conjugating enzyme, sulfotransferase2a1, suppression of the pro‐toxic phase I CYP3A11 and reduction of the hepatic transporter MRP3. In 5‐LO−/− mice, levels of GSH were increased, and oxidative stress decreased. In addition, PPAR α, a nuclear receptor that confers resistance to paracetamol toxicity, was activated in 5‐LO−/− mice. Conclusions and Implications The activity of 5‐LO may play a critical role in paracetamol‐induced hepatic toxicity by regulating paracetamol metabolism and oxidative stress. PMID:26398229

  19. Ionizing radiation causes the stress response in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Gruntenko, N.E.; Zakharenko, L.P.; Raushenbakh, I.Yu.

    1998-01-01

    Potentiality of the stress-reaction arising in Drosophila melanogaster under gamma-irradiation of the source with 137 Cs (irradiation dose is 10 Gy , radiation dose rate amounts 180 c Gy/min) is studied. It is shown that radiation induces the stress-reaction in Drosophila resulting in alterations in energetic metabolism (biogenic amines metabolic system) and in reproductive function [ru

  20. Central mechanisms of stress-induced headache.

    Science.gov (United States)

    Cathcart, S; Petkov, J; Winefield, A H; Lushington, K; Rolan, P

    2010-03-01

    Stress is the most commonly reported trigger of an episode of chronic tension-type headache (CTTH); however, the causal significance has not been experimentally demonstrated to date. Stress may trigger CTTH through hyperalgesic effects on already sensitized pain pathways in CTTH sufferers. This hypothesis could be partially tested by examining pain sensitivity in an experimental model of stress-induced headache in CTTH sufferers. Such examinations have not been reported to date. We measured pericranial muscle tenderness and pain thresholds at the finger, head and shoulder in 23 CTTH sufferers (CTH-S) and 25 healthy control subjects (CNT) exposed to an hour-long stressful mental task, and in 23 CTTH sufferers exposed to an hour-long neutral condition (CTH-N). Headache developed in 91% of CTH-S, 4% of CNT, and 17% of CTH-N subjects. Headache sufferers had increased muscle tenderness and reduced pain thresholds compared with healthy controls. During the task, muscle tenderness increased and pain thresholds decreased in the CTH-S group compared with CTH-N and CNT groups. Pre-task muscle tenderness and reduction in pain threshold during task were predictive of the development and intensity of headache following task. The main findings are that stress induced a headache in CTTH sufferers, and this was associated with pre-task muscle tenderness and stress-induced reduction in pain thresholds. The results support the hypothesis that stress triggers CTTH through hyperalgesic effects on already increased pain sensitivity in CTTH sufferers, reducing the threshold to noxious input from pericranial structures.