WorldWideScience

Sample records for metabolic reaction networks

  1. Integration of metabolome data with metabolic networks reveals reporter reactions

    DEFF Research Database (Denmark)

    Çakir, Tunahan; Patil, Kiran Raosaheb; Önsan, Zeynep Ilsen

    2006-01-01

    network topology. The algorithm thus enables identification of reporter reactions, which are reactions where there are significant coordinated changes in the level of surrounding metabolites following environmental/genetic perturbations. Applicability of the algorithm is demonstrated by using data from......Interpreting quantitative metabolome data is a difficult task owing to the high connectivity in metabolic networks and inherent interdependency between enzymatic regulation, metabolite levels and fluxes. Here we present a hypothesis-driven algorithm for the integration of such data with metabolic...... is measured. By combining the results with transcriptome data, we further show that it is possible to infer whether the reactions are hierarchically or metabolically regulated. Hereby, the reported approach represents an attempt to map different layers of regulation within metabolic networks through...

  2. Sequence-based Network Completion Reveals the Integrality of Missing Reactions in Metabolic Networks*

    Science.gov (United States)

    Krumholz, Elias W.; Libourel, Igor G. L.

    2015-01-01

    Genome-scale metabolic models are central in connecting genotypes to metabolic phenotypes. However, even for well studied organisms, such as Escherichia coli, draft networks do not contain a complete biochemical network. Missing reactions are referred to as gaps. These gaps need to be filled to enable functional analysis, and gap-filling choices influence model predictions. To investigate whether functional networks existed where all gap-filling reactions were supported by sequence similarity to annotated enzymes, four draft networks were supplemented with all reactions from the Model SEED database for which minimal sequence similarity was found in their genomes. Quadratic programming revealed that the number of reactions that could partake in a gap-filling solution was vast: 3,270 in the case of E. coli, where 72% of the metabolites in the draft network could connect a gap-filling solution. Nonetheless, no network could be completed without the inclusion of orphaned enzymes, suggesting that parts of the biochemistry integral to biomass precursor formation are uncharacterized. However, many gap-filling reactions were well determined, and the resulting networks showed improved prediction of gene essentiality compared with networks generated through canonical gap filling. In addition, gene essentiality predictions that were sensitive to poorly determined gap-filling reactions were of poor quality, suggesting that damage to the network structure resulting from the inclusion of erroneous gap-filling reactions may be predictable. PMID:26041773

  3. Sequence-based Network Completion Reveals the Integrality of Missing Reactions in Metabolic Networks.

    Science.gov (United States)

    Krumholz, Elias W; Libourel, Igor G L

    2015-07-31

    Genome-scale metabolic models are central in connecting genotypes to metabolic phenotypes. However, even for well studied organisms, such as Escherichia coli, draft networks do not contain a complete biochemical network. Missing reactions are referred to as gaps. These gaps need to be filled to enable functional analysis, and gap-filling choices influence model predictions. To investigate whether functional networks existed where all gap-filling reactions were supported by sequence similarity to annotated enzymes, four draft networks were supplemented with all reactions from the Model SEED database for which minimal sequence similarity was found in their genomes. Quadratic programming revealed that the number of reactions that could partake in a gap-filling solution was vast: 3,270 in the case of E. coli, where 72% of the metabolites in the draft network could connect a gap-filling solution. Nonetheless, no network could be completed without the inclusion of orphaned enzymes, suggesting that parts of the biochemistry integral to biomass precursor formation are uncharacterized. However, many gap-filling reactions were well determined, and the resulting networks showed improved prediction of gene essentiality compared with networks generated through canonical gap filling. In addition, gene essentiality predictions that were sensitive to poorly determined gap-filling reactions were of poor quality, suggesting that damage to the network structure resulting from the inclusion of erroneous gap-filling reactions may be predictable. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Sensitivity of chemical reaction networks: a structural approach. 1. Examples and the carbon metabolic network.

    Science.gov (United States)

    Mochizuki, Atsushi; Fiedler, Bernold

    2015-02-21

    In biological cells, chemical reaction pathways lead to complex network systems like metabolic networks. One experimental approach to the dynamics of such systems examines their "sensitivity": each enzyme mediating a reaction in the system is increased/decreased or knocked out separately, and the responses in the concentrations of chemicals or their fluxes are observed. In this study, we present a mathematical method, named structural sensitivity analysis, to determine the sensitivity of reaction systems from information on the network alone. We investigate how the sensitivity responses of chemicals in a reaction network depend on the structure of the network, and on the position of the perturbed reaction in the network. We establish and prove some general rules which relate the sensitivity response to the structure of the underlying network. We describe a hierarchical pattern in the flux response which is governed by branchings in the network. We apply our method to several hypothetical and real life chemical reaction networks, including the metabolic network of the Escherichia coli TCA cycle. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. METANNOGEN: compiling features of biochemical reactions needed for the reconstruction of metabolic networks

    Directory of Open Access Journals (Sweden)

    Holzhütter Hermann-Georg

    2007-01-01

    Full Text Available Abstract Background One central goal of computational systems biology is the mathematical modelling of complex metabolic reaction networks. The first and most time-consuming step in the development of such models consists in the stoichiometric reconstruction of the network, i. e. compilation of all metabolites, reactions and transport processes relevant to the considered network and their assignment to the various cellular compartments. Therefore an information system is required to collect and manage data from different databases and scientific literature in order to generate a metabolic network of biochemical reactions that can be subjected to further computational analyses. Results The computer program METANNOGEN facilitates the reconstruction of metabolic networks. It uses the well-known database of biochemical reactions KEGG of biochemical reactions as primary information source from which biochemical reactions relevant to the considered network can be selected, edited and stored in a separate, user-defined database. Reactions not contained in KEGG can be entered manually into the system. To aid the decision whether or not a reaction selected from KEGG belongs to the considered network METANNOGEN contains information of SWISSPROT and ENSEMBL and provides Web links to a number of important information sources like METACYC, BRENDA, NIST, and REACTOME. If a reaction is reported to occur in more than one cellular compartment, a corresponding number of reactions is generated each referring to one specific compartment. Transport processes of metabolites are entered like chemical reactions where reactants and products have different compartment attributes. The list of compartmentalized biochemical reactions and membrane transport processes compiled by means of METANNOGEN can be exported as an SBML file for further computational analysis. METANNOGEN is highly customizable with respect to the content of the SBML output file, additional data

  6. Thermodynamic calculations for biochemical transport and reaction processes in metabolic networks.

    Science.gov (United States)

    Jol, Stefan J; Kümmel, Anne; Hatzimanikatis, Vassily; Beard, Daniel A; Heinemann, Matthias

    2010-11-17

    Thermodynamic analysis of metabolic networks has recently generated increasing interest for its ability to add constraints on metabolic network operation, and to combine metabolic fluxes and metabolite measurements in a mechanistic manner. Concepts for the calculation of the change in Gibbs energy of biochemical reactions have long been established. However, a concept for incorporation of cross-membrane transport in these calculations is still missing, although the theory for calculating thermodynamic properties of transport processes is long known. Here, we have developed two equivalent equations to calculate the change in Gibbs energy of combined transport and reaction processes based on two different ways of treating biochemical thermodynamics. We illustrate the need for these equations by showing that in some cases there is a significant difference between the proposed correct calculation and using an approximative method. With the developed equations, thermodynamic analysis of metabolic networks spanning over multiple physical compartments can now be correctly described. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. Thermodynamic calculations for biochemical transport and reaction processes in metabolic networks

    NARCIS (Netherlands)

    Jol, Stefan J; Kümmel, Anne; Hatzimanikatis, Vassily; Beard, Daniel A; Heinemann, Matthias

    2010-01-01

    Thermodynamic analysis of metabolic networks has recently generated increasing interest for its ability to add constraints on metabolic network operation, and to combine metabolic fluxes and metabolite measurements in a mechanistic manner. Concepts for the calculation of the change in Gibbs energy

  8. Energy metabolism and ATP balance in animal cell cultivation using a stoichiometrically based reaction network.

    Science.gov (United States)

    Xie, L; Wang, D I

    1996-12-05

    A metabolic reaction network is developed for the estimation of the stoichiometric production of adenosine triphosphate (ATP) in animal cell culture. By using the material balance data from fed-batch and batch cultures of hybridoma cells, the stoichiometric ATP productions are determined with estimated effective P/O ratios of 2 for NADH and 1.2 for FADH(2). A significant percentage of the ATP requirement (16-41%) in hybridoma cells is generated directly from free energy release without the participation of oxygen. The oxidative phosphorylation of NADH accounts for about 60% of the total ATP production in the fed-batch cultures and about 47% in the batch culture. The oxidative phosphorylation of FADH(2) accounts for less then 20% of the total ATP production in all cases.A fractional model is devised to analyze the contribution of each nutrient to the ATP production. Results show that a majority of the ATP is produced from glucose metabolism (60-76%). Less than 30% of the ATP is derived from glutamine, and less than 11% is derived from other essential amino acids. The analysis also shows that the glycolytic pathway generates more ATP in the batch (41%) than in the fed-batch (demand estimated from the dry cell weight and cell composition is significantly lower than that calculated from the maximum ATP yield, indicating that the non-growth-associated ATP demand may contain other factors than what is considered in the estimation of the biosynthetic ATP demand.

  9. Integer programming-based method for designing synthetic metabolic networks by Minimum Reaction Insertion in a Boolean model.

    Science.gov (United States)

    Lu, Wei; Tamura, Takeyuki; Song, Jiangning; Akutsu, Tatsuya

    2014-01-01

    In this paper, we consider the Minimum Reaction Insertion (MRI) problem for finding the minimum number of additional reactions from a reference metabolic network to a host metabolic network so that a target compound becomes producible in the revised host metabolic network in a Boolean model. Although a similar problem for larger networks is solvable in a flux balance analysis (FBA)-based model, the solution of the FBA-based model tends to include more reactions than that of the Boolean model. However, solving MRI using the Boolean model is computationally more expensive than using the FBA-based model since the Boolean model needs more integer variables. Therefore, in this study, to solve MRI for larger networks in the Boolean model, we have developed an efficient Integer Programming formalization method in which the number of integer variables is reduced by the notion of feedback vertex set and minimal valid assignment. As a result of computer experiments conducted using the data of metabolic networks of E. coli and reference networks downloaded from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, we have found that the developed method can appropriately solve MRI in the Boolean model and is applicable to large scale-networks for which an exhaustive search does not work. We have also compared the developed method with the existing connectivity-based methods and FBA-based methods, and show the difference between the solutions of our method and the existing methods. A theoretical analysis of MRI is also conducted, and the NP-completeness of MRI is proved in the Boolean model. Our developed software is available at "http://sunflower.kuicr.kyoto-u.ac.jp/~rogi/minRect/minRect.html."

  10. ReacKnock: identifying reaction deletion strategies for microbial strain optimization based on genome-scale metabolic network.

    Directory of Open Access Journals (Sweden)

    Zixiang Xu

    Full Text Available Gene knockout has been used as a common strategy to improve microbial strains for producing chemicals. Several algorithms are available to predict the target reactions to be deleted. Most of them apply mixed integer bi-level linear programming (MIBLP based on metabolic networks, and use duality theory to transform bi-level optimization problem of large-scale MIBLP to single-level programming. However, the validity of the transformation was not proved. Solution of MIBLP depends on the structure of inner problem. If the inner problem is continuous, Karush-Kuhn-Tucker (KKT method can be used to reformulate the MIBLP to a single-level one. We adopt KKT technique in our algorithm ReacKnock to attack the intractable problem of the solution of MIBLP, demonstrated with the genome-scale metabolic network model of E. coli for producing various chemicals such as succinate, ethanol, threonine and etc. Compared to the previous methods, our algorithm is fast, stable and reliable to find the optimal solutions for all the chemical products tested, and able to provide all the alternative deletion strategies which lead to the same industrial objective.

  11. Structural correlations in bacterial metabolic networks

    Directory of Open Access Journals (Sweden)

    Lizana Ludvig

    2011-01-01

    Full Text Available Abstract Background Evolution of metabolism occurs through the acquisition and loss of genes whose products acts as enzymes in metabolic reactions, and from a presumably simple primordial metabolism the organisms living today have evolved complex and highly variable metabolisms. We have studied this phenomenon by comparing the metabolic networks of 134 bacterial species with known phylogenetic relationships, and by studying a neutral model of metabolic network evolution. Results We consider the 'union-network' of 134 bacterial metabolisms, and also the union of two smaller subsets of closely related species. Each reaction-node is tagged with the number of organisms it belongs to, which we denote organism degree (OD, a key concept in our study. Network analysis shows that common reactions are found at the centre of the network and that the average OD decreases as we move to the periphery. Nodes of the same OD are also more likely to be connected to each other compared to a random OD relabelling based on their occurrence in the real data. This trend persists up to a distance of around five reactions. A simple growth model of metabolic networks is used to investigate the biochemical constraints put on metabolic-network evolution. Despite this seemingly drastic simplification, a 'union-network' of a collection of unrelated model networks, free of any selective pressure, still exhibit similar structural features as their bacterial counterpart. Conclusions The OD distribution quantifies topological properties of the evolutionary history of bacterial metabolic networks, and lends additional support to the importance of horizontal gene transfer during bacterial metabolic evolution where new reactions are attached at the periphery of the network. The neutral model of metabolic network growth can reproduce the main features of real networks, but we observe that the real networks contain a smaller common core, while they are more similar at the periphery

  12. Structural correlations in bacterial metabolic networks.

    Science.gov (United States)

    Bernhardsson, Sebastian; Gerlee, Philip; Lizana, Ludvig

    2011-01-20

    Evolution of metabolism occurs through the acquisition and loss of genes whose products acts as enzymes in metabolic reactions, and from a presumably simple primordial metabolism the organisms living today have evolved complex and highly variable metabolisms. We have studied this phenomenon by comparing the metabolic networks of 134 bacterial species with known phylogenetic relationships, and by studying a neutral model of metabolic network evolution. We consider the 'union-network' of 134 bacterial metabolisms, and also the union of two smaller subsets of closely related species. Each reaction-node is tagged with the number of organisms it belongs to, which we denote organism degree (OD), a key concept in our study. Network analysis shows that common reactions are found at the centre of the network and that the average OD decreases as we move to the periphery. Nodes of the same OD are also more likely to be connected to each other compared to a random OD relabelling based on their occurrence in the real data. This trend persists up to a distance of around five reactions. A simple growth model of metabolic networks is used to investigate the biochemical constraints put on metabolic-network evolution. Despite this seemingly drastic simplification, a 'union-network' of a collection of unrelated model networks, free of any selective pressure, still exhibit similar structural features as their bacterial counterpart. The OD distribution quantifies topological properties of the evolutionary history of bacterial metabolic networks, and lends additional support to the importance of horizontal gene transfer during bacterial metabolic evolution where new reactions are attached at the periphery of the network. The neutral model of metabolic network growth can reproduce the main features of real networks, but we observe that the real networks contain a smaller common core, while they are more similar at the periphery of the network. This suggests that natural selection and

  13. VRML metabolic network visualizer.

    Science.gov (United States)

    Rojdestvenski, Igor

    2003-03-01

    A successful date collection visualization should satisfy a set of many requirements: unification of diverse data formats, support for serendipity research, support of hierarchical structures, algorithmizability, vast information density, Internet-readiness, and other. Recently, virtual reality has made significant progress in engineering, architectural design, entertainment and communication. We experiment with the possibility of using the immersive abstract three-dimensional visualizations of the metabolic networks. We present the trial Metabolic Network Visualizer software, which produces graphical representation of a metabolic network as a VRML world from a formal description written in a simple SGML-type scripting language.

  14. Concordant Chemical Reaction Networks

    Science.gov (United States)

    Shinar, Guy; Feinberg, Martin

    2015-01-01

    We describe a large class of chemical reaction networks, those endowed with a subtle structural property called concordance. We show that the class of concordant networks coincides precisely with the class of networks which, when taken with any weakly monotonic kinetics, invariably give rise to kinetic systems that are injective — a quality that, among other things, precludes the possibility of switch-like transitions between distinct positive steady states. We also provide persistence characteristics of concordant networks, instability implications of discordance, and consequences of stronger variants of concordance. Some of our results are in the spirit of recent ones by Banaji and Craciun, but here we do not require that every species suffer a degradation reaction. This is especially important in studying biochemical networks, for which it is rare to have all species degrade. PMID:22659063

  15. Acorn: A grid computing system for constraint based modeling and visualization of the genome scale metabolic reaction networks via a web interface

    Directory of Open Access Journals (Sweden)

    Bushell Michael E

    2011-05-01

    Full Text Available Abstract Background Constraint-based approaches facilitate the prediction of cellular metabolic capabilities, based, in turn on predictions of the repertoire of enzymes encoded in the genome. Recently, genome annotations have been used to reconstruct genome scale metabolic reaction networks for numerous species, including Homo sapiens, which allow simulations that provide valuable insights into topics, including predictions of gene essentiality of pathogens, interpretation of genetic polymorphism in metabolic disease syndromes and suggestions for novel approaches to microbial metabolic engineering. These constraint-based simulations are being integrated with the functional genomics portals, an activity that requires efficient implementation of the constraint-based simulations in the web-based environment. Results Here, we present Acorn, an open source (GNU GPL grid computing system for constraint-based simulations of genome scale metabolic reaction networks within an interactive web environment. The grid-based architecture allows efficient execution of computationally intensive, iterative protocols such as Flux Variability Analysis, which can be readily scaled up as the numbers of models (and users increase. The web interface uses AJAX, which facilitates efficient model browsing and other search functions, and intuitive implementation of appropriate simulation conditions. Research groups can install Acorn locally and create user accounts. Users can also import models in the familiar SBML format and link reaction formulas to major functional genomics portals of choice. Selected models and simulation results can be shared between different users and made publically available. Users can construct pathway map layouts and import them into the server using a desktop editor integrated within the system. Pathway maps are then used to visualise numerical results within the web environment. To illustrate these features we have deployed Acorn and created a

  16. Modeling complex metabolic reactions, ecological systems, and financial and legal networks with MIANN models based on Markov-Wiener node descriptors.

    Science.gov (United States)

    Duardo-Sánchez, Aliuska; Munteanu, Cristian R; Riera-Fernández, Pablo; López-Díaz, Antonio; Pazos, Alejandro; González-Díaz, Humberto

    2014-01-27

    The use of numerical parameters in Complex Network analysis is expanding to new fields of application. At a molecular level, we can use them to describe the molecular structure of chemical entities, protein interactions, or metabolic networks. However, the applications are not restricted to the world of molecules and can be extended to the study of macroscopic nonliving systems, organisms, or even legal or social networks. On the other hand, the development of the field of Artificial Intelligence has led to the formulation of computational algorithms whose design is based on the structure and functioning of networks of biological neurons. These algorithms, called Artificial Neural Networks (ANNs), can be useful for the study of complex networks, since the numerical parameters that encode information of the network (for example centralities/node descriptors) can be used as inputs for the ANNs. The Wiener index (W) is a graph invariant widely used in chemoinformatics to quantify the molecular structure of drugs and to study complex networks. In this work, we explore for the first time the possibility of using Markov chains to calculate analogues of node distance numbers/W to describe complex networks from the point of view of their nodes. These parameters are called Markov-Wiener node descriptors of order k(th) (W(k)). Please, note that these descriptors are not related to Markov-Wiener stochastic processes. Here, we calculated the W(k)(i) values for a very high number of nodes (>100,000) in more than 100 different complex networks using the software MI-NODES. These networks were grouped according to the field of application. Molecular networks include the Metabolic Reaction Networks (MRNs) of 40 different organisms. In addition, we analyzed other biological and legal and social networks. These include the Interaction Web Database Biological Networks (IWDBNs), with 75 food webs or ecological systems and the Spanish Financial Law Network (SFLN). The calculated W

  17. Robustness of metabolic networks

    Science.gov (United States)

    Jeong, Hawoong

    2009-03-01

    We investigated the robustness of cellular metabolism by simulating the system-level computational models, and also performed the corresponding experiments to validate our predictions. We address the cellular robustness from the ``metabolite''-framework by using the novel concept of ``flux-sum,'' which is the sum of all incoming or outgoing fluxes (they are the same under the pseudo-steady state assumption). By estimating the changes of the flux-sum under various genetic and environmental perturbations, we were able to clearly decipher the metabolic robustness; the flux-sum around an essential metabolite does not change much under various perturbations. We also identified the list of the metabolites essential to cell survival, and then ``acclimator'' metabolites that can control the cell growth were discovered. Furthermore, this concept of ``metabolite essentiality'' should be useful in developing new metabolic engineering strategies for improved production of various bioproducts and designing new drugs that can fight against multi-antibiotic resistant superbacteria by knocking-down the enzyme activities around an essential metabolite. Finally, we combined a regulatory network with the metabolic network to investigate its effect on dynamic properties of cellular metabolism.

  18. Genotype networks, innovation, and robustness in sulfur metabolism

    Science.gov (United States)

    2011-01-01

    Background A metabolism is a complex network of chemical reactions. This network synthesizes multiple small precursor molecules of biomass from chemicals that occur in the environment. The metabolic network of any one organism is encoded by a metabolic genotype, defined as the set of enzyme-coding genes whose products catalyze the network's reactions. Each metabolic genotype has a metabolic phenotype. We define this metabolic phenotype as the spectrum of different sources of a chemical element that a metabolism can use to synthesize biomass. We here focus on the element sulfur. We study properties of the space of all possible metabolic genotypes in sulfur metabolism by analyzing random metabolic genotypes that are viable on different numbers of sulfur sources. Results We show that metabolic genotypes with the same phenotype form large connected genotype networks - networks of metabolic networks - that extend far through metabolic genotype space. How far they reach through this space depends linearly on the number of super-essential reactions. A super-essential reaction is an essential reaction that occurs in all networks viable in a given environment. Metabolic networks can differ in how robust their phenotype is to the removal of individual reactions. We find that this robustness depends on metabolic network size, and on other variables, such as the size of minimal metabolic networks whose reactions are all essential in a specific environment. We show that different neighborhoods of any genotype network harbor very different novel phenotypes, metabolic innovations that can sustain life on novel sulfur sources. We also analyze the ability of evolving populations of metabolic networks to explore novel metabolic phenotypes. This ability is facilitated by the existence of genotype networks, because different neighborhoods of these networks contain very different novel phenotypes. Conclusions We show that the space of metabolic genotypes involved in sulfur metabolism

  19. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network

    DEFF Research Database (Denmark)

    Förster, Jochen; Famili, I.; Fu, P.

    2003-01-01

    and the environment were included. A total of 708 structural open reading frames (ORFs) were accounted for in the reconstructed network, corresponding to 1035 metabolic reactions. Further, 140 reactions were included on the basis of biochemical evidence resulting in a genome-scale reconstructed metabolic network...... with Escherichia coli. The reconstructed metabolic network is the first comprehensive network for a eukaryotic organism, and it may be used as the basis for in silico analysis of phenotypic functions....

  20. Optimal flux patterns in cellular metabolic networks

    Energy Technology Data Exchange (ETDEWEB)

    Almaas, E

    2007-01-20

    The availability of whole-cell level metabolic networks of high quality has made it possible to develop a predictive understanding of bacterial metabolism. Using the optimization framework of flux balance analysis, I investigate metabolic response and activity patterns to variations in the availability of nutrient and chemical factors such as oxygen and ammonia by simulating 30,000 random cellular environments. The distribution of reaction fluxes is heavy-tailed for the bacteria H. pylori and E. coli, and the eukaryote S. cerevisiae. While the majority of flux balance investigations have relied on implementations of the simplex method, it is necessary to use interior-point optimization algorithms to adequately characterize the full range of activity patterns on metabolic networks. The interior-point activity pattern is bimodal for E. coli and S. cerevisiae, suggesting that most metabolic reaction are either in frequent use or are rarely active. The trimodal activity pattern of H. pylori indicates that a group of its metabolic reactions (20%) are active in approximately half of the simulated environments. Constructing the high-flux backbone of the network for every environment, there is a clear trend that the more frequently a reaction is active, the more likely it is a part of the backbone. Finally, I briefly discuss the predicted activity patterns of the central-carbon metabolic pathways for the sample of random environments.

  1. Hierarchical analysis of dependency in metabolic networks.

    Science.gov (United States)

    Gagneur, Julien; Jackson, David B; Casari, Georg

    2003-05-22

    Elucidation of metabolic networks for an increasing number of organisms reveals that even small networks can contain thousands of reactions and chemical species. The intimate connectivity between components complicates their decomposition into biologically meaningful sub-networks. Moreover, traditional higher-order representations of metabolic networks as metabolic pathways, suffers from the lack of rigorous definition, yielding pathways of disparate content and size. We introduce a hierarchical representation that emphasizes the gross organization of metabolic networks in largely independent pathways and sub-systems at several levels of independence. The approach highlights the coupling of different pathways and the shared compounds responsible for those couplings. By assessing our results on Escherichia coli (E.coli metabolic reactions, Genetic Circuits Research Group, University of California, San Diego, http://gcrg.ucsd.edu/organisms/ecoli.html, 'model v 1.01. reactions') against accepted biochemical annotations, we provide the first systematic synopsis of an organism's metabolism. Comparison with operons of E.coli shows that low-level clusters are reflected in genome organization and gene regulation. Source code, data sets and supplementary information are available at http://www.mas.ecp.fr/labo/equipe/gagneur/hierarchy/hierarchy.html

  2. The reconstruction and analysis of tissue specific human metabolic networks.

    Science.gov (United States)

    Hao, Tong; Ma, Hong-Wu; Zhao, Xue-Ming; Goryanin, Igor

    2012-02-01

    Human tissues have distinct biological functions. Many proteins/enzymes are known to be expressed only in specific tissues and therefore the metabolic networks in various tissues are different. Though high quality global human metabolic networks and metabolic networks for certain tissues such as liver have already been studied, a systematic study of tissue specific metabolic networks for all main tissues is still missing. In this work, we reconstruct the tissue specific metabolic networks for 15 main tissues in human based on the previously reconstructed Edinburgh Human Metabolic Network (EHMN). The tissue information is firstly obtained for enzymes from Human Protein Reference Database (HPRD) and UniprotKB databases and transfers to reactions through the enzyme-reaction relationships in EHMN. As our knowledge of tissue distribution of proteins is still very limited, we replenish the tissue information of the metabolic network based on network connectivity analysis and thorough examination of the literature. Finally, about 80% of proteins and reactions in EHMN are determined to be in at least one of the 15 tissues. To validate the quality of the tissue specific network, the brain specific metabolic network is taken as an example for functional module analysis and the results reveal that the function of the brain metabolic network is closely related with its function as the centre of the human nervous system. The tissue specific human metabolic networks are available at .

  3. A network perspective on metabolic inconsistency

    Directory of Open Access Journals (Sweden)

    Sonnenschein Nikolaus

    2012-05-01

    Full Text Available Abstract Background Integrating gene expression profiles and metabolic pathways under different experimental conditions is essential for understanding the coherence of these two layers of cellular organization. The network character of metabolic systems can be instrumental in developing concepts of agreement between expression data and pathways. A network-driven interpretation of gene expression data has the potential of suggesting novel classifiers for pathological cellular states and of contributing to a general theoretical understanding of gene regulation. Results Here, we analyze the coherence of gene expression patterns and a reconstruction of human metabolism, using consistency scores obtained from network and constraint-based analysis methods. We find a surprisingly strong correlation between the two measures, demonstrating that a substantial part of inconsistencies between metabolic processes and gene expression can be understood from a network perspective alone. Prompted by this finding, we investigate the topological context of the individual biochemical reactions responsible for the observed inconsistencies. On this basis, we are able to separate the differential contributions that bear physiological information about the system, from the unspecific contributions that unravel gaps in the metabolic reconstruction. We demonstrate the biological potential of our network-driven approach by analyzing transcriptome profiles of aldosterone producing adenomas that have been obtained from a cohort of Primary Aldosteronism patients. We unravel systematics in the data that could not have been resolved by conventional microarray data analysis. In particular, we discover two distinct metabolic states in the adenoma expression patterns. Conclusions The methodology presented here can help understand metabolic inconsistencies from a network perspective. It thus serves as a mediator between the topology of metabolic systems and their dynamical

  4. Assessment of nitric oxide (NO) redox reactions contribution to nitrous oxide (N2 O) formation during nitrification using a multispecies metabolic network model.

    Science.gov (United States)

    Perez-Garcia, Octavio; Chandran, Kartik; Villas-Boas, Silas G; Singhal, Naresh

    2016-05-01

    Over the coming decades nitrous oxide (N2O) is expected to become a dominant greenhouse gas and atmospheric ozone depleting substance. In wastewater treatment systems, N2O is majorly produced by nitrifying microbes through biochemical reduction of nitrite (NO2(-)) and nitric oxide (NO). However it is unknown if the amount of N2O formed is affected by alternative NO redox reactions catalyzed by oxidative nitrite oxidoreductase (NirK), cytochromes (i.e., P460 [CytP460] and 554 [Cyt554 ]) and flavohemoglobins (Hmp) in ammonia- and nitrite-oxidizing bacteria (AOB and NOB, respectively). In this study, a mathematical model is developed to assess how N2O formation is affected by such alternative nitrogen redox transformations. The developed multispecies metabolic network model captures the nitrogen respiratory pathways inferred from genomes of eight AOB and NOB species. The performance of model variants, obtained as different combinations of active NO redox reactions, was assessed against nine experimental datasets for nitrifying cultures producing N2O at different concentration of electron donor and acceptor. Model predicted metabolic fluxes show that only variants that included NO oxidation to NO2(-) by CytP460 and Hmp in AOB gave statistically similar estimates to observed production rates of N2O, NO, NO2(-) and nitrate (NO3(-)), together with fractions of AOB and NOB species in biomass. Simulations showed that NO oxidation to NO2(-) decreased N2O formation by 60% without changing culture's NO2(-) production rate. Model variants including NO reduction to N2O by Cyt554 and cNor in NOB did not improve the accuracy of experimental datasets estimates, suggesting null N2O production by NOB during nitrification. Finally, the analysis shows that in nitrifying cultures transitioning from dissolved oxygen levels above 3.8 ± 0.38 to <1.5 ± 0.8 mg/L, NOB cells can oxidize the NO produced by AOB through reactions catalyzed by oxidative NirK. © 2015 Wiley Periodicals, Inc.

  5. Evolution of metabolic network organization

    Directory of Open Access Journals (Sweden)

    Bonchev Danail

    2010-05-01

    Full Text Available Abstract Background Comparison of metabolic networks across species is a key to understanding how evolutionary pressures shape these networks. By selecting taxa representative of different lineages or lifestyles and using a comprehensive set of descriptors of the structure and complexity of their metabolic networks, one can highlight both qualitative and quantitative differences in the metabolic organization of species subject to distinct evolutionary paths or environmental constraints. Results We used a novel representation of metabolic networks, termed network of interacting pathways or NIP, to focus on the modular, high-level organization of the metabolic capabilities of the cell. Using machine learning techniques we identified the most relevant aspects of cellular organization that change under evolutionary pressures. We considered the transitions from prokarya to eukarya (with a focus on the transitions among the archaea, bacteria and eukarya, from unicellular to multicellular eukarya, from free living to host-associated bacteria, from anaerobic to aerobic, as well as the acquisition of cell motility or growth in an environment of various levels of salinity or temperature. Intuitively, we expect organisms with more complex lifestyles to have more complex and robust metabolic networks. Here we demonstrate for the first time that such organisms are not only characterized by larger, denser networks of metabolic pathways but also have more efficiently organized cross communications, as revealed by subtle changes in network topology. These changes are unevenly distributed among metabolic pathways, with specific categories of pathways being promoted to more central locations as an answer to environmental constraints. Conclusions Combining methods from graph theory and machine learning, we have shown here that evolutionary pressures not only affects gene and protein sequences, but also specific details of the complex wiring of functional modules

  6. Slave nodes and the controllability of metabolic networks

    International Nuclear Information System (INIS)

    Kim, Dong-Hee; Motter, Adilson E

    2009-01-01

    Recent work on synthetic rescues has shown that the targeted deletion of specific metabolic genes can often be used to rescue otherwise non-viable mutants. This raises a fundamental biophysical question: to what extent can the whole-cell behavior of a large metabolic network be controlled by constraining the flux of one or more reactions in the network? This touches upon the issue of the number of degrees of freedom contained by one such network. Using the metabolic network of Escherichia coli as a model system, here we address this question theoretically by exploring not only reaction deletions, but also a continuum of all possible reaction expression levels. We show that the behavior of the metabolic network can be largely manipulated by the pinned expression of a single reaction. In particular, a relevant fraction of the metabolic reactions exhibits canalizing interactions, in that the specification of one reaction flux determines cellular growth as well as the fluxes of most other reactions in optimal steady states. The activity of individual reactions can thus be used as surrogates to monitor and possibly control cellular growth and other whole-cell behaviors. In addition to its implications for the study of control processes, our methodology provides a new approach to study how the integrated dynamics of the entire metabolic network emerges from the coordinated behavior of its component parts.

  7. Framework for network modularization and Bayesian network analysis to investigate the perturbed metabolic network.

    Science.gov (United States)

    Kim, Hyun Uk; Kim, Tae Yong; Lee, Sang Yup

    2011-01-01

    Genome-scale metabolic network models have contributed to elucidating biological phenomena, and predicting gene targets to engineer for biotechnological applications. With their increasing importance, their precise network characterization has also been crucial for better understanding of the cellular physiology. We herein introduce a framework for network modularization and Bayesian network analysis (FMB) to investigate organism's metabolism under perturbation. FMB reveals direction of influences among metabolic modules, in which reactions with similar or positively correlated flux variation patterns are clustered, in response to specific perturbation using metabolic flux data. With metabolic flux data calculated by constraints-based flux analysis under both control and perturbation conditions, FMB, in essence, reveals the effects of specific perturbations on the biological system through network modularization and Bayesian network analysis at metabolic modular level. As a demonstration, this framework was applied to the genetically perturbed Escherichia coli metabolism, which is a lpdA gene knockout mutant, using its genome-scale metabolic network model. After all, it provides alternative scenarios of metabolic flux distributions in response to the perturbation, which are complementary to the data obtained from conventionally available genome-wide high-throughput techniques or metabolic flux analysis.

  8. Genome-Scale Reconstruction of the Human Astrocyte Metabolic Network

    OpenAIRE

    Mart?n-Jim?nez, Cynthia A.; Salazar-Barreto, Diego; Barreto, George E.; Gonz?lez, Janneth

    2017-01-01

    Astrocytes are the most abundant cells of the central nervous system; they have a predominant role in maintaining brain metabolism. In this sense, abnormal metabolic states have been found in different neuropathological diseases. Determination of metabolic states of astrocytes is difficult to model using current experimental approaches given the high number of reactions and metabolites present. Thus, genome-scale metabolic networks derived from transcriptomic data can be used as a framework t...

  9. A new dynamical layout algorithm for complex biochemical reaction networks

    OpenAIRE

    Kummer Ursula; Wegner Katja

    2005-01-01

    Abstract Background To study complex biochemical reaction networks in living cells researchers more and more rely on databases and computational methods. In order to facilitate computational approaches, visualisation techniques are highly important. Biochemical reaction networks, e.g. metabolic pathways are often depicted as graphs and these graphs should be drawn dynamically to provide flexibility in the context of different data. Conventional layout algorithms are not sufficient for every k...

  10. Genome-scale reconstruction of the Streptococcus pyogenes M49 metabolic network reveals growth requirements and indicates potential drug targets

    NARCIS (Netherlands)

    Levering, J.; Fiedler, T.; Sieg, A.; van Grinsven, K.W.A.; Hering, S.; Veith, N.; Olivier, B.G.; Klett, L.; Hugenholtz, J.; Teusink, B.; Kreikemeyer, B.; Kummer, U.

    2016-01-01

    Genome-scale metabolic models comprise stoichiometric relations between metabolites, as well as associations between genes and metabolic reactions and facilitate the analysis of metabolism. We computationally reconstructed the metabolic network of the lactic acid bacterium Streptococcus pyogenes

  11. Identification of Conserved Moieties in Metabolic Networks by Graph Theoretical Analysis of Atom Transition Networks

    Science.gov (United States)

    Haraldsdóttir, Hulda S.; Fleming, Ronan M. T.

    2016-01-01

    Conserved moieties are groups of atoms that remain intact in all reactions of a metabolic network. Identification of conserved moieties gives insight into the structure and function of metabolic networks and facilitates metabolic modelling. All moiety conservation relations can be represented as nonnegative integer vectors in the left null space of the stoichiometric matrix corresponding to a biochemical network. Algorithms exist to compute such vectors based only on reaction stoichiometry but their computational complexity has limited their application to relatively small metabolic networks. Moreover, the vectors returned by existing algorithms do not, in general, represent conservation of a specific moiety with a defined atomic structure. Here, we show that identification of conserved moieties requires data on reaction atom mappings in addition to stoichiometry. We present a novel method to identify conserved moieties in metabolic networks by graph theoretical analysis of their underlying atom transition networks. Our method returns the exact group of atoms belonging to each conserved moiety as well as the corresponding vector in the left null space of the stoichiometric matrix. It can be implemented as a pipeline of polynomial time algorithms. Our implementation completes in under five minutes on a metabolic network with more than 4,000 mass balanced reactions. The scalability of the method enables extension of existing applications for moiety conservation relations to genome-scale metabolic networks. We also give examples of new applications made possible by elucidating the atomic structure of conserved moieties. PMID:27870845

  12. Limits for Stochastic Reaction Networks

    DEFF Research Database (Denmark)

    Cappelletti, Daniele

    at a certain time are stochastically modelled by means of a continuous-time Markov chain. Our work concerns primarily stochastic reaction systems, and their asymptotic properties. In Paper I, we consider a reaction system with intermediate species, i.e. species that are produced and fast degraded along a path...... network tends to that of the original one. In particular, we prove a uniform punctual convergence in distribution and weak convergence of the integrals of continuous functions along the paths of the two models. Under some extra conditions, we also prove weak convergence of the two processes. The result....... Such species, in the deterministic modelling regime, assume always the same value at any positive steady state. In the stochastic setting, we prove that, if the initial condition is a point in the basin of attraction of a positive steady state of the corresponding deterministic model and tends to innity...

  13. Microalgal Metabolic Network Model Refinement through High-Throughput Functional Metabolic Profiling

    International Nuclear Information System (INIS)

    Chaiboonchoe, Amphun; Dohai, Bushra Saeed; Cai, Hong; Nelson, David R.; Jijakli, Kenan; Salehi-Ashtiani, Kourosh

    2014-01-01

    Metabolic modeling provides the means to define metabolic processes at a systems level; however, genome-scale metabolic models often remain incomplete in their description of metabolic networks and may include reactions that are experimentally unverified. This shortcoming is exacerbated in reconstructed models of newly isolated algal species, as there may be little to no biochemical evidence available for the metabolism of such isolates. The phenotype microarray (PM) technology (Biolog, Hayward, CA, USA) provides an efficient, high-throughput method to functionally define cellular metabolic activities in response to a large array of entry metabolites. The platform can experimentally verify many of the unverified reactions in a network model as well as identify missing or new reactions in the reconstructed metabolic model. The PM technology has been used for metabolic phenotyping of non-photosynthetic bacteria and fungi, but it has not been reported for the phenotyping of microalgae. Here, we introduce the use of PM assays in a systematic way to the study of microalgae, applying it specifically to the green microalgal model species Chlamydomonas reinhardtii. The results obtained in this study validate a number of existing annotated metabolic reactions and identify a number of novel and unexpected metabolites. The obtained information was used to expand and refine the existing COBRA-based C. reinhardtii metabolic network model iRC1080. Over 254 reactions were added to the network, and the effects of these additions on flux distribution within the network are described. The novel reactions include the support of metabolism by a number of d-amino acids, l-dipeptides, and l-tripeptides as nitrogen sources, as well as support of cellular respiration by cysteamine-S-phosphate as a phosphorus source. The protocol developed here can be used as a foundation to functionally profile other microalgae such as known microalgae mutants and novel isolates.

  14. Microalgal Metabolic Network Model Refinement through High Throughput Functional Metabolic Profiling

    Directory of Open Access Journals (Sweden)

    Amphun eChaiboonchoe

    2014-12-01

    Full Text Available Metabolic modeling provides the means to define metabolic processes at a systems level; however, genome-scale metabolic models often remain incomplete in their description of metabolic networks and may include reactions that are experimentally unverified. This shortcoming is exacerbated in reconstructed models of newly isolated algal species, as there may be little to no biochemical evidence available for the metabolism of such isolates. The Phenotype Microarray (PM technology (Biolog, Hayward, CA, USA provides an efficient, high throughput method to functionally define cellular metabolic activities in response to a large array of entry metabolites. The platform can experimentally verify many of the unverified reactions in a network model as well as identify missing or new reactions in the reconstructed metabolic model. The PM technology has been used for metabolic phenotyping of non-photosynthetic bacteria and fungi but it has not been reported for the phenotyping of microalgae. Here we introduce the use of PM assays in a systematic way to the study of microalgae, applying it specifically to the green microalgal model species Chlamydomonas reinhardtii. The results obtained in this study validate a number of existing annotated metabolic reactions and identify a number of novel and unexpected metabolites. The obtained information was used to expand and refine the existing COBRA-based C. reinhardtii metabolic network model iRC1080. Over 254 reactions were added to the network, and the effects of these additions on flux distribution within the network are described. The novel reactions include the support of metabolism by a number of D-amino acids, L-dipeptides, and L-tripeptides as nitrogen sources, as well as support of cellular respiration by cysteamine-S-phosphate as a phosphorus source. The protocol developed here can be used as a foundation to functionally profile other microalgae such as known microalgae mutants and novel isolates.

  15. Microalgal Metabolic Network Model Refinement through High-Throughput Functional Metabolic Profiling.

    Science.gov (United States)

    Chaiboonchoe, Amphun; Dohai, Bushra Saeed; Cai, Hong; Nelson, David R; Jijakli, Kenan; Salehi-Ashtiani, Kourosh

    2014-01-01

    Metabolic modeling provides the means to define metabolic processes at a systems level; however, genome-scale metabolic models often remain incomplete in their description of metabolic networks and may include reactions that are experimentally unverified. This shortcoming is exacerbated in reconstructed models of newly isolated algal species, as there may be little to no biochemical evidence available for the metabolism of such isolates. The phenotype microarray (PM) technology (Biolog, Hayward, CA, USA) provides an efficient, high-throughput method to functionally define cellular metabolic activities in response to a large array of entry metabolites. The platform can experimentally verify many of the unverified reactions in a network model as well as identify missing or new reactions in the reconstructed metabolic model. The PM technology has been used for metabolic phenotyping of non-photosynthetic bacteria and fungi, but it has not been reported for the phenotyping of microalgae. Here, we introduce the use of PM assays in a systematic way to the study of microalgae, applying it specifically to the green microalgal model species Chlamydomonas reinhardtii. The results obtained in this study validate a number of existing annotated metabolic reactions and identify a number of novel and unexpected metabolites. The obtained information was used to expand and refine the existing COBRA-based C. reinhardtii metabolic network model iRC1080. Over 254 reactions were added to the network, and the effects of these additions on flux distribution within the network are described. The novel reactions include the support of metabolism by a number of d-amino acids, l-dipeptides, and l-tripeptides as nitrogen sources, as well as support of cellular respiration by cysteamine-S-phosphate as a phosphorus source. The protocol developed here can be used as a foundation to functionally profile other microalgae such as known microalgae mutants and novel isolates.

  16. A compendium of inborn errors of metabolism mapped onto the human metabolic network.

    Science.gov (United States)

    Sahoo, Swagatika; Franzson, Leifur; Jonsson, Jon J; Thiele, Ines

    2012-10-01

    Inborn errors of metabolism (IEMs) are hereditary metabolic defects, which are encountered in almost all major metabolic pathways occurring in man. Many IEMs are screened for in neonates through metabolomic analysis of dried blood spot samples. To enable the mapping of these metabolomic data onto the published human metabolic reconstruction, we added missing reactions and pathways involved in acylcarnitine (AC) and fatty acid oxidation (FAO) metabolism. Using literary data, we reconstructed an AC/FAO module consisting of 352 reactions and 139 metabolites. When this module was combined with the human metabolic reconstruction, the synthesis of 39 acylcarnitines and 22 amino acids, which are routinely measured, was captured and 235 distinct IEMs could be mapped. We collected phenotypic and clinical features for each IEM enabling comprehensive classification. We found that carbohydrate, amino acid, and lipid metabolism were most affected by the IEMs, while the brain was the most commonly affected organ. Furthermore, we analyzed the IEMs in the context of metabolic network topology to gain insight into common features between metabolically connected IEMs. While many known examples were identified, we discovered some surprising IEM pairs that shared reactions as well as clinical features but not necessarily causal genes. Moreover, we could also re-confirm that acetyl-CoA acts as a central metabolite. This network based analysis leads to further insight of hot spots in human metabolism with respect to IEMs. The presented comprehensive knowledge base of IEMs will provide a valuable tool in studying metabolic changes involved in inherited metabolic diseases.

  17. The evolution of modularity in bacterial metabolic networks.

    Science.gov (United States)

    Kreimer, Anat; Borenstein, Elhanan; Gophna, Uri; Ruppin, Eytan

    2008-05-13

    Deciphering the modular organization of metabolic networks and understanding how modularity evolves have attracted tremendous interest in recent years. Here, we present a comprehensive large scale characterization of modularity across the bacterial tree of life, systematically quantifying the modularity of the metabolic networks of >300 bacterial species. Three main determinants of metabolic network modularity are identified. First, network size is an important topological determinant of network modularity. Second, several environmental factors influence network modularity, with endosymbionts and mammal-specific pathogens having lower modularity scores than bacterial species that occupy a wider range of niches. Moreover, even among the pathogens, those that alternate between two distinct niches, such as insect and mammal, tend to have relatively high metabolic network modularity. Third, horizontal gene transfer is an important force that contributes significantly to metabolic modularity. We additionally reconstruct the metabolic network of ancestral bacterial species and examine the evolution of modularity across the tree of life. This reveals a trend of modularity decrease from ancestors to descendants that is likely the outcome of niche specialization and the incorporation of peripheral metabolic reactions.

  18. Profiling metabolic networks to study cancer metabolism.

    Science.gov (United States)

    Hiller, Karsten; Metallo, Christian M

    2013-02-01

    Cancer is a disease of unregulated cell growth and survival, and tumors reprogram biochemical pathways to aid these processes. New capabilities in the computational and bioanalytical characterization of metabolism have now emerged, facilitating the identification of unique metabolic dependencies that arise in specific cancers. By understanding the metabolic phenotype of cancers as a function of their oncogenic profiles, metabolic engineering may be applied to design synthetically lethal therapies for some tumors. This process begins with accurate measurement of metabolic fluxes. Here we review advanced methods of quantifying pathway activity and highlight specific examples where these approaches have uncovered potential opportunities for therapeutic intervention. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Autocatalytic, bistable, oscillatory networks of biologically relevant organic reactions

    Science.gov (United States)

    Semenov, Sergey N.; Kraft, Lewis J.; Ainla, Alar; Zhao, Mengxia; Baghbanzadeh, Mostafa; Campbell, Victoria E.; Kang, Kyungtae; Fox, Jerome M.; Whitesides, George M.

    2016-09-01

    Networks of organic chemical reactions are important in life and probably played a central part in its origin. Network dynamics regulate cell division, circadian rhythms, nerve impulses and chemotaxis, and guide the development of organisms. Although out-of-equilibrium networks of chemical reactions have the potential to display emergent network dynamics such as spontaneous pattern formation, bistability and periodic oscillations, the principles that enable networks of organic reactions to develop complex behaviours are incompletely understood. Here we describe a network of biologically relevant organic reactions (amide formation, thiolate-thioester exchange, thiolate-disulfide interchange and conjugate addition) that displays bistability and oscillations in the concentrations of organic thiols and amides. Oscillations arise from the interaction between three subcomponents of the network: an autocatalytic cycle that generates thiols and amides from thioesters and dialkyl disulfides; a trigger that controls autocatalytic growth; and inhibitory processes that remove activating thiol species that are produced during the autocatalytic cycle. In contrast to previous studies that have demonstrated oscillations and bistability using highly evolved biomolecules (enzymes and DNA) or inorganic molecules of questionable biochemical relevance (for example, those used in Belousov-Zhabotinskii-type reactions), the organic molecules we use are relevant to metabolism and similar to those that might have existed on the early Earth. By using small organic molecules to build a network of organic reactions with autocatalytic, bistable and oscillatory behaviour, we identify principles that explain the ways in which dynamic networks relevant to life could have developed. Modifications of this network will clarify the influence of molecular structure on the dynamics of reaction networks, and may enable the design of biomimetic networks and of synthetic self-regulating and evolving

  20. Comparative evaluation of atom mapping algorithms for balanced metabolic reactions: application to Recon 3D

    OpenAIRE

    Preciat Gonzalez, German Andres; El Assal, Lemmer; Noronha, Alberto; Thiele, Ines; Haraldsdottir, Hulda; Fleming, Ronan MT

    2017-01-01

    The mechanism of each chemical reaction in a metabolic network can be represented as a set of atom mappings, each of which relates an atom in a substrate metabolite to an atom of the same element in a product metabolite. Genome-scale metabolic network reconstructions typically represent biochemistry at the level of reaction stoichiometry. However, a more detailed representation at the underlying level of atom mappings opens the possibility for a broader range of biological, biomedical and bio...

  1. Horizontal and vertical growth of S. cerevisiae metabolic network.

    KAUST Repository

    Grassi, Luigi

    2011-10-14

    BACKGROUND: The growth and development of a biological organism is reflected by its metabolic network, the evolution of which relies on the essential gene duplication mechanism. There are two current views about the evolution of metabolic networks. The retrograde model hypothesizes that a pathway evolves by recruiting novel enzymes in a direction opposite to the metabolic flow. The patchwork model is instead based on the assumption that the evolution is based on the exploitation of broad-specificity enzymes capable of catalysing a variety of metabolic reactions. RESULTS: We analysed a well-studied unicellular eukaryotic organism, S. cerevisiae, and studied the effect of the removal of paralogous gene products on its metabolic network. Our results, obtained using different paralog and network definitions, show that, after an initial period when gene duplication was indeed instrumental in expanding the metabolic space, the latter reached an equilibrium and subsequent gene duplications were used as a source of more specialized enzymes rather than as a source of novel reactions. We also show that the switch between the two evolutionary strategies in S. cerevisiae can be dated to about 350 million years ago. CONCLUSIONS: Our data, obtained through a novel analysis methodology, strongly supports the hypothesis that the patchwork model better explains the more recent evolution of the S. cerevisiae metabolic network. Interestingly, the effects of a patchwork strategy acting before the Euascomycete-Hemiascomycete divergence are still detectable today.

  2. Uncovering transcriptional regulation of metabolism by using metabolic network topology

    DEFF Research Database (Denmark)

    Patil, Kiran Raosaheb; Nielsen, Jens

    2005-01-01

    therefore developed an algorithm that is based on hypothesis-driven data analysis to uncover the transcriptional regulatory architecture of metabolic networks. By using information on the metabolic network topology from genome-scale metabolic reconstruction, we show that it is possible to reveal patterns...... changes induced by complex regulatory mechanisms coordinating the activity of different metabolic pathways. It is difficult to map such global transcriptional responses by using traditional methods, because many genes in the metabolic network have relatively small changes at their transcription level. We...... in the metabolic network that follow a common transcriptional response. Thus, the algorithm enables identification of so-called reporter metabolites (metabolites around which the most significant transcriptional changes occur) and a set of connected genes with significant and coordinated response to genetic...

  3. Inferring the metabolism of human orphan metabolites from their metabolic network context affirms human gluconokinase activity.

    Science.gov (United States)

    Rolfsson, Óttar; Paglia, Giuseppe; Magnusdóttir, Manuela; Palsson, Bernhard Ø; Thiele, Ines

    2013-01-15

    Metabolic network reconstructions define metabolic information within a target organism and can therefore be used to address incomplete metabolic information. In the present study we used a computational approach to identify human metabolites whose metabolism is incomplete on the basis of their detection in humans but exclusion from the human metabolic network reconstruction RECON 1. Candidate solutions, composed of metabolic reactions capable of explaining the metabolism of these compounds, were then identified computationally from a global biochemical reaction database. Solutions were characterized with respect to how metabolites were incorporated into RECON 1 and their biological relevance. Through detailed case studies we show that biologically plausible non-intuitive hypotheses regarding the metabolism of these compounds can be proposed in a semi-automated manner, in an approach that is similar to de novo network reconstruction. We subsequently experimentally validated one of the proposed hypotheses and report that C9orf103, previously identified as a candidate tumour suppressor gene, encodes a functional human gluconokinase. The results of the present study demonstrate how semi-automatic gap filling can be used to refine and extend metabolic reconstructions, thereby increasing their biological scope. Furthermore, we illustrate how incomplete human metabolic knowledge can be coupled with gene annotation in order to prioritize and confirm gene functions.

  4. Network reconstruction of platelet metabolism identifies metabolic signature for aspirin resistance

    Science.gov (United States)

    Thomas, Alex; Rahmanian, Sorena; Bordbar, Aarash; Palsson, Bernhard Ø.; Jamshidi, Neema

    2014-01-01

    Recently there has not been a systematic, objective assessment of the metabolic capabilities of the human platelet. A manually curated, functionally tested, and validated biochemical reaction network of platelet metabolism, iAT-PLT-636, was reconstructed using 33 proteomic datasets and 354 literature references. The network contains enzymes mapping to 403 diseases and 231 FDA approved drugs, alluding to an expansive scope of biochemical transformations that may affect or be affected by disease processes in multiple organ systems. The effect of aspirin (ASA) resistance on platelet metabolism was evaluated using constraint-based modeling, which revealed a redirection of glycolytic, fatty acid, and nucleotide metabolism reaction fluxes in order to accommodate eicosanoid synthesis and reactive oxygen species stress. These results were confirmed with independent proteomic data. The construction and availability of iAT-PLT-636 should stimulate further data-driven, systems analysis of platelet metabolism towards the understanding of pathophysiological conditions including, but not strictly limited to, coagulopathies.

  5. Stability from Structure : Metabolic Networks Are Unlike Other Biological Networks

    NARCIS (Netherlands)

    Van Nes, P.; Bellomo, D.; Reinders, M.J.T.; De Ridder, D.

    2009-01-01

    In recent work, attempts have been made to link the structure of biochemical networks to their complex dynamics. It was shown that structurally stable network motifs are enriched in such networks. In this work, we investigate to what extent these findings apply to metabolic networks. To this end, we

  6. A network dynamics approach to chemical reaction networks

    NARCIS (Netherlands)

    van der Schaft, Abraham; Rao, S.; Jayawardhana, B.

    2016-01-01

    A treatment of chemical reaction network theory is given from the perspective of nonlinear network dynamics, in particular of consensus dynamics. By starting from the complex-balanced assumption the reaction dynamics governed by mass action kinetics can be rewritten into a form which allows for a

  7. Conservation Laws in Biochemical Reaction Networks

    DEFF Research Database (Denmark)

    Mahdi, Adam; Ferragut, Antoni; Valls, Claudia

    2017-01-01

    We study the existence of linear and nonlinear conservation laws in biochemical reaction networks with mass-action kinetics. It is straightforward to compute the linear conservation laws as they are related to the left null-space of the stoichiometry matrix. The nonlinear conservation laws...... are difficult to identify and have rarely been considered in the context of mass-action reaction networks. Here, using the Darboux theory of integrability, we provide necessary structural (i.e., parameterindependent) conditions on a reaction network to guarantee the existence of nonlinear conservation laws...

  8. Signatures of arithmetic simplicity in metabolic network architecture.

    Directory of Open Access Journals (Sweden)

    William J Riehl

    2010-04-01

    Full Text Available Metabolic networks perform some of the most fundamental functions in living cells, including energy transduction and building block biosynthesis. While these are the best characterized networks in living systems, understanding their evolutionary history and complex wiring constitutes one of the most fascinating open questions in biology, intimately related to the enigma of life's origin itself. Is the evolution of metabolism subject to general principles, beyond the unpredictable accumulation of multiple historical accidents? Here we search for such principles by applying to an artificial chemical universe some of the methodologies developed for the study of genome scale models of cellular metabolism. In particular, we use metabolic flux constraint-based models to exhaustively search for artificial chemistry pathways that can optimally perform an array of elementary metabolic functions. Despite the simplicity of the model employed, we find that the ensuing pathways display a surprisingly rich set of properties, including the existence of autocatalytic cycles and hierarchical modules, the appearance of universally preferable metabolites and reactions, and a logarithmic trend of pathway length as a function of input/output molecule size. Some of these properties can be derived analytically, borrowing methods previously used in cryptography. In addition, by mapping biochemical networks onto a simplified carbon atom reaction backbone, we find that properties similar to those predicted for the artificial chemistry hold also for real metabolic networks. These findings suggest that optimality principles and arithmetic simplicity might lie beneath some aspects of biochemical complexity.

  9. Does habitat variability really promote metabolic network modularity?

    Science.gov (United States)

    Takemoto, Kazuhiro

    2013-01-01

    The hypothesis that variability in natural habitats promotes modular organization is widely accepted for cellular networks. However, results of some data analyses and theoretical studies have begun to cast doubt on the impact of habitat variability on modularity in metabolic networks. Therefore, we re-evaluated this hypothesis using statistical data analysis and current metabolic information. We were unable to conclude that an increase in modularity was the result of habitat variability. Although horizontal gene transfer was also considered because it may contribute for survival in a variety of environments, closely related to habitat variability, and is known to be positively correlated with network modularity, such a positive correlation was not concluded in the latest version of metabolic networks. Furthermore, we demonstrated that the previously observed increase in network modularity due to habitat variability and horizontal gene transfer was probably due to a lack of available data on metabolic reactions. Instead, we determined that modularity in metabolic networks is dependent on species growth conditions. These results may not entirely discount the impact of habitat variability and horizontal gene transfer. Rather, they highlight the need for a more suitable definition of habitat variability and a more careful examination of relationships of the network modularity with horizontal gene transfer, habitats, and environments.

  10. Stochastic flux analysis of chemical reaction networks.

    Science.gov (United States)

    Kahramanoğulları, Ozan; Lynch, James F

    2013-12-07

    Chemical reaction networks provide an abstraction scheme for a broad range of models in biology and ecology. The two common means for simulating these networks are the deterministic and the stochastic approaches. The traditional deterministic approach, based on differential equations, enjoys a rich set of analysis techniques, including a treatment of reaction fluxes. However, the discrete stochastic simulations, which provide advantages in some cases, lack a quantitative treatment of network fluxes. We describe a method for flux analysis of chemical reaction networks, where flux is given by the flow of species between reactions in stochastic simulations of the network. Extending discrete event simulation algorithms, our method constructs several data structures, and thereby reveals a variety of statistics about resource creation and consumption during the simulation. We use these structures to quantify the causal interdependence and relative importance of the reactions at arbitrary time intervals with respect to the network fluxes. This allows us to construct reduced networks that have the same flux-behavior, and compare these networks, also with respect to their time series. We demonstrate our approach on an extended example based on a published ODE model of the same network, that is, Rho GTP-binding proteins, and on other models from biology and ecology. We provide a fully stochastic treatment of flux analysis. As in deterministic analysis, our method delivers the network behavior in terms of species transformations. Moreover, our stochastic analysis can be applied, not only at steady state, but at arbitrary time intervals, and used to identify the flow of specific species between specific reactions. Our cases study of Rho GTP-binding proteins reveals the role played by the cyclic reverse fluxes in tuning the behavior of this network.

  11. Structuring evolution: biochemical networks and metabolic diversification in birds.

    Science.gov (United States)

    Morrison, Erin S; Badyaev, Alexander V

    2016-08-25

    Recurrence and predictability of evolution are thought to reflect the correspondence between genomic and phenotypic dimensions of organisms, and the connectivity in deterministic networks within these dimensions. Direct examination of the correspondence between opportunities for diversification imbedded in such networks and realized diversity is illuminating, but is empirically challenging because both the deterministic networks and phenotypic diversity are modified in the course of evolution. Here we overcome this problem by directly comparing the structure of a "global" carotenoid network - comprising of all known enzymatic reactions among naturally occurring carotenoids - with the patterns of evolutionary diversification in carotenoid-producing metabolic networks utilized by birds. We found that phenotypic diversification in carotenoid networks across 250 species was closely associated with enzymatic connectivity of the underlying biochemical network - compounds with greater connectivity occurred the most frequently across species and were the hotspots of metabolic pathway diversification. In contrast, we found no evidence for diversification along the metabolic pathways, corroborating findings that the utilization of the global carotenoid network was not strongly influenced by history in avian evolution. The finding that the diversification in species-specific carotenoid networks is qualitatively predictable from the connectivity of the underlying enzymatic network points to significant structural determinism in phenotypic evolution.

  12. Grip on complexity in chemical reaction networks.

    Science.gov (United States)

    Wong, Albert S Y; Huck, Wilhelm T S

    2017-01-01

    A new discipline of "systems chemistry" is emerging, which aims to capture the complexity observed in natural systems within a synthetic chemical framework. Living systems rely on complex networks of chemical reactions to control the concentration of molecules in space and time. Despite the enormous complexity in biological networks, it is possible to identify network motifs that lead to functional outputs such as bistability or oscillations. To truly understand how living systems function, we need a complete understanding of how chemical reaction networks (CRNs) create function. We propose the development of a bottom-up approach to design and construct CRNs where we can follow the influence of single chemical entities on the properties of the network as a whole. Ultimately, this approach should allow us to not only understand such complex networks but also to guide and control their behavior.

  13. A Bayesian approach to the evolution of metabolic networks on a phylogeny.

    Directory of Open Access Journals (Sweden)

    Aziz Mithani

    2010-08-01

    Full Text Available The availability of genomes of many closely related bacteria with diverse metabolic capabilities offers the possibility of tracing metabolic evolution on a phylogeny relating the genomes to understand the evolutionary processes and constraints that affect the evolution of metabolic networks. Using simple (independent loss/gain of reactions or complex (incorporating dependencies among reactions stochastic models of metabolic evolution, it is possible to study how metabolic networks evolve over time. Here, we describe a model that takes the reaction neighborhood into account when modeling metabolic evolution. The model also allows estimation of the strength of the neighborhood effect during the course of evolution. We present Gibbs samplers for sampling networks at the internal node of a phylogeny and for estimating the parameters of evolution over a phylogeny without exploring the whole search space by iteratively sampling from the conditional distributions of the internal networks and parameters. The samplers are used to estimate the parameters of evolution of metabolic networks of bacteria in the genus Pseudomonas and to infer the metabolic networks of the ancestral pseudomonads. The results suggest that pathway maps that are conserved across the Pseudomonas phylogeny have a stronger neighborhood structure than those which have a variable distribution of reactions across the phylogeny, and that some Pseudomonas lineages are going through genome reduction resulting in the loss of a number of reactions from their metabolic networks.

  14. Complex Chemical Reaction Networks from Heuristics-Aided Quantum Chemistry.

    Science.gov (United States)

    Rappoport, Dmitrij; Galvin, Cooper J; Zubarev, Dmitry Yu; Aspuru-Guzik, Alán

    2014-03-11

    While structures and reactivities of many small molecules can be computed efficiently and accurately using quantum chemical methods, heuristic approaches remain essential for modeling complex structures and large-scale chemical systems. Here, we present a heuristics-aided quantum chemical methodology applicable to complex chemical reaction networks such as those arising in cell metabolism and prebiotic chemistry. Chemical heuristics offer an expedient way of traversing high-dimensional reactive potential energy surfaces and are combined here with quantum chemical structure optimizations, which yield the structures and energies of the reaction intermediates and products. Application of heuristics-aided quantum chemical methodology to the formose reaction reproduces the experimentally observed reaction products, major reaction pathways, and autocatalytic cycles.

  15. Markovian dynamics on complex reaction networks

    International Nuclear Information System (INIS)

    Goutsias, J.; Jenkinson, G.

    2013-01-01

    Complex networks, comprised of individual elements that interact with each other through reaction channels, are ubiquitous across many scientific and engineering disciplines. Examples include biochemical, pharmacokinetic, epidemiological, ecological, social, neural, and multi-agent networks. A common approach to modeling such networks is by a master equation that governs the dynamic evolution of the joint probability mass function of the underlying population process and naturally leads to Markovian dynamics for such process. Due however to the nonlinear nature of most reactions and the large size of the underlying state-spaces, computation and analysis of the resulting stochastic population dynamics is a difficult task. This review article provides a coherent and comprehensive coverage of recently developed approaches and methods to tackle this problem. After reviewing a general framework for modeling Markovian reaction networks and giving specific examples, the authors present numerical and computational techniques capable of evaluating or approximating the solution of the master equation, discuss a recently developed approach for studying the stationary behavior of Markovian reaction networks using a potential energy landscape perspective, and provide an introduction to the emerging theory of thermodynamic analysis of such networks. Three representative problems of opinion formation, transcription regulation, and neural network dynamics are used as illustrative examples

  16. Genome-scale Metabolic Reaction Modeling: a New Approach to Geomicrobial Kinetics

    Science.gov (United States)

    McKernan, S. E.; Shapiro, B.; Jin, Q.

    2014-12-01

    Geomicrobial rates, rates of microbial metabolism in natural environments, are a key parameter of theoretical and practical problems in geobiology and biogeochemistry. Both laboratory- and field-based approaches have been applied to study rates of geomicrobial processes. Laboratory-based approaches analyze geomicrobial kinetics by incubating environmental samples under controlled laboratory conditions. Field methods quantify geomicrobial rates by observing the progress of geomicrobial processes. To take advantage of recent development in biogeochemical modeling and genome-scale metabolic modeling, we suggest that geomicrobial rates can also be predicted by simulating metabolic reaction networks of microbes. To predict geomicrobial rates, we developed a genome-scale metabolic model that describes enzyme reaction networks of microbial metabolism, and simulated the network model by accounting for the kinetics and thermodynamics of enzyme reactions. The model is simulated numerically to solve cellular enzyme abundance and hence metabolic rates under the constraints of cellular physiology. The new modeling approach differs from flux balance analysis of system biology in that it accounts for the thermodynamics and kinetics of enzymatic reactions. It builds on subcellular metabolic reaction networks, and hence also differs from classical biogeochemical reaction modeling. We applied the new approach to Methanosarcina acetivorans, an anaerobic, marine methanogen capable of disproportionating acetate to carbon dioxide and methane. The input of the new model includes (1) enzyme reaction network of acetoclastic methanogenesis, and (2) representative geochemical conditions of freshwater sedimentary environments. The output of the simulation includes the proteomics, metabolomics, and energy and matter fluxes of M. acetivorans. Our simulation results demonstrate the predictive power of the new modeling approach. Specifically, the results illustrate how methanogenesis rates vary

  17. Concordant Chemical Reaction Networks and the Species-Reaction Graph

    Science.gov (United States)

    Shinar, Guy; Feinberg, Martin

    2015-01-01

    In a recent paper it was shown that, for chemical reaction networks possessing a subtle structural property called concordance, dynamical behavior of a very circumscribed (and largely stable) kind is enforced, so long as the kinetics lies within the very broad and natural weakly monotonic class. In particular, multiple equilibria are precluded, as are degenerate positive equilibria. Moreover, under certain circumstances, also related to concordance, all real eigenvalues associated with a positive equilibrium are negative. Although concordance of a reaction network can be decided by readily available computational means, we show here that, when a nondegenerate network’s Species-Reaction Graph satisfies certain mild conditions, concordance and its dynamical consequences are ensured. These conditions are weaker than earlier ones invoked to establish kinetic system injectivity, which, in turn, is just one ramification of network concordance. Because the Species-Reaction Graph resembles pathway depictions often drawn by biochemists, results here expand the possibility of inferring significant dynamical information directly from standard biochemical reaction diagrams. PMID:22940368

  18. Preferential attachment in the evolution of metabolic networks

    Directory of Open Access Journals (Sweden)

    Elofsson Arne

    2005-11-01

    Full Text Available Abstract Background Many biological networks show some characteristics of scale-free networks. Scale-free networks can evolve through preferential attachment where new nodes are preferentially attached to well connected nodes. In networks which have evolved through preferential attachment older nodes should have a higher average connectivity than younger nodes. Here we have investigated preferential attachment in the context of metabolic networks. Results The connectivities of the enzymes in the metabolic network of Escherichia coli were determined and representatives for these enzymes were located in 11 eukaryotes, 17 archaea and 46 bacteria. E. coli enzymes which have representatives in eukaryotes have a higher average connectivity while enzymes which are represented only in the prokaryotes, and especially the enzymes only present in βγ-proteobacteria, have lower connectivities than expected by chance. Interestingly, the enzymes which have been proposed as candidates for horizontal gene transfer have a higher average connectivity than the other enzymes. Furthermore, It was found that new edges are added to the highly connected enzymes at a faster rate than to enzymes with low connectivities which is consistent with preferential attachment. Conclusion Here, we have found indications of preferential attachment in the metabolic network of E. coli. A possible biological explanation for preferential attachment growth of metabolic networks is that novel enzymes created through gene duplication maintain some of the compounds involved in the original reaction, throughout its future evolution. In addition, we found that enzymes which are candidates for horizontal gene transfer have a higher average connectivity than other enzymes. This indicates that while new enzymes are attached preferentially to highly connected enzymes, these highly connected enzymes have sometimes been introduced into the E. coli genome by horizontal gene transfer. We speculate

  19. Thermodynamics-based Metabolite Sensitivity Analysis in metabolic networks.

    Science.gov (United States)

    Kiparissides, A; Hatzimanikatis, V

    2017-01-01

    The increasing availability of large metabolomics datasets enhances the need for computational methodologies that can organize the data in a way that can lead to the inference of meaningful relationships. Knowledge of the metabolic state of a cell and how it responds to various stimuli and extracellular conditions can offer significant insight in the regulatory functions and how to manipulate them. Constraint based methods, such as Flux Balance Analysis (FBA) and Thermodynamics-based flux analysis (TFA), are commonly used to estimate the flow of metabolites through genome-wide metabolic networks, making it possible to identify the ranges of flux values that are consistent with the studied physiological and thermodynamic conditions. However, unless key intracellular fluxes and metabolite concentrations are known, constraint-based models lead to underdetermined problem formulations. This lack of information propagates as uncertainty in the estimation of fluxes and basic reaction properties such as the determination of reaction directionalities. Therefore, knowledge of which metabolites, if measured, would contribute the most to reducing this uncertainty can significantly improve our ability to define the internal state of the cell. In the present work we combine constraint based modeling, Design of Experiments (DoE) and Global Sensitivity Analysis (GSA) into the Thermodynamics-based Metabolite Sensitivity Analysis (TMSA) method. TMSA ranks metabolites comprising a metabolic network based on their ability to constrain the gamut of possible solutions to a limited, thermodynamically consistent set of internal states. TMSA is modular and can be applied to a single reaction, a metabolic pathway or an entire metabolic network. This is, to our knowledge, the first attempt to use metabolic modeling in order to provide a significance ranking of metabolites to guide experimental measurements. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier

  20. Atmospheric reaction systems as null-models to identify structural traces of evolution in metabolism.

    Directory of Open Access Journals (Sweden)

    Petter Holme

    Full Text Available The metabolism is the motor behind the biological complexity of an organism. One problem of characterizing its large-scale structure is that it is hard to know what to compare it to. All chemical reaction systems are shaped by the same physics that gives molecules their stability and affinity to react. These fundamental factors cannot be captured by standard null-models based on randomization. The unique property of organismal metabolism is that it is controlled, to some extent, by an enzymatic machinery that is subject to evolution. In this paper, we explore the possibility that reaction systems of planetary atmospheres can serve as a null-model against which we can define metabolic structure and trace the influence of evolution. We find that the two types of data can be distinguished by their respective degree distributions. This is especially clear when looking at the degree distribution of the reaction network (of reaction connected to each other if they involve the same molecular species. For the Earth's atmospheric network and the human metabolic network, we look into more detail for an underlying explanation of this deviation. However, we cannot pinpoint a single cause of the difference, rather there are several concurrent factors. By examining quantities relating to the modular-functional organization of the metabolism, we confirm that metabolic networks have a more complex modular organization than the atmospheric networks, but not much more. We interpret the more variegated modular arrangement of metabolism as a trace of evolved functionality. On the other hand, it is quite remarkable how similar the structures of these two types of networks are, which emphasizes that the constraints from the chemical properties of the molecules has a larger influence in shaping the reaction system than does natural selection.

  1. Metannogen: annotation of biological reaction networks.

    Science.gov (United States)

    Gille, Christoph; Hübner, Katrin; Hoppe, Andreas; Holzhütter, Hermann-Georg

    2011-10-01

    Semantic annotations of the biochemical entities constituting a biological reaction network are indispensable to create biologically meaningful networks. They further heighten efficient exchange, reuse and merging of existing models which concern present-day systems biology research more often. Two types of tools for the reconstruction of biological networks currently exist: (i) several sophisticated programs support graphical network editing and visualization. (ii) Data management systems permit reconstruction and curation of huge networks in a team of scientists including data integration, annotation and cross-referencing. We seeked ways to combine the advantages of both approaches. Metannogen, which was previously developed for network reconstruction, has been considerably improved. From now on, Metannogen provides sbml import and annotation of networks created elsewhere. This permits users of other network reconstruction platforms or modeling software to annotate their networks using Metannogen's advanced information management. We implemented word-autocompletion, multipattern highlighting, spell check, brace-expansion and publication management, and improved annotation, cross-referencing and team work requirements. Unspecific enzymes and transporters acting on a spectrum of different substrates are efficiently handled. The network can be exported in sbml format where the annotations are embedded in line with the miriam standard. For more comfort, Metannogen may be tightly coupled with the network editor such that Metannogen becomes an additional view for the focused reaction in the network editor. Finally, Metannogen provides local single user, shared password protected multiuser or public access to the annotation data. Metannogen is available free of charge at: http://www.bioinformatics.org/strap/metannogen/ or http://3d-alignment.eu/metannogen/. christoph.gille@charite.de Supplementary data are available at Bioinformatics online.

  2. Characterizing multistationarity regimes in biochemical reaction networks.

    Directory of Open Access Journals (Sweden)

    Irene Otero-Muras

    Full Text Available Switch like responses appear as common strategies in the regulation of cellular systems. Here we present a method to characterize bistable regimes in biochemical reaction networks that can be of use to both direct and reverse engineering of biological switches. In the design of a synthetic biological switch, it is important to study the capability for bistability of the underlying biochemical network structure. Chemical Reaction Network Theory (CRNT may help at this level to decide whether a given network has the capacity for multiple positive equilibria, based on their structural properties. However, in order to build a working switch, we also need to ensure that the bistability property is robust, by studying the conditions leading to the existence of two different steady states. In the reverse engineering of biological switches, knowledge collected about the bistable regimes of the underlying potential model structures can contribute at the model identification stage to a drastic reduction of the feasible region in the parameter space of search. In this work, we make use and extend previous results of the CRNT, aiming not only to discriminate whether a biochemical reaction network can exhibit multiple steady states, but also to determine the regions within the whole space of parameters capable of producing multistationarity. To that purpose we present and justify a condition on the parameters of biochemical networks for the appearance of multistationarity, and propose an efficient and reliable computational method to check its satisfaction through the parameter space.

  3. CardioNet: A human metabolic network suited for the study of cardiomyocyte metabolism

    Directory of Open Access Journals (Sweden)

    Karlstädt Anja

    2012-08-01

    Full Text Available Abstract Background Availability of oxygen and nutrients in the coronary circulation is a crucial determinant of cardiac performance. Nutrient composition of coronary blood may significantly vary in specific physiological and pathological conditions, for example, administration of special diets, long-term starvation, physical exercise or diabetes. Quantitative analysis of cardiac metabolism from a systems biology perspective may help to a better understanding of the relationship between nutrient supply and efficiency of metabolic processes required for an adequate cardiac output. Results Here we present CardioNet, the first large-scale reconstruction of the metabolic network of the human cardiomyocyte comprising 1793 metabolic reactions, including 560 transport processes in six compartments. We use flux-balance analysis to demonstrate the capability of the network to accomplish a set of 368 metabolic functions required for maintaining the structural and functional integrity of the cell. Taking the maintenance of ATP, biosynthesis of ceramide, cardiolipin and further important phospholipids as examples, we analyse how a changed supply of glucose, lactate, fatty acids and ketone bodies may influence the efficiency of these essential processes. Conclusions CardioNet is a functionally validated metabolic network of the human cardiomyocyte that enables theorectical studies of cellular metabolic processes crucial for the accomplishment of an adequate cardiac output.

  4. Quantum chemical approach to estimating the thermodynamics of metabolic reactions.

    Science.gov (United States)

    Jinich, Adrian; Rappoport, Dmitrij; Dunn, Ian; Sanchez-Lengeling, Benjamin; Olivares-Amaya, Roberto; Noor, Elad; Even, Arren Bar; Aspuru-Guzik, Alán

    2014-11-12

    Thermodynamics plays an increasingly important role in modeling and engineering metabolism. We present the first nonempirical computational method for estimating standard Gibbs reaction energies of metabolic reactions based on quantum chemistry, which can help fill in the gaps in the existing thermodynamic data. When applied to a test set of reactions from core metabolism, the quantum chemical approach is comparable in accuracy to group contribution methods for isomerization and group transfer reactions and for reactions not including multiply charged anions. The errors in standard Gibbs reaction energy estimates are correlated with the charges of the participating molecules. The quantum chemical approach is amenable to systematic improvements and holds potential for providing thermodynamic data for all of metabolism.

  5. Formal balancing of chemical reaction networks

    NARCIS (Netherlands)

    van der Schaft, Abraham; Rao, S.; Jayawardhana, B.

    2016-01-01

    In this paper we recall and extend the main results of Van der Schaft, Rao, Jayawardhana (2015) concerning the use of Kirchhoff’s Matrix Tree theorem in the explicit characterization of complex-balanced reaction networks and the notion of formal balancing. The notion of formal balancing corresponds

  6. Mean field interaction in biochemical reaction networks

    KAUST Repository

    Tembine, Hamidou

    2011-09-01

    In this paper we establish a relationship between chemical dynamics and mean field game dynamics. We show that chemical reaction networks can be studied using noisy mean field limits. We provide deterministic, noisy and switching mean field limits and illustrate them with numerical examples. © 2011 IEEE.

  7. Comparative Analysis of Yeast Metabolic Network Models Highlights Progress, Opportunities for Metabolic Reconstruction.

    Directory of Open Access Journals (Sweden)

    Benjamin D Heavner

    2015-11-01

    Full Text Available We have compared 12 genome-scale models of the Saccharomyces cerevisiae metabolic network published since 2003 to evaluate progress in reconstruction of the yeast metabolic network. We compared the genomic coverage, overlap of annotated metabolites, predictive ability for single gene essentiality with a selection of model parameters, and biomass production predictions in simulated nutrient-limited conditions. We have also compared pairwise gene knockout essentiality predictions for 10 of these models. We found that varying approaches to model scope and annotation reflected the involvement of multiple research groups in model development; that single-gene essentiality predictions were affected by simulated medium, objective function, and the reference list of essential genes; and that predictive ability for single-gene essentiality did not correlate well with predictive ability for our reference list of synthetic lethal gene interactions (R = 0.159. We conclude that the reconstruction of the yeast metabolic network is indeed gradually improving through the iterative process of model development, and there remains great opportunity for advancing our understanding of biology through continued efforts to reconstruct the full biochemical reaction network that constitutes yeast metabolism. Additionally, we suggest that there is opportunity for refining the process of deriving a metabolic model from a metabolic network reconstruction to facilitate mechanistic investigation and discovery. This comparative study lays the groundwork for developing improved tools and formalized methods to quantitatively assess metabolic network reconstructions independently of any particular model application, which will facilitate ongoing efforts to advance our understanding of the relationship between genotype and cellular phenotype.

  8. Mathematical Modeling and Dynamic Simulation of Metabolic Reaction Systems Using Metabolome Time Series Data.

    Science.gov (United States)

    Sriyudthsak, Kansuporn; Shiraishi, Fumihide; Hirai, Masami Yokota

    2016-01-01

    The high-throughput acquisition of metabolome data is greatly anticipated for the complete understanding of cellular metabolism in living organisms. A variety of analytical technologies have been developed to acquire large-scale metabolic profiles under different biological or environmental conditions. Time series data are useful for predicting the most likely metabolic pathways because they provide important information regarding the accumulation of metabolites, which implies causal relationships in the metabolic reaction network. Considerable effort has been undertaken to utilize these data for constructing a mathematical model merging system properties and quantitatively characterizing a whole metabolic system in toto. However, there are technical difficulties between benchmarking the provision and utilization of data. Although, hundreds of metabolites can be measured, which provide information on the metabolic reaction system, simultaneous measurement of thousands of metabolites is still challenging. In addition, it is nontrivial to logically predict the dynamic behaviors of unmeasurable metabolite concentrations without sufficient information on the metabolic reaction network. Yet, consolidating the advantages of advancements in both metabolomics and mathematical modeling remain to be accomplished. This review outlines the conceptual basis of and recent advances in technologies in both the research fields. It also highlights the potential for constructing a large-scale mathematical model by estimating model parameters from time series metabolome data in order to comprehensively understand metabolism at the systems level.

  9. Estimating the size of the solution space of metabolic networks

    Directory of Open Access Journals (Sweden)

    Mulet Roberto

    2008-05-01

    Full Text Available Abstract Background Cellular metabolism is one of the most investigated system of biological interactions. While the topological nature of individual reactions and pathways in the network is quite well understood there is still a lack of comprehension regarding the global functional behavior of the system. In the last few years flux-balance analysis (FBA has been the most successful and widely used technique for studying metabolism at system level. This method strongly relies on the hypothesis that the organism maximizes an objective function. However only under very specific biological conditions (e.g. maximization of biomass for E. coli in reach nutrient medium the cell seems to obey such optimization law. A more refined analysis not assuming extremization remains an elusive task for large metabolic systems due to algorithmic limitations. Results In this work we propose a novel algorithmic strategy that provides an efficient characterization of the whole set of stable fluxes compatible with the metabolic constraints. Using a technique derived from the fields of statistical physics and information theory we designed a message-passing algorithm to estimate the size of the affine space containing all possible steady-state flux distributions of metabolic networks. The algorithm, based on the well known Bethe approximation, can be used to approximately compute the volume of a non full-dimensional convex polytope in high dimensions. We first compare the accuracy of the predictions with an exact algorithm on small random metabolic networks. We also verify that the predictions of the algorithm match closely those of Monte Carlo based methods in the case of the Red Blood Cell metabolic network. Then we test the effect of gene knock-outs on the size of the solution space in the case of E. coli central metabolism. Finally we analyze the statistical properties of the average fluxes of the reactions in the E. coli metabolic network. Conclusion We propose a

  10. The evolution of metabolic networks of E. coli

    Directory of Open Access Journals (Sweden)

    Baumler David J

    2011-11-01

    Full Text Available Abstract Background Despite the availability of numerous complete genome sequences from E. coli strains, published genome-scale metabolic models exist only for two commensal E. coli strains. These models have proven useful for many applications, such as engineering strains for desired product formation, and we sought to explore how constructing and evaluating additional metabolic models for E. coli strains could enhance these efforts. Results We used the genomic information from 16 E. coli strains to generate an E. coli pangenome metabolic network by evaluating their collective 76,990 ORFs. Each of these ORFs was assigned to one of 17,647 ortholog groups including ORFs associated with reactions in the most recent metabolic model for E. coli K-12. For orthologous groups that contain an ORF already represented in the MG1655 model, the gene to protein to reaction associations represented in this model could then be easily propagated to other E. coli strain models. All remaining orthologous groups were evaluated to see if new metabolic reactions could be added to generate a pangenome-scale metabolic model (iEco1712_pan. The pangenome model included reactions from a metabolic model update for E. coli K-12 MG1655 (iEco1339_MG1655 and enabled development of five additional strain-specific genome-scale metabolic models. These additional models include a second K-12 strain (iEco1335_W3110 and four pathogenic strains (two enterohemorrhagic E. coli O157:H7 and two uropathogens. When compared to the E. coli K-12 models, the metabolic models for the enterohemorrhagic (iEco1344_EDL933 and iEco1345_Sakai and uropathogenic strains (iEco1288_CFT073 and iEco1301_UTI89 contained numerous lineage-specific gene and reaction differences. All six E. coli models were evaluated by comparing model predictions to carbon source utilization measurements under aerobic and anaerobic conditions, and to batch growth profiles in minimal media with 0.2% (w/v glucose. An ancestral

  11. Reconstruction of biological pathways and metabolic networks from in silico labeled metabolites.

    Science.gov (United States)

    Hadadi, Noushin; Hafner, Jasmin; Soh, Keng Cher; Hatzimanikatis, Vassily

    2017-01-01

    Reaction atom mappings track the positional changes of all of the atoms between the substrates and the products as they undergo the biochemical transformation. However, information on atom transitions in the context of metabolic pathways is not widely available in the literature. The understanding of metabolic pathways at the atomic level is of great importance as it can deconvolute the overlapping catabolic/anabolic pathways resulting in the observed metabolic phenotype. The automated identification of atom transitions within a metabolic network is a very challenging task since the degree of complexity of metabolic networks dramatically increases when we transit from metabolite-level studies to atom-level studies. Despite being studied extensively in various approaches, the field of atom mapping of metabolic networks is lacking an automated approach, which (i) accounts for the information of reaction mechanism for atom mapping and (ii) is extendable from individual atom-mapped reactions to atom-mapped reaction networks. Hereby, we introduce a computational framework, iAM.NICE (in silico Atom Mapped Network Integrated Computational Explorer), for the systematic atom-level reconstruction of metabolic networks from in silico labelled substrates. iAM.NICE is to our knowledge the first automated atom-mapping algorithm that is based on the underlying enzymatic biotransformation mechanisms, and its application goes beyond individual reactions and it can be used for the reconstruction of atom-mapped metabolic networks. We illustrate the applicability of our method through the reconstruction of atom-mapped reactions of the KEGG database and we provide an example of an atom-level representation of the core metabolic network of E. coli. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Chemical reaction network approaches to Biochemical Systems Theory.

    Science.gov (United States)

    Arceo, Carlene Perpetua P; Jose, Editha C; Marin-Sanguino, Alberto; Mendoza, Eduardo R

    2015-11-01

    This paper provides a framework to represent a Biochemical Systems Theory (BST) model (in either GMA or S-system form) as a chemical reaction network with power law kinetics. Using this representation, some basic properties and the application of recent results of Chemical Reaction Network Theory regarding steady states of such systems are shown. In particular, Injectivity Theory, including network concordance [36] and the Jacobian Determinant Criterion [43], a "Lifting Theorem" for steady states [26] and the comprehensive results of Müller and Regensburger [31] on complex balanced equilibria are discussed. A partial extension of a recent Emulation Theorem of Cardelli for mass action systems [3] is derived for a subclass of power law kinetic systems. However, it is also shown that the GMA and S-system models of human purine metabolism [10] do not display the reactant-determined kinetics assumed by Müller and Regensburger and hence only a subset of BST models can be handled with their approach. Moreover, since the reaction networks underlying many BST models are not weakly reversible, results for non-complex balanced equilibria are also needed. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Exploring photosynthesis evolution by comparative analysis of metabolic networks between chloroplasts and photosynthetic bacteria

    Directory of Open Access Journals (Sweden)

    Hou Jing

    2006-04-01

    Full Text Available Abstract Background Chloroplasts descended from cyanobacteria and have a drastically reduced genome following an endosymbiotic event. Many genes of the ancestral cyanobacterial genome have been transferred to the plant nuclear genome by horizontal gene transfer. However, a selective set of metabolism pathways is maintained in chloroplasts using both chloroplast genome encoded and nuclear genome encoded enzymes. As an organelle specialized for carrying out photosynthesis, does the chloroplast metabolic network have properties adapted for higher efficiency of photosynthesis? We compared metabolic network properties of chloroplasts and prokaryotic photosynthetic organisms, mostly cyanobacteria, based on metabolic maps derived from genome data to identify features of chloroplast network properties that are different from cyanobacteria and to analyze possible functional significance of those features. Results The properties of the entire metabolic network and the sub-network that consists of reactions directly connected to the Calvin Cycle have been analyzed using hypergraph representation. Results showed that the whole metabolic networks in chloroplast and cyanobacteria both possess small-world network properties. Although the number of compounds and reactions in chloroplasts is less than that in cyanobacteria, the chloroplast's metabolic network has longer average path length, a larger diameter, and is Calvin Cycle -centered, indicating an overall less-dense network structure with specific and local high density areas in chloroplasts. Moreover, chloroplast metabolic network exhibits a better modular organization than cyanobacterial ones. Enzymes involved in the same metabolic processes tend to cluster into the same module in chloroplasts. Conclusion In summary, the differences in metabolic network properties may reflect the evolutionary changes during endosymbiosis that led to the improvement of the photosynthesis efficiency in higher plants. Our

  14. Context-specific metabolic networks are consistent with experiments.

    Directory of Open Access Journals (Sweden)

    Scott A Becker

    2008-05-01

    Full Text Available Reconstructions of cellular metabolism are publicly available for a variety of different microorganisms and some mammalian genomes. To date, these reconstructions are "genome-scale" and strive to include all reactions implied by the genome annotation, as well as those with direct experimental evidence. Clearly, many of the reactions in a genome-scale reconstruction will not be active under particular conditions or in a particular cell type. Methods to tailor these comprehensive genome-scale reconstructions into context-specific networks will aid predictive in silico modeling for a particular situation. We present a method called Gene Inactivity Moderated by Metabolism and Expression (GIMME to achieve this goal. The GIMME algorithm uses quantitative gene expression data and one or more presupposed metabolic objectives to produce the context-specific reconstruction that is most consistent with the available data. Furthermore, the algorithm provides a quantitative inconsistency score indicating how consistent a set of gene expression data is with a particular metabolic objective. We show that this algorithm produces results consistent with biological experiments and intuition for adaptive evolution of bacteria, rational design of metabolic engineering strains, and human skeletal muscle cells. This work represents progress towards producing constraint-based models of metabolism that are specific to the conditions where the expression profiling data is available.

  15. Origins of Specificity and Promiscuity in Metabolic Networks

    Science.gov (United States)

    Carbonell, Pablo; Lecointre, Guillaume; Faulon, Jean-Loup

    2011-01-01

    How enzymes have evolved to their present form is linked to the question of how pathways emerged and evolved into extant metabolic networks. To investigate this mechanism, we have explored the chemical diversity present in a largely unbiased data set of catalytic reactions processed by modern enzymes across the tree of life. In order to get a quantitative estimate of enzyme chemical diversity, we measure enzyme multispecificity or promiscuity using the reaction molecular signatures. Our main finding is that reactions that are catalyzed by a highly specific enzyme are shared by poorly divergent species, suggesting a later emergence of this function during evolution. In contrast, reactions that are catalyzed by highly promiscuous enzymes are more likely to appear uniformly distributed across species in the tree of life. From a functional point of view, promiscuous enzymes are mainly involved in amino acid and lipid metabolisms, which might be associated with the earliest form of biochemical reactions. In this way, results presented in this paper might assist us with the identification of primeval promiscuous catalytic functions contributing to life's minimal metabolism. PMID:22052908

  16. Thermodynamically Feasible Kinetic Models of Reaction Networks

    OpenAIRE

    Ederer, Michael; Gilles, Ernst Dieter

    2007-01-01

    The dynamics of biological reaction networks are strongly constrained by thermodynamics. An holistic understanding of their behavior and regulation requires mathematical models that observe these constraints. However, kinetic models may easily violate the constraints imposed by the principle of detailed balance, if no special care is taken. Detailed balance demands that in thermodynamic equilibrium all fluxes vanish. We introduce a thermodynamic-kinetic modeling (TKM) formalism that adapts th...

  17. On Functional Module Detection in Metabolic Networks

    Science.gov (United States)

    Koch, Ina; Ackermann, Jörg

    2013-01-01

    Functional modules of metabolic networks are essential for understanding the metabolism of an organism as a whole. With the vast amount of experimental data and the construction of complex and large-scale, often genome-wide, models, the computer-aided identification of functional modules becomes more and more important. Since steady states play a key role in biology, many methods have been developed in that context, for example, elementary flux modes, extreme pathways, transition invariants and place invariants. Metabolic networks can be studied also from the point of view of graph theory, and algorithms for graph decomposition have been applied for the identification of functional modules. A prominent and currently intensively discussed field of methods in graph theory addresses the Q-modularity. In this paper, we recall known concepts of module detection based on the steady-state assumption, focusing on transition-invariants (elementary modes) and their computation as minimal solutions of systems of Diophantine equations. We present the Fourier-Motzkin algorithm in detail. Afterwards, we introduce the Q-modularity as an example for a useful non-steady-state method and its application to metabolic networks. To illustrate and discuss the concepts of invariants and Q-modularity, we apply a part of the central carbon metabolism in potato tubers (Solanum tuberosum) as running example. The intention of the paper is to give a compact presentation of known steady-state concepts from a graph-theoretical viewpoint in the context of network decomposition and reduction and to introduce the application of Q-modularity to metabolic Petri net models. PMID:24958145

  18. Solving moment hierarchies for chemical reaction networks

    Science.gov (United States)

    Krishnamurthy, Supriya; Smith, Eric

    2017-10-01

    The study of chemical reaction networks (CRN’s) is a very active field. Earlier well-known results (Feinberg 1987 Chem. Enc. Sci. 42 2229, Anderson et al 2010 Bull. Math. Biol. 72 1947) identify a topological quantity called deficiency, for any CRN, which, when exactly equal to zero, leads to a unique factorized steady-state for these networks. No results exist however for the steady states of non-zero-deficiency networks. In this paper, we show how to write the full moment-hierarchy for any non-zero-deficiency CRN obeying mass-action kinetics, in terms of equations for the factorial moments. Using these, we can recursively predict values for lower moments from higher moments, reversing the procedure usually used to solve moment hierarchies. We show, for non-trivial examples, that in this manner we can predict any moment of interest, for CRN’s with non-zero deficiency and non-factorizable steady states.

  19. Solving moment hierarchies for chemical reaction networks.

    Science.gov (United States)

    Krishnamurthy, Supriya; Smith, Eric

    2017-10-20

    The study of chemical reaction networks (CRN's) is a very active field. Earlier well-known results (Feinberg 1987 Chem. Enc. Sci . 42 2229, Anderson et al 2010 Bull. Math. Biol . 72 1947) identify a topological quantity called deficiency, for any CRN, which, when exactly equal to zero, leads to a unique factorized steady-state for these networks. No results exist however for the steady states of non-zero-deficiency networks. In this paper, we show how to write the full moment-hierarchy for any non-zero-deficiency CRN obeying mass-action kinetics, in terms of equations for the factorial moments. Using these, we can recursively predict values for lower moments from higher moments, reversing the procedure usually used to solve moment hierarchies. We show, for nontrivial examples, that in this manner we can predict any moment of interest, for CRN's with non-zero deficiency and non-factorizable steady states.

  20. Comparative evaluation of atom mapping algorithms for balanced metabolic reactions: application to Recon 3D.

    Science.gov (United States)

    Preciat Gonzalez, German A; El Assal, Lemmer R P; Noronha, Alberto; Thiele, Ines; Haraldsdóttir, Hulda S; Fleming, Ronan M T

    2017-06-14

    The mechanism of each chemical reaction in a metabolic network can be represented as a set of atom mappings, each of which relates an atom in a substrate metabolite to an atom of the same element in a product metabolite. Genome-scale metabolic network reconstructions typically represent biochemistry at the level of reaction stoichiometry. However, a more detailed representation at the underlying level of atom mappings opens the possibility for a broader range of biological, biomedical and biotechnological applications than with stoichiometry alone. Complete manual acquisition of atom mapping data for a genome-scale metabolic network is a laborious process. However, many algorithms exist to predict atom mappings. How do their predictions compare to each other and to manually curated atom mappings? For more than four thousand metabolic reactions in the latest human metabolic reconstruction, Recon 3D, we compared the atom mappings predicted by six atom mapping algorithms. We also compared these predictions to those obtained by manual curation of atom mappings for over five hundred reactions distributed among all top level Enzyme Commission number classes. Five of the evaluated algorithms had similarly high prediction accuracy of over 91% when compared to manually curated atom mapped reactions. On average, the accuracy of the prediction was highest for reactions catalysed by oxidoreductases and lowest for reactions catalysed by ligases. In addition to prediction accuracy, the algorithms were evaluated on their accessibility, their advanced features, such as the ability to identify equivalent atoms, and their ability to map hydrogen atoms. In addition to prediction accuracy, we found that software accessibility and advanced features were fundamental to the selection of an atom mapping algorithm in practice.

  1. Ecological network analysis of China's societal metabolism.

    Science.gov (United States)

    Zhang, Yan; Liu, Hong; Li, Yating; Yang, Zhifeng; Li, Shengsheng; Yang, Naijin

    2012-01-01

    Uncontrolled socioeconomic development has strong negative effects on the ecological environment, including pollution and the depletion and waste of natural resources. These serious consequences result from the high flows of materials and energy through a socioeconomic system produced by exchanges between the system and its surroundings, causing the disturbance of metabolic processes. In this paper, we developed an ecological network model for a societal system, and used China in 2006 as a case study to illustrate application of the model. We analyzed China's basic metabolic processes and used ecological network analysis to study the network relationships within the system. Basic components comprised the internal environment, five sectors (agriculture, exploitation, manufacturing, domestic, and recycling), and the external environment. We defined 21 pairs of ecological relationships in China's societal metabolic system (excluding self-mutualism within a component). Using utility and throughflow analysis, we found that exploitation, mutualism, and competition relationships accounted for 76.2, 14.3, and 9.5% of the total relationships, respectively. In our trophic level analysis, the components were divided into producers, consumers, and decomposers according to their positions in the system. Our analyses revealed ways to optimize the system's structure and adjust its functions, thereby promoting healthier socioeconomic development, and suggested ways to apply ecological network analysis in future socioeconomic research. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Dead end metabolites--defining the known unknowns of the E. coli metabolic network.

    Directory of Open Access Journals (Sweden)

    Amanda Mackie

    Full Text Available The EcoCyc database is an online scientific database which provides an integrated view of the metabolic and regulatory network of the bacterium Escherichia coli K-12 and facilitates computational exploration of this important model organism. We have analysed the occurrence of dead end metabolites within the database--these are metabolites which lack the requisite reactions (either metabolic or transport that would account for their production or consumption within the metabolic network. 127 dead end metabolites were identified from the 995 compounds that are contained within the EcoCyc metabolic network. Their presence reflects either a deficit in our representation of the network or in our knowledge of E. coli metabolism. Extensive literature searches resulted in the addition of 38 transport reactions and 3 metabolic reactions to the database and led to an improved representation of the pathway for Vitamin B12 salvage. 39 dead end metabolites were identified as components of reactions that are not physiologically relevant to E. coli K-12--these reactions are properties of purified enzymes in vitro that would not be expected to occur in vivo. Our analysis led to improvements in the software that underpins the database and to the program that finds dead end metabolites within EcoCyc. The remaining dead end metabolites in the EcoCyc database likely represent deficiencies in our knowledge of E. coli metabolism.

  3. Gap-filling analysis of the iJO1366 Escherichia coli metabolic network reconstruction for discovery of metabolic functions

    Directory of Open Access Journals (Sweden)

    Orth Jeffrey D

    2012-05-01

    Full Text Available Abstract Background The iJO1366 reconstruction of the metabolic network of Escherichia coli is one of the most complete and accurate metabolic reconstructions available for any organism. Still, because our knowledge of even well-studied model organisms such as this one is incomplete, this network reconstruction contains gaps and possible errors. There are a total of 208 blocked metabolites in iJO1366, representing gaps in the network. Results A new model improvement workflow was developed to compare model based phenotypic predictions to experimental data to fill gaps and correct errors. A Keio Collection based dataset of E. coli gene essentiality was obtained from literature data and compared to model predictions. The SMILEY algorithm was then used to predict the most likely missing reactions in the reconstructed network, adding reactions from a KEGG based universal set of metabolic reactions. The feasibility of these putative reactions was determined by comparing updated versions of the model to the experimental dataset, and genes were predicted for the most feasible reactions. Conclusions Numerous improvements to the iJO1366 metabolic reconstruction were suggested by these analyses. Experiments were performed to verify several computational predictions, including a new mechanism for growth on myo-inositol. The other predictions made in this study should be experimentally verifiable by similar means. Validating all of the predictions made here represents a substantial but important undertaking.

  4. Nuclear Forensics and Radiochemistry: Reaction Networks

    Energy Technology Data Exchange (ETDEWEB)

    Rundberg, Robert S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-22

    In the intense neutron flux of a nuclear explosion the production of isotopes may occur through successive neutron induced reactions. The pathway to these isotopes illustrates both the complexity of the problem and the need for high quality nuclear data. The growth and decay of radioactive isotopes can follow a similarly complex network. The Bateman equation will be described and modified to apply to the transmutation of isotopes in a high flux reactor. A alternative model of growth and decay, the GD code, that can be applied to fission products will also be described.

  5. Programming discrete distributions with chemical reaction networks.

    Science.gov (United States)

    Cardelli, Luca; Kwiatkowska, Marta; Laurenti, Luca

    2018-01-01

    We explore the range of probabilistic behaviours that can be engineered with Chemical Reaction Networks (CRNs). We give methods to "program" CRNs so that their steady state is chosen from some desired target distribution that has finite support in [Formula: see text], with [Formula: see text]. Moreover, any distribution with countable infinite support can be approximated with arbitrarily small error under the [Formula: see text] norm. We also give optimized schemes for special distributions, including the uniform distribution. Finally, we formulate a calculus to compute on distributions that is complete for finite support distributions, and can be compiled to a restricted class of CRNs that at steady state realize those distributions.

  6. International Network of Nuclear Reaction Data Centres

    International Nuclear Information System (INIS)

    Otsuka, Naohiko; Dunaeva, Svetlana

    2010-11-01

    The activities of fourteen nuclear data centres are summarized, and their cooperation under the auspices of the International Atomic Energy Agency is described. Each of the centres provides coverage for different geographical zones and/or specific types of nuclear data, thus together providing a complete service for users worldwide. The International Network of Nuclear Reaction Data Centres (NRDC) was established with the objective of providing nuclear physics databases that are required for nuclear technology (encompassing energy and non-energy applications) by coordinating the collection, compilation and dissemination of nuclear data on an international scale. (author)

  7. A mixed-integer linear programming approach to the reduction of genome-scale metabolic networks.

    Science.gov (United States)

    Röhl, Annika; Bockmayr, Alexander

    2017-01-03

    Constraint-based analysis has become a widely used method to study metabolic networks. While some of the associated algorithms can be applied to genome-scale network reconstructions with several thousands of reactions, others are limited to small or medium-sized models. In 2015, Erdrich et al. introduced a method called NetworkReducer, which reduces large metabolic networks to smaller subnetworks, while preserving a set of biological requirements that can be specified by the user. Already in 2001, Burgard et al. developed a mixed-integer linear programming (MILP) approach for computing minimal reaction sets under a given growth requirement. Here we present an MILP approach for computing minimum subnetworks with the given properties. The minimality (with respect to the number of active reactions) is not guaranteed by NetworkReducer, while the method by Burgard et al. does not allow specifying the different biological requirements. Our procedure is about 5-10 times faster than NetworkReducer and can enumerate all minimum subnetworks in case there exist several ones. This allows identifying common reactions that are present in all subnetworks, and reactions appearing in alternative pathways. Applying complex analysis methods to genome-scale metabolic networks is often not possible in practice. Thus it may become necessary to reduce the size of the network while keeping important functionalities. We propose a MILP solution to this problem. Compared to previous work, our approach is more efficient and allows computing not only one, but even all minimum subnetworks satisfying the required properties.

  8. Chemical Reaction Networks for Computing Polynomials.

    Science.gov (United States)

    Salehi, Sayed Ahmad; Parhi, Keshab K; Riedel, Marc D

    2017-01-20

    Chemical reaction networks (CRNs) provide a fundamental model in the study of molecular systems. Widely used as formalism for the analysis of chemical and biochemical systems, CRNs have received renewed attention as a model for molecular computation. This paper demonstrates that, with a new encoding, CRNs can compute any set of polynomial functions subject only to the limitation that these functions must map the unit interval to itself. These polynomials can be expressed as linear combinations of Bernstein basis polynomials with positive coefficients less than or equal to 1. In the proposed encoding approach, each variable is represented using two molecular types: a type-0 and a type-1. The value is the ratio of the concentration of type-1 molecules to the sum of the concentrations of type-0 and type-1 molecules. The proposed encoding naturally exploits the expansion of a power-form polynomial into a Bernstein polynomial. Molecular encoders for converting any input in a standard representation to the fractional representation as well as decoders for converting the computed output from the fractional to a standard representation are presented. The method is illustrated first for generic CRNs; then chemical reactions designed for an example are mapped to DNA strand-displacement reactions.

  9. The topology of metabolic isotope labeling networks

    Directory of Open Access Journals (Sweden)

    Wiechert Wolfgang

    2007-08-01

    Full Text Available Abstract Background Metabolic Flux Analysis (MFA based on isotope labeling experiments (ILEs is a widely established tool for determining fluxes in metabolic pathways. Isotope labeling networks (ILNs contain all essential information required to describe the flow of labeled material in an ILE. Whereas recent experimental progress paves the way for high-throughput MFA, large network investigations and exact statistical methods, these developments are still limited by the poor performance of computational routines used for the evaluation and design of ILEs. In this context, the global analysis of ILN topology turns out to be a clue for realizing large speedup factors in all required computational procedures. Results With a strong focus on the speedup of algorithms the topology of ILNs is investigated using graph theoretic concepts and algorithms. A rigorous determination of all cyclic and isomorphic subnetworks, accompanied by the global analysis of ILN connectivity is performed. Particularly, it is proven that ILNs always brake up into a large number of small strongly connected components (SCCs and, moreover, there are natural isomorphisms between many of these SCCs. All presented techniques are universal, i.e. they do not require special assumptions on the network structure, bidirectionality of fluxes, measurement configuration, or label input. The general results are exemplified with a practically relevant metabolic network which describes the central metabolism of E. coli comprising 10390 isotopomer pools. Conclusion Exploiting the topological features of ILNs leads to a significant speedup of all universal algorithms for ILE evaluation. It is proven in theory and exemplified with the E. coli example that a speedup factor of about 1000 compared to standard algorithms is achieved. This widely opens the door for new high performance algorithms suitable for high throughput applications and large ILNs. Moreover, for the first time the global

  10. Open complex-balanced mass action chemical reaction networks

    NARCIS (Netherlands)

    Rao, Shodhan; van der Schaft, Arjan; Jayawardhana, Bayu

    We consider open chemical reaction networks, i.e. ones with inflows and outflows. We assume that all the inflows to the network are constant and all outflows obey the mass action kinetics rate law. We define a complex-balanced open reaction network as one that admits a complex-balanced steady state.

  11. Phylogeny of metabolic networks: A spectral graph theoretical ...

    Indian Academy of Sciences (India)

    Many methods have been developed for finding the commonalities between different organisms in order to study their phylogeny. The structure of metabolic networks also reveals valuable insights into metabolic capacity of species as well as into the habitats where they have evolved. We constructed metabolic networks of ...

  12. Elimination of intermediate species in multiscale stochastic reaction networks

    DEFF Research Database (Denmark)

    Cappelletti, Daniele; Wiuf, Carsten

    2016-01-01

    We study networks of biochemical reactions modelled by continuoustime Markov processes. Such networks typically contain many molecular species and reactions and are hard to study analytically as well as by simulation. Particularly, we are interested in reaction networks with intermediate species...... such as the substrate-enzyme complex in the Michaelis-Menten mechanism. Such species are virtually in all real-world networks, they are typically short-lived, degraded at a fast rate and hard to observe experimentally. We provide conditions under which the Markov process of a multiscale reaction network...... with intermediate species is approximated by the Markov process of a simpler reduced reaction network without intermediate species. We do so by embedding the Markov processes into a one-parameter family of processes, where reaction rates and species abundances are scaled in the parameter. Further, we show...

  13. Structural simplification of chemical reaction networks in partial steady states.

    Science.gov (United States)

    Madelaine, Guillaume; Lhoussaine, Cédric; Niehren, Joachim; Tonello, Elisa

    2016-11-01

    We study the structural simplification of chemical reaction networks with partial steady state semantics assuming that the concentrations of some but not all species are constant. We present a simplification rule that can eliminate intermediate species that are in partial steady state, while preserving the dynamics of all other species. Our simplification rule can be applied to general reaction networks with some but few restrictions on the possible kinetic laws. We can also simplify reaction networks subject to conservation laws. We prove that our simplification rule is correct when applied to a module of a reaction network, as long as the partial steady state is assumed with respect to the complete network. Michaelis-Menten's simplification rule for enzymatic reactions falls out as a special case. We have implemented an algorithm that applies our simplification rules repeatedly and applied it to reaction networks from systems biology. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Comprehensive Mapping of Pluripotent Stem Cell Metabolism Using Dynamic Genome-Scale Network Modeling

    Directory of Open Access Journals (Sweden)

    Sriram Chandrasekaran

    2017-12-01

    Full Text Available Summary: Metabolism is an emerging stem cell hallmark tied to cell fate, pluripotency, and self-renewal, yet systems-level understanding of stem cell metabolism has been limited by the lack of genome-scale network models. Here, we develop a systems approach to integrate time-course metabolomics data with a computational model of metabolism to analyze the metabolic state of naive and primed murine pluripotent stem cells. Using this approach, we find that one-carbon metabolism involving phosphoglycerate dehydrogenase, folate synthesis, and nucleotide synthesis is a key pathway that differs between the two states, resulting in differential sensitivity to anti-folates. The model also predicts that the pluripotency factor Lin28 regulates this one-carbon metabolic pathway, which we validate using metabolomics data from Lin28-deficient cells. Moreover, we identify and validate metabolic reactions related to S-adenosyl-methionine production that can differentially impact histone methylation in naive and primed cells. Our network-based approach provides a framework for characterizing metabolic changes influencing pluripotency and cell fate. : Chandrasekaran et al. use computational modeling, metabolomics, and metabolic inhibitors to discover metabolic differences between various pluripotent stem cell states and infer their impact on stem cell fate decisions. Keywords: systems biology, stem cell biology, metabolism, genome-scale modeling, pluripotency, histone methylation, naive (ground state, primed state, cell fate, metabolic network

  15. Nuclear Reaction Data Center Network; International and Asia

    International Nuclear Information System (INIS)

    Kato, Kiyoshi; Otuka, Naohiko

    2009-01-01

    The activities of the Nuclear Reaction Data Centre at Hokkaido University and International Network of Nuclear Reaction Data Centre (NRDC) are explained. Finally, collaboration in the nuclear data activities among Asian countries are proposed.

  16. Computing weakly reversible realizations of chemical reaction networks

    OpenAIRE

    Szederkenyi, Gabor; Hangos, Katalin M.; Tuza, Zsolt

    2011-01-01

    An algorithm is given in this paper for the computation of dynamically equivalent weakly reversible realizations with the maximal number of reactions, for chemical reaction networks (CRNs) with mass action kinetics.

  17. Graphical reduction of reaction networks by linear elimination of species

    DEFF Research Database (Denmark)

    Saez Cornellana, Meritxell; Wiuf, Carsten; Feliu, Elisenda

    2017-01-01

    of the network and its kinetics. We conclude by comparing our approach to an older similar approach by Temkin and co-workers. Finally, we apply the procedure to biological examples such as substrate mechanisms, post-translational modification systems and networks with intermediates (transient) steps.......We give a graphically based procedure to reduce a reaction network to a smaller reaction network with fewer species after linear elimination of a set of noninteracting species. We give a description of the reduced reaction network, its kinetics and conservations laws, and explore properties...

  18. Deterministic Function Computation with Chemical Reaction Networks*

    Science.gov (United States)

    Chen, Ho-Lin; Doty, David; Soloveichik, David

    2013-01-01

    Chemical reaction networks (CRNs) formally model chemistry in a well-mixed solution. CRNs are widely used to describe information processing occurring in natural cellular regulatory networks, and with upcoming advances in synthetic biology, CRNs are a promising language for the design of artificial molecular control circuitry. Nonetheless, despite the widespread use of CRNs in the natural sciences, the range of computational behaviors exhibited by CRNs is not well understood. CRNs have been shown to be efficiently Turing-universal (i.e., able to simulate arbitrary algorithms) when allowing for a small probability of error. CRNs that are guaranteed to converge on a correct answer, on the other hand, have been shown to decide only the semilinear predicates (a multi-dimensional generalization of “eventually periodic” sets). We introduce the notion of function, rather than predicate, computation by representing the output of a function f : ℕk → ℕl by a count of some molecular species, i.e., if the CRN starts with x1, …, xk molecules of some “input” species X1, …, Xk, the CRN is guaranteed to converge to having f(x1, …, xk) molecules of the “output” species Y1, …, Yl. We show that a function f : ℕk → ℕl is deterministically computed by a CRN if and only if its graph {(x, y) ∈ ℕk × ℕl ∣ f(x) = y} is a semilinear set. Finally, we show that each semilinear function f (a function whose graph is a semilinear set) can be computed by a CRN on input x in expected time O(polylog ∥x∥1). PMID:25383068

  19. A guide to integrating transcriptional regulatory and metabolic networks using PROM (probabilistic regulation of metabolism).

    Science.gov (United States)

    Simeonidis, Evangelos; Chandrasekaran, Sriram; Price, Nathan D

    2013-01-01

    The integration of transcriptional regulatory and metabolic networks is a crucial step in the process of predicting metabolic behaviors that emerge from either genetic or environmental changes. Here, we present a guide to PROM (probabilistic regulation of metabolism), an automated method for the construction and simulation of integrated metabolic and transcriptional regulatory networks that enables large-scale phenotypic predictions for a wide range of model organisms.

  20. A genome-scale metabolic network reconstruction of tomato (Solanum lycopersicum L.) and its application to photorespiratory metabolism.

    Science.gov (United States)

    Yuan, Huili; Cheung, C Y Maurice; Poolman, Mark G; Hilbers, Peter A J; van Riel, Natal A W

    2016-01-01

    Tomato (Solanum lycopersicum L.) has been studied extensively due to its high economic value in the market, and high content in health-promoting antioxidant compounds. Tomato is also considered as an excellent model organism for studying the development and metabolism of fleshy fruits. However, the growth, yield and fruit quality of tomatoes can be affected by drought stress, a common abiotic stress for tomato. To investigate the potential metabolic response of tomato plants to drought, we reconstructed iHY3410, a genome-scale metabolic model of tomato leaf, and used this metabolic network to simulate tomato leaf metabolism. The resulting model includes 3410 genes and 2143 biochemical and transport reactions distributed across five intracellular organelles including cytosol, plastid, mitochondrion, peroxisome and vacuole. The model successfully described the known metabolic behaviour of tomato leaf under heterotrophic and phototrophic conditions. The in silico investigation of the metabolic characteristics for photorespiration and other relevant metabolic processes under drought stress suggested that: (i) the flux distributions through the mevalonate (MVA) pathway under drought were distinct from that under normal conditions; and (ii) the changes in fluxes through core metabolic pathways with varying flux ratio of RubisCO carboxylase to oxygenase may contribute to the adaptive stress response of plants. In addition, we improved on previous studies of reaction essentiality analysis for leaf metabolism by including potential alternative routes for compensating reaction knockouts. Altogether, the genome-scale model provides a sound framework for investigating tomato metabolism and gives valuable insights into the functional consequences of abiotic stresses. © 2015 The Authors.The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.

  1. Metabolic Network Discovery by Top-Down and Bottom-Up Approaches and Paths for Reconciliation

    International Nuclear Information System (INIS)

    Çakır, Tunahan; Khatibipour, Mohammad Jafar

    2014-01-01

    The primary focus in the network-centric analysis of cellular metabolism by systems biology approaches is to identify the active metabolic network for the condition of interest. Two major approaches are available for the discovery of the condition-specific metabolic networks. One approach starts from genome-scale metabolic networks, which cover all possible reactions known to occur in the related organism in a condition-independent manner, and applies methods such as the optimization-based Flux-Balance Analysis to elucidate the active network. The other approach starts from the condition-specific metabolome data, and processes the data with statistical or optimization-based methods to extract information content of the data such that the active network is inferred. These approaches, termed bottom-up and top-down, respectively, are currently employed independently. However, considering that both approaches have the same goal, they can both benefit from each other paving the way for the novel integrative analysis methods of metabolome data- and flux-analysis approaches in the post-genomic era. This study reviews the strengths of constraint-based analysis and network inference methods reported in the metabolic systems biology field; then elaborates on the potential paths to reconcile the two approaches to shed better light on how the metabolism functions.

  2. Enumeration of minimal stoichiometric precursor sets in metabolic networks.

    Science.gov (United States)

    Andrade, Ricardo; Wannagat, Martin; Klein, Cecilia C; Acuña, Vicente; Marchetti-Spaccamela, Alberto; Milreu, Paulo V; Stougie, Leen; Sagot, Marie-France

    2016-01-01

    What an organism needs at least from its environment to produce a set of metabolites, e.g. target(s) of interest and/or biomass, has been called a minimal precursor set. Early approaches to enumerate all minimal precursor sets took into account only the topology of the metabolic network (topological precursor sets). Due to cycles and the stoichiometric values of the reactions, it is often not possible to produce the target(s) from a topological precursor set in the sense that there is no feasible flux. Although considering the stoichiometry makes the problem harder, it enables to obtain biologically reasonable precursor sets that we call stoichiometric. Recently a method to enumerate all minimal stoichiometric precursor sets was proposed in the literature. The relationship between topological and stoichiometric precursor sets had however not yet been studied. Such relationship between topological and stoichiometric precursor sets is highlighted. We also present two algorithms that enumerate all minimal stoichiometric precursor sets. The first one is of theoretical interest only and is based on the above mentioned relationship. The second approach solves a series of mixed integer linear programming problems. We compared the computed minimal precursor sets to experimentally obtained growth media of several Escherichia coli strains using genome-scale metabolic networks. The results show that the second approach efficiently enumerates minimal precursor sets taking stoichiometry into account, and allows for broad in silico studies of strains or species interactions that may help to understand e.g. pathotype and niche-specific metabolic capabilities. sasita is written in Java, uses cplex as LP solver and can be downloaded together with all networks and input files used in this paper at http://www.sasita.gforge.inria.fr.

  3. Construction and analysis of a genome-scale metabolic network for Bacillus licheniformis WX-02.

    Science.gov (United States)

    Guo, Jing; Zhang, Hong; Wang, Cheng; Chang, Ji-Wei; Chen, Ling-Ling

    2016-05-01

    We constructed the genome-scale metabolic network of Bacillus licheniformis (B. licheniformis) WX-02 by combining genomic annotation, high-throughput phenotype microarray (PM) experiments and literature-based metabolic information. The accuracy of the metabolic network was assessed by an OmniLog PM experiment. The final metabolic model iWX1009 contains 1009 genes, 1141 metabolites and 1762 reactions, and the predicted metabolic phenotypes showed an agreement rate of 76.8% with experimental PM data. In addition, key metabolic features such as growth yield, utilization of different substrates and essential genes were identified by flux balance analysis. A total of 195 essential genes were predicted from LB medium, among which 149 were verified with the experimental essential gene set of B. subtilis 168. With the removal of 5 reactions from the network, pathways for poly-γ-glutamic acid (γ-PGA) synthesis were optimized and the γ-PGA yield reached 83.8 mmol/h. Furthermore, the important metabolites and pathways related to γ-PGA synthesis and bacterium growth were comprehensively analyzed. The present study provides valuable clues for exploring the metabolisms and metabolic regulation of γ-PGA synthesis in B. licheniformis WX-02. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  4. Metabolic networks of Cucurbita maxima phloem.

    Science.gov (United States)

    Fiehn, Oliver

    2003-03-01

    Metabolomic analysis aims at a comprehensive characterization of biological samples. Yet, biologically meaningful interpretations are often limited by the poor spatial and temporal resolution of the acquired data sets. One way to remedy this is to limit the complexity of the cell types being studied. Cucurbita maxima Duch. vascular exudates provide an excellent material for metabolomics in this regard. Using automated mass spectral deconvolution, over 400 components have been detected in these exudates, but only 90 of them were tentatively identified. Many amino compounds were found in vascular exudates from leaf petioles at concentrations several orders of magnitude higher than in tissue disks from the same leaves, whereas hexoses and sucrose were found in far lower amounts. In order to find the expected impact of assimilation rates on sugar levels, total phloem composition of eight leaves from four plants was followed over 4.5 days. Surprisingly, no diurnal rhythm was found for any of the phloem metabolites that was statistically valid for all eight leaves. Instead, each leaf had its own distinct vascular exudate profile similar to leaves from the same plant, but clearly different from leaves harvested from plants at the same developmental stage. Thirty to forty per cent of all metabolite levels of individual leaves were different from the average of all metabolite profiles. Using metabolic co-regulation analysis, similarities and differences between the exudate profiles were more accurately characterized through network computation, specifically with respect to nitrogen metabolism.

  5. Deciphering transcriptional and metabolic networks associated with lysine metabolism during Arabidopsis seed development.

    Science.gov (United States)

    Angelovici, Ruthie; Fait, Aaron; Zhu, Xiaohong; Szymanski, Jedrzej; Feldmesser, Ester; Fernie, Alisdair R; Galili, Gad

    2009-12-01

    In order to elucidate transcriptional and metabolic networks associated with lysine (Lys) metabolism, we utilized developing Arabidopsis (Arabidopsis thaliana) seeds as a system in which Lys synthesis could be stimulated developmentally without application of chemicals and coupled this to a T-DNA insertion knockout mutation impaired in Lys catabolism. This seed-specific metabolic perturbation stimulated Lys accumulation starting from the initiation of storage reserve accumulation. Our results revealed that the response of seed metabolism to the inducible alteration of Lys metabolism was relatively minor; however, that which was observable operated in a modular manner. They also demonstrated that Lys metabolism is strongly associated with the operation of the tricarboxylic acid cycle while largely disconnected from other metabolic networks. In contrast, the inducible alteration of Lys metabolism was strongly associated with gene networks, stimulating the expression of hundreds of genes controlling anabolic processes that are associated with plant performance and vigor while suppressing a small number of genes associated with plant stress interactions. The most pronounced effect of the developmentally inducible alteration of Lys metabolism was an induction of expression of a large set of genes encoding ribosomal proteins as well as genes encoding translation initiation and elongation factors, all of which are associated with protein synthesis. With respect to metabolic regulation, the inducible alteration of Lys metabolism was primarily associated with altered expression of genes belonging to networks of amino acids and sugar metabolism. The combined data are discussed within the context of network interactions both between and within metabolic and transcriptional control systems.

  6. Normalizing Chemical Reaction Networks by Confluent Structural Simplification

    OpenAIRE

    Madelaine , Guillaume; Tonello , Elisa; Lhoussaine , Cédric; Niehren , Joachim

    2016-01-01

    International audience; Reaction networks can be simplified by eliminating linear intermediate species in partial steady states. In this paper, we study the question whether this rewrite procedure is confluent, so that for any given reaction network, a unique normal form will be obtained independently of the elimination order. We first contribute a counter example which shows that different normal forms of the same network may indeed have different structures. The problem is that different “d...

  7. Safe design of cooled tubular reactors for exothermic multiple reactions: Multiple-reaction networks

    NARCIS (Netherlands)

    Westerink, E.J.; Westerterp, K.R.

    1988-01-01

    The model of the pseudo-homogeneous, one-dimensional cooled tubular reactor is applied to a multiple-reaction network. It is demonstrated for a network which consists of two parallel and two consecutive reactions. Three criteria are developed to obtain an integral yield which does not deviate more

  8. Incremental parameter estimation of kinetic metabolic network models

    Directory of Open Access Journals (Sweden)

    Jia Gengjie

    2012-11-01

    Full Text Available Abstract Background An efficient and reliable parameter estimation method is essential for the creation of biological models using ordinary differential equation (ODE. Most of the existing estimation methods involve finding the global minimum of data fitting residuals over the entire parameter space simultaneously. Unfortunately, the associated computational requirement often becomes prohibitively high due to the large number of parameters and the lack of complete parameter identifiability (i.e. not all parameters can be uniquely identified. Results In this work, an incremental approach was applied to the parameter estimation of ODE models from concentration time profiles. Particularly, the method was developed to address a commonly encountered circumstance in the modeling of metabolic networks, where the number of metabolic fluxes (reaction rates exceeds that of metabolites (chemical species. Here, the minimization of model residuals was performed over a subset of the parameter space that is associated with the degrees of freedom in the dynamic flux estimation from the concentration time-slopes. The efficacy of this method was demonstrated using two generalized mass action (GMA models, where the method significantly outperformed single-step estimations. In addition, an extension of the estimation method to handle missing data is also presented. Conclusions The proposed incremental estimation method is able to tackle the issue on the lack of complete parameter identifiability and to significantly reduce the computational efforts in estimating model parameters, which will facilitate kinetic modeling of genome-scale cellular metabolism in the future.

  9. Modular verification of chemical reaction network encodings via serializability analysis.

    Science.gov (United States)

    Lakin, Matthew R; Stefanovic, Darko; Phillips, Andrew

    2016-06-13

    Chemical reaction networks are a powerful means of specifying the intended behaviour of synthetic biochemical systems. A high-level formal specification, expressed as a chemical reaction network, may be compiled into a lower-level encoding, which can be directly implemented in wet chemistry and may itself be expressed as a chemical reaction network. Here we present conditions under which a lower-level encoding correctly emulates the sequential dynamics of a high-level chemical reaction network. We require that encodings are transactional, such that their execution is divided by a "commit reaction" that irreversibly separates the reactant-consuming phase of the encoding from the product-generating phase. We also impose restrictions on the sharing of species between reaction encodings, based on a notion of "extra tolerance", which defines species that may be shared between encodings without enabling unwanted reactions. Our notion of correctness is serializability of interleaved reaction encodings, and if all reaction encodings satisfy our correctness properties then we can infer that the global dynamics of the system are correct. This allows us to infer correctness of any system constructed using verified encodings. As an example, we show how this approach may be used to verify two- and four-domain DNA strand displacement encodings of chemical reaction networks, and we generalize our result to the limit where the populations of helper species are unlimited.

  10. From genomes to in silico cells via metabolic networks

    DEFF Research Database (Denmark)

    Borodina, Irina; Nielsen, Jens

    2005-01-01

    Genome-scale metabolic models are the focal point of systems biology as they allow the collection of various data types in a form suitable for mathematical analysis. High-quality metabolic networks and metabolic networks with incorporated regulation have been successfully used for the analysis of...... approaches to obtain an in silico prediction of cellular function based on the interaction of all of the cellular components....

  11. Network Thermodynamic Curation of Human and Yeast Genome-Scale Metabolic Models

    Science.gov (United States)

    Martínez, Verónica S.; Quek, Lake-Ee; Nielsen, Lars K.

    2014-01-01

    Genome-scale models are used for an ever-widening range of applications. Although there has been much focus on specifying the stoichiometric matrix, the predictive power of genome-scale models equally depends on reaction directions. Two-thirds of reactions in the two eukaryotic reconstructions Homo sapiens Recon 1 and Yeast 5 are specified as irreversible. However, these specifications are mainly based on biochemical textbooks or on their similarity to other organisms and are rarely underpinned by detailed thermodynamic analysis. In this study, a to our knowledge new workflow combining network-embedded thermodynamic and flux variability analysis was used to evaluate existing irreversibility constraints in Recon 1 and Yeast 5 and to identify new ones. A total of 27 and 16 new irreversible reactions were identified in Recon 1 and Yeast 5, respectively, whereas only four reactions were found with directions incorrectly specified against thermodynamics (three in Yeast 5 and one in Recon 1). The workflow further identified for both models several isolated internal loops that require further curation. The framework also highlighted the need for substrate channeling (in human) and ATP hydrolysis (in yeast) for the essential reaction catalyzed by phosphoribosylaminoimidazole carboxylase in purine metabolism. Finally, the framework highlighted differences in proline metabolism between yeast (cytosolic anabolism and mitochondrial catabolism) and humans (exclusively mitochondrial metabolism). We conclude that network-embedded thermodynamics facilitates the specification and validation of irreversibility constraints in compartmentalized metabolic models, at the same time providing further insight into network properties. PMID:25028891

  12. Meneco, a Topology-Based Gap-Filling Tool Applicable to Degraded Genome-Wide Metabolic Networks.

    Directory of Open Access Journals (Sweden)

    Sylvain Prigent

    2017-01-01

    Full Text Available Increasing amounts of sequence data are becoming available for a wide range of non-model organisms. Investigating and modelling the metabolic behaviour of those organisms is highly relevant to understand their biology and ecology. As sequences are often incomplete and poorly annotated, draft networks of their metabolism largely suffer from incompleteness. Appropriate gap-filling methods to identify and add missing reactions are therefore required to address this issue. However, current tools rely on phenotypic or taxonomic information, or are very sensitive to the stoichiometric balance of metabolic reactions, especially concerning the co-factors. This type of information is often not available or at least prone to errors for newly-explored organisms. Here we introduce Meneco, a tool dedicated to the topological gap-filling of genome-scale draft metabolic networks. Meneco reformulates gap-filling as a qualitative combinatorial optimization problem, omitting constraints raised by the stoichiometry of a metabolic network considered in other methods, and solves this problem using Answer Set Programming. Run on several artificial test sets gathering 10,800 degraded Escherichia coli networks Meneco was able to efficiently identify essential reactions missing in networks at high degradation rates, outperforming the stoichiometry-based tools in scalability. To demonstrate the utility of Meneco we applied it to two case studies. Its application to recent metabolic networks reconstructed for the brown algal model Ectocarpus siliculosus and an associated bacterium Candidatus Phaeomarinobacter ectocarpi revealed several candidate metabolic pathways for algal-bacterial interactions. Then Meneco was used to reconstruct, from transcriptomic and metabolomic data, the first metabolic network for the microalga Euglena mutabilis. These two case studies show that Meneco is a versatile tool to complete draft genome-scale metabolic networks produced from

  13. SkyNet: Modular nuclear reaction network library

    Science.gov (United States)

    Lippuner, Jonas; Roberts, Luke F.

    2017-10-01

    The general-purpose nuclear reaction network SkyNet evolves the abundances of nuclear species under the influence of nuclear reactions. SkyNet can be used to compute the nucleosynthesis evolution in all astrophysical scenarios where nucleosynthesis occurs. Any list of isotopes can be evolved and SkyNet supports various different types of nuclear reactions. SkyNet is modular, permitting new or existing physics, such as nuclear reactions or equations of state, to be easily added or modified.

  14. Modular verification of chemical reaction network encodings via serializability analysis

    Science.gov (United States)

    Lakin, Matthew R.; Stefanovic, Darko; Phillips, Andrew

    2015-01-01

    Chemical reaction networks are a powerful means of specifying the intended behaviour of synthetic biochemical systems. A high-level formal specification, expressed as a chemical reaction network, may be compiled into a lower-level encoding, which can be directly implemented in wet chemistry and may itself be expressed as a chemical reaction network. Here we present conditions under which a lower-level encoding correctly emulates the sequential dynamics of a high-level chemical reaction network. We require that encodings are transactional, such that their execution is divided by a “commit reaction” that irreversibly separates the reactant-consuming phase of the encoding from the product-generating phase. We also impose restrictions on the sharing of species between reaction encodings, based on a notion of “extra tolerance”, which defines species that may be shared between encodings without enabling unwanted reactions. Our notion of correctness is serializability of interleaved reaction encodings, and if all reaction encodings satisfy our correctness properties then we can infer that the global dynamics of the system are correct. This allows us to infer correctness of any system constructed using verified encodings. As an example, we show how this approach may be used to verify two- and four-domain DNA strand displacement encodings of chemical reaction networks, and we generalize our result to the limit where the populations of helper species are unlimited. PMID:27325906

  15. Context-Driven Exploration of Complex Chemical Reaction Networks.

    Science.gov (United States)

    Simm, Gregor N; Reiher, Markus

    2017-12-12

    The construction of a reaction network containing all relevant intermediates and elementary reactions is necessary for the accurate description of chemical processes. In the case of a complex chemical reaction (involving, for instance, many reactants or highly reactive species), the size of such a network may grow rapidly. Here, we present a computational protocol that constructs such reaction networks in a fully automated fashion steered in an intuitive, graph-based fashion through a single graphical user interface. Starting from a set of initial reagents new intermediates are explored through intra- and intermolecular reactions of already explored intermediates or new reactants presented to the network. This is done by assembling reactive complexes based on heuristic rules derived from conceptual electronic-structure theory and exploring the corresponding approximate reaction path. A subsequent path refinement leads to a minimum-energy path which connects the new intermediate to the existing ones to form a connected reaction network. Tree traversal algorithms are then employed to detect reaction channels and catalytic cycles. We apply our protocol to the formose reaction to study different pathways of sugar formation and to rationalize its autocatalytic nature.

  16. On the Complexity of Reconstructing Chemical Reaction Networks

    DEFF Research Database (Denmark)

    Fagerberg, Rolf; Flamm, Christoph; Merkle, Daniel

    2013-01-01

    The analysis of the structure of chemical reaction networks is crucial for a better understanding of chemical processes. Such networks are well described as hypergraphs. However, due to the available methods, analyses regarding network properties are typically made on standard graphs derived from...... the full hypergraph description, e.g. on the so-called species and reaction graphs. However, a reconstruction of the underlying hypergraph from these graphs is not necessarily unique. In this paper, we address the problem of reconstructing a hypergraph from its species and reaction graph and show NP...

  17. Graph methods for the investigation of metabolic networks in parasitology.

    Science.gov (United States)

    Cottret, Ludovic; Jourdan, Fabien

    2010-08-01

    Recently, a way was opened with the development of many mathematical methods to model and analyze genome-scale metabolic networks. Among them, methods based on graph models enable to us quickly perform large-scale analyses on large metabolic networks. However, it could be difficult for parasitologists to select the graph model and methods adapted to their biological questions. In this review, after briefly addressing the problem of the metabolic network reconstruction, we propose an overview of the graph-based approaches used in whole metabolic network analyses. Applications highlight the usefulness of this kind of approach in the field of parasitology, especially by suggesting metabolic targets for new drugs. Their development still represents a major challenge to fight against the numerous diseases caused by parasites.

  18. Metabolic pathways variability and sequence/networks comparisons

    Science.gov (United States)

    Tun, Kyaw; Dhar, Pawan K; Palumbo, Maria Concetta; Giuliani, Alessandro

    2006-01-01

    Background In this work a simple method for the computation of relative similarities between homologous metabolic network modules is presented. The method is similar to classical sequence alignment and allows for the generation of phenotypic trees amenable to be compared with correspondent sequence based trees. The procedure can be applied to both single metabolic modules and whole metabolic network data without the need of any specific assumption. Results We demonstrate both the ability of the proposed method to build reliable biological classification of a set of microrganisms and the strong correlation between the metabolic network wiringand involved enzymes sequence space. Conclusion The method represents a valuable tool for the investigation of genotype/phenotype correlationsallowing for a direct comparison of different species as for their metabolic machinery. In addition the detection of enzymes whose sequence space is maximally correlated with the metabolicnetwork space gives an indication of the most crucial (on an evolutionary viewpoint) steps of the metabolic process. PMID:16420696

  19. Metabolic pathways variability and sequence/networks comparisons

    Directory of Open Access Journals (Sweden)

    Palumbo Maria

    2006-01-01

    Full Text Available Abstract Background In this work a simple method for the computation of relative similarities between homologous metabolic network modules is presented. The method is similar to classical sequence alignment and allows for the generation of phenotypic trees amenable to be compared with correspondent sequence based trees. The procedure can be applied to both single metabolic modules and whole metabolic network data without the need of any specific assumption. Results We demonstrate both the ability of the proposed method to build reliable biological classification of a set of microrganisms and the strong correlation between the metabolic network wiringand involved enzymes sequence space. Conclusion The method represents a valuable tool for the investigation of genotype/phenotype correlationsallowing for a direct comparison of different species as for their metabolic machinery. In addition the detection of enzymes whose sequence space is maximally correlated with the metabolicnetwork space gives an indication of the most crucial (on an evolutionary viewpoint steps of the metabolic process.

  20. High energy reactions in normal metabolism and ageing of animals

    International Nuclear Information System (INIS)

    Avdonina, E.N.; Nesmeyanov, N.

    1983-01-01

    Processes involving reactions on highly excited states are thought to be of great importance for normal metabolism and aging. Excess energy of the organism is transferred to result in the formation of highly excited states of macromolecules. UV, visible light or ionizing radiation created partially by the organism itself can change metabolic process rates. According to the authors, aging is associated with the defects of macromolecules owing to high energy processes. Gerontological changes in biological materials result from the elimination of low molecular weight molecules and from the formation of unsaturated compounds. Crosslinking of the compounds, accumulation of collagen and connective tissues, the energetic overload of the organism are listed as important features of aging. (V.N.)

  1. A method for estimation of elasticities in metabolic networks using steady state and dynamic metabolomics data and linlog kinetics

    NARCIS (Netherlands)

    Nikerel, I.E.; Van Winden, W.; Van Gulik, W.M.; Heijnen, J.J.

    2006-01-01

    Background: Dynamic modeling of metabolic reaction networks under in vivo conditions is a crucial step in order to obtain a better understanding of the (dis)functioning of living cells. So far dynamic metabolic models generally have been based on mechanistic rate equations which often contain so

  2. Integration of Genome Scale Metabolic Networks and Gene Regulation of Metabolic Enzymes With Physiologically Based Pharmacokinetics

    Science.gov (United States)

    Maldonado, Elaina M.; Leoncikas, Vytautas; Fisher, Ciarán P.; Moore, J. Bernadette; Plant, Nick J.

    2017-01-01

    The scope of physiologically based pharmacokinetic (PBPK) modeling can be expanded by assimilation of the mechanistic models of intracellular processes from systems biology field. The genome scale metabolic networks (GSMNs) represent a whole set of metabolic enzymes expressed in human tissues. Dynamic models of the gene regulation of key drug metabolism enzymes are available. Here, we introduce GSMNs and review ongoing work on integration of PBPK, GSMNs, and metabolic gene regulation. We demonstrate example models. PMID:28782239

  3. In silico strain optimization by adding reactions to metabolic models.

    Science.gov (United States)

    Correia, Sara; Rocha, Miguel

    2012-07-24

    Nowadays, the concerns about the environment and the needs to increase the productivity at low costs, demand for the search of new ways to produce compounds with industrial interest. Based on the increasing knowledge of biological processes, through genome sequencing projects, and high-throughput experimental techniques as well as the available computational tools, the use of microorganisms has been considered as an approach to produce desirable compounds. However, this usually requires to manipulate these organisms by genetic engineering and/ or changing the enviromental conditions to make the production of these compounds possible. In many cases, it is necessary to enrich the genetic material of those microbes with hereologous pathways from other species and consequently adding the potential to produce novel compounds. This paper introduces a new plug-in for the OptFlux Metabolic Engineering platform, aimed at finding suitable sets of reactions to add to the genomes of selected microbes (wild type strain), as well as finding complementary sets of deletions, so that the mutant becomes able to overproduce compounds with industrial interest, while preserving their viability. The necessity of adding reactions to the metabolic model arises from existing gaps in the original model or motivated by the productions of new compounds by the organism. The optimization methods used are metaheuristics such as Evolutionary Algorithms and Simulated Annealing. The usefulness of this plug-in is demonstrated by a case study, regarding the production of vanillin by the bacterium E. coli.

  4. Standard Gibbs energy of metabolic reactions: II. Glucose-6-phosphatase reaction and ATP hydrolysis.

    Science.gov (United States)

    Meurer, Florian; Do, Hoang Tam; Sadowski, Gabriele; Held, Christoph

    2017-04-01

    ATP (adenosine triphosphate) is a key reaction for metabolism. Tools from systems biology require standard reaction data in order to predict metabolic pathways accurately. However, literature values for standard Gibbs energy of ATP hydrolysis are highly uncertain and differ strongly from each other. Further, such data usually neglect the activity coefficients of reacting agents, and published data like this is apparent (condition-dependent) data instead of activity-based standard data. In this work a consistent value for the standard Gibbs energy of ATP hydrolysis was determined. The activity coefficients of reacting agents were modeled with electrolyte Perturbed-Chain Statistical Associating Fluid Theory (ePC-SAFT). The Gibbs energy of ATP hydrolysis was calculated by combining the standard Gibbs energies of hexokinase reaction and of glucose-6-phosphate hydrolysis. While the standard Gibbs energy of hexokinase reaction was taken from previous work, standard Gibbs energy of glucose-6-phosphate hydrolysis reaction was determined in this work. For this purpose, reaction equilibrium molalities of reacting agents were measured at pH7 and pH8 at 298.15K at varying initial reacting agent molalities. The corresponding activity coefficients at experimental equilibrium molalities were predicted with ePC-SAFT yielding the Gibbs energy of glucose-6-phosphate hydrolysis of -13.72±0.75kJ·mol -1 . Combined with the value for hexokinase, the standard Gibbs energy of ATP hydrolysis was finally found to be -31.55±1.27kJ·mol -1 . For both, ATP hydrolysis and glucose-6-phosphate hydrolysis, a good agreement with own and literature values were obtained when influences of pH, temperature, and activity coefficients were explicitly taken into account in order to calculate standard Gibbs energy at pH7, 298.15K and standard state. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Finding elementary flux modes in metabolic networks based on flux balance analysis and flux coupling analysis: application to the analysis of Escherichia coli metabolism.

    Science.gov (United States)

    Tabe-Bordbar, Shayan; Marashi, Sayed-Amir

    2013-12-01

    Elementary modes (EMs) are steady-state metabolic flux vectors with minimal set of active reactions. Each EM corresponds to a metabolic pathway. Therefore, studying EMs is helpful for analyzing the production of biotechnologically important metabolites. However, memory requirements for computing EMs may hamper their applicability as, in most genome-scale metabolic models, no EM can be computed due to running out of memory. In this study, we present a method for computing randomly sampled EMs. In this approach, a network reduction algorithm is used for EM computation, which is based on flux balance-based methods. We show that this approach can be used to recover the EMs in the medium- and genome-scale metabolic network models, while the EMs are sampled in an unbiased way. The applicability of such results is shown by computing “estimated” control-effective flux values in Escherichia coli metabolic network.

  6. Threshold sensing through a synthetic enzymatic reaction-diffusion network.

    Science.gov (United States)

    Semenov, Sergey N; Markvoort, Albert J; de Greef, Tom F A; Huck, Wilhelm T S

    2014-07-28

    A wet stamping method to precisely control concentrations of enzymes and inhibitors in place and time inside layered gels is reported. By combining enzymatic reactions such as autocatalysis and inhibition with spatial delivery of components through soft lithographic techniques, a biochemical reaction network capable of recognizing the spatial distribution of an enzyme was constructed. The experimental method can be used to assess fundamental principles of spatiotemporal order formation in chemical reaction networks. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Detection of driver metabolites in the human liver metabolic network using structural controllability analysis

    Science.gov (United States)

    2014-01-01

    Background Abnormal states in human liver metabolism are major causes of human liver diseases ranging from hepatitis to hepatic tumor. The accumulation in relevant data makes it feasible to derive a large-scale human liver metabolic network (HLMN) and to discover important biological principles or drug-targets based on network analysis. Some studies have shown that interesting biological phenomenon and drug-targets could be discovered by applying structural controllability analysis (which is a newly prevailed concept in networks) to biological networks. The exploration on the connections between structural controllability theory and the HLMN could be used to uncover valuable information on the human liver metabolism from a fresh perspective. Results We applied structural controllability analysis to the HLMN and detected driver metabolites. The driver metabolites tend to have strong ability to influence the states of other metabolites and weak susceptibility to be influenced by the states of others. In addition, the metabolites were classified into three classes: critical, high-frequency and low-frequency driver metabolites. Among the identified 36 critical driver metabolites, 27 metabolites were found to be essential; the high-frequency driver metabolites tend to participate in different metabolic pathways, which are important in regulating the whole metabolic systems. Moreover, we explored some other possible connections between the structural controllability theory and the HLMN, and find that transport reactions and the environment play important roles in the human liver metabolism. Conclusion There are interesting connections between the structural controllability theory and the human liver metabolism: driver metabolites have essential biological functions; the crucial role of extracellular metabolites and transport reactions in controlling the HLMN highlights the importance of the environment in the health of human liver metabolism. PMID:24885538

  8. Modeling networks of coupled enzymatic reactions using the total quasi-steady state approximation.

    Directory of Open Access Journals (Sweden)

    Andrea Ciliberto

    2007-03-01

    Full Text Available In metabolic networks, metabolites are usually present in great excess over the enzymes that catalyze their interconversion, and describing the rates of these reactions by using the Michaelis-Menten rate law is perfectly valid. This rate law assumes that the concentration of enzyme-substrate complex (C is much less than the free substrate concentration (S0. However, in protein interaction networks, the enzymes and substrates are all proteins in comparable concentrations, and neglecting C with respect to S0 is not valid. Borghans, DeBoer, and Segel developed an alternative description of enzyme kinetics that is valid when C is comparable to S0. We extend this description, which Borghans et al. call the total quasi-steady state approximation, to networks of coupled enzymatic reactions. First, we analyze an isolated Goldbeter-Koshland switch when enzymes and substrates are present in comparable concentrations. Then, on the basis of a real example of the molecular network governing cell cycle progression, we couple two and three Goldbeter-Koshland switches together to study the effects of feedback in networks of protein kinases and phosphatases. Our analysis shows that the total quasi-steady state approximation provides an excellent kinetic formalism for protein interaction networks, because (1 it unveils the modular structure of the enzymatic reactions, (2 it suggests a simple algorithm to formulate correct kinetic equations, and (3 contrary to classical Michaelis-Menten kinetics, it succeeds in faithfully reproducing the dynamics of the network both qualitatively and quantitatively.

  9. BoostGAPFILL: improving the fidelity of metabolic network reconstructions through integrated constraint and pattern-based methods.

    Science.gov (United States)

    Oyetunde, Tolutola; Zhang, Muhan; Chen, Yixin; Tang, Yinjie; Lo, Cynthia

    2017-02-15

    Metabolic network reconstructions are often incomplete. Constraint-based and pattern-based methodologies have been used for automated gap filling of these networks, each with its own strengths and weaknesses. Moreover, since validation of hypotheses made by gap filling tools require experimentation, it is challenging to benchmark performance and make improvements other than that related to speed and scalability. We present BoostGAPFILL, an open source tool that leverages both constraint-based and machine learning methodologies for hypotheses generation in gap filling and metabolic model refinement. BoostGAPFILL uses metabolite patterns in the incomplete network captured using a matrix factorization formulation to constrain the set of reactions used to fill gaps in a metabolic network. We formulate a testing framework based on the available metabolic reconstructions and demonstrate the superiority of BoostGAPFILL to state-of-the-art gap filling tools. We randomly delete a number of reactions from a metabolic network and rate the different algorithms on their ability to both predict the deleted reactions from a universal set and to fill gaps. For most metabolic network reconstructions tested, BoostGAPFILL shows above 60% precision and recall, which is more than twice that of other existing tools. MATLAB open source implementation ( https://github.com/Tolutola/BoostGAPFILL ). toyetunde@wustl.edu or muhan@wustl.edu . Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  10. Uncertainty quantification for quantum chemical models of complex reaction networks.

    Science.gov (United States)

    Proppe, Jonny; Husch, Tamara; Simm, Gregor N; Reiher, Markus

    2016-12-22

    For the quantitative understanding of complex chemical reaction mechanisms, it is, in general, necessary to accurately determine the corresponding free energy surface and to solve the resulting continuous-time reaction rate equations for a continuous state space. For a general (complex) reaction network, it is computationally hard to fulfill these two requirements. However, it is possible to approximately address these challenges in a physically consistent way. On the one hand, it may be sufficient to consider approximate free energies if a reliable uncertainty measure can be provided. On the other hand, a highly resolved time evolution may not be necessary to still determine quantitative fluxes in a reaction network if one is interested in specific time scales. In this paper, we present discrete-time kinetic simulations in discrete state space taking free energy uncertainties into account. The method builds upon thermo-chemical data obtained from electronic structure calculations in a condensed-phase model. Our kinetic approach supports the analysis of general reaction networks spanning multiple time scales, which is here demonstrated for the example of the formose reaction. An important application of our approach is the detection of regions in a reaction network which require further investigation, given the uncertainties introduced by both approximate electronic structure methods and kinetic models. Such cases can then be studied in greater detail with more sophisticated first-principles calculations and kinetic simulations.

  11. Automated Discovery of Complex Reaction Networks: Reaction Topology, Thermochemistry and Kinetics

    Science.gov (United States)

    2015-07-08

    Pfaendtner, “ Car –Parrinello Molecular Dynamics + Metadynamics Study of High- Temperature Methanol Oxidation Reactions Using Generic Collective Variables”, J...release. 13. SUPPLEMENTARY NOTES 14. ABSTRACT Understanding the combustion mechanism of jet fuel is essential for the design of stable, responsive...optimized reaction networks were generated. The methodology was applied to study methanol oxidation, prediction of ethylene combustion mechanism and

  12. Comparative analysis of Salmonella genomes identifies a metabolic network for escalating growth in the inflamed gut.

    Science.gov (United States)

    Nuccio, Sean-Paul; Bäumler, Andreas J

    2014-03-18

    The Salmonella genus comprises a group of pathogens associated with illnesses ranging from gastroenteritis to typhoid fever. We performed an in silico analysis of comparatively reannotated Salmonella genomes to identify genomic signatures indicative of disease potential. By removing numerous annotation inconsistencies and inaccuracies, the process of reannotation identified a network of 469 genes involved in central anaerobic metabolism, which was intact in genomes of gastrointestinal pathogens but degrading in genomes of extraintestinal pathogens. This large network contained pathways that enable gastrointestinal pathogens to utilize inflammation-derived nutrients as well as many of the biochemical reactions used for the enrichment and biochemical discrimination of Salmonella serovars. Thus, comparative genome analysis identifies a metabolic network that provides clues about the strategies for nutrient acquisition and utilization that are characteristic of gastrointestinal pathogens. IMPORTANCE While some Salmonella serovars cause infections that remain localized to the gut, others disseminate throughout the body. Here, we compared Salmonella genomes to identify characteristics that distinguish gastrointestinal from extraintestinal pathogens. We identified a large metabolic network that is functional in gastrointestinal pathogens but decaying in extraintestinal pathogens. While taxonomists have used traits from this network empirically for many decades for the enrichment and biochemical discrimination of Salmonella serovars, our findings suggest that it is part of a "business plan" for growth in the inflamed gastrointestinal tract. By identifying a large metabolic network characteristic of Salmonella serovars associated with gastroenteritis, our in silico analysis provides a blueprint for potential strategies to utilize inflammation-derived nutrients and edge out competing gut microbes.

  13. A new dynamical layout algorithm for complex biochemical reaction networks.

    Science.gov (United States)

    Wegner, Katja; Kummer, Ursula

    2005-08-26

    To study complex biochemical reaction networks in living cells researchers more and more rely on databases and computational methods. In order to facilitate computational approaches, visualisation techniques are highly important. Biochemical reaction networks, e.g. metabolic pathways are often depicted as graphs and these graphs should be drawn dynamically to provide flexibility in the context of different data. Conventional layout algorithms are not sufficient for every kind of pathway in biochemical research. This is mainly due to certain conventions to which biochemists/biologists are used to and which are not in accordance to conventional layout algorithms. A number of approaches has been developed to improve this situation. Some of these are used in the context of biochemical databases and make more or less use of the information in these databases to aid the layout process. However, visualisation becomes also more and more important in modelling and simulation tools which mostly do not offer additional connections to databases. Therefore, layout algorithms used in these tools have to work independently of any databases. In addition, all of the existing algorithms face some limitations with respect to the number of edge crossings when it comes to larger biochemical systems due to the interconnectivity of these. Last but not least, in some cases, biochemical conventions are not met properly. Out of these reasons we have developed a new algorithm which tackles these problems by reducing the number of edge crossings in complex systems, taking further biological conventions into account to identify and visualise cycles. Furthermore the algorithm is independent from database information in order to be easily adopted in any application. It can also be tested as part of the SimWiz package (free to download for academic users at 1). The new algorithm reduces the complexity of pathways, as well as edge crossings and edge length in the resulting graphical representation

  14. A new dynamical layout algorithm for complex biochemical reaction networks

    Directory of Open Access Journals (Sweden)

    Kummer Ursula

    2005-08-01

    Full Text Available Abstract Background To study complex biochemical reaction networks in living cells researchers more and more rely on databases and computational methods. In order to facilitate computational approaches, visualisation techniques are highly important. Biochemical reaction networks, e.g. metabolic pathways are often depicted as graphs and these graphs should be drawn dynamically to provide flexibility in the context of different data. Conventional layout algorithms are not sufficient for every kind of pathway in biochemical research. This is mainly due to certain conventions to which biochemists/biologists are used to and which are not in accordance to conventional layout algorithms. A number of approaches has been developed to improve this situation. Some of these are used in the context of biochemical databases and make more or less use of the information in these databases to aid the layout process. However, visualisation becomes also more and more important in modelling and simulation tools which mostly do not offer additional connections to databases. Therefore, layout algorithms used in these tools have to work independently of any databases. In addition, all of the existing algorithms face some limitations with respect to the number of edge crossings when it comes to larger biochemical systems due to the interconnectivity of these. Last but not least, in some cases, biochemical conventions are not met properly. Results Out of these reasons we have developed a new algorithm which tackles these problems by reducing the number of edge crossings in complex systems, taking further biological conventions into account to identify and visualise cycles. Furthermore the algorithm is independent from database information in order to be easily adopted in any application. It can also be tested as part of the SimWiz package (free to download for academic users at 1. Conclusion The new algorithm reduces the complexity of pathways, as well as edge crossings

  15. Phylogeny of metabolic networks: A spectral graph theoretical ...

    Indian Academy of Sciences (India)

    The eigenvalues of this matrix reflect not only the global architecture of a network but also the local topologies that are produced by different graph evolutionary processes like motif duplication or joining. A divergence measure on spectral densities is used to quantify the distances between various metabolic networks, and a ...

  16. Extracting reaction networks from databases-opening Pandora's box.

    Science.gov (United States)

    Fearnley, Liam G; Davis, Melissa J; Ragan, Mark A; Nielsen, Lars K

    2014-11-01

    Large quantities of information describing the mechanisms of biological pathways continue to be collected in publicly available databases. At the same time, experiments have increased in scale, and biologists increasingly use pathways defined in online databases to interpret the results of experiments and generate hypotheses. Emerging computational techniques that exploit the rich biological information captured in reaction systems require formal standardized descriptions of pathways to extract these reaction networks and avoid the alternative: time-consuming and largely manual literature-based network reconstruction. Here, we systematically evaluate the effects of commonly used knowledge representations on the seemingly simple task of extracting a reaction network describing signal transduction from a pathway database. We show that this process is in fact surprisingly difficult, and the pathway representations adopted by various knowledge bases have dramatic consequences for reaction network extraction, connectivity, capture of pathway crosstalk and in the modelling of cell-cell interactions. Researchers constructing computational models built from automatically extracted reaction networks must therefore consider the issues we outline in this review to maximize the value of existing pathway knowledge. © The Author 2013. Published by Oxford University Press.

  17. TIGER: Toolbox for integrating genome-scale metabolic models, expression data, and transcriptional regulatory networks

    Directory of Open Access Journals (Sweden)

    Jensen Paul A

    2011-09-01

    Full Text Available Abstract Background Several methods have been developed for analyzing genome-scale models of metabolism and transcriptional regulation. Many of these methods, such as Flux Balance Analysis, use constrained optimization to predict relationships between metabolic flux and the genes that encode and regulate enzyme activity. Recently, mixed integer programming has been used to encode these gene-protein-reaction (GPR relationships into a single optimization problem, but these techniques are often of limited generality and lack a tool for automating the conversion of rules to a coupled regulatory/metabolic model. Results We present TIGER, a Toolbox for Integrating Genome-scale Metabolism, Expression, and Regulation. TIGER converts a series of generalized, Boolean or multilevel rules into a set of mixed integer inequalities. The package also includes implementations of existing algorithms to integrate high-throughput expression data with genome-scale models of metabolism and transcriptional regulation. We demonstrate how TIGER automates the coupling of a genome-scale metabolic model with GPR logic and models of transcriptional regulation, thereby serving as a platform for algorithm development and large-scale metabolic analysis. Additionally, we demonstrate how TIGER's algorithms can be used to identify inconsistencies and improve existing models of transcriptional regulation with examples from the reconstructed transcriptional regulatory network of Saccharomyces cerevisiae. Conclusion The TIGER package provides a consistent platform for algorithm development and extending existing genome-scale metabolic models with regulatory networks and high-throughput data.

  18. Metabolic network segmentation: A probabilistic graphical modeling approach to identify the sites and sequential order of metabolic regulation from non-targeted metabolomics data.

    Directory of Open Access Journals (Sweden)

    Andreas Kuehne

    2017-06-01

    Full Text Available In recent years, the number of large-scale metabolomics studies on various cellular processes in different organisms has increased drastically. However, it remains a major challenge to perform a systematic identification of mechanistic regulatory events that mediate the observed changes in metabolite levels, due to complex interdependencies within metabolic networks. We present the metabolic network segmentation (MNS algorithm, a probabilistic graphical modeling approach that enables genome-scale, automated prediction of regulated metabolic reactions from differential or serial metabolomics data. The algorithm sections the metabolic network into modules of metabolites with consistent changes. Metabolic reactions that connect different modules are the most likely sites of metabolic regulation. In contrast to most state-of-the-art methods, the MNS algorithm is independent of arbitrary pathway definitions, and its probabilistic nature facilitates assessments of noisy and incomplete measurements. With serial (i.e., time-resolved data, the MNS algorithm also indicates the sequential order of metabolic regulation. We demonstrated the power and flexibility of the MNS algorithm with three, realistic case studies with bacterial and human cells. Thus, this approach enables the identification of mechanistic regulatory events from large-scale metabolomics data, and contributes to the understanding of metabolic processes and their interplay with cellular signaling and regulation processes.

  19. Consumer Activities and Reactions to Social Network Marketing

    Directory of Open Access Journals (Sweden)

    Bistra Vassileva

    2017-06-01

    Full Text Available The purpose of this paper is to understand consumer behavioural models with respect to their reactions to social network marketing. Theoretical background is focused on online and social network usage, motivations and behaviour. The research goal is to explore consumer reactions to the exposure of social network marketing based on the following criteria: level of brand engagement, word-of-mouth (WOM referral behaviour, and purchase intentions. Consumers are investigated based on their attitudes toward social network marketing and basic socio-demographic covariates using data from a sample size of 700 Bulgarian respondents (age group 21–54 years, Internet users, urban inhabitants. Factor and cluster analyses are applied. It is found that consumers are willing to receive information about brands and companies through social networks. They like to talk in social networks about these brands and companies and to share information as well (factor 2, brand engagement. Internet users are willing to share information received through social network advertising (factor 1, wom referral behaviour but they would not buy a certain brand as a result of brand communication activities in social networks (factor 3, purchase intention. Several practical implications regarding marketing activities through social networks are drawn.

  20. Observability of plant metabolic networks is reflected in the correlation of metabolic profiles

    DEFF Research Database (Denmark)

    Schwahn, Kevin; Küken, Anika; Kliebenstein, Daniel James

    2016-01-01

    -of-the-art genome-scale metabolic networks. By using metabolic data profiles from a set of seven environmental perturbations as well as from natural variability, we demonstrate that the data profiles of sensor metabolites are more correlated than those of nonsensor metabolites. This pattern was confirmed...

  1. Yeast 5 – an expanded reconstruction of the Saccharomyces cerevisiae metabolic network

    Directory of Open Access Journals (Sweden)

    Heavner Benjamin D

    2012-06-01

    Full Text Available Abstract Background Efforts to improve the computational reconstruction of the Saccharomyces cerevisiae biochemical reaction network and to refine the stoichiometrically constrained metabolic models that can be derived from such a reconstruction have continued since the first stoichiometrically constrained yeast genome scale metabolic model was published in 2003. Continuing this ongoing process, we have constructed an update to the Yeast Consensus Reconstruction, Yeast 5. The Yeast Consensus Reconstruction is a product of efforts to forge a community-based reconstruction emphasizing standards compliance and biochemical accuracy via evidence-based selection of reactions. It draws upon models published by a variety of independent research groups as well as information obtained from biochemical databases and primary literature. Results Yeast 5 refines the biochemical reactions included in the reconstruction, particularly reactions involved in sphingolipid metabolism; updates gene-reaction annotations; and emphasizes the distinction between reconstruction and stoichiometrically constrained model. Although it was not a primary goal, this update also improves the accuracy of model prediction of viability and auxotrophy phenotypes and increases the number of epistatic interactions. This update maintains an emphasis on standards compliance, unambiguous metabolite naming, and computer-readable annotations available through a structured document format. Additionally, we have developed MATLAB scripts to evaluate the model’s predictive accuracy and to demonstrate basic model applications such as simulating aerobic and anaerobic growth. These scripts, which provide an independent tool for evaluating the performance of various stoichiometrically constrained yeast metabolic models using flux balance analysis, are included as Additional files 1, 2 and 3. Additional file 1 Function testYeastModel.m.m. Click here for file Additional file 2 Function model

  2. An integrated text mining framework for metabolic interaction network reconstruction

    Directory of Open Access Journals (Sweden)

    Preecha Patumcharoenpol

    2016-03-01

    Full Text Available Text mining (TM in the field of biology is fast becoming a routine analysis for the extraction and curation of biological entities (e.g., genes, proteins, simple chemicals as well as their relationships. Due to the wide applicability of TM in situations involving complex relationships, it is valuable to apply TM to the extraction of metabolic interactions (i.e., enzyme and metabolite interactions through metabolic events. Here we present an integrated TM framework containing two modules for the extraction of metabolic events (Metabolic Event Extraction module—MEE and for the construction of a metabolic interaction network (Metabolic Interaction Network Reconstruction module—MINR. The proposed integrated TM framework performed well based on standard measures of recall, precision and F-score. Evaluation of the MEE module using the constructed Metabolic Entities (ME corpus yielded F-scores of 59.15% and 48.59% for the detection of metabolic events for production and consumption, respectively. As for the testing of the entity tagger for Gene and Protein (GP and metabolite with the test corpus, the obtained F-score was greater than 80% for the Superpathway of leucine, valine, and isoleucine biosynthesis. Mapping of enzyme and metabolite interactions through network reconstruction showed a fair performance for the MINR module on the test corpus with F-score >70%. Finally, an application of our integrated TM framework on a big-scale data (i.e., EcoCyc extraction data for reconstructing a metabolic interaction network showed reasonable precisions at 69.93%, 70.63% and 46.71% for enzyme, metabolite and enzyme–metabolite interaction, respectively. This study presents the first open-source integrated TM framework for reconstructing a metabolic interaction network. This framework can be a powerful tool that helps biologists to extract metabolic events for further reconstruction of a metabolic interaction network. The ME corpus, test corpus, source

  3. Ensemble Kinetic Modeling of Metabolic Networks from Dynamic Metabolic Profiles

    Science.gov (United States)

    Jia, Gengjie; Stephanopoulos, Gregory; Gunawan, Rudiyanto

    2012-01-01

    Kinetic modeling of metabolic pathways has important applications in metabolic engineering, but significant challenges still remain. The difficulties faced vary from finding best-fit parameters in a highly multidimensional search space to incomplete parameter identifiability. To meet some of these challenges, an ensemble modeling method is developed for characterizing a subset of kinetic parameters that give statistically equivalent goodness-of-fit to time series concentration data. The method is based on the incremental identification approach, where the parameter estimation is done in a step-wise manner. Numerical efficacy is achieved by reducing the dimensionality of parameter space and using efficient random parameter exploration algorithms. The shift toward using model ensembles, instead of the traditional “best-fit” models, is necessary to directly account for model uncertainty during the application of such models. The performance of the ensemble modeling approach has been demonstrated in the modeling of a generic branched pathway and the trehalose pathway in Saccharomyces cerevisiae using generalized mass action (GMA) kinetics. PMID:24957767

  4. Ensemble Kinetic Modeling of Metabolic Networks from Dynamic Metabolic Profiles

    Directory of Open Access Journals (Sweden)

    Gengjie Jia

    2012-11-01

    Full Text Available Kinetic modeling of metabolic pathways has important applications in metabolic engineering, but significant challenges still remain. The difficulties faced vary from finding best-fit parameters in a highly multidimensional search space to incomplete parameter identifiability. To meet some of these challenges, an ensemble modeling method is developed for characterizing a subset of kinetic parameters that give statistically equivalent goodness-of-fit to time series concentration data. The method is based on the incremental identification approach, where the parameter estimation is done in a step-wise manner. Numerical efficacy is achieved by reducing the dimensionality of parameter space and using efficient random parameter exploration algorithms. The shift toward using model ensembles, instead of the traditional “best-fit” models, is necessary to directly account for model uncertainty during the application of such models. The performance of the ensemble modeling approach has been demonstrated in the modeling of a generic branched pathway and the trehalose pathway in Saccharomyces cerevisiae using generalized mass action (GMA kinetics.

  5. In Silico Genome-Scale Reconstruction and Validation of the Corynebacterium glutamicum Metabolic Network

    DEFF Research Database (Denmark)

    Kjeldsen, Kjeld Raunkjær; Nielsen, J.

    2009-01-01

    A genome-scale metabolic model of the Gram-positive bacteria Corynebacterium glutamicum ATCC 13032 was constructed comprising 446 reactions and 411 metabolite, based on the annotated genome and available biochemical information. The network was analyzed using constraint based methods. The model w...... and lactate. Comparable flux values between in silico model and experimental values were seen, although some differences in the phenotypic behavior between the model and the experimental data were observed,...

  6. A compendium of inborn errors of metabolism mapped onto the human metabolic network.

    OpenAIRE

    Sahoo, Swagatika; Franzson, Leifur; Jonsson, Jon J; Thiele, Ines

    2012-01-01

    Efst á síðunni er hægt að nálgast greinina í heild sinni með því að smella á hlekkinn Inborn errors of metabolism (IEMs) are hereditary metabolic defects, which are encountered in almost all major metabolic pathways occurring in man. Many IEMs are screened for in neonates through metabolomic analysis of dried blood spot samples. To enable the mapping of these metabolomic data onto the published human metabolic reconstruction, we added missing reactions and pathways involved in acylcarnitin...

  7. Injectivity, multiple zeros, and multistationarity in reaction networks

    DEFF Research Database (Denmark)

    Feliu, Elisenda

    2015-01-01

    Polynomial dynamical systems are widely used to model and study real phenomena. In biochemistry, they are the preferred choice for modelling the concentration of chemical species in reaction networks with mass-action kinetics. These systems are typically parametrized by many (unknown) parameters...... of the dynamical system. The method has been tested in a wide range of systems....

  8. Genome-scale reconstruction of the metabolic network in Pseudomonas stutzeri A1501.

    Science.gov (United States)

    Babaei, Parizad; Marashi, Sayed-Amir; Asad, Sedigheh

    2015-11-01

    Pseudomonas stutzeri A1501 is an endophytic bacterium capable of nitrogen fixation. This strain has been isolated from the rice rhizosphere and provides the plant with fixed nitrogen and phytohormones. These interesting features encouraged us to study the metabolism of this microorganism at the systems-level. In this work, we present the first genome-scale metabolic model (iPB890) for P. stutzeri, involving 890 genes, 1135 reactions, and 813 metabolites. A combination of automatic and manual approaches was used in the reconstruction process. Briefly, using the metabolic networks of Pseudomonas aeruginosa and Pseudomonas putida as templates, a draft metabolic network of P. stutzeri was reconstructed. Then, the draft network was driven through an iterative and curative process of gap filling. In the next step, the model was evaluated using different experimental data such as specific growth rate, Biolog substrate utilization data and other experimental observations. In most of the evaluation cases, the model was successful in correctly predicting the cellular phenotypes. Thus, we posit that the iPB890 model serves as a suitable platform to explore the metabolism of P. stutzeri.

  9. Genome-scale metabolic network of Cordyceps militaris useful for comparative analysis of entomopathogenic fungi.

    Science.gov (United States)

    Vongsangnak, Wanwipa; Raethong, Nachon; Mujchariyakul, Warasinee; Nguyen, Nam Ninh; Leong, Hon Wai; Laoteng, Kobkul

    2017-08-30

    The first genome-scale metabolic network of Cordyceps militaris (iWV1170) was constructed representing its whole metabolisms, which consisted of 894 metabolites and 1,267 metabolic reactions across five compartments, including the plasma membrane, cytoplasm, mitochondria, peroxisome and extracellular space. The iWV1170 could be exploited to explain its phenotypes of growth ability, cordycepin and other metabolites production on various substrates. A high number of genes encoding extracellular enzymes for degradation of complex carbohydrates, lipids and proteins were existed in C. militaris genome. By comparative genome-scale analysis, the adenine metabolic pathway towards putative cordycepin biosynthesis was reconstructed, indicating their evolutionary relationships across eleven species of entomopathogenic fungi. The overall metabolic routes involved in the putative cordycepin biosynthesis were also identified in C. militaris, including central carbon metabolism, amino acid metabolism (glycine, l-glutamine and l-aspartate) and nucleotide metabolism (adenosine and adenine). Interestingly, a lack of the sequence coding for ribonucleotide reductase inhibitor was observed in C. militaris that might contribute to its over-production of cordycepin. Copyright © 2017. Published by Elsevier B.V.

  10. Metabolic Network Constrains Gene Regulation of C4 Photosynthesis: The Case of Maize.

    Science.gov (United States)

    Robaina-Estévez, Semidán; Nikoloski, Zoran

    2016-05-01

    Engineering C3 plants to increase their efficiency of carbon fixation as well as of nitrogen and water use simultaneously may be facilitated by understanding the mechanisms that underpin the C4 syndrome. Existing experimental studies have indicated that the emergence of the C4 syndrome requires co-ordination between several levels of cellular organization, from gene regulation to metabolism, across two co-operating cell systems-mesophyll and bundle sheath cells. Yet, determining the extent to which the structure of the C4 plant metabolic network may constrain gene expression remains unclear, although it will provide an important consideration in engineering C4 photosynthesis in C3 plants. Here, we utilize flux coupling analysis with the second-generation maize metabolic models to investigate the correspondence between metabolic network structure and transcriptomic phenotypes along the maize leaf gradient. The examined scenarios with publically available data from independent experiments indicate that the transcriptomic programs of the two cell types are co-ordinated, quantitatively and qualitatively, due to the presence of coupled metabolic reactions in specific metabolic pathways. Taken together, our study demonstrates that precise quantitative coupling will have to be achieved in order to ensure a successfully engineered transition from C3 to C4 crops. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  11. Chemical reaction network designs for asynchronous logic circuits.

    Science.gov (United States)

    Cardelli, Luca; Kwiatkowska, Marta; Whitby, Max

    2018-01-01

    Chemical reaction networks (CRNs) are a versatile language for describing the dynamical behaviour of chemical kinetics, capable of modelling a variety of digital and analogue processes. While CRN designs for synchronous sequential logic circuits have been proposed and their implementation in DNA demonstrated, a physical realisation of these devices is difficult because of their reliance on a clock. Asynchronous sequential logic, on the other hand, does not require a clock, and instead relies on handshaking protocols to ensure the temporal ordering of different phases of the computation. This paper provides novel CRN designs for the construction of asynchronous logic, arithmetic and control flow elements based on a bi-molecular reaction motif with catalytic reactions and uniform reaction rates. We model and validate the designs for the deterministic and stochastic semantics using Microsoft's GEC tool and the probabilistic model checker PRISM, demonstrating their ability to emulate the function of asynchronous components under low molecular count.

  12. Estimation of parameter sensitivities for stochastic reaction networks

    KAUST Repository

    Gupta, Ankit

    2016-01-07

    Quantification of the effects of parameter uncertainty is an important and challenging problem in Systems Biology. We consider this problem in the context of stochastic models of biochemical reaction networks where the dynamics is described as a continuous-time Markov chain whose states represent the molecular counts of various species. For such models, effects of parameter uncertainty are often quantified by estimating the infinitesimal sensitivities of some observables with respect to model parameters. The aim of this talk is to present a holistic approach towards this problem of estimating parameter sensitivities for stochastic reaction networks. Our approach is based on a generic formula which allows us to construct efficient estimators for parameter sensitivity using simulations of the underlying model. We will discuss how novel simulation techniques, such as tau-leaping approximations, multi-level methods etc. can be easily integrated with our approach and how one can deal with stiff reaction networks where reactions span multiple time-scales. We will demonstrate the efficiency and applicability of our approach using many examples from the biological literature.

  13. Reconstruction and in silico analysis of metabolic network for an oleaginous yeast, Yarrowia lipolytica.

    Directory of Open Access Journals (Sweden)

    Pengcheng Pan

    Full Text Available With the emergence of energy scarcity, the use of renewable energy sources such as biodiesel is becoming increasingly necessary. Recently, many researchers have focused their minds on Yarrowia lipolytica, a model oleaginous yeast, which can be employed to accumulate large amounts of lipids that could be further converted to biodiesel. In order to understand the metabolic characteristics of Y. lipolytica at a systems level and to examine the potential for enhanced lipid production, a genome-scale compartmentalized metabolic network was reconstructed based on a combination of genome annotation and the detailed biochemical knowledge from multiple databases such as KEGG, ENZYME and BIGG. The information about protein and reaction associations of all the organisms in KEGG and Expasy-ENZYME database was arranged into an EXCEL file that can then be regarded as a new useful database to generate other reconstructions. The generated model iYL619_PCP accounts for 619 genes, 843 metabolites and 1,142 reactions including 236 transport reactions, 125 exchange reactions and 13 spontaneous reactions. The in silico model successfully predicted the minimal media and the growing abilities on different substrates. With flux balance analysis, single gene knockouts were also simulated to predict the essential genes and partially essential genes. In addition, flux variability analysis was applied to design new mutant strains that will redirect fluxes through the network and may enhance the production of lipid. This genome-scale metabolic model of Y. lipolytica can facilitate system-level metabolic analysis as well as strain development for improving the production of biodiesels and other valuable products by Y. lipolytica and other closely related oleaginous yeasts.

  14. Stochastic analysis of complex reaction networks using binomial moment equations.

    Science.gov (United States)

    Barzel, Baruch; Biham, Ofer

    2012-09-01

    The stochastic analysis of complex reaction networks is a difficult problem because the number of microscopic states in such systems increases exponentially with the number of reactive species. Direct integration of the master equation is thus infeasible and is most often replaced by Monte Carlo simulations. While Monte Carlo simulations are a highly effective tool, equation-based formulations are more amenable to analytical treatment and may provide deeper insight into the dynamics of the network. Here, we present a highly efficient equation-based method for the analysis of stochastic reaction networks. The method is based on the recently introduced binomial moment equations [Barzel and Biham, Phys. Rev. Lett. 106, 150602 (2011)]. The binomial moments are linear combinations of the ordinary moments of the probability distribution function of the population sizes of the interacting species. They capture the essential combinatorics of the reaction processes reflecting their stoichiometric structure. This leads to a simple and transparent form of the equations, and allows a highly efficient and surprisingly simple truncation scheme. Unlike ordinary moment equations, in which the inclusion of high order moments is prohibitively complicated, the binomial moment equations can be easily constructed up to any desired order. The result is a set of equations that enables the stochastic analysis of complex reaction networks under a broad range of conditions. The number of equations is dramatically reduced from the exponential proliferation of the master equation to a polynomial (and often quadratic) dependence on the number of reactive species in the binomial moment equations. The aim of this paper is twofold: to present a complete derivation of the binomial moment equations; to demonstrate the applicability of the moment equations for a representative set of example networks, in which stochastic effects play an important role.

  15. Enumeration of minimal stoichiometric precursor sets in metabolic networks

    NARCIS (Netherlands)

    Andrade, R.; Wannagat, M.; Coimbra Klein, C.; Acuna, V.; Marchetti Spaccamela, A.; Vieira Milreu, P.; Stougie, L.; Sagot, M.-F.

    2016-01-01

    Background: What an organism needs at least from its environment to produce a set of metabolites, e.g. target(s) of interest and/or biomass, has been called a minimal precursor set. Early approaches to enumerate all minimal precursor sets took into account only the topology of the metabolic network

  16. Global network reorganization during dynamic adaptations of Bacillus subtilis metabolism

    DEFF Research Database (Denmark)

    Buescher, Joerg Martin; Liebermeister, Wolfram; Jules, Matthieu

    2012-01-01

    Adaptation of cells to environmental changes requires dynamic interactions between metabolic and regulatory networks, but studies typically address only one or a few layers of regulation. For nutritional shifts between two preferred carbon sources of Bacillus subtilis, we combined statistical and...

  17. Global Network Reorganization During Dynamic Adaptations of Bacillus subtilis Metabolism

    NARCIS (Netherlands)

    Buescher, Joerg Martin; Liebermeister, Wolfram; Jules, Matthieu; Uhr, Markus; Muntel, Jan; Botella, Eric; Hessling, Bernd; Kleijn, Roelco Jacobus; Le Chat, Ludovic; Lecointe, Francois; Maeder, Ulrike; Nicolas, Pierre; Piersma, Sjouke; Ruegheimer, Frank; Becher, Doerte; Bessieres, Philippe; Bidnenko, Elena; Denham, Emma L.; Dervyn, Etienne; Devine, Kevin M.; Doherty, Geoff; Drulhe, Samuel; Felicori, Liza; Fogg, Mark J.; Goelzer, Anne; Hansen, Annette; Harwood, Colin R.; Hecker, Michael; Hubner, Sebastian; Hultschig, Claus; Jarmer, Hanne; Klipp, Edda; Leduc, Aurelie; Lewis, Peter; Molina, Frank; Noirot, Philippe; Peres, Sabine; Pigeonneau, Nathalie; Pohl, Susanne; Rasmussen, Simon; Rinn, Bernd; Schaffer, Marc; Schnidder, Julian; Schwikowski, Benno; Van Dijl, Jan Maarten; Veiga, Patrick; Walsh, Sean; Wilkinson, Anthony J.; Stelling, Joerg; Aymerich, Stephane; Sauer, Uwe

    2012-01-01

    Adaptation of cells to environmental changes requires dynamic interactions between metabolic and regulatory networks, but studies typically address only one or a few layers of regulation. For nutritional shifts between two preferred carbon sources of Bacillus subtilis, we combined statistical and

  18. Underground metabolism: network-level perspective and biotechnological potential

    DEFF Research Database (Denmark)

    Notebaart, Richard A; Kintses, Bálint; Feist, Adam

    2018-01-01

    A key challenge in molecular systems biology is understanding how new pathways arise during evolution and how to exploit them for biotechnological applications. New pathways in metabolic networks often evolve by recruiting weak promiscuous activities of pre-existing enzymes. Here we describe recent...

  19. Metabolic networks in epilepsy by MR spectroscopic imaging.

    Science.gov (United States)

    Pan, J W; Spencer, D D; Kuzniecky, R; Duckrow, R B; Hetherington, H; Spencer, S S

    2012-12-01

    The concept of an epileptic network has long been suggested from both animal and human studies of epilepsy. Based on the common observation that the MR spectroscopic imaging measure of NAA/Cr is sensitive to neuronal function and injury, we use this parameter to assess for the presence of a metabolic network in mesial temporal lobe epilepsy (MTLE) patients. A multivariate factor analysis is performed with controls and MTLE patients, using NAA/Cr measures from 12 loci: the bilateral hippocampi, thalami, basal ganglia, and insula. The factor analysis determines which and to what extent these loci are metabolically covarying. We extract two independent factors that explain the data's variability in control and MTLE patients. In controls, these factors characterize a 'thalamic' and 'dominant subcortical' function. The MTLE patients also exhibit a 'thalamic' factor, in addition to a second factor involving the ipsilateral insula and bilateral basal ganglia. These data suggest that MTLE patients demonstrate a metabolic network that involves the thalami, also seen in controls. The MTLE patients also display a second set of metabolically covarying regions that may be a manifestation of the epileptic network that characterizes limbic seizure propagation. © 2012 John Wiley & Sons A/S.

  20. Quantitative time-course metabolomics in human red blood cells reveal the temperature dependence of human metabolic networks.

    Science.gov (United States)

    Yurkovich, James T; Zielinski, Daniel C; Yang, Laurence; Paglia, Giuseppe; Rolfsson, Ottar; Sigurjónsson, Ólafur E; Broddrick, Jared T; Bordbar, Aarash; Wichuk, Kristine; Brynjólfsson, Sigurður; Palsson, Sirus; Gudmundsson, Sveinn; Palsson, Bernhard O

    2017-12-01

    The temperature dependence of biological processes has been studied at the levels of individual biochemical reactions and organism physiology ( e.g. basal metabolic rates) but has not been examined at the metabolic network level. Here, we used a systems biology approach to characterize the temperature dependence of the human red blood cell (RBC) metabolic network between 4 and 37 °C through absolutely quantified exo- and endometabolomics data. We used an Arrhenius-type model ( Q 10 ) to describe how the rate of a biochemical process changes with every 10 °C change in temperature. Multivariate statistical analysis of the metabolomics data revealed that the same metabolic network-level trends previously reported for RBCs at 4 °C were conserved but accelerated with increasing temperature. We calculated a median Q 10 coefficient of 2.89 ± 1.03, within the expected range of 2-3 for biological processes, for 48 individual metabolite concentrations. We then integrated these metabolomics measurements into a cell-scale metabolic model to study pathway usage, calculating a median Q 10 coefficient of 2.73 ± 0.75 for 35 reaction fluxes. The relative fluxes through glycolysis and nucleotide metabolism pathways were consistent across the studied temperature range despite the non-uniform distributions of Q 10 coefficients of individual metabolites and reaction fluxes. Together, these results indicate that the rate of change of network-level responses to temperature differences in RBC metabolism is consistent between 4 and 37 °C. More broadly, we provide a baseline characterization of a biochemical network given no transcriptional or translational regulation that can be used to explore the temperature dependence of metabolism. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. A systems biology approach to reconcile metabolic network models with application to Synechocystis sp. PCC 6803 for biofuel production.

    Science.gov (United States)

    Mohammadi, Reza; Fallah-Mehrabadi, Jalil; Bidkhori, Gholamreza; Zahiri, Javad; Javad Niroomand, Mohammad; Masoudi-Nejad, Ali

    2016-07-19

    Production of biofuels has been one of the promising efforts in biotechnology in the past few decades. The perspective of these efforts can be reduction of increasing demands for fossil fuels and consequently reducing environmental pollution. Nonetheless, most previous approaches did not succeed in obviating many big challenges in this way. In recent years systems biology with the help of microorganisms has been trying to overcome these challenges. Unicellular cyanobacteria are widespread phototrophic microorganisms that have capabilities such as consuming solar energy and atmospheric carbon dioxide for growth and thus can be a suitable chassis for the production of valuable organic materials such as biofuels. For the ultimate use of metabolic potential of cyanobacteria, it is necessary to understand the reactions that are taking place inside the metabolic network of these microorganisms. In this study, we developed a Java tool to reconstruct an integrated metabolic network of a cyanobacterium (Synechocystis sp. PCC 6803). We merged three existing reconstructed metabolic networks of this microorganism. Then, after modeling for biofuel production, the results from flux balance analysis (FBA) disclosed an increased yield in biofuel production for ethanol, isobutanol, 3-methyl-1-butanol, 2-methyl-1-butanol, and propanol. The numbers of blocked reactions were also decreased for 2-methyl-1-butanol production. In addition, coverage of the metabolic network in terms of the number of metabolites and reactions was increased in the new obtained model.

  2. Photochemical Control over Oscillations in Chemical Reaction Networks.

    Science.gov (United States)

    Pogodaev, Aleksandr A; Wong, Albert S Y; Huck, Wilhelm T S

    2017-11-01

    Systems chemistry aims to emulate the functional behavior observed in living systems by constructing chemical reaction networks (CRNs) with well-defined dynamic properties. Future expansion of the complexity of these systems would require external control to tune behavior and temporal organization of such CRNs. In this work, we design and implement a photolabile probe, which upon irradiation strengthens the negative feedback loop of a CRN that produces oscillations of trypsin under out-of-equilibrium conditions. By changing the timing and duration of irradiation, we can tailor the temporal response of the network.

  3. Hybrid dynamic modeling of Escherichia coli central metabolic network combining Michaelis–Menten and approximate kinetic equations

    DEFF Research Database (Denmark)

    Costa, Rafael S.; Machado, Daniel; Rocha, Isabel

    2010-01-01

    The construction of dynamic metabolic models at reaction network level requires the use of mechanistic enzymatic rate equations that comprise a large number of parameters. The lack of knowledge on these equations and the difficulty in the experimental identification of their associated parameters...

  4. Compartmentalized metabolic network reconstruction of microbial communities to determine the effect of agricultural intervention on soils.

    Science.gov (United States)

    Alvarez-Silva, María Camila; Álvarez-Yela, Astrid Catalina; Gómez-Cano, Fabio; Zambrano, María Mercedes; Husserl, Johana; Danies, Giovanna; Restrepo, Silvia; González-Barrios, Andrés Fernando

    2017-01-01

    Soil microbial communities are responsible for a wide range of ecological processes and have an important economic impact in agriculture. Determining the metabolic processes performed by microbial communities is crucial for understanding and managing ecosystem properties. Metagenomic approaches allow the elucidation of the main metabolic processes that determine the performance of microbial communities under different environmental conditions and perturbations. Here we present the first compartmentalized metabolic reconstruction at a metagenomics scale of a microbial ecosystem. This systematic approach conceives a meta-organism without boundaries between individual organisms and allows the in silico evaluation of the effect of agricultural intervention on soils at a metagenomics level. To characterize the microbial ecosystems, topological properties, taxonomic and metabolic profiles, as well as a Flux Balance Analysis (FBA) were considered. Furthermore, topological and optimization algorithms were implemented to carry out the curation of the models, to ensure the continuity of the fluxes between the metabolic pathways, and to confirm the metabolite exchange between subcellular compartments. The proposed models provide specific information about ecosystems that are generally overlooked in non-compartmentalized or non-curated networks, like the influence of transport reactions in the metabolic processes, especially the important effect on mitochondrial processes, as well as provide more accurate results of the fluxes used to optimize the metabolic processes within the microbial community.

  5. Compartmentalized metabolic network reconstruction of microbial communities to determine the effect of agricultural intervention on soils.

    Directory of Open Access Journals (Sweden)

    María Camila Alvarez-Silva

    Full Text Available Soil microbial communities are responsible for a wide range of ecological processes and have an important economic impact in agriculture. Determining the metabolic processes performed by microbial communities is crucial for understanding and managing ecosystem properties. Metagenomic approaches allow the elucidation of the main metabolic processes that determine the performance of microbial communities under different environmental conditions and perturbations. Here we present the first compartmentalized metabolic reconstruction at a metagenomics scale of a microbial ecosystem. This systematic approach conceives a meta-organism without boundaries between individual organisms and allows the in silico evaluation of the effect of agricultural intervention on soils at a metagenomics level. To characterize the microbial ecosystems, topological properties, taxonomic and metabolic profiles, as well as a Flux Balance Analysis (FBA were considered. Furthermore, topological and optimization algorithms were implemented to carry out the curation of the models, to ensure the continuity of the fluxes between the metabolic pathways, and to confirm the metabolite exchange between subcellular compartments. The proposed models provide specific information about ecosystems that are generally overlooked in non-compartmentalized or non-curated networks, like the influence of transport reactions in the metabolic processes, especially the important effect on mitochondrial processes, as well as provide more accurate results of the fluxes used to optimize the metabolic processes within the microbial community.

  6. Modeling the Metabolism of Arabidopsis thaliana: Application of Network Decomposition and Network Reduction in the Context of Petri Nets

    Directory of Open Access Journals (Sweden)

    Ina Koch

    2017-06-01

    Full Text Available Motivation:Arabidopsis thaliana is a well-established model system for the analysis of the basic physiological and metabolic pathways of plants. Nevertheless, the system is not yet fully understood, although many mechanisms are described, and information for many processes exists. However, the combination and interpretation of the large amount of biological data remain a big challenge, not only because data sets for metabolic paths are still incomplete. Moreover, they are often inconsistent, because they are coming from different experiments of various scales, regarding, for example, accuracy and/or significance. Here, theoretical modeling is powerful to formulate hypotheses for pathways and the dynamics of the metabolism, even if the biological data are incomplete. To develop reliable mathematical models they have to be proven for consistency. This is still a challenging task because many verification techniques fail already for middle-sized models. Consequently, new methods, like decomposition methods or reduction approaches, are developed to circumvent this problem.Methods: We present a new semi-quantitative mathematical model of the metabolism of Arabidopsis thaliana. We used the Petri net formalism to express the complex reaction system in a mathematically unique manner. To verify the model for correctness and consistency we applied concepts of network decomposition and network reduction such as transition invariants, common transition pairs, and invariant transition pairs.Results: We formulated the core metabolism of Arabidopsis thaliana based on recent knowledge from literature, including the Calvin cycle, glycolysis and citric acid cycle, glyoxylate cycle, urea cycle, sucrose synthesis, and the starch metabolism. By applying network decomposition and reduction techniques at steady-state conditions, we suggest a straightforward mathematical modeling process. We demonstrate that potential steady-state pathways exist, which provide the

  7. SkyNet: A Modular Nuclear Reaction Network Library

    Science.gov (United States)

    Lippuner, Jonas; Roberts, Luke F.

    2017-12-01

    Almost all of the elements heavier than hydrogen that are present in our solar system were produced by nuclear burning processes either in the early universe or at some point in the life cycle of stars. In all of these environments, there are dozens to thousands of nuclear species that interact with each other to produce successively heavier elements. In this paper, we present SkyNet, a new general-purpose nuclear reaction network that evolves the abundances of nuclear species under the influence of nuclear reactions. SkyNet can be used to compute the nucleosynthesis evolution in all astrophysical scenarios where nucleosynthesis occurs. SkyNet is free and open source, and aims to be easy to use and flexible. Any list of isotopes can be evolved, and SkyNet supports different types of nuclear reactions. SkyNet is modular so that new or existing physics, like nuclear reactions or equations of state, can easily be added or modified. Here, we present in detail the physics implemented in SkyNet with a focus on a self-consistent transition to and from nuclear statistical equilibrium to non-equilibrium nuclear burning, our implementation of electron screening, and coupling of the network to an equation of state. We also present comprehensive code tests and comparisons with existing nuclear reaction networks. We find that SkyNet agrees with published results and other codes to an accuracy of a few percent. Discrepancies, where they exist, can be traced to differences in the physics implementations.

  8. HSimulator: Hybrid Stochastic/Deterministic Simulation of Biochemical Reaction Networks

    Directory of Open Access Journals (Sweden)

    Luca Marchetti

    2017-01-01

    Full Text Available HSimulator is a multithread simulator for mass-action biochemical reaction systems placed in a well-mixed environment. HSimulator provides optimized implementation of a set of widespread state-of-the-art stochastic, deterministic, and hybrid simulation strategies including the first publicly available implementation of the Hybrid Rejection-based Stochastic Simulation Algorithm (HRSSA. HRSSA, the fastest hybrid algorithm to date, allows for an efficient simulation of the models while ensuring the exact simulation of a subset of the reaction network modeling slow reactions. Benchmarks show that HSimulator is often considerably faster than the other considered simulators. The software, running on Java v6.0 or higher, offers a simulation GUI for modeling and visually exploring biological processes and a Javadoc-documented Java library to support the development of custom applications. HSimulator is released under the COSBI Shared Source license agreement (COSBI-SSLA.

  9. Transcriptional regulation and steady-state modeling of metabolic networks

    DEFF Research Database (Denmark)

    Zelezniak, Aleksej

    with the changes in gene expression of both reactions that produce and reactions that consume a given metabolite. Analysis of a large compendium of gene expression data further suggested that, contrary to previous thinking, transcriptional regulation at metabolic branch points is highly plastic and, in several...... to exhibit a biodegradation performance superior to pure cultures, making them attractive research targets. It is believed that nutrition plays a crucial role in shaping microbial communities. Interspecies metabolite cross-feeding can confer several advantages to the community as a whole. For example, more...

  10. Pseudomonas fluorescens induces strain-dependent and strain-independent host plant responses in defense networks, primary metabolism and photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Pelletier, Dale A [ORNL; Morrell-Falvey, Jennifer L [ORNL; Karve, Abhijit A [ORNL; Lu, Tse-Yuan S [ORNL; Tschaplinski, Timothy J [ORNL; Tuskan, Gerald A [ORNL; Chen, Jay [ORNL; Martin, Madhavi Z [ORNL; Jawdy, Sara [ORNL; Weston, David [ORNL; Doktycz, Mitchel John [ORNL; Schadt, Christopher Warren [ORNL

    2012-01-01

    Colonization of plants by nonpathogenic Pseudomonas fluorescens strains can confer enhanced defense capacity against a broad spectrum of pathogens. Few studies, however, have linked defense pathway regulation to primary metabolism and physiology. In this study, physiological data, metabolites, and transcript profiles are integrated to elucidate how molecular networks initiated at the root-microbe interface influence shoot metabolism and whole-plant performance. Experiments with Arabidopsis thaliana were performed using the newly identified P. fluorescens GM30 or P. fluorescens Pf-5 strains. Co-expression networks indicated that Pf-5 and GM30 induced a subnetwork specific to roots enriched for genes participating in RNA regulation, protein degradation, and hormonal metabolism. In contrast, only GM30 induced a subnetwork enriched for calcium signaling, sugar and nutrient signaling, and auxin metabolism, suggesting strain dependence in network architecture. In addition, one subnetwork present in shoots was enriched for genes in secondary metabolism, photosynthetic light reactions, and hormone metabolism. Metabolite analysis indicated that this network initiated changes in carbohydrate and amino acid metabolism. Consistent with this, we observed strain-specific responses in tryptophan and phenylalanine abundance. Both strains reduced host plant carbon gain and fitness, yet provided a clear fitness benefit when plants were challenged with the pathogen P. syringae DC3000.

  11. The QSE-reduced Nuclear Reaction Network for Silicon Burning

    Energy Technology Data Exchange (ETDEWEB)

    Hix, William Raphael [ORNL; Parete-Koon, Suzanne T. [University of Tennessee, Knoxville (UTK); Freiburghaus, Christian [Universitat Basel, Switzerland; Thielemann, Friedrich-Karl W. [Universitat Basel, Switzerland

    2007-01-01

    Iron and neighboring nuclei are formed in massive stars shortly before core collapse and during their supernova outbursts as well as during thermonuclear supernovae. Complete and incomplete silicon burning are responsible for the production of a wide range of nuclei with atomic mass numbers from 28 to 64. Because of the large number of nuclei involved, accurate modeling of silicon burning is computationally expensive. However, examination of the physics of silicon burning has revealed that the nuclear evolution is dominated by large groups of nuclei in mutual equilibrium. We present a new hybrid equilibrium network scheme which takes advantage of this quasi-equilibrium in order to reduce the number of independent variables calculated. This allows accurate prediction of the nuclear abundance evolution, deleptonization, and energy generation at a greatly reduced computational cost when compared to a conventional nuclear reaction network. During silicon burning, the resultant QSE-reduced network is approximately an order of magnitude faster than the full network it replaces and requires the tracking of less than a third as many abundance variables, without significant loss of accuracy. These reductions in computational cost and the number of species evolved make QSE-reduced networks well suited for inclusion within hydrodynamic simulations, particularly in multi-dimensional applications.

  12. Bacterial Unculturability and the Formation of Intercellular Metabolic Networks.

    Science.gov (United States)

    Pande, Samay; Kost, Christian

    2017-05-01

    The majority of known bacterial species cannot be cultivated under laboratory conditions. Here we argue that the adaptive emergence of obligate metabolic interactions in natural bacterial communities can explain this pattern. Bacteria commonly release metabolites into the external environment. Accumulating pools of extracellular metabolites create an ecological niche that benefits auxotrophic mutants, which have lost the ability to autonomously produce the corresponding metabolites. In addition to a diffusion-based metabolite transfer, auxotrophic cells can use contact-dependent means to obtain nutrients from other co-occurring cells. Spatial colocalisation and a continuous coevolution further increase the nutritional dependency and optimise fluxes through combined metabolic networks. Thus, bacteria likely function as networks of interacting cells that reciprocally exchange nutrients and biochemical functions rather than as physiologically autonomous units. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Scalable Parameter Estimation for Genome-Scale Biochemical Reaction Networks

    Science.gov (United States)

    Kaltenbacher, Barbara; Hasenauer, Jan

    2017-01-01

    Mechanistic mathematical modeling of biochemical reaction networks using ordinary differential equation (ODE) models has improved our understanding of small- and medium-scale biological processes. While the same should in principle hold for large- and genome-scale processes, the computational methods for the analysis of ODE models which describe hundreds or thousands of biochemical species and reactions are missing so far. While individual simulations are feasible, the inference of the model parameters from experimental data is computationally too intensive. In this manuscript, we evaluate adjoint sensitivity analysis for parameter estimation in large scale biochemical reaction networks. We present the approach for time-discrete measurement and compare it to state-of-the-art methods used in systems and computational biology. Our comparison reveals a significantly improved computational efficiency and a superior scalability of adjoint sensitivity analysis. The computational complexity is effectively independent of the number of parameters, enabling the analysis of large- and genome-scale models. Our study of a comprehensive kinetic model of ErbB signaling shows that parameter estimation using adjoint sensitivity analysis requires a fraction of the computation time of established methods. The proposed method will facilitate mechanistic modeling of genome-scale cellular processes, as required in the age of omics. PMID:28114351

  14. (Im)Perfect robustness and adaptation of metabolic networks subject to metabolic and gene-expression regulation: marrying control engineering with metabolic control analysis.

    Science.gov (United States)

    He, Fei; Fromion, Vincent; Westerhoff, Hans V

    2013-11-21

    Metabolic control analysis (MCA) and supply-demand theory have led to appreciable understanding of the systems properties of metabolic networks that are subject exclusively to metabolic regulation. Supply-demand theory has not yet considered gene-expression regulation explicitly whilst a variant of MCA, i.e. Hierarchical Control Analysis (HCA), has done so. Existing analyses based on control engineering approaches have not been very explicit about whether metabolic or gene-expression regulation would be involved, but designed different ways in which regulation could be organized, with the potential of causing adaptation to be perfect. This study integrates control engineering and classical MCA augmented with supply-demand theory and HCA. Because gene-expression regulation involves time integration, it is identified as a natural instantiation of the 'integral control' (or near integral control) known in control engineering. This study then focuses on robustness against and adaptation to perturbations of process activities in the network, which could result from environmental perturbations, mutations or slow noise. It is shown however that this type of 'integral control' should rarely be expected to lead to the 'perfect adaptation': although the gene-expression regulation increases the robustness of important metabolite concentrations, it rarely makes them infinitely robust. For perfect adaptation to occur, the protein degradation reactions should be zero order in the concentration of the protein, which may be rare biologically for cells growing steadily. A proposed new framework integrating the methodologies of control engineering and metabolic and hierarchical control analysis, improves the understanding of biological systems that are regulated both metabolically and by gene expression. In particular, the new approach enables one to address the issue whether the intracellular biochemical networks that have been and are being identified by genomics and systems

  15. A reaction-diffusion model of ROS-induced ROS release in a mitochondrial network.

    Directory of Open Access Journals (Sweden)

    Lufang Zhou

    2010-01-01

    Full Text Available Loss of mitochondrial function is a fundamental determinant of cell injury and death. In heart cells under metabolic stress, we have previously described how the abrupt collapse or oscillation of the mitochondrial energy state is synchronized across the mitochondrial network by local interactions dependent upon reactive oxygen species (ROS. Here, we develop a mathematical model of ROS-induced ROS release (RIRR based on reaction-diffusion (RD-RIRR in one- and two-dimensional mitochondrial networks. The nodes of the RD-RIRR network are comprised of models of individual mitochondria that include a mechanism of ROS-dependent oscillation based on the interplay between ROS production, transport, and scavenging; and incorporating the tricarboxylic acid (TCA cycle, oxidative phosphorylation, and Ca(2+ handling. Local mitochondrial interaction is mediated by superoxide (O2.- diffusion and the O2.(--dependent activation of an inner membrane anion channel (IMAC. In a 2D network composed of 500 mitochondria, model simulations reveal DeltaPsi(m depolarization waves similar to those observed when isolated guinea pig cardiomyocytes are subjected to a localized laser-flash or antioxidant depletion. The sensitivity of the propagation rate of the depolarization wave to O(2.- diffusion, production, and scavenging in the reaction-diffusion model is similar to that observed experimentally. In addition, we present novel experimental evidence, obtained in permeabilized cardiomyocytes, confirming that DeltaPsi(m depolarization is mediated specifically by O2.-. The present work demonstrates that the observed emergent macroscopic properties of the mitochondrial network can be reproduced in a reaction-diffusion model of RIRR. Moreover, the findings have uncovered a novel aspect of the synchronization mechanism, which is that clusters of mitochondria that are oscillating can entrain mitochondria that would otherwise display stable dynamics. The work identifies the

  16. Genetic networks of liver metabolism revealed by integration of metabolic and transcriptional profiling.

    Directory of Open Access Journals (Sweden)

    Christine T Ferrara

    2008-03-01

    Full Text Available Although numerous quantitative trait loci (QTL influencing disease-related phenotypes have been detected through gene mapping and positional cloning, identification of the individual gene(s and molecular pathways leading to those phenotypes is often elusive. One way to improve understanding of genetic architecture is to classify phenotypes in greater depth by including transcriptional and metabolic profiling. In the current study, we have generated and analyzed mRNA expression and metabolic profiles in liver samples obtained in an F2 intercross between the diabetes-resistant C57BL/6 leptin(ob/ob and the diabetes-susceptible BTBR leptin(ob/ob mouse strains. This cross, which segregates for genotype and physiological traits, was previously used to identify several diabetes-related QTL. Our current investigation includes microarray analysis of over 40,000 probe sets, plus quantitative mass spectrometry-based measurements of sixty-seven intermediary metabolites in three different classes (amino acids, organic acids, and acyl-carnitines. We show that liver metabolites map to distinct genetic regions, thereby indicating that tissue metabolites are heritable. We also demonstrate that genomic analysis can be integrated with liver mRNA expression and metabolite profiling data to construct causal networks for control of specific metabolic processes in liver. As a proof of principle of the practical significance of this integrative approach, we illustrate the construction of a specific causal network that links gene expression and metabolic changes in the context of glutamate metabolism, and demonstrate its validity by showing that genes in the network respond to changes in glutamine and glutamate availability. Thus, the methods described here have the potential to reveal regulatory networks that contribute to chronic, complex, and highly prevalent diseases and conditions such as obesity and diabetes.

  17. Metabolic network model guided engineering ethylmalonyl-CoA pathway to improve ascomycin production in Streptomyces hygroscopicus var. ascomyceticus.

    Science.gov (United States)

    Wang, Junhua; Wang, Cheng; Song, Kejing; Wen, Jianping

    2017-10-03

    Ascomycin is a 23-membered polyketide macrolide with high immunosuppressant and antifungal activity. As the lower production in bio-fermentation, global metabolic analysis is required to further explore its biosynthetic network and determine the key limiting steps for rationally engineering. To achieve this goal, an engineering approach guided by a metabolic network model was implemented to better understand ascomycin biosynthesis and improve its production. The metabolic conservation of Streptomyces species was first investigated by comparing the metabolic enzymes of Streptomyces coelicolor A3(2) with those of 31 Streptomyces strains, the results showed that more than 72% of the examined proteins had high sequence similarity with counterparts in every surveyed strain. And it was found that metabolic reactions are more highly conserved than the enzymes themselves because of its lower diversity of metabolic functions than that of genes. The main source of the observed metabolic differences was from the diversity of secondary metabolism. According to the high conservation of primary metabolic reactions in Streptomyces species, the metabolic network model of Streptomyces hygroscopicus var. ascomyceticus was constructed based on the latest reported metabolic model of S. coelicolor A3(2) and validated experimentally. By coupling with flux balance analysis and using minimization of metabolic adjustment algorithm, potential targets for ascomycin overproduction were predicted. Since several of the preferred targets were highly associated with ethylmalonyl-CoA biosynthesis, two target genes hcd (encoding 3-hydroxybutyryl-CoA dehydrogenase) and ccr (encoding crotonyl-CoA carboxylase/reductase) were selected for overexpression in S. hygroscopicus var. ascomyceticus FS35. Both the mutants HA-Hcd and HA-Ccr showed higher ascomycin titer, which was consistent with the model predictions. Furthermore, the combined effects of the two genes were evaluated and the strain HA

  18. Current Understanding of the Formation and Adaptation of Metabolic Systems Based on Network Theory

    Directory of Open Access Journals (Sweden)

    Kazuhiro Takemoto

    2012-07-01

    Full Text Available Formation and adaptation of metabolic networks has been a long-standing question in biology. With recent developments in biotechnology and bioinformatics, the understanding of metabolism is progressively becoming clearer from a network perspective. This review introduces the comprehensive metabolic world that has been revealed by a wide range of data analyses and theoretical studies; in particular, it illustrates the role of evolutionary events, such as gene duplication and horizontal gene transfer, and environmental factors, such as nutrient availability and growth conditions, in evolution of the metabolic network. Furthermore, the mathematical models for the formation and adaptation of metabolic networks have also been described, according to the current understanding from a perspective of metabolic networks. These recent findings are helpful in not only understanding the formation of metabolic networks and their adaptation, but also metabolic engineering.

  19. The Forward-Reverse Algorithm for Stochastic Reaction Networks

    KAUST Repository

    Bayer, Christian

    2015-01-07

    In this work, we present an extension of the forward-reverse algorithm by Bayer and Schoenmakers [2] to the context of stochastic reaction networks (SRNs). We then apply this bridge-generation technique to the statistical inference problem of approximating the reaction coefficients based on discretely observed data. To this end, we introduce a two-phase iterative inference method in which we solve a set of deterministic optimization problems where the SRNs are replaced by the classical ODE rates; then, during the second phase, the Monte Carlo version of the EM algorithm is applied starting from the output of the previous phase. Starting from a set of over-dispersed seeds, the output of our two-phase method is a cluster of maximum likelihood estimates obtained by using convergence assessment techniques from the theory of Markov chain Monte Carlo.

  20. Attractor for a Reaction-Diffusion System Modeling Cancer Network

    Directory of Open Access Journals (Sweden)

    Xueyong Chen

    2014-01-01

    Full Text Available A reaction-diffusion cancer network regulated by microRNA is considered in this paper. We study the asymptotic behavior of solution and show the existence of global uniformly bounded solution to the system in a bounded domain Ω⊂Rn. Some estimates and asymptotic compactness of the solutions are proved. As a result, we establish the existence of the global attractor in L2(Ω×L2(Ω and prove that the solution converges to stable steady states. These results can help to understand the dynamical character of cancer network and propose a new insight to study the mechanism of cancer. In the end, the numerical simulation shows that the analytical results agree with numerical simulation.

  1. Conditions for extinction events in chemical reaction networks with discrete state spaces.

    Science.gov (United States)

    Johnston, Matthew D; Anderson, David F; Craciun, Gheorghe; Brijder, Robert

    2018-05-01

    We study chemical reaction networks with discrete state spaces and present sufficient conditions on the structure of the network that guarantee the system exhibits an extinction event. The conditions we derive involve creating a modified chemical reaction network called a domination-expanded reaction network and then checking properties of this network. Unlike previous results, our analysis allows algorithmic implementation via systems of equalities and inequalities and suggests sequences of reactions which may lead to extinction events. We apply the results to several networks including an EnvZ-OmpR signaling pathway in Escherichia coli.

  2. Adaptive hybrid simulations for multiscale stochastic reaction networks

    International Nuclear Information System (INIS)

    Hepp, Benjamin; Gupta, Ankit; Khammash, Mustafa

    2015-01-01

    The probability distribution describing the state of a Stochastic Reaction Network (SRN) evolves according to the Chemical Master Equation (CME). It is common to estimate its solution using Monte Carlo methods such as the Stochastic Simulation Algorithm (SSA). In many cases, these simulations can take an impractical amount of computational time. Therefore, many methods have been developed that approximate sample paths of the underlying stochastic process and estimate the solution of the CME. A prominent class of these methods include hybrid methods that partition the set of species and the set of reactions into discrete and continuous subsets. Such a partition separates the dynamics into a discrete and a continuous part. Simulating such a stochastic process can be computationally much easier than simulating the exact discrete stochastic process with SSA. Moreover, the quasi-stationary assumption to approximate the dynamics of fast subnetworks can be applied for certain classes of networks. However, as the dynamics of a SRN evolves, these partitions may have to be adapted during the simulation. We develop a hybrid method that approximates the solution of a CME by automatically partitioning the reactions and species sets into discrete and continuous components and applying the quasi-stationary assumption on identifiable fast subnetworks. Our method does not require any user intervention and it adapts to exploit the changing timescale separation between reactions and/or changing magnitudes of copy-numbers of constituent species. We demonstrate the efficiency of the proposed method by considering examples from systems biology and showing that very good approximations to the exact probability distributions can be achieved in significantly less computational time. This is especially the case for systems with oscillatory dynamics, where the system dynamics change considerably throughout the time-period of interest

  3. Hierarchical feedback modules and reaction hubs in cell signaling networks.

    Science.gov (United States)

    Xu, Jianfeng; Lan, Yueheng

    2015-01-01

    Despite much effort, identification of modular structures and study of their organizing and functional roles remain a formidable challenge in molecular systems biology, which, however, is essential in reaching a systematic understanding of large-scale cell regulation networks and hence gaining capacity of exerting effective interference to cell activity. Combining graph theoretic methods with available dynamics information, we successfully retrieved multiple feedback modules of three important signaling networks. These feedbacks are structurally arranged in a hierarchical way and dynamically produce layered temporal profiles of output signals. We found that global and local feedbacks act in very different ways and on distinct features of the information flow conveyed by signal transduction but work highly coordinately to implement specific biological functions. The redundancy embodied with multiple signal-relaying channels and feedback controls bestow great robustness and the reaction hubs seated at junctions of different paths announce their paramount importance through exquisite parameter management. The current investigation reveals intriguing general features of the organization of cell signaling networks and their relevance to biological function, which may find interesting applications in analysis, design and control of bio-networks.

  4. Hierarchical feedback modules and reaction hubs in cell signaling networks.

    Directory of Open Access Journals (Sweden)

    Jianfeng Xu

    Full Text Available Despite much effort, identification of modular structures and study of their organizing and functional roles remain a formidable challenge in molecular systems biology, which, however, is essential in reaching a systematic understanding of large-scale cell regulation networks and hence gaining capacity of exerting effective interference to cell activity. Combining graph theoretic methods with available dynamics information, we successfully retrieved multiple feedback modules of three important signaling networks. These feedbacks are structurally arranged in a hierarchical way and dynamically produce layered temporal profiles of output signals. We found that global and local feedbacks act in very different ways and on distinct features of the information flow conveyed by signal transduction but work highly coordinately to implement specific biological functions. The redundancy embodied with multiple signal-relaying channels and feedback controls bestow great robustness and the reaction hubs seated at junctions of different paths announce their paramount importance through exquisite parameter management. The current investigation reveals intriguing general features of the organization of cell signaling networks and their relevance to biological function, which may find interesting applications in analysis, design and control of bio-networks.

  5. Hierarchical Feedback Modules and Reaction Hubs in Cell Signaling Networks

    Science.gov (United States)

    Xu, Jianfeng; Lan, Yueheng

    2015-01-01

    Despite much effort, identification of modular structures and study of their organizing and functional roles remain a formidable challenge in molecular systems biology, which, however, is essential in reaching a systematic understanding of large-scale cell regulation networks and hence gaining capacity of exerting effective interference to cell activity. Combining graph theoretic methods with available dynamics information, we successfully retrieved multiple feedback modules of three important signaling networks. These feedbacks are structurally arranged in a hierarchical way and dynamically produce layered temporal profiles of output signals. We found that global and local feedbacks act in very different ways and on distinct features of the information flow conveyed by signal transduction but work highly coordinately to implement specific biological functions. The redundancy embodied with multiple signal-relaying channels and feedback controls bestow great robustness and the reaction hubs seated at junctions of different paths announce their paramount importance through exquisite parameter management. The current investigation reveals intriguing general features of the organization of cell signaling networks and their relevance to biological function, which may find interesting applications in analysis, design and control of bio-networks. PMID:25951347

  6. Developmental changes in the metabolic network of snapdragon flowers.

    Directory of Open Access Journals (Sweden)

    Joëlle K Muhlemann

    Full Text Available Evolutionary and reproductive success of angiosperms, the most diverse group of land plants, relies on visual and olfactory cues for pollinator attraction. Previous work has focused on elucidating the developmental regulation of pathways leading to the formation of pollinator-attracting secondary metabolites such as scent compounds and flower pigments. However, to date little is known about how flowers control their entire metabolic network to achieve the highly regulated production of metabolites attracting pollinators. Integrative analysis of transcripts and metabolites in snapdragon sepals and petals over flower development performed in this study revealed a profound developmental remodeling of gene expression and metabolite profiles in petals, but not in sepals. Genes up-regulated during petal development were enriched in functions related to secondary metabolism, fatty acid catabolism, and amino acid transport, whereas down-regulated genes were enriched in processes involved in cell growth, cell wall formation, and fatty acid biosynthesis. The levels of transcripts and metabolites in pathways leading to scent formation were coordinately up-regulated during petal development, implying transcriptional induction of metabolic pathways preceding scent formation. Developmental gene expression patterns in the pathways involved in scent production were different from those of glycolysis and the pentose phosphate pathway, highlighting distinct developmental regulation of secondary metabolism and primary metabolic pathways feeding into it.

  7. Chemical reaction vector embeddings: towards predicting drug metabolism in the human gut microbiome.

    Science.gov (United States)

    Mallory, Emily K; Acharya, Ambika; Rensi, Stefano E; Turnbaugh, Peter J; Bright, Roselie A; Altman, Russ B

    2018-01-01

    Bacteria in the human gut have the ability to activate, inactivate, and reactivate drugs with both intended and unintended effects. For example, the drug digoxin is reduced to the inactive metabolite dihydrodigoxin by the gut Actinobacterium E. lenta, and patients colonized with high levels of drug metabolizing strains may have limited response to the drug. Understanding the complete space of drugs that are metabolized by the human gut microbiome is critical for predicting bacteria-drug relationships and their effects on individual patient response. Discovery and validation of drug metabolism via bacterial enzymes has yielded >50 drugs after nearly a century of experimental research. However, there are limited computational tools for screening drugs for potential metabolism by the gut microbiome. We developed a pipeline for comparing and characterizing chemical transformations using continuous vector representations of molecular structure learned using unsupervised representation learning. We applied this pipeline to chemical reaction data from MetaCyc to characterize the utility of vector representations for chemical reaction transformations. After clustering molecular and reaction vectors, we performed enrichment analyses and queries to characterize the space. We detected enriched enzyme names, Gene Ontology terms, and Enzyme Consortium (EC) classes within reaction clusters. In addition, we queried reactions against drug-metabolite transformations known to be metabolized by the human gut microbiome. The top results for these known drug transformations contained similar substructure modifications to the original drug pair. This work enables high throughput screening of drugs and their resulting metabolites against chemical reactions common to gut bacteria.

  8. COEL: A Cloud-based Reaction Network Simulator

    Directory of Open Access Journals (Sweden)

    Peter eBanda

    2016-04-01

    Full Text Available Chemical Reaction Networks (CRNs are a formalism to describe the macroscopic behavior of chemical systems. We introduce COEL, a web- and cloud-based CRN simulation framework that does not require a local installation, runs simulations on a large computational grid, provides reliable database storage, and offers a visually pleasing and intuitive user interface. We present an overview of the underlying software, the technologies, and the main architectural approaches employed. Some of COEL's key features include ODE-based simulations of CRNs and multicompartment reaction networks with rich interaction options, a built-in plotting engine, automatic DNA-strand displacement transformation and visualization, SBML/Octave/Matlab export, and a built-in genetic-algorithm-based optimization toolbox for rate constants.COEL is an open-source project hosted on GitHub (http://dx.doi.org/10.5281/zenodo.46544, which allows interested research groups to deploy it on their own sever. Regular users can simply use the web instance at no cost at http://coel-sim.org. The framework is ideally suited for a collaborative use in both research and education.

  9. A Multilevel Adaptive Reaction-splitting Simulation Method for Stochastic Reaction Networks

    KAUST Repository

    Moraes, Alvaro

    2016-07-07

    In this work, we present a novel multilevel Monte Carlo method for kinetic simulation of stochastic reaction networks characterized by having simultaneously fast and slow reaction channels. To produce efficient simulations, our method adaptively classifies the reactions channels into fast and slow channels. To this end, we first introduce a state-dependent quantity named level of activity of a reaction channel. Then, we propose a low-cost heuristic that allows us to adaptively split the set of reaction channels into two subsets characterized by either a high or a low level of activity. Based on a time-splitting technique, the increments associated with high-activity channels are simulated using the tau-leap method, while those associated with low-activity channels are simulated using an exact method. This path simulation technique is amenable for coupled path generation and a corresponding multilevel Monte Carlo algorithm. To estimate expected values of observables of the system at a prescribed final time, our method bounds the global computational error to be below a prescribed tolerance, TOL, within a given confidence level. This goal is achieved with a computational complexity of order O(TOL-2), the same as with a pathwise-exact method, but with a smaller constant. We also present a novel low-cost control variate technique based on the stochastic time change representation by Kurtz, showing its performance on a numerical example. We present two numerical examples extracted from the literature that show how the reaction-splitting method obtains substantial gains with respect to the standard stochastic simulation algorithm and the multilevel Monte Carlo approach by Anderson and Higham. © 2016 Society for Industrial and Applied Mathematics.

  10. Predicting selective drug targets in cancer through metabolic networks

    Science.gov (United States)

    Folger, Ori; Jerby, Livnat; Frezza, Christian; Gottlieb, Eyal; Ruppin, Eytan; Shlomi, Tomer

    2011-01-01

    The interest in studying metabolic alterations in cancer and their potential role as novel targets for therapy has been rejuvenated in recent years. Here, we report the development of the first genome-scale network model of cancer metabolism, validated by correctly identifying genes essential for cellular proliferation in cancer cell lines. The model predicts 52 cytostatic drug targets, of which 40% are targeted by known, approved or experimental anticancer drugs, and the rest are new. It further predicts combinations of synthetic lethal drug targets, whose synergy is validated using available drug efficacy and gene expression measurements across the NCI-60 cancer cell line collection. Finally, potential selective treatments for specific cancers that depend on cancer type-specific downregulation of gene expression and somatic mutations are compiled. PMID:21694718

  11. Experimental (Network) and Evaluated Nuclear Reaction Data at NDS

    International Nuclear Information System (INIS)

    Otsuka, N.; Semkova, V.; Simakov, S.P.; Zerkin, V.

    2011-01-01

    Dr Simakov of Nuclear Data Services Unit in the Nuclear Data Section (NDS) gave a brief overview of the data compilation and evaluation activities in the nuclear data community: experimental nuclear reaction data (EXFOR, http://www-nds.iaea.org/exfor/) and evaluated nuclear reaction data (ENDF, http://www-nds.iaea.org/endf). The International Network of Nuclear Reaction Data Centres (NRDC) coordinated by NDS includes 14 Centres in 8 Countries (China, Hungary, India, Japan, Korea, Russian, Ukraine, USA) and 2 International Organizations (NEA, IAEA). It had the first meeting of four core centres (Brookhaven, Saclay, Obninsk, Vienna) in 1966 and the EXFOR was adopted as an official data exchange format. In 2000, IAEA implemented the EXFOR database as a relational multiform database and the EXFOR is a trusted, increasing and living database with 19100 experimental works (as of September 2011) and 141600 data tables. The EXFOR provides a compilation control system for selection of articles and compilation of data and the NRDC home page provides manuals, documents and codes. The nuclear data can be retrieved by the web-retrieval system or distributed on a DVD on request. The EXFOR data play a critical role in the development of evaluated nuclear reaction data. There are several major general purpose libraries: ENDF (US), CENDL (China), JEFF (EU), JENDL (Japan) and RUSFOND (Russia). In addition, there are special libraries for particular applications: EAF (European Activation File), FENDL (Fusion Evaluated Nuclear Data Library for ITER neutronics), IBANDL (Ion Beam Analysis Nuclear Data Library for surface analysis of solids), IRDF, DXS (Dosimetry, radiation damage and gas production data) and Medical portal. Dr V. Zerkin of NDS demonstrated the data retrieval from the EXFOR database and the ENDF library.

  12. (Im) Perfect robustness and adaptation of metabolic networks subject to metabolic and gene-expression regulation: marrying control engineering with metabolic control analysis

    NARCIS (Netherlands)

    He, F.; Fromion, V.; Westerhoff, H.V.

    2013-01-01

    Background: Metabolic control analysis (MCA) and supply-demand theory have led to appreciable understanding of the systems properties of metabolic networks that are subject exclusively to metabolic regulation. Supply-demand theory has not yet considered gene-expression regulation explicitly whilst a

  13. Safe design and operation of tank reactors for multiple-reaction networks: uniqueness and multiplicity

    NARCIS (Netherlands)

    Westerterp, K.R.; Westerink, E.J.

    1990-01-01

    A method is developed to design a tank reactor in which a network of reactions is carried out. The network is a combination of parallel and consecutive reactions. The method ensures unique operation. Dimensionless groups are used which are either representative of properties of the reaction system

  14. Mathematically Reduced Chemical Reaction Mechanism Using Neural Networks

    Energy Technology Data Exchange (ETDEWEB)

    Nelson Butuk

    2006-09-21

    This is an annual technical report for the work done over the last year (period ending 9/30/2005) on the project titled ''Mathematically Reduced Chemical Reaction Mechanism Using Neural Networks''. The aim of the project is to develop an efficient chemistry model for combustion simulations. The reduced chemistry model will be developed mathematically without the need of having extensive knowledge of the chemistry involved. To aid in the development of the model, Neural Networks (NN) will be used via a new network topology know as Non-linear Principal Components Analysis (NPCA). We report on the significant development made in developing a truly meshfree computational fluid dynamics (CFD) flow solver to be coupled to NPCA. First, the procedure of obtaining nearly analytic accurate first order derivatives using the complex step method (CSM) is extended to include computation of accurate meshfree second order derivatives via a theorem described in this report. Next, boosted generalized regression neural network (BGRNN), described in our previous report is combined with CSM and used to obtain complete solution of a hard to solve wave dominated sample second order partial differential equation (PDE): the cubic Schrodinger equation. The resulting algorithm is a significant improvement of the meshfree technique of smooth particle hydrodynamics method (SPH). It is suggested that the demonstrated meshfree technique be termed boosted smooth particle hydrodynamics method (BSPH). Some of the advantages of BSPH over other meshfree methods include; it is of higher order accuracy than SPH; compared to other meshfree methods, it is completely meshfree and does not require any background meshes; It does not involve any construction of shape function with their associated solution of possibly ill conditioned matrix equations; compared to some SPH techniques, no equation for the smoothing parameter is required; finally it is easy to program.

  15. The biochemistry of drug metabolism--an introduction: part 4. reactions of conjugation and their enzymes.

    Science.gov (United States)

    Testa, Bernard; Krämer, Stefanie D

    2008-11-01

    This review continues a general presentation of the metabolism of drugs and other xenobiotics begun in three recent issues of Chemistry & Biodiversity. The present Part is dedicated to reactions of conjugation, namely methylation, sulfonation, and phosphorylation, glucuronidation and other glycosidations, acetylation and other acylations, the formation and fate of coenzyme A conjugates, glutathione conjugation, and the reaction of amines with carbonyl compounds. It presents the many transferases involved, their nomenclature, relevant biochemical properties, catalytic mechanisms, and the reactions they catalyze. Nonenzymatic reactions, mainly of glutathione conjugation, also receive due attention. A number of medicinally, environmentally, and toxicologically relevant examples are presented and discussed.

  16. Managing uncertainty in metabolic network structure and improving predictions using EnsembleFBA.

    Science.gov (United States)

    Biggs, Matthew B; Papin, Jason A

    2017-03-01

    Genome-scale metabolic network reconstructions (GENREs) are repositories of knowledge about the metabolic processes that occur in an organism. GENREs have been used to discover and interpret metabolic functions, and to engineer novel network structures. A major barrier preventing more widespread use of GENREs, particularly to study non-model organisms, is the extensive time required to produce a high-quality GENRE. Many automated approaches have been developed which reduce this time requirement, but automatically-reconstructed draft GENREs still require curation before useful predictions can be made. We present a novel approach to the analysis of GENREs which improves the predictive capabilities of draft GENREs by representing many alternative network structures, all equally consistent with available data, and generating predictions from this ensemble. This ensemble approach is compatible with many reconstruction methods. We refer to this new approach as Ensemble Flux Balance Analysis (EnsembleFBA). We validate EnsembleFBA by predicting growth and gene essentiality in the model organism Pseudomonas aeruginosa UCBPP-PA14. We demonstrate how EnsembleFBA can be included in a systems biology workflow by predicting essential genes in six Streptococcus species and mapping the essential genes to small molecule ligands from DrugBank. We found that some metabolic subsystems contributed disproportionately to the set of predicted essential reactions in a way that was unique to each Streptococcus species, leading to species-specific outcomes from small molecule interactions. Through our analyses of P. aeruginosa and six Streptococci, we show that ensembles increase the quality of predictions without drastically increasing reconstruction time, thus making GENRE approaches more practical for applications which require predictions for many non-model organisms. All of our functions and accompanying example code are available in an open online repository.

  17. Managing uncertainty in metabolic network structure and improving predictions using EnsembleFBA.

    Directory of Open Access Journals (Sweden)

    Matthew B Biggs

    2017-03-01

    Full Text Available Genome-scale metabolic network reconstructions (GENREs are repositories of knowledge about the metabolic processes that occur in an organism. GENREs have been used to discover and interpret metabolic functions, and to engineer novel network structures. A major barrier preventing more widespread use of GENREs, particularly to study non-model organisms, is the extensive time required to produce a high-quality GENRE. Many automated approaches have been developed which reduce this time requirement, but automatically-reconstructed draft GENREs still require curation before useful predictions can be made. We present a novel approach to the analysis of GENREs which improves the predictive capabilities of draft GENREs by representing many alternative network structures, all equally consistent with available data, and generating predictions from this ensemble. This ensemble approach is compatible with many reconstruction methods. We refer to this new approach as Ensemble Flux Balance Analysis (EnsembleFBA. We validate EnsembleFBA by predicting growth and gene essentiality in the model organism Pseudomonas aeruginosa UCBPP-PA14. We demonstrate how EnsembleFBA can be included in a systems biology workflow by predicting essential genes in six Streptococcus species and mapping the essential genes to small molecule ligands from DrugBank. We found that some metabolic subsystems contributed disproportionately to the set of predicted essential reactions in a way that was unique to each Streptococcus species, leading to species-specific outcomes from small molecule interactions. Through our analyses of P. aeruginosa and six Streptococci, we show that ensembles increase the quality of predictions without drastically increasing reconstruction time, thus making GENRE approaches more practical for applications which require predictions for many non-model organisms. All of our functions and accompanying example code are available in an open online repository.

  18. iRsp1095: A genome-scale reconstruction of the Rhodobacter sphaeroides metabolic network

    Directory of Open Access Journals (Sweden)

    Gorzalski Alexander S

    2011-07-01

    Full Text Available Abstract Background Rhodobacter sphaeroides is one of the best studied purple non-sulfur photosynthetic bacteria and serves as an excellent model for the study of photosynthesis and the metabolic capabilities of this and related facultative organisms. The ability of R. sphaeroides to produce hydrogen (H2, polyhydroxybutyrate (PHB or other hydrocarbons, as well as its ability to utilize atmospheric carbon dioxide (CO2 as a carbon source under defined conditions, make it an excellent candidate for use in a wide variety of biotechnological applications. A genome-level understanding of its metabolic capabilities should help realize this biotechnological potential. Results Here we present a genome-scale metabolic network model for R. sphaeroides strain 2.4.1, designated iRsp1095, consisting of 1,095 genes, 796 metabolites and 1158 reactions, including R. sphaeroides-specific biomass reactions developed in this study. Constraint-based analysis showed that iRsp1095 agreed well with experimental observations when modeling growth under respiratory and phototrophic conditions. Genes essential for phototrophic growth were predicted by single gene deletion analysis. During pathway-level analyses of R. sphaeroides metabolism, an alternative route for CO2 assimilation was identified. Evaluation of photoheterotrophic H2 production using iRsp1095 indicated that maximal yield would be obtained from growing cells, with this predicted maximum ~50% higher than that observed experimentally from wild type cells. Competing pathways that might prevent the achievement of this theoretical maximum were identified to guide future genetic studies. Conclusions iRsp1095 provides a robust framework for future metabolic engineering efforts to optimize the solar- and nutrient-powered production of biofuels and other valuable products by R. sphaeroides and closely related organisms.

  19. Genome-scale reconstruction and analysis of the metabolic network in the hyperthermophilic archaeon Sulfolobus solfataricus.

    Directory of Open Access Journals (Sweden)

    Thomas Ulas

    Full Text Available We describe the reconstruction of a genome-scale metabolic model of the crenarchaeon Sulfolobus solfataricus, a hyperthermoacidophilic microorganism. It grows in terrestrial volcanic hot springs with growth occurring at pH 2-4 (optimum 3.5 and a temperature of 75-80°C (optimum 80°C. The genome of Sulfolobus solfataricus P2 contains 2,992,245 bp on a single circular chromosome and encodes 2,977 proteins and a number of RNAs. The network comprises 718 metabolic and 58 transport/exchange reactions and 705 unique metabolites, based on the annotated genome and available biochemical data. Using the model in conjunction with constraint-based methods, we simulated the metabolic fluxes induced by different environmental and genetic conditions. The predictions were compared to experimental measurements and phenotypes of S. solfataricus. Furthermore, the performance of the network for 35 different carbon sources known for S. solfataricus from the literature was simulated. Comparing the growth on different carbon sources revealed that glycerol is the carbon source with the highest biomass flux per imported carbon atom (75% higher than glucose. Experimental data was also used to fit the model to phenotypic observations. In addition to the commonly known heterotrophic growth of S. solfataricus, the crenarchaeon is also able to grow autotrophically using the hydroxypropionate-hydroxybutyrate cycle for bicarbonate fixation. We integrated this pathway into our model and compared bicarbonate fixation with growth on glucose as sole carbon source. Finally, we tested the robustness of the metabolism with respect to gene deletions using the method of Minimization of Metabolic Adjustment (MOMA, which predicted that 18% of all possible single gene deletions would be lethal for the organism.

  20. Alkalizing reactions streamline cellular metabolism in acidogenic microorganisms.

    Directory of Open Access Journals (Sweden)

    Stefania Arioli

    Full Text Available An understanding of the integrated relationships among the principal cellular functions that govern the bioenergetic reactions of an organism is necessary to determine how cells remain viable and optimise their fitness in the environment. Urease is a complex enzyme that catalyzes the hydrolysis of urea to ammonia and carbonic acid. While the induction of urease activity by several microorganisms has been predominantly considered a stress-response that is initiated to generate a nitrogen source in response to a low environmental pH, here we demonstrate a new role of urease in the optimisation of cellular bioenergetics. We show that urea hydrolysis increases the catabolic efficiency of Streptococcus thermophilus, a lactic acid bacterium that is widely used in the industrial manufacture of dairy products. By modulating the intracellular pH and thereby increasing the activity of β-galactosidase, glycolytic enzymes and lactate dehydrogenase, urease increases the overall change in enthalpy generated by the bioenergetic reactions. A cooperative altruistic behaviour of urease-positive microorganisms on the urease-negative microorganisms within the same environment was also observed. The physiological role of a single enzymatic activity demonstrates a novel and unexpected view of the non-transcriptional regulatory mechanisms that govern the bioenergetics of a bacterial cell, highlighting a new role for cytosol-alkalizing biochemical pathways in acidogenic microorganisms.

  1. Pathway-Consensus Approach to Metabolic Network Reconstruction for Pseudomonas putida KT2440 by Systematic Comparison of Published Models.

    Science.gov (United States)

    Yuan, Qianqian; Huang, Teng; Li, Peishun; Hao, Tong; Li, Feiran; Ma, Hongwu; Wang, Zhiwen; Zhao, Xueming; Chen, Tao; Goryanin, Igor

    2017-01-01

    Over 100 genome-scale metabolic networks (GSMNs) have been published in recent years and widely used for phenotype prediction and pathway design. However, GSMNs for a specific organism reconstructed by different research groups usually produce inconsistent simulation results, which makes it difficult to use the GSMNs for precise optimal pathway design. Therefore, it is necessary to compare and identify the discrepancies among networks and build a consensus metabolic network for an organism. Here we proposed a process for systematic comparison of metabolic networks at pathway level. We compared four published GSMNs of Pseudomonas putida KT2440 and identified the discrepancies leading to inconsistent pathway calculation results. The mistakes in the models were corrected based on information from literature so that all the calculated synthesis and uptake pathways were the same. Subsequently we built a pathway-consensus model and then further updated it with the latest genome annotation information to obtain modelPpuQY1140 for P. putida KT2440, which includes 1140 genes, 1171 reactions and 1104 metabolites. We found that even small errors in a GSMN could have great impacts on the calculated optimal pathways and thus may lead to incorrect pathway design strategies. Careful investigation of the calculated pathways during the metabolic network reconstruction process is essential for building proper GSMNs for pathway design.

  2. Pathway-Consensus Approach to Metabolic Network Reconstruction for Pseudomonas putida KT2440 by Systematic Comparison of Published Models.

    Directory of Open Access Journals (Sweden)

    Qianqian Yuan

    Full Text Available Over 100 genome-scale metabolic networks (GSMNs have been published in recent years and widely used for phenotype prediction and pathway design. However, GSMNs for a specific organism reconstructed by different research groups usually produce inconsistent simulation results, which makes it difficult to use the GSMNs for precise optimal pathway design. Therefore, it is necessary to compare and identify the discrepancies among networks and build a consensus metabolic network for an organism. Here we proposed a process for systematic comparison of metabolic networks at pathway level. We compared four published GSMNs of Pseudomonas putida KT2440 and identified the discrepancies leading to inconsistent pathway calculation results. The mistakes in the models were corrected based on information from literature so that all the calculated synthesis and uptake pathways were the same. Subsequently we built a pathway-consensus model and then further updated it with the latest genome annotation information to obtain modelPpuQY1140 for P. putida KT2440, which includes 1140 genes, 1171 reactions and 1104 metabolites. We found that even small errors in a GSMN could have great impacts on the calculated optimal pathways and thus may lead to incorrect pathway design strategies. Careful investigation of the calculated pathways during the metabolic network reconstruction process is essential for building proper GSMNs for pathway design.

  3. Evaluation of an S-system root-finding method for estimating parameters in a metabolic reaction model.

    Science.gov (United States)

    Iwata, Michio; Miyawaki-Kuwakado, Atsuko; Yoshida, Erika; Komori, Soichiro; Shiraishi, Fumihide

    2018-02-02

    In a mathematical model, estimation of parameters from time-series data of metabolic concentrations in cells is a challenging task. However, it seems that a promising approach for such estimation has not yet been established. Biochemical Systems Theory (BST) is a powerful methodology to construct a power-law type model for a given metabolic reaction system and to then characterize it efficiently. In this paper, we discuss the use of an S-system root-finding method (S-system method) to estimate parameters from time-series data of metabolite concentrations. We demonstrate that the S-system method is superior to the Newton-Raphson method in terms of the convergence region and iteration number. We also investigate the usefulness of a translocation technique and a complex-step differentiation method toward the practical application of the S-system method. The results indicate that the S-system method is useful to construct mathematical models for a variety of metabolic reaction networks. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Hybrid Multilevel Monte Carlo Simulation of Stochastic Reaction Networks

    KAUST Repository

    Moraes, Alvaro

    2015-01-07

    Stochastic reaction networks (SRNs) is a class of continuous-time Markov chains intended to describe, from the kinetic point of view, the time-evolution of chemical systems in which molecules of different chemical species undergo a finite set of reaction channels. This talk is based on articles [4, 5, 6], where we are interested in the following problem: given a SRN, X, defined though its set of reaction channels, and its initial state, x0, estimate E (g(X(T))); that is, the expected value of a scalar observable, g, of the process, X, at a fixed time, T. This problem lead us to define a series of Monte Carlo estimators, M, such that, with high probability can produce values close to the quantity of interest, E (g(X(T))). More specifically, given a user-selected tolerance, TOL, and a small confidence level, η, find an estimator, M, based on approximate sampled paths of X, such that, P (|E (g(X(T))) − M| ≤ TOL) ≥ 1 − η; even more, we want to achieve this objective with near optimal computational work. We first introduce a hybrid path-simulation scheme based on the well-known stochastic simulation algorithm (SSA)[3] and the tau-leap method [2]. Then, we introduce a Multilevel Monte Carlo strategy that allows us to achieve a computational complexity of order O(T OL−2), this is the same computational complexity as in an exact method but with a smaller constant. We provide numerical examples to show our results.

  5. Metabolic regulation and maximal reaction optimization in the central metabolism of a yeast cell

    Science.gov (United States)

    Kasbawati, Gunawan, A. Y.; Hertadi, R.; Sidarto, K. A.

    2015-03-01

    Regulation of fluxes in a metabolic system aims to enhance the production rates of biotechnologically important compounds. Regulation is held via modification the cellular activities of a metabolic system. In this study, we present a metabolic analysis of ethanol fermentation process of a yeast cell in terms of continuous culture scheme. The metabolic regulation is based on the kinetic formulation in combination with metabolic control analysis to indicate the key enzymes which can be modified to enhance ethanol production. The model is used to calculate the intracellular fluxes in the central metabolism of the yeast cell. Optimal control is then applied to the kinetic model to find the optimal regulation for the fermentation system. The sensitivity results show that there are external and internal control parameters which are adjusted in enhancing ethanol production. As an external control parameter, glucose supply should be chosen in appropriate way such that the optimal ethanol production can be achieved. For the internal control parameter, we find three enzymes as regulation targets namely acetaldehyde dehydrogenase, pyruvate decarboxylase, and alcohol dehydrogenase which reside in the acetaldehyde branch. Among the three enzymes, however, only acetaldehyde dehydrogenase has a significant effect to obtain optimal ethanol production efficiently.

  6. Web-based metabolic network visualization with a zooming user interface

    Directory of Open Access Journals (Sweden)

    Karp Peter D

    2011-05-01

    Full Text Available Abstract Background Displaying complex metabolic-map diagrams, for Web browsers, and allowing users to interact with them for querying and overlaying expression data over them is challenging. Description We present a Web-based metabolic-map diagram, which can be interactively explored by the user, called the Cellular Overview. The main characteristic of this application is the zooming user interface enabling the user to focus on appropriate granularities of the network at will. Various searching commands are available to visually highlight sets of reactions, pathways, enzymes, metabolites, and so on. Expression data from single or multiple experiments can be overlaid on the diagram, which we call the Omics Viewer capability. The application provides Web services to highlight the diagram and to invoke the Omics Viewer. This application is entirely written in JavaScript for the client browsers and connect to a Pathway Tools Web server to retrieve data and diagrams. It uses the OpenLayers library to display tiled diagrams. Conclusions This new online tool is capable of displaying large and complex metabolic-map diagrams in a very interactive manner. This application is available as part of the Pathway Tools software that powers multiple metabolic databases including Biocyc.org: The Cellular Overview is accessible under the Tools menu.

  7. Genome-scale reconstruction of metabolic network for a halophilic extremophile, Chromohalobacter salexigens DSM 3043.

    Science.gov (United States)

    Ates, Ozlem; Oner, Ebru Toksoy; Arga, Kazim Y

    2011-01-21

    Chromohalobacter salexigens (formerly Halomonas elongata DSM 3043) is a halophilic extremophile with a very broad salinity range and is used as a model organism to elucidate prokaryotic osmoadaptation due to its strong euryhaline phenotype. C. salexigens DSM 3043's metabolism was reconstructed based on genomic, biochemical and physiological information via a non-automated but iterative process. This manually-curated reconstruction accounts for 584 genes, 1386 reactions, and 1411 metabolites. By using flux balance analysis, the model was extensively validated against literature data on the C. salexigens phenotypic features, the transport and use of different substrates for growth as well as against experimental observations on the uptake and accumulation of industrially important organic osmolytes, ectoine, betaine, and its precursor choline, which play important roles in the adaptive response to osmotic stress. This work presents the first comprehensive genome-scale metabolic model of a halophilic bacterium. Being a useful guide for identification and filling of knowledge gaps, the reconstructed metabolic network iOA584 will accelerate the research on halophilic bacteria towards application of systems biology approaches and design of metabolic engineering strategies.

  8. Genome-scale reconstruction of metabolic network for a halophilic extremophile, Chromohalobacter salexigens DSM 3043

    Directory of Open Access Journals (Sweden)

    Oner Ebru

    2011-01-01

    Full Text Available Abstract Background Chromohalobacter salexigens (formerly Halomonas elongata DSM 3043 is a halophilic extremophile with a very broad salinity range and is used as a model organism to elucidate prokaryotic osmoadaptation due to its strong euryhaline phenotype. Results C. salexigens DSM 3043's metabolism was reconstructed based on genomic, biochemical and physiological information via a non-automated but iterative process. This manually-curated reconstruction accounts for 584 genes, 1386 reactions, and 1411 metabolites. By using flux balance analysis, the model was extensively validated against literature data on the C. salexigens phenotypic features, the transport and use of different substrates for growth as well as against experimental observations on the uptake and accumulation of industrially important organic osmolytes, ectoine, betaine, and its precursor choline, which play important roles in the adaptive response to osmotic stress. Conclusions This work presents the first comprehensive genome-scale metabolic model of a halophilic bacterium. Being a useful guide for identification and filling of knowledge gaps, the reconstructed metabolic network iOA584 will accelerate the research on halophilic bacteria towards application of systems biology approaches and design of metabolic engineering strategies.

  9. Reactions and enzymes in the metabolism of drugs and other xenobiotics.

    Science.gov (United States)

    Testa, Bernard; Pedretti, Alessandro; Vistoli, Giulio

    2012-06-01

    In this article, we offer an overview of the compared quantitative importance of biotransformation reactions in the metabolism of drugs and other xenobiotics, based on a meta-analysis of current research interests. Also, we assess the relative significance the enzyme (super)families or categories catalysing these reactions. We put the facts unveiled by the analysis into a drug discovery context and draw some implications. The results confirm the primary role of cytochrome P450-catalysed oxidations and UDP-glucuronosyl-catalysed glucuronidations, but they also document the marked significance of several other reactions. Thus, there is a need for several drug discovery scientists to better grasp the variety of drug metabolism reactions and enzymes and their consequences. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Radiation effects on K+-activated metabolic reactions

    International Nuclear Information System (INIS)

    Rink, H.; Bergeder, H.D.

    1976-01-01

    A study has been made of the effects of a minor radiation-induced decrease in K + -content on a K + -dependent enzyme, the aldehyde dehydrogenase in yeast cells. Irradiated (200 rad X-rays) and unirradiated starved cell suspensions were incubated with acetaldehyde and varying K + concentrations, and the intracellular K + -content determined by flame photometry. Oxygen consumption (equivalent to the utilized amount of substrate) was measured under the same conditions of incubation, using the Warburg technique. The results demonstrated that irradiated and unirradiated cells behaved qualitatively in the same way, but there were essential quantitative differences. The highest intracellular K + content and highest O 2 -concentration were always reached at the same extracellular K + -concentration. These extracellular concentrations were always higher for irradiated samples, and the maximum values of K + -content and O 2 -consumption were always smaller in irradiated cells than in controls. A reduction in K + content as small as 15 μMol.g -1 was sufficient to affect the turnover rate, confirming that the K + -decrease accompanying irradiation can be sufficient to cause secondary disturbances in metabolism which will contribute to biological radiation effects. (U.K.)

  11. Evolution of Autocatalytic Sets in Computational Models of Chemical Reaction Networks.

    Science.gov (United States)

    Hordijk, Wim

    2016-06-01

    Several computational models of chemical reaction networks have been presented in the literature in the past, showing the appearance and (potential) evolution of autocatalytic sets. However, the notion of autocatalytic sets has been defined differently in different modeling contexts, each one having some shortcoming or limitation. Here, we review four such models and definitions, and then formally describe and analyze them in the context of a mathematical framework for studying autocatalytic sets known as RAF theory. The main results are that: (1) RAF theory can capture the various previous definitions of autocatalytic sets and is therefore more complete and general, (2) the formal framework can be used to efficiently detect and analyze autocatalytic sets in all of these different computational models, (3) autocatalytic (RAF) sets are indeed likely to appear and evolve in such models, and (4) this could have important implications for a possible metabolism-first scenario for the origin of life.

  12. Metabolic control analysis of biochemical pathways based on a thermokinetic description of reaction rates

    DEFF Research Database (Denmark)

    Nielsen, Jens Bredal

    1997-01-01

    of the thermokinetic description of reaction rates to include the influence of effecters. Here the reaction rate is written as a linear function of the logarithm of the metabolite concentrations. With this type of rate function it is shown that the approach of Delgado and Liao [Biochem. J. (1992) 282, 919-927] can......Metabolic control analysis is a powerful technique for the evaluation of flux control within biochemical pathways. Its foundation is the elasticity coefficients and the flux control coefficients (FCCs). On the basis of a thermokinetic description of reaction rates it is here shown...... that the elasticity coefficients can be calculated directly from the pool levels of metabolites at steady state. The only requirement is that one thermodynamic parameter be known, namely the reaction affinity at the intercept of the tangent in the inflection point of the curve of reaction rate against reaction...

  13. Metabolic control analysis of biochemical pathways based on a thermokinetic description of reaction rates

    DEFF Research Database (Denmark)

    Nielsen, Jens Bredal

    1997-01-01

    Metabolic control analysis is a powerful technique for the evaluation of flux control within biochemical pathways. Its foundation is the elasticity coefficients and the flux control coefficients (FCCs). On the basis of a thermokinetic description of reaction rates it is here shown...... that the elasticity coefficients can be calculated directly from the pool levels of metabolites at steady state. The only requirement is that one thermodynamic parameter be known, namely the reaction affinity at the intercept of the tangent in the inflection point of the curve of reaction rate against reaction...... of the thermokinetic description of reaction rates to include the influence of effecters. Here the reaction rate is written as a linear function of the logarithm of the metabolite concentrations. With this type of rate function it is shown that the approach of Delgado and Liao [Biochem. J. (1992) 282, 919-927] can...

  14. Genome-scale reconstruction of the Streptococcus pyogenes M49 metabolic network reveals growth requirements and indicates potential drug targets.

    Science.gov (United States)

    Levering, Jennifer; Fiedler, Tomas; Sieg, Antje; van Grinsven, Koen W A; Hering, Silvio; Veith, Nadine; Olivier, Brett G; Klett, Lara; Hugenholtz, Jeroen; Teusink, Bas; Kreikemeyer, Bernd; Kummer, Ursula

    2016-08-20

    Genome-scale metabolic models comprise stoichiometric relations between metabolites, as well as associations between genes and metabolic reactions and facilitate the analysis of metabolism. We computationally reconstructed the metabolic network of the lactic acid bacterium Streptococcus pyogenes M49. Initially, we based the reconstruction on genome annotations and already existing and curated metabolic networks of Bacillus subtilis, Escherichia coli, Lactobacillus plantarum and Lactococcus lactis. This initial draft was manually curated with the final reconstruction accounting for 480 genes associated with 576 reactions and 558 metabolites. In order to constrain the model further, we performed growth experiments of wild type and arcA deletion strains of S. pyogenes M49 in a chemically defined medium and calculated nutrient uptake and production fluxes. We additionally performed amino acid auxotrophy experiments to test the consistency of the model. The established genome-scale model can be used to understand the growth requirements of the human pathogen S. pyogenes and define optimal and suboptimal conditions, but also to describe differences and similarities between S. pyogenes and related lactic acid bacteria such as L. lactis in order to find strategies to reduce the growth of the pathogen and propose drug targets. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Exact probability distributions of selected species in stochastic chemical reaction networks.

    Science.gov (United States)

    López-Caamal, Fernando; Marquez-Lago, Tatiana T

    2014-09-01

    Chemical reactions are discrete, stochastic events. As such, the species' molecular numbers can be described by an associated master equation. However, handling such an equation may become difficult due to the large size of reaction networks. A commonly used approach to forecast the behaviour of reaction networks is to perform computational simulations of such systems and analyse their outcome statistically. This approach, however, might require high computational costs to provide accurate results. In this paper we opt for an analytical approach to obtain the time-dependent solution of the Chemical Master Equation for selected species in a general reaction network. When the reaction networks are composed exclusively of zeroth and first-order reactions, this analytical approach significantly alleviates the computational burden required by simulation-based methods. By building upon these analytical solutions, we analyse a general monomolecular reaction network with an arbitrary number of species to obtain the exact marginal probability distribution for selected species. Additionally, we study two particular topologies of monomolecular reaction networks, namely (i) an unbranched chain of monomolecular reactions with and without synthesis and degradation reactions and (ii) a circular chain of monomolecular reactions. We illustrate our methodology and alternative ways to use it for non-linear systems by analysing a protein autoactivation mechanism. Later, we compare the computational load required for the implementation of our results and a pure computational approach to analyse an unbranched chain of monomolecular reactions. Finally, we study calcium ions gates in the sarco/endoplasmic reticulum mediated by ryanodine receptors.

  16. A state of the art of metabolic networks of unicellular microalgae and cyanobacteria for biofuel production.

    Science.gov (United States)

    Baroukh, Caroline; Muñoz-Tamayo, Rafael; Steyer, Jean-Philippe; Bernard, Olivier

    2015-07-01

    The most promising and yet challenging application of microalgae and cyanobacteria is the production of renewable energy: biodiesel from microalgae triacylglycerols and bioethanol from cyanobacteria carbohydrates. A thorough understanding of microalgal and cyanobacterial metabolism is necessary to master and optimize biofuel production yields. To this end, systems biology and metabolic modeling have proven to be very efficient tools if supported by an accurate knowledge of the metabolic network. However, unlike heterotrophic microorganisms that utilize the same substrate for energy and as carbon source, microalgae and cyanobacteria require light for energy and inorganic carbon (CO2 or bicarbonate) as carbon source. This double specificity, together with the complex mechanisms of light capture, makes the representation of metabolic network nonstandard. Here, we review the existing metabolic networks of photoautotrophic microalgae and cyanobacteria. We highlight how these networks have been useful for gaining insight on photoautotrophic metabolism. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  17. Accelerated Sensitivity Analysis in High-Dimensional Stochastic Reaction Networks.

    Science.gov (United States)

    Arampatzis, Georgios; Katsoulakis, Markos A; Pantazis, Yannis

    2015-01-01

    Existing sensitivity analysis approaches are not able to handle efficiently stochastic reaction networks with a large number of parameters and species, which are typical in the modeling and simulation of complex biochemical phenomena. In this paper, a two-step strategy for parametric sensitivity analysis for such systems is proposed, exploiting advantages and synergies between two recently proposed sensitivity analysis methodologies for stochastic dynamics. The first method performs sensitivity analysis of the stochastic dynamics by means of the Fisher Information Matrix on the underlying distribution of the trajectories; the second method is a reduced-variance, finite-difference, gradient-type sensitivity approach relying on stochastic coupling techniques for variance reduction. Here we demonstrate that these two methods can be combined and deployed together by means of a new sensitivity bound which incorporates the variance of the quantity of interest as well as the Fisher Information Matrix estimated from the first method. The first step of the proposed strategy labels sensitivities using the bound and screens out the insensitive parameters in a controlled manner. In the second step of the proposed strategy, a finite-difference method is applied only for the sensitivity estimation of the (potentially) sensitive parameters that have not been screened out in the first step. Results on an epidermal growth factor network with fifty parameters and on a protein homeostasis with eighty parameters demonstrate that the proposed strategy is able to quickly discover and discard the insensitive parameters and in the remaining potentially sensitive parameters it accurately estimates the sensitivities. The new sensitivity strategy can be several times faster than current state-of-the-art approaches that test all parameters, especially in "sloppy" systems. In particular, the computational acceleration is quantified by the ratio between the total number of parameters over the

  18. Accelerated Sensitivity Analysis in High-Dimensional Stochastic Reaction Networks.

    Directory of Open Access Journals (Sweden)

    Georgios Arampatzis

    Full Text Available Existing sensitivity analysis approaches are not able to handle efficiently stochastic reaction networks with a large number of parameters and species, which are typical in the modeling and simulation of complex biochemical phenomena. In this paper, a two-step strategy for parametric sensitivity analysis for such systems is proposed, exploiting advantages and synergies between two recently proposed sensitivity analysis methodologies for stochastic dynamics. The first method performs sensitivity analysis of the stochastic dynamics by means of the Fisher Information Matrix on the underlying distribution of the trajectories; the second method is a reduced-variance, finite-difference, gradient-type sensitivity approach relying on stochastic coupling techniques for variance reduction. Here we demonstrate that these two methods can be combined and deployed together by means of a new sensitivity bound which incorporates the variance of the quantity of interest as well as the Fisher Information Matrix estimated from the first method. The first step of the proposed strategy labels sensitivities using the bound and screens out the insensitive parameters in a controlled manner. In the second step of the proposed strategy, a finite-difference method is applied only for the sensitivity estimation of the (potentially sensitive parameters that have not been screened out in the first step. Results on an epidermal growth factor network with fifty parameters and on a protein homeostasis with eighty parameters demonstrate that the proposed strategy is able to quickly discover and discard the insensitive parameters and in the remaining potentially sensitive parameters it accurately estimates the sensitivities. The new sensitivity strategy can be several times faster than current state-of-the-art approaches that test all parameters, especially in "sloppy" systems. In particular, the computational acceleration is quantified by the ratio between the total number of

  19. Defect reaction network in Si-doped InAs. Numerical predictions.

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, Peter A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-05-01

    This Report characterizes the defects in the def ect reaction network in silicon - doped, n - type InAs predicted with first principles density functional theory. The reaction network is deduced by following exothermic defect reactions starting with the initially mobile interstitial defects reacting with common displacement damage defects in Si - doped InAs , until culminating in immobile reaction p roducts. The defect reactions and reaction energies are tabulated, along with the properties of all the silicon - related defects in the reaction network. This Report serves to extend the results for the properties of intrinsic defects in bulk InAs as colla ted in SAND 2013 - 2477 : Simple intrinsic defects in InAs : Numerical predictions to include Si - containing simple defects likely to be present in a radiation - induced defect reaction sequence . This page intentionally left blank

  20. Exploring the metabolic network of the epidemic pathogen Burkholderia cenocepacia J2315 via genome-scale reconstruction

    Directory of Open Access Journals (Sweden)

    Panda Gurudutta

    2011-05-01

    Full Text Available Abstract Background Burkholderia cenocepacia is a threatening nosocomial epidemic pathogen in patients with cystic fibrosis (CF or a compromised immune system. Its high level of antibiotic resistance is an increasing concern in treatments against its infection. Strain B. cenocepacia J2315 is the most infectious isolate from CF patients. There is a strong demand to reconstruct a genome-scale metabolic network of B. cenocepacia J2315 to systematically analyze its metabolic capabilities and its virulence traits, and to search for potential clinical therapy targets. Results We reconstructed the genome-scale metabolic network of B. cenocepacia J2315. An iterative reconstruction process led to the establishment of a robust model, iKF1028, which accounts for 1,028 genes, 859 internal reactions, and 834 metabolites. The model iKF1028 captures important metabolic capabilities of B. cenocepacia J2315 with a particular focus on the biosyntheses of key metabolic virulence factors to assist in understanding the mechanism of disease infection and identifying potential drug targets. The model was tested through BIOLOG assays. Based on the model, the genome annotation of B. cenocepacia J2315 was refined and 24 genes were properly re-annotated. Gene and enzyme essentiality were analyzed to provide further insights into the genome function and architecture. A total of 45 essential enzymes were identified as potential therapeutic targets. Conclusions As the first genome-scale metabolic network of B. cenocepacia J2315, iKF1028 allows a systematic study of the metabolic properties of B. cenocepacia and its key metabolic virulence factors affecting the CF community. The model can be used as a discovery tool to design novel drugs against diseases caused by this notorious pathogen.

  1. Microbial diversity and metabolic networks in acid mine drainage habitats.

    Science.gov (United States)

    Méndez-García, Celia; Peláez, Ana I; Mesa, Victoria; Sánchez, Jesús; Golyshina, Olga V; Ferrer, Manuel

    2015-01-01

    Acid mine drainage (AMD) emplacements are low-complexity natural systems. Low-pH conditions appear to be the main factor underlying the limited diversity of the microbial populations thriving in these environments, although temperature, ionic composition, total organic carbon, and dissolved oxygen are also considered to significantly influence their microbial life. This natural reduction in diversity driven by extreme conditions was reflected in several studies on the microbial populations inhabiting the various micro-environments present in such ecosystems. Early studies based on the physiology of the autochthonous microbiota and the growing success of omics-based methodologies have enabled a better understanding of microbial ecology and function in low-pH mine outflows; however, complementary omics-derived data should be included to completely describe their microbial ecology. Furthermore, recent updates on the distribution of eukaryotes and archaea recovered through sterile filtering (herein referred to as filterable fraction) in these environments demand their inclusion in the microbial characterization of AMD systems. In this review, we present a complete overview of the bacterial, archaeal (including filterable fraction), and eukaryotic diversity in these ecosystems, and include a thorough depiction of the metabolism and element cycling in AMD habitats. We also review different metabolic network structures at the organismal level, which is necessary to disentangle the role of each member of the AMD communities described thus far.

  2. Stochastic analysis of Chemical Reaction Networks using Linear Noise Approximation.

    Science.gov (United States)

    Cardelli, Luca; Kwiatkowska, Marta; Laurenti, Luca

    2016-11-01

    Stochastic evolution of Chemical Reactions Networks (CRNs) over time is usually analyzed through solving the Chemical Master Equation (CME) or performing extensive simulations. Analysing stochasticity is often needed, particularly when some molecules occur in low numbers. Unfortunately, both approaches become infeasible if the system is complex and/or it cannot be ensured that initial populations are small. We develop a probabilistic logic for CRNs that enables stochastic analysis of the evolution of populations of molecular species. We present an approximate model checking algorithm based on the Linear Noise Approximation (LNA) of the CME, whose computational complexity is independent of the population size of each species and polynomial in the number of different species. The algorithm requires the solution of first order polynomial differential equations. We prove that our approach is valid for any CRN close enough to the thermodynamical limit. However, we show on four case studies that it can still provide good approximation even for low molecule counts. Our approach enables rigorous analysis of CRNs that are not analyzable by solving the CME, but are far from the deterministic limit. Moreover, it can be used for a fast approximate stochastic characterization of a CRN. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  3. A consensus yeast metabolic network obtained from a community approach to systems biology.

    NARCIS (Netherlands)

    Herrgard, M.J.; Swainston, N.; Dobson, P.; Dunn, W.B.; Arga, K.Y.; Arvas, M.; Bluthgen, N.; Borger, S.; Costenoble, E.R.; Heinemann, M.; Hucka, M.; Li, P.; Liebermeister, W.; Mo, M.L.; Oliveira, A.P.; Petranovic, D.; Pettifer, S.; Simeonides, E.; Smallbone, K.; Spasi, I.; Weichart, D.; Brent, R.; Broomhead, D.S.; Westerhoff, H.V.; Kirdar, B.; Penttila, M.; Klipp, E.; Paton, N.; Palsson, B.O.; Sauer, U.; Oliver, S.G.; Mendes, P.; Nielsen, J.; Kell, D.B.

    2008-01-01

    Genomic data allow the large-scale manual or semi-automated assembly of metabolic network reconstructions, which provide highly curated organism-specific knowledge bases. Although several genome-scale network reconstructions describe Saccharomyces cerevisiae metabolism, they differ in scope and

  4. A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology

    NARCIS (Netherlands)

    Herrgård, Markus J.; Swainston, Neil; Dobson, Paul; Dunn, Warwick B.; Arga, K. Yalçin; Arvas, Mikko; Blüthgen, Nils; Borger, Simon; Costenoble, Roeland; Heinemann, Matthias; Hucka, Michael; Novère, Nicolas Le; Li, Peter; Liebermeister, Wolfram; Mo, Monica L.; Oliveira, Ana Paula; Petranovic, Dina; Pettifer, Stephen; Simeonidis, Evangelos; Smallbone, Kieran; Spasić, Irena; Weichart, Dieter; Brent, Roger; Broomhead, David S.; Westerhoff, Hans V.; Kırdar, Betül; Penttilä, Merja; Klipp, Edda; Palsson, Bernhard Ø.; Sauer, Uwe; Oliver, Stephen G.; Mendes, Pedro; Nielsen, Jens; Kell, Douglas B.

    2008-01-01

    Genomic data allow the large-scale manual or semi-automated assembly of metabolic network reconstructions, which provide highly curated organism-specific knowledge bases. Although several genome-scale network reconstructions describe Saccharomyces cerevisiae metabolism, they differ in scope and

  5. A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology

    DEFF Research Database (Denmark)

    Herrgard, Markus; Swainston, Neil; Dobson, Paul

    2008-01-01

    a consensus metabolic network reconstruction for S. cerevisiae. In drafting it, we placed special emphasis on referencing molecules to persistent databases or using database-independent forms, such as SMILES or InChI strings, as this permits their chemical structure to be represented unambiguously...... of yeast. Similar strategies should benefit communities studying genome-scale metabolic networks of other organisms....

  6. Controllability in cancer metabolic networks according to drug targets as driver nodes.

    Science.gov (United States)

    Asgari, Yazdan; Salehzadeh-Yazdi, Ali; Schreiber, Falk; Masoudi-Nejad, Ali

    2013-01-01

    Networks are employed to represent many nonlinear complex systems in the real world. The topological aspects and relationships between the structure and function of biological networks have been widely studied in the past few decades. However dynamic and control features of complex networks have not been widely researched, in comparison to topological network features. In this study, we explore the relationship between network controllability, topological parameters, and network medicine (metabolic drug targets). Considering the assumption that targets of approved anticancer metabolic drugs are driver nodes (which control cancer metabolic networks), we have applied topological analysis to genome-scale metabolic models of 15 normal and corresponding cancer cell types. The results show that besides primary network parameters, more complex network metrics such as motifs and clusters may also be appropriate for controlling the systems providing the controllability relationship between topological parameters and drug targets. Consequently, this study reveals the possibilities of following a set of driver nodes in network clusters instead of considering them individually according to their centralities. This outcome suggests considering distributed control systems instead of nodal control for cancer metabolic networks, leading to a new strategy in the field of network medicine.

  7. Using the reconstructed genome-scale human metabolic network to study physiology and pathology

    OpenAIRE

    Bordbar, Aarash; Palsson, Bernhard O.

    2012-01-01

    Metabolism plays a key role in many major human diseases. Generation of high-throughput omics data has ushered in a new era of systems biology. Genome-scale metabolic network reconstructions provide a platform to interpret omics data in a biochemically meaningful manner. The release of the global human metabolic network, Recon 1, in 2007 has enabled new systems biology approaches to study human physiology, pathology, and pharmacology. There are currently over 20 publications that utilize Reco...

  8. MOST-visualization: software for producing automated textbook-style maps of genome-scale metabolic networks.

    Science.gov (United States)

    Kelley, James J; Maor, Shay; Kim, Min Kyung; Lane, Anatoliy; Lun, Desmond S

    2017-08-15

    Visualization of metabolites, reactions and pathways in genome-scale metabolic networks (GEMs) can assist in understanding cellular metabolism. Three attributes are desirable in software used for visualizing GEMs: (i) automation, since GEMs can be quite large; (ii) production of understandable maps that provide ease in identification of pathways, reactions and metabolites; and (iii) visualization of the entire network to show how pathways are interconnected. No software currently exists for visualizing GEMs that satisfies all three characteristics, but MOST-Visualization, an extension of the software package MOST (Metabolic Optimization and Simulation Tool), satisfies (i), and by using a pre-drawn overview map of metabolism based on the Roche map satisfies (ii) and comes close to satisfying (iii). MOST is distributed for free on the GNU General Public License. The software and full documentation are available at http://most.ccib.rutgers.edu/. dslun@rutgers.edu. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  9. Coordinations between gene modules control the operation of plant amino acid metabolic networks

    Directory of Open Access Journals (Sweden)

    Galili Gad

    2009-01-01

    Full Text Available Abstract Background Being sessile organisms, plants should adjust their metabolism to dynamic changes in their environment. Such adjustments need particular coordination in branched metabolic networks in which a given metabolite can be converted into multiple other metabolites via different enzymatic chains. In the present report, we developed a novel "Gene Coordination" bioinformatics approach and use it to elucidate adjustable transcriptional interactions of two branched amino acid metabolic networks in plants in response to environmental stresses, using publicly available microarray results. Results Using our "Gene Coordination" approach, we have identified in Arabidopsis plants two oppositely regulated groups of "highly coordinated" genes within the branched Asp-family network of Arabidopsis plants, which metabolizes the amino acids Lys, Met, Thr, Ile and Gly, as well as a single group of "highly coordinated" genes within the branched aromatic amino acid metabolic network, which metabolizes the amino acids Trp, Phe and Tyr. These genes possess highly coordinated adjustable negative and positive expression responses to various stress cues, which apparently regulate adjustable metabolic shifts between competing branches of these networks. We also provide evidence implying that these highly coordinated genes are central to impose intra- and inter-network interactions between the Asp-family and aromatic amino acid metabolic networks as well as differential system interactions with other growth promoting and stress-associated genome-wide genes. Conclusion Our novel Gene Coordination elucidates that branched amino acid metabolic networks in plants are regulated by specific groups of highly coordinated genes that possess adjustable intra-network, inter-network and genome-wide transcriptional interactions. We also hypothesize that such transcriptional interactions enable regulatory metabolic adjustments needed for adaptation to the stresses.

  10. Internet Databases of the Properties, Enzymatic Reactions, and Metabolism of Small Molecules-Search Options and Applications in Food Science.

    Science.gov (United States)

    Minkiewicz, Piotr; Darewicz, Małgorzata; Iwaniak, Anna; Bucholska, Justyna; Starowicz, Piotr; Czyrko, Emilia

    2016-12-06

    Internet databases of small molecules, their enzymatic reactions, and metabolism have emerged as useful tools in food science. Database searching is also introduced as part of chemistry or enzymology courses for food technology students. Such resources support the search for information about single compounds and facilitate the introduction of secondary analyses of large datasets. Information can be retrieved from databases by searching for the compound name or structure, annotating with the help of chemical codes or drawn using molecule editing software. Data mining options may be enhanced by navigating through a network of links and cross-links between databases. Exemplary databases reviewed in this article belong to two classes: tools concerning small molecules (including general and specialized databases annotating food components) and tools annotating enzymes and metabolism. Some problems associated with database application are also discussed. Data summarized in computer databases may be used for calculation of daily intake of bioactive compounds, prediction of metabolism of food components, and their biological activity as well as for prediction of interactions between food component and drugs.

  11. Internet Databases of the Properties, Enzymatic Reactions, and Metabolism of Small Molecules—Search Options and Applications in Food Science

    Directory of Open Access Journals (Sweden)

    Piotr Minkiewicz

    2016-12-01

    Full Text Available Internet databases of small molecules, their enzymatic reactions, and metabolism have emerged as useful tools in food science. Database searching is also introduced as part of chemistry or enzymology courses for food technology students. Such resources support the search for information about single compounds and facilitate the introduction of secondary analyses of large datasets. Information can be retrieved from databases by searching for the compound name or structure, annotating with the help of chemical codes or drawn using molecule editing software. Data mining options may be enhanced by navigating through a network of links and cross-links between databases. Exemplary databases reviewed in this article belong to two classes: tools concerning small molecules (including general and specialized databases annotating food components and tools annotating enzymes and metabolism. Some problems associated with database application are also discussed. Data summarized in computer databases may be used for calculation of daily intake of bioactive compounds, prediction of metabolism of food components, and their biological activity as well as for prediction of interactions between food component and drugs.

  12. Context-specific metabolic network reconstruction of a naphthalene-degrading bacterial community guided by metaproteomic data.

    Science.gov (United States)

    Tobalina, Luis; Bargiela, Rafael; Pey, Jon; Herbst, Florian-Alexander; Lores, Iván; Rojo, David; Barbas, Coral; Peláez, Ana I; Sánchez, Jesús; von Bergen, Martin; Seifert, Jana; Ferrer, Manuel; Planes, Francisco J

    2015-06-01

    With the advent of meta-'omics' data, the use of metabolic networks for the functional analysis of microbial communities became possible. However, while network-based methods are widely developed for single organisms, their application to bacterial communities is currently limited. Herein, we provide a novel, context-specific reconstruction procedure based on metaproteomic and taxonomic data. Without previous knowledge of a high-quality, genome-scale metabolic networks for each different member in a bacterial community, we propose a meta-network approach, where the expression levels and taxonomic assignments of proteins are used as the most relevant clues for inferring an active set of reactions. Our approach was applied to draft the context-specific metabolic networks of two different naphthalene-enriched communities derived from an anthropogenically influenced, polyaromatic hydrocarbon contaminated soil, with (CN2) or without (CN1) bio-stimulation. We were able to capture the overall functional differences between the two conditions at the metabolic level and predict an important activity for the fluorobenzoate degradation pathway in CN1 and for geraniol metabolism in CN2. Experimental validation was conducted, and good agreement with our computational predictions was observed. We also hypothesize different pathway organizations at the organismal level, which is relevant to disentangle the role of each member in the communities. The approach presented here can be easily transferred to the analysis of genomic, transcriptomic and metabolomic data. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Stochastic surface walking reaction sampling for resolving heterogeneous catalytic reaction network: A revisit to the mechanism of water-gas shift reaction on Cu

    Science.gov (United States)

    Zhang, Xiao-Jie; Shang, Cheng; Liu, Zhi-Pan

    2017-10-01

    Heterogeneous catalytic reactions on surface and interfaces are renowned for ample intermediate adsorbates and complex reaction networks. The common practice to reveal the reaction mechanism is via theoretical computation, which locates all likely transition states based on the pre-guessed reaction mechanism. Here we develop a new theoretical method, namely, stochastic surface walking (SSW)-Cat method, to resolve the lowest energy reaction pathway of heterogeneous catalytic reactions, which combines our recently developed SSW global structure optimization and SSW reaction sampling. The SSW-Cat is automated and massively parallel, taking a rough reaction pattern as input to guide reaction search. We present the detailed algorithm, discuss the key features, and demonstrate the efficiency in a model catalytic reaction, water-gas shift reaction on Cu(111) (CO + H2O → CO2 + H2). The SSW-Cat simulation shows that water dissociation is the rate-determining step and formic acid (HCOOH) is the kinetically favorable product, instead of the observed final products, CO2 and H2. It implies that CO2 and H2 are secondary products from further decomposition of HCOOH at high temperatures. Being a general purpose tool for reaction prediction, the SSW-Cat may be utilized for rational catalyst design via large-scale computations.

  14. Construction of a genome-scale metabolic network of the plant pathogen Pectobacterium carotovorum provides new strategies for bactericide discovery.

    Science.gov (United States)

    Wang, Cheng; Deng, Zhi-Luo; Xie, Zhi-Ming; Chu, Xin-Yi; Chang, Ji-Wei; Kong, De-Xin; Li, Bao-Ju; Zhang, Hong-Yu; Chen, Ling-Ling

    2015-01-30

    We reconstructed the first genome-scale metabolic network of the plant pathogen Pectobacterium carotovorum subsp. carotovorum PC1 based on its genomic sequence, annotation, and physiological data. Metabolic characteristics were analyzed using flux balance analysis (FBA), and the results were afterwards validated by phenotype microarray (PM) experiments. The reconstructed genome-scale metabolic model, iPC1209, contains 2235 reactions, 1113 metabolites and 1209 genes. We identified 19 potential bactericide targets through a comprehensive in silico gene-deletion study. Next, we performed virtual screening to identify candidate inhibitors for an important potential drug target, alkaline phosphatase, and experimentally verified that three lead compounds were able to inhibit both bacterial cell viability and the activity of alkaline phosphatase in vitro. This study illustrates a new strategy for the discovery of agricultural bactericides. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  15. AMBIENT: Active Modules for Bipartite Networks--using high-throughput transcriptomic data to dissect metabolic response.

    Science.gov (United States)

    Bryant, William A; Sternberg, Michael J E; Pinney, John W

    2013-03-25

    With the continued proliferation of high-throughput biological experiments, there is a pressing need for tools to integrate the data produced in ways that produce biologically meaningful conclusions. Many microarray studies have analysed transcriptomic data from a pathway perspective, for instance by testing for KEGG pathway enrichment in sets of upregulated genes. However, the increasing availability of species-specific metabolic models provides the opportunity to analyse these data in a more objective, system-wide manner. Here we introduce ambient (Active Modules for Bipartite Networks), a simulated annealing approach to the discovery of metabolic subnetworks (modules) that are significantly affected by a given genetic or environmental change. The metabolic modules returned by ambient are connected parts of the bipartite network that change coherently between conditions, providing a more detailed view of metabolic changes than standard approaches based on pathway enrichment. ambient is an effective and flexible tool for the analysis of high-throughput data in a metabolic context. The same approach can be applied to any system in which reactions (or metabolites) can be assigned a score based on some biological observation, without the limitation of predefined pathways. A Python implementation of ambient is available at http://www.theosysbio.bio.ic.ac.uk/ambient.

  16. Accelerated Gillespie Algorithm for Gas–Grain Reaction Network Simulations Using Quasi-steady-state Assumption

    Science.gov (United States)

    Chang, Qiang; Lu, Yang; Quan, Donghui

    2017-12-01

    Although the Gillespie algorithm is accurate in simulating gas–grain reaction networks, so far its computational cost is so expensive that it cannot be used to simulate chemical reaction networks that include molecular hydrogen accretion or the chemical evolution of protoplanetary disks. We present an accelerated Gillespie algorithm that is based on a quasi-steady-state assumption with the further approximation that the population distribution of transient species depends only on the accretion and desorption processes. The new algorithm is tested against a few reaction networks that are simulated by the regular Gillespie algorithm. We found that the less likely it is that transient species are formed and destroyed on grain surfaces, the more accurate the new method is. We also apply the new method to simulate reaction networks that include molecular hydrogen accretion. The results show that surface chemical reactions involving molecular hydrogen are not important for the production of surface species under standard physical conditions of dense molecular clouds.

  17. Metabolic Network Topology Reveals Transcriptional Regulatory Signatures of Type 2 Diabetes

    DEFF Research Database (Denmark)

    Zelezniak, Aleksej; Pers, Tune Hannes; Pinho Soares, Simao Pedro

    2010-01-01

    mechanisms underlying these transcriptional changes and their impact on the cellular metabolic phenotype is a challenging task due to the complexity of transcriptional regulation and the highly interconnected nature of the metabolic network. In this study we integrate skeletal muscle gene expression datasets...... with human metabolic network reconstructions to identify key metabolic regulatory features of T2DM. These features include reporter metabolites—metabolites with significant collective transcriptional response in the associated enzyme-coding genes, and transcription factors with significant enrichment...... factor regulatory network connecting several parts of metabolism. The identified transcription factors include members of the CREB, NRF1 and PPAR family, among others, and represent regulatory targets for further experimental analysis. Overall, our results provide a holistic picture of key metabolic...

  18. Comparison of TiO2 photocatalysis, electrochemically assisted Fenton reaction and direct electrochemistry for simulation of phase I metabolism reactions of drugs

    NARCIS (Netherlands)

    Ruokolainen, Miina; Gül, Turan; Permentier, Hjalmar; Sikanen, Tiina; Kostiainen, Risto; Kotiaho, Tapio

    2016-01-01

    The feasibility of titanium dioxide (TiO2) photocatalysis, electrochemically assisted Fenton reaction (EC-Fenton) and direct electrochemical oxidation (EC) for simulation of phase I metabolism of drugs was studied by comparing the reaction products of buspirone, promazine, testosterone and

  19. A Computational Solution to Automatically Map Metabolite Libraries in the Context of Genome Scale Metabolic Networks.

    Science.gov (United States)

    Merlet, Benjamin; Paulhe, Nils; Vinson, Florence; Frainay, Clément; Chazalviel, Maxime; Poupin, Nathalie; Gloaguen, Yoann; Giacomoni, Franck; Jourdan, Fabien

    2016-01-01

    This article describes a generic programmatic method for mapping chemical compound libraries on organism-specific metabolic networks from various databases (KEGG, BioCyc) and flat file formats (SBML and Matlab files). We show how this pipeline was successfully applied to decipher the coverage of chemical libraries set up by two metabolomics facilities MetaboHub (French National infrastructure for metabolomics and fluxomics) and Glasgow Polyomics (GP) on the metabolic networks available in the MetExplore web server. The present generic protocol is designed to formalize and reduce the volume of information transfer between the library and the network database. Matching of metabolites between libraries and metabolic networks is based on InChIs or InChIKeys and therefore requires that these identifiers are specified in both libraries and networks. In addition to providing covering statistics, this pipeline also allows the visualization of mapping results in the context of metabolic networks. In order to achieve this goal, we tackled issues on programmatic interaction between two servers, improvement of metabolite annotation in metabolic networks and automatic loading of a mapping in genome scale metabolic network analysis tool MetExplore. It is important to note that this mapping can also be performed on a single or a selection of organisms of interest and is thus not limited to large facilities.

  20. Co-regulation of metabolic genes is better explained by flux coupling than by network distance.

    Directory of Open Access Journals (Sweden)

    Richard A Notebaart

    2008-01-01

    Full Text Available To what extent can modes of gene regulation be explained by systems-level properties of metabolic networks? Prior studies on co-regulation of metabolic genes have mainly focused on graph-theoretical features of metabolic networks and demonstrated a decreasing level of co-expression with increasing network distance, a naïve, but widely used, topological index. Others have suggested that static graph representations can poorly capture dynamic functional associations, e.g., in the form of dependence of metabolic fluxes across genes in the network. Here, we systematically tested the relative importance of metabolic flux coupling and network position on gene co-regulation, using a genome-scale metabolic model of Escherichia coli. After validating the computational method with empirical data on flux correlations, we confirm that genes coupled by their enzymatic fluxes not only show similar expression patterns, but also share transcriptional regulators and frequently reside in the same operon. In contrast, we demonstrate that network distance per se has relatively minor influence on gene co-regulation. Moreover, the type of flux coupling can explain refined properties of the regulatory network that are ignored by simple graph-theoretical indices. Our results underline the importance of studying functional states of cellular networks to define physiologically relevant associations between genes and should stimulate future developments of novel functional genomic tools.

  1. Computational solution to automatically map metabolite libraries in the context of genome scale metabolic networks

    Directory of Open Access Journals (Sweden)

    Benjamin eMerlet

    2016-02-01

    Full Text Available This article describes a generic programmatic method for mapping chemical compound libraries on organism-specific metabolic networks from various databases (KEGG, BioCyc and flat file formats (SBML and Matlab files. We show how this pipeline was successfully applied to decipher the coverage of chemical libraries set up by two metabolomics facilities MetaboHub (French National infrastructure for metabolomics and fluxomics and Glasgow Polyomics on the metabolic networks available in the MetExplore web server. The present generic protocol is designed to formalize and reduce the volume of information transfer between the library and the network database. Matching of metabolites between libraries and metabolic networks is based on InChIs or InChIKeys and therefore requires that these identifiers are specified in both libraries and networks.In addition to providing covering statistics, this pipeline also allows the visualization of mapping results in the context of metabolic networks.In order to achieve this goal we tackled issues on programmatic interaction between two servers, improvement of metabolite annotation in metabolic networks and automatic loading of a mapping in genome scale metabolic network analysis tool MetExplore. It is important to note that this mapping can also be performed on a single or a selection of organisms of interest and is thus not limited to large facilities.

  2. Review of metabolic pathways activated in cancer cells as determined through isotopic labeling and network analysis.

    Science.gov (United States)

    Dong, Wentao; Keibler, Mark A; Stephanopoulos, Gregory

    2017-09-01

    Cancer metabolism has emerged as an indispensable part of contemporary cancer research. During the past 10 years, the use of stable isotopic tracers and network analysis have unveiled a number of metabolic pathways activated in cancer cells. Here, we review such pathways along with the particular tracers and labeling observations that led to the discovery of their rewiring in cancer cells. The list of such pathways comprises the reductive metabolism of glutamine, altered glycolysis, serine and glycine metabolism, mutant isocitrate dehydrogenase (IDH) induced reprogramming and the onset of acetate metabolism. Additionally, we demonstrate the critical role of isotopic labeling and network analysis in identifying these pathways. The alterations described in this review do not constitute a complete list, and future research using these powerful tools is likely to discover other cancer-related pathways and new metabolic targets for cancer therapy. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  3. Bringing metabolic networks to life: convenience rate law and thermodynamic constraints

    Directory of Open Access Journals (Sweden)

    Klipp Edda

    2006-12-01

    Full Text Available Abstract Background Translating a known metabolic network into a dynamic model requires rate laws for all chemical reactions. The mathematical expressions depend on the underlying enzymatic mechanism; they can become quite involved and may contain a large number of parameters. Rate laws and enzyme parameters are still unknown for most enzymes. Results We introduce a simple and general rate law called "convenience kinetics". It can be derived from a simple random-order enzyme mechanism. Thermodynamic laws can impose dependencies on the kinetic parameters. Hence, to facilitate model fitting and parameter optimisation for large networks, we introduce thermodynamically independent system parameters: their values can be varied independently, without violating thermodynamical constraints. We achieve this by expressing the equilibrium constants either by Gibbs free energies of formation or by a set of independent equilibrium constants. The remaining system parameters are mean turnover rates, generalised Michaelis-Menten constants, and constants for inhibition and activation. All parameters correspond to molecular energies, for instance, binding energies between reactants and enzyme. Conclusion Convenience kinetics can be used to translate a biochemical network – manually or automatically - into a dynamical model with plausible biological properties. It implements enzyme saturation and regulation by activators and inhibitors, covers all possible reaction stoichiometries, and can be specified by a small number of parameters. Its mathematical form makes it especially suitable for parameter estimation and optimisation. Parameter estimates can be easily computed from a least-squares fit to Michaelis-Menten values, turnover rates, equilibrium constants, and other quantities that are routinely measured in enzyme assays and stored in kinetic databases.

  4. Impact of stoichiometry representation on simulation of genotype-phenotype relationships in metabolic networks

    DEFF Research Database (Denmark)

    Brochado, Ana Rita; Andrejev, Sergej; Maranas, Costas D.

    2012-01-01

    Genome-scale metabolic networks provide a comprehensive structural framework for modeling genotype-phenotype relationships through flux simulations. The solution space for the metabolic flux state of the cell is typically very large and optimization-based approaches are often necessary for predic......Genome-scale metabolic networks provide a comprehensive structural framework for modeling genotype-phenotype relationships through flux simulations. The solution space for the metabolic flux state of the cell is typically very large and optimization-based approaches are often necessary...

  5. Trade-offs between efficiency and robustness in bacterial metabolic networks are associated with niche breadth.

    Science.gov (United States)

    Morine, Melissa J; Gu, Hong; Myers, Ransom A; Bielawski, Joseph P

    2009-05-01

    The relation between structure and function in biologic networks is a central point of systems biology research. Key functional features--notably, efficiency and robustness--are linked to the topologic structure of a network, and there appears to be a degree of trade-off between these features, i.e., simulation studies indicate that more efficient networks tend to be less robust. Here, we investigate this issue in metabolic networks from 105 lineages of bacteria having a wide range of ecologies. We take quantitative measurements on each network and integrate this network data with ecologic data using a phylogenetic comparative model. In this setting, we find that biologic conclusions obtained with classical phylogenetic comparative methods are sensitive to correlations between model covariates and phylogenetic branch length. To avoid this problem, we propose a revised statistical framework--hierarchical mixed-effect regression--to accommodate phylogenetic nonindependence. Using this approach, we show that the cartography of metabolic networks does indeed reflect a trade-off between efficiency and robustness. Furthermore, ecologic characteristics related to niche breadth are strong predictors of network shape. Given the broad variation in niche breadth seen among species, we predict that there is no universally optimal balance between efficiency and robustness in bacterial metabolic networks and, thus, no universally optimal network structure. These results highlight the biologic relevance of variation in network structure and the potential role of niche breadth in shaping metabolic strategies of efficiency and robustness.

  6. Unravelling the Maillard reaction network by multiresponse kinetic modelling

    NARCIS (Netherlands)

    Martins, S.I.F.S.

    2003-01-01

    The Maillard reaction is an important reaction in food industry. It is responsible for the formation of colour and aroma, as well as toxic compounds as the recent discovered acrylamide. The knowledge of kinetic parameters, such as rate constants and activation energy, is necessary to predict its

  7. Sequential computation of elementary modes and minimal cut sets in genome-scale metabolic networks using alternate integer linear programming

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hyun-Seob; Goldberg, Noam; Mahajan, Ashutosh; Ramkrishna, Doraiswami

    2017-03-27

    Elementary (flux) modes (EMs) have served as a valuable tool for investigating structural and functional properties of metabolic networks. Identification of the full set of EMs in genome-scale networks remains challenging due to combinatorial explosion of EMs in complex networks. It is often, however, that only a small subset of relevant EMs needs to be known, for which optimization-based sequential computation is a useful alternative. Most of the currently available methods along this line are based on the iterative use of mixed integer linear programming (MILP), the effectiveness of which significantly deteriorates as the number of iterations builds up. To alleviate the computational burden associated with the MILP implementation, we here present a novel optimization algorithm termed alternate integer linear programming (AILP). Results: Our algorithm was designed to iteratively solve a pair of integer programming (IP) and linear programming (LP) to compute EMs in a sequential manner. In each step, the IP identifies a minimal subset of reactions, the deletion of which disables all previously identified EMs. Thus, a subsequent LP solution subject to this reaction deletion constraint becomes a distinct EM. In cases where no feasible LP solution is available, IP-derived reaction deletion sets represent minimal cut sets (MCSs). Despite the additional computation of MCSs, AILP achieved significant time reduction in computing EMs by orders of magnitude. The proposed AILP algorithm not only offers a computational advantage in the EM analysis of genome-scale networks, but also improves the understanding of the linkage between EMs and MCSs.

  8. Metabolic networks of Sodalis glossinidius: a systems biology approach to reductive evolution.

    Science.gov (United States)

    Belda, Eugeni; Silva, Francisco J; Peretó, Juli; Moya, Andrés

    2012-01-01

    Genome reduction is a common evolutionary process affecting bacterial lineages that establish symbiotic or pathogenic associations with eukaryotic hosts. Such associations yield highly reduced genomes with greatly streamlined metabolic abilities shaped by the type of ecological association with the host. Sodalis glossinidius, the secondary endosymbiont of tsetse flies, represents one of the few complete genomes available of a bacterium at the initial stages of this process. In the present study, genome reduction is studied from a systems biology perspective through the reconstruction and functional analysis of genome-scale metabolic networks of S. glossinidius. The functional profile of ancestral and extant metabolic networks sheds light on the evolutionary events underlying transition to a host-dependent lifestyle. Meanwhile, reductive evolution simulations on the extant metabolic network can predict possible future evolution of S. glossinidius in the context of genome reduction. Finally, knockout simulations in different metabolic systems reveal a gradual decrease in network robustness to different mutational events for bacterial endosymbionts at different stages of the symbiotic association. Stoichiometric analysis reveals few gene inactivation events whose effects on the functionality of S. glossinidius metabolic systems are drastic enough to account for the ecological transition from a free-living to host-dependent lifestyle. The decrease in network robustness across different metabolic systems may be associated with the progressive integration in the more stable environment provided by the insect host. Finally, reductive evolution simulations reveal the strong influence that external conditions exert on the evolvability of metabolic systems.

  9. Computing weakly reversible linearly conjugate chemical reaction networks with minimal deficiency.

    Science.gov (United States)

    Johnston, Matthew D; Siegel, David; Szederkényi, Gábor

    2013-01-01

    Mass-action kinetics is frequently used in systems biology to model the behavior of interacting chemical species. Many important dynamical properties are known to hold for such systems if their underlying networks are weakly reversible and have a low deficiency. In particular, the Deficiency Zero and Deficiency One Theorems guarantee strong regularity with regards to the number and stability of positive equilibrium states. It is also known that chemical reaction networks with distinct reaction structure can admit mass-action systems with the same qualitative dynamics. The theory of linear conjugacy encapsulates the cases where this relationship is captured by a linear transformation. In this paper, we propose a mixed-integer linear programming algorithm capable of determining the minimal deficiency weakly reversible reaction network which admits a mass-action system which is linearly conjugate to a given reaction network. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Metabolic network reconstruction, growth characterization and 13C-metabolic flux analysis of the extremophile Thermus thermophilus HB8.

    Science.gov (United States)

    Swarup, Aditi; Lu, Jing; DeWoody, Kathleen C; Antoniewicz, Maciek R

    2014-07-01

    Thermus thermophilus is an extremely thermophilic bacterium with significant biotechnological potential. In this work, we have characterized aerobic growth characteristics of T. thermophilus HB8 at temperatures between 50 and 85°C, constructed a metabolic network model of its central carbon metabolism and validated the model using (13)C-metabolic flux analysis ((13)C-MFA). First, cells were grown in batch cultures in custom constructed mini-bioreactors at different temperatures to determine optimal growth conditions. The optimal temperature for T. thermophilus grown on defined medium with glucose was 81°C. The maximum growth rate was 0.25h(-1). Between 50 and 81°C the growth rate increased by 7-fold and the temperature dependence was described well by an Arrhenius model with an activation energy of 47kJ/mol. Next, we performed a (13)C-labeling experiment with [1,2-(13)C] glucose as the tracer and calculated intracellular metabolic fluxes using (13)C-MFA. The results provided support for the constructed network model and highlighted several interesting characteristics of T. thermophilus metabolism. We found that T. thermophilus largely uses glycolysis and TCA cycle to produce biosynthetic precursors, ATP and reducing equivalents needed for cells growth. Consistent with its proposed metabolic network model, we did not detect any oxidative pentose phosphate pathway flux or Entner-Doudoroff pathway activity. The biomass precursors erythrose-4-phosphate and ribose-5-phosphate were produced via the non-oxidative pentose phosphate pathway, and largely via transketolase, with little contribution from transaldolase. The high biomass yield on glucose that was measured experimentally was also confirmed independently by (13)C-MFA. The results presented here provide a solid foundation for future studies of T. thermophilus and its metabolic engineering applications. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  11. Deterministic and stochastic simulation and analysis of biochemical reaction networks the lactose operon example.

    Science.gov (United States)

    Yildirim, Necmettin; Kazanci, Caner

    2011-01-01

    A brief introduction to mathematical modeling of biochemical regulatory reaction networks is presented. Both deterministic and stochastic modeling techniques are covered with examples from enzyme kinetics, coupled reaction networks with oscillatory dynamics and bistability. The Yildirim-Mackey model for lactose operon is used as an example to discuss and show how deterministic and stochastic methods can be used to investigate various aspects of this bacterial circuit. © 2011 Elsevier Inc. All rights reserved.

  12. Global exponential stability of reaction-diffusion recurrent neural networks with time-varying delays

    International Nuclear Information System (INIS)

    Liang Jinling; Cao Jinde

    2003-01-01

    Employing general Halanay inequality, we analyze the global exponential stability of a class of reaction-diffusion recurrent neural networks with time-varying delays. Several new sufficient conditions are obtained to ensure existence, uniqueness and global exponential stability of the equilibrium point of delayed reaction-diffusion recurrent neural networks. The results extend and improve the earlier publications. In addition, an example is given to show the effectiveness of the obtained result

  13. Reaction schemes visualized in network form: the syntheses of strychnine as an example.

    Science.gov (United States)

    Proudfoot, John R

    2013-05-24

    Representation of synthesis sequences in a network form provides an effective method for the comparison of multiple reaction schemes and an opportunity to emphasize features such as reaction scale that are often relegated to experimental sections. An example of data formatting that allows construction of network maps in Cytoscape is presented, along with maps that illustrate the comparison of multiple reaction sequences, comparison of scaffold changes within sequences, and consolidation to highlight common key intermediates used across sequences. The 17 different synthetic routes reported for strychnine are used as an example basis set. The reaction maps presented required a significant data extraction and curation, and a standardized tabular format for reporting reaction information, if applied in a consistent way, could allow the automated combination of reaction information across different sources.

  14. Lyapunov Functions, Stationary Distributions, and Non-equilibrium Potential for Reaction Networks

    DEFF Research Database (Denmark)

    Anderson, David F; Craciun, Gheorghe; Gopalkrishnan, Manoj

    2015-01-01

    We consider the relationship between stationary distributions for stochastic models of reaction systems and Lyapunov functions for their deterministic counterparts. Specifically, we derive the well-known Lyapunov function of reaction network theory as a scaling limit of the non-equilibrium potent...

  15. On the graph and systems analysis of reversible chemical reaction networks with mass action kinetics

    NARCIS (Netherlands)

    Rao, Shodhan; Jayawardhana, Bayu; Schaft, Arjan van der

    2012-01-01

    Motivated by the recent progresses on the interplay between the graph theory and systems theory, we revisit the analysis of reversible chemical reaction networks described by mass action kinetics by reformulating it using the graph knowledge of the underlying networks. Based on this formulation, we

  16. Thiazolidinones derived from dynamic systemic resolution of complex reversible-reaction networks.

    Science.gov (United States)

    Zhang, Yan; Ramström, Olof

    2014-03-17

    A complex dynamic system based on a network of multiple reversible reactions has been established. The network was applied to a dynamic systemic resolution protocol based on kinetically controlled lipase-catalyzed transformations. This resulted in the formation of cyclized products, where two thiazolidinone compounds were efficiently produced from a range of potential transformations.

  17. Improving the description of metabolic networks: the TCA cycle as example

    NARCIS (Netherlands)

    Stobbe, Miranda D.; Houten, Sander M.; van Kampen, Antoine H. C.; Wanders, Ronald J. A.; Moerland, Perry D.

    2012-01-01

    To collect the ever-increasing yet scattered knowledge on metabolism, multiple pathway databases like the Kyoto Encyclopedia of Genes and Genomes have been created. A complete and accurate description of the metabolic network for human and other organisms is essential to foster new biological

  18. [The psychoimmunological network og panic disorders, agoraphobia and allergic reactions].

    Science.gov (United States)

    Schmidt-Traub, S

    1995-02-01

    While treating panic and agoraphobia patients with behaviour therapy, a high frequency of allergic reaction of the IgE-mediated type I was observed. Panic disorder, agoraphobia, allergic disorder, and vasomotor reactions are briefly discussed in the framework of psycho-endocrino-immunological research. A pilot study had shown a high correlation between panic disorder with and without agoraphobia and allergic reaction. A controlled study was then planned to test the hypothesized psychoimmunological relationship. 100 allergic patients, 79 panic/agoraphobic patients, and 66 controls underwent psychodiagnostic and allergic screening. 70% of the anxiety patients responded to test allergens with IgE-mediated type-I immediate reactions in comparison to 28% of the control persons. Another 15% of the panic patients reacted to nickle compound with type-IV delayed skin reactions (7% of the controls). Conversely, 10% of the allergic patients suffered from panic disorder (45% had experienced panic attacks) in contrast to 2% of the controls (24% of these reported panic attacks). The relative risk for allergic patients to develop panic disorder with and without agoraphobia is obviously five times as high as for controls. With this assumption of a psychoimmunological preparedness in mind, a behavioural medical diagnostic and therapeutic concept seems more adequate in coping both with panic/agoraphobia and allergic disorder.

  19. Effects of dietary bread crust Maillard reaction products on calcium and bone metabolism in rats.

    Science.gov (United States)

    Roncero-Ramos, Irene; Delgado-Andrade, Cristina; Haro, Ana; Ruiz-Roca, Beatriz; Morales, Francisco J; Navarro, María Pilar

    2013-06-01

    Maillard reaction products (MRP) consumption has been related with the development of bone degenerative disorders, probably linked to changes in calcium metabolism. We aimed to investigate the effects of MRP intake from bread crust on calcium balance and its distribution, and bone metabolism. During 88 days, rats were fed control diet or diets containing bread crust as source of MRP, or its soluble high molecular weight, soluble low molecular weight or insoluble fractions (bread crust, HMW, LMW and insoluble diets, respectively). In the final week, a calcium balance was performed, then animals were sacrified and some organs removed to analyse calcium levels. A second balance was carried out throughout the experimental period to calculate global calcium retention. Biochemical parameters and bone metabolism markers were measured in serum or urine. Global calcium bioavailability was unmodified by consumption of bread crust or its isolate fractions, corroborating the previously described low affinity of MRP to bind calcium. Despite this, a higher calcium concentration was found in femur due to smaller bones having a lower relative density. The isolate consumption of the fractions altered some bone markers, reflecting a situation of increased bone resorption or higher turnover; this did not take place in the animals fed the bread crust diet. Thus, the bread crust intake does not affect negatively calcium bioavailability and bone metabolism.

  20. Metabolic network modeling approaches for investigating the "hungry cancer".

    Science.gov (United States)

    Sharma, Ashwini Kumar; König, Rainer

    2013-08-01

    Metabolism is the functional phenotype of a cell, at a given condition, resulting from an intricate interplay of various regulatory processes. The study of these dynamic metabolic processes and their capabilities help to identify the fundamental properties of living systems. Metabolic deregulation is an emerging hallmark of cancer cells. This deregulation results in rewiring of the metabolic circuitry conferring an exploitative metabolic advantage for the tumor cells which leads to a distinct benefit in survival and lays the basis for unbound progression. Metabolism can be considered as a thermodynamic open-system in which source substrates of high value are being processed through a well established interconnected biochemical conversion system, strictly obeying physiochemical principles, generating useful intermediates and finally resulting in the release of byproducts. Based on this basic principle of an input-output balance, various models have been developed to interrogate metabolism elucidating its underlying functional properties. However, only a few modeling approaches have proved computationally feasible in elucidating the metabolic nature of cancer at a systems level. Besides this, statistical approaches have been set up to identify biochemical pathways being more relevant for specific types of tumor cells. In this review, we are briefly introducing the basic statistical approaches followed by the major modeling concepts. We have put an emphasis on the methods and their applications that have been used to a greater extent in understanding the metabolic remodeling of cancer. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Integrated analysis of transcript-level regulation of metabolism reveals disease-relevant nodes of the human metabolic network.

    Science.gov (United States)

    Galhardo, Mafalda; Sinkkonen, Lasse; Berninger, Philipp; Lin, Jake; Sauter, Thomas; Heinäniemi, Merja

    2014-02-01

    Metabolic diseases and comorbidities represent an ever-growing epidemic where multiple cell types impact tissue homeostasis. Here, the link between the metabolic and gene regulatory networks was studied through experimental and computational analysis. Integrating gene regulation data with a human metabolic network prompted the establishment of an open-sourced web portal, IDARE (Integrated Data Nodes of Regulation), for visualizing various gene-related data in context of metabolic pathways. Motivated by increasing availability of deep sequencing studies, we obtained ChIP-seq data from widely studied human umbilical vein endothelial cells. Interestingly, we found that association of metabolic genes with multiple transcription factors (TFs) enriched disease-associated genes. To demonstrate further extensions enabled by examining these networks together, constraint-based modeling was applied to data from human preadipocyte differentiation. In parallel, data on gene expression, genome-wide ChIP-seq profiles for peroxisome proliferator-activated receptor (PPAR) γ, CCAAT/enhancer binding protein (CEBP) α, liver X receptor (LXR) and H3K4me3 and microRNA target identification for miR-27a, miR-29a and miR-222 were collected. Disease-relevant key nodes, including mitochondrial glycerol-3-phosphate acyltransferase (GPAM), were exposed from metabolic pathways predicted to change activity by focusing on association with multiple regulators. In both cell types, our analysis reveals the convergence of microRNAs and TFs within the branched chain amino acid (BCAA) metabolic pathway, possibly providing an explanation for its downregulation in obese and diabetic conditions.

  2. Metabolic pathway of non-alcoholic fatty liver disease: Network properties and robustness

    Directory of Open Access Journals (Sweden)

    WenJun Zhang

    2017-03-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD is a systematic and complex disease involving various cytokines/metabolites. In present article, we use methodology of network biology to analyze network properties of NAFLD metabolic pathway. It is found that the metabolic pathway of NAFLD is not a typical complex network with power-law degree distribution, p(x=x^(-4.4275, x>=5. There is only one connected component in the metabolic pathway. The calculated cut cytokines/metabolites of the metabolic pathway are SREBP-1c, ChREBP, ObR, AMPK, IRE1alpha, ROS, PERK, elF2alpha, ATF4, CHOP, Bim, CASP8, Bid, CxII, Lipogenic enzymes, XBP1, and FFAs. The most important cytokine/metabolite for possible network robustness is FFAs, seconded by TNF-alpha. It is concluded that FFAs is the most important cytokine/metabolite in the metabolic pathway, seconded by ROS. FFAs, LEP, ACDC, CYP2E1, and Glucose are the only cytokines/metabolites that affect others without influences from other cytokines/metabolites. Finally, the IDs matrix for identifying possible sub-networks/modules is given. However, jointly combining the results of connectedness analysis and sub-networks/modules identification, we hold that there are not significant sub-networks/modules in the pathway.

  3. Global exponential stability of fuzzy cellular neural networks with delays and reaction-diffusion terms

    International Nuclear Information System (INIS)

    Wang Jian; Lu Junguo

    2008-01-01

    In this paper, we study the global exponential stability of fuzzy cellular neural networks with delays and reaction-diffusion terms. By constructing a suitable Lyapunov functional and utilizing some inequality techniques, we obtain a sufficient condition for the uniqueness and global exponential stability of the equilibrium solution for a class of fuzzy cellular neural networks with delays and reaction-diffusion terms. The result imposes constraint conditions on the network parameters independently of the delay parameter. The result is also easy to check and plays an important role in the design and application of globally exponentially stable fuzzy neural circuits

  4. Thermodynamic analysis of computed pathways integrated into the metabolic networks of E. coli and Synechocystis reveals contrasting expansion potential.

    Science.gov (United States)

    Asplund-Samuelsson, Johannes; Janasch, Markus; Hudson, Elton P

    2018-01-01

    Introducing biosynthetic pathways into an organism is both reliant on and challenged by endogenous biochemistry. Here we compared the expansion potential of the metabolic network in the photoautotroph Synechocystis with that of the heterotroph E. coli using the novel workflow POPPY (Prospecting Optimal Pathways with PYthon). First, E. coli and Synechocystis metabolomic and fluxomic data were combined with metabolic models to identify thermodynamic constraints on metabolite concentrations (NET analysis). Then, thousands of automatically constructed pathways were placed within each network and subjected to a network-embedded variant of the max-min driving force analysis (NEM). We found that the networks had different capabilities for imparting thermodynamic driving forces toward certain compounds. Key metabolites were constrained differently in Synechocystis due to opposing flux directions in glycolysis and carbon fixation, the forked tri-carboxylic acid cycle, and photorespiration. Furthermore, the lysine biosynthesis pathway in Synechocystis was identified as thermodynamically constrained, impacting both endogenous and heterologous reactions through low 2-oxoglutarate levels. Our study also identified important yet poorly covered areas in existing metabolomics data and provides a reference for future thermodynamics-based engineering in Synechocystis and beyond. The POPPY methodology represents a step in making optimal pathway-host matches, which is likely to become important as the practical range of host organisms is diversified. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. The Importance of Transition Metals in the Expanding Network of Microbial Metabolism in the Archean Eon

    Science.gov (United States)

    Moore, E. K.; Jelen, B. I.; Giovannelli, D.; Prabhu, A.; Raanan, H.; Falkowski, P. G.

    2017-12-01

    Deep time changes in Earth surface redox conditions, particularly due to global oxygenation, has impacted the availability of different metals and substrates that are central in biology. Oxidoreductase proteins are molecular nanomachines responsible for all biological electron transfer processes across the tree of life. These enzymes largely contain transition metals in their active sites. Microbial metabolic pathways form a global network of electron transfer, which expanded throughout the Archean eon. Older metabolisms (sulfur reduction, methanogenesis, anoxygenic photosynthesis) accessed negative redox potentials, while later evolving metabolisms (oxygenic photosynthesis, nitrification/denitrification, aerobic respiration) accessed positive redox potentials. The incorporation of different transition metals facilitated biological innovation and the expansion of the network of microbial metabolism. Network analysis was used to examine the connections between microbial taxa, metabolic pathways, crucial metallocofactors, and substrates in deep time by incorporating biosignatures preserved in the geologic record. Nitrogen fixation and aerobic respiration have the highest level of betweenness among metabolisms in the network, indicating that the oldest metabolisms are not the most central. Fe has by far the highest betweenness among metals. Clustering analysis largely separates High Metal Bacteria (HMB), Low Metal Bacteria (LMB), and Archaea showing that simple un-weighted links between taxa, metabolism, and metals have phylogenetic relevance. On average HMB have the highest betweenness among taxa, followed by Archaea and LMB. There is a correlation between the number of metallocofactors and metabolic pathways in representative bacterial taxa, but Archaea do not follow this trend. In many cases older and more recently evolved metabolisms were clustered together supporting previous findings that proliferation of metabolic pathways is not necessarily chronological.

  6. Integrating data from biological experiments into metabolic networks with the DBE information system.

    Science.gov (United States)

    Borisjuk, Ljudmilla; Hajirezaei, Mohammad-Reza; Klukas, Christian; Rolletschek, Hardy; Schreiber, Falk

    2005-01-01

    Modern 'omics'-technologies result in huge amounts of data about life processes. For analysis and data mining purposes this data has to be considered in the context of the underlying biological networks. This work presents an approach for integrating data from biological experiments into metabolic networks by mapping the data onto network elements and visualising the data enriched networks automatically. This methodology is implemented in DBE, an information system that supports the analysis and visualisation of experimental data in the context of metabolic networks. It consists of five parts: (1) the DBE-Database for consistent data storage, (2) the Excel-Importer application for the data import, (3) the DBE-Website as the interface for the system, (4) the DBE-Pictures application for the up- and download of binary (e. g. image) files, and (5) DBE-Gravisto, a network analysis and graph visualisation system. The usability of this approach is demonstrated in two examples.

  7. A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology.

    Science.gov (United States)

    Herrgård, Markus J; Swainston, Neil; Dobson, Paul; Dunn, Warwick B; Arga, K Yalçin; Arvas, Mikko; Blüthgen, Nils; Borger, Simon; Costenoble, Roeland; Heinemann, Matthias; Hucka, Michael; Le Novère, Nicolas; Li, Peter; Liebermeister, Wolfram; Mo, Monica L; Oliveira, Ana Paula; Petranovic, Dina; Pettifer, Stephen; Simeonidis, Evangelos; Smallbone, Kieran; Spasić, Irena; Weichart, Dieter; Brent, Roger; Broomhead, David S; Westerhoff, Hans V; Kirdar, Betül; Penttilä, Merja; Klipp, Edda; Palsson, Bernhard Ø; Sauer, Uwe; Oliver, Stephen G; Mendes, Pedro; Nielsen, Jens; Kell, Douglas B

    2008-10-01

    Genomic data allow the large-scale manual or semi-automated assembly of metabolic network reconstructions, which provide highly curated organism-specific knowledge bases. Although several genome-scale network reconstructions describe Saccharomyces cerevisiae metabolism, they differ in scope and content, and use different terminologies to describe the same chemical entities. This makes comparisons between them difficult and underscores the desirability of a consolidated metabolic network that collects and formalizes the 'community knowledge' of yeast metabolism. We describe how we have produced a consensus metabolic network reconstruction for S. cerevisiae. In drafting it, we placed special emphasis on referencing molecules to persistent databases or using database-independent forms, such as SMILES or InChI strings, as this permits their chemical structure to be represented unambiguously and in a manner that permits automated reasoning. The reconstruction is readily available via a publicly accessible database and in the Systems Biology Markup Language (http://www.comp-sys-bio.org/yeastnet). It can be maintained as a resource that serves as a common denominator for studying the systems biology of yeast. Similar strategies should benefit communities studying genome-scale metabolic networks of other organisms.

  8. Combining inferred regulatory and reconstructed metabolic networks enhances phenotype prediction in yeast.

    Science.gov (United States)

    Wang, Zhuo; Danziger, Samuel A; Heavner, Benjamin D; Ma, Shuyi; Smith, Jennifer J; Li, Song; Herricks, Thurston; Simeonidis, Evangelos; Baliga, Nitin S; Aitchison, John D; Price, Nathan D

    2017-05-01

    Gene regulatory and metabolic network models have been used successfully in many organisms, but inherent differences between them make networks difficult to integrate. Probabilistic Regulation Of Metabolism (PROM) provides a partial solution, but it does not incorporate network inference and underperforms in eukaryotes. We present an Integrated Deduced And Metabolism (IDREAM) method that combines statistically inferred Environment and Gene Regulatory Influence Network (EGRIN) models with the PROM framework to create enhanced metabolic-regulatory network models. We used IDREAM to predict phenotypes and genetic interactions between transcription factors and genes encoding metabolic activities in the eukaryote, Saccharomyces cerevisiae. IDREAM models contain many fewer interactions than PROM and yet produce significantly more accurate growth predictions. IDREAM consistently outperformed PROM using any of three popular yeast metabolic models and across three experimental growth conditions. Importantly, IDREAM's enhanced accuracy makes it possible to identify subtle synthetic growth defects. With experimental validation, these novel genetic interactions involving the pyruvate dehydrogenase complex suggested a new role for fatty acid-responsive factor Oaf1 in regulating acetyl-CoA production in glucose grown cells.

  9. Bacterial metabolism in immediate response to nutritional perturbation with temporal and network view of metabolites.

    Science.gov (United States)

    Yukihira, Daichi; Fujimura, Yoshinori; Wariishi, Hiroyuki; Miura, Daisuke

    2015-09-01

    In this study, the initial propagation of metabolic perturbation in Escherichia coli was visualized to understand the dynamic characteristics of the metabolic pathways without the association of transcription alterations. E. coli cells were exposed to the sudden relief of glucose starvation, and time-dependent variances in metabolite balances were traced in the second scale. The acquired time-course data were represented by structural variations of the metabolite-metabolite correlation network. The initial correlation structure was altered immediately by the glucose pulse, followed by further structural variations within a few minutes. It was demonstrated that one metabolite temporally correlated with distinct metabolites with different timings, and such a behavior could imply a regulatory role for the metabolite in the metabolic network. Centrality analysis of the networks and partial correlation analysis indicated that preparation for growth and oxidative stress could be coupled as a structural property of the metabolic pathways.

  10. Characterization of the Usage of the Serine Metabolic Network in Human Cancer

    Directory of Open Access Journals (Sweden)

    Mahya Mehrmohamadi

    2014-11-01

    Full Text Available The serine, glycine, one-carbon (SGOC metabolic network is implicated in cancer pathogenesis, but its general functions are unknown. We carried out a computational reconstruction of the SGOC network and then characterized its expression across thousands of cancer tissues. Pathways including methylation and redox metabolism exhibited heterogeneous expression indicating a strong context dependency of their usage in tumors. From an analysis of coexpression, simultaneous up- or downregulation of nucleotide synthesis, NADPH, and glutathione synthesis was found to be a common occurrence in all cancers. Finally, we developed a method to trace the metabolic fate of serine using stable isotopes, high-resolution mass spectrometry, and a mathematical model. Although the expression of single genes didn’t appear indicative of flux, the collective expression of several genes in a given pathway allowed for successful flux prediction. Altogether, these findings identify expansive and heterogeneous functions for the SGOC metabolic network in human cancer.

  11. Genome-scale reconstruction of the metabolic network in Yersinia pestis CO92

    Science.gov (United States)

    Navid, Ali; Almaas, Eivind

    2007-03-01

    The gram-negative bacterium Yersinia pestis is the causative agent of bubonic plague. Using publicly available genomic, biochemical and physiological data, we have developed a constraint-based flux balance model of metabolism in the CO92 strain (biovar Orientalis) of this organism. The metabolic reactions were appropriately compartmentalized, and the model accounts for the exchange of metabolites, as well as the import of nutrients and export of waste products. We have characterized the metabolic capabilities and phenotypes of this organism, after comparing the model predictions with available experimental observations to evaluate accuracy and completeness. We have also begun preliminary studies into how cellular metabolism affects virulence.

  12. Television violence--reactions from physicians, advertisers and the networks.

    Science.gov (United States)

    Feingold, M; Johnson, G T

    1977-02-24

    In response to our call for letters on television violence we received more than 1500 letters from readers of the Journal. Seventy-two per cent of the leading television advertisers responded to a subsequent letter requesting a description of their policies regarding content of the programs they sponsor. Their responses included exculpating factors such as lack of control over programming, the limited amount of available advertising time and censorship. We presented these responses to network representatives. They commented on the difficulty in defining violence, the current decrease in the amount of violence shown and their activities in response to this issue. We maintain that the burden of proof that television violence does not harm lies with those who introduce it into society. Advertisers and networks will respond, we believe, to the problem of television violence if continuous public pressure is maintained.

  13. A novel proposal of a simplified bacterial gene set and the neo-construction of a general minimized metabolic network.

    Science.gov (United States)

    Ye, Yuan-Nong; Ma, Bin-Guang; Dong, Chuan; Zhang, Hong; Chen, Ling-Ling; Guo, Feng-Biao

    2016-10-07

    A minimal gene set (MGS) is critical for the assembly of a minimal artificial cell. We have developed a proposal of simplifying bacterial gene set to approximate a bacterial MGS by the following procedure. First, we base our simplified bacterial gene set (SBGS) on experimentally determined essential genes to ensure that the genes included in the SBGS are critical. Second, we introduced a half-retaining strategy to extract persistent essential genes to ensure stability. Third, we constructed a viable metabolic network to supplement SBGS. The proposed SBGS includes 327 genes and required 431 reactions. This report describes an SBGS that preserves both self-replication and self-maintenance systems. In the minimized metabolic network, we identified five novel hub metabolites and confirmed 20 known hubs. Highly essential genes were found to distribute the connecting metabolites into more reactions. Based on our SBGS, we expanded the pool of targets for designing broad-spectrum antibacterial drugs to reduce pathogen resistance. We also suggested a rough semi-de novo strategy to synthesize an artificial cell, with potential applications in industry.

  14. Oxygen consumption through metabolism and photodynamic reactions in cells cultured on microbeads

    International Nuclear Information System (INIS)

    Schunck, T.; Poulet, P.

    2000-01-01

    Oxygen consumption by cultured cells, through metabolism and photosensitization reactions, has been calculated theoretically. From this result, we have derived the partial oxygen pressure P O 2 in the perfusion medium flowing across sensitized cultured cells during photodynamic experiments. The P O 2 variations in the perfusate during light irradiation are related to the rate of oxygen consumption through photoreactions, and to the number of cells killed per mole of oxygen consumed through metabolic processes. After irradiation, the reduced metabolic oxygen consumption yields information on the cell death rate, and on the photodynamic cell killing efficiency. The aim of this paper is to present an experimental set-up and the corresponding theoretical model that allows us to control the photodynamic efficiency for a given cell-sensitizer pair, under well defined and controlled conditions of irradiation and oxygen supply. To demonstrate the usefulness of the methodology described, CHO cells cultured on microbeads were sensitized with pheophorbide a and irradiated with different light fluence rates. The results obtained, i.e. oxygen consumption of about 0.1 μMs -1 m -3 under a light fluence rate of 1 W m -2 , 10 5 cells killed per mole of oxygen consumed and a decay rate of about 1 h -1 of living cells after irradiation, are in good agreement with the theoretical predictions and with previously published data. (author)

  15. The US nuclear reaction data network. Summary of the first meeting, March 13 ampersand 14 1996

    International Nuclear Information System (INIS)

    1996-03-01

    The first meeting of the US Nuclear Reaction Data Network (USNRDN) was held at the Colorado School of Mines, March 13-14, 1996 chaired by F. Edward Cecil. The Agenda of the meeting is attached. The Network, its mission, products and services; related nuclear data and data networks, members, and organization are described in Attachment 1. The following progress reports from the members of the USNRDN were distributed prior to the meeting and are given as Attachment 2. (1) Measurements and Development of Analytic Techniques for Basic Nuclear Physics and Nuclear Applications; (2) Nuclear Reaction Data Activities at the National Nuclear Data Center; (3) Studies of nuclear reactions at very low energies; (4) Nuclear Reaction Data Activities, Nuclear Data Group; (5) Progress in Neutron Physics at Los Alamos - Experiments; (6) Nuclear Reaction Data Activities in Group T2; (7) Progress Report for the US Nuclear Reaction Data Network Meeting; (8) Nuclear Astrophysics Research Group (ORNL); (9) Progress Report from Ohio University; (10) Exciton Model Phenomenology; and (11) Progress Report for Coordination Meeting USNRDN

  16. The US nuclear reaction data network. Summary of the first meeting, March 13 & 14 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The first meeting of the US Nuclear Reaction Data Network (USNRDN) was held at the Colorado School of Mines, March 13-14, 1996 chaired by F. Edward Cecil. The Agenda of the meeting is attached. The Network, its mission, products and services; related nuclear data and data networks, members, and organization are described in Attachment 1. The following progress reports from the members of the USNRDN were distributed prior to the meeting and are given as Attachment 2. (1) Measurements and Development of Analytic Techniques for Basic Nuclear Physics and Nuclear Applications; (2) Nuclear Reaction Data Activities at the National Nuclear Data Center; (3) Studies of nuclear reactions at very low energies; (4) Nuclear Reaction Data Activities, Nuclear Data Group; (5) Progress in Neutron Physics at Los Alamos - Experiments; (6) Nuclear Reaction Data Activities in Group T2; (7) Progress Report for the US Nuclear Reaction Data Network Meeting; (8) Nuclear Astrophysics Research Group (ORNL); (9) Progress Report from Ohio University; (10) Exciton Model Phenomenology; and (11) Progress Report for Coordination Meeting USNRDN.

  17. Impact of Fungicide Residues on Polymerase Chain Reaction and on Yeast Metabolism

    Directory of Open Access Journals (Sweden)

    Gildo Almeida da Silva

    Full Text Available ABSTRACT The indiscriminate use of pesticides on grape crops is harmful for consumers´ healthin “in natura” consumption and in the ingestion of wine and grape juice. During winemaking, a rapid and efficient fermentation stage is critical to avoid proliferation of contaminating microorganisms and to guarantee the product´s quality. Polymerase chain reaction (PCR has the advantage of detecting these contaminants in the early stages of fermentation. However,this enzymatic reaction may also be susceptible to specific problems, reducing its efficiency. Agricultural practices, such as fungicide treatments, may be a source of PCR inhibiting factors and may also interfere in the normal course of fermentation.The action of the pesticides captan and folpet on PCR and on yeast metabolism was evaluated, once these phthalimide compounds are widely employed in Brazilian vineyards. DNA amplification was only observed at 75 and 37.5 µg/mL of captan concentrations, whereas with folpet, amplification was observed only in the two lowest concentrations tested (42.2 and 21.1µg/mL.Besides the strong inhibition on Taq polymerase activity, phthalimides also inhibited yeast metabolism at all concentrations analyzed.Grape must containing captan and folpet residues could not be transformed into wine due to stuck fermentation caused by the inhibition of yeast metabolism. Non-compliance with the waiting period for phthalimide fungicides may result in financial liabilities to the viticulture sector.The use of yeasts with high fungicide sensitivity should be selected for must fermentation as a strategy for sustainable wine production and to assure that products comply with health and food safety standards.

  18. A general model for metabolic scaling in self-similar asymmetric networks.

    Directory of Open Access Journals (Sweden)

    Alexander Byers Brummer

    2017-03-01

    Full Text Available How a particular attribute of an organism changes or scales with its body size is known as an allometry. Biological allometries, such as metabolic scaling, have been hypothesized to result from selection to maximize how vascular networks fill space yet minimize internal transport distances and resistances. The West, Brown, Enquist (WBE model argues that these two principles (space-filling and energy minimization are (i general principles underlying the evolution of the diversity of biological networks across plants and animals and (ii can be used to predict how the resulting geometry of biological networks then governs their allometric scaling. Perhaps the most central biological allometry is how metabolic rate scales with body size. A core assumption of the WBE model is that networks are symmetric with respect to their geometric properties. That is, any two given branches within the same generation in the network are assumed to have identical lengths and radii. However, biological networks are rarely if ever symmetric. An open question is: Does incorporating asymmetric branching change or influence the predictions of the WBE model? We derive a general network model that relaxes the symmetric assumption and define two classes of asymmetrically bifurcating networks. We show that asymmetric branching can be incorporated into the WBE model. This asymmetric version of the WBE model results in several theoretical predictions for the structure, physiology, and metabolism of organisms, specifically in the case for the cardiovascular system. We show how network asymmetry can now be incorporated in the many allometric scaling relationships via total network volume. Most importantly, we show that the 3/4 metabolic scaling exponent from Kleiber's Law can still be attained within many asymmetric networks.

  19. The origin of modern metabolic networks inferred from phylogenomic analysis of protein architecture.

    Science.gov (United States)

    Caetano-Anollés, Gustavo; Kim, Hee Shin; Mittenthal, Jay E

    2007-05-29

    Metabolism represents a complex collection of enzymatic reactions and transport processes that convert metabolites into molecules capable of supporting cellular life. Here we explore the origins and evolution of modern metabolism. Using phylogenomic information linked to the structure of metabolic enzymes, we sort out recruitment processes and discover that most enzymatic activities were associated with the nine most ancient and widely distributed protein fold architectures. An analysis of newly discovered functions showed enzymatic diversification occurred early, during the onset of the modern protein world. Most importantly, phylogenetic reconstruction exercises and other evidence suggest strongly that metabolism originated in enzymes with the P-loop hydrolase fold in nucleotide metabolism, probably in pathways linked to the purine metabolic subnetwork. Consequently, the first enzymatic takeover of an ancient biochemistry or prebiotic chemistry was related to the synthesis of nucleotides for the RNA world.

  20. Construction of phylogenetic trees by kernel-based comparative analysis of metabolic networks

    Directory of Open Access Journals (Sweden)

    Chang Jeong-Ho

    2006-06-01

    Full Text Available Abstract Background To infer the tree of life requires knowledge of the common characteristics of each species descended from a common ancestor as the measuring criteria and a method to calculate the distance between the resulting values of each measure. Conventional phylogenetic analysis based on genomic sequences provides information about the genetic relationships between different organisms. In contrast, comparative analysis of metabolic pathways in different organisms can yield insights into their functional relationships under different physiological conditions. However, evaluating the similarities or differences between metabolic networks is a computationally challenging problem, and systematic methods of doing this are desirable. Here we introduce a graph-kernel method for computing the similarity between metabolic networks in polynomial time, and use it to profile metabolic pathways and to construct phylogenetic trees. Results To compare the structures of metabolic networks in organisms, we adopted the exponential graph kernel, which is a kernel-based approach with a labeled graph that includes a label matrix and an adjacency matrix. To construct the phylogenetic trees, we used an unweighted pair-group method with arithmetic mean, i.e., a hierarchical clustering algorithm. We applied the kernel-based network profiling method in a comparative analysis of nine carbohydrate metabolic networks from 81 biological species encompassing Archaea, Eukaryota, and Eubacteria. The resulting phylogenetic hierarchies generally support the tripartite scheme of three domains rather than the two domains of prokaryotes and eukaryotes. Conclusion By combining the kernel machines with metabolic information, the method infers the context of biosphere development that covers physiological events required for adaptation by genetic reconstruction. The results show that one may obtain a global view of the tree of life by comparing the metabolic pathway

  1. Dynamic brain glucose metabolism identifies anti-correlated cortical-cerebellar networks at rest.

    Science.gov (United States)

    Tomasi, Dardo G; Shokri-Kojori, Ehsan; Wiers, Corinde E; Kim, Sunny W; Demiral, Şukru B; Cabrera, Elizabeth A; Lindgren, Elsa; Miller, Gregg; Wang, Gene-Jack; Volkow, Nora D

    2017-12-01

    It remains unclear whether resting state functional magnetic resonance imaging (rfMRI) networks are associated with underlying synchrony in energy demand, as measured by dynamic 2-deoxy-2-[ 18 F]fluoroglucose (FDG) positron emission tomography (PET). We measured absolute glucose metabolism, temporal metabolic connectivity (t-MC) and rfMRI patterns in 53 healthy participants at rest. Twenty-two rfMRI networks emerged from group independent component analysis (gICA). In contrast, only two anti-correlated t-MC emerged from FDG-PET time series using gICA or seed-voxel correlations; one included frontal, parietal and temporal cortices, the other included the cerebellum and medial temporal regions. Whereas cerebellum, thalamus, globus pallidus and calcarine cortex arose as the strongest t-MC hubs, the precuneus and visual cortex arose as the strongest rfMRI hubs. The strength of the t-MC linearly increased with the metabolic rate of glucose suggesting that t-MC measures are strongly associated with the energy demand of the brain tissue, and could reflect regional differences in glucose metabolism, counterbalanced metabolic network demand, and/or differential time-varying delivery of FDG. The mismatch between metabolic and functional connectivity patterns computed as a function of time could reflect differences in the temporal characteristics of glucose metabolism as measured with PET-FDG and brain activation as measured with rfMRI.

  2. A Strategy for Functional Interpretation of Metabolomic Time Series Data in Context of Metabolic Network Information

    Directory of Open Access Journals (Sweden)

    Thomas eNägele

    2016-03-01

    Full Text Available The functional connection of experimental metabolic time series data with biochemical network information is an important, yet complex, issue in systems biology. Frequently, experimental analysis of diurnal, circadian or developmental dynamics of metabolism results in a comprehensive and multidimensional data matrix comprising information about metabolite concentrations, protein levels and/or enzyme activities. While, irrespective of the type of organism, the experimental high-throughput analysis of the transcriptome, proteome and metabolome has become a common part of many systems biology studies, functional data integration in a biochemical and physiological context is still challenging. Here, an approach is presented which addresses the functional connection of experimental time series data with biochemical network information which can be inferred, for example, from a metabolic network reconstruction. Based on a time-continuous and variance-weighted regression analysis of experimental data, metabolic functions, i.e. first-order derivatives of metabolite concentrations, were related to time-dependent changes in other biochemically relevant metabolic functions, i.e. second-order derivatives of metabolite concentrations. This finally revealed time points of perturbed dependencies in metabolic functions indicating a modified biochemical interaction. The approach was validated using previously published experimental data on a diurnal time course of metabolite levels, enzyme activities and metabolic flux simulations. To support and ease the presented approach of functional time series analysis, a graphical user interface including a test data set and a manual is provided which can be run within the numerical software environment Matlab®.

  3. A cascade reaction network mimicking the basic functional steps of acquired immune response

    Science.gov (United States)

    Han, Da; Wu, Cuichen; You, Mingxu; Zhang, Tao; Wan, Shuo; Chen, Tao; Qiu, Liping; Zheng, Zheng; Liang, Hao; Tan, Weihong

    2015-01-01

    Biological systems use complex ‘information processing cores’ composed of molecular networks to coordinate their external environment and internal states. An example of this is the acquired, or adaptive, immune system (AIS), which is composed of both humoral and cell-mediated components. Here we report the step-by-step construction of a prototype mimic of the AIS which we call Adaptive Immune Response Simulator (AIRS). DNA and enzymes are used as simple artificial analogues of the components of the AIS to create a system which responds to specific molecular stimuli in vitro. We show that this network of reactions can function in a manner which is superficially similar to the most basic responses of the vertebrate acquired immune system, including reaction sequences that mimic both humoral and cellular responses. As such, AIRS provides guidelines for the design and engineering of artificial reaction networks and molecular devices. PMID:26391084

  4. A cascade reaction network mimicking the basic functional steps of adaptive immune response.

    Science.gov (United States)

    Han, Da; Wu, Cuichen; You, Mingxu; Zhang, Tao; Wan, Shuo; Chen, Tao; Qiu, Liping; Zheng, Zheng; Liang, Hao; Tan, Weihong

    2015-10-01

    Biological systems use complex 'information-processing cores' composed of molecular networks to coordinate their external environment and internal states. An example of this is the acquired, or adaptive, immune system (AIS), which is composed of both humoral and cell-mediated components. Here we report the step-by-step construction of a prototype mimic of the AIS that we call an adaptive immune response simulator (AIRS). DNA and enzymes are used as simple artificial analogues of the components of the AIS to create a system that responds to specific molecular stimuli in vitro. We show that this network of reactions can function in a manner that is superficially similar to the most basic responses of the vertebrate AIS, including reaction sequences that mimic both humoral and cellular responses. As such, AIRS provides guidelines for the design and engineering of artificial reaction networks and molecular devices.

  5. A computational approach to extinction events in chemical reaction networks with discrete state spaces.

    Science.gov (United States)

    Johnston, Matthew D

    2017-12-01

    Recent work of Johnston et al. has produced sufficient conditions on the structure of a chemical reaction network which guarantee that the corresponding discrete state space system exhibits an extinction event. The conditions consist of a series of systems of equalities and inequalities on the edges of a modified reaction network called a domination-expanded reaction network. In this paper, we present a computational implementation of these conditions written in Python and apply the program on examples drawn from the biochemical literature. We also run the program on 458 models from the European Bioinformatics Institute's BioModels Database and report our results. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Addressing unknown constants and metabolic network behaviors through petascale computing: understanding H2 production in green algae

    International Nuclear Information System (INIS)

    Chang, Christopher; Alber, David; Graf, Peter; Kim, Kwiseon; Seibert, Michael

    2007-01-01

    The Genomics Revolution has resulted in a massive and growing quantity of whole-genome DNA sequences, which encode the metabolic catalysts necessary for life. However, gene annotations can rarely be complete, and measurement of the kinetic constants associated with the encoded enzymes can not possibly keep pace, necessitating the use of careful modeling to explore plausible network behaviors. Key challenges are (1) quantitatively formulating kinetic laws governing each transformation in a fixed model network; (2) characterizing the stable solution (if any) of the associated ordinary differential equations (ODEs); (3) fitting the latter to metabolomics data as it becomes available; and (4) optimizing a model output against the possible space of kinetic parameters, with respect to properties such as robustness of network response, or maximum consumption/production. This SciDAC-2 project addresses this large-scale uncertainty in the genome-scale metabolic network of the water-splitting, H 2 -producing green alga Chlamydomonas reinhardtii. Each metabolic transformation is formulated as an irreversible steady-state process, such that the vast literature on known enzyme mechanisms may be incorporated directly. To start, glycolysis, the tricarboxylic acid cycle, and basic fermentation pathways have been encoded in Systems Biology Markup Language (SBML) with careful annotation and consistency with the KEGG database, yielding a model with 3 compartments, 95 species, 38 reactions, and 109 kinetic constants. To study and optimize such models with a view toward larger models, we have developed a system which takes as input an SBML model, and automatically produces C code that when compiled and executed optimizes the model's kinetic parameters according to test criteria. We describe the system and present numerical results. Further development, including overlaying of a parallel multistart algorithm, will allow optimization of thousands of parameters on high-performance systems

  7. Metabolomics Approach Reveals Integrated Metabolic Network Associated with Serotonin Deficiency

    Science.gov (United States)

    Weng, Rui; Shen, Sensen; Tian, Yonglu; Burton, Casey; Xu, Xinyuan; Liu, Yi; Chang, Cuilan; Bai, Yu; Liu, Huwei

    2015-07-01

    Serotonin is an important neurotransmitter that broadly participates in various biological processes. While serotonin deficiency has been associated with multiple pathological conditions such as depression, schizophrenia, Alzheimer’s disease and Parkinson’s disease, the serotonin-dependent mechanisms remain poorly understood. This study therefore aimed to identify novel biomarkers and metabolic pathways perturbed by serotonin deficiency using metabolomics approach in order to gain new metabolic insights into the serotonin deficiency-related molecular mechanisms. Serotonin deficiency was achieved through pharmacological inhibition of tryptophan hydroxylase (Tph) using p-chlorophenylalanine (pCPA) or genetic knockout of the neuronal specific Tph2 isoform. This dual approach improved specificity for the serotonin deficiency-associated biomarkers while minimizing nonspecific effects of pCPA treatment or Tph2 knockout (Tph2-/-). Non-targeted metabolic profiling and a targeted pCPA dose-response study identified 21 biomarkers in the pCPA-treated mice while 17 metabolites in the Tph2-/- mice were found to be significantly altered compared with the control mice. These newly identified biomarkers were associated with amino acid, energy, purine, lipid and gut microflora metabolisms. Oxidative stress was also found to be significantly increased in the serotonin deficient mice. These new biomarkers and the overall metabolic pathways may provide new understanding for the serotonin deficiency-associated mechanisms under multiple pathological states.

  8. Metabolomics in epidemiology: from metabolite concentrations to integrative reaction networks.

    Science.gov (United States)

    Fearnley, Liam G; Inouye, Michael

    2016-10-01

    Metabolomics is becoming feasible for population-scale studies of human disease. In this review, we survey epidemiological studies that leverage metabolomics and multi-omics to gain insight into disease mechanisms. We outline key practical, technological and analytical limitations while also highlighting recent successes in integrating these data. The use of multi-omics to infer reaction rates is discussed as a potential future direction for metabolomics research, as a means of identifying biomarkers as well as inferring causality. Furthermore, we highlight established analysis approaches as well as simulation-based methods currently used in single- and multi-cell levels in systems biology. © The Author 2016. Published by Oxford University Press on behalf of the International Epidemiological Association.

  9. Report on the IAEA Technical Meeting of the International Network of Nuclear Reaction Data Centres

    International Nuclear Information System (INIS)

    Forrest, R.; Dunaeva, S.; Otsuka, N.

    2010-07-01

    This report summarizes the IAEA Technical Meeting of the International Network of Nuclear Reaction Data Centres (biennial Data Centre Heads Meeting), held at the Japan Nuclear Reaction Data Centre, Hokkaido University, Sapporo, Japan, from 20 - 23 April 2010. The meeting was attended by 27 participants from 12 cooperating data centres of seven Member States and two International Organizations. The report contains a summary of the meeting, the conclusions and actions, the lists of working papers and presentations presented at the meeting. This report summarizes the IAEA Technical Meeting of the International Network of Nuclear Reaction Data Centres (biennial Data Centre Heads Meeting), held at the Japan Nuclear Reaction Data Centre, Hokkaido University, Sapporo, Japan, from 20 - 23 April 2010. The meeting was attended by 27 participants from 12 cooperating data centres of seven Member States and two International Organizations. The report contains a summary of the meeting, the conclusions and actions, the lists of working papers and presentations presented at the meeting. (author)

  10. Stability analysis of impulsive fuzzy cellular neural networks with distributed delays and reaction-diffusion terms

    International Nuclear Information System (INIS)

    Li Zuoan; Li Kelin

    2009-01-01

    In this paper, we investigate a class of impulsive fuzzy cellular neural networks with distributed delays and reaction-diffusion terms. By employing the delay differential inequality with impulsive initial conditions and M-matrix theory, we find some sufficient conditions ensuring the existence, uniqueness and global exponential stability of equilibrium point for impulsive fuzzy cellular neural networks with distributed delays and reaction-diffusion terms. In particular, the estimate of the exponential converging index is also provided, which depends on the system parameters. An example is given to show the effectiveness of the results obtained here.

  11. Reconstruction and Analysis of Human Kidney-Specific Metabolic Network Based on Omics Data

    Directory of Open Access Journals (Sweden)

    Ai-Di Zhang

    2013-01-01

    Full Text Available With the advent of the high-throughput data production, recent studies of tissue-specific metabolic networks have largely advanced our understanding of the metabolic basis of various physiological and pathological processes. However, for kidney, which plays an essential role in the body, the available kidney-specific model remains incomplete. This paper reports the reconstruction and characterization of the human kidney metabolic network based on transcriptome and proteome data. In silico simulations revealed that house-keeping genes were more essential than kidney-specific genes in maintaining kidney metabolism. Importantly, a total of 267 potential metabolic biomarkers for kidney-related diseases were successfully explored using this model. Furthermore, we found that the discrepancies in metabolic processes of different tissues are directly corresponding to tissue's functions. Finally, the phenotypes of the differentially expressed genes in diabetic kidney disease were characterized, suggesting that these genes may affect disease development through altering kidney metabolism. Thus, the human kidney-specific model constructed in this study may provide valuable information for the metabolism of kidney and offer excellent insights into complex kidney diseases.

  12. Global exponential stability for reaction-diffusion recurrent neural networks with multiple time varying delays

    International Nuclear Information System (INIS)

    Lou, X.; Cui, B.

    2008-01-01

    In this paper we consider the problem of exponential stability for recurrent neural networks with multiple time varying delays and reaction-diffusion terms. The activation functions are supposed to be bounded and globally Lipschitz continuous. By means of Lyapunov functional, sufficient conditions are derived, which guarantee global exponential stability of the delayed neural network. Finally, a numerical example is given to show the correctness of our analysis. (author)

  13. Chronic obstructive pulmonary disease candidate gene prioritization based on metabolic networks and functional information.

    Directory of Open Access Journals (Sweden)

    Xinyan Wang

    Full Text Available Chronic obstructive pulmonary disease (COPD is a multi-factor disease, in which metabolic disturbances played important roles. In this paper, functional information was integrated into a COPD-related metabolic network to assess similarity between genes. Then a gene prioritization method was applied to the COPD-related metabolic network to prioritize COPD candidate genes. The gene prioritization method was superior to ToppGene and ToppNet in both literature validation and functional enrichment analysis. Top-ranked genes prioritized from the metabolic perspective with functional information could promote the better understanding about the molecular mechanism of this disease. Top 100 genes might be potential markers for diagnostic and effective therapies.

  14. A stronger necessary condition for the multistationarity of chemical reaction networks.

    Science.gov (United States)

    Soliman, Sylvain

    2013-11-01

    Biochemical reaction networks grow bigger and bigger, fed by the high-throughput data provided by biologists and bred in open repositories of models allowing merging and evolution. Nevertheless, since the available data is still very far from permitting the identification of the increasing number of kinetic parameters of such models, the necessity of structural analyses for describing the dynamics of chemical networks appears stronger every day. Using the structural information, notably from the stoichiometric matrix, of a biochemical reaction system, we state a more strict version of the famous Thomas' necessary condition for multistationarity. In particular, the obvious cases where Thomas' condition was trivially satisfied, mutual inhibition due to a multimolecular reaction and mutual activation due to a reversible reaction, can now easily be ruled out. This more strict condition shall not be seen as some version of Thomas' circuit functionality for the continuous case but rather as related and complementary to the whole domain of the structural analysis of (bio)chemical reaction systems, as pioneered by the chemical reaction network theory.

  15. Understanding the control of acyl flux through the lipid metabolic network of plant oil biosynthesis.

    Science.gov (United States)

    Bates, Philip D

    2016-09-01

    Plant oil biosynthesis involves a complex metabolic network with multiple subcellular compartments, parallel pathways, cycles, and pathways that have a dual function to produce essential membrane lipids and triacylglycerol. Modern molecular biology techniques provide tools to alter plant oil compositions through bioengineering, however with few exceptions the final composition of triacylglycerol cannot be predicted. One reason for limited success in oilseed bioengineering is the inadequate understanding of how to control the flux of fatty acids through various fatty acid modification, and triacylglycerol assembly pathways of the lipid metabolic network. This review focuses on the mechanisms of acyl flux through the lipid metabolic network, and highlights where uncertainty resides in our understanding of seed oil biosynthesis. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. The hypothalamic neural-glial network and the metabolic syndrome

    NARCIS (Netherlands)

    Jastroch, Martin; Morin, Silke; Tschöp, Matthias H.; Yi, Chun-Xia

    2014-01-01

    Despite numerous educational interventions and biomedical research efforts, modern society continues to suffer from obesity and its associated metabolic diseases, such as type 2 diabetes mellitus, and these diseases show little sign of abating. One reason for this is an incomplete understanding of

  17. Flow network QSAR for the prediction of physicochemical properties by mapping an electrical resistance network onto a chemical reaction poset.

    Science.gov (United States)

    Ivanciuc, Ovidiu; Ivanciuc, Teodora; Klein, Douglas J

    2013-06-01

    Usual quantitative structure-activity relationship (QSAR) models are computed from unstructured input data, by using a vector of molecular descriptors for each chemical in the dataset. Another alternative is to consider the structural relationships between the chemical structures, such as molecular similarity, presence of certain substructures, or chemical transformations between compounds. We defined a class of network-QSAR models based on molecular networks induced by a sequence of substitution reactions on a chemical structure that generates a partially ordered set (or poset) oriented graph that may be used to predict various molecular properties with quantitative superstructure-activity relationships (QSSAR). The network-QSAR interpolation models defined on poset graphs, namely average poset, cluster expansion, and spline poset, were tested with success for the prediction of several physicochemical properties for diverse chemicals. We introduce the flow network QSAR, a new poset regression model in which the dataset of chemicals, represented as a reaction poset, is transformed into an oriented network of electrical resistances in which the current flow results in a potential at each node. The molecular property considered in the QSSAR model is represented as the electrical potential, and the value of this potential at a particular node is determined by the electrical resistances assigned to each edge and by a system of batteries. Each node with a known value for the molecular property is attached to a battery that sets the potential on that node to the value of the respective molecular property, and no external battery is attached to nodes from the prediction set, representing chemicals for which the values of the molecular property are not known or are intended to be predicted. The flow network QSAR algorithm determines the values of the molecular property for the prediction set of molecules by applying Ohm's law and Kirchhoff's current law to the poset

  18. Markov chain aggregation and its applications to combinatorial reaction networks.

    Science.gov (United States)

    Ganguly, Arnab; Petrov, Tatjana; Koeppl, Heinz

    2014-09-01

    We consider a continuous-time Markov chain (CTMC) whose state space is partitioned into aggregates, and each aggregate is assigned a probability measure. A sufficient condition for defining a CTMC over the aggregates is presented as a variant of weak lumpability, which also characterizes that the measure over the original process can be recovered from that of the aggregated one. We show how the applicability of de-aggregation depends on the initial distribution. The application section is devoted to illustrate how the developed theory aids in reducing CTMC models of biochemical systems particularly in connection to protein-protein interactions. We assume that the model is written by a biologist in form of site-graph-rewrite rules. Site-graph-rewrite rules compactly express that, often, only a local context of a protein (instead of a full molecular species) needs to be in a certain configuration in order to trigger a reaction event. This observation leads to suitable aggregate Markov chains with smaller state spaces, thereby providing sufficient reduction in computational complexity. This is further exemplified in two case studies: simple unbounded polymerization and early EGFR/insulin crosstalk.

  19. Global sensitivity analysis in stochastic simulators of uncertain reaction networks

    KAUST Repository

    Navarro, María

    2016-12-26

    Stochastic models of chemical systems are often subjected to uncertainties in kinetic parameters in addition to the inherent random nature of their dynamics. Uncertainty quantification in such systems is generally achieved by means of sensitivity analyses in which one characterizes the variability with the uncertain kinetic parameters of the first statistical moments of model predictions. In this work, we propose an original global sensitivity analysis method where the parametric and inherent variability sources are both treated through Sobol’s decomposition of the variance into contributions from arbitrary subset of uncertain parameters and stochastic reaction channels. The conceptual development only assumes that the inherent and parametric sources are independent, and considers the Poisson processes in the random-time-change representation of the state dynamics as the fundamental objects governing the inherent stochasticity. A sampling algorithm is proposed to perform the global sensitivity analysis, and to estimate the partial variances and sensitivity indices characterizing the importance of the various sources of variability and their interactions. The birth-death and Schlögl models are used to illustrate both the implementation of the algorithm and the richness of the proposed analysis method. The output of the proposed sensitivity analysis is also contrasted with a local derivative-based sensitivity analysis method classically used for this type of systems.

  20. Genome scale metabolic network reconstruction of Spirochaeta cellobiosiphila

    Directory of Open Access Journals (Sweden)

    Bharat Manna

    2017-10-01

    Full Text Available Substantial rise in the global energy demand is one of the biggest challenges in this century. Environmental pollution due to rapid depletion of the fossil fuel resources and its alarming impact on the climate change and Global Warming have motivated researchers to look for non-petroleum-based sustainable, eco-friendly, renewable, low-cost energy alternatives, such as biofuel. Lignocellulosic biomass is one of the most promising bio-resources with huge potential to contribute to this worldwide energy demand. However, the complex organization of the Cellulose, Hemicellulose and Lignin in the Lignocellulosic biomass requires extensive pre-treatment and enzymatic hydrolysis followed by fermentation, raising overall production cost of biofuel. This encourages researchers to design cost-effective approaches for the production of second generation biofuels. The products from enzymatic hydrolysis of cellulose are mostly glucose monomer or cellobiose unit that are subjected to fermentation. Spirochaeta genus is a well-known group of obligate or facultative anaerobes, living primarily on carbohydrate metabolism. Spirochaeta cellobiosiphila sp. is a facultative anaerobe under this genus, which uses a variety of monosaccharides and disaccharides as energy sources. However, most rapid growth occurs on cellobiose and fermentation yields significant amount of ethanol, acetate, CO2, H2 and small amounts of formate. It is predicted to be promising microbial machinery for industrial fermentation processes for biofuel production. The metabolic pathways that govern cellobiose metabolism in Spirochaeta cellobiosiphila are yet to be explored. The function annotation of the genome sequence of Spirochaeta cellobiosiphila is in progress. In this work we aim to map all the metabolic activities for reconstruction of genome-scale metabolic model of Spirochaeta cellobiosiphila.

  1. Sequential computation of elementary modes and minimal cut sets in genome-scale metabolic networks using alternate integer linear programming.

    Science.gov (United States)

    Song, Hyun-Seob; Goldberg, Noam; Mahajan, Ashutosh; Ramkrishna, Doraiswami

    2017-08-01

    Elementary (flux) modes (EMs) have served as a valuable tool for investigating structural and functional properties of metabolic networks. Identification of the full set of EMs in genome-scale networks remains challenging due to combinatorial explosion of EMs in complex networks. It is often, however, that only a small subset of relevant EMs needs to be known, for which optimization-based sequential computation is a useful alternative. Most of the currently available methods along this line are based on the iterative use of mixed integer linear programming (MILP), the effectiveness of which significantly deteriorates as the number of iterations builds up. To alleviate the computational burden associated with the MILP implementation, we here present a novel optimization algorithm termed alternate integer linear programming (AILP). Our algorithm was designed to iteratively solve a pair of integer programming (IP) and linear programming (LP) to compute EMs in a sequential manner. In each step, the IP identifies a minimal subset of reactions, the deletion of which disables all previously identified EMs. Thus, a subsequent LP solution subject to this reaction deletion constraint becomes a distinct EM. In cases where no feasible LP solution is available, IP-derived reaction deletion sets represent minimal cut sets (MCSs). Despite the additional computation of MCSs, AILP achieved significant time reduction in computing EMs by orders of magnitude. The proposed AILP algorithm not only offers a computational advantage in the EM analysis of genome-scale networks, but also improves the understanding of the linkage between EMs and MCSs. The software is implemented in Matlab, and is provided as supplementary information . hyunseob.song@pnnl.gov. Supplementary data are available at Bioinformatics online. Published by Oxford University Press 2017. This work is written by US Government employees and are in the public domain in the US.

  2. Toward a self-consistent and unitary reaction network for big bang nucleosynthesis

    International Nuclear Information System (INIS)

    Paris, Mark W.; Brown, Lowell S.; Hale, Gerald M.; Hayes-Sterbenz, Anna C.; Jungman, Gerard; Kawano, Toshihiko; Fuller, George M.; Grohs, Evan B.; Kunieda, Satoshi

    2014-01-01

    Unitarity, the mathematical expression of the conservation of probability in multichannel reactions, is an essential ingredient in the development of accurate nuclear reaction networks appropriate for nucleosynthesis in a variety of environments. We describe our ongoing program to develop a 'unitary reaction network' for the big-bang nucleosynthesis environment and look at an example of the need and power of unitary parametrizations of nuclear scattering and reaction data. Recent attention has been focused on the possible role of the 9 B compound nuclear system in the resonant destruction of 7 Li during primordial nucleosynthesis. We have studied reactions in the 9 B compound system with a multichannel, two-body unitary R-matrix code (EDA) using the known elastic and reaction data, in a four-channel treatment. The data include elastic 6 Li( 3 He, 3 He) 6 Li differential cross sections from 0.7 to 2.0 MeV, integrated reaction cross sections for energies from 0.7 to 5.0 MeV for 6 Li( 3 He,p) 8 Be* and from 0.4 to 5.0 MeV for the 6 Li( 3 He,γ) 7 Be reaction. Capture data have been added to the previous analysis with integrated cross section measurements from 0.7 to 0.825 MeV for 6 Li( 3 He,γ) 9 B. The resulting resonance parameters are compared with tabulated values from TUNL Nuclear Data Group analyses. Previously unidentified resonances are noted and the relevance of this analysis and a unitary reaction network for big-bang nucleosynthesis are emphasized. (author)

  3. Toward a self-consistent and unitary reaction network for big bang nucleosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Paris, Mark W.; Brown, Lowell S.; Hale, Gerald M.; Hayes-Sterbenz, Anna C.; Jungman, Gerard; Kawano, Toshihiko, E-mail: mparis@lanl.gov [Los Alamos National Laboratory, Los Alamos, New Mexico (United States); Fuller, George M.; Grohs, Evan B. [Department of Physics, University of California, San Diego, La Jolla, CA (United States); Kunieda, Satoshi [Nuclear Data Center, Japan Atomic Energy Agency, Tokai-mura Naka-gun, Ibaraki (Japan)

    2014-07-01

    Unitarity, the mathematical expression of the conservation of probability in multichannel reactions, is an essential ingredient in the development of accurate nuclear reaction networks appropriate for nucleosynthesis in a variety of environments. We describe our ongoing program to develop a 'unitary reaction network' for the big-bang nucleosynthesis environment and look at an example of the need and power of unitary parametrizations of nuclear scattering and reaction data. Recent attention has been focused on the possible role of the {sup 9}B compound nuclear system in the resonant destruction of {sup 7}Li during primordial nucleosynthesis. We have studied reactions in the {sup 9}B compound system with a multichannel, two-body unitary R-matrix code (EDA) using the known elastic and reaction data, in a four-channel treatment. The data include elastic {sup 6}Li({sup 3}He,{sup 3}He){sup 6}Li differential cross sections from 0.7 to 2.0 MeV, integrated reaction cross sections for energies from 0.7 to 5.0 MeV for {sup 6}Li({sup 3}He,p){sup 8}Be* and from 0.4 to 5.0 MeV for the {sup 6}Li({sup 3}He,γ){sup 7}Be reaction. Capture data have been added to the previous analysis with integrated cross section measurements from 0.7 to 0.825 MeV for {sup 6}Li({sup 3}He,γ){sup 9}B. The resulting resonance parameters are compared with tabulated values from TUNL Nuclear Data Group analyses. Previously unidentified resonances are noted and the relevance of this analysis and a unitary reaction network for big-bang nucleosynthesis are emphasized. (author)

  4. Visualization of Metabolic Interaction Networks in Microbial Communities Using VisANT 5.0.

    Directory of Open Access Journals (Sweden)

    Brian R Granger

    2016-04-01

    Full Text Available The complexity of metabolic networks in microbial communities poses an unresolved visualization and interpretation challenge. We address this challenge in the newly expanded version of a software tool for the analysis of biological networks, VisANT 5.0. We focus in particular on facilitating the visual exploration of metabolic interaction between microbes in a community, e.g. as predicted by COMETS (Computation of Microbial Ecosystems in Time and Space, a dynamic stoichiometric modeling framework. Using VisANT's unique metagraph implementation, we show how one can use VisANT 5.0 to explore different time-dependent ecosystem-level metabolic networks. In particular, we analyze the metabolic interaction network between two bacteria previously shown to display an obligate cross-feeding interdependency. In addition, we illustrate how a putative minimal gut microbiome community could be represented in our framework, making it possible to highlight interactions across multiple coexisting species. We envisage that the "symbiotic layout" of VisANT can be employed as a general tool for the analysis of metabolism in complex microbial communities as well as heterogeneous human tissues. VisANT is freely available at: http://visant.bu.edu and COMETS at http://comets.bu.edu.

  5. Reduction of multiscale stochastic biochemical reaction networks using exact moment derivation.

    Directory of Open Access Journals (Sweden)

    Jae Kyoung Kim

    2017-06-01

    Full Text Available Biochemical reaction networks (BRNs in a cell frequently consist of reactions with disparate timescales. The stochastic simulations of such multiscale BRNs are prohibitively slow due to high computational cost for the simulations of fast reactions. One way to resolve this problem uses the fact that fast species regulated by fast reactions quickly equilibrate to their stationary distribution while slow species are unlikely to be changed. Thus, on a slow timescale, fast species can be replaced by their quasi-steady state (QSS: their stationary conditional expectation values for given slow species. As the QSS are determined solely by the state of slow species, such replacement leads to a reduced model, where fast species are eliminated. However, it is challenging to derive the QSS in the presence of nonlinear reactions. While various approximation schemes for the QSS have been developed, they often lead to considerable errors. Here, we propose two classes of multiscale BRNs which can be reduced by deriving an exact QSS rather than approximations. Specifically, if fast species constitute either a feedforward network or a complex balanced network, the reduced model based on the exact QSS can be derived. Such BRNs are frequently observed in a cell as the feedforward network is one of fundamental motifs of gene or protein regulatory networks. Furthermore, complex balanced networks also include various types of fast reversible bindings such as bindings between transcriptional factors and gene regulatory sites. The reduced models based on exact QSS, which can be calculated by the computational packages provided in this work, accurately approximate the slow scale dynamics of the original full model with much lower computational cost.

  6. A scalable computational framework for establishing long-term behavior of stochastic reaction networks.

    Directory of Open Access Journals (Sweden)

    Ankit Gupta

    2014-06-01

    Full Text Available Reaction networks are systems in which the populations of a finite number of species evolve through predefined interactions. Such networks are found as modeling tools in many biological disciplines such as biochemistry, ecology, epidemiology, immunology, systems biology and synthetic biology. It is now well-established that, for small population sizes, stochastic models for biochemical reaction networks are necessary to capture randomness in the interactions. The tools for analyzing such models, however, still lag far behind their deterministic counterparts. In this paper, we bridge this gap by developing a constructive framework for examining the long-term behavior and stability properties of the reaction dynamics in a stochastic setting. In particular, we address the problems of determining ergodicity of the reaction dynamics, which is analogous to having a globally attracting fixed point for deterministic dynamics. We also examine when the statistical moments of the underlying process remain bounded with time and when they converge to their steady state values. The framework we develop relies on a blend of ideas from probability theory, linear algebra and optimization theory. We demonstrate that the stability properties of a wide class of biological networks can be assessed from our sufficient theoretical conditions that can be recast as efficient and scalable linear programs, well-known for their tractability. It is notably shown that the computational complexity is often linear in the number of species. We illustrate the validity, the efficiency and the wide applicability of our results on several reaction networks arising in biochemistry, systems biology, epidemiology and ecology. The biological implications of the results as well as an example of a non-ergodic biological network are also discussed.

  7. Adaptive exponential synchronization of delayed neural networks with reaction-diffusion terms

    International Nuclear Information System (INIS)

    Sheng Li; Yang Huizhong; Lou Xuyang

    2009-01-01

    This paper presents an exponential synchronization scheme for a class of neural networks with time-varying and distributed delays and reaction-diffusion terms. An adaptive synchronization controller is derived to achieve the exponential synchronization of the drive-response structure of neural networks by using the Lyapunov stability theory. At the same time, the update laws of parameters are proposed to guarantee the synchronization of delayed neural networks with all parameters unknown. It is shown that the approaches developed here extend and improve the ideas presented in recent literatures.

  8. A computational framework for the automated construction of glycosylation reaction networks.

    Directory of Open Access Journals (Sweden)

    Gang Liu

    Full Text Available Glycosylation is among the most common and complex post-translational modifications identified to date. It proceeds through the catalytic action of multiple enzyme families that include the glycosyltransferases that add monosaccharides to growing glycans, and glycosidases which remove sugar residues to trim glycans. The expression level and specificity of these enzymes, in part, regulate the glycan distribution or glycome of specific cell/tissue systems. Currently, there is no systematic method to describe the enzymes and cellular reaction networks that catalyze glycosylation. To address this limitation, we present a streamlined machine-readable definition for the glycosylating enzymes and additional methodologies to construct and analyze glycosylation reaction networks. In this computational framework, the enzyme class is systematically designed to store detailed specificity data such as enzymatic functional group, linkage and substrate specificity. The new classes and their associated functions enable both single-reaction inference and automated full network reconstruction, when given a list of reactants and/or products along with the enzymes present in the system. In addition, graph theory is used to support functions that map the connectivity between two or more species in a network, and that generate subset models to identify rate-limiting steps regulating glycan biosynthesis. Finally, this framework allows the synthesis of biochemical reaction networks using mass spectrometry (MS data. The features described above are illustrated using three case studies that examine: i O-linked glycan biosynthesis during the construction of functional selectin-ligands; ii automated N-linked glycosylation pathway construction; and iii the handling and analysis of glycomics based MS data. Overall, the new computational framework enables automated glycosylation network model construction and analysis by integrating knowledge of glycan structure and enzyme

  9. A computational framework for the automated construction of glycosylation reaction networks.

    Science.gov (United States)

    Liu, Gang; Neelamegham, Sriram

    2014-01-01

    Glycosylation is among the most common and complex post-translational modifications identified to date. It proceeds through the catalytic action of multiple enzyme families that include the glycosyltransferases that add monosaccharides to growing glycans, and glycosidases which remove sugar residues to trim glycans. The expression level and specificity of these enzymes, in part, regulate the glycan distribution or glycome of specific cell/tissue systems. Currently, there is no systematic method to describe the enzymes and cellular reaction networks that catalyze glycosylation. To address this limitation, we present a streamlined machine-readable definition for the glycosylating enzymes and additional methodologies to construct and analyze glycosylation reaction networks. In this computational framework, the enzyme class is systematically designed to store detailed specificity data such as enzymatic functional group, linkage and substrate specificity. The new classes and their associated functions enable both single-reaction inference and automated full network reconstruction, when given a list of reactants and/or products along with the enzymes present in the system. In addition, graph theory is used to support functions that map the connectivity between two or more species in a network, and that generate subset models to identify rate-limiting steps regulating glycan biosynthesis. Finally, this framework allows the synthesis of biochemical reaction networks using mass spectrometry (MS) data. The features described above are illustrated using three case studies that examine: i) O-linked glycan biosynthesis during the construction of functional selectin-ligands; ii) automated N-linked glycosylation pathway construction; and iii) the handling and analysis of glycomics based MS data. Overall, the new computational framework enables automated glycosylation network model construction and analysis by integrating knowledge of glycan structure and enzyme biochemistry. All

  10. [Gene networks that regulate secondary metabolism in actinomycetes: pleiotropic regulators].

    Science.gov (United States)

    Rabyk, M V; Ostash, B O; Fedorenko, V O

    2014-01-01

    Current advances in the research and practical applications of pleiotropic regulatory genes for antibiotic production in actinomycetes are reviewed. The basic regulatory mechanisms found in these bacteria are outlined. Examples described in the review show the importance of the manipulation of regulatory systems that affect the synthesis of antibiotics for the metabolic engineering of the actinomycetes. Also, the study of these genes is the basis for the development of genetic engineering approaches towards the induction of "cryptic" part of the actinomycetes secondary metabolome, which capacity for production of biologically active compounds is much bigger than the diversity of antibiotics underpinned by traditional microbiological screening. Besides the practical problems, the study of regulatory genes for antibiotic biosynthesis will provide insights into the process of evolution of complex regulatory systems that coordinate the expression of gene operons, clusters and regulons, involved in the control of secondary metabolism and morphogenesis of actinomycetes.

  11. [Controlling arachidonic acid metabolic network: from single- to multi-target inhibitors of key enzymes].

    Science.gov (United States)

    Liu, Ying; Chen, Zheng; Shang, Er-chang; Yang, Kun; Wei, Deng-guo; Zhou, Lu; Jiang, Xiao-lu; He, Chong; Lai, Lu-hua

    2009-03-01

    Inflammatory diseases are common medical conditions seen in disorders of human immune system. There is a great demand for anti-inflammatory drugs. There are major inflammatory mediators in arachidonic acid metabolic network. Several enzymes in this network have been used as key targets for the development of anti-inflammatory drugs. However, specific single-target inhibitors can not sufficiently control the network balance and may cause side effects at the same time. Most inflammation induced diseases come from the complicated coupling of inflammatory cascades involving multiple targets. In order to treat these complicated diseases, drugs that can intervene multi-targets at the same time attracted much attention. The goal of this review is mainly focused on the key enzymes in arachidonic acid metabolic network, such as phospholipase A2, cyclooxygenase, 5-lipoxygenase and eukotriene A4 hydrolase. Advance in single target and multi-targe inhibitors is summarized.

  12. Human-Centered Development of an Online Social Network for Metabolic Syndrome Management.

    Science.gov (United States)

    Núñez-Nava, Jefersson; Orozco-Sánchez, Paola A; López, Diego M; Ceron, Jesus D; Alvarez-Rosero, Rosa E

    2016-01-01

    According to the International Diabetes Federation (IDF), a quarter of the world's population has Metabolic Syndrome (MS). To develop (and assess the users' degree of satisfaction of) an online social network for patients who suffer from Metabolic Syndrome, based on the recommendations and requirements of the Human-Centered Design. Following the recommendations of the ISO 9241-210 for Human-Centered Design (HCD), an online social network was designed to promote physical activity and healthy nutrition. In order to guarantee the active participation of the users during the development of the social network, a survey, an in-depth interview, a focal group, and usability tests were carried out with people suffering from MS. The study demonstrated how the different activities, recommendations, and requirements of the ISO 9241-210 are integrated into a traditional software development process. Early usability tests demonstrated that the user's acceptance and the effectiveness and efficiency of the social network are satisfactory.

  13. TRFBA: an algorithm to integrate genome-scale metabolic and transcriptional regulatory networks with incorporation of expression data.

    Science.gov (United States)

    Motamedian, Ehsan; Mohammadi, Maryam; Shojaosadati, Seyed Abbas; Heydari, Mona

    2017-04-01

    Integration of different biological networks and data-types has been a major challenge in systems biology. The present study introduces the transcriptional regulated flux balance analysis (TRFBA) algorithm that integrates transcriptional regulatory and metabolic models using a set of expression data for various perturbations. TRFBA considers the expression levels of genes as a new continuous variable and introduces two new linear constraints. The first constraint limits the rate of reaction(s) supported by a metabolic gene using a constant parameter (C) that converts the expression levels to the upper bounds of the reactions. Considering the concept of constraint-based modeling, the second set of constraints correlates the expression level of each target gene with that of its regulating genes. A set of constraints and binary variables was also added to prevent the second set of constraints from overlapping. TRFBA was implemented on Escherichia coli and Saccharomyces cerevisiae models to estimate growth rates under various environmental and genetic perturbations. The error sensitivity to the algorithm parameter was evaluated to find the best value of C. The results indicate a significant improvement in the quantitative prediction of growth in comparison with previously presented algorithms. The robustness of the algorithm to change in the expression data and the regulatory network was tested to evaluate the effect of noisy and incomplete data. Furthermore, the use of added constraints for perturbations without their gene expression profile demonstrates that these constraints can be applied to improve the growth prediction of FBA. TRFBA is implemented in Matlab software and requires COBRA toolbox. Source code is freely available at http://sbme.modares.ac.ir . : motamedian@modares.ac.ir. Supplementary data are available at Bioinformatics online.

  14. Comparison of TiO2 photocatalysis, electrochemically assisted Fenton reaction and direct electrochemistry for simulation of phase I metabolism reactions of drugs.

    Science.gov (United States)

    Ruokolainen, Miina; Gul, Turan; Permentier, Hjalmar; Sikanen, Tiina; Kostiainen, Risto; Kotiaho, Tapio

    2016-02-15

    The feasibility of titanium dioxide (TiO2) photocatalysis, electrochemically assisted Fenton reaction (EC-Fenton) and direct electrochemical oxidation (EC) for simulation of phase I metabolism of drugs was studied by comparing the reaction products of buspirone, promazine, testosterone and 7-ethoxycoumarin with phase I metabolites of the same compounds produced in vitro by human liver microsomes (HLM). Reaction products were analysed by UHPLC-MS. TiO2 photocatalysis simulated the in vitro phase I metabolism in HLM more comprehensively than did EC-Fenton or EC. Even though TiO2 photocatalysis, EC-Fenton and EC do not allow comprehensive prediction of phase I metabolism, all three methods produce several important metabolites without the need for demanding purification steps to remove the biological matrix. Importantly, TiO2 photocatalysis produces aliphatic and aromatic hydroxylation products where direct EC fails. Furthermore, TiO2 photocatalysis is an extremely rapid, simple and inexpensive way to generate oxidation products in a clean matrix and the reaction can be simply initiated and quenched by switching the UV lamp on/off. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Self-Organized Stationary Patterns in Networks of Bistable Chemical Reactions.

    Science.gov (United States)

    Kouvaris, Nikos E; Sebek, Michael; Mikhailov, Alexander S; Kiss, István Z

    2016-10-10

    Experiments with networks of discrete reactive bistable electrochemical elements organized in regular and nonregular tree networks are presented to confirm an alternative to the Turing mechanism for the formation of self-organized stationary patterns. The results show that the pattern formation can be described by the identification of domains that can be activated individually or in combinations. The method also enabled the localization of chemical reactions to network substructures and the identification of critical sites whose activation results in complete activation of the system. Although the experiments were performed with a specific nickel electrodissolution system, they reproduced all the salient dynamic behavior of a general network model with a single nonlinearity parameter. Thus, the considered pattern-formation mechanism is very robust, and similar behavior can be expected in other natural or engineered networked systems that exhibit, at least locally, a treelike structure. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. MSU SINP CDFE nuclear data activities in the nuclear reaction data centres network

    International Nuclear Information System (INIS)

    Boboshin, I.N.; Varlamov, V.V.; Komarov, S.Yu.; Peskov, N.N.; Semin, S.B.; Stepanov, M.E.; Chesnokov, V.V.

    2002-01-01

    This paper is the progress report of the Centre for Photonuclear Experiments Data, Moscow. It is a short review of the works carried out by the CDFE concerning the IAEA nuclear reaction data centers network activities from May 2001 until May 2002. and the description of the main results obtained. (a.n.)

  17. Dynamical Behaviors of Stochastic Reaction-Diffusion Cohen-Grossberg Neural Networks with Delays

    Directory of Open Access Journals (Sweden)

    Li Wan

    2012-01-01

    Full Text Available This paper investigates dynamical behaviors of stochastic Cohen-Grossberg neural network with delays and reaction diffusion. By employing Lyapunov method, Poincaré inequality and matrix technique, some sufficient criteria on ultimate boundedness, weak attractor, and asymptotic stability are obtained. Finally, a numerical example is given to illustrate the correctness and effectiveness of our theoretical results.

  18. Variable elimination in chemical reaction networks with mass-action kinetics

    DEFF Research Database (Denmark)

    Feliu, Elisenda; Wiuf, C.

    2012-01-01

    We consider chemical reaction networks taken with mass-action kinetics. The steady states of such a system are solutions to a system of polynomial equations. Even for small systems the task of finding the solutions is daunting. We develop an algebraic framework and procedure for linear elimination...

  19. Metabolic network as a progression biomarker of premanifest Huntington's disease

    NARCIS (Netherlands)

    Tang, Chris C.; Feigin, Andrew; Ma, Yilong; Habeck, Christian; Paulsen, Jane S.; Leenders, Klaus L.; Teune, Laura K.; van Oostrom, Joost C. H.; Guttman, Mark; Dhawan, Vijay; Eidelberg, David

    Background. The evaluation of effective disease-modifying therapies for neurodegenerative disorders relies on objective and accurate measures of progression in at-risk individuals. Here we used a computational approach to identify a functional brain network associated with the progression of

  20. Computing autocatalytic sets to unravel inconsistencies in metabolic network reconstructions

    DEFF Research Database (Denmark)

    Schmidt, R.; Waschina, S.; Boettger-Schmidt, D.

    2015-01-01

    are neglected by other gap-finding methods. We tested our method on the Model SEED, which is the largest repository for automatically generated genome-scale network reconstructions. In this way, we were able to identify a significant number of missing pathways in several of these reconstructions. Hence...

  1. Recursively constructing analytic expressions for equilibrium distributions of stochastic biochemical reaction networks.

    Science.gov (United States)

    Meng, X Flora; Baetica, Ania-Ariadna; Singhal, Vipul; Murray, Richard M

    2017-05-01

    Noise is often indispensable to key cellular activities, such as gene expression, necessitating the use of stochastic models to capture its dynamics. The chemical master equation (CME) is a commonly used stochastic model of Kolmogorov forward equations that describe how the probability distribution of a chemically reacting system varies with time. Finding analytic solutions to the CME can have benefits, such as expediting simulations of multiscale biochemical reaction networks and aiding the design of distributional responses. However, analytic solutions are rarely known. A recent method of computing analytic stationary solutions relies on gluing simple state spaces together recursively at one or two states. We explore the capabilities of this method and introduce algorithms to derive analytic stationary solutions to the CME. We first formally characterize state spaces that can be constructed by performing single-state gluing of paths, cycles or both sequentially. We then study stochastic biochemical reaction networks that consist of reversible, elementary reactions with two-dimensional state spaces. We also discuss extending the method to infinite state spaces and designing the stationary behaviour of stochastic biochemical reaction networks. Finally, we illustrate the aforementioned ideas using examples that include two interconnected transcriptional components and biochemical reactions with two-dimensional state spaces. © 2017 The Author(s).

  2. Cerebral metabolic correlates of attention networks in Alzheimer's Disease: A study of the Stroop.

    Science.gov (United States)

    Melrose, Rebecca J; Young, Stephanie; Weissberger, Gali H; Natta, Laura; Harwood, Dylan; Mandelkern, Mark; Sultzer, David L

    2017-11-01

    Patients with Alzheimer's Disease (AD) show difficulties with attention. Cognitive neuroscience models posit that attention can be broken down into alerting, orienting, and executive networks. We used the Stroop Color-Word test to interrogate the neural correlates of attention deficits in AD. We hypothesized that the Word, Color, and Color-Word conditions of the Stroop would all tap into the alerting and orienting networks. The Color-Word condition would additionally tap into the executive network. A ratio of Color-Word to Color naming performance would isolate the executive network from the others. To identify the neural underpinnings of attention in AD we correlated performance on the Stroop with brain metabolic activity. Sixty-six patients with probable AD completed [ 18 F] fluorodeoxyglucose PET scanning and neuropsychological testing. Analysis was conducted with SPM12 (p<0.001 uncorrected, extent threshold 50 voxels). Performance on the Word, Color, and Color-Word conditions directly correlated with metabolic rate in right inferior parietal lobules/intraparietal sulci. The Color-Word/Color ratio revealed associations with metabolic rate in right medial prefrontal cortex and insula/operculum. Overall findings were largely consistent with the hypothesized neuroanatomical substrates of the alerting, orienting, and executive networks. As such, attention deficits in AD reflect compromise to multiple large-scale networks. Published by Elsevier Ltd.

  3. Metabolic Brain Network Analysis of Hypothyroidism Symptom Based on [18F]FDG-PET of Rats.

    Science.gov (United States)

    Wan, Hongkai; Tan, Ziyu; Zheng, Qiang; Yu, Jing

    2018-03-12

    Recent researches have demonstrated the value of using 2-deoxy-2-[ 18 F]fluoro-D-glucose ([ 18 F]FDG) positron emission tomography (PET) imaging to reveal the hypothyroidism-related damages in local brain regions. However, the influence of hypothyroidism on the entire brain network is barely studied. This study focuses on the application of graph theory on analyzing functional brain networks of the hypothyroidism symptom. For both the hypothyroidism and the control groups of Wistar rats, the functional brain networks were constructed by thresholding the glucose metabolism correlation matrices of 58 brain regions. The network topological properties (including the small-world properties and the nodal centralities) were calculated and compared between the two groups. We found that the rat brains, like human brains, have typical properties of the small-world network in both the hypothyroidism and the control groups. However, the hypothyroidism group demonstrated lower global efficiency and decreased local cliquishness of the brain network, indicating hypothyroidism-related impairment to the brain network. The hypothyroidism group also has decreased nodal centrality in the left posterior hippocampus, the right hypothalamus, pituitary, pons, and medulla. This observation accorded with the hypothyroidism-related functional disorder of hypothalamus-pituitary-thyroid (HPT) feedback regulation mechanism. Our research quantitatively confirms that hypothyroidism hampers brain cognitive function by causing impairment to the brain network of glucose metabolism. This study reveals the feasibility and validity of applying graph theory method to preclinical [ 18 F]FDG-PET images and facilitates future study on human subjects.

  4. A novel Chemical Reaction Optimization based Higher order Neural Network (CRO-HONN for nonlinear classification

    Directory of Open Access Journals (Sweden)

    Janmenjoy Nayak

    2015-09-01

    Full Text Available In this paper, a Chemical Reaction Optimization (CRO based higher order neural network with a single hidden layer called Pi–Sigma Neural Network (PSNN has been proposed for data classification which maintains fast learning capability and avoids the exponential increase of number of weights and processing units. CRO is a recent metaheuristic optimization algorithm inspired by chemical reactions, free from intricate operator and parameter settings such as other algorithms and loosely couples chemical reactions with optimization. The performance of the proposed CRO-PSNN has been tested with various benchmark datasets from UCI machine learning repository and compared with the resulting performance of PSNN, GA-PSNN, PSO-PSNN. The methods have been implemented in MATLAB and the accuracy measures have been tested by using the ANOVA statistical tool. Experimental results show that the proposed method is fast, steady and reliable and provides better classification accuracy than others.

  5. Critical regimes driven by recurrent mobility patterns of reaction-diffusion processes in networks

    Science.gov (United States)

    Gómez-Gardeñes, J.; Soriano-Paños, D.; Arenas, A.

    2018-04-01

    Reaction-diffusion processes1 have been widely used to study dynamical processes in epidemics2-4 and ecology5 in networked metapopulations. In the context of epidemics6, reaction processes are understood as contagions within each subpopulation (patch), while diffusion represents the mobility of individuals between patches. Recently, the characteristics of human mobility7, such as its recurrent nature, have been proven crucial to understand the phase transition to endemic epidemic states8,9. Here, by developing a framework able to cope with the elementary epidemic processes, the spatial distribution of populations and the commuting mobility patterns, we discover three different critical regimes of the epidemic incidence as a function of these parameters. Interestingly, we reveal a regime of the reaction-diffussion process in which, counter-intuitively, mobility is detrimental to the spread of disease. We analytically determine the precise conditions for the emergence of any of the three possible critical regimes in real and synthetic networks.

  6. On a theory of stability for nonlinear stochastic chemical reaction networks

    Science.gov (United States)

    Smadbeck, Patrick; Kaznessis, Yiannis N.

    2015-01-01

    We present elements of a stability theory for small, stochastic, nonlinear chemical reaction networks. Steady state probability distributions are computed with zero-information (ZI) closure, a closure algorithm that solves chemical master equations of small arbitrary nonlinear reactions. Stochastic models can be linearized around the steady state with ZI-closure, and the eigenvalues of the Jacobian matrix can be readily computed. Eigenvalues govern the relaxation of fluctuation autocorrelation functions at steady state. Autocorrelation functions reveal the time scales of phenomena underlying the dynamics of nonlinear reaction networks. In accord with the fluctuation-dissipation theorem, these functions are found to be congruent to response functions to small perturbations. Significant differences are observed in the stability of nonlinear reacting systems between deterministic and stochastic modeling formalisms. PMID:25978877

  7. Genome scale metabolic reconstruction of Chlorella variabilis for exploring its metabolic potential for biofuels.

    Science.gov (United States)

    Juneja, Ankita; Chaplen, Frank W R; Murthy, Ganti S

    2016-08-01

    A compartmentalized genome scale metabolic network was reconstructed for Chlorella variabilis to offer insight into various metabolic potentials from this alga. The model, iAJ526, was reconstructed with 1455 reactions, 1236 metabolites and 526 genes. 21% of the reactions were transport reactions and about 81% of the total reactions were associated with enzymes. Along with gap filling reactions, 2 major sub-pathways were added to the model, chitosan synthesis and rhamnose metabolism. The reconstructed model had reaction participation of 4.3 metabolites per reaction and average lethality fraction of 0.21. The model was effective in capturing the growth of C. variabilis under three light conditions (white, red and red+blue light) with fair agreement. This reconstructed metabolic network will serve an important role in systems biology for further exploration of metabolism for specific target metabolites and enable improved characteristics in the strain through metabolic engineering. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Metabolic network topology reveals transcriptional regulatory signatures of type 2 diabetes.

    Science.gov (United States)

    Zelezniak, Aleksej; Pers, Tune H; Soares, Simão; Patti, Mary Elizabeth; Patil, Kiran Raosaheb

    2010-04-01

    Type 2 diabetes mellitus (T2DM) is a disorder characterized by both insulin resistance and impaired insulin secretion. Recent transcriptomics studies related to T2DM have revealed changes in expression of a large number of metabolic genes in a variety of tissues. Identification of the molecular mechanisms underlying these transcriptional changes and their impact on the cellular metabolic phenotype is a challenging task due to the complexity of transcriptional regulation and the highly interconnected nature of the metabolic network. In this study we integrate skeletal muscle gene expression datasets with human metabolic network reconstructions to identify key metabolic regulatory features of T2DM. These features include reporter metabolites--metabolites with significant collective transcriptional response in the associated enzyme-coding genes, and transcription factors with significant enrichment of binding sites in the promoter regions of these genes. In addition to metabolites from TCA cycle, oxidative phosphorylation, and lipid metabolism (known to be associated with T2DM), we identified several reporter metabolites representing novel biomarker candidates. For example, the highly connected metabolites NAD+/NADH and ATP/ADP were also identified as reporter metabolites that are potentially contributing to the widespread gene expression changes observed in T2DM. An algorithm based on the analysis of the promoter regions of the genes associated with reporter metabolites revealed a transcription factor regulatory network connecting several parts of metabolism. The identified transcription factors include members of the CREB, NRF1 and PPAR family, among others, and represent regulatory targets for further experimental analysis. Overall, our results provide a holistic picture of key metabolic and regulatory nodes potentially involved in the pathogenesis of T2DM.

  9. Optimization of a blueprint for in vitro glycolysis by metabolic real-time analysis

    NARCIS (Netherlands)

    Bujara, Matthias; Schümperli, Michael; Pellaux, René; Heinemann, Matthias; Panke, Sven

    Recruiting complex metabolic reaction networks for chemical synthesis has attracted considerable attention but frequently requires optimization of network composition and dynamics to reach sufficient productivity. As a design framework to predict optimal levels for all enzymes in the network is

  10. Individual variation in metabolic reaction norms over ambient temperature causes low correlation between basal and standard metabolic rate

    NARCIS (Netherlands)

    Briga, Michael; Verhulst, Simon

    2017-01-01

    Basal metabolic rate (BMR) is often assumed to be indicative of the energy turnover at ambient temperatures (T-a) below the thermoneutral zone (SMR), but this assumption has remained largely untested. Using a new statistical approach, we quantified the consistency in nocturnal metabolic rate across

  11. Toward a self-consistent and unitary reaction network for big-bang nucleosynthesis

    Directory of Open Access Journals (Sweden)

    Paris Mark W.

    2014-04-01

    Full Text Available Unitarity, the mathematical expression of the conservation of probability in multichannel reactions, is an essential ingredient in the development of accurate nuclear reaction networks appropriate for nucleosynthesis in a variety of environments. We describe our ongoing program to develop a “unitary reaction network” for the big-bang nucleosynthesis environment and look at an example of the need and power of unitary parametrizations of nuclear scattering and reaction data. Recent attention has been focused on the possible role of the 9B compound nuclear system in the resonant destruction of 7Li during primordial nucleosynthesis. We have studied reactions in the 9B compound system with a multichannel, two-body unitary R-matrix code (EDA using the known elastic and reaction data, in a four-channel treatment. The data include elastic 6Li(3He,3He6Li differential cross sections from 0.7 to 2.0 MeV, integrated reaction cross sections for energies from 0.7 to 5.0 MeV for 6Li(3He,p8Be* and from 0.4 to 5.0 MeV for the 6Li(3He,d7Be reaction. Capture data have been added to the previous analysis with integrated cross section measurements from 0.7 to 0.825 MeV for 6Li(3He,γ9B. The resulting resonance parameters are compared with tabulated values from TUNL Nuclear Data Group analyses. Previously unidentified resonances are noted and the relevance of this analysis and a unitary reaction network for big-bang nucleosynthesis are emphasized.

  12. Flux Balance Analysis of Cyanobacterial Metabolism.The Metabolic Network of Synechocystis sp. PCC 6803

    Czech Academy of Sciences Publication Activity Database

    Knoop, H.; Gründel, M.; Zilliges, Y.; Lehmann, R.; Hoffmann, S.; Lockau, W.; Steuer, Ralf

    2013-01-01

    Roč. 9, č. 6 (2013), e1003081-e1003081 ISSN 1553-7358 R&D Projects: GA MŠk(CZ) EE2.3.20.0256 Institutional support: RVO:67179843 Keywords : SP STRAIN PCC-6803 * SP ATCC 51142 * photoautotrophic metabolism * anacystis-nidulans * reconstructions * pathway * plants * models * growth Subject RIV: EI - Biotechnology ; Bionics Impact factor: 4.829, year: 2013

  13. Systems Nutrigenomics Reveals Brain Gene Networks Linking Metabolic and Brain Disorders

    Directory of Open Access Journals (Sweden)

    Qingying Meng

    2016-05-01

    Full Text Available Nutrition plays a significant role in the increasing prevalence of metabolic and brain disorders. Here we employ systems nutrigenomics to scrutinize the genomic bases of nutrient–host interaction underlying disease predisposition or therapeutic potential. We conducted transcriptome and epigenome sequencing of hypothalamus (metabolic control and hippocampus (cognitive processing from a rodent model of fructose consumption, and identified significant reprogramming of DNA methylation, transcript abundance, alternative splicing, and gene networks governing cell metabolism, cell communication, inflammation, and neuronal signaling. These signals converged with genetic causal risks of metabolic, neurological, and psychiatric disorders revealed in humans. Gene network modeling uncovered the extracellular matrix genes Bgn and Fmod as main orchestrators of the effects of fructose, as validated using two knockout mouse models. We further demonstrate that an omega-3 fatty acid, DHA, reverses the genomic and network perturbations elicited by fructose, providing molecular support for nutritional interventions to counteract diet-induced metabolic and brain disorders. Our integrative approach complementing rodent and human studies supports the applicability of nutrigenomics principles to predict disease susceptibility and to guide personalized medicine.

  14. Systems Nutrigenomics Reveals Brain Gene Networks Linking Metabolic and Brain Disorders.

    Science.gov (United States)

    Meng, Qingying; Ying, Zhe; Noble, Emily; Zhao, Yuqi; Agrawal, Rahul; Mikhail, Andrew; Zhuang, Yumei; Tyagi, Ethika; Zhang, Qing; Lee, Jae-Hyung; Morselli, Marco; Orozco, Luz; Guo, Weilong; Kilts, Tina M; Zhu, Jun; Zhang, Bin; Pellegrini, Matteo; Xiao, Xinshu; Young, Marian F; Gomez-Pinilla, Fernando; Yang, Xia

    2016-05-01

    Nutrition plays a significant role in the increasing prevalence of metabolic and brain disorders. Here we employ systems nutrigenomics to scrutinize the genomic bases of nutrient-host interaction underlying disease predisposition or therapeutic potential. We conducted transcriptome and epigenome sequencing of hypothalamus (metabolic control) and hippocampus (cognitive processing) from a rodent model of fructose consumption, and identified significant reprogramming of DNA methylation, transcript abundance, alternative splicing, and gene networks governing cell metabolism, cell communication, inflammation, and neuronal signaling. These signals converged with genetic causal risks of metabolic, neurological, and psychiatric disorders revealed in humans. Gene network modeling uncovered the extracellular matrix genes Bgn and Fmod as main orchestrators of the effects of fructose, as validated using two knockout mouse models. We further demonstrate that an omega-3 fatty acid, DHA, reverses the genomic and network perturbations elicited by fructose, providing molecular support for nutritional interventions to counteract diet-induced metabolic and brain disorders. Our integrative approach complementing rodent and human studies supports the applicability of nutrigenomics principles to predict disease susceptibility and to guide personalized medicine. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Limitations of a metabolic network-based reverse ecology method for inferring host-pathogen interactions.

    Science.gov (United States)

    Takemoto, Kazuhiro; Aie, Kazuki

    2017-05-25

    Host-pathogen interactions are important in a wide range of research fields. Given the importance of metabolic crosstalk between hosts and pathogens, a metabolic network-based reverse ecology method was proposed to infer these interactions. However, the validity of this method remains unclear because of the various explanations presented and the influence of potentially confounding factors that have thus far been neglected. We re-evaluated the importance of the reverse ecology method for evaluating host-pathogen interactions while statistically controlling for confounding effects using oxygen requirement, genome, metabolic network, and phylogeny data. Our data analyses showed that host-pathogen interactions were more strongly influenced by genome size, primary network parameters (e.g., number of edges), oxygen requirement, and phylogeny than the reserve ecology-based measures. These results indicate the limitations of the reverse ecology method; however, they do not discount the importance of adopting reverse ecology approaches altogether. Rather, we highlight the need for developing more suitable methods for inferring host-pathogen interactions and conducting more careful examinations of the relationships between metabolic networks and host-pathogen interactions.

  16. Random sampling of elementary flux modes in large-scale metabolic networks.

    Science.gov (United States)

    Machado, Daniel; Soons, Zita; Patil, Kiran Raosaheb; Ferreira, Eugénio C; Rocha, Isabel

    2012-09-15

    The description of a metabolic network in terms of elementary (flux) modes (EMs) provides an important framework for metabolic pathway analysis. However, their application to large networks has been hampered by the combinatorial explosion in the number of modes. In this work, we develop a method for generating random samples of EMs without computing the whole set. Our algorithm is an adaptation of the canonical basis approach, where we add an additional filtering step which, at each iteration, selects a random subset of the new combinations of modes. In order to obtain an unbiased sample, all candidates are assigned the same probability of getting selected. This approach avoids the exponential growth of the number of modes during computation, thus generating a random sample of the complete set of EMs within reasonable time. We generated samples of different sizes for a metabolic network of Escherichia coli, and observed that they preserve several properties of the full EM set. It is also shown that EM sampling can be used for rational strain design. A well distributed sample, that is representative of the complete set of EMs, should be suitable to most EM-based methods for analysis and optimization of metabolic networks. Source code for a cross-platform implementation in Python is freely available at http://code.google.com/p/emsampler. dmachado@deb.uminho.pt Supplementary data are available at Bioinformatics online.

  17. Deciphering Fur transcriptional regulatory network highlights its complex role beyond iron metabolism in Escherichia coli

    DEFF Research Database (Denmark)

    Seo, Sang Woo; Kim, Donghyuk; Latif, Haythem

    2014-01-01

    The ferric uptake regulator (Fur) plays a critical role in the transcriptional regulation of iron metabolism. However, the full regulatory potential of Fur remains undefined. Here we comprehensively reconstruct the Fur transcriptional regulatory network in Escherichia coli K-12 MG1655 in response...

  18. Parametric sensitivity analysis for biochemical reaction networks based on pathwise information theory.

    Science.gov (United States)

    Pantazis, Yannis; Katsoulakis, Markos A; Vlachos, Dionisios G

    2013-10-22

    Stochastic modeling and simulation provide powerful predictive methods for the intrinsic understanding of fundamental mechanisms in complex biochemical networks. Typically, such mathematical models involve networks of coupled jump stochastic processes with a large number of parameters that need to be suitably calibrated against experimental data. In this direction, the parameter sensitivity analysis of reaction networks is an essential mathematical and computational tool, yielding information regarding the robustness and the identifiability of model parameters. However, existing sensitivity analysis approaches such as variants of the finite difference method can have an overwhelming computational cost in models with a high-dimensional parameter space. We develop a sensitivity analysis methodology suitable for complex stochastic reaction networks with a large number of parameters. The proposed approach is based on Information Theory methods and relies on the quantification of information loss due to parameter perturbations between time-series distributions. For this reason, we need to work on path-space, i.e., the set consisting of all stochastic trajectories, hence the proposed approach is referred to as "pathwise". The pathwise sensitivity analysis method is realized by employing the rigorously-derived Relative Entropy Rate, which is directly computable from the propensity functions. A key aspect of the method is that an associated pathwise Fisher Information Matrix (FIM) is defined, which in turn constitutes a gradient-free approach to quantifying parameter sensitivities. The structure of the FIM turns out to be block-diagonal, revealing hidden parameter dependencies and sensitivities in reaction networks. As a gradient-free method, the proposed sensitivity analysis provides a significant advantage when dealing with complex stochastic systems with a large number of parameters. In addition, the knowledge of the structure of the FIM can allow to efficiently address

  19. Quantitative Tools for Dissection of Hydrogen-Producing Metabolic Networks-Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Rabinowitz, Joshua D.; Dismukes, G.Charles.; Rabitz, Herschel A.; Amador-Noguez, Daniel

    2012-10-19

    During this project we have pioneered the development of integrated experimental-computational technologies for the quantitative dissection of metabolism in hydrogen and biofuel producing microorganisms (i.e. C. acetobutylicum and various cyanobacteria species). The application of these new methodologies resulted in many significant advances in the understanding of the metabolic networks and metabolism of these organisms, and has provided new strategies to enhance their hydrogen or biofuel producing capabilities. As an example, using mass spectrometry, isotope tracers, and quantitative flux-modeling we mapped the metabolic network structure in C. acetobutylicum. This resulted in a comprehensive and quantitative understanding of central carbon metabolism that could not have been obtained using genomic data alone. We discovered that biofuel production in this bacterium, which only occurs during stationary phase, requires a global remodeling of central metabolism (involving large changes in metabolite concentrations and fluxes) that has the effect of redirecting resources (carbon and reducing power) from biomass production into solvent production. This new holistic, quantitative understanding of metabolism is now being used as the basis for metabolic engineering strategies to improve solvent production in this bacterium. In another example, making use of newly developed technologies for monitoring hydrogen and NAD(P)H levels in vivo, we dissected the metabolic pathways for photobiological hydrogen production by cyanobacteria Cyanothece sp. This investigation led to the identification of multiple targets for improving hydrogen production. Importantly, the quantitative tools and approaches that we have developed are broadly applicable and we are now using them to investigate other important biofuel producers, such as cellulolytic bacteria.

  20. Metabolic Network Modeling of Microbial Interactions in Natural and Engineered Environmental Systems

    Science.gov (United States)

    Perez-Garcia, Octavio; Lear, Gavin; Singhal, Naresh

    2016-01-01

    We review approaches to characterize metabolic interactions within microbial communities using Stoichiometric Metabolic Network (SMN) models for applications in environmental and industrial biotechnology. SMN models are computational tools used to evaluate the metabolic engineering potential of various organisms. They have successfully been applied to design and optimize the microbial production of antibiotics, alcohols and amino acids by single strains. To date however, such models have been rarely applied to analyze and control the metabolism of more complex microbial communities. This is largely attributed to the diversity of microbial community functions, metabolisms, and interactions. Here, we firstly review different types of microbial interaction and describe their relevance for natural and engineered environmental processes. Next, we provide a general description of the essential methods of the SMN modeling workflow including the steps of network reconstruction, simulation through Flux Balance Analysis (FBA), experimental data gathering, and model calibration. Then we broadly describe and compare four approaches to model microbial interactions using metabolic networks, i.e., (i) lumped networks, (ii) compartment per guild networks, (iii) bi-level optimization simulations, and (iv) dynamic-SMN methods. These approaches can be used to integrate and analyze diverse microbial physiology, ecology and molecular community data. All of them (except the lumped approach) are suitable for incorporating species abundance data but so far they have been used only to model simple communities of two to eight different species. Interactions based on substrate exchange and competition can be directly modeled using the above approaches. However, interactions based on metabolic feedbacks, such as product inhibition and synthropy require extensions to current models, incorporating gene regulation and compounding accumulation mechanisms. SMN models of microbial interactions can

  1. Metabolic Network Modeling of Microbial Interactions in Natural and Engineered Environmental Systems.

    Science.gov (United States)

    Perez-Garcia, Octavio; Lear, Gavin; Singhal, Naresh

    2016-01-01

    We review approaches to characterize metabolic interactions within microbial communities using Stoichiometric Metabolic Network (SMN) models for applications in environmental and industrial biotechnology. SMN models are computational tools used to evaluate the metabolic engineering potential of various organisms. They have successfully been applied to design and optimize the microbial production of antibiotics, alcohols and amino acids by single strains. To date however, such models have been rarely applied to analyze and control the metabolism of more complex microbial communities. This is largely attributed to the diversity of microbial community functions, metabolisms, and interactions. Here, we firstly review different types of microbial interaction and describe their relevance for natural and engineered environmental processes. Next, we provide a general description of the essential methods of the SMN modeling workflow including the steps of network reconstruction, simulation through Flux Balance Analysis (FBA), experimental data gathering, and model calibration. Then we broadly describe and compare four approaches to model microbial interactions using metabolic networks, i.e., (i) lumped networks, (ii) compartment per guild networks, (iii) bi-level optimization simulations, and (iv) dynamic-SMN methods. These approaches can be used to integrate and analyze diverse microbial physiology, ecology and molecular community data. All of them (except the lumped approach) are suitable for incorporating species abundance data but so far they have been used only to model simple communities of two to eight different species. Interactions based on substrate exchange and competition can be directly modeled using the above approaches. However, interactions based on metabolic feedbacks, such as product inhibition and synthropy require extensions to current models, incorporating gene regulation and compounding accumulation mechanisms. SMN models of microbial interactions can

  2. Metabolic network modeling of microbial interactions in natural and engineered environmental systems

    Directory of Open Access Journals (Sweden)

    Octavio ePerez-Garcia

    2016-05-01

    Full Text Available We review approaches to characterize metabolic interactions within microbial communities using Stoichiometric Metabolic Network (SMN models for applications in environmental and industrial biotechnology. SMN models are computational tools used to evaluate the metabolic engineering potential of various organisms. They have successfully been applied to design and optimize the microbial production of antibiotics, alcohols and amino acids by single strains. To date however, such models have been rarely applied to analyze and control the metabolism of more complex microbial communities. This is largely attributed to the diversity of microbial community functions, metabolisms and interactions. Here, we firstly review different types of microbial interaction and describe their relevance for natural and engineered environmental processes. Next, we provide a general description of the essential methods of the SMN modeling workflow including the steps of network reconstruction, simulation through Flux Balance Analysis (FBA, experimental data gathering, and model calibration. Then we broadly describe and compare four approaches to model microbial interactions using metabolic networks, i.e. i lumped networks, ii compartment per guild networks, iii bi-level optimization simulations and iv dynamic-SMN methods. These approaches can be used to integrate and analyze diverse microbial physiology, ecology and molecular community data. All of them (except the lumped approach are suitable for incorporating species abundance data but so far they have been used only to model simple communities of two to eight different species. Interactions based on substrate exchange and competition can be directly modeled using the above approaches. However, interactions based on metabolic feedbacks, such as product inhibition and synthropy require extensions to current models, incorporating gene regulation and compounding accumulation mechanisms. SMN models of microbial

  3. Molecular network analysis of phosphotyrosine and lipid metabolism in hepatic PTP1b deletion mice.

    Science.gov (United States)

    Miraldi, Emily R; Sharfi, Hadar; Friedline, Randall H; Johnson, Hannah; Zhang, Tejia; Lau, Ken S; Ko, Hwi Jin; Curran, Timothy G; Haigis, Kevin M; Yaffe, Michael B; Bonneau, Richard; Lauffenburger, Douglas A; Kahn, Barbara B; Kim, Jason K; Neel, Benjamin G; Saghatelian, Alan; White, Forest M

    2013-07-24

    Metabolic syndrome describes a set of obesity-related disorders that increase diabetes, cardiovascular, and mortality risk. Studies of liver-specific protein-tyrosine phosphatase 1b (PTP1b) deletion mice (L-PTP1b(-/-)) suggest that hepatic PTP1b inhibition would mitigate metabolic-syndrome through amelioration of hepatic insulin resistance, endoplasmic-reticulum stress, and whole-body lipid metabolism. However, the altered molecular-network states underlying these phenotypes are poorly understood. We used mass spectrometry to quantify protein-phosphotyrosine network changes in L-PTP1b(-/-) mouse livers relative to control mice on normal and high-fat diets. We applied a phosphosite-set-enrichment analysis to identify known and novel pathways exhibiting PTP1b- and diet-dependent phosphotyrosine regulation. Detection of a PTP1b-dependent, but functionally uncharacterized, set of phosphosites on lipid-metabolic proteins motivated global lipidomic analyses that revealed altered polyunsaturated-fatty-acid (PUFA) and triglyceride metabolism in L-PTP1b(-/-) mice. To connect phosphosites and lipid measurements in a unified model, we developed a multivariate-regression framework, which accounts for measurement noise and systematically missing proteomics data. This analysis resulted in quantitative models that predict roles for phosphoproteins involved in oxidation-reduction in altered PUFA and triglyceride metabolism.

  4. c-Myc activates multiple metabolic networks to generate substrates for cell-cycle entry.

    Energy Technology Data Exchange (ETDEWEB)

    Morrish, Fionnuala M.; Isern, Nancy; Sadilek, Martin; Jeffrey, Mark; Hockenbery, David M.

    2009-05-18

    Cell proliferation requires the coordinated activity of cytosolic and mitochondrial metabolic pathways to provide ATP and building blocks for DNA, RNA, and protein synthesis. Many metabolic pathway genes are targets of the c-myc oncogene and cell cycle regulator. However, the contribution of c-Myc to the activation of cytosolic and mitochondrial metabolic networks during cell cycle entry is unknown. Here, we report the metabolic fates of [U-13C] glucose in serum-stimulated myc-/- and myc+/+ fibroblasts by 13C isotopomer NMR analysis. We demonstrate that endogenous c-myc increased 13C-labeling of ribose sugars, purines, and amino acids, indicating partitioning of glucose carbons into C1/folate and pentose phosphate pathways, and increased tricarboxylic acid cycle turnover at the expense of anaplerotic flux. Myc expression also increased global O-linked GlcNAc protein modification, and inhibition of hexosamine biosynthesis selectively reduced growth of Myc-expressing cells, suggesting its importance in Myc-induced proliferation. These data reveal a central organizing role for the Myc oncogene in the metabolism of cycling cells. The pervasive deregulation of this oncogene in human cancers may be explained by its role in directing metabolic networks required for cell proliferation.

  5. Data-driven integration of genome-scale regulatory and metabolic network models

    Science.gov (United States)

    Imam, Saheed; Schäuble, Sascha; Brooks, Aaron N.; Baliga, Nitin S.; Price, Nathan D.

    2015-01-01

    Microbes are diverse and extremely versatile organisms that play vital roles in all ecological niches. Understanding and harnessing microbial systems will be key to the sustainability of our planet. One approach to improving our knowledge of microbial processes is through data-driven and mechanism-informed computational modeling. Individual models of biological networks (such as metabolism, transcription, and signaling) have played pivotal roles in driving microbial research through the years. These networks, however, are highly interconnected and function in concert—a fact that has led to the development of a variety of approaches aimed at simulating the integrated functions of two or more network types. Though the task of integrating these different models is fraught with new challenges, the large amounts of high-throughput data sets being generated, and algorithms being developed, means that the time is at hand for concerted efforts to build integrated regulatory-metabolic networks in a data-driven fashion. In this perspective, we review current approaches for constructing integrated regulatory-metabolic models and outline new strategies for future development of these network models for any microbial system. PMID:25999934

  6. Data-driven integration of genome-scale regulatory and metabolic network models

    Directory of Open Access Journals (Sweden)

    Saheed eImam

    2015-05-01

    Full Text Available Microbes are diverse and extremely versatile organisms that play vital roles in all ecological niches. Understanding and harnessing microbial systems will be key to the sustainability of our planet. One approach to improving our knowledge of microbial processes is through data-driven and mechanism-informed computational modeling. Individual models of biological networks (such as metabolism, transcription and signaling have played pivotal roles in driving microbial research through the years. These networks, however, are highly interconnected and function in concert – a fact that has led to the development of a variety of approaches aimed at simulating the integrated functions of two or more network types. Though the task of integrating these different models is fraught with new challenges, the large amounts of high-throughput data sets being generated, and algorithms being developed, means that the time is at hand for concerted efforts to build integrated regulatory-metabolic networks in a data-driven fashion. In this perspective, we review current approaches for constructing integrated regulatory-metabolic models and outline new strategies for future development of these network models for any microbial system.

  7. Information theory in systems biology. Part I: Gene regulatory and metabolic networks.

    Science.gov (United States)

    Mousavian, Zaynab; Kavousi, Kaveh; Masoudi-Nejad, Ali

    2016-03-01

    "A Mathematical Theory of Communication", was published in 1948 by Claude Shannon to establish a framework that is now known as information theory. In recent decades, information theory has gained much attention in the area of systems biology. The aim of this paper is to provide a systematic review of those contributions that have applied information theory in inferring or understanding of biological systems. Based on the type of system components and the interactions between them, we classify the biological systems into 4 main classes: gene regulatory, metabolic, protein-protein interaction and signaling networks. In the first part of this review, we attempt to introduce most of the existing studies on two types of biological networks, including gene regulatory and metabolic networks, which are founded on the concepts of information theory. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Individual variation in metabolic reaction norms over ambient temperature causes low correlation between basal and standard metabolic rate

    OpenAIRE

    Briga, Michael; Verhulst, Simon

    2017-01-01

    Basal metabolic rate (BMR) is often assumed to be indicative of the energy turnover at ambient temperatures (T-a) below the thermoneutral zone (SMR), but this assumption has remained largely untested. Using a new statistical approach, we quantified the consistency in nocturnal metabolic rate across a temperature range in zebra finches (N=3213 measurements on 407 individuals) living permanently in eight outdoor aviaries. Foraging conditions were either benign or harsh, and body mass and mass-a...

  9. Kinetic isotope effects in complex reaction networks: formic acid electro-oxidation.

    Science.gov (United States)

    Chen, Yan-Xia; Heinen, Martin; Jusys, Zenonas; Behm, Rolf Jürgen

    2007-02-19

    The determination of kinetic isotope effects (KIEs) for different reaction pathways and steps in a complex reaction network, where KIEs may affect the overall reaction in various different ways including dominant and minority pathways or the buildup of a reaction-inhibiting adlayer, is demonstrated for formic acid electrooxidation on a Pt film electrode by quantitative electrochemical in situ IR spectroscopic measurements under controlled mass-transport conditions. The ability to separate effects resulting from different contributions--which is not possible using purely electrochemical kinetic measurements--allows conclusions on the nature of the rate-limiting steps and their transition state in the individual reaction pathways. The potential-independent values of approximately 1.9 for the KIE of formic acid dehydration (CO(ad) formation) in the indirect pathway and approximately 3 for the CO(ad) coverage-normalized KIE of formic acid oxidation to CO2 (direct pathway) indicate that 1) C-H bond breaking is rate-limiting in both reaction steps, 2) the transition states for these reactions are different, and 3) the configurations of the transition states involve rather strong bonds to the transferred D/H species, either in the initial or in the final state, for the direct pathway and--even more pronounced--for formic acid dehydration (CO(ad) formation).

  10. Stationary patterns in star networks of bistable units: Theory and application to chemical reactions.

    Science.gov (United States)

    Kouvaris, Nikos E; Sebek, Michael; Iribarne, Albert; Díaz-Guilera, Albert; Kiss, István Z

    2017-04-01

    We present theoretical and experimental studies on pattern formation with bistable dynamical units coupled in a star network configuration. By applying a localized perturbation to the central or the peripheral elements, we demonstrate the subsequent spreading, pinning, or retraction of the activations; such analysis enables the characterization of the formation of stationary patterns of localized activity. The results are interpreted with a theoretical analysis of a simplified bistable reaction-diffusion model. Weak coupling results in trivial pinned states where the activation cannot propagate. At strong coupling, a uniform state is expected with active or inactive elements at small or large degree networks, respectively. A nontrivial stationary spatial pattern, corresponding to an activation pinning, is predicted to occur at an intermediate number of peripheral elements and at intermediate coupling strengths, where the central activation of the network is pinned, but the peripheral activation propagates toward the center. The results are confirmed in experiments with star networks of bistable electrochemical reactions. The experiments confirm the existence of the stationary spatial patterns and the dependence of coupling strength on the number of peripheral elements for transitions between pinned and retreating or spreading fronts in forced network configurations (where the central or periphery elements are forced to maintain their states).

  11. Parallel replica dynamics method for bistable stochastic reaction networks: Simulation and sensitivity analysis.

    Science.gov (United States)

    Wang, Ting; Plecháč, Petr

    2017-12-21

    Stochastic reaction networks that exhibit bistable behavior are common in systems biology, materials science, and catalysis. Sampling of stationary distributions is crucial for understanding and characterizing the long-time dynamics of bistable stochastic dynamical systems. However, simulations are often hindered by the insufficient sampling of rare transitions between the two metastable regions. In this paper, we apply the parallel replica method for a continuous time Markov chain in order to improve sampling of the stationary distribution in bistable stochastic reaction networks. The proposed method uses parallel computing to accelerate the sampling of rare transitions. Furthermore, it can be combined with the path-space information bounds for parametric sensitivity analysis. With the proposed methodology, we study three bistable biological networks: the Schlögl model, the genetic switch network, and the enzymatic futile cycle network. We demonstrate the algorithmic speedup achieved in these numerical benchmarks. More significant acceleration is expected when multi-core or graphics processing unit computer architectures and programming tools such as CUDA are employed.

  12. Parallel replica dynamics method for bistable stochastic reaction networks: Simulation and sensitivity analysis

    Science.gov (United States)

    Wang, Ting; Plecháč, Petr

    2017-12-01

    Stochastic reaction networks that exhibit bistable behavior are common in systems biology, materials science, and catalysis. Sampling of stationary distributions is crucial for understanding and characterizing the long-time dynamics of bistable stochastic dynamical systems. However, simulations are often hindered by the insufficient sampling of rare transitions between the two metastable regions. In this paper, we apply the parallel replica method for a continuous time Markov chain in order to improve sampling of the stationary distribution in bistable stochastic reaction networks. The proposed method uses parallel computing to accelerate the sampling of rare transitions. Furthermore, it can be combined with the path-space information bounds for parametric sensitivity analysis. With the proposed methodology, we study three bistable biological networks: the Schlögl model, the genetic switch network, and the enzymatic futile cycle network. We demonstrate the algorithmic speedup achieved in these numerical benchmarks. More significant acceleration is expected when multi-core or graphics processing unit computer architectures and programming tools such as CUDA are employed.

  13. Clusters of reaction rates and concentrations in protein networks such as the phosphotransferase system.

    Science.gov (United States)

    Härdin, Hanna M; Zagaris, Antonios; Willms, Allan R; Westerhoff, Hans V

    2014-01-01

    To understand the functioning of living cells, it is often helpful or even necessary to exploit inherent timescale disparities and focus on long-term dynamic behaviour. In the present study, we explore this type of behaviour for the biochemical network of the phosphotransferase system. We show that, during the slow phase that follows a fast initial transient, the network reaction rates are partitioned into clusters corresponding to connected parts of the reaction network. Rates within any of these clusters assume essentially the same value: differences within each cluster are vastly smaller than that from one cluster to another. This rate clustering induces an analogous clustering of the reactive compounds: only the molecular concentrations on the interface between these clusters are produced and consumed at substantially different rates and hence change considerably during the slow phase. The remaining concentrations essentially assume their steady-state values already by the end of the transient phase. Further, we find that this clustering phenomenon occurs for a large number of parameter values and also for models with different topologies; to each of these models, there corresponds a particular network partitioning. Our results show that, in spite of its complexity, the phosphotransferase system tends to behave in a rather simple (yet versatile) way. The persistence of clustering for the perturbed models we examined suggests that it is likely to be encountered in various environmental conditions, as well as in other signal transduction pathways with network structures similar to that of the phosphotransferase system. © 2013 FEBS.

  14. An Efficient Forward-Reverse EM Algorithm for Statistical Inference in Stochastic Reaction Networks

    KAUST Repository

    Bayer, Christian

    2016-01-06

    In this work [1], we present an extension of the forward-reverse algorithm by Bayer and Schoenmakers [2] to the context of stochastic reaction networks (SRNs). We then apply this bridge-generation technique to the statistical inference problem of approximating the reaction coefficients based on discretely observed data. To this end, we introduce an efficient two-phase algorithm in which the first phase is deterministic and it is intended to provide a starting point for the second phase which is the Monte Carlo EM Algorithm.

  15. Synchronization of stochastic reaction-diffusion neural networks with Dirichlet boundary conditions and unbounded delays.

    Science.gov (United States)

    Sheng, Yin; Zeng, Zhigang

    2017-09-01

    In this paper, synchronization of stochastic reaction-diffusion neural networks with Dirichlet boundary conditions and unbounded discrete time-varying delays is investigated. By virtue of theories of partial differential equations, inequality methods, and stochastic analysis techniques, pth moment exponential synchronization and almost sure exponential synchronization of the underlying neural networks are developed. The obtained results in this study enhance and generalize some earlier ones. The effectiveness and merits of the theoretical criteria are substantiated by two numerical simulations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Design of an Adaptive-Neural Network Attitude Controller of a Satellite using Reaction Wheels

    Directory of Open Access Journals (Sweden)

    Abbas Ajorkar

    2015-04-01

    Full Text Available In this paper, an adaptive attitude control algorithm is developed based on neural network for a satellite using four reaction wheels in a tetrahedron configuration. Then, an attitude control based on feedback linearization control has been designed and uncertainties in the moment of inertia matrix and disturbances torque have been considered. In order to eliminate the effect of these uncertainties, a multilayer neural network with back-propagation law is designed. In this structure, the parameters of the moment of inertia matrix and external disturbances are estimated and used in feedback linearization control law. Finally, the performance of the designed attitude controller is investigated by several simulations.

  17. Stochastic exponential stability of the delayed reaction-diffusion recurrent neural networks with Markovian jumping parameters

    International Nuclear Information System (INIS)

    Wang Linshan; Zhang Zhe; Wang Yangfan

    2008-01-01

    Some criteria for the global stochastic exponential stability of the delayed reaction-diffusion recurrent neural networks with Markovian jumping parameters are presented. The jumping parameters considered here are generated from a continuous-time discrete-state homogeneous Markov process, which are governed by a Markov process with discrete and finite state space. By employing a new Lyapunov-Krasovskii functional, a linear matrix inequality (LMI) approach is developed to establish some easy-to-test criteria of global exponential stability in the mean square for the stochastic neural networks. The criteria are computationally efficient, since they are in the forms of some linear matrix inequalities

  18. Network-based analysis of the sphingolipid metabolism in hypertension

    DEFF Research Database (Denmark)

    Fenger, Mogens; Linneberg, Allan; Jeppesen, Jørgen

    2015-01-01

    of the complex genotype determines the state and dynamics of any trait, which may be modified to various extent by non-genetic factors. Thus, diseases are heterogenous ensembles of conditions with a common endpoint. Numerous studies have been performed to define genes of importance for a trait or disease......Common diseases like essential hypertension or diabetes mellitus are complex as they are polygenic in nature, such that each genetic variation only has a small influence on the disease. Genes operates in integrated networks providing the blue-print for all biological processes and conditional......, but only a few genes with small effect have been identified. The major reasons for this modest progress is the unresolved heterogeneity of the regulation of blood pressure and the shortcomings of the prevailing monogenic approach to capture genetic effects in a polygenic condition. Here, a two...

  19. Dynamic Metabolic Footprinting Reveals the Key Components of Metabolic Network in Yeast Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Chumnanpuen, Pramote; Hansen, Michael Adsetts Edberg; Smedsgaard, Jørn

    2014-01-01

    relies on analysis at a single time point. Using direct infusion-mass spectrometry (DI-MS), we could observe the dynamic metabolic footprinting in yeast S. cerevisiae BY4709 (wild type) cultured on 3 different C-sources (glucose, glycerol, and ethanol) and sampled along 10 time points with 5 biological...... ionization (ESI) modes were performed to obtain the complete information about the metabolite content. Using sparse principal component analysis (Sparse PCA), we further identified those pairs of metabolites that significantly contribute to the separation. From the list of significant metabolite pairs, we...

  20. Optimization of Bioprocess Productivity Based on Metabolic-Genetic Network Models with Bilevel Dynamic Programming.

    Science.gov (United States)

    Jabarivelisdeh, Banafsheh; Waldherr, Steffen

    2018-03-26

    One of the main goals of metabolic engineering is to obtain high levels of a microbial product through genetic modifications. To improve the productivity of such a process, the dynamic implementation of metabolic engineering strategies has been proven to be more beneficial compared to static genetic manipulations in which the gene expression is not controlled over time, by resolving the trade-off between growth and production. In this work, a bilevel optimization framework based on constraint-based models is applied to identify an optimal strategy for dynamic genetic and process level manipulations to increase productivity. The dynamic enzyme-cost flux balance analysis (deFBA) as underlying metabolic network model captures the network dynamics and enables the analysis of temporal regulation in the metabolic-genetic network. We apply our computational framework to maximize ethanol productivity in a batch process with Escherichia coli. The results highlight the importance of integrating the genetic level and enzyme production and degradation processes for obtaining optimal dynamic gene and process manipulations. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. GAM: a web-service for integrated transcriptional and metabolic network analysis.

    Science.gov (United States)

    Sergushichev, Alexey A; Loboda, Alexander A; Jha, Abhishek K; Vincent, Emma E; Driggers, Edward M; Jones, Russell G; Pearce, Edward J; Artyomov, Maxim N

    2016-07-08

    Novel techniques for high-throughput steady-state metabolomic profiling yield information about changes of nearly thousands of metabolites. Such metabolomic profiles, when analyzed together with transcriptional profiles, can reveal novel insights about underlying biological processes. While a number of conceptual approaches have been developed for data integration, easily accessible tools for integrated analysis of mammalian steady-state metabolomic and transcriptional data are lacking. Here we present GAM ('genes and metabolites'): a web-service for integrated network analysis of transcriptional and steady-state metabolomic data focused on identification of the most changing metabolic subnetworks between two conditions of interest. In the web-service, we have pre-assembled metabolic networks for humans, mice, Arabidopsis and yeast and adapted exact solvers for an optimal subgraph search to work in the context of these metabolic networks. The output is the most regulated metabolic subnetwork of size controlled by false discovery rate parameters. The subnetworks are then visualized online and also can be downloaded in Cytoscape format for subsequent processing. The web-service is available at: https://artyomovlab.wustl.edu/shiny/gam/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Combined metabolomic and correlation networks analyses reveal fumarase insufficiency altered amino acid metabolism.

    Science.gov (United States)

    Hou, Entai; Li, Xian; Liu, Zerong; Zhang, Fuchang; Tian, Zhongmin

    2018-04-01

    Fumarase catalyzes the interconversion of fumarate and l-malate in the tricarboxylic acid cycle. Fumarase insufficiencies were associated with increased levels of fumarate, decreased levels of malate and exacerbated salt-induced hypertension. To gain insights into the metabolism profiles induced by fumarase insufficiency and identify key regulatory metabolites, we applied a GC-MS based metabolomics platform coupled with a network approach to analyze fumarase insufficient human umbilical vein endothelial cells (HUVEC) and negative controls. A total of 24 altered metabolites involved in seven metabolic pathways were identified as significantly altered, and enriched for the biological module of amino acids metabolism. In addition, Pearson correlation network analysis revealed that fumaric acid, l-malic acid, l-aspartic acid, glycine and l-glutamic acid were hub metabolites according to Pagerank based on their three centrality indices. Alanine aminotransferase and glutamate dehydrogenase activities increased significantly in fumarase deficiency HUVEC. These results confirmed that fumarase insufficiency altered amino acid metabolism. The combination of metabolomics and network methods would provide another perspective on expounding the molecular mechanism at metabolomics level. Copyright © 2017 John Wiley & Sons, Ltd.

  3. Doubly Periodic Traveling Waves in a Cellular Neural Network with Linear Reaction

    Directory of Open Access Journals (Sweden)

    Lin JianJhong

    2009-01-01

    Full Text Available Szekeley observed that the dynamic pattern of the locomotion of salamanders can be explained by periodic vector sequences generated by logical neural networks. Such sequences can mathematically be described by "doubly periodic traveling waves" and therefore it is of interest to propose dynamic models that may produce such waves. One such dynamic network model is built here based on reaction-diffusion principles and a complete discussion is given for the existence of doubly periodic waves as outputs. Since there are 2 parameters in our model and 4 a priori unknown parameters involved in our search of solutions, our results are nontrivial. The reaction term in our model is a linear function and hence our results can also be interpreted as existence criteria for solutions of a nontrivial linear problem depending on 6 parameters.

  4. Event-triggered synchronization for reaction-diffusion complex networks via random sampling

    Science.gov (United States)

    Dong, Tao; Wang, Aijuan; Zhu, Huiyun; Liao, Xiaofeng

    2018-04-01

    In this paper, the synchronization problem of the reaction-diffusion complex networks (RDCNs) with Dirichlet boundary conditions is considered, where the data is sampled randomly. An event-triggered controller based on the sampled data is proposed, which can reduce the number of controller and the communication load. Under this strategy, the synchronization problem of the diffusion complex network is equivalently converted to the stability of a of reaction-diffusion complex dynamical systems with time delay. By using the matrix inequality technique and Lyapunov method, the synchronization conditions of the RDCNs are derived, which are dependent on the diffusion term. Moreover, it is found the proposed control strategy can get rid of the Zeno behavior naturally. Finally, a numerical example is given to verify the obtained results.

  5. Adenylate Kinase and AMP Signaling Networks: Metabolic Monitoring, Signal Communication and Body Energy Sensing

    Directory of Open Access Journals (Sweden)

    Andre Terzic

    2009-04-01

    Full Text Available Adenylate kinase and downstream AMP signaling is an integrated metabolic monitoring system which reads the cellular energy state in order to tune and report signals to metabolic sensors. A network of adenylate kinase isoforms (AK1-AK7 are distributed throughout intracellular compartments, interstitial space and body fluids to regulate energetic and metabolic signaling circuits, securing efficient cell energy economy, signal communication and stress response. The dynamics of adenylate kinase-catalyzed phosphotransfer regulates multiple intracellular and extracellular energy-dependent and nucleotide signaling processes, including excitation-contraction coupling, hormone secretion, cell and ciliary motility, nuclear transport, energetics of cell cycle, DNA synthesis and repair, and developmental programming. Metabolomic analyses indicate that cellular, interstitial and blood AMP levels are potential metabolic signals associated with vital functions including body energy sensing, sleep, hibernation and food intake. Either low or excess AMP signaling has been linked to human disease such as diabetes, obesity and hypertrophic cardiomyopathy. Recent studies indicate that derangements in adenylate kinase-mediated energetic signaling due to mutations in AK1, AK2 or AK7 isoforms are associated with hemolytic anemia, reticular dysgenesis and ciliary dyskinesia. Moreover, hormonal, food and antidiabetic drug actions are frequently coupled to alterations of cellular AMP levels and associated signaling. Thus, by monitoring energy state and generating and distributing AMP metabolic signals adenylate kinase represents a unique hub within the cellular homeostatic network.

  6. BAP1 inhibits the ER stress gene regulatory network and modulates metabolic stress response.

    Science.gov (United States)

    Dai, Fangyan; Lee, Hyemin; Zhang, Yilei; Zhuang, Li; Yao, Hui; Xi, Yuanxin; Xiao, Zhen-Dong; You, M James; Li, Wei; Su, Xiaoping; Gan, Boyi

    2017-03-21

    The endoplasmic reticulum (ER) is classically linked to metabolic homeostasis via the activation of unfolded protein response (UPR), which is instructed by multiple transcriptional regulatory cascades. BRCA1 associated protein 1 (BAP1) is a tumor suppressor with de-ubiquitinating enzyme activity and has been implicated in chromatin regulation of gene expression. Here we show that BAP1 inhibits cell death induced by unresolved metabolic stress. This prosurvival role of BAP1 depends on its de-ubiquitinating activity and correlates with its ability to dampen the metabolic stress-induced UPR transcriptional network. BAP1 inhibits glucose deprivation-induced reactive oxygen species and ATP depletion, two cellular events contributing to the ER stress-induced cell death. In line with this, Bap1 KO mice are more sensitive to tunicamycin-induced renal damage. Mechanically, we show that BAP1 represses metabolic stress-induced UPR and cell death through activating transcription factor 3 (ATF3) and C/EBP homologous protein (CHOP), and reveal that BAP1 binds to ATF3 and CHOP promoters and inhibits their transcription. Taken together, our results establish a previously unappreciated role of BAP1 in modulating the cellular adaptability to metabolic stress and uncover a pivotal function of BAP1 in the regulation of the ER stress gene-regulatory network. Our study may also provide new conceptual framework for further understanding BAP1 function in cancer.

  7. Individual variation in metabolic reaction norms over ambient temperature causes low correlation between basal and standard metabolic rate.

    Science.gov (United States)

    Briga, Michael; Verhulst, Simon

    2017-09-15

    Basal metabolic rate (BMR) is often assumed to be indicative of the energy turnover at ambient temperatures ( T a ) below the thermoneutral zone (SMR), but this assumption has remained largely untested. Using a new statistical approach, we quantified the consistency in nocturnal metabolic rate across a temperature range in zebra finches ( N =3213 measurements on 407 individuals) living permanently in eight outdoor aviaries. Foraging conditions were either benign or harsh, and body mass and mass-adjusted BMR (BMR m ) and SMR (SMR m ) were lower in individuals living in a harsh foraging environment. The correlation between SMR m at different T a was high ( r =0.91), independent of foraging environment, showing that individuals are consistently ranked according to their SMR m However, the correlations between BMR m and SMR m were always lower (average: r =0.29; range: 0metabolic response to lower T a at least in part reflected differential body temperature ( T b ) regulation: early morning T b was lower at low T a , and more so in individuals with a weaker metabolic response to lower T a Our findings have implications for the use of BMR in the estimation of time-energy budgets and comparative analyses: we suggest that the use of metabolic rates at ecologically relevant T a , such as the easily tractable SMR, will be more informative than the use of BMR as a proxy for energy turnover. © 2017. Published by The Company of Biologists Ltd.

  8. Modeling and Robustness Analysis of Biochemical Networks of Glycerol Metabolism by Klebsiella Pneumoniae

    Science.gov (United States)

    Ye, Jianxiong; Feng, Enmin; Wang, Lei; Xiu, Zhilong; Sun, Yaqin

    Glycerol bioconversion to 1,3-propanediol (1,3-PD) by Klebsiella pneumoniae (K. pneumoniae) can be characterized by an intricate network of interactions among biochemical fluxes, metabolic compounds, key enzymes and genetic regulatory. To date, there still exist some uncertain factors in this complex network because of the limitation in bio-techniques, especially in measuring techniques for intracellular substances. In this paper, among these uncertain factors, we aim to infer the transport mechanisms of glycerol and 1,3-PD across the cell membrane, which have received intensive interest in recent years. On the basis of different inferences of the transport mechanisms, we reconstruct various metabolic networks correspondingly and subsequently develop their dynamical systems (S-systems). To determine the most reasonable metabolic network from all possible ones, we establish a quantitative definition of biological robustness and undertake parameter identification and robustness analysis for each system. Numerical results show that it is most possible that both glycerol and 1,3-PD pass the cell membrane by active transport and passive diffusion.

  9. Report on the IAEA technical meeting on network of nuclear reaction data centres

    International Nuclear Information System (INIS)

    Pronyaev, V.G.; Schwerer, O.; Nichols, A.L.

    2002-08-01

    An IAEA Technical Meeting on the Network of Nuclear Reaction Data Centres (and the biennial Data Centre Heads' Meeting) was held at the OECD Nuclear Energy Agency, Issy-les-Moulineaux (near Paris), France, from 27 to 30 May 2002. The meeting was attended by 21 participants from 12 co-operating data centres of six Member States and two international organizations. This report contains the meeting summary, conclusions and actions, status reports of the participating data centres, and working papers considered. (author)

  10. Report on the IAEA technical meeting on the network of nuclear reaction data centres

    International Nuclear Information System (INIS)

    Schwerer, O.

    2006-02-01

    Results of the IAEA Technical meeting on the Network of Nuclear Reaction Data Centres held at the IAEA Headquarters, Vienna, Austria, 12 to 14 October 2005, are summarized in this report. The meeting was attended by 16 participants from 11 co-operating data centres of six Member States and two International Organizations. The report contains a summary of the meeting, the conclusions and actions, and status reports of the participating data centres. (author)

  11. Report on the IAEA advisory group meeting on network of nuclear reaction data centres

    International Nuclear Information System (INIS)

    Pronyaev, V.G.; Schwerer, O.

    2000-08-01

    This report summarizes the IAEA Advisory Group Meeting (AGM) on Network of Nuclear Reaction Data Centres, hold at the Institute of Physics and Power Engineering, Obninsk, Russia, 15 to 19 May 2000. The meeting was attended by 28 participants from 13 co-operating data centres from seven Member States and two International Organizations. The report contains a meeting summary, the conclusions and actions, progress and status reports of the participating data centres and working papers considered at the meeting. (author)

  12. Summary Report of the Technical Meeting on International Network of Nuclear Reaction Data Centres

    International Nuclear Information System (INIS)

    Otsuka, Naohiko

    2012-06-01

    This report summarizes the IAEA Technical Meeting on the International Network of Nuclear Reaction Data Centres, held at the OECD Nuclear Energy Agency (NEA) in Issy-les-Moulineaux, France from 16 to 19 April 2012. The meeting was attended by twenty-three participants representing thirteen cooperative centres from eight Member States and two International Organisations. A summary of the meeting is given in this report along with the conclusions and actions. (author)

  13. Report on the IAEA technical meeting on network of nuclear reaction data centres

    International Nuclear Information System (INIS)

    Schwerer, O.

    2006-12-01

    An IAEA Technical Meeting on the Network of Nuclear Reaction Data Centres (biennial Data Centre Heads Meeting) was held at IAEA Headquarters, Vienna, Austria, from 25 to 28 September 2006. The meeting was attended by 19 participants from 10 cooperating data centres of six Member States and two international organizations. A summary of the meeting is given in this report, along with the conclusions, actions, and status reports of the participating data centres. (author)

  14. Metabolic network analysis of Bacillus clausii on minimal and semirich medium using C-13-Labeled glucose

    DEFF Research Database (Denmark)

    Christiansen, Torben; Christensen, Bjarke; Nielsen, Jens

    2002-01-01

    to increase with increasing specific growth rate but at a much lower level than previously reported for Bacillus subtilis. Two futile cycles in the pyruvate metabolism were included in the metabolic network. A substantial flux in the futile cycle involving malic enzyme was estimated, whereas only a very small...... or zero flux through PEP carboxykinase was estimated, indicating that the latter enzyme was not active during growth on glucose. The uptake of the amino acids in a semirich medium containing 15 of the 20 amino acids normally present in proteins was estimated using fully labeled glucose in batch...

  15. Habitat variability does not generally promote metabolic network modularity in flies and mammals.

    Science.gov (United States)

    Takemoto, Kazuhiro

    2016-01-01

    The evolution of species habitat range is an important topic over a wide range of research fields. In higher organisms, habitat range evolution is generally associated with genetic events such as gene duplication. However, the specific factors that determine habitat variability remain unclear at higher levels of biological organization (e.g., biochemical networks). One widely accepted hypothesis developed from both theoretical and empirical analyses is that habitat variability promotes network modularity; however, this relationship has not yet been directly tested in higher organisms. Therefore, I investigated the relationship between habitat variability and metabolic network modularity using compound and enzymatic networks in flies and mammals. Contrary to expectation, there was no clear positive correlation between habitat variability and network modularity. As an exception, the network modularity increased with habitat variability in the enzymatic networks of flies. However, the observed association was likely an artifact, and the frequency of gene duplication appears to be the main factor contributing to network modularity. These findings raise the question of whether or not there is a general mechanism for habitat range expansion at a higher level (i.e., above the gene scale). This study suggests that the currently widely accepted hypothesis for habitat variability should be reconsidered. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Traveling and Pinned Fronts in Bistable Reaction-Diffusion Systems on Networks

    Science.gov (United States)

    Kouvaris, Nikos E.; Kori, Hiroshi; Mikhailov, Alexander S.

    2012-01-01

    Traveling fronts and stationary localized patterns in bistable reaction-diffusion systems have been broadly studied for classical continuous media and regular lattices. Analogs of such non-equilibrium patterns are also possible in networks. Here, we consider traveling and stationary patterns in bistable one-component systems on random Erdös-Rényi, scale-free and hierarchical tree networks. As revealed through numerical simulations, traveling fronts exist in network-organized systems. They represent waves of transition from one stable state into another, spreading over the entire network. The fronts can furthermore be pinned, thus forming stationary structures. While pinning of fronts has previously been considered for chains of diffusively coupled bistable elements, the network architecture brings about significant differences. An important role is played by the degree (the number of connections) of a node. For regular trees with a fixed branching factor, the pinning conditions are analytically determined. For large Erdös-Rényi and scale-free networks, the mean-field theory for stationary patterns is constructed. PMID:23028746

  17. Construction of Metabolism Prediction Models for CYP450 3A4, 2D6, and 2C9 Based on Microsomal Metabolic Reaction System

    Directory of Open Access Journals (Sweden)

    Shuai-Bing He

    2016-10-01

    Full Text Available During the past decades, there have been continuous attempts in the prediction of metabolism mediated by cytochrome P450s (CYP450s 3A4, 2D6, and 2C9. However, it has indeed remained a huge challenge to accurately predict the metabolism of xenobiotics mediated by these enzymes. To address this issue, microsomal metabolic reaction system (MMRS—a novel concept, which integrates information about site of metabolism (SOM and enzyme—was introduced. By incorporating the use of multiple feature selection (FS techniques (ChiSquared (CHI, InfoGain (IG, GainRatio (GR, Relief and hybrid classification procedures (Kstar, Bayes (BN, K-nearest neighbours (IBK, C4.5 decision tree (J48, RandomForest (RF, Support vector machines (SVM, AdaBoostM1, Bagging, metabolism prediction models were established based on metabolism data released by Sheridan et al. Four major biotransformations, including aliphatic C-hydroxylation, aromatic C-hydroxylation, N-dealkylation and O-dealkylation, were involved. For validation, the overall accuracies of all four biotransformations exceeded 0.95. For receiver operating characteristic (ROC analysis, each of these models gave a significant area under curve (AUC value >0.98. In addition, an external test was performed based on dataset published previously. As a result, 87.7% of the potential SOMs were correctly identified by our four models. In summary, four MMRS-based models were established, which can be used to predict the metabolism mediated by CYP3A4, 2D6, and 2C9 with high accuracy.

  18. Metabolic networks: a signal-oriented approach to cellular models.

    Science.gov (United States)

    Lengeler, J W

    2000-01-01

    Complete genomes, far advanced proteomes, and even 'metabolomes' are available for at least a few organisms, e.g., Escherichia coli. Systematic functional analyses of such complete data sets will produce a wealth of information and promise an understanding of the dynamics of complex biological networks and perhaps even of entire living organisms. Such complete and holistic descriptions of biological systems, however, will increasingly require a quantitative analysis and the help of mathematical models for simulating whole systems. In particular, new procedures are required that allow a meaningful reduction of the information derived from complex systems that will consequently be used in the modeling process. In this review the biological elements of such a modeling procedure will be described. In a first step, complex living systems must be structured into well-defined and clearly delimited functional units, the elements of which have a common physiological goal, belong to a single genetic unit, and respond to the signals of a signal transduction system that senses changes in physiological states of the organism. These functional units occur at each level of complexity and more complex units originate by grouping several lower level elements into a single, more complex unit. To each complexity level corresponds a global regulator that is epistatic over lower level regulators. After its structuring into modules (functional units), a biological system is converted in a second step into mathematical submodels that by progressive combination can also be assembled into more aggregated model structures. Such a simplification of a cell (an organism) reduces its complexity to a level amenable to present modeling capacities. The universal biochemistry, however, promises a set of rules valid for modeling biological systems, from unicellular microorganisms and cells, to multicellular organisms and to populations.

  19. Applicant reactions to social network web use in personnel selection and assessment

    Directory of Open Access Journals (Sweden)

    David Aguado

    2016-12-01

    Full Text Available Human Resource (HR professionals are increasingly using Social Networking Websites (SNWs for personnel recruitment and selection processes. However, evidence is required regarding their psychometric properties and their impact on applicant reactions. In this paper we present and discuss the results of exploring applicant reactions to either the use of a professional SNW (such as LinkedIn or a non-professional SNW (such as Facebook. A scale for assessing applicant reactions was applied to 124 professionals. The results showed more positive attitudes to the use of professional SNWs compared with non-professional SNWs. Both gender and age moderated these results, with females and young applicants having a less positive attitude than males and older participants towards the use of non-professional SNWs.

  20. A multi-time-scale analysis of chemical reaction networks: II. Stochastic systems.

    Science.gov (United States)

    Kan, Xingye; Lee, Chang Hyeong; Othmer, Hans G

    2016-11-01

    We consider stochastic descriptions of chemical reaction networks in which there are both fast and slow reactions, and for which the time scales are widely separated. We develop a computational algorithm that produces the generator of the full chemical master equation for arbitrary systems, and show how to obtain a reduced equation that governs the evolution on the slow time scale. This is done by applying a state space decomposition to the full equation that leads to the reduced dynamics in terms of certain projections and the invariant distributions of the fast system. The rates or propensities of the reduced system are shown to be the rates of the slow reactions conditioned on the expectations of fast steps. We also show that the generator of the reduced system is a Markov generator, and we present an efficient stochastic simulation algorithm for the slow time scale dynamics. We illustrate the numerical accuracy of the approximation by simulating several examples. Graph-theoretic techniques are used throughout to describe the structure of the reaction network and the state-space transitions accessible under the dynamics.

  1. Comparative genomic reconstruction of transcriptional networks controlling central metabolism in the Shewanella genus

    Directory of Open Access Journals (Sweden)

    Kovaleva Galina

    2011-06-01

    Full Text Available Abstract Background Genome-scale prediction of gene regulation and reconstruction of transcriptional regulatory networks in bacteria is one of the critical tasks of modern genomics. The Shewanella genus is comprised of metabolically versatile gamma-proteobacteria, whose lifestyles and natural environments are substantially different from Escherichia coli and other model bacterial species. The comparative genomics approaches and computational identification of regulatory sites are useful for the in silico reconstruction of transcriptional regulatory networks in bacteria. Results To explore conservation and variations in the Shewanella transcriptional networks we analyzed the repertoire of transcription factors and performed genomics-based reconstruction and comparative analysis of regulons in 16 Shewanella genomes. The inferred regulatory network includes 82 transcription factors and their DNA binding sites, 8 riboswitches and 6 translational attenuators. Forty five regulons were newly inferred from the genome context analysis, whereas others were propagated from previously characterized regulons in the Enterobacteria and Pseudomonas spp.. Multiple variations in regulatory strategies between the Shewanella spp. and E. coli include regulon contraction and expansion (as in the case of PdhR, HexR, FadR, numerous cases of recruiting non-orthologous regulators to control equivalent pathways (e.g. PsrA for fatty acid degradation and, conversely, orthologous regulators to control distinct pathways (e.g. TyrR, ArgR, Crp. Conclusions We tentatively defined the first reference collection of ~100 transcriptional regulons in 16 Shewanella genomes. The resulting regulatory network contains ~600 regulated genes per genome that are mostly involved in metabolism of carbohydrates, amino acids, fatty acids, vitamins, metals, and stress responses. Several reconstructed regulons including NagR for N-acetylglucosamine catabolism were experimentally validated in S

  2. Reconstruction of Arabidopsis metabolic network models accounting for subcellular compartmentalization and tissue-specificity.

    Science.gov (United States)

    Mintz-Oron, Shira; Meir, Sagit; Malitsky, Sergey; Ruppin, Eytan; Aharoni, Asaph; Shlomi, Tomer

    2012-01-03

    Plant metabolic engineering is commonly used in the production of functional foods and quality trait improvement. However, to date, computational model-based approaches have only been scarcely used in this important endeavor, in marked contrast to their prominent success in microbial metabolic engineering. In this study we present a computational pipeline for the reconstruction of fully compartmentalized tissue-specific models of Arabidopsis thaliana on a genome scale. This reconstruction involves automatic extraction of known biochemical reactions in Arabidopsis for both primary and secondary metabolism, automatic gap-filling, and the implementation of methods for determining subcellular localization and tissue assignment of enzymes. The reconstructed tissue models are amenable for constraint-based modeling analysis, and significantly extend upon previous model reconstructions. A set of computational validations (i.e., cross-validation tests, simulations of known metabolic functionalities) and experimental validations (comparison with experimental metabolomics datasets under various compartments and tissues) strongly testify to the predictive ability of the models. The utility of the derived models was demonstrated in the prediction of measured fluxes in metabolically engineered seed strains and the design of genetic manipulations that are expected to increase vitamin E content, a significant nutrient for human health. Overall, the reconstructed tissue models are expected to lay down the foundations for computational-based rational design of plant metabolic engineering. The reconstructed compartmentalized Arabidopsis tissue models are MIRIAM-compliant and are available upon request.

  3. Systems biology and the origins of life? part II. Are biochemical networks possible ancestors of living systems? networks of catalysed chemical reactions: non-equilibrium, self-organization and evolution.

    Science.gov (United States)

    Ricard, Jacques

    2010-01-01

    The present article discusses the possibility that catalysed chemical networks can evolve. Even simple enzyme-catalysed chemical reactions can display this property. The example studied is that of a two-substrate proteinoid, or enzyme, reaction displaying random binding of its substrates A and B. The fundamental property of such a system is to display either emergence or integration depending on the respective values of the probabilities that the enzyme has bound one of its substrate regardless it has bound the other substrate, or, specifically, after it has bound the other substrate. There is emergence of information if p(A)>p(AB) and p(B)>p(BA). Conversely, if p(A)equilibrium. Moreover, in such systems, emergence results in an increase of the energy level of the ternary EAB complex that becomes closer to the transition state of the reaction, thus leading to the enhancement of catalysis. Hence a drift from quasi-equilibrium is, to a large extent, responsible for the production of information and enhancement of catalysis. Non-equilibrium of these simple systems must be an important aspect that leads to both self-organization and evolutionary processes. These conclusions can be extended to networks of catalysed chemical reactions. Such networks are, in fact, networks of networks, viz. meta-networks. In this formal representation, nodes are chemical reactions catalysed by poorly specific proteinoids, and links can be identified to the transport of metabolites from proteinoid to proteinoid. The concepts of integration and emergence can be applied to such situations and can be used to define the identity of these networks and therefore their evolution. Defined as open non-equilibrium structures, such biochemical networks possess two remarkable properties: (1) the probability of occurrence of their nodes is dependant upon the input and output of matter in, and from, the system and (2) the probability of occurrence of the nodes is strictly linked to their degree of

  4. Novel Plasmodium falciparum metabolic network reconstruction identifies shifts associated with clinical antimalarial resistance.

    Science.gov (United States)

    Carey, Maureen A; Papin, Jason A; Guler, Jennifer L

    2017-07-19

    Malaria remains a major public health burden and resistance has emerged to every antimalarial on the market, including the frontline drug, artemisinin. Our limited understanding of Plasmodium biology hinders the elucidation of resistance mechanisms. In this regard, systems biology approaches can facilitate the integration of existing experimental knowledge and further understanding of these mechanisms. Here, we developed a novel genome-scale metabolic network reconstruction, iPfal17, of the asexual blood-stage P. falciparum parasite to expand our understanding of metabolic changes that support resistance. We identified 11 metabolic tasks to evaluate iPfal17 performance. Flux balance analysis and simulation of gene knockouts and enzyme inhibition predict candidate drug targets unique to resistant parasites. Moreover, integration of clinical parasite transcriptomes into the iPfal17 reconstruction reveals patterns associated with antimalarial resistance. These results predict that artemisinin sensitive and resistant parasites differentially utilize scavenging and biosynthetic pathways for multiple essential metabolites, including folate and polyamines. Our findings are consistent with experimental literature, while generating novel hypotheses about artemisinin resistance and parasite biology. We detect evidence that resistant parasites maintain greater metabolic flexibility, perhaps representing an incomplete transition to the metabolic state most appropriate for nutrient-rich blood. Using this systems biology approach, we identify metabolic shifts that arise with or in support of the resistant phenotype. This perspective allows us to more productively analyze and interpret clinical expression data for the identification of candidate drug targets for the treatment of resistant parasites.

  5. Ordinary differential equations and Boolean networks in application to modelling of 6-mercaptopurine metabolism.

    Science.gov (United States)

    Lavrova, Anastasia I; Postnikov, Eugene B; Zyubin, Andrey Yu; Babak, Svetlana V

    2017-04-01

    We consider two approaches to modelling the cell metabolism of 6-mercaptopurine, one of the important chemotherapy drugs used for treating acute lymphocytic leukaemia: kinetic ordinary differential equations, and Boolean networks supplied with one controlling node, which takes continual values. We analyse their interplay with respect to taking into account ATP concentration as a key parameter of switching between different pathways. It is shown that the Boolean networks, which allow avoiding the complexity of general kinetic modelling, preserve the possibility of reproducing the principal switching mechanism.

  6. Integration of expression data in genome-scale metabolic network reconstructions

    Directory of Open Access Journals (Sweden)

    Anna S. Blazier

    2012-08-01

    Full Text Available With the advent of high-throughput technologies, the field of systems biology has amassed an abundance of omics data, quantifying thousands of cellular components across a variety of scales, ranging from mRNA transcript levels to metabolite quantities. Methods are needed to not only integrate this omics data but to also use this data to heighten the predictive capabilities of computational models. Several recent studies have successfully demonstrated how flux balance analysis (FBA, a constraint-based modeling approach, can be used to integrate transcriptomic data into genome-scale metabolic network reconstructions to generate predictive computational models. In this review, we summarize such FBA-based methods for integrating expression data into genome-scale metabolic network reconstructions, highlighting their advantages as well as their limitations.

  7. A metabolic network approach for the identification and prioritization of antimicrobial drug targets.

    Science.gov (United States)

    Chavali, Arvind K; D'Auria, Kevin M; Hewlett, Erik L; Pearson, Richard D; Papin, Jason A

    2012-03-01

    For many infectious diseases, novel treatment options are needed in order to address problems with cost, toxicity and resistance to current drugs. Systems biology tools can be used to gain valuable insight into pathogenic processes and aid in expediting drug discovery. In the past decade, constraint-based modeling of genome-scale metabolic networks has become widely used. Focusing on pathogen metabolic networks, we review in silico strategies used to identify effective drug targets and highlight recent successes as well as limitations associated with such computational analyses. We further discuss how accounting for the host environment and even targeting the host may offer new therapeutic options. These systems-level approaches are beginning to provide novel avenues for drug targeting against infectious agents. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Metabolic Rate and Ground Reaction Force During Motorized and Non-Motorized Treadmill Exercise

    Science.gov (United States)

    Everett, Meghan E.; Loehr, James A.; DeWitt, John K.; Laughlin, Mitzi; Lee, Stuart M. C.

    2010-01-01

    PURPOSE: To measure vertical ground reaction force (vGRF) and oxygen consumption (VO2) at several velocities during exercise using a ground-based version of the ISS treadmill in the M and NM modes. METHODS: Subjects (n = 20) walked or ran at 0.89, 1.34, 1.79, 2.24, 2.68, and 3.12 m/s while VO2 and vGRF data were collected. VO2 was measured using open-circuit spirometry (TrueOne 2400, Parvo-Medics). Data were averaged over the last 2 min of each 5-min stage. vGRF was measured in separate 15-s bouts at 125 Hz using custom-fitted pressure-sensing insoles (F-Scan Sport Sensors, Tekscan, Inc). A repeated-measures ANOVA was used to test for differences in VO2 and vGRF between M and NM and across speeds. Significance was set at P < 0.05. RESULTS: Most subjects were unable to exercise for 5 min at treadmill speeds above 1.79 m/s in the NM mode; however, vGRF data were obtained for all subjects at each speed in both modes. VO2 was approx.40% higher during NM than M exercise across treadmill speeds. vGRF increased with treadmill speed but was not different between modes. CONCLUSION: Higher VO2 with no change in vGRF suggests that the additional metabolic cost associated with NM treadmill exercise is accounted for in the horizontal forces required to move the treadmill belt. Although this may limit the exercise duration at faster speeds, high-intensity NM exercise activates the hamstrings and plantarflexors, which are not specifically targeted or well protected by other in-flight countermeasures.

  9. Identification of regulatory network hubs that control lipid metabolism in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Gargouri, Mahmoud; Park, Jeong-Jin; Holguin, F Omar; Kim, Min-Jeong; Wang, Hongxia; Deshpande, Rahul R; Shachar-Hill, Yair; Hicks, Leslie M; Gang, David R

    2015-08-01

    Microalgae-based biofuels are promising sources of alternative energy, but improvements throughout the production process are required to establish them as economically feasible. One of the most influential improvements would be a significant increase in lipid yields, which could be achieved by altering the regulation of lipid biosynthesis and accumulation. Chlamydomonas reinhardtii accumulates oil (triacylglycerols, TAG) in response to nitrogen (N) deprivation. Although a few important regulatory genes have been identified that are involved in controlling this process, a global understanding of the larger regulatory network has not been developed. In order to uncover this network in this species, a combined omics (transcriptomic, proteomic and metabolomic) analysis was applied to cells grown in a time course experiment after a shift from N-replete to N-depleted conditions. Changes in transcript and protein levels of 414 predicted transcription factors (TFs) and transcriptional regulators (TRs) were monitored relative to other genes. The TF and TR genes were thus classified by two separate measures: up-regulated versus down-regulated and early response versus late response relative to two phases of polar lipid synthesis (before and after TAG biosynthesis initiation). Lipidomic and primary metabolite profiling generated compound accumulation levels that were integrated with the transcript dataset and TF profiling to produce a transcriptional regulatory network. Evaluation of this proposed regulatory network led to the identification of several regulatory hubs that control many aspects of cellular metabolism, from N assimilation and metabolism, to central metabolism, photosynthesis and lipid metabolism. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  10. PPAR? population shift produces disease-related changes in molecular networks associated with metabolic syndrome

    OpenAIRE

    Jurkowski, W; Roomp, K; Crespo, I; Schneider, J G; del Sol, A

    2011-01-01

    Peroxisome proliferator-activated receptor gamma (PPARγ) is a key regulator of adipocyte differentiation and has an important role in metabolic syndrome. Phosphorylation of the receptor's ligand-binding domain at serine 273 has been shown to change the expression of a large number of genes implicated in obesity. The difference in gene expression seen when comparing wild-type phosphorylated with mutant non-phosphorylated PPARγ may have important consequences for the cellular molecular network,...

  11. Metabolic Networks and Metabolites Underlie Associations Between Maternal Glucose During Pregnancy and Newborn Size at Birth

    OpenAIRE

    Scholtens, Denise M.; Bain, James R.; Reisetter, Anna C.; Muehlbauer, Michael J.; Nodzenski, Michael; Stevens, Robert D.; Ilkayeva, Olga; Lowe, Lynn P.; Metzger, Boyd E.; Newgard, Christopher B.; Lowe, William L.

    2016-01-01

    Maternal metabolites and metabolic networks underlying associations between maternal glucose during pregnancy and newborn birth weight and adiposity demand fuller characterization. We performed targeted and nontargeted gas chromatography/mass spectrometry metabolomics on maternal serum collected at fasting and 1 h following glucose beverage consumption during an oral glucose tolerance test (OGTT) for 400 northern European mothers at ?28 weeks' gestation in the Hyperglycemia and Adverse Pregna...

  12. Maximum entropy modeling of metabolic networks by constraining growth-rate moments predicts coexistence of phenotypes

    Science.gov (United States)

    De Martino, Daniele

    2017-12-01

    In this work maximum entropy distributions in the space of steady states of metabolic networks are considered upon constraining the first and second moments of the growth rate. Coexistence of fast and slow phenotypes, with bimodal flux distributions, emerges upon considering control on the average growth (optimization) and its fluctuations (heterogeneity). This is applied to the carbon catabolic core of Escherichia coli where it quantifies the metabolic activity of slow growing phenotypes and it provides a quantitative map with metabolic fluxes, opening the possibility to detect coexistence from flux data. A preliminary analysis on data for E. coli cultures in standard conditions shows degeneracy for the inferred parameters that extend in the coexistence region.

  13. Metabolic network analysis-based identification of antimicrobial drug targets in category A bioterrorism agents.

    Directory of Open Access Journals (Sweden)

    Yong-Yeol Ahn

    Full Text Available The 2001 anthrax mail attacks in the United States demonstrated the potential threat of bioterrorism, hence driving the need to develop sophisticated treatment and diagnostic protocols to counter biological warfare. Here, by performing flux balance analyses on the fully-annotated metabolic networks of multiple, whole genome-sequenced bacterial strains, we have identified a large number of metabolic enzymes as potential drug targets for each of the three Category A-designated bioterrorism agents including Bacillus anthracis, Francisella tularensis and Yersinia pestis. Nine metabolic enzymes- belonging to the coenzyme A, folate, phosphatidyl-ethanolamine and nucleic acid pathways common to all strains across the three distinct genera were identified as targets. Antimicrobial agents against some of these enzymes are available. Thus, a combination of cross species-specific antibiotics and common antimicrobials against shared targets may represent a useful combinatorial therapeutic approach against all Category A bioterrorism agents.

  14. Systems biology study of mucopolysaccharidosis using a human metabolic reconstruction network.

    Science.gov (United States)

    Salazar, Diego A; Rodríguez-López, Alexander; Herreño, Angélica; Barbosa, Hector; Herrera, Juliana; Ardila, Andrea; Barreto, George E; González, Janneth; Alméciga-Díaz, Carlos J

    2016-02-01

    Mucopolysaccharidosis (MPS) is a group of lysosomal storage diseases (LSD), characterized by the deficiency of a lysosomal enzyme responsible for the degradation of glycosaminoglycans (GAG). This deficiency leads to the lysosomal accumulation of partially degraded GAG. Nevertheless, deficiency of a single lysosomal enzyme has been associated with impairment in other cell mechanism, such as apoptosis and redox balance. Although GAG analysis represents the main biomarker for MPS diagnosis, it has several limitations that can lead to a misdiagnosis, whereby the identification of new biomarkers represents an important issue for MPS. In this study, we used a system biology approach, through the use of a genome-scale human metabolic reconstruction to understand the effect of metabolism alterations in cell homeostasis and to identify potential new biomarkers in MPS. In-silico MPS models were generated by silencing of MPS-related enzymes, and were analyzed through a flux balance and variability analysis. We found that MPS models used approximately 2286 reactions to satisfy the objective function. Impaired reactions were mainly involved in cellular respiration, mitochondrial process, amino acid and lipid metabolism, and ion exchange. Metabolic changes were similar for MPS I and II, and MPS III A to C; while the remaining MPS showed unique metabolic profiles. Eight and thirteen potential high-confidence biomarkers were identified for MPS IVB and VII, respectively, which were associated with the secondary pathologic process of LSD. In vivo evaluation of predicted intermediate confidence biomarkers (β-hexosaminidase and β-glucoronidase) for MPS IVA and VI correlated with the in-silico prediction. These results show the potential of a computational human metabolic reconstruction to understand the molecular mechanisms this group of diseases, which can be used to identify new biomarkers for MPS. Copyright © 2015. Published by Elsevier Inc.

  15. Multiobjective flux balancing using the NISE method for metabolic network analysis.

    Science.gov (United States)

    Oh, Young-Gyun; Lee, Dong-Yup; Lee, Sang Yup; Park, Sunwon

    2009-01-01

    Flux balance analysis (FBA) is well acknowledged as an analysis tool of metabolic networks in the framework of metabolic engineering. However, FBA has a limitation for solving a multiobjective optimization problem which considers multiple conflicting objectives. In this study, we propose a novel multiobjective flux balance analysis method, which adapts the noninferior set estimation (NISE) method (Solanki et al., 1993) for multiobjective linear programming (MOLP) problems. NISE method can generate an approximation of the Pareto curve for conflicting objectives without redundant iterations of single objective optimization. Furthermore, the flux distributions at each Pareto optimal solution can be obtained for understanding the internal flux changes in the metabolic network. The functionality of this approach is shown by applying it to a genome-scale in silico model of E. coli. Multiple objectives for the poly(3-hydroxybutyrate) [P(3HB)] production are considered simultaneously, and relationships among them are identified. The Pareto curve for maximizing succinic acid production vs. maximizing biomass production is used for the in silico analysis of various combinatorial knockout strains. This proposed method accelerates the strain improvement in the metabolic engineering by reducing computation time of obtaining the Pareto curve and analysis time of flux distribution at each Pareto optimal solution. (c) 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009.

  16. Metabolic network rewiring of propionate flux compensates vitamin B12 deficiency in C. elegans

    Science.gov (United States)

    Watson, Emma; Olin-Sandoval, Viridiana; Hoy, Michael J; Li, Chi-Hua; Louisse, Timo; Yao, Victoria; Mori, Akihiro; Holdorf, Amy D; Troyanskaya, Olga G; Ralser, Markus; Walhout, Albertha JM

    2016-01-01

    Metabolic network rewiring is the rerouting of metabolism through the use of alternate enzymes to adjust pathway flux and accomplish specific anabolic or catabolic objectives. Here, we report the first characterization of two parallel pathways for the breakdown of the short chain fatty acid propionate in Caenorhabditis elegans. Using genetic interaction mapping, gene co-expression analysis, pathway intermediate quantification and carbon tracing, we uncover a vitamin B12-independent propionate breakdown shunt that is transcriptionally activated on vitamin B12 deficient diets, or under genetic conditions mimicking the human diseases propionic- and methylmalonic acidemia, in which the canonical B12-dependent propionate breakdown pathway is blocked. Our study presents the first example of transcriptional vitamin-directed metabolic network rewiring to promote survival under vitamin deficiency. The ability to reroute propionate breakdown according to B12 availability may provide C. elegans with metabolic plasticity and thus a selective advantage on different diets in the wild. DOI: http://dx.doi.org/10.7554/eLife.17670.001 PMID:27383050

  17. Coevolution Trumps Pleiotropy: Carbon Assimilation Traits Are Independent of Metabolic Network Structure in Budding Yeast

    Science.gov (United States)

    Opulente, Dana A.; Morales, Christopher M.; Carey, Lucas B.; Rest, Joshua S.

    2013-01-01

    Phenotypic traits may be gained and lost together because of pleiotropy, the involvement of common genes and networks, or because of simultaneous selection for multiple traits across environments (multiple-trait coevolution). However, the extent to which network pleiotropy versus environmental coevolution shapes shared responses has not been addressed. To test these alternatives, we took advantage of the fact that the genus Saccharomyces has variation in habitat usage and diversity in the carbon sources that a given strain can metabolize. We examined patterns of gain and loss in carbon utilization traits across 488 strains of Saccharomyces to investigate whether the structure of metabolic pathways or selection pressure from common environments may have caused carbon utilization traits to be gained and lost together. While most carbon sources were gained and lost independently of each other, we found four clusters that exhibit non-random patterns of gain and loss across strains. Contrary to the network pleiotropy hypothesis, we did not find that these patterns are explained by the structure of metabolic pathways or shared enzymes. Consistent with the hypothesis that common environments shape suites of phenotypes, we found that the environment a strain was isolated from partially predicts the carbon sources it can assimilate. PMID:23326606

  18. Integration of Posttranscriptional Gene Networks into Metabolic Adaptation and Biofilm Maturation in Candida albicans

    Science.gov (United States)

    Harrison, Paul F.; Lo, Tricia L.; Quenault, Tara; Dagley, Michael J.; Bellousoff, Matthew; Powell, David R.; Beilharz, Traude H.; Traven, Ana

    2015-01-01

    The yeast Candida albicans is a human commensal and opportunistic pathogen. Although both commensalism and pathogenesis depend on metabolic adaptation, the regulatory pathways that mediate metabolic processes in C. albicans are incompletely defined. For example, metabolic change is a major feature that distinguishes community growth of C. albicans in biofilms compared to suspension cultures, but how metabolic adaptation is functionally interfaced with the structural and gene regulatory changes that drive biofilm maturation remains to be fully understood. We show here that the RNA binding protein Puf3 regulates a posttranscriptional mRNA network in C. albicans that impacts on mitochondrial biogenesis, and provide the first functional data suggesting evolutionary rewiring of posttranscriptional gene regulation between the model yeast Saccharomyces cerevisiae and C. albicans. A proportion of the Puf3 mRNA network is differentially expressed in biofilms, and by using a mutant in the mRNA deadenylase CCR4 (the enzyme recruited to mRNAs by Puf3 to control transcript stability) we show that posttranscriptional regulation is important for mitochondrial regulation in biofilms. Inactivation of CCR4 or dis-regulation of mitochondrial activity led to altered biofilm structure and over-production of extracellular matrix material. The extracellular matrix is critical for antifungal resistance and immune evasion, and yet of all biofilm maturation pathways extracellular matrix biogenesis is the least understood. We propose a model in which the hypoxic biofilm environment is sensed by regulators such as Ccr4 to orchestrate metabolic adaptation, as well as the regulation of extracellular matrix production by impacting on the expression of matrix-related cell wall genes. Therefore metabolic changes in biofilms might be intimately linked to a key biofilm maturation mechanism that ultimately results in untreatable fungal disease. PMID:26474309

  19. Integration of Posttranscriptional Gene Networks into Metabolic Adaptation and Biofilm Maturation in Candida albicans.

    Directory of Open Access Journals (Sweden)

    Jiyoti Verma-Gaur

    2015-10-01

    Full Text Available The yeast Candida albicans is a human commensal and opportunistic pathogen. Although both commensalism and pathogenesis depend on metabolic adaptation, the regulatory pathways that mediate metabolic processes in C. albicans are incompletely defined. For example, metabolic change is a major feature that distinguishes community growth of C. albicans in biofilms compared to suspension cultures, but how metabolic adaptation is functionally interfaced with the structural and gene regulatory changes that drive biofilm maturation remains to be fully understood. We show here that the RNA binding protein Puf3 regulates a posttranscriptional mRNA network in C. albicans that impacts on mitochondrial biogenesis, and provide the first functional data suggesting evolutionary rewiring of posttranscriptional gene regulation between the model yeast Saccharomyces cerevisiae and C. albicans. A proportion of the Puf3 mRNA network is differentially expressed in biofilms, and by using a mutant in the mRNA deadenylase CCR4 (the enzyme recruited to mRNAs by Puf3 to control transcript stability we show that posttranscriptional regulation is important for mitochondrial regulation in biofilms. Inactivation of CCR4 or dis-regulation of mitochondrial activity led to altered biofilm structure and over-production of extracellular matrix material. The extracellular matrix is critical for antifungal resistance and immune evasion, and yet of all biofilm maturation pathways extracellular matrix biogenesis is the least understood. We propose a model in which the hypoxic biofilm environment is sensed by regulators such as Ccr4 to orchestrate metabolic adaptation, as well as the regulation of extracellular matrix production by impacting on the expression of matrix-related cell wall genes. Therefore metabolic changes in biofilms might be intimately linked to a key biofilm maturation mechanism that ultimately results in untreatable fungal disease.

  20. Characterizing steady states of genome-scale metabolic networks in continuous cell cultures.

    Science.gov (United States)

    Fernandez-de-Cossio-Diaz, Jorge; Leon, Kalet; Mulet, Roberto

    2017-11-01

    In the continuous mode of cell culture, a constant flow carrying fresh media replaces culture fluid, cells, nutrients and secreted metabolites. Here we present a model for continuous cell culture coupling intra-cellular metabolism to extracellular variables describing the state of the bioreactor, taking into account the growth capacity of the cell and the impact of toxic byproduct accumulation. We provide a method to determine the steady states of this system that is tractable for metabolic networks of arbitrary complexity. We demonstrate our approach in a toy model first, and then in a genome-scale metabolic network of the Chinese hamster ovary cell line, obtaining results that are in qualitative agreement with experimental observations. We derive a number of consequences from the model that are independent of parameter values. The ratio between cell density and dilution rate is an ideal control parameter to fix a steady state with desired metabolic properties. This conclusion is robust even in the presence of multi-stability, which is explained in our model by a negative feedback loop due to toxic byproduct accumulation. A complex landscape of steady states emerges from our simulations, including multiple metabolic switches, which also explain why cell-line and media benchmarks carried out in batch culture cannot be extrapolated to perfusion. On the other hand, we predict invariance laws between continuous cell cultures with different parameters. A practical consequence is that the chemostat is an ideal experimental model for large-scale high-density perfusion cultures, where the complex landscape of metabolic transitions is faithfully reproduced.

  1. Brain networks predict metabolism, diagnosis and prognosis at the bedside in disorders of consciousness.

    Science.gov (United States)

    Chennu, Srivas; Annen, Jitka; Wannez, Sarah; Thibaut, Aurore; Chatelle, Camille; Cassol, Helena; Martens, Géraldine; Schnakers, Caroline; Gosseries, Olivia; Menon, David; Laureys, Steven

    2017-08-01

    Recent advances in functional neuroimaging have demonstrated novel potential for informing diagnosis and prognosis in the unresponsive wakeful syndrome and minimally conscious states. However, these technologies come with considerable expense and difficulty, limiting the possibility of wider clinical application in patients. Here, we show that high density electroencephalography, collected from 104 patients measured at rest, can provide valuable information about brain connectivity that correlates with behaviour and functional neuroimaging. Using graph theory, we visualize and quantify spectral connectivity estimated from electroencephalography as a dense brain network. Our findings demonstrate that key quantitative metrics of these networks correlate with the continuum of behavioural recovery in patients, ranging from those diagnosed as unresponsive, through those who have emerged from minimally conscious, to the fully conscious locked-in syndrome. In particular, a network metric indexing the presence of densely interconnected central hubs of connectivity discriminated behavioural consciousness with accuracy comparable to that achieved by expert assessment with positron emission tomography. We also show that this metric correlates strongly with brain metabolism. Further, with classification analysis, we predict the behavioural diagnosis, brain metabolism and 1-year clinical outcome of individual patients. Finally, we demonstrate that assessments of brain networks show robust connectivity in patients diagnosed as unresponsive by clinical consensus, but later rediagnosed as minimally conscious with the Coma Recovery Scale-Revised. Classification analysis of their brain network identified each of these misdiagnosed patients as minimally conscious, corroborating their behavioural diagnoses. If deployed at the bedside in the clinical context, such network measurements could complement systematic behavioural assessment and help reduce the high misdiagnosis rate reported

  2. Predicting adverse drug reaction profiles by integrating protein interaction networks with drug structures.

    Science.gov (United States)

    Huang, Liang-Chin; Wu, Xiaogang; Chen, Jake Y

    2013-01-01

    The prediction of adverse drug reactions (ADRs) has become increasingly important, due to the rising concern on serious ADRs that can cause drugs to fail to reach or stay in the market. We proposed a framework for predicting ADR profiles by integrating protein-protein interaction (PPI) networks with drug structures. We compared ADR prediction performances over 18 ADR categories through four feature groups-only drug targets, drug targets with PPI networks, drug structures, and drug targets with PPI networks plus drug structures. The results showed that the integration of PPI networks and drug structures can significantly improve the ADR prediction performance. The median AUC values for the four groups were 0.59, 0.61, 0.65, and 0.70. We used the protein features in the best two models, "Cardiac disorders" (median-AUC: 0.82) and "Psychiatric disorders" (median-AUC: 0.76), to build ADR-specific PPI networks with literature supports. For validation, we examined 30 drugs withdrawn from the U.S. market to see if our approach can predict their ADR profiles and explain why they were withdrawn. Except for three drugs having ADRs in the categories we did not predict, 25 out of 27 withdrawn drugs (92.6%) having severe ADRs were successfully predicted by our approach. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Looking for chemical reaction networks exhibiting a drift along a manifold of marginally stable states.

    Science.gov (United States)

    Brogioli, Doriano

    2013-02-07

    I recently reported some examples of mass-action equations that have a continuous manifold of marginally stable stationary states [Brogioli, D., 2010. Marginally stable chemical systems as precursors of life. Phys. Rev. Lett. 105, 058102; Brogioli, D., 2011. Marginal stability in chemical systems and its relevance in the origin of life. Phys. Rev. E 84, 031931]. The corresponding chemical reaction networks show nonclassical effects, i.e. a violation of the mass-action equations, under the effect of the concentration fluctuations: the chemical system drifts along the marginally stable states. I proposed that this effect is potentially involved in abiogenesis. In the present paper, I analyze the mathematical properties of mass-action equations of marginally stable chemical reaction networks. The marginal stability implies that the mass-action equations obey some conservation law; I show that the mathematical properties of the conserved quantity characterize the motion along the marginally stable stationary state manifold, i.e. they allow to predict if the fluctuations give rise to a random walk or a drift under the effect of concentration fluctuations. Moreover, I show that the presence of the drift along the manifold of marginally stable stationary-states is a critical property, i.e. at least one of the reaction constants must be fine tuned in order to obtain the drift. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Efficient computation of parameter sensitivities of discrete stochastic chemical reaction networks

    Science.gov (United States)

    Rathinam, Muruhan; Sheppard, Patrick W.; Khammash, Mustafa

    2010-01-01

    Parametric sensitivity of biochemical networks is an indispensable tool for studying system robustness properties, estimating network parameters, and identifying targets for drug therapy. For discrete stochastic representations of biochemical networks where Monte Carlo methods are commonly used, sensitivity analysis can be particularly challenging, as accurate finite difference computations of sensitivity require a large number of simulations for both nominal and perturbed values of the parameters. In this paper we introduce the common random number (CRN) method in conjunction with Gillespie's stochastic simulation algorithm, which exploits positive correlations obtained by using CRNs for nominal and perturbed parameters. We also propose a new method called the common reaction path (CRP) method, which uses CRNs together with the random time change representation of discrete state Markov processes due to Kurtz to estimate the sensitivity via a finite difference approximation applied to coupled reaction paths that emerge naturally in this representation. While both methods reduce the variance of the estimator significantly compared to independent random number finite difference implementations, numerical evidence suggests that the CRP method achieves a greater variance reduction. We also provide some theoretical basis for the superior performance of CRP. The improved accuracy of these methods allows for much more efficient sensitivity estimation. In two example systems reported in this work, speedup factors greater than 300 and 10 000 are demonstrated.

  5. Cerebral energy metabolism and the brain's functional network architecture: an integrative review

    Science.gov (United States)

    Lord, Louis-David; Expert, Paul; Huckins, Jeremy F; Turkheimer, Federico E

    2013-01-01

    Recent functional magnetic resonance imaging (fMRI) studies have emphasized the contributions of synchronized activity in distributed brain networks to cognitive processes in both health and disease. The brain's ‘functional connectivity' is typically estimated from correlations in the activity time series of anatomically remote areas, and postulated to reflect information flow between neuronal populations. Although the topological properties of functional brain networks have been studied extensively, considerably less is known regarding the neurophysiological and biochemical factors underlying the temporal coordination of large neuronal ensembles. In this review, we highlight the critical contributions of high-frequency electrical oscillations in the γ-band (30 to 100 Hz) to the emergence of functional brain networks. After describing the neurobiological substrates of γ-band dynamics, we specifically discuss the elevated energy requirements of high-frequency neural oscillations, which represent a mechanistic link between the functional connectivity of brain regions and their respective metabolic demands. Experimental evidence is presented for the high oxygen and glucose consumption, and strong mitochondrial performance required to support rhythmic cortical activity in the γ-band. Finally, the implications of mitochondrial impairments and deficits in glucose metabolism for cognition and behavior are discussed in the context of neuropsychiatric and neurodegenerative syndromes characterized by large-scale changes in the organization of functional brain networks. PMID:23756687

  6. Reaction Norms in Natural Conditions: How Does Metabolic Performance Respond to Weather Variations in a Small Endotherm Facing Cold Environments?

    Science.gov (United States)

    Petit, Magali; Vézina, François

    2014-01-01

    Reaction norms reflect an organisms' capacity to adjust its phenotype to the environment and allows for identifying trait values associated with physiological limits. However, reaction norms of physiological parameters are mostly unknown for endotherms living in natural conditions. Black-capped chickadees (Poecile atricapillus) increase their metabolic performance during winter acclimatization and are thus good model to measure reaction norms in the wild. We repeatedly measured basal (BMR) and summit (Msum) metabolism in chickadees to characterize, for the first time in a free-living endotherm, reaction norms of these parameters across the natural range of weather variation. BMR varied between individuals and was weakly and negatively related to minimal temperature. Msum varied with minimal temperature following a Z-shape curve, increasing linearly between 24°C and −10°C, and changed with absolute humidity following a U-shape relationship. These results suggest that thermal exchanges with the environment have minimal effects on maintenance costs, which may be individual-dependent, while thermogenic capacity is responding to body heat loss. Our results suggest also that BMR and Msum respond to different and likely independent constraints. PMID:25426860

  7. Using in vitro derived enzymatic reaction rates of metabolism to inform pesticide body burdens in amphibians

    Science.gov (United States)

    Understanding how pesticide exposure to non-target species influences toxicity is necessary to accurately assess the ecological risks these compounds pose. To assess the potential metabolic activation of broad use pesticides in amphibians, in vitro and in vivo metabolic rate cons...

  8. A multi-tissue type genome-scale metabolic network for analysis of whole-body systems physiology

    OpenAIRE

    Bordbar, Aarash; Feist, Adam M; Usaite-Black, Renata; Woodcock, Joseph; Palsson, Bernhard O; Famili, Iman

    2011-01-01

    Abstract Background Genome-scale metabolic reconstructions provide a biologically meaningful mechanistic basis for the genotype-phenotype relationship. The global human metabolic network, termed Recon 1, has recently been reconstructed allowing the systems analysis of human metabolic physiology and pathology. Utilizing high-throughput data, Recon 1 has recently been tailored to different cells and tissues, including the liver, kidney, brain, and alveolar macrophage. These models have shown ut...

  9. A method for estimation of elasticities in metabolic networks using steady state and dynamic metabolomics data and linlog kinetics

    Directory of Open Access Journals (Sweden)

    van Gulik Walter M

    2006-12-01

    Full Text Available Abstract Background Dynamic modeling of metabolic reaction networks under in vivo conditions is a crucial step in order to obtain a better understanding of the (disfunctioning of living cells. So far dynamic metabolic models generally have been based on mechanistic rate equations which often contain so many parameters that their identifiability from experimental data forms a serious problem. Recently, approximative rate equations, based on the linear logarithmic (linlog format have been proposed as a suitable alternative with fewer parameters. Results In this paper we present a method for estimation of the kinetic model parameters, which are equal to the elasticities defined in Metabolic Control Analysis, from metabolite data obtained from dynamic as well as steady state perturbations, using the linlog kinetic format. Additionally, we address the question of parameter identifiability from dynamic perturbation data in the presence of noise. The method is illustrated using metabolite data generated with a dynamic model of the glycolytic pathway of Saccharomyces cerevisiae based on mechanistic rate equations. Elasticities are estimated from the generated data, which define the complete linlog kinetic model of the glycolysis. The effect of data noise on the accuracy of the estimated elasticities is presented. Finally, identifiable subset of parameters is determined using information on the standard deviations of the estimated elasticities through Monte Carlo (MC simulations. Conclusion The parameter estimation within the linlog kinetic framework as presented here allows the determination of the elasticities directly from experimental data from typical dynamic and/or steady state experiments. These elasticities allow the reconstruction of the full kinetic model of Saccharomyces cerevisiae, and the determination of the control coefficients. MC simulations revealed that certain elasticities are potentially unidentifiable from dynamic data only

  10. Reaction-diffusion-like formalism for plastic neural networks reveals dissipative solitons at criticality

    Science.gov (United States)

    Grytskyy, Dmytro; Diesmann, Markus; Helias, Moritz

    2016-06-01

    Self-organized structures in networks with spike-timing dependent synaptic plasticity (STDP) are likely to play a central role for information processing in the brain. In the present study we derive a reaction-diffusion-like formalism for plastic feed-forward networks of nonlinear rate-based model neurons with a correlation sensitive learning rule inspired by and being qualitatively similar to STDP. After obtaining equations that describe the change of the spatial shape of the signal from layer to layer, we derive a criterion for the nonlinearity necessary to obtain stable dynamics for arbitrary input. We classify the possible scenarios of signal evolution and find that close to the transition to the unstable regime metastable solutions appear. The form of these dissipative solitons is determined analytically and the evolution and interaction of several such coexistent objects is investigated.

  11. Neural Network Control of CSTR for Reversible Reaction Using Reverence Model Approach

    Directory of Open Access Journals (Sweden)

    Duncan ALOKO

    2007-01-01

    Full Text Available In this work, non-linear control of CSTR for reversible reaction is carried out using Neural Network as design tool. The Model Reverence approach in used to design ANN controller. The idea is to have a control system that will be able to achieve improvement in the level of conversion and to be able to track set point change and reject load disturbance. We use PID control scheme as benchmark to study the performance of the controller. The comparison shows that ANN controller out perform PID in the extreme range of non-linearity.This paper represents a preliminary effort to design a simplified neutral network control scheme for a class of non-linear process. Future works will involve further investigation of the effectiveness of thin approach for the real industrial chemical process

  12. The Adaptive QSE-reduced Nuclear Reaction Network for Silicon Burning

    Energy Technology Data Exchange (ETDEWEB)

    Parete-Koon, Suzanne T. [University of Tennessee, Knoxville (UTK); Hix, William Raphael [ORNL; Thielemann, Friedrich-Karl W. [Universitat Basel, Switzerland

    2008-01-01

    The nuclei of the 'iron peak' are formed in massive stars shortly before core collapse and during their supernova outbursts as well as during thermonuclear supernovae. Complete and incomplete silicon burning during these events are responsible for the production of a wide range of nuclei with atomic mass numbers from 28 to 64. Because of the large number of nuclei involved, accurate modeling of silicon burning is computationally expensive. However, examination of the physics of silicon burning has revealed that the nuclear evolution is dominated by large groups of nuclei in mutual equilibrium. We present an improvement on our hybrid equilibrium-network scheme which takes advantage of this quasi-equilibrium in order to reduce the number of independent variables calculated. Because the size and membership of these groups vary as the temperature, density and electron faction change, achieving maximal efficiency requires dynamic adjustment of group number and membership. Toward this end, we are implementing a scheme beginning with 2 QSE groups at appropriately high temperature, then progressing through, 3 and 3* group stages (with successively more independent variables) as temperature declines. This combination allows accurate prediction of the nuclear abundance evolution, deleptonization and energy generation at a further reduced computational cost when compared to a conventional nuclear reaction network or our previous 3 fixed group QSE-reduced network. During silicon burning, the resultant QSE-reduced network is up to 20 times faster than the full network it replaces without significant loss of accuracy. These reductions in computational cost and the number of species evolved make QSE-reduced networks well suited for inclusion within hydrodynamic simulations, particularly in multi-dimensional applications.

  13. The Adaptive QSE-reduced Nuclear Reaction Network for Silicon Burning

    International Nuclear Information System (INIS)

    Parete-Koon, Suzanne; Hix, William Raphael; Thielemann, Friedrich-Karl W.

    2008-01-01

    The nuclei of the 'iron peak' are formed in massive stars shortly before core collapse and during their supernova outbursts as well as during thermonuclear supernovae. Complete and incomplete silicon burning during these events are responsible for the production of a wide range of nuclei with atomic mass numbers from 28 to 64. Because of the large number of nuclei involved, accurate modeling of silicon burning is computationally expensive. However, examination of the physics of silicon burning has revealed that the nuclear evolution is dominated by large groups of nuclei in mutual equilibrium. We present an improvement on our hybrid equilibrium-network scheme which takes advantage of this quasi-equilibrium in order to reduce the number of independent variables calculated. Because the size and membership of these groups vary as the temperature, density and electron faction change, achieving maximal efficiency requires dynamic adjustment of group number and membership. Toward this end, we are implementing a scheme beginning with 2 QSE groups at appropriately high temperature, then progressing through, 3 and 3* group stages (with successively more independent variables) as temperature declines. This combination allows accurate prediction of the nuclear abundance evolution, deleptonization and energy generation at a further reduced computational cost when compared to a conventional nuclear reaction network or our previous 3 fixed group QSE-reduced network. During silicon burning, the resultant QSE-reduced network is up to 20 times faster than the full network it replaces without significant loss of accuracy. These reductions in computational cost and the number of species evolved make QSE-reduced networks well suited for inclusion within hydrodynamic simulations, particularly in multi-dimensional applications

  14. Neural networks for modelling of chemical reaction systems with complex kinetics: oxidation of 2-octanol with nitric acid

    NARCIS (Netherlands)

    Molga, E.J.; van Woezik, B.A.A.; Westerterp, K.R.

    2000-01-01

    Application of neural networks to model the conversion rates of a heterogeneous oxidation reaction has been investigated — oxidation of 2-octanol with nitric acid has been considered as a case study. Due to a more complex and unknown kinetics of the investigated reaction the proposed approach based

  15. Polysaccharides utilization in human gut bacterium Bacteroides thetaiotaomicron: comparative genomics reconstruction of metabolic and regulatory networks.

    Science.gov (United States)

    Ravcheev, Dmitry A; Godzik, Adam; Osterman, Andrei L; Rodionov, Dmitry A

    2013-12-12

    Bacteroides thetaiotaomicron, a predominant member of the human gut microbiota, is characterized by its ability to utilize a wide variety of polysaccharides using the extensive saccharolytic machinery that is controlled by an expanded repertoire of transcription factors (TFs). The availability of genomic sequences for multiple Bacteroides species opens an opportunity for their comparative analysis to enable characterization of their metabolic and regulatory networks. A comparative genomics approach was applied for the reconstruction and functional annotation of the carbohydrate utilization regulatory networks in 11 Bacteroides genomes. Bioinformatics analysis of promoter regions revealed putative DNA-binding motifs and regulons for 31 orthologous TFs in the Bacteroides. Among the analyzed TFs there are 4 SusR-like regulators, 16 AraC-like hybrid two-component systems (HTCSs), and 11 regulators from other families. Novel DNA motifs of HTCSs and SusR-like regulators in the Bacteroides have the common structure of direct repeats with a long spacer between two conserved sites. The inferred regulatory network in B. thetaiotaomicron contains 308 genes encoding polysaccharide and sugar catabolic enzymes, carbohydrate-binding and transport systems, and TFs. The analyzed TFs control pathways for utilization of host and dietary glycans to monosaccharides and their further interconversions to intermediates of the central metabolism. The reconstructed regulatory network allowed us to suggest and refine specific functional assignments for sugar catabolic enzymes and transporters, providing a substantial improvement to the existing metabolic models for B. thetaiotaomicron. The obtained collection of reconstructed TF regulons is available in the RegPrecise database (http://regprecise.lbl.gov).

  16. EnzDP: improved enzyme annotation for metabolic network reconstruction based on domain composition profiles.

    Science.gov (United States)

    Nguyen, Nam-Ninh; Srihari, Sriganesh; Leong, Hon Wai; Chong, Ket-Fah

    2015-10-01

    Determining the entire complement of enzymes and their enzymatic functions is a fundamental step for reconstructing the metabolic network of cells. High quality enzyme annotation helps in enhancing metabolic networks reconstructed from the genome, especially by reducing gaps and increasing the enzyme coverage. Currently, structure-based and network-based approaches can only cover a limited number of enzyme families, and the accuracy of homology-based approaches can be further improved. Bottom-up homology-based approach improves the coverage by rebuilding Hidden Markov Model (HMM) profiles for all known enzymes. However, its clustering procedure relies firmly on BLAST similarity score, ignoring protein domains/patterns, and is sensitive to changes in cut-off thresholds. Here, we use functional domain architecture to score the association between domain families and enzyme families (Domain-Enzyme Association Scoring, DEAS). The DEAS score is used to calculate the similarity between proteins, which is then used in clustering procedure, instead of using sequence similarity score. We improve the enzyme annotation protocol using a stringent classification procedure, and by choosing optimal threshold settings and checking for active sites. Our analysis shows that our stringent protocol EnzDP can cover up to 90% of enzyme families available in Swiss-Prot. It achieves a high accuracy of 94.5% based on five-fold cross-validation. EnzDP outperforms existing methods across several testing scenarios. Thus, EnzDP serves as a reliable automated tool for enzyme annotation and metabolic network reconstruction. Available at: www.comp.nus.edu.sg/~nguyennn/EnzDP .

  17. Variable elimination in post-translational modification reaction networks with mass-action kinetics

    DEFF Research Database (Denmark)

    Feliu, Elisenda; Wiuf, Carsten

    2013-01-01

    We define a subclass of chemical reaction networks called post-translational modification systems. Important biological examples of such systems include MAPK cascades and two-component systems which are well-studied experimentally as well as theoretically. The steady states of such a system...... are solutions to a system of polynomial equations. Even for small systems the task of finding the solutions is daunting. We develop a mathematical framework based on the notion of a cut (a particular subset of species in the system), which provides a linear elimination procedure to reduce the number...

  18. Combined Geometric and Neural Network Approach to Generic Fault Diagnosis in Satellite Reaction Wheels

    DEFF Research Database (Denmark)

    Baldi, P.; Blanke, Mogens; Castaldi, P.

    2015-01-01

    This paper suggests a novel diagnosis scheme for detection, isolation and estimation of faults affecting satellite reaction wheels. Both spin rate measurements and actuation torque defects are dealt with. The proposed system consists of a fault detection and isolation module composed by a bank...... of residual filters organized in a generalized scheme, followed by a fault estimation module consisting of a bank of adaptive estimation filters. The residuals are decoupled from aerodynamic disturbances thanks to the Nonlinear Geometric Approach. The use of Radial Basis Function Neural Networks is shown...

  19. Simulation of Neurocomputing Based on Photophobic Reactions of Euglena: Toward Microbe-Based Neural Network Computing

    Science.gov (United States)

    Ozasa, Kazunari; Aono, Masashi; Maeda, Mizuo; Hara, Masahiko

    In order to develop an adaptive computing system, we investigate microscopic optical feedback to a group of microbes (Euglena gracilis in this study) with a neural network algorithm, expecting that the unique characteristics of microbes, especially their strategies to survive/adapt against unfavorable environmental stimuli, will explicitly determine the temporal evolution of the microbe-based feedback system. The photophobic reactions of Euglena are extracted from experiments, and built in the Monte-Carlo simulation of a microbe-based neurocomputing. The simulation revealed a good performance of Euglena-based neurocomputing. Dynamic transition among the solutions is discussed from the viewpoint of feedback instability.

  20. Steady state detection of chemical reaction networks using a simplified analytical method.

    Directory of Open Access Journals (Sweden)

    Ivan Martínez-Forero

    Full Text Available Chemical reaction networks (CRNs are susceptible to mathematical modelling. The dynamic behavior of CRNs can be investigated by solving the polynomial equations derived from its structure. However, simple CRN give rise to non-linear polynomials that are difficult to resolve. Here we propose a procedure to locate the steady states of CRNs from a formula derived through algebraic geometry methods. We have applied this procedure to define the steady states of a classic CRN that exhibits instability, and to a model of programmed cell death.

  1. Flows, scaling, and the control of moment hierarchies for stochastic chemical reaction networks

    Science.gov (United States)

    Smith, Eric; Krishnamurthy, Supriya

    2017-12-01

    Stochastic chemical reaction networks (CRNs) are complex systems that combine the features of concurrent transformation of multiple variables in each elementary reaction event and nonlinear relations between states and their rates of change. Most general results concerning CRNs are limited to restricted cases where a topological characteristic known as deficiency takes a value 0 or 1, implying uniqueness and positivity of steady states and surprising, low-information forms for their associated probability distributions. Here we derive equations of motion for fluctuation moments at all orders for stochastic CRNs at general deficiency. We show, for the standard base case of proportional sampling without replacement (which underlies the mass-action rate law), that the generator of the stochastic process acts on the hierarchy of factorial moments with a finite representation. Whereas simulation of high-order moments for many-particle systems is costly, this representation reduces the solution of moment hierarchies to a complexity comparable to solving a heat equation. At steady states, moment hierarchies for finite CRNs interpolate between low-order and high-order scaling regimes, which may be approximated separately by distributions similar to those for deficiency-zero networks and connected through matched asymptotic expansions. In CRNs with multiple stable or metastable steady states, boundedness of high-order moments provides the starting condition for recursive solution downward to low-order moments, reversing the order usually used to solve moment hierarchies. A basis for a subset of network flows defined by having the same mean-regressing property as the flows in deficiency-zero networks gives the leading contribution to low-order moments in CRNs at general deficiency, in a 1 /n expansion in large particle numbers. Our results give a physical picture of the different informational roles of mean-regressing and non-mean-regressing flows and clarify the dynamical

  2. Transcriptomic coordination in the human metabolic network reveals links between n-3 fat intake, adipose tissue gene expression and metabolic health.

    Science.gov (United States)

    Morine, Melissa J; Tierney, Audrey C; van Ommen, Ben; Daniel, Hannelore; Toomey, Sinead; Gjelstad, Ingrid M F; Gormley, Isobel C; Pérez-Martinez, Pablo; Drevon, Christian A; López-Miranda, Jose; Roche, Helen M

    2011-11-01

    Understanding the molecular link between diet and health is a key goal in nutritional systems biology. As an alternative to pathway analysis, we have developed a joint multivariate and network-based approach to analysis of a dataset of habitual dietary records, adipose tissue transcriptomics and comprehensive plasma marker profiles from human volunteers with the Metabolic Syndrome. With this approach we identified prominent co-expressed sub-networks in the global metabolic network, which showed correlated expression with habitual n-3 PUFA intake and urinary levels of the oxidative stress marker 8-iso-PGF(2α). These sub-networks illustrated inherent cross-talk between distinct metabolic pathways, such as between triglyceride metabolism and production of lipid signalling molecules. In a parallel promoter analysis, we identified several adipogenic transcription factors as potential transcriptional regulators associated with habitual n-3 PUFA intake. Our results illustrate advantages of network-based analysis, and generate novel hypotheses on the transcriptomic link between habitual n-3 PUFA intake, adipose tissue function and oxidative stress.

  3. Metabolic Networks and Metabolites Underlie Associations Between Maternal Glucose During Pregnancy and Newborn Size at Birth.

    Science.gov (United States)

    Scholtens, Denise M; Bain, James R; Reisetter, Anna C; Muehlbauer, Michael J; Nodzenski, Michael; Stevens, Robert D; Ilkayeva, Olga; Lowe, Lynn P; Metzger, Boyd E; Newgard, Christopher B; Lowe, William L

    2016-07-01

    Maternal metabolites and metabolic networks underlying associations between maternal glucose during pregnancy and newborn birth weight and adiposity demand fuller characterization. We performed targeted and nontargeted gas chromatography/mass spectrometry metabolomics on maternal serum collected at fasting and 1 h following glucose beverage consumption during an oral glucose tolerance test (OGTT) for 400 northern European mothers at ∼28 weeks' gestation in the Hyperglycemia and Adverse Pregnancy Outcome Study. Amino acids, fatty acids, acylcarnitines, and products of lipid metabolism decreased and triglycerides increased during the OGTT. Analyses of individual metabolites indicated limited maternal glucose associations at fasting, but broader associations, including amino acids, fatty acids, carbohydrates, and lipids, were found at 1 h. Network analyses modeling metabolite correlations provided context for individual metabolite associations and elucidated collective associations of multiple classes of metabolic fuels with newborn size and adiposity, including acylcarnitines, fatty acids, carbohydrates, and organic acids. Random forest analyses indicated an improved ability to predict newborn size outcomes by using maternal metabolomics data beyond traditional risk factors, including maternal glucose. Broad-scale association of fuel metabolites with maternal glucose is evident during pregnancy, with unique maternal metabolites potentially contributing specifically to newborn birth weight and adiposity. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  4. Differential RNA-seq, Multi-Network Analysis and Metabolic Regulation Analysis of Kluyveromyces marxianus Reveals a Compartmentalised Response to Xylose.

    Directory of Open Access Journals (Sweden)

    Du Toit W P Schabort

    Full Text Available We investigated the transcriptomic response of a new strain of the yeast Kluyveromyces marxianus, in glucose and xylose media using RNA-seq. The data were explored in a number of innovative ways using a variety of networks types, pathway maps, enrichment statistics, reporter metabolites and a flux simulation model, revealing different aspects of the genome-scale response in an integrative systems biology manner. The importance of the subcellular localisation in the transcriptomic response is emphasised here, revealing new insights. As was previously reported by others using a rich medium, we show that peroxisomal fatty acid catabolism was dramatically up-regulated in a defined xylose mineral medium without fatty acids, along with mechanisms to activate fatty acids and transfer products of β-oxidation to the mitochondria. Notably, we observed a strong up-regulation of the 2-methylcitrate pathway, supporting capacity for odd-chain fatty acid catabolism. Next we asked which pathways would respond to the additional requirement for NADPH for xylose utilisation, and rationalised the unexpected results using simulations with Flux Balance Analysis. On a fundamental level, we investigated the contribution of the hierarchical and metabolic regulation levels to the regulation of metabolic fluxes. Metabolic regulation analysis suggested that genetic level regulation plays a major role in regulating metabolic fluxes in adaptation to xylose, even for the high capacity reactions, which is unexpected. In addition, isozyme switching may play an important role in re-routing of metabolic fluxes in subcellular compartments in K. marxianus.

  5. Global exponential stability and existence of periodic solutions in BAM networks with delays and reaction-diffusion terms

    International Nuclear Information System (INIS)

    Song Qiankun; Cao Jinde

    2005-01-01

    Both exponential stability and periodic solutions are considered for a class of bi-directional associative memory (BAM) neural networks with delays and reaction-diffusion terms by constructing suitable Lyapunov functional and some analysis techniques. The general sufficient conditions are given ensuring the global exponential stability and existence of periodic solutions of BAM neural networks with delays and reaction-diffusion terms. These presented conditions are in terms of system parameters and have important leading significance in the design and applications of globally exponentially stable and periodic oscillatory neural circuits for BAM with delays and reaction-diffusion terms

  6. PPARγ population shift produces disease-related changes in molecular networks associated with metabolic syndrome.

    Science.gov (United States)

    Jurkowski, W; Roomp, K; Crespo, I; Schneider, J G; Del Sol, A

    2011-08-11

    Peroxisome proliferator-activated receptor gamma (PPARγ) is a key regulator of adipocyte differentiation and has an important role in metabolic syndrome. Phosphorylation of the receptor's ligand-binding domain at serine 273 has been shown to change the expression of a large number of genes implicated in obesity. The difference in gene expression seen when comparing wild-type phosphorylated with mutant non-phosphorylated PPARγ may have important consequences for the cellular molecular network, the state of which can be shifted from the healthy to a stable diseased state. We found that a group of differentially expressed genes are involved in bi-stable switches and form a core network, the state of which changes with disease progression. These findings support the idea that bi-stable switches may be a mechanism for locking the core gene network into a diseased state and for efficiently propagating perturbations to more distant regions of the network. A structural analysis of the PPARγ-RXRα dimer complex supports the hypothesis of a major structural change between the two states, and this may represent an important mechanism leading to the differential expression observed in the core network.

  7. Uniform sampling of steady states in metabolic networks: heterogeneous scales and rounding.

    Directory of Open Access Journals (Sweden)

    Daniele De Martino

    Full Text Available The uniform sampling of convex polytopes is an interesting computational problem with many applications in inference from linear constraints, but the performances of sampling algorithms can be affected by ill-conditioning. This is the case of inferring the feasible steady states in models of metabolic networks, since they can show heterogeneous time scales. In this work we focus on rounding procedures based on building an ellipsoid that closely matches the sampling space, that can be used to define an efficient hit-and-run (HR Markov Chain Monte Carlo. In this way the uniformity of the sampling of the convex space of interest is rigorously guaranteed, at odds with non markovian methods. We analyze and compare three rounding methods in order to sample the feasible steady states of metabolic networks of three models of growing size up to genomic scale. The first is based on principal component analysis (PCA, the second on linear programming (LP and finally we employ the Lovazs ellipsoid method (LEM. Our results show that a rounding procedure dramatically improves the performances of the HR in these inference problems and suggest that a combination of LEM or LP with a subsequent PCA perform the best. We finally compare the distributions of the HR with that of two heuristics based on the Artificially Centered hit-and-run (ACHR, gpSampler and optGpSampler. They show a good agreement with the results of the HR for the small network, while on genome scale models present inconsistencies.

  8. An experimentally-supported genome-scale metabolic network reconstruction for Yersinia pestis CO92

    Directory of Open Access Journals (Sweden)

    Motin Vladimir L

    2011-10-01

    Full Text Available Abstract Background Yersinia pestis is a gram-negative bacterium that causes plague, a disease linked historically to the Black Death in Europe during the Middle Ages and to several outbreaks during the modern era. Metabolism in Y. pestis displays remarkable flexibility and robustness, allowing the bacterium to proliferate in both warm-blooded mammalian hosts and cold-blooded insect vectors such as fleas. Results Here we report a genome-scale reconstruction and mathematical model of metabolism for Y. pestis CO92 and supporting experimental growth and metabolite measurements. The model contains 815 genes, 678 proteins, 963 unique metabolites and 1678 reactions, accurately simulates growth on a range of carbon sources both qualitatively and quantitatively, and identifies gaps in several key biosynthetic pathways and suggests how those gaps might be filled. Furthermore, our model presents hypotheses to explain certain known nutritional requirements characteristic of this strain. Conclusions Y. pestis continues to be a dangerous threat to human health during modern times. The Y. pestis genome-scale metabolic reconstruction presented here, which has been benchmarked against experimental data and correctly reproduces known phenotypes, provides an in silico platform with which to investigate the metabolism of this important human pathogen.

  9. Amino Acid Flux from Metabolic Network Benefits Protein Translation: the Role of Resource Availability.

    Science.gov (United States)

    Hu, Xiao-Pan; Yang, Yi; Ma, Bin-Guang

    2015-06-09

    Protein translation is a central step in gene expression and affected by many factors such as codon usage bias, mRNA folding energy and tRNA abundance. Despite intensive previous studies, how metabolic amino acid supply correlates with protein translation efficiency remains unknown. In this work, we estimated the amino acid flux from metabolic network for each protein in Escherichia coli and Saccharomyces cerevisiae by using Flux Balance Analysis. Integrated with the mRNA expression level, protein abundance and ribosome profiling data, we provided a detailed description of the role of amino acid supply in protein translation. Our results showed that amino acid supply positively correlates with translation efficiency and ribosome density. Moreover, with the rank-based regression model, we found that metabolic amino acid supply facilitates ribosome utilization. Based on the fact that the ribosome density change of well-amino-acid-supplied genes is smaller than poorly-amino-acid-supply genes under amino acid starvation, we reached the conclusion that amino acid supply may buffer ribosome density change against amino acid starvation and benefit maintaining a relatively stable translation environment. Our work provided new insights into the connection between metabolic amino acid supply and protein translation process by revealing a new regulation strategy that is dependent on resource availability.

  10. Network environ perspective for urban metabolism and carbon emissions: a case study of Vienna, Austria.

    Science.gov (United States)

    Chen, Shaoqing; Chen, Bin

    2012-04-17

    Cities are considered major contributors to global warming, where carbon emissions are highly embedded in the overall urban metabolism. To examine urban metabolic processes and emission trajectories we developed a carbon flux model based on Network Environ Analysis (NEA). The mutual interactions and control situation within the urban ecosystem of Vienna were examined, and the system-level properties of the city's carbon metabolism were assessed. Regulatory strategies to minimize carbon emissions were identified through the tracking of the possible pathways that affect these emission trajectories. Our findings suggest that indirect flows have a strong bearing on the mutual and control relationships between urban sectors. The metabolism of a city is considered self-mutualistic and sustainable only when the local and distal environments are embraced. Energy production and construction were found to be two factors with a major impact on carbon emissions, and whose regulation is only effective via ad-hoc pathways. In comparison with the original life-cycle tracking, the application of NEA was better at revealing details from a mechanistic aspect, which is crucial for informed sustainable urban management.

  11. Topological Organization of Metabolic Brain Networks in Pre-Chemotherapy Cancer with Depression: A Resting-State PET Study.

    Science.gov (United States)

    Fang, Lei; Yao, Zhijun; An, Jianping; Chen, Xuejiao; Xie, Yuanwei; Zhao, Hui; Mao, Junfeng; Liang, Wangsheng; Ma, Xiangxing

    2016-01-01

    This study aimed to investigate the metabolic brain network and its relationship with depression symptoms using 18F-fluorodeoxyglucose positron emission tomography data in 78 pre-chemotherapy cancer patients with depression and 80 matched healthy subjects. Functional and structural imbalance or disruption of brain networks frequently occur following chemotherapy in cancer patients. However, few studies have focused on the topological organization of the metabolic brain network in cancer with depression, especially those without chemotherapy. The nodal and global parameters of the metabolic brain network were computed for cancer patients and healthy subjects. Significant decreases in metabolism were found in the frontal and temporal gyri in cancer patients compared with healthy subjects. Negative correlations between depression and metabolism were found predominantly in the inferior frontal and cuneus regions, whereas positive correlations were observed in several regions, primarily including the insula, hippocampus, amygdala, and middle temporal gyri. Furthermore, a higher clustering efficiency, longer path length, and fewer hubs were found in cancer patients compared with healthy subjects. The topological organization of the whole-brain metabolic networks may be disrupted in cancer. Finally, the present findings may provide a new avenue for exploring the neurobiological mechanism, which plays a key role in lessening the depression effects in pre-chemotherapy cancer patients.

  12. Electrochemical doping of three-dimensional graphene networks used as efficient electrocatalysts for oxygen reduction reaction

    Science.gov (United States)

    Wang, Zhijuan; Cao, Xiehong; Ping, Jianfeng; Wang, Yixian; Lin, Tingting; Huang, Xiao; Ma, Qinglang; Wang, Fuke; He, Chaobin; Zhang, Hua

    2015-05-01

    Three-dimensional graphene networks (3DGNs) doped with a mono-heteroatom of N or B, or dual-heteroatoms of N and B were fabricated, which exhibit excellent oxygen reduction reaction (ORR) performance. Importantly, the onset potential and current density of N and B co-doped 3DGNs are comparable to those of the commercial Pt (30%)/C catalyst.Three-dimensional graphene networks (3DGNs) doped with a mono-heteroatom of N or B, or dual-heteroatoms of N and B were fabricated, which exhibit excellent oxygen reduction reaction (ORR) performance. Importantly, the onset potential and current density of N and B co-doped 3DGNs are comparable to those of the commercial Pt (30%)/C catalyst. Electronic supplementary information (ESI) available: Details of the N-3DGN, B-3DGN and NB-3DGN fabrication process. Description of characterization. Rotating disk electrode linear sweep voltammograms of 3DGN and Pt (30%)/C in O2-saturated 0.1 M KOH with various rotation rates at a scan rate of 5 mV s-1. Koutecky-Levich plots of 3DGN, Pt (30%)/C, N-3DGN, B-3DGN and NB-3DGN at different electrode potentials. See DOI: 10.1039/c4nr06631f

  13. Quantitative analysis of energy metabolic pathways in MCF-7 breast cancer cells by selected reaction monitoring assay.

    Science.gov (United States)

    Drabovich, Andrei P; Pavlou, Maria P; Dimitromanolakis, Apostolos; Diamandis, Eleftherios P

    2012-08-01

    To investigate the quantitative response of energy metabolic pathways in human MCF-7 breast cancer cells to hypoxia, glucose deprivation, and estradiol stimulation, we developed a targeted proteomics assay for accurate quantification of protein expression in glycolysis/gluconeogenesis, TCA cycle, and pentose phosphate pathways. Cell growth conditions were selected to roughly mimic the exposure of cells in the cancer tissue to the intermittent hypoxia, glucose deprivation, and hormonal stimulation. Targeted proteomics assay allowed for reproducible quantification of 76 proteins in four different growth conditions after 24 and 48 h of perturbation. Differential expression of a number of control and metabolic pathway proteins in response to the change of growth conditions was found. Elevated expression of the majority of glycolytic enzymes was observed in hypoxia. Cancer cells, as opposed to near-normal MCF-10A cells, exhibited significantly increased expression of key energy metabolic pathway enzymes (FBP1, IDH2, and G6PD) that are known to redirect cellular metabolism and increase carbon flux through the pentose phosphate pathway. Our quantitative proteomic protocol is based on a mass spectrometry-compatible acid-labile detergent and is described in detail. Optimized parameters of a multiplex selected reaction monitoring (SRM) assay for 76 proteins, 134 proteotypic peptides, and 401 transitions are included and can be downloaded and used with any SRM-compatible mass spectrometer. The presented workflow is an integrated tool for hypothesis-driven studies of mammalian cells as well as functional studies of proteins, and can greatly complement experimental methods in systems biology, metabolic engineering, and metabolic transformation of cancer cells.

  14. Increasing galactose consumption by Saccharomyces cerevisiae through metabolic engineering of the GAL gene regulatory network

    DEFF Research Database (Denmark)

    Østergaard, Simon; Olsson, Lisbeth; Johnston, M.

    2000-01-01

    in the pathway, and ultimately, increasing metabolic flux through the pathway of interest, By manipulating the GAL gene regulatory network of Saccharomyces cerevisiae, which is a tightly regulated system, we produced prototroph mutant strains, which increased the flux through the galactose utilization pathway...... by eliminating three known negative regulators of the GAL system: Gale, Gal80, and Mig1. This led to a 41% increase in flux through the galactose utilization pathway compared with the wild-type strain. This is of significant interest within the field of biotechnology since galactose is present in many industrial...... media. The improved galactose consumption of the gal mutants did not favor biomass formation, but rather caused excessive respiro-fermentative metabolism, with the ethanol production rate increasing linearly with glycolytic flux....

  15. Simulation and Statistical Inference of Stochastic Reaction Networks with Applications to Epidemic Models

    KAUST Repository

    Moraes, Alvaro

    2015-01-01

    Epidemics have shaped, sometimes more than wars and natural disasters, demo- graphic aspects of human populations around the world, their health habits and their economies. Ebola and the Middle East Respiratory Syndrome (MERS) are clear and current examples of potential hazards at planetary scale. During the spread of an epidemic disease, there are phenomena, like the sudden extinction of the epidemic, that can not be captured by deterministic models. As a consequence, stochastic models have been proposed during the last decades. A typical forward problem in the stochastic setting could be the approximation of the expected number of infected individuals found in one month from now. On the other hand, a typical inverse problem could be, given a discretely observed set of epidemiological data, infer the transmission rate of the epidemic or its basic reproduction number. Markovian epidemic models are stochastic models belonging to a wide class of pure jump processes known as Stochastic Reaction Networks (SRNs), that are intended to describe the time evolution of interacting particle systems where one particle interacts with the others through a finite set of reaction channels. SRNs have been mainly developed to model biochemical reactions but they also have applications in neural networks, virus kinetics, and dynamics of social networks, among others. 4 This PhD thesis is focused on novel fast simulation algorithms and statistical inference methods for SRNs. Our novel Multi-level Monte Carlo (MLMC) hybrid simulation algorithms provide accurate estimates of expected values of a given observable of SRNs at a prescribed final time. They are designed to control the global approximation error up to a user-selected accuracy and up to a certain confidence level, and with near optimal computational work. We also present novel dual-weighted residual expansions for fast estimation of weak and strong errors arising from the MLMC methodology. Regarding the statistical inference

  16. Reconciled Rat and Human Metabolic Networks for Comparative Toxicogenomics and Biomarker Predictions

    Science.gov (United States)

    2017-02-08

    reactions. ETC, electron transport chain; PPP, pentose phosphate pathway. NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14250 ARTICLE NATURE COMMUNICATIONS...CDCA) Alpha-muricholic acid (αMCA) x Beta-muricholic acid (βMCA) x Secondary bile acids Deoxycholic acid (DCA) Lithocholic acid ( LCA ) Hyocholic acid...than rats Neu5Ac Lewisa ManNAc Microbial metabolism MDCA Cyp3a18 Cyp3a18 CDCA LCA CDCA LCA SharedRat-specific Human-specific Figure 3 | Functional

  17. Propensity approach to nonequilibrium thermodynamics of a chemical reaction network: controlling single E-coli β-galactosidase enzyme catalysis through the elementary reaction steps.

    Science.gov (United States)

    Das, Biswajit; Banerjee, Kinshuk; Gangopadhyay, Gautam

    2013-12-28

    In this work, we develop an approach to nonequilibrium thermodynamics of an open chemical reaction network in terms of the elementary reaction propensities. The method is akin to the microscopic formulation of the dissipation function in terms of the Kullback-Leibler distance of phase space trajectories in Hamiltonian system. The formalism is applied to a single oligomeric enzyme kinetics at chemiostatic condition that leads the reaction system to a nonequilibrium steady state, characterized by a positive total entropy production rate. Analytical expressions are derived, relating the individual reaction contributions towards the total entropy production rate with experimentally measurable reaction velocity. Taking a real case of Escherichia coli β-galactosidase enzyme obeying Michaelis-Menten kinetics, we thoroughly analyze the temporal as well as the steady state behavior of various thermodynamic quantities for each elementary reaction. This gives a useful insight in the relative magnitudes of various energy terms and the dissipated heat to sustain a steady state of the reaction system operating far-from-equilibrium. It is also observed that, the reaction is entropy-driven at low substrate concentration and becomes energy-driven as the substrate concentration rises.

  18. Effects of network dissolution changes on pore-to-core upscaled reaction rates for kaolinite and anorthite reactions under acidic conditions

    KAUST Repository

    Kim, Daesang

    2013-11-01

    We have extended reactive flow simulation in pore-network models to include geometric changes in the medium from dissolution effects. These effects include changes in pore volume and reactive surface area, as well as topological changes that open new connections. The computed changes were based upon a mineral map from an X-ray computed tomography image of a sandstone core. We studied the effect of these changes on upscaled (pore-scale to core-scale) reaction rates and compared against the predictions of a continuum model. Specifically, we modeled anorthite and kaolinite reactions under acidic flow conditions during which the anorthite reactions remain far from equilibrium (dissolution only), while the kaolinite reactions can be near-equilibrium. Under dissolution changes, core-scale reaction rates continuously and nonlinearly evolved in time. At higher injection rates, agreement with predictions of the continuum model degraded significantly. For the far-from-equilibrium reaction, our results indicate that the ability to correctly capture the heterogeneity in dissolution changes in the reactive mineral surface area is critical to accurately predict upscaled reaction rates. For the near-equilibrium reaction, the ability to correctly capture the heterogeneity in the saturation state remains critical. Inclusion of a Nernst-Planck term to ensure neutral ionic currents under differential diffusion resulted in at most a 9% correction in upscaled rates.

  19. An efficient forward-reverse expectation-maximization algorithm for statistical inference in stochastic reaction networks

    KAUST Repository

    Vilanova, Pedro

    2016-01-07

    In this work, we present an extension of the forward-reverse representation introduced in Simulation of forward-reverse stochastic representations for conditional diffusions , a 2014 paper by Bayer and Schoenmakers to the context of stochastic reaction networks (SRNs). We apply this stochastic representation to the computation of efficient approximations of expected values of functionals of SRN bridges, i.e., SRNs conditional on their values in the extremes of given time-intervals. We then employ this SRN bridge-generation technique to the statistical inference problem of approximating reaction propensities based on discretely observed data. To this end, we introduce a two-phase iterative inference method in which, during phase I, we solve a set of deterministic optimization problems where the SRNs are replaced by their reaction-rate ordinary differential equations approximation; then, during phase II, we apply the Monte Carlo version of the Expectation-Maximization algorithm to the phase I output. By selecting a set of over-dispersed seeds as initial points in phase I, the output of parallel runs from our two-phase method is a cluster of approximate maximum likelihood estimates. Our results are supported by numerical examples.

  20. An efficient forward–reverse expectation-maximization algorithm for statistical inference in stochastic reaction networks

    KAUST Repository

    Bayer, Christian

    2016-02-20

    © 2016 Taylor & Francis Group, LLC. ABSTRACT: In this work, we present an extension of the forward–reverse representation introduced by Bayer and Schoenmakers (Annals of Applied Probability, 24(5):1994–2032, 2014) to the context of stochastic reaction networks (SRNs). We apply this stochastic representation to the computation of efficient approximations of expected values of functionals of SRN bridges, that is, SRNs conditional on their values in the extremes of given time intervals. We then employ this SRN bridge-generation technique to the statistical inference problem of approximating reaction propensities based on discretely observed data. To this end, we introduce a two-phase iterative inference method in which, during phase I, we solve a set of deterministic optimization problems where the SRNs are replaced by their reaction-rate ordinary differential equations approximation; then, during phase II, we apply the Monte Carlo version of the expectation-maximization algorithm to the phase I output. By selecting a set of overdispersed seeds as initial points in phase I, the output of parallel runs from our two-phase method is a cluster of approximate maximum likelihood estimates. Our results are supported by numerical examples.

  1. MetExploreViz: web component for interactive metabolic network visualization.

    Science.gov (United States)

    Chazalviel, Maxime; Frainay, Clément; Poupin, Nathalie; Vinson, Florence; Merlet, Benjamin; Gloaguen, Yoann; Cottret, Ludovic; Jourdan, Fabien

    2017-09-15

    MetExploreViz is an open source web component that can be easily embedded in any web site. It provides features dedicated to the visualization of metabolic networks and pathways and thus offers a flexible solution to analyze omics data in a biochemical context. Documentation and link to GIT code repository (GPL 3.0 license)are available at this URL: http://metexplore.toulouse.inra.fr/metexploreViz/doc /. Tutorial is available at this URL. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  2. Basic and applied uses of genome-scale metabolic network reconstructions of Escherichia coli

    DEFF Research Database (Denmark)

    McCloskey, Douglas; Palsson, Bernhard; Feist, Adam

    2013-01-01

    of cellular phenotypes, (4) analysis of biological network properties, (5) studies of evolutionary processes, and (6) models of interspecies interactions. In this review, we provide an overview of these applications along with a critical assessment of their successes and limitations, and a perspective...... on likely future developments in the field. Taken together, the studies performed over the past decade have established a genome-scale mechanistic understanding of genotype-phenotype relationships in E. coli metabolism that forms the basis for similar efforts for other microbial species. Future challenges...

  3. Global exponential stability and periodicity of reaction-diffusion delayed recurrent neural networks with Dirichlet boundary conditions

    International Nuclear Information System (INIS)

    Lu Junguo

    2008-01-01

    In this paper, the global exponential stability and periodicity for a class of reaction-diffusion delayed recurrent neural networks with Dirichlet boundary conditions are addressed by constructing suitable Lyapunov functionals and utilizing some inequality techniques. We first prove global exponential converge to 0 of the difference between any two solutions of the original reaction-diffusion delayed recurrent neural networks with Dirichlet boundary conditions, the existence and uniqueness of equilibrium is the direct results of this procedure. This approach is different from the usually used one where the existence, uniqueness of equilibrium and stability are proved in two separate steps. Furthermore, we prove periodicity of the reaction-diffusion delayed recurrent neural networks with Dirichlet boundary conditions. Sufficient conditions ensuring the global exponential stability and the existence of periodic oscillatory solutions for the reaction-diffusion delayed recurrent neural networks with Dirichlet boundary conditions are given. These conditions are easy to check and have important leading significance in the design and application of reaction-diffusion recurrent neural networks with delays. Finally, two numerical examples are given to show the effectiveness of the obtained results

  4. Using in vitro derived enzymatic reaction rates of metabolism to inform pesticide body burdens in amphibians.

    Science.gov (United States)

    Glinski, Donna A; Henderson, W Matthew; Van Meter, Robin J; Purucker, S Thomas

    2018-02-13

    Understanding how pesticide exposure to non-target species influences toxicity is necessary to accurately assess the ecological risks these compounds pose. To assess the potential metabolic activation of broad use pesticides in amphibians, in vitro and in vivo metabolic rate constants were derived from toad (Anaxyrus terrestris) livers in experiments measuring the depletion of atrazine (ATZ), triadimefon (TDN), and fipronil (FIP) as well as formation of their metabolites. To determine the predictability of these in vitro derived rate constants, Fowler's toads (Anaxyrus fowleri) were exposed to soil contaminated with each of the pesticides at maximum application rate. Desethyl atrazine (DEA) and deisopropyl atrazine (DIA), both metabolites of ATZ, exhibited similar velocities (V max ) while the K M constant for DIA was two times higher than DEA. TDN was metabolized into two diastereomers of triadimenol (TDL A and TDL B), where TDL B had a V max around two times higher than TDL A. The metabolite fipronil sulfone's V max and K M were 150 pmol min -1  mg -1 and 29 μM, respectively. While intrinsic clearance rates for the pesticides ranged from 0.54 to 38.31 mL min -1  kg -1 . Thus, gaining knowledge on differences in metabolism of pesticides within amphibians is important in estimating risk to these non-target species since the inherent toxicity of metabolites can differ from the parent compound. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Metabolic engineering of free-energy (ATP) conserving reactions in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    De Kok, S.

    2012-01-01

    Metabolic engineering – the improvement of cellular activities by manipulation of enzymatic, transport and regulatory functions of the cell – has enabled the industrial production of a wide variety of biological molecules from renewable resources. Microbial production of fuels and chemicals thereby

  6. Kriging-Based Parameter Estimation Algorithm for Metabolic Networks Combined with Single-Dimensional Optimization and Dynamic Coordinate Perturbation.

    Science.gov (United States)

    Wang, Hong; Wang, Xicheng; Li, Zheng; Li, Keqiu

    2016-01-01

    The metabolic network model allows for an in-depth insight into the molecular mechanism of a particular organism. Because most parameters of the metabolic network cannot be directly measured, they must be estimated by using optimization algorithms. However, three characteristics of the metabolic network model, i.e., high nonlinearity, large amount parameters, and huge variation scopes of parameters, restrict the application of many traditional optimization algorithms. As a result, there is a growing demand to develop efficient optimization approaches to address this complex problem. In this paper, a Kriging-based algorithm aiming at parameter estimation is presented for constructing the metabolic networks. In the algorithm, a new infill sampling criterion, named expected improvement and mutual information (EI&MI), is adopted to improve the modeling accuracy by selecting multiple new sample points at each cycle, and the domain decomposition strategy based on the principal component analysis is introduced to save computing time. Meanwhile, the convergence speed is accelerated by combining a single-dimensional optimization method with the dynamic coordinate perturbation strategy when determining the new sample points. Finally, the algorithm is applied to the arachidonic acid metabolic network to estimate its parameters. The obtained results demonstrate the effectiveness of the proposed algorithm in getting precise parameter values under a limited number of iterations.

  7. The tricarboxylic acid cycle, an ancient metabolic network with a novel twist.

    Directory of Open Access Journals (Sweden)

    Ryan J Mailloux

    Full Text Available The tricarboxylic acid (TCA cycle is an essential metabolic network in all oxidative organisms and provides precursors for anabolic processes and reducing factors (NADH and FADH(2 that drive the generation of energy. Here, we show that this metabolic network is also an integral part of the oxidative defence machinery in living organisms and alpha-ketoglutarate (KG is a key participant in the detoxification of reactive oxygen species (ROS. Its utilization as an anti-oxidant can effectively diminish ROS and curtail the formation of NADH, a situation that further impedes the release of ROS via oxidative phosphorylation. Thus, the increased production of KG mediated by NADP-dependent isocitrate dehydrogenase (NADP-ICDH and its decreased utilization via the TCA cycle confer a unique strategy to modulate the cellular redox environment. Activities of alpha-ketoglutarate dehydrogenase (KGDH, NAD-dependent isocitrate dehydrogenase (NAD-ICDH, and succinate dehydrogenase (SDH were sharply diminished in the cellular systems exposed to conditions conducive to oxidative stress. These findings uncover an intricate link between TCA cycle and ROS homeostasis and may help explain the ineffective TCA cycle that characterizes various pathological conditions and ageing.

  8. Direct calculation of elementary flux modes satisfying several biological constraints in genome-scale metabolic networks.

    Science.gov (United States)

    Pey, Jon; Planes, Francisco J

    2014-08-01

    The concept of Elementary Flux Mode (EFM) has been widely used for the past 20 years. However, its application to genome-scale metabolic networks (GSMNs) is still under development because of methodological limitations. Therefore, novel approaches are demanded to extend the application of EFMs. A novel family of methods based on optimization is emerging that provides us with a subset of EFMs. Because the calculation of the whole set of EFMs goes beyond our capacity, performing a selective search is a proper strategy. Here, we present a novel mathematical approach calculating EFMs fulfilling additional linear constraints. We validated our approach based on two metabolic networks in which all the EFMs can be obtained. Finally, we analyzed the performance of our methodology in the GSMN of the yeast Saccharomyces cerevisiae by calculating EFMs producing ethanol with a given minimum carbon yield. Overall, this new approach opens new avenues for the calculation of EFMs in GSMNs. Matlab code is provided in the supplementary online materials fplanes@ceit.es. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Identification of alterations in the Jacobian of biochemical reaction networks from steady state covariance data at two conditions.

    Science.gov (United States)

    Kügler, Philipp; Yang, Wei

    2014-06-01

    Model building of biochemical reaction networks typically involves experiments in which changes in the behavior due to natural or experimental perturbations are observed. Computational models of reaction networks are also used in a systems biology approach to study how transitions from a healthy to a diseased state result from changes in genetic or environmental conditions. In this paper we consider the nonlinear inverse problem of inferring information about the Jacobian of a Langevin type network model from covariance data of steady state concentrations associated to two different experimental conditions. Under idealized assumptions on the Langevin fluctuation matrices we prove that relative alterations in the network Jacobian can be uniquely identified when comparing the two data sets. Based on this result and the premise that alteration is locally confined to separable parts due to network modularity we suggest a computational approach using hybrid stochastic-deterministic optimization for the detection of perturbations in the network Jacobian using the sparsity promoting effect of [Formula: see text]-penalization. Our approach is illustrated by means of published metabolomic and signaling reaction networks.

  10. Robust detection and verification of linear relationships to generate metabolic networks using estimates of technical errors

    Directory of Open Access Journals (Sweden)

    Holschneider Matthias

    2007-05-01

    Full Text Available Abstract Background The size and magnitude of the metabolome, the ratio between individual metabolites and the response of metabolic networks is controlled by multiple cellular factors. A tight control over metabolite ratios will be reflected by a linear relationship of pairs of metabolite due to the flexibility of metabolic pathways. Hence, unbiased detection and validation of linear metabolic variance can be interpreted in terms of biological control. For robust analyses, criteria for rejecting or accepting linearities need to be developed despite technical measurement errors. The entirety of all pair wise linear metabolic relationships then yields insights into the network of cellular regulation. Results The Bayesian law was applied for detecting linearities that are validated by explaining the residues by the degree of technical measurement errors. Test statistics were developed and the algorithm was tested on simulated data using 3–150 samples and 0–100% technical error. Under the null hypothesis of the existence of a linear relationship, type I errors remained below 5% for data sets consisting of more than four samples, whereas the type II error rate quickly raised with increasing technical errors. Conversely, a filter was developed to balance the error rates in the opposite direction. A minimum of 20 biological replicates is recommended if technical errors remain below 20% relative standard deviation and if thresholds for false error rates are acceptable at less than 5%. The algorithm was proven to be robust against outliers, unlike Pearson's correlations. Conclusion The algorithm facilitates finding linear relationships in complex datasets, which is radically different from estimating linearity parameters from given linear relationships. Without filter, it provides high sensitivity and fair specificity. If the filter is activated, high specificity but only fair sensitivity is yielded. Total error rates are more favorable with

  11. Erroneous energy-generating cycles in published genome scale metabolic networks: Identification and removal.

    Science.gov (United States)

    Fritzemeier, Claus Jonathan; Hartleb, Daniel; Szappanos, Balázs; Papp, Balázs; Lercher, Martin J

    2017-04-01

    Energy metabolism is central to cellular biology. Thus, genome-scale models of heterotrophic unicellular species must account appropriately for the utilization of external nutrients to synthesize energy metabolites such as ATP. However, metabolic models designed for flux-balance analysis (FBA) may contain thermodynamically impossible energy-generating cycles: without nutrient consumption, these models are still capable of charging energy metabolites (such as ADP→ATP or NADP+→NADPH). Here, we show that energy-generating cycles occur in over 85% of metabolic models without extensive manual curation, such as those contained in the ModelSEED and MetaNetX databases; in contrast, such cycles are rare in the manually curated models of the BiGG database. Energy generating cycles may represent model errors, e.g., erroneous assumptions on reaction reversibilities. Alternatively, part of the cycle may be thermodynamically feasible in one environment, while the remainder is thermodynamically feasible in another environment; as standard FBA does not account for thermodynamics, combining these into an FBA model allows erroneous energy generation. The presence of energy-generating cycles typically inflates maximal biomass production rates by 25%, and may lead to biases in evolutionary simulations. We present efficient computational methods (i) to identify energy generating cycles, using FBA, and (ii) to identify minimal sets of model changes that eliminate them, using a variant of the GlobalFit algorithm.

  12. Multiple Substrate Usage of Coxiella burnetii to Feed a Bipartite Metabolic Network

    Directory of Open Access Journals (Sweden)

    Ina Häuslein

    2017-06-01

    Full Text Available The human pathogen Coxiella burnetii causes Q-fever and is classified as a category B bio-weapon. Exploiting the development of the axenic growth medium ACCM-2, we have now used 13C-labeling experiments and isotopolog profiling to investigate the highly diverse metabolic network of C. burnetii. To this aim, C. burnetii RSA 439 NMII was cultured in ACCM-2 containing 5 mM of either [U-13C3]serine, [U-13C6]glucose, or [U-13C3]glycerol until the late-logarithmic phase. GC/MS-based isotopolog profiling of protein-derived amino acids, methanol-soluble polar metabolites, fatty acids, and cell wall components (e.g., diaminopimelate and sugars from the labeled bacteria revealed differential incorporation rates and isotopolog profiles. These data served to decipher the diverse usages of the labeled substrates and the relative carbon fluxes into the core metabolism of the pathogen. Whereas, de novo biosynthesis from any of these substrates could not be found for histidine, isoleucine, leucine, lysine, phenylalanine, proline and valine, the other amino acids and metabolites under study acquired 13C-label at specific rates depending on the nature of the tracer compound. Glucose was directly used for cell wall biosynthesis, but was also converted into pyruvate (and its downstream metabolites through the glycolytic pathway or into erythrose 4-phosphate (e.g., for the biosynthesis of tyrosine via the non-oxidative pentose phosphate pathway. Glycerol efficiently served as a gluconeogenetic substrate and could also be used via phosphoenolpyruvate and diaminopimelate as a major carbon source for cell wall biosynthesis. In contrast, exogenous serine was mainly utilized in downstream metabolic processes, e.g., via acetyl-CoA in a complete citrate cycle with fluxes in the oxidative direction and as a carbon feed for fatty acid biosynthesis. In summary, the data reflect multiple and differential substrate usages by C. burnetii in a bipartite-type metabolic network

  13. Spatially orthogonal chemical functionalization of a hierarchical pore network for catalytic cascade reactions

    Science.gov (United States)

    Parlett, Christopher M. A.; Isaacs, Mark A.; Beaumont, Simon K.; Bingham, Laura M.; Hondow, Nicole S.; Wilson, Karen; Lee, Adam F.

    2016-02-01

    The chemical functionality within porous architectures dictates their performance as heterogeneous catalysts; however, synthetic routes to control the spatial distribution of individual functions within porous solids are limited. Here we report the fabrication of spatially orthogonal bifunctional porous catalysts, through the stepwise template removal and chemical functionalization of an interconnected silica framework. Selective removal of polystyrene nanosphere templates from a lyotropic liquid crystal-templated silica sol-gel matrix, followed by extraction of the liquid crystal template, affords a hierarchical macroporous-mesoporous architecture. Decoupling of the individual template extractions allows independent functionalization of macropore and mesopore networks on the basis of chemical and/or size specificity. Spatial compartmentalization of, and directed molecular transport between, chemical functionalities affords control over the reaction sequence in catalytic cascades; herein illustrated by the Pd/Pt-catalysed oxidation of cinnamyl alcohol to cinnamic acid. We anticipate that our methodology will prompt further design of multifunctional materials comprising spatially compartmentalized functions.

  14. Convergent evolution of modularity in metabolic networks through different community structures

    Directory of Open Access Journals (Sweden)

    Zhou Wanding

    2012-09-01

    Full Text Available Abstract Background It has been reported that the modularity of metabolic networks of bacteria is closely related to the variability of their living habitats. However, given the dependency of the modularity score on the community structure, it remains unknown whether organisms achieve certain modularity via similar or different community structures. Results In this work, we studied the relationship between similarities in modularity scores and similarities in community structures of the metabolic networks of 1021 species. Both similarities are then compared against the genetic distances. We revisited the association between modularity and variability of the microbial living environments and extended the analysis to other aspects of their life style such as temperature and oxygen requirements. We also tested both topological and biological intuition of the community structures identified and investigated the extent of their conservation with respect to the taxomony. Conclusions We find that similar modularities are realized by different community structures. We find that such convergent evolution of modularity is closely associated with the number of (distinct enzymes in the organism’s metabolome, a consequence of different life styles of the species. We find that the order of modularity is the same as the order of the number of the enzymes under the classification based on the temperature preference but not on the oxygen requirement. Besides, inspection of modularity-based communities reveals that these communities are graph-theoretically meaningful yet not reflective of specific biological functions. From an evolutionary perspective, we find that the community structures are conserved only at the level of kingdoms. Our results call for more investigation into the interplay between evolution and modularity: how evolution shapes modularity, and how modularity affects evolution (mainly in terms of fitness and evolvability. Further, our results

  15. Flux coupling and transcriptional regulation within the metabolic network of the photosynthetic bacterium Synechocystis sp. PCC6803

    DEFF Research Database (Denmark)

    Montagud, Arnau; Zelezniak, Aleksej; Navarro, Emilio

    2011-01-01

    Synechocystis sp. PCC6803 is a model cyanobacterium capable of producing biofuels with CO2 as carbon source and with its metabolism fueled by light, for which it stands as a potential production platform of socio-economic importance. Compilation and characterization of Synechocystis genome...... networks, surrounded by a stable core of pathways leading to biomass building blocks. This analysis identified potential bottlenecks for hydrogen and ethanol production. Integration of transcriptomic data with the Synechocystis flux coupling networks lead to identification of reporter flux coupling pairs...... and reporter flux coupling groups - regulatory hot spots during metabolic shifts triggered by the availability of light. Overall, flux coupling analysis provided insight into the structural organization of Synechocystis sp. PCC6803 metabolic network toward designing of a photosynthesis-based production...

  16. High-Dimensional Neural Network Potentials for Organic Reactions and an Improved Training Algorithm.

    Science.gov (United States)

    Gastegger, Michael; Marquetand, Philipp

    2015-05-12

    Artificial neural networks (NNs) represent a relatively recent approach for the prediction of molecular potential energies, suitable for simulations of large molecules and long time scales. By using NNs to fit electronic structure data, it is possible to obtain empirical potentials of high accuracy combined with the computational efficiency of conventional force fields. However, as opposed to the latter, changing bonding patterns and unusual coordination geometries can be described due to the underlying flexible functional form of the NNs. One of the most promising approaches in this field is the high-dimensional neural network (HDNN) method, which is especially adapted to the prediction of molecular properties. While HDNNs have been mostly used to model solid state systems and surface interactions, we present here the first application of the HDNN approach to an organic reaction, the Claisen rearrangement of allyl vinyl ether to 4-pentenal. To construct the corresponding HDNN potential, a new training algorithm is introduced. This algorithm is termed "element-decoupled" global extended Kalman filter (ED-GEKF) and is based on the decoupled Kalman filter. Using a metadynamics trajectory computed with density functional theory as reference data, we show that the ED-GEKF exhibits superior performance - both in terms of accuracy and training speed - compared to other variants of the Kalman filter hitherto employed in HDNN training. In addition, the effect of including forces during ED-GEKF training on the resulting potentials was studied.

  17. Global exponential stability of impulsive fuzzy cellular neural networks with mixed delays and reaction-diffusion terms

    International Nuclear Information System (INIS)

    Wang Xiaohu; Xu Daoyi

    2009-01-01

    In this paper, the global exponential stability of impulsive fuzzy cellular neural networks with mixed delays and reaction-diffusion terms is considered. By establishing an integro-differential inequality with impulsive initial condition and using the properties of M-cone and eigenspace of the spectral radius of nonnegative matrices, several new sufficient conditions are obtained to ensure the global exponential stability of the equilibrium point for fuzzy cellular neural networks with delays and reaction-diffusion terms. These results extend and improve the earlier publications. Two examples are given to illustrate the efficiency of the obtained results.

  18. Global asymptotic stability of stochastic reaction-diffusion neural networks with time delays in the leakage terms

    Science.gov (United States)

    Li, Zhe; Xu, Rui

    2012-04-01

    In this paper, a class of stochastic reaction-diffusion neural networks with time delays in the leakage terms is investigated. By using the Lyapunov functional method and linear matrix inequality (LMI) approach, sufficient conditions are derived to ensure the global asymptotic stability of an equilibrium point of the networks in the mean square. The results can be easily solved by MATLAB LMI toolbox. Finally, a numerical example is given to demonstrate the effectiveness and conservativeness of our theoretical results.

  19. Genome-scale reconstruction and analysis of the Pseudomonas putida KT2440 metabolic network facilitates applications in biotechnology.

    Science.gov (United States)

    Puchałka, Jacek; Oberhardt, Matthew A; Godinho, Miguel; Bielecka, Agata; Regenhardt, Daniela; Timmis, Kenneth N; Papin, Jason A; Martins dos Santos, Vítor A P

    2008-10-01

    A cornerstone of biotechnology is the use of microorganisms for the efficient production of chemicals and the elimination of harmful waste. Pseudomonas putida is an archetype of such microbes due to its metabolic versatility, stress resistance, amenability to genetic modifications, and vast potential for environmental and industrial applications. To address both the elucidation of the metabolic wiring in P. putida and its uses in biocatalysis, in particular for the production of non-growth-related biochemicals, we developed and present here a genome-scale constraint-based model of the metabolism of P. putida KT2440. Network reconstruction and flux balance analysis (FBA) enabled definition of the structure of the metabolic network, identification of knowledge gaps, and pin-pointing of essential metabolic functions, facilitating thereby the refinement of gene annotations. FBA and flux variability analysis were used to analyze the properties, potential, and limits of the model. These analyses allowed identification, under various conditions, of key features of metabolism such as growth yield, resource distribution, network robustness, and gene essentiality. The model was validated with data from continuous cell cultures, high-throughput phenotyping data, (13)C-measurement of internal flux distributions, and specifically generated knock-out mutants. Auxotrophy was correctly predicted in 75% of the cases. These systematic analyses revealed that the metabolic network structure is the main factor determining the accuracy of predictions, whereas biomass composition has negligible influence. Finally, we drew on the model to devise metabolic engineering strategies to improve production of polyhydroxyalkanoates, a class of biotechnologically useful compounds whose synthesis is not coupled to cell survival. The solidly validated model yields valuable insights into genotype-phenotype relationships and provides a sound framework to explore this versatile bacterium and to

  20. Genome-scale reconstruction and analysis of the Pseudomonas putida KT2440 metabolic network facilitates applications in biotechnology.

    Directory of Open Access Journals (Sweden)

    Jacek Puchałka

    2008-10-01

    Full Text Available A cornerstone of biotechnology is the use of microorganisms for the efficient production of chemicals and the elimination of harmful waste. Pseudomonas putida is an archetype of such microbes due to its metabolic versatility, stress resistance, amenability to genetic modifications, and vast potential for environmental and industrial applications. To address both the elucidation of the metabolic wiring in P. putida and its uses in biocatalysis, in particular for the production of non-growth-related biochemicals, we developed and present here a genome-scale constraint-based model of the metabolism of P. putida KT2440. Network reconstruction and flux balance analysis (FBA enabled definition of the structure of the metabolic network, identification of knowledge gaps, and pin-pointing of essential metabolic functions, facilitating thereby the refinement of gene annotations. FBA and flux variability analysis were used to analyze the properties, potential, and limits of the model. These analyses allowed identification, under various conditions, of key features of metabolism such as growth yield, resource distribution, network robustness, and gene essentiality. The model was validated with data from continuous cell cultures, high-throughput phenotyping data, (13C-measurement of internal flux distributions, and specifically generated knock-out mutants. Auxotrophy was correctly predicted in 75% of the cases. These systematic analyses revealed that the metabolic network structure is the main factor determining the accuracy of predictions, whereas biomass composition has negligible influence. Finally, we drew on the model to devise metabolic engineering strategies to improve production of polyhydroxyalkanoates, a class of biotechnologically useful compounds whose synthesis is not coupled to cell survival. The solidly validated model yields valuable insights into genotype-phenotype relationships and provides a sound framework to explore this versatile

  1. Computer-assisted design for scaling up systems based on DNA reaction networks.

    Science.gov (United States)

    Aubert, Nathanaël; Mosca, Clément; Fujii, Teruo; Hagiya, Masami; Rondelez, Yannick

    2014-04-06

    In the past few years, there have been many exciting advances in the field of molecular programming, reaching a point where implementation of non-trivial systems, such as neural networks or switchable bistable networks, is a reality. Such systems require nonlinearity, be it through signal amplification, digitalization or the generation of autonomous dynamics such as oscillations. The biochemistry of DNA systems provides such mechanisms, but assembling them in a constructive manner is still a difficult and sometimes counterintuitive process. Moreover, realistic prediction of the actual evolution of concentrations over time requires a number of side reactions, such as leaks, cross-talks or competitive interactions, to be taken into account. In this case, the design of a system targeting a given function takes much trial and error before the correct architecture can be found. To speed up this process, we have created DNA Artificial Circuits Computer-Assisted Design (DACCAD), a computer-assisted design software that supports the construction of systems for the DNA toolbox. DACCAD is ultimately aimed to design actual in vitro implementations, which is made possible by building on the experimental knowledge available on the DNA toolbox. We illustrate its effectiveness by designing various systems, from Montagne et al.'s Oligator or Padirac et al.'s bistable system to new and complex networks, including a two-bit counter or a frequency divider as well as an example of very large system encoding the game Mastermind. In the process, we highlight a variety of behaviours, such as enzymatic saturation and load effect, which would be hard to handle or even predict with a simpler model. We also show that those mechanisms, while generally seen as detrimental, can be used in a positive way, as functional part of a design. Additionally, the number of parameters included in these simulations can be large, especially in the case of complex systems. For this reason, we included the

  2. Metabolism

    Science.gov (United States)

    ... functions: Anabolism (uh-NAB-uh-liz-um), or constructive metabolism, is all about building and storing. It ... in infants and young children. Hypothyroidism slows body processes and causes fatigue (tiredness), slow heart rate, excessive ...

  3. Metabolism

    Science.gov (United States)

    ... a particular food provides to the body. A chocolate bar has more calories than an apple, so ... acid phenylalanine, needed for normal growth and protein production). Inborn errors of metabolism can sometimes lead to ...

  4. A novel strategy involved in [corrected] anti-oxidative defense: the conversion of NADH into NADPH by a metabolic network.

    Directory of Open Access Journals (Sweden)

    Ranji Singh

    Full Text Available The reduced nicotinamide adenine dinucleotide phosphate (NADPH is pivotal to the cellular anti-oxidative defence strategies in most organisms. Although its production mediated by different enzyme systems has been relatively well-studied, metabolic networks dedicated to the biogenesis of NADPH have not been fully characterized. In this report, a metabolic pathway that promotes the conversion of reduced nicotinamide adenine dinucleotide (NADH, a pro-oxidant into NADPH has been uncovered in Pseudomonas fluorescens exposed to oxidative stress. Enzymes such as pyruvate carboxylase (PC, malic enzyme (ME, malate dehydrogenase (MDH, malate synthase (MS, and isocitrate lyase (ICL that are involved in disparate metabolic modules, converged to create a metabolic network aimed at the transformation of NADH into NADPH. The downregulation of phosphoenol carboxykinase (PEPCK and the upregulation of pyruvate kinase (PK ensured that this metabolic cycle fixed NADH into NADPH to combat the oxidative stress triggered by the menadione insult. This is the first demonstration of a metabolic network invoked to generate NADPH from NADH, a process that may be very effective in combating oxidative stress as the increase of an anti-oxidant is coupled to the decrease of a pro-oxidant.

  5. Phosphorus-31 NMR magnetization transfer measurements of metabolic reaction rates in the rat heart and kidney in vivo

    International Nuclear Information System (INIS)

    Koretsky, A.P.

    1984-01-01

    31 P NMR is a unique tool to study bioenergetics in living cells. The application of magnetization transfer techniques to the measurement of steady-state enzyme reaction rates provides a new approach to understanding the regulation of high energy phosphate metabolism. This dissertation is concerned with the measurement of the rates of ATP synthesis in the rat kidney and of the creatine kinase catalyzed reaction in the rat heart in situ. The theoretical considerations of applying magnetization transfer techniques to intact organs are discussed with emphasis on the problems associated with multiple exchange reactions and compartmentation of reactants. Experimental measurements of the ATP synthesis rate were compared to whole kidney oxygen consumption and Na + reabsorption rates to derive ATP/O values. The problems associated with ATP synthesis rate measurements in kidney, e.g. the heterogeneity of the inorganic phosphate resonance, are discussed and experiments to overcome these problems proposed. In heart, the forward rate through creatine kinase was measured to be larger than the reverse rate. To account for the difference in forward and reverse rates a model is proposed based on the compartmentation of a small pool of ATP

  6. Genes encoding hub and bottleneck enzymes of the Arabidopsis metabolic network preferentially retain homeologs through whole genome duplication

    Directory of Open Access Journals (Sweden)

    Qi Xiaoquan

    2010-05-01

    Full Text Available Abstract Background Whole genome duplication (WGD occurs