WorldWideScience

Sample records for metabolic pathways involved

  1. Cinnamon polyphenols regulate multiple metabolic pathways involved in intestinal lipid metabolism of primary small intestinal enterocytes

    Science.gov (United States)

    Increasing evidence suggests that dietary factors may affect the expression of multiple genes and signaling pathways including those that regulate intestinal lipoprotein metabolism. The small intestine is actively involved in the regulation of dietary lipid absorption, intracellular transport and me...

  2. Metabolomic profiling identifies potential pathways involved in the interaction of iron homeostasis with glucose metabolism

    Directory of Open Access Journals (Sweden)

    Lars Stechemesser

    2017-01-01

    Conclusions: Our data suggest that high serum ferritin concentrations are linked to impaired glucose homeostasis in subjects with the MetS. Iron excess is associated to distinct changes in the serum concentrations of phosphatidylcholine subsets. A pathway involving sarcosine and citrulline also may be involved in iron-induced impairment of glucose metabolism.

  3. Defining a novel leptin–melanocortin–kisspeptin pathway involved in the metabolic control of puberty

    Directory of Open Access Journals (Sweden)

    Maria Manfredi-Lozano

    2016-10-01

    Conclusions: Our physiological, virogenetic, and functional genomic studies document a novel α-MSH→kisspeptin→GnRH neuronal signaling pathway involved in transmitting the permissive effects of leptin on pubertal maturation, which is relevant for the metabolic (and, eventually, pharmacological regulation of puberty onset.

  4. Pulmonary Ozone Exposure Alters Essential Metabolic Pathways involved in Glucose Homeostasis in the Liver

    Science.gov (United States)

    Pulmonary Ozone Exposure Alters Essential Metabolic Pathways involved in Glucose Homeostasis in the Liver D.B. Johnson, 1 W.O. Ward, 2 V.L. Bass, 2 M.C.J. Schladweiler, 2A.D. Ledbetter, 2 D. Andrews, and U.P. Kodavanti 2 1 Curriculum in Toxicology, UNC School of Medicine, Cha...

  5. Prediction of Metabolic Pathway Involvement in Prokaryotic UniProtKB Data by Association Rule Mining

    KAUST Repository

    Boudellioua, Imene

    2016-07-08

    The widening gap between known proteins and their functions has encouraged the development of methods to automatically infer annotations. Automatic functional annotation of proteins is expected to meet the conflicting requirements of maximizing annotation coverage, while minimizing erroneous functional assignments. This trade-off imposes a great challenge in designing intelligent systems to tackle the problem of automatic protein annotation. In this work, we present a system that utilizes rule mining techniques to predict metabolic pathways in prokaryotes. The resulting knowledge represents predictive models that assign pathway involvement to UniProtKB entries. We carried out an evaluation study of our system performance using cross-validation technique. We found that it achieved very promising results in pathway identification with an F1-measure of 0.982 and an AUC of 0.987. Our prediction models were then successfully applied to 6.2 million UniProtKB/TrEMBL reference proteome entries of prokaryotes. As a result, 663,724 entries were covered, where 436,510 of them lacked any previous pathway annotations.

  6. Pathways and genes involved in steroid hormone metabolism in male pigs: a review and update.

    Science.gov (United States)

    Robic, Annie; Faraut, Thomas; Prunier, Armelle

    2014-03-01

    This paper reviews state-of-the-art knowledge on steroid biosynthesis pathways in the pig and provides an updated characterization of the porcine genes involved in these pathways with particular focus on androgens, estrogens, and 16-androstenes. At least 21 different enzymes appear to be involved in these pathways in porcine tissues together with at least five cofactors. Until now, data on several porcine genes were scarce or confusing. We characterized the complete genomic and transcript sequences of the single porcine CYP11B gene. We analyzed the porcine AKR1 gene cluster and identified four AKR1C, one AKR1C like genes and one AKR1E2 gene. We provide evidence that porcine AKR1C genes are not orthologous to human AKR1C. A new nomenclature is thus needed for this gene family in the pig. Thirty-two genes are now described: transcript (30+2 characterized in this study) and genomic (complete: 18+1 and partial: 12+1) sequences are identified. However, despite increasing knowledge on steroid metabolism in the pig, there is still no explanation of why porcine testes can produce androstenone and epiandrosterone, but not dihydrotestosterone (DHT), which is also a reduced steroid. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  7. Metabolic Pathways Involved in Carbon Dioxide Enhanced Heat Tolerance in Bermudagrass

    Directory of Open Access Journals (Sweden)

    Jingjin Yu

    2017-09-01

    Full Text Available Global climate changes involve elevated temperature and CO2 concentration, imposing significant impact on plant growth of various plant species. Elevated temperature exacerbates heat damages, but elevated CO2 has positive effects on promoting plant growth and heat tolerance. The objective of this study was to identify metabolic pathways affected by elevated CO2 conferring the improvement of heat tolerance in a C4 perennial grass species, bermudagrass (Cynodon dactylon Pers.. Plants were planted under either ambient CO2 concentration (400 μmol⋅mol-1 or elevated CO2 concentration (800 μmol⋅mol-1 and subjected to ambient temperature (30/25°C, day/night or heat stress (45/40°C, day/night. Elevated CO2 concentration suppressed heat-induced damages and improved heat tolerance in bermudagrass. The enhanced heat tolerance under elevated CO2 was attributed to some important metabolic pathways during which proteins and metabolites were up-regulated, including light reaction (ATP synthase subunit and photosystem I reaction center subunit and carbon fixation [(glyceraldehyde-3-phosphate dehydrogenase, GAPDH, fructose-bisphosphate aldolase, phosphoglycerate kinase, sedoheptulose-1,7-bisphosphatase and sugars of photosynthesis, glycolysis (GAPDH, glucose, fructose, and galactose and TCA cycle (pyruvic acid, malic acid and malate dehydrogenase of respiration, amino acid metabolism (aspartic acid, methionine, threonine, isoleucine, lysine, valine, alanine, and isoleucine as well as the GABA shunt (GABA, glutamic acid, alanine, proline and 5-oxoproline. The up-regulation of those metabolic processes by elevated CO2 could at least partially contribute to the improvement of heat tolerance in perennial grass species.

  8. Metabolic pathways of Pseudomonas aeruginosa involved in competition with respiratory bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Marie eBeaume

    2015-04-01

    Full Text Available Background: Chronic airway infection by Pseudomonas aeruginosa considerably contributes to lung tissue destruction and impairment of pulmonary function in cystic-fibrosis (CF patients. Complex interplays between P. aeruginosa and other co-colonizing pathogens including Staphylococcus aureus, Burkholderia spp and Klebsiella pneumoniae may be crucial for pathogenesis and disease progression.Methods: We generated a library of PA14 transposon insertion mutants to identify P. aeruginosa genes required for exploitative and direct competitions with S. aureus, B. cenocepacia, and K. pneumoniae. Results: Whereas wild type PA14 inhibited S. aureus growth, two transposon insertions located in pqsC and carB, resulted in reduced growth inhibition. PqsC is involved in the synthesis of 4-hydroxy-2-alkylquinolines (HAQs, a family of molecules having antibacterial properties, while carB is a key gene in pyrimidine biosynthesis. The carB mutant was also unable to grow in the presence of B. cepacia and K. pneumoniae but not E. coli and S. epidermidis. We further identified a transposon insertion in purF, encoding a key enzyme of purine metabolism. This mutant displayed a severe growth deficiency in the presence of Gram-negative but not of Gram-positive bacteria. We identified a beneficial interaction in a bioA transposon mutant, unable to grow on rich medium. This growth defect could be restored either by addition of biotin or by co-culturing the mutant in the presence of K. pneumoniae or E. coli.Conclusions: Complex interactions take place between the various bacterial species colonizing CF-lungs. This work identified both detrimental and beneficial interactions occurring between P. aeruginosa and three other respiratory pathogens involving several major metabolic pathways. Manipulating these pathways could be used to interfere with bacterial interactions and influence the colonization by respiratory pathogens.

  9. Integration of Metabolomics and Transcriptomics Reveals Major Metabolic Pathways and Potential Biomarker Involved in Prostate Cancer.

    Science.gov (United States)

    Ren, Shancheng; Shao, Yaping; Zhao, Xinjie; Hong, Christopher S; Wang, Fubo; Lu, Xin; Li, Jia; Ye, Guozhu; Yan, Min; Zhuang, Zhengping; Xu, Chuanliang; Xu, Guowang; Sun, Yinghao

    2016-01-01

    Prostate cancer is a highly prevalent tumor affecting millions of men worldwide, but poor understanding of its pathogenesis has limited effective clinical management of patients. In addition to transcriptional profiling or transcriptomics, metabolomics is being increasingly utilized to discover key molecular changes underlying tumorigenesis. In this study, we integrated transcriptomics and metabolomics to analyze 25 paired human prostate cancer tissues and adjacent noncancerous tissues, followed by further validation of our findings in an additional cohort of 51 prostate cancer patients and 16 benign prostatic hyperplasia patients. We found several altered pathways aberrantly expressed at both metabolic and transcriptional levels, including cysteine and methionine metabolism, nicotinamide adenine dinucleotide metabolism, and hexosamine biosynthesis. Additionally, the metabolite sphingosine demonstrated high specificity and sensitivity for distinguishing prostate cancer from benign prostatic hyperplasia, particularly for patients with low prostate specific antigen level (0-10 ng/ml). We also found impaired sphingosine-1-phosphate receptor 2 signaling, downstream of sphingosine, representing a loss of tumor suppressor gene and a potential key oncogenic pathway for therapeutic targeting. By integrating metabolomics and transcriptomics, we have provided both a broad picture of the molecular perturbations underlying prostate cancer and a preliminary study of a novel metabolic signature, which may help to discriminate prostate cancer from normal tissue and benign prostatic hyperplasia. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Identification of Proteins Involved in Carbohydrate Metabolism and Energy Metabolism Pathways and Their Regulation of Cytoplasmic Male Sterility in Wheat

    Directory of Open Access Journals (Sweden)

    Xingxia Geng

    2018-01-01

    Full Text Available Cytoplasmic male sterility (CMS where no functional pollen is produced has important roles in wheat breeding. The anther is a unique organ for male gametogenesis and its abnormal development can cause male sterility. However, the mechanisms and regulatory networks related to plant male sterility are poorly understood. In this study, we conducted comparative analyses using isobaric tags for relative and absolute quantification (iTRAQ of the pollen proteins in a CMS line and its wheat maintainer. Differentially abundant proteins (DAPs were analyzed based on Gene Ontology classifications, metabolic pathways and transcriptional regulation networks using Blast2GO. We identified 5570 proteins based on 23,277 peptides, which matched with 73,688 spectra, including proteins in key pathways such as glyceraldehyde-3-phosphate dehydrogenase, pyruvate kinase and 6-phosphofructokinase 1 in the glycolysis pathway, isocitrate dehydrogenase and citrate synthase in the tricarboxylic acid cycle and nicotinamide adenine dinucleotide (NADH-dehydrogenase and adenosine-triphosphate (ATP synthases in the oxidative phosphorylation pathway. These proteins may comprise a network that regulates male sterility in wheat. Quantitative real time polymerase chain reaction (qRT-PCR analysis, ATP assays and total sugar assays validated the iTRAQ results. These DAPs could be associated with abnormal pollen grain formation and male sterility. Our findings provide insights into the molecular mechanism related to male sterility in wheat.

  11. SNHG16 is regulated by the Wnt pathway in colorectal cancer and affects genes involved in lipid metabolism

    DEFF Research Database (Denmark)

    Christensen, Lise-Lotte; True, Kirsten; Hamilton, Mark P.

    2016-01-01

    gene 16 (SNHG16) is significantly up-regulated in adenomas and all stages of CRC. SNHG16 expression was positively correlated to the expression of Wnt-regulated transcription factors, including ASCL2, ETS2, and c-Myc. In vitro abrogation of Wnt signaling in CRC cells reduced the expression of SNHG16...... indicating that SNHG16 is regulated by the Wnt pathway. Silencing of SNHG16 resulted in reduced viability, increased apoptotic cell death and impaired cell migration. The SNHG16 silencing particularly affected expression of genes involved in lipid metabolism. A connection between SNHG16 and genes involved......, likely caused by deregulated Wnt signaling. In vitro analyses demonstrate that SNHG16 may play an oncogenic role in CRC and that it affects genes involved in lipid metabolism, possible through ceRNA related mechanisms....

  12. SNHG16 is regulated by the Wnt pathway in colorectal cancer and affects genes involved in lipid metabolism.

    Science.gov (United States)

    Christensen, Lise Lotte; True, Kirsten; Hamilton, Mark P; Nielsen, Morten M; Damas, Nkerorema D; Damgaard, Christian K; Ongen, Halit; Dermitzakis, Emmanouil; Bramsen, Jesper B; Pedersen, Jakob S; Lund, Anders H; Vang, Søren; Stribolt, Katrine; Madsen, Mogens R; Laurberg, Søren; McGuire, Sean E; Ørntoft, Torben F; Andersen, Claus L

    2016-10-01

    It is well established that lncRNAs are aberrantly expressed in cancer where they have been shown to act as oncogenes or tumor suppressors. RNA profiling of 314 colorectal adenomas/adenocarcinomas and 292 adjacent normal colon mucosa samples using RNA-sequencing demonstrated that the snoRNA host gene 16 (SNHG16) is significantly up-regulated in adenomas and all stages of CRC. SNHG16 expression was positively correlated to the expression of Wnt-regulated transcription factors, including ASCL2, ETS2, and c-Myc. In vitro abrogation of Wnt signaling in CRC cells reduced the expression of SNHG16 indicating that SNHG16 is regulated by the Wnt pathway. Silencing of SNHG16 resulted in reduced viability, increased apoptotic cell death and impaired cell migration. The SNHG16 silencing particularly affected expression of genes involved in lipid metabolism. A connection between SNHG16 and genes involved in lipid metabolism was also observed in clinical tumors. Argonaute CrossLinking and ImmunoPrecipitation (AGO-CLIP) demonstrated that SNHG16 heavily binds AGO and has 27 AGO/miRNA target sites along its length, indicating that SNHG16 may act as a competing endogenous RNA (ceRNA) "sponging" miRNAs off their cognate targets. Most interestingly, half of the miRNA families with high confidence targets on SNHG16 also target the 3'UTR of Stearoyl-CoA Desaturase (SCD). SCD is involved in lipid metabolism and is down-regulated upon SNHG16 silencing. In conclusion, up-regulation of SNHG16 is a frequent event in CRC, likely caused by deregulated Wnt signaling. In vitro analyses demonstrate that SNHG16 may play an oncogenic role in CRC and that it affects genes involved in lipid metabolism, possible through ceRNA related mechanisms. Copyright © 2016 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  13. Improvement of bacterial cellulose production by manipulating the metabolic pathways in which ethanol and sodium citrate involved.

    Science.gov (United States)

    Li, Yuanjing; Tian, Chunjie; Tian, Hua; Zhang, Jiliang; He, Xin; Ping, Wenxiang; Lei, Hong

    2012-12-01

    Nowadays, bacterial cellulose has played more and more important role as new biological material for food industry and medical and industrial products based on its unique properties. However, it is still a difficult task to improve the production of bacterial cellulose, especially a large number of byproducts are produced in the metabolic biosynthesis processes. To improve bacterial cellulose production, ethanol and sodium citrate are added into the medium during the fermentation, and the activities of key enzymes and concentration of extracellular metabolites are measured to assess the changes of the metabolic flux of the hexose monophosphate pathway (HMP), the Embden-Meyerhof-Parnas pathway (EMP), and the tricarboxylic acid cycle (TCA). Our results indicate that ethanol functions as energy source for ATP generation at the early stage of the fermentation in the HMP pathway and the supplementation of ethanol significantly reduces glycerol generation (a major byproduct). While in the EMP pathway, sodium citrate plays a key role, and its supplementation results in the byproducts (mainly acetic acid and pyruvic acid) entering the gluconeogenesis pathway for cellulose synthesis. Furthermore, by adding ethanol and sodium citrate, the main byproduct citric acid in the TCA cycle is also reduced significantly. It is concluded that bacterial cellulose production can be improved by increasing energy metabolism and reducing the formation of metabolic byproducts through the metabolic regulations of the bypasses.

  14. Transcriptome characterization of Gnetum parvifolium reveals candidate genes involved in important secondary metabolic pathways of flavonoids and stilbenoids

    Czech Academy of Sciences Publication Activity Database

    Deng, N.; Chang, E.; Li, M.; Ji, J.; Yao, X.; Bartish, Igor V.; Liu, J.; Ma, J.; Chen, L.; Jiang, Z.; Shi, S.

    2016-01-01

    Roč. 7, MAR 4 (2016), č. článku 174. ISSN 1664-462X Grant - others:AV ČR(CZ) Fellowship J. E. Purkyně Institutional support: RVO:67985939 Keywords : transcriptome sequencing * metabolism pathways * adaptation to stress Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.298, year: 2016

  15. Synthetic Metabolic Pathways

    DEFF Research Database (Denmark)

    topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Synthetic Metabolic Pathways: Methods and Protocols aims to ensure successful results in the further study...

  16. Novel metabolic pathways in Archaea.

    Science.gov (United States)

    Sato, Takaaki; Atomi, Haruyuki

    2011-06-01

    The Archaea harbor many metabolic pathways that differ to previously recognized classical pathways. Glycolysis is carried out by modified versions of the Embden-Meyerhof and Entner-Doudoroff pathways. Thermophilic archaea have recently been found to harbor a bi-functional fructose-1,6-bisphosphate aldolase/phosphatase for gluconeogenesis. A number of novel pentose-degrading pathways have also been recently identified. In terms of anabolic metabolism, a pathway for acetate assimilation, the methylaspartate cycle, and two CO2-fixing pathways, the 3-hydroxypropionate/4-hydroxybutyrate cycle and the dicarboxylate/4-hydroxybutyrate cycle, have been elucidated. As for biosynthetic pathways, recent studies have clarified the enzymes responsible for several steps involved in the biosynthesis of inositol phospholipids, polyamine, coenzyme A, flavin adeninedinucleotide and heme. By examining the presence/absence of homologs of these enzymes on genome sequences, we have found that the majority of these enzymes and pathways are specific to the Archaea. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Transcriptome survey of the lipid metabolic pathways involved in energy production and ecdysteroid synthesis in the salmon louse Caligus rogercresseyi (Crustacea: Copepoda).

    Science.gov (United States)

    Gonçalves, Ana Teresa; Farlora, Rodolfo; Gallardo-Escárate, Cristian

    2014-10-01

    The goal of this study was to identify and analyze the lipid metabolic pathways involved in energy production and ecdysteroid synthesis in the ectoparasite copepod Caligus rogercresseyi. Massive transcriptome sequencing analysis was performed during the infectious copepodid larval stage, during the attached chalimus larval stage, and also in female and male adults. Thirty genes were selected for describing the pathways, and these were annotated for proteins or enzymes involved in lipid digestion, absorption, and transport; fatty acid degradation; the synthesis and degradation of ketone bodies; and steroid and ecdysteroid syntheses. Differential expression of these genes was analyzed by ontogenic stage and discussed considering each stage's feeding habits and energetic needs. Copepodids showed a low expression of fatty acid digestion genes, reflected by a non-feeding behavior, and the upregulation of genes involved in steroid biosynthesis, which was consistent with a pathway for cholesterol synthesis during ecdysis. The chalimus stage showed an upregulation of genes related to fatty acid digestion, absorption, and transport, as well as to fatty acid degradation and the synthesis of ketone bodies, therefore suggesting that lipids ingested from the mucus and skin of the host fish are metabolized as important sources of energy. Adult females also showed a pattern of high lipid metabolism for energy supply and mobilization in relation to reproduction and vitellogenesis. Adult females and males revealed different lipid metabolism patterns that reflected different energetic needs. This study reports for the first time the probable lipid metabolic pathways involved in the energy production and ecdysteroid synthesis of C. rogercresseyi. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Essentiality of tetramer formation of Cellulomonas parahominis L-ribose isomerase involved in novel L-ribose metabolic pathway.

    Science.gov (United States)

    Terami, Yuji; Yoshida, Hiromi; Uechi, Keiko; Morimoto, Kenji; Takata, Goro; Kamitori, Shigehiro

    2015-08-01

    L-Ribose isomerase from Cellulomonas parahominis MB426 (CpL-RI) can catalyze the isomerization between L-ribose and L-ribulose, which are non-abundant in nature and called rare sugars. CpL-RI has a broad substrate specificity and can catalyze the isomerization between D-lyxose and D-xylulose, D-talose and D-tagatose, L-allose and L-psicose, L-gulose and L-sorbose, and D-mannose and D-fructose. To elucidate the molecular basis underlying the substrate recognition mechanism of CpL-RI, the crystal structures of CpL-RI alone and in complexes with L-ribose, L-allose, and L-psicose were determined. The structure of CpL-RI was very similar to that of L-ribose isomerase from Acinetobacter sp. strain DL-28, previously determined by us. CpL-RI had a cupin-type β-barrel structure, and the catalytic site was detected between two large β-sheets with a bound metal ion. The bound substrates coordinated to the metal ion, and Glu113 and Glu204 were shown to act as acid/base catalysts in the catalytic reaction via a cis-enediol intermediate. Glu211 and Arg243 were found to be responsible for the recognition of substrates with various configurations at 4- and 5-positions of sugar. CpL-RI formed a homo-tetramer in crystals, and the catalytic site independently consisted of residues within a subunit, suggesting that the catalytic site acted independently. Crystal structure and site-direct mutagenesis analyses showed that the tetramer structure is essential for the enzyme activity and that each subunit of CpL-RI could be structurally stabilized by intermolecular contacts with other subunits. The results of growth complementation assays suggest that CpL-RI is involved in a novel metabolic pathway using L-ribose as a carbon source.

  19. Copper metabolism domain-containing 1 represses the mediators involved in the terminal effector pathways of human labour and delivery.

    Science.gov (United States)

    Lappas, Martha

    2016-04-01

    Does Copper Metabolism MURR1 Domain 1 (COMMD1) play a role in regulating the mediators involved in the terminal processes of human labour and delivery? COMMD1 plays a critical role in the termination of nuclear factor-κB (NF-κB) activity and the control of pro-inflammatory and pro-labour mediators. Inflammation and infection are the biggest aetiological factors associated with preterm birth. NF-κB drives the transcription of pro-inflammatory mediators involved in the terminal effector pathways of human labour and delivery. In non-gestational tissues, COMMD1 is a negative regulator of NF-κB-induced inflammation. The mRNA and/or protein level of COMMD1 was assessed in myometrium (n = 8 per group) and fetal membranes (n = 8 per group) obtained from term non-labouring and labouring women at term, and fetal membranes (n = 8 per group) at preterm with and without histological chorioamnionitis. Primary human myometrial cells were used to determine the effect of pro-inflammatory mediators on COMMD1 level, and the effect of COMMD1 small interfering RNA (siRNA) on pro-labour mediators. Statistical significance was ascribed to a P labour in myometrium; in fetal membranes with histologically confirmed chorioamnionitis and in myometrial cells treated with pro-inflammatory cytokines interleukin (IL)-1β and tumour necrosis factor (TNF)-α, the bacterial product fibroblast-stimulating lipopeptide and the viral double stranded RNA analogue polyinosinic polycytidilic acid. Loss-of-function studies revealed an increase in inflammation- and infection-induced TNF-α, IL-1α, IL-1β, IL-6, IL-8 and/or monocyte chemoattractant protein-1 mRNA abundance and/or release; and cyclo-oxygenase-2 mRNA level, release of prostaglandin (PG) F2α and mRNA level of the PGF2α receptor FP. In addition, siRNA knockdown of COMMD1 was associated with significantly increased NF-κB activation as evidenced by increased IL-1β-induced IκB-α protein degradation and NF-κB DNA binding activity. The

  20. The metabolism of histamine in the Drosophila optic lobe involves an ommatidial pathway: β-alanine recycles through the retina

    Science.gov (United States)

    Borycz, Janusz; Borycz, Jolanta A.; Edwards, Tara N.; Boulianne, Gabrielle L.; Meinertzhagen, Ian A.

    2012-01-01

    SUMMARY Flies recycle the photoreceptor neurotransmitter histamine by conjugating it to β-alanine to form β-alanyl-histamine (carcinine). The conjugation is regulated by Ebony, while Tan hydrolyses carcinine, releasing histamine and β-alanine. In Drosophila, β-alanine synthesis occurs either from uracil or from the decarboxylation of aspartate but detailed roles for the enzymes responsible remain unclear. Immunohistochemically detected β-alanine is present throughout the fly’s entire brain, and is enhanced in the retina especially in the pseudocone, pigment and photoreceptor cells of the ommatidia. HPLC determinations reveal 10.7 ng of β-alanine in the wild-type head, roughly five times more than histamine. When wild-type flies drink uracil their head β-alanine increases more than after drinking l-aspartic acid, indicating the effectiveness of the uracil pathway. Mutants of black, which lack aspartate decarboxylase, cannot synthesize β-alanine from l-aspartate but can still synthesize it efficiently from uracil. Our findings demonstrate a novel function for pigment cells, which not only screen ommatidia from stray light but also store and transport β-alanine and carcinine. This role is consistent with a β-alanine-dependent histamine recycling pathway occurring not only in the photoreceptor terminals in the lamina neuropile, where carcinine occurs in marginal glia, but vertically via a long pathway that involves the retina. The lamina’s marginal glia are also a hub involved in the storage and/or disposal of carcinine and β-alanine. PMID:22442379

  1. Methionine metabolism: major pathways and enzymes involved and strategies for control and diversification of volatile sulfur compounds in cheese.

    Science.gov (United States)

    Martínez-Cuesta, María Del Carmen; Peláez, Carmen; Requena, Teresa

    2013-01-01

    For economical reasons and to accommodate current market trends, cheese manufacturers and product developers are increasingly interested in controlling cheese flavor formation and developing new flavors. Due to their low detection threshold and diversity, volatile sulfur compounds (VSCs) are of prime importance in the overall flavor of cheese and make a significant contribution to their typical flavors. Thus, the control of VSCs formation offers considerable potential for industrial applications. This paper gives an overview of the main VSCs found in cheese, along with the major pathways and key enzymes leading to the formation of methanethiol from methionine, which is subsequently converted into other sulfur-bearing compounds. As these compounds arise primarily from methionine, the metabolism of this amino acid and its regulation is presented. Attention is focused in the enzymatic potential of lactic acid bacteria (LAB) that are widely used as starter and adjunct cultures in cheese-making. In view of industrial applications, different strategies such as the enhancement of the abilities of LAB to produce high amounts and diversity of VSCs are highlighted as the principal future research trend.

  2. A free radical-generating system regulates AβPP metabolism/processing: involvement of the ubiquitin/proteasome and autophagy/lysosome pathways.

    Science.gov (United States)

    Recuero, María; Munive, Victor A; Sastre, Isabel; Aldudo, Jesús; Valdivieso, Fernando; Bullido, María J

    2013-01-01

    Oxidative stress is an early event in the pathogenesis of Alzheimer's disease (AD). We previously reported that, in SK-N-MC cells, the xanthine/xanthine oxidase (X-XOD) free radical generating system regulates the metabolism/processing of the amyloid-β protein precursor (AβPP). Oxidative stress alters the two main cellular proteolytic machineries, the ubiquitin/proteasome (UPS) and the autophagy/lysosome systems, and recent studies have established connections between the malfunctioning of these and the pathogenesis of AD. The aim of the present work was to examine the involvement of these proteolytic systems in the regulation of AβPP metabolism by X-XOD. The proteasome inhibitor MG132 was found to accelerate the metabolism/processing of AβPP promoted by X-XOD because it significantly enhances the secretion of α-secretase-cleaved soluble AβPP and also the levels of both carboxy-terminal fragments (CTFs) produced by α- and β-secretase. Further, MG132 modulated the intracellular accumulation of holo-AβPP and/or AβPP CTFs. This indicates that the X-XOD modulation of AβPP metabolism/processing involves the UPS pathway. With respect to the autophagy/lysosome pathway, the AβPP processing and intracellular location patterns induced by X-XOD treatment closely resembled those produced by the lysosome inhibitor ammonium chloride. The present results suggest that the regulation of AβPP metabolism/processing by mild oxidative stress requires UPS activity with a simultaneous reduction in that of the autophagy/lysosome system.

  3. Primary Metabolic Pathways and Metabolic Flux Analysis

    DEFF Research Database (Denmark)

    Villadsen, John

    2015-01-01

    his chapter introduces the metabolic flux analysis (MFA) or stoichiometry-based MFA, and describes the quantitative basis for MFA. It discusses the catabolic pathways in which free energy is produced to drive the cell-building anabolic pathways. An overview of these primary pathways provides...... the reader who is primarily trained in the engineering sciences with atleast a preliminary introduction to biochemistry and also shows how carbon is drained off the catabolic pathways to provide precursors for cell mass building and sometimes for important industrial products. The primary pathways...... to be examined in the following are: glycolysis, primarily by the EMP pathway, but other glycolytic pathways is also mentioned; fermentative pathways in which the redox generated in the glycolytic reactions are consumed; reactions in the tricarboxylic acid (TCA) cycle, which produce biomass precursors and redox...

  4. Transcriptome analysis of Polygonum minus reveals candidate genes involved in important secondary metabolic pathways of phenylpropanoids and flavonoids

    Directory of Open Access Journals (Sweden)

    Kok-Keong Loke

    2017-02-01

    Full Text Available Background Polygonum minus is an herbal plant in the Polygonaceae family which is rich in ethnomedicinal plants. The chemical composition and characteristic pungent fragrance of Polygonum minus have been extensively studied due to its culinary and medicinal properties. There are only a few transcriptome sequences available for species from this important family of medicinal plants. The limited genetic information from the public expressed sequences tag (EST library hinders further study on molecular mechanisms underlying secondary metabolite production. Methods In this study, we performed a hybrid assembly of 454 and Illumina sequencing reads from Polygonum minus root and leaf tissues, respectively, to generate a combined transcriptome library as a reference. Results A total of 34.37 million filtered and normalized reads were assembled into 188,735 transcripts with a total length of 136.67 Mbp. We performed a similarity search against all the publicly available genome sequences and found similarity matches for 163,200 (86.5% of Polygonum minus transcripts, largely from Arabidopsis thaliana (58.9%. Transcript abundance in the leaf and root tissues were estimated and validated through RT-qPCR of seven selected transcripts involved in the biosynthesis of phenylpropanoids and flavonoids. All the transcripts were annotated against KEGG pathways to profile transcripts related to the biosynthesis of secondary metabolites. Discussion This comprehensive transcriptome profile will serve as a useful sequence resource for molecular genetics and evolutionary research on secondary metabolite biosynthesis in Polygonaceae family. Transcriptome assembly of Polygonum minus can be accessed at http://prims.researchfrontier.org/index.php/dataset/transcriptome.

  5. Comparative transcriptome analysis of isonuclear-alloplasmic lines unmask key transcription factor genes and metabolic pathways involved in sterility of maize CMS-C

    Directory of Open Access Journals (Sweden)

    Chuan Li

    2017-05-01

    Full Text Available Although C-type cytoplasmic male sterility (CMS-C is one of the most attractive tools for maize hybrid seed production, the detailed regulation network of the male sterility remains unclear. In order to identify the CMS-C sterility associated genes and/or pathways, the comparison of the transcriptomes between the CMS-C line C48-2 and its isonuclear-alloplasmic maintainer line N48-2 at pollen mother cell stage (PS, an early development stage of microspore, and mononuclear stage (MS, an abortive stage of microspore, were analyzed. 2,069 differentially expressed genes (DEGs between the two stages were detected and thought to be essential for the spikelet development of N48-2. 453 of the 2,069 DEGs were differentially expressed at MS stage between the two lines and thought to be participated in the process or the causes of microspore abortion. Among the 453 DEGs, 385 (84.99% genes were down-regulated and only 68 (15.01% genes were up-regulated in C48-2 at MS stage. The dramatic decreased expression of the four DEGs encoding MYB transcription factors and the DEGs involved in “polyamine metabolic process”, “Cutin, suberine and wax biosynthesis”, “Fatty acid elongation”, “Biosynthesis of unsaturated fatty acids” and “Proline metabolism” might play an important role in the sterility of C48-2. This study will point out some directions for detailed molecular analysis and better understanding of sterility of CMS-C in maize.

  6. Proteomic survey of metabolic pathways in rice.

    Science.gov (United States)

    Koller, Antonius; Washburn, Michael P; Lange, B Markus; Andon, Nancy L; Deciu, Cosmin; Haynes, Paul A; Hays, Lara; Schieltz, David; Ulaszek, Ryan; Wei, Jing; Wolters, Dirk; Yates, John R

    2002-09-03

    A systematic proteomic analysis of rice (Oryza sativa) leaf, root, and seed tissue using two independent technologies, two-dimensional gel electrophoresis followed by tandem mass spectrometry and multidimensional protein identification technology, allowed the detection and identification of 2,528 unique proteins, which represents the most comprehensive proteome exploration to date. A comparative display of the expression patterns indicated that enzymes involved in central metabolic pathways are present in all tissues, whereas metabolic specialization is reflected in the occurrence of a tissue-specific enzyme complement. For example, tissue-specific and subcellular compartment-specific isoforms of ADP-glucose pyrophosphorylase were detected, thus providing proteomic confirmation of the presence of distinct regulatory mechanisms involved in the biosynthesis and breakdown of separate starch pools in different tissues. In addition, several previously characterized allergenic proteins were identified in the seed sample, indicating the potential of proteomic approaches to survey food samples with regard to the occurrence of allergens.

  7. Pathways of Acetyl-CoA Metabolism Involved in the Reversal of Palmitate-Induced Glucose Production by Metformin and Salicylate.

    Science.gov (United States)

    Hayward, B; Molero, J C; Windmill, K; Sanigorski, A; Weir, J; McRae, N L; Aston-Mourney, K; Osborne, B; Liao, B; Walder, K R; Meikle, P J; Konstantopoulos, N; Schmitz-Peiffer, C

    2016-09-29

    The pathways through which fatty acids induce insulin resistance have been the subject of much research. We hypothesise that by focussing on the reversal of insulin resistance, novel insights can be made regarding the mechanisms by which insulin resistance can be overcome. Using global gene and lipid expression profiling, we aimed to identify biological pathways altered during the prevention of palmitate-induced glucose production in hepatocytes using metformin and sodium salicylate. FAO hepatoma cells were treated with palmitate (0.075 mM, 48 h) with or without metformin (0.25 mM) and sodium salicylate (2 mM) in the final 24 h of palmitate treatment, and effects on glucose production were determined. RNA microarray measurements followed by gene set enrichment analysis were performed to investigate pathway regulation. Lipidomic analysis and measurement of secreted bile acids and cholesterol were also performed. Reversal of palmitate-induced glucose production by metformin and sodium salicylate was characterised by co-ordinated down-regulated expression of pathways regulating acetyl-CoA to cholesterol and bile acid biosynthesis. All 20 enzymes that regulate the conversion of acetyl-CoA to cholesterol were reduced following metformin and sodium salicylate. Selected findings were confirmed using primary mouse hepatocytes. Although total intracellular levels of diacylglycerol, triacylglycerol and cholesterol esters increased with palmitate, these were not, however, further altered by metformin and sodium salicylate. 6 individual diacylglycerol, triacylglycerol and cholesterol ester species containing 18:0 and 18:1 side-chains were reduced by metformin and sodium salicylate. These results implicate acetyl-CoA metabolism and C18 lipid species as modulators of hepatic glucose production that could be targeted to improve glucose homeostasis. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Finding metabolic pathways using atom tracking

    Science.gov (United States)

    Heath, Allison P.; Bennett, George N.; Kavraki, Lydia E.

    2010-01-01

    Motivation: Finding novel or non-standard metabolic pathways, possibly spanning multiple species, has important applications in fields such as metabolic engineering, metabolic network analysis and metabolic network reconstruction. Traditionally, this has been a manual process, but the large volume of metabolic data now available has created a need for computational tools to automatically identify biologically relevant pathways. Results: We present new algorithms for finding metabolic pathways, given a desired start and target compound, that conserve a given number of atoms by tracking the movement of atoms through metabolic networks containing thousands of compounds and reactions. First, we describe an algorithm that identifies linear pathways. We then present a new algorithm for finding branched metabolic pathways. Comparisons to known metabolic pathways demonstrate that atom tracking enables our algorithms to avoid many unrealistic connections, often found in previous approaches, and return biologically meaningful pathways. Our results also demonstrate the potential of the algorithms to find novel or non-standard pathways that may span multiple organisms. Availability: The software is freely available for academic use at: http://www.kavrakilab.org/atommetanet Contact: kavraki@rice.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:20421197

  9. Metabolic Characterization of the Anthocyanidin Reductase Pathway Involved in the Biosynthesis of Flavan-3-ols in Elite Shuchazao Tea (Camellia sinensis Cultivar in the Field

    Directory of Open Access Journals (Sweden)

    Lei Zhao

    2017-12-01

    Full Text Available Anthocyanidin reductase (ANR is a key enzyme in the ANR biosynthetic pathway of flavan-3-ols and proanthocyanidins (PAs in plants. Herein, we report characterization of the ANR pathway of flavan-3-ols in Shuchazao tea (Camellia sinesis, which is an elite and widely grown cultivar in China and is rich in flavan-3-ols providing with high nutritional value to human health. In our study, metabolic profiling was preformed to identify two conjugates and four aglycones of flavan-3-ols: (−-epigallocatechin-gallate [(−-EGCG], (−-epicatechin-gallate [(−-ECG], (−-epigallocatechin [(−-EGC], (−-epicatechin [(−-EC], (+-catechin [(+-Ca], and (+-gallocatechin [(+-GC], of which (−-EGCG, (−-ECG, (−-EGC, and (−-EC accounted for 70–85% of total flavan-3-ols in different tissues. Crude ANR enzyme was extracted from young leaves. Enzymatic assays showed that crude ANR extracts catalyzed cyanidin and delphinidin to (−-EC and (−-Ca and (−-EGC and (−-GC, respectively, in which (−-EC and (−-EGC were major products. Moreover, two ANR cDNAs were cloned from leaves, namely CssANRa and CssANRb. His-Tag fused recombinant CssANRa and CssANRb converted cyanidin and delphinidin to (−-EC and (−-Ca and (−-EGC and (−-GC, respectively. In addition, (+-EC was observed from the catalysis of recombinant CssANRa and CssANRb. Further overexpression of the two genes in tobacco led to the formation of PAs in flowers and the reduction of anthocyanins. Taken together, these data indicate that the majority of leaf flavan-3-ols in Shuchazao’s leaves were produced from the ANR pathway.

  10. Comparative transcriptomics reveals genes involved in metabolic and immune pathways in the digestive gland of scallop Chlamys farreri following cadmium exposure

    Science.gov (United States)

    Zhang, Hui; Zhai, Yuxiu; Yao, Lin; Jiang, Yanhua; Li, Fengling

    2017-05-01

    Chlamys farreri is an economically important mollusk that can accumulate excessive amounts of cadmium (Cd). Studying the molecular mechanism of Cd accumulation in bivalves is difficult because of the lack of genome background. Transcriptomic analysis based on high-throughput RNA sequencing has been shown to be an efficient and powerful method for the discovery of relevant genes in non-model and genome reference-free organisms. Here, we constructed two cDNA libraries (control and Cd exposure groups) from the digestive gland of C. farreri and compared the transcriptomic data between them. A total of 227 673 transcripts were assembled into 105 071 unigenes, most of which shared high similarity with sequences in the NCBI non-redundant protein database. For functional classification, 24 493 unigenes were assigned to Gene Ontology terms. Additionally, EuKaryotic Ortholog Groups and Kyoto Encyclopedia of Genes and Genomes analyses assigned 12 028 unigenes to 26 categories and 7 849 unigenes to five pathways, respectively. Comparative transcriptomics analysis identified 3 800 unigenes that were differentially expressed in the Cd-treated group compared with the control group. Among them, genes associated with heavy metal accumulation were screened, including metallothionein, divalent metal transporter, and metal tolerance protein. The functional genes and predicted pathways identified in our study will contribute to a better understanding of the metabolic and immune system in the digestive gland of C. farreri. In addition, the transcriptomic data will provide a comprehensive resource that may contribute to the understanding of molecular mechanisms that respond to marine pollutants in bivalves.

  11. Predicting novel metabolic pathways through subgraph mining.

    Science.gov (United States)

    Sankar, Aravind; Ranu, Sayan; Raman, Karthik

    2017-12-15

    The ability to predict pathways for biosynthesis of metabolites is very important in metabolic engineering. It is possible to mine the repertoire of biochemical transformations from reaction databases, and apply the knowledge to predict reactions to synthesize new molecules. However, this usually involves a careful understanding of the mechanism and the knowledge of the exact bonds being created and broken. There is a need for a method to rapidly predict reactions for synthesizing new molecules, which relies only on the structures of the molecules, without demanding additional information such as thermodynamics or hand-curated reactant mapping, which are often hard to obtain accurately. We here describe a robust method based on subgraph mining, to predict a series of biochemical transformations, which can convert between two (even previously unseen) molecules. We first describe a reliable method based on subgraph edit distance to map reactants and products, using only their chemical structures. Having mapped reactants and products, we identify the reaction centre and its neighbourhood, the reaction signature, and store this in a reaction rule network. This novel representation enables us to rapidly predict pathways, even between previously unseen molecules. We demonstrate this ability by predicting pathways to molecules not present in the KEGG database. We also propose a heuristic that predominantly recovers natural biosynthetic pathways from amongst hundreds of possible alternatives, through a directed search of the reaction rule network, enabling us to provide a reliable ranking of the different pathways. Our approach scales well, even to databases with >100 000 reactions. A Java-based implementation of our algorithms is available at https://github.com/RamanLab/ReactionMiner. sayanranu@cse.iitd.ac.in or kraman@iitm.ac.in. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For

  12. Principles for circadian orchestration of metabolic pathways

    Science.gov (United States)

    Thurley, Kevin; Herbst, Christopher; Wesener, Felix; Koller, Barbara; Wallach, Thomas; Maier, Bert; Kramer, Achim

    2017-01-01

    Circadian rhythms govern multiple aspects of animal metabolism. Transcriptome-, proteome- and metabolome-wide measurements have revealed widespread circadian rhythms in metabolism governed by a cellular genetic oscillator, the circadian core clock. However, it remains unclear if and under which conditions transcriptional rhythms cause rhythms in particular metabolites and metabolic fluxes. Here, we analyzed the circadian orchestration of metabolic pathways by direct measurement of enzyme activities, analysis of transcriptome data, and developing a theoretical method called circadian response analysis. Contrary to a common assumption, we found that pronounced rhythms in metabolic pathways are often favored by separation rather than alignment in the times of peak activity of key enzymes. This property holds true for a set of metabolic pathway motifs (e.g., linear chains and branching points) and also under the conditions of fast kinetics typical for metabolic reactions. By circadian response analysis of pathway motifs, we determined exact timing separation constraints on rhythmic enzyme activities that allow for substantial rhythms in pathway flux and metabolite concentrations. Direct measurements of circadian enzyme activities in mouse skeletal muscle confirmed that such timing separation occurs in vivo. PMID:28159888

  13. Endogenous factors regulating poor-nutrition stress-induced flowering in pharbitis: The involvement of metabolic pathways regulated by aminooxyacetic acid.

    Science.gov (United States)

    Koshio, Aya; Hasegawa, Tomomi; Okada, Rieko; Takeno, Kiyotoshi

    2015-01-15

    The short-day plant pharbitis (also called Japanese morning glory), Ipomoea nil (formerly Pharbitis nil), was induced to flower by poor-nutrition stress. This stress-induced flowering was inhibited by aminooxyacetic acid (AOA), which is a known inhibitor of phenylalanine ammonia-lyase (PAL) and the synthesis of indole-3-acetic acid (IAA) and 1-aminocycropropane-1-carboxylic acid (ACC) and thus regulates endogenous levels of salicylic acid (SA), IAA and polyamine (PA). Stress treatment increased PAL activity in cotyledons, and AOA suppressed this increase. The observed PAL activity and flowering response correlate positively, indicating that AOA functions as a PAL inhibitor. The inhibition of stress-induced flowering by AOA was also overcome by IAA. An antiauxin, 4-chlorophenoxy isobutyric acid, inhibited stress-induced flowering. Both SA and IAA promoted flowering induced by stress. PA also promoted flowering, and the effective PA was found to be putrescine (Put). These results suggest that all of the pathways leading to the synthesis of SA, IAA and Put are responsive to the flowering inhibition by AOA and that these endogenous factors may be involved in the regulation of stress-induced flowering. However, as none of them induced flowering under non-stress conditions, they may function cooperatively to promote flowering. Copyright © 2014 Elsevier GmbH. All rights reserved.

  14. Principles for circadian orchestration of metabolic pathways

    OpenAIRE

    Thurley, Kevin; Herbst, Christopher; Wesener, Felix; Koller, Barbara; Wallach, Thomas; Maier, Bert; Kramer, Achim; Westermark, Pål O

    2017-01-01

    Circadian (24-h) rhythms influence the behavior and physiology of many organisms. These rhythms are generated at the gene expression level, causing the waxing and waning of protein abundances. Metabolic enzymes are affected, but the principles for the propagation of enzyme rhythmicity to cellular metabolism as quantified by fluxes through metabolic pathways and metabolite concentrations are not understood. We used the mathematics of chemical kinetics to systematically investigate how rhythms ...

  15. Genetic variants involved in oxidative stress, base excision repair, DNA methylation, and folate metabolism pathways influence myeloid neoplasias susceptibility and prognosis.

    Science.gov (United States)

    Gonçalves, Ana Cristina; Alves, Raquel; Baldeiras, Inês; Cortesão, Emília; Carda, José Pedro; Branco, Claudia C; Oliveiros, Bárbara; Loureiro, Luísa; Pereira, Amélia; Nascimento Costa, José Manuel; Sarmento-Ribeiro, Ana Bela; Mota-Vieira, Luisa

    2017-01-01

    Myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) share common features: elevated oxidative stress, DNA repair deficiency, and aberrant DNA methylation. We performed a hospital-based case-control study to evaluate the association in variants of genes involved in oxidative stress, folate metabolism, DNA repair, and DNA methylation with susceptibility and prognosis of these malignancies. To that end, 16 SNPs (one per gene: CAT, CYBA, DNMT1, DNMT3A, DNMT3B, GPX1, KEAP1, MPO, MTRR, NEIL1, NFE2F2, OGG1, SLC19A1, SOD1, SOD2, and XRCC1) were genotyped in 191 patients (101 MDS and 90 AML) and 261 controls. We also measured oxidative stress (reactive oxygen species/total antioxidant status ratio), DNA damage (8-hydroxy-2'-deoxyguanosine), and DNA methylation (5-methylcytosine) in 50 subjects (40 MDS and 10 controls). Results showed that five genes (GPX1, NEIL1, NFE2L2, OGG1, and SOD2) were associated with MDS, two (DNMT3B and SLC19A1) with AML, and two (CYBA and DNMT1) with both diseases. We observed a correlation of CYBA TT, GPX1 TT, and SOD2 CC genotypes with increased oxidative stress levels, as well as NEIL1 TT and OGG1 GG genotypes with higher DNA damage. The 5-methylcytosine levels were negatively associated with DNMT1 CC, DNMT3A CC, and MTRR AA genotypes, and positively with DNMT3B CC genotype. Furthermore, DNMT3A, MTRR, NEIL1, and OGG1 variants modulated AML transformation in MDS patients. Additionally, DNMT3A, OGG1, GPX1, and KEAP1 variants influenced survival of MDS and AML patients. Altogether, data suggest that genetic variability influence predisposition and prognosis of MDS and AML patients, as well AML transformation rate in MDS patients. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Involvement of an ATP-dependent carboxylase in a CO2-dependent pathway of acetone metabolism by Xanthobacter strain Py2.

    OpenAIRE

    Sluis, M K; Small, F J; Allen, J R; Ensign, S A

    1996-01-01

    The metabolism of acetone by the aerobic bacterium Xanthobacter strain Py2 was investigated. Cell suspensions of Xanthobacter strain Py2 grown with propylene or glucose as carbon sources were unable to metabolize acetone. The addition of acetone to cultures grown with propylene or glucose resulted in a time-dependent increase in acetone-degrading activity. The degradation of acetone by these cultures was prevented by the addition of rifampin and chloramphenicol, demonstrating that new protein...

  17. Exploring genes and pathways involved in migraine

    NARCIS (Netherlands)

    Eising, E.

    2017-01-01

    The research in this thesis was aimed at identifying genes and molecular pathways involved in migraine. To this end, two gene expression analyses were performed in brain tissue obtained from transgenic mouse models for familial hemiplegic migraine (FHM), a monogenic subtype of migraine with aura.

  18. Machine learning methods for metabolic pathway prediction

    Directory of Open Access Journals (Sweden)

    Karp Peter D

    2010-01-01

    Full Text Available Abstract Background A key challenge in systems biology is the reconstruction of an organism's metabolic network from its genome sequence. One strategy for addressing this problem is to predict which metabolic pathways, from a reference database of known pathways, are present in the organism, based on the annotated genome of the organism. Results To quantitatively validate methods for pathway prediction, we developed a large "gold standard" dataset of 5,610 pathway instances known to be present or absent in curated metabolic pathway databases for six organisms. We defined a collection of 123 pathway features, whose information content we evaluated with respect to the gold standard. Feature data were used as input to an extensive collection of machine learning (ML methods, including naïve Bayes, decision trees, and logistic regression, together with feature selection and ensemble methods. We compared the ML methods to the previous PathoLogic algorithm for pathway prediction using the gold standard dataset. We found that ML-based prediction methods can match the performance of the PathoLogic algorithm. PathoLogic achieved an accuracy of 91% and an F-measure of 0.786. The ML-based prediction methods achieved accuracy as high as 91.2% and F-measure as high as 0.787. The ML-based methods output a probability for each predicted pathway, whereas PathoLogic does not, which provides more information to the user and facilitates filtering of predicted pathways. Conclusions ML methods for pathway prediction perform as well as existing methods, and have qualitative advantages in terms of extensibility, tunability, and explainability. More advanced prediction methods and/or more sophisticated input features may improve the performance of ML methods. However, pathway prediction performance appears to be limited largely by the ability to correctly match enzymes to the reactions they catalyze based on genome annotations.

  19. Machine learning methods for metabolic pathway prediction

    Science.gov (United States)

    2010-01-01

    Background A key challenge in systems biology is the reconstruction of an organism's metabolic network from its genome sequence. One strategy for addressing this problem is to predict which metabolic pathways, from a reference database of known pathways, are present in the organism, based on the annotated genome of the organism. Results To quantitatively validate methods for pathway prediction, we developed a large "gold standard" dataset of 5,610 pathway instances known to be present or absent in curated metabolic pathway databases for six organisms. We defined a collection of 123 pathway features, whose information content we evaluated with respect to the gold standard. Feature data were used as input to an extensive collection of machine learning (ML) methods, including naïve Bayes, decision trees, and logistic regression, together with feature selection and ensemble methods. We compared the ML methods to the previous PathoLogic algorithm for pathway prediction using the gold standard dataset. We found that ML-based prediction methods can match the performance of the PathoLogic algorithm. PathoLogic achieved an accuracy of 91% and an F-measure of 0.786. The ML-based prediction methods achieved accuracy as high as 91.2% and F-measure as high as 0.787. The ML-based methods output a probability for each predicted pathway, whereas PathoLogic does not, which provides more information to the user and facilitates filtering of predicted pathways. Conclusions ML methods for pathway prediction perform as well as existing methods, and have qualitative advantages in terms of extensibility, tunability, and explainability. More advanced prediction methods and/or more sophisticated input features may improve the performance of ML methods. However, pathway prediction performance appears to be limited largely by the ability to correctly match enzymes to the reactions they catalyze based on genome annotations. PMID:20064214

  20. Obesity-driven gut microbiota inflammatory pathways to metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Luiz Henrique Agra eCavalcante-Silva

    2015-11-01

    Full Text Available The intimate interplay between immune system, metabolism and gut microbiota plays an important role in controlling metabolic homeostasis and possible obesity development. Obesity involves impairment of immune response affecting both innate and adaptive immunity. The main factors involved in the relationship of obesity with inflammation have not been completely elucidated. On the other hand, gut microbiota, via innate immune receptors, has emerged as one of the key factors regulating events triggering acute inflammation associated with obesity and metabolic syndrome. Inflammatory disorders lead to several signalling transduction pathways activation, inflammatory cytokine, chemokine production and cell migration, which in turn cause metabolic dysfunction. Inflamed adipose tissue, with increased macrophages infiltration, is associated with impaired preadipocyte development and differentiation to mature adipose cells, leading to ectopic lipid accumulation and insulin resistance. This review focuses on the relationship between obesity and inflammation, which is essential to understand the pathological mechanisms governing metabolic syndrome.

  1. Meta-analysis derived atopic dermatitis (MADAD) transcriptome defines a robust AD signature highlighting the involvement of atherosclerosis and lipid metabolism pathways

    DEFF Research Database (Denmark)

    Ewald, David Adrian; Malajian, Dana; Krueger, James G.

    2015-01-01

    . This transcriptome enriches key AD pathways more than the individual studies, and associates AD with novel pathways, such as atherosclerosis signaling (IL-37, selectin E/SELE). We identified wide lipid abnormalities and, for the first time in vivo, correlated Th2 immune activation with downregulation of key......Atopic dermatitis (AD) is a common inflammatory skin disease with limited treatment options. Several microarray experiments have been conducted on lesional/LS and non-lesional/NL AD skin to develop a genomic disease phenotype. Although these experiments have shed light on disease pathology, inter-study...... comparisons reveal large differences in resulting sets of differentially expressed genes (DEGs), limiting the utility of direct comparisons across studies. We carried out a meta-analysis combining 4 published AD datasets to define a robust disease profile, termed meta-analysis derived AD (MADAD) transcriptome...

  2. Rule Mining Techniques to Predict Prokaryotic Metabolic Pathways

    KAUST Repository

    Saidi, Rabie

    2017-08-28

    It is becoming more evident that computational methods are needed for the identification and the mapping of pathways in new genomes. We introduce an automatic annotation system (ARBA4Path Association Rule-Based Annotator for Pathways) that utilizes rule mining techniques to predict metabolic pathways across wide range of prokaryotes. It was demonstrated that specific combinations of protein domains (recorded in our rules) strongly determine pathways in which proteins are involved and thus provide information that let us very accurately assign pathway membership (with precision of 0.999 and recall of 0.966) to proteins of a given prokaryotic taxon. Our system can be used to enhance the quality of automatically generated annotations as well as annotating proteins with unknown function. The prediction models are represented in the form of human-readable rules, and they can be used effectively to add absent pathway information to many proteins in UniProtKB/TrEMBL database.

  3. Pathway analysis and optimization in metabolic engineering

    National Research Council Canada - National Science Library

    Torres, Néstor V; Voit, Eberhard O

    2002-01-01

    ... Engineering introduces researchers and advanced students in biology and engineering to methods of optimizing biochemical systems of biotechnological relevance. It examines the development of strategies for manipulating metabolic pathways, demonstrates the need for effective systems models, and discusses their design and analysis, while placing special emp...

  4. Combinations of Polymorphisms in Genes Involved in the 5-Fluorouracil Metabolism Pathway Are Associated with Gastrointestinal Toxicity in Chemotherapy-Treated Colorectal Cancer Patients

    DEFF Research Database (Denmark)

    Afzal, Shoaib; Gusella, Milena; Vainer, Ben

    2011-01-01

    PURPOSE: The purpose of this study was to investigate whether specific combinations of polymorphisms in genes encoding proteins involved in 5-fluorouracil (5-FU) pharmacokinetics and pharmacodynamics are associated with increased risk of treatment-induced toxicity. EXPERIMENTAL DESIGN: We analyze...

  5. -Genomic data mining of the marine actinobacteriaStreptomycessp. H-KF8 unveils insights into multi-stress related genes and metabolic pathways involved in antimicrobial synthesis.

    Science.gov (United States)

    Undabarrena, Agustina; Ugalde, Juan A; Seeger, Michael; Cámara, Beatriz

    2017-01-01

    Streptomyces sp. H-KF8 is an actinobacterial strain isolated from marine sediments of a Chilean Patagonian fjord. Morphological characterization together with antibacterial activity was assessed in various culture media, revealing a carbon-source dependent activity mainly against Gram-positive bacteria ( S. aureus and L. monocytogenes ). Genome mining of this antibacterial-producing bacterium revealed the presence of 26 biosynthetic gene clusters (BGCs) for secondary metabolites, where among them, 81% have low similarities with known BGCs. In addition, a genomic search in Streptomyces  sp. H-KF8 unveiled the presence of a wide variety of genetic determinants related to heavy metal resistance (49 genes), oxidative stress (69 genes) and antibiotic resistance (97 genes). This study revealed that the marine-derived Streptomyces sp. H-KF8 bacterium has the capability to tolerate a diverse set of heavy metals such as copper, cobalt, mercury, chromate and nickel; as well as the highly toxic tellurite, a feature first time described for Streptomyces . In addition, Streptomyces sp. H-KF8 possesses a major resistance towards oxidative stress, in comparison to the soil reference strain Streptomyces violaceoruber A3(2). Moreover, Streptomyces sp. H-KF8 showed resistance to 88% of the antibiotics tested, indicating overall, a strong response to several abiotic stressors. The combination of these biological traits confirms the metabolic versatility of Streptomyces sp. H-KF8, a genetically well-prepared microorganism with the ability to confront the dynamics of the fjord-unique marine environment.

  6. Temporal pattern of loss/persistence of duplicate genes involved in signal transduction and metabolic pathways after teleost-specific genome duplication

    Directory of Open Access Journals (Sweden)

    Sato Yukuto

    2009-06-01

    Full Text Available Abstract Background Recent genomic studies have revealed a teleost-specific third-round whole genome duplication (3R-WGD event occurred in a common ancestor of teleost fishes. However, it is unclear how the genes duplicated in this event were lost or persisted during the diversification of teleosts, and therefore, how many of the duplicated genes contribute to the genetic differences among teleosts. This subject is also important for understanding the process of vertebrate evolution through WGD events. We applied a comparative evolutionary approach to this question by focusing on the genes involved in long-term potentiation, taste and olfactory transduction, and the tricarboxylic acid cycle, based on the whole genome sequences of four teleosts; zebrafish, medaka, stickleback, and green spotted puffer fish. Results We applied a state-of-the-art method of maximum-likelihood phylogenetic inference and conserved synteny analyses to each of 130 genes involved in the above biological systems of human. These analyses identified 116 orthologous gene groups between teleosts and tetrapods, and 45 pairs of 3R-WGD-derived duplicate genes among them. This suggests that more than half [(45×2/(116+45] = 56.5% of the loci, probably more than ten thousand genes, present in a common ancestor of the four teleosts were still duplicated after the 3R-WGD. The estimated temporal pattern of gene loss suggested that, after the 3R-WGD, many (71/116 of the duplicated genes were rapidly lost during the initial 75 million years (MY, whereas on average more than half (27.3/45 of the duplicated genes remaining in the ancestor of the four teleosts (45/116 have persisted for about 275 MY. The 3R-WGD-derived duplicates that have persisted for a long evolutionary periods of time had significantly larger number of interacting partners and longer length of protein coding sequence, implying that they tend to be more multifunctional than the singletons after the 3R-WGD. Conclusion

  7. Augmented reality approach for metabolic pathways teaching

    Directory of Open Access Journals (Sweden)

    Juan Carlos Vega Garzón

    2014-12-01

    Full Text Available A glycolysis paper puzzle has been used as strategy to teach metabolic pathways, but this kind of game demands a higher number of instructors and limits the follow up of the students’ difficulties. A technology called Augmented Reality (AR was applied to enable the puzzle usage in large audiences, and to provid feedback to students and instructors. Drafted as flashcards readable by an app installed in tablets, it conveys information as molecules 3D-structure, clues for correct assembling of the metabolic pathway and results of student progression in the activity. Such technological improvement brought more autonomy to students for solving proposed exercises and an embedded performance data collection system helpful to understand,and after to unravel students’ difficulties.

  8. Biochemical research elucidating metabolic pathways in Pneumocystis*

    Directory of Open Access Journals (Sweden)

    Kaneshiro E.S.

    2010-12-01

    Full Text Available Advances in sequencing the Pneumocystis carinii genome have helped identify potential metabolic pathways operative in the organism. Also, data from characterizing the biochemical and physiological nature of these organisms now allow elucidation of metabolic pathways as well as pose new challenges and questions that require additional experiments. These experiments are being performed despite the difficulty in doing experiments directly on this pathogen that has yet to be subcultured indefinitely and produce mass numbers of cells in vitro. This article reviews biochemical approaches that have provided insights into several Pneumocystis metabolic pathways. It focuses on 1 S-adenosyl-L-methionine (AdoMet; SAM, which is a ubiquitous participant in numerous cellular reactions; 2 sterols: focusing on oxidosqualene cyclase that forms lanosterol in P. carinii; SAM:sterol C-24 methyltransferase that adds methyl groups at the C-24 position of the sterol side chain; and sterol 14α-demethylase that removes a methyl group at the C-14 position of the sterol nucleus; and 3 synthesis of ubiquinone homologs, which play a pivotal role in mitochondrial inner membrane and other cellular membrane electron transport.

  9. Metabolic engineering of biosynthetic pathway for production of renewable biofuels.

    Science.gov (United States)

    Singh, Vijai; Mani, Indra; Chaudhary, Dharmendra Kumar; Dhar, Pawan Kumar

    2014-02-01

    Metabolic engineering is an important area of research that involves editing genetic networks to overproduce a certain substance by the cells. Using a combination of genetic, metabolic, and modeling methods, useful substances have been synthesized in the past at industrial scale and in a cost-effective manner. Currently, metabolic engineering is being used to produce sufficient, economical, and eco-friendly biofuels. In the recent past, a number of efforts have been made towards engineering biosynthetic pathways for large scale and efficient production of biofuels from biomass. Given the adoption of metabolic engineering approaches by the biofuel industry, this paper reviews various approaches towards the production and enhancement of renewable biofuels such as ethanol, butanol, isopropanol, hydrogen, and biodiesel. We have also identified specific areas where more work needs to be done in the future.

  10. Engineering the spatial organization of metabolic pathways

    DEFF Research Database (Denmark)

    Albertsen, Line; Maury, Jerome; Bach, Lars Stougaard

    One of the goals of metabolic engineering is to optimize the production of valuable metabolites in cell factories. In this context, modulating the gene expression and activity of enzymes are tools that have been extensively used. Another approach that is gaining interest is the engineering...... a heterologous pathway could be optimized by positioning two sequentially acting enzymes in close proximity. More specifically, we fused a sesquiterpene synthase of plant origin to a natural yeast enzyme and expressed it in the well-characterised cell factory Saccharomyces cerevisiae. Successfully......, the sesquiterpene production was increased two-fold when the enzymes were fused compared to when they were expressed from the same promoters as free enzymes. Moreover, the strategy could be used in combination with other traditional metabolic engineering strategies to increase the production of a desired product...

  11. Stress transgenerationally programs metabolic pathways linked to altered mental health.

    Science.gov (United States)

    Kiss, Douglas; Ambeskovic, Mirela; Montina, Tony; Metz, Gerlinde A S

    2016-12-01

    Stress is among the primary causes of mental health disorders, which are the most common reason for disability worldwide. The ubiquity of these disorders, and the costs associated with them, lends a sense of urgency to the efforts to improve prediction and prevention. Down-stream metabolic changes are highly feasible and accessible indicators of pathophysiological processes underlying mental health disorders. Here, we show that remote and cumulative ancestral stress programs central metabolic pathways linked to mental health disorders. The studies used a rat model consisting of a multigenerational stress lineage (the great-great-grandmother and each subsequent generation experienced stress during pregnancy) and a transgenerational stress lineage (only the great-great-grandmother was stressed during pregnancy). Urine samples were collected from adult male F4 offspring and analyzed using 1 H NMR spectroscopy. The results of variable importance analysis based on random variable combination were used for unsupervised multivariate principal component analysis and hierarchical clustering analysis, as well as metabolite set enrichment analysis (MSEA) and pathway analysis. We identified distinct metabolic profiles associated with the multigenerational and transgenerational stress phenotype, with consistent upregulation of hippurate and downregulation of tyrosine, threonine, and histamine. MSEA and pathway analysis showed that these metabolites are involved in catecholamine biosynthesis, immune responses, and microbial host interactions. The identification of metabolic signatures linked to ancestral programming assists in the discovery of gene targets for future studies of epigenetic regulation in pathogenic processes. Ultimately, this research can lead to biomarker discovery for better prediction and prevention of mental health disorders.

  12. Cancer cachexia: mediators, signaling, and metabolic pathways.

    Science.gov (United States)

    Fearon, Kenneth C H; Glass, David J; Guttridge, Denis C

    2012-08-08

    Cancer cachexia is characterized by a significant reduction in body weight resulting predominantly from loss of adipose tissue and skeletal muscle. Cachexia causes reduced cancer treatment tolerance and reduced quality and length of life, and remains an unmet medical need. Therapeutic progress has been impeded, in part, by the marked heterogeneity of mediators, signaling, and metabolic pathways both within and between model systems and the clinical syndrome. Recent progress in understanding conserved, molecular mechanisms of skeletal muscle atrophy/hypertrophy has provided a downstream platform for circumventing the variations and redundancy in upstream mediators and may ultimately translate into new targeted therapies. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Reconstruction of Sugar Metabolic Pathways of Giardia lamblia

    Directory of Open Access Journals (Sweden)

    Jian Han

    2012-01-01

    Full Text Available Giardia lamblia is an “important” pathogen of humans, but as a diplomonad excavate it is evolutionarily distant from other eukaryotes and relatively little is known about its core metabolic pathways. KEGG, the widely referenced site for providing information of metabolism, does not yet include many enzymes from Giardia species. Here we identify Giardia’s core sugar metabolism using standard bioinformatic approaches. By comparing Giardia proteomes with known enzymes from other species, we have identified enzymes in the glycolysis pathway, as well as some enzymes involved in the TCA cycle and oxidative phosphorylation. However, the majority of enzymes from the latter two pathways were not identifiable, indicating the likely absence of these functionalities. We have also found enzymes from the Giardia glycolysis pathway that appear more similar to those from bacteria. Because these enzymes are different from those found in mammals, the host organisms for Giardia, we raise the possibility that these bacteria-like enzymes could be novel drug targets for treating Giardia infections.

  14. Genes involved in brassinosteroids's metabolism and signal transduction pathways Genes envolvidos nas vias de biossíntese e de transdução de sinal de brassinoesteróides

    Directory of Open Access Journals (Sweden)

    Adaucto Bellarmino Pereira-Netto

    2007-07-01

    Full Text Available Brassinosteroids (BRs are plant steroids essential for the normal growth and development, which carry an oxygen moiety at C-3 and additional ones at one or more of the C-2, C-6, C-22 and C-23 carbon atoms. In the past few years, application of molecular genetics allowed significant progress on the understanding of the BRs biosynthetic pathway regulation and on the identification of several components of their signal transduction pathway, as well. Search in eletronic databases show dozens of records for brassinosteroid-related genes for the last twelve months, demonstrating the big efforts being carried out in this field. This review highlights the recent advances on the characterization of genes and mutations that are helping to unravel the molecular mechanisms involved in the BRs synthesis/metabolism, perception and response, with especial emphasis on their role in plant cell elongation. Aspects of the involvement of BRs on the regulation of cell cycle-controlling proteins are discussed as well.Brassinoesteróides são esteróides vegetais, essenciais para o crescimento e o desenvolvimento, que apresentam um oxigênio no carbono C-3 e oxigênios adicionais em um ou mais dos átomos de carbono C-2, C-6, C-22 e C-23. Nos últimos anos, a aplicação de técnicas de genética molecular possibilitou progresso significativo no entendimento da regulação da via biossintética e na identificação de vários componentes da via de transdução de sinal de brassinoesteróides. Buscas em bases de dados eletrônicas mostram dúzias de registros para genes relacionados a brassinoesteróides nos últimos doze meses, demonstrando os grandes esforços desenvolvidos neste campo. Esta revisão destaca os recentes avanços na caracterização de genes e mutações que estão auxiliando na elucidação dos mecanismos moleculares envolvidos na síntese/metabolismo, e percepção e resposta de brassinoesteróides, com ênfase especial no seu papel no alongamento

  15. Metabolic methanol: molecular pathways and physiological roles.

    Science.gov (United States)

    Dorokhov, Yuri L; Shindyapina, Anastasia V; Sheshukova, Ekaterina V; Komarova, Tatiana V

    2015-04-01

    Methanol has been historically considered an exogenous product that leads only to pathological changes in the human body when consumed. However, in normal, healthy individuals, methanol and its short-lived oxidized product, formaldehyde, are naturally occurring compounds whose functions and origins have received limited attention. There are several sources of human physiological methanol. Fruits, vegetables, and alcoholic beverages are likely the main sources of exogenous methanol in the healthy human body. Metabolic methanol may occur as a result of fermentation by gut bacteria and metabolic processes involving S-adenosyl methionine. Regardless of its source, low levels of methanol in the body are maintained by physiological and metabolic clearance mechanisms. Although human blood contains small amounts of methanol and formaldehyde, the content of these molecules increases sharply after receiving even methanol-free ethanol, indicating an endogenous source of the metabolic methanol present at low levels in the blood regulated by a cluster of genes. Recent studies of the pathogenesis of neurological disorders indicate metabolic formaldehyde as a putative causative agent. The detection of increased formaldehyde content in the blood of both neurological patients and the elderly indicates the important role of genetic and biochemical mechanisms of maintaining low levels of methanol and formaldehyde. Copyright © 2015 the American Physiological Society.

  16. Reconstruction of metabolic pathways for the cattle genome

    Directory of Open Access Journals (Sweden)

    Lewin Harris A

    2009-03-01

    Full Text Available Abstract Background Metabolic reconstruction of microbial, plant and animal genomes is a necessary step toward understanding the evolutionary origins of metabolism and species-specific adaptive traits. The aims of this study were to reconstruct conserved metabolic pathways in the cattle genome and to identify metabolic pathways with missing genes and proteins. The MetaCyc database and PathwayTools software suite were chosen for this work because they are widely used and easy to implement. Results An amalgamated cattle genome database was created using the NCBI and Ensembl cattle genome databases (based on build 3.1 as data sources. PathwayTools was used to create a cattle-specific pathway genome database, which was followed by comprehensive manual curation for the reconstruction of metabolic pathways. The curated database, CattleCyc 1.0, consists of 217 metabolic pathways. A total of 64 mammalian-specific metabolic pathways were modified from the reference pathways in MetaCyc, and two pathways previously identified but missing from MetaCyc were added. Comparative analysis of metabolic pathways revealed the absence of mammalian genes for 22 metabolic enzymes whose activity was reported in the literature. We also identified six human metabolic protein-coding genes for which the cattle ortholog is missing from the sequence assembly. Conclusion CattleCyc is a powerful tool for understanding the biology of ruminants and other cetartiodactyl species. In addition, the approach used to develop CattleCyc provides a framework for the metabolic reconstruction of other newly sequenced mammalian genomes. It is clear that metabolic pathway analysis strongly reflects the quality of the underlying genome annotations. Thus, having well-annotated genomes from many mammalian species hosted in BioCyc will facilitate the comparative analysis of metabolic pathways among different species and a systems approach to comparative physiology.

  17. Understanding specificity in metabolic pathways--structural biology of human nucleotide metabolism.

    Science.gov (United States)

    Welin, Martin; Nordlund, Pär

    2010-05-21

    Interactions are the foundation of life at the molecular level. In the plethora of activities in the cell, the evolution of enzyme specificity requires the balancing of appropriate substrate affinity with a negative selection, in order to minimize interactions with other potential substrates in the cell. To understand the structural basis for enzyme specificity, the comparison of structural and biochemical data between enzymes within pathways using similar substrates and effectors is valuable. Nucleotide metabolism is one of the largest metabolic pathways in the human cell and is of outstanding therapeutic importance since it activates and catabolises nucleoside based anti-proliferative drugs and serves as a direct target for anti-proliferative drugs. In recent years the structural coverage of the enzymes involved in human nucleotide metabolism has been dramatically improved and is approaching completion. An important factor has been the contribution from the Structural Genomics Consortium (SGC) at Karolinska Institutet, which recently has solved 33 novel structures of enzymes and enzyme domains in human nucleotide metabolism pathways and homologs thereof. In this review we will discuss some of the principles for substrate specificity of enzymes in human nucleotide metabolism illustrated by a selected set of enzyme families where a detailed understanding of the structural determinants for specificity is now emerging. 2010. Published by Elsevier Inc.

  18. Understanding specificity in metabolic pathways-Structural biology of human nucleotide metabolism

    International Nuclear Information System (INIS)

    Welin, Martin; Nordlund, Paer

    2010-01-01

    Interactions are the foundation of life at the molecular level. In the plethora of activities in the cell, the evolution of enzyme specificity requires the balancing of appropriate substrate affinity with a negative selection, in order to minimize interactions with other potential substrates in the cell. To understand the structural basis for enzyme specificity, the comparison of structural and biochemical data between enzymes within pathways using similar substrates and effectors is valuable. Nucleotide metabolism is one of the largest metabolic pathways in the human cell and is of outstanding therapeutic importance since it activates and catabolises nucleoside based anti-proliferative drugs and serves as a direct target for anti-proliferative drugs. In recent years the structural coverage of the enzymes involved in human nucleotide metabolism has been dramatically improved and is approaching completion. An important factor has been the contribution from the Structural Genomics Consortium (SGC) at Karolinska Institutet, which recently has solved 33 novel structures of enzymes and enzyme domains in human nucleotide metabolism pathways and homologs thereof. In this review we will discuss some of the principles for substrate specificity of enzymes in human nucleotide metabolism illustrated by a selected set of enzyme families where a detailed understanding of the structural determinants for specificity is now emerging.

  19. Applied evolutionary theories for engineering of secondary metabolic pathways.

    Science.gov (United States)

    Bachmann, Brian O

    2016-12-01

    An expanded definition of 'secondary metabolism' is emerging. Once the exclusive provenance of naturally occurring organisms, evolved over geological time scales, secondary metabolism increasingly encompasses molecules generated via human engineered biocatalysts and biosynthetic pathways. Many of the tools and strategies for enzyme and pathway engineering can find origins in evolutionary theories. This perspective presents an overview of selected proposed evolutionary strategies in the context of engineering secondary metabolism. In addition to the wealth of biocatalysts provided via secondary metabolic pathways, improving the understanding of biosynthetic pathway evolution will provide rich resources for methods to adapt to applied laboratory evolution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Mutagenicity of quinones: pathways of metabolic activation and detoxification.

    Science.gov (United States)

    Chesis, P L; Levin, D E; Smith, M T; Ernster, L; Ames, B N

    1984-01-01

    The mutagenicity of various quinones, a class of compounds widely distributed in nature, is demonstrated in the Salmonella TA104 tester strain. The metabolic pathways by which four quinones, menadione, benzo[a]pyrene 3,6-quinone, 9,10-phenanthrenequinone, and danthron, caused mutagenicity in this test system were investigated in detail as were the detoxification pathways. The two-electron reduction of these quinones by NAD(P)H-quinone oxidoreductase (DT-diaphorase) was not mutagenic, whereas the one-electron reduction, catalyzed by NADPH-cytochrome P-450 reductase, was mutagenic, except for danthron, which was only slightly mutagenic. The mutagenicity of the quinones via this pathway was found to be attributable to the generation of oxygen radicals. The cytochrome P-450 monooxygenase also played a significant role in the detoxification and bioactivation of these quinones. For example, phenanthrenequinone was converted to a nonmutagenic metabolite in a cytochrome P-450-dependent reaction, whereas danthron was converted to a highly mutagenic metabolite. These studies show the complexity of metabolic pathways involved in the mutagenicity of quinones. PMID:6584903

  1. Apolipoprotein gene involved in lipid metabolism

    Science.gov (United States)

    Rubin, Edward; Pennacchio, Len A.

    2007-07-03

    Methods and materials for studying the effects of a newly identified human gene, APOAV, and the corresponding mouse gene apoAV. The sequences of the genes are given, and transgenic animals which either contain the gene or have the endogenous gene knocked out are described. In addition, single nucleotide polymorphisms (SNPs) in the gene are described and characterized. It is demonstrated that certain SNPs are associated with diseases involving lipids and triglycerides and other metabolic diseases. These SNPs may be used alone or with SNPs from other genes to study individual risk factors. Methods for intervention in lipid diseases, including the screening of drugs to treat lipid-related or diabetic diseases are also disclosed.

  2. Synthetic metabolic engineering-a novel, simple technology for designing a chimeric metabolic pathway

    Directory of Open Access Journals (Sweden)

    Ye Xiaoting

    2012-09-01

    Full Text Available Abstract Background The integration of biotechnology into chemical manufacturing has been recognized as a key technology to build a sustainable society. However, the practical applications of biocatalytic chemical conversions are often restricted due to their complexities involving the unpredictability of product yield and the troublesome controls in fermentation processes. One of the possible strategies to overcome these limitations is to eliminate the use of living microorganisms and to use only enzymes involved in the metabolic pathway. Use of recombinant mesophiles producing thermophilic enzymes at high temperature results in denaturation of indigenous proteins and elimination of undesired side reactions; consequently, highly selective and stable biocatalytic modules can be readily prepared. By rationally combining those modules together, artificial synthetic pathways specialized for chemical manufacturing could be designed and constructed. Results A chimeric Embden-Meyerhof (EM pathway with balanced consumption and regeneration of ATP and ADP was constructed by using nine recombinant E. coli strains overproducing either one of the seven glycolytic enzymes of Thermus thermophilus, the cofactor-independent phosphoglycerate mutase of Pyrococcus horikoshii, or the non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase of Thermococcus kodakarensis. By coupling this pathway with the Thermus malate/lactate dehydrogenase, a stoichiometric amount of lactate was produced from glucose with an overall ATP turnover number of 31. Conclusions In this study, a novel and simple technology for flexible design of a bespoke metabolic pathway was developed. The concept has been testified via a non-ATP-forming chimeric EM pathway. We designated this technology as “synthetic metabolic engineering”. Our technology is, in principle, applicable to all thermophilic enzymes as long as they can be functionally expressed in the host, and thus would be

  3. UniPathway: a resource for the exploration and annotation of metabolic pathways.

    Science.gov (United States)

    Morgat, Anne; Coissac, Eric; Coudert, Elisabeth; Axelsen, Kristian B; Keller, Guillaume; Bairoch, Amos; Bridge, Alan; Bougueleret, Lydie; Xenarios, Ioannis; Viari, Alain

    2012-01-01

    UniPathway (http://www.unipathway.org) is a fully manually curated resource for the representation and annotation of metabolic pathways. UniPathway provides explicit representations of enzyme-catalyzed and spontaneous chemical reactions, as well as a hierarchical representation of metabolic pathways. This hierarchy uses linear subpathways as the basic building block for the assembly of larger and more complex pathways, including species-specific pathway variants. All of the pathway data in UniPathway has been extensively cross-linked to existing pathway resources such as KEGG and MetaCyc, as well as sequence resources such as the UniProt KnowledgeBase (UniProtKB), for which UniPathway provides a controlled vocabulary for pathway annotation. We introduce here the basic concepts underlying the UniPathway resource, with the aim of allowing users to fully exploit the information provided by UniPathway.

  4. Metabolic Pathways Visualization Skills Development by Undergraduate Students

    Science.gov (United States)

    dos Santos, Vanessa J. S. V.; Galembeck, Eduardo

    2015-01-01

    We have developed a metabolic pathways visualization skill test (MPVST) to gain greater insight into our students' abilities to comprehend the visual information presented in metabolic pathways diagrams. The test is able to discriminate students' visualization ability with respect to six specific visualization skills that we identified as key to…

  5. Clinical pathways for inborn errors of metabolism: warranted and feasible

    Directory of Open Access Journals (Sweden)

    Demirdas Serwet

    2013-02-01

    Full Text Available Abstract Inborn errors of metabolism (IEMs are known for their low prevalence and multidisciplinary care mostly founded on expert opinion. Clinical pathways are multidisciplinary tools to organise care which provide a clear route to the best care and improve communication. In 2010 the Dutch Society for Children and Adults with an Inborn Error of Metabolism (VKS initiated development of clinical pathways for inborn errors of metabolism. In this letter to the editor we describe why it is warranted to develop clinical pathways for IEMs and shortly discuss the process of development for these pathways in the Netherlands.

  6. Large-scale transcriptome analysis reveals arabidopsis metabolic pathways are frequently influenced by different pathogens.

    Science.gov (United States)

    Jiang, Zhenhong; He, Fei; Zhang, Ziding

    2017-07-01

    Through large-scale transcriptional data analyses, we highlighted the importance of plant metabolism in plant immunity and identified 26 metabolic pathways that were frequently influenced by the infection of 14 different pathogens. Reprogramming of plant metabolism is a common phenomenon in plant defense responses. Currently, a large number of transcriptional profiles of infected tissues in Arabidopsis (Arabidopsis thaliana) have been deposited in public databases, which provides a great opportunity to understand the expression patterns of metabolic pathways during plant defense responses at the systems level. Here, we performed a large-scale transcriptome analysis based on 135 previously published expression samples, including 14 different pathogens, to explore the expression pattern of Arabidopsis metabolic pathways. Overall, metabolic genes are significantly changed in expression during plant defense responses. Upregulated metabolic genes are enriched on defense responses, and downregulated genes are enriched on photosynthesis, fatty acid and lipid metabolic processes. Gene set enrichment analysis (GSEA) identifies 26 frequently differentially expressed metabolic pathways (FreDE_Paths) that are differentially expressed in more than 60% of infected samples. These pathways are involved in the generation of energy, fatty acid and lipid metabolism as well as secondary metabolite biosynthesis. Clustering analysis based on the expression levels of these 26 metabolic pathways clearly distinguishes infected and control samples, further suggesting the importance of these metabolic pathways in plant defense responses. By comparing with FreDE_Paths from abiotic stresses, we find that the expression patterns of 26 FreDE_Paths from biotic stresses are more consistent across different infected samples. By investigating the expression correlation between transcriptional factors (TFs) and FreDE_Paths, we identify several notable relationships. Collectively, the current study

  7. Evidence that humans metabolize benzene via two pathways.

    NARCIS (Netherlands)

    Rappaport, S.M.; Kim, S.; Lan, Q.; Vermeulen, R.C.H.; Waidyanatha, S.; Zhang, L.; Li, G.; Yin, S.; Hayes, R.B.; Rothman, N.; Smith, M.T.

    2009-01-01

    BACKGROUND: Recent evidence has shown that humans metabolize benzene more efficiently at environmental air concentrations than at concentrations > 1 ppm. This led us to speculate that an unidentified metabolic pathway was mainly responsible for benzene metabolism at ambient levels. OBJECTIVE: We

  8. Minimal metabolic pathway structure is consistent with associated biomolecular interactions

    DEFF Research Database (Denmark)

    Bordbar, Aarash; Nagarajan, Harish; Lewis, Nathan E.

    2014-01-01

    Pathways are a universal paradigm for functionally describing cellular processes. Even though advances in high-throughput data generation have transformed biology, the core of our biological understanding, and hence data interpretation, is still predicated on human-defined pathways. Here, we...... suggesting a functional organization for metabolism based on parsimonious use of cellular components. We use the inherent predictive capability of these pathways to experimentally discover novel transcriptional regulatory interactions in Escherichia coli metabolism for three transcription factors...

  9. Curation and Computational Design of Bioenergy-Related Metabolic Pathways

    Energy Technology Data Exchange (ETDEWEB)

    Karp, Peter D. [SRI International, Menlo Park, CA (United States)

    2014-09-12

    Pathway Tools is a systems-biology software package written by SRI International (SRI) that produces Pathway/Genome Databases (PGDBs) for organisms with a sequenced genome. Pathway Tools also provides a wide range of capabilities for analyzing predicted metabolic networks and user-generated omics data. More than 5,000 academic, industrial, and government groups have licensed Pathway Tools. This user community includes researchers at all three DOE bioenergy centers, as well as academic and industrial metabolic engineering (ME) groups. An integral part of the Pathway Tools software is MetaCyc, a large, multiorganism database of metabolic pathways and enzymes that SRI and its academic collaborators manually curate. This project included two main goals: I. Enhance the MetaCyc content of bioenergy-related enzymes and pathways. II. Develop computational tools for engineering metabolic pathways that satisfy specified design goals, in particular for bioenergy-related pathways. In part I, SRI proposed to significantly expand the coverage of bioenergy-related metabolic information in MetaCyc, followed by the generation of organism-specific PGDBs for all energy-relevant organisms sequenced at the DOE Joint Genome Institute (JGI). Part I objectives included: 1: Expand the content of MetaCyc to include bioenergy-related enzymes and pathways. 2: Enhance the Pathway Tools software to enable display of complex polymer degradation processes. 3: Create new PGDBs for the energy-related organisms sequenced by JGI, update existing PGDBs with new MetaCyc content, and make these data available to JBEI via the BioCyc website. In part II, SRI proposed to develop an efficient computational tool for the engineering of metabolic pathways. Part II objectives included: 4: Develop computational tools for generating metabolic pathways that satisfy specified design goals, enabling users to specify parameters such as starting and ending compounds, and preferred or disallowed intermediate compounds

  10. Metabolic pathways promoting cancer cell survival and growth.

    Science.gov (United States)

    Boroughs, Lindsey K; DeBerardinis, Ralph J

    2015-04-01

    Activation of oncogenes and loss of tumour suppressors promote metabolic reprogramming in cancer, resulting in enhanced nutrient uptake to supply energetic and biosynthetic pathways. However, nutrient limitations within solid tumours may require that malignant cells exhibit metabolic flexibility to sustain growth and survival. Here, we highlight these adaptive mechanisms and also discuss emerging approaches to probe tumour metabolism in vivo and their potential to expand the metabolic repertoire of malignant cells even further.

  11. Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols.

    Science.gov (United States)

    Avalos, José L; Fink, Gerald R; Stephanopoulos, Gregory

    2013-04-01

    Efforts to improve the production of a compound of interest in Saccharomyces cerevisiae have mainly involved engineering or overexpression of cytoplasmic enzymes. We show that targeting metabolic pathways to mitochondria can increase production compared with overexpression of the enzymes involved in the same pathways in the cytoplasm. Compartmentalization of the Ehrlich pathway into mitochondria increased isobutanol production by 260%, whereas overexpression of the same pathway in the cytoplasm only improved yields by 10%, compared with a strain overproducing enzymes involved in only the first three steps of the biosynthetic pathway. Subcellular fractionation of engineered strains revealed that targeting the enzymes of the Ehrlich pathway to the mitochondria achieves greater local enzyme concentrations. Other benefits of compartmentalization may include increased availability of intermediates, removing the need to transport intermediates out of the mitochondrion and reducing the loss of intermediates to competing pathways.

  12. ZP2495 Protects against Myocardial Ischemia/Reperfusion Injury in Diabetic Mice through Improvement of Cardiac Metabolism and Mitochondrial Function: The Possible Involvement of AMPK-FoxO3a Signal Pathway

    Directory of Open Access Journals (Sweden)

    Shuang Li

    2018-01-01

    Full Text Available Coronary heart disease patients with type 2 diabetes were subject to higher vulnerability for cardiac ischemia-reperfusion (I/R injury. This study was designed to evaluate the impact of ZP2495 (a glucagon-GLP-1 dual-agonist on cardiac function and energy metabolism after myocardial I/R injury in db/db mice with a focus on mitochondrial function. C57BLKS/J-lepr+/lepr+ (BKS and db/db mice received 4-week treatment of glucagon, ZP131 (GLP-1 receptor agonist, or ZP2495, followed by cardiac I/R injury. The results showed that cardiac function, cardiac glucose metabolism, cardiomyocyte apoptosis, cardiac mitochondrial morphology, and energetic transition were improved or ameliorated by ZP2495 to a greater extent than that of glucagon and ZP131. In vitro study showed that ZP2495, rather than glucagon, alleviated mitochondrial depolarization, cytochrome C release, and mitochondria ROS generation in neonatal rat ventricular myocytes subjected to high-glucose and simulated I/R injury conditions, the effects of which were weaker in the ZP131 group. Furthermore, the expressions of Akt, FoxO3a, and AMPK phosphorylation were elevated by ZP2495 to a greater extent than that of ZP131. In conclusion, ZP2495 may contribute to the improvement of cardiac function and energy metabolism in db/db mice after myocardial I/R injury by improving mitochondrial function possibly through Akt/FoxO3a and AMPK/FoxO3a signal pathways.

  13. Shared metabolic pathways in a coevolved insect-bacterial symbiosis.

    Science.gov (United States)

    Russell, Calum W; Bouvaine, Sophie; Newell, Peter D; Douglas, Angela E

    2013-10-01

    The symbiotic bacterium Buchnera aphidicola lacks key genes in the biosynthesis of five essential amino acids (EAAs), and yet its animal hosts (aphids) depend on the symbiosis for the synthesis of these EAAs (isoleucine, leucine, methionine, phenylalanine, and valine). We tested the hypothesis, derived from genome annotation, that the missing Buchnera reactions are mediated by host enzymes, with the exchange of metabolic intermediates between the partners. The specialized host cells bearing Buchnera were separated into a Buchnera fraction and a Buchnera-free host cell fraction (HF). Addition of HF to isolated Buchnera preparations significantly increased the production of leucine and phenylalanine, and recombinant enzymes mediating the final reactions in branched-chain amino acid and phenylalanine synthesis rescued the production of these EAAs by Buchnera preparations without HF. The likely precursors for the missing proximal reactions in isoleucine and methionine synthesis were identified, and they differed from predictions based on genome annotations: synthesis of 2-oxobutanoate, the aphid-derived precursor of isoleucine synthesis, was stimulated by homoserine and not threonine via threonine dehydratase, and production of the homocysteine precursor of methionine was driven by cystathionine, not cysteine, via reversal of the transsulfuration pathway. The evolution of shared metabolic pathways in this symbiosis can be attributed to host compensation for genomic deterioration in the symbiont, involving changes in host gene expression networks to recruit specific enzymes to the host cell.

  14. Mitochondrial quality control pathways as determinants of metabolic health

    NARCIS (Netherlands)

    Held, Ntsiki M.; Houtkooper, Riekelt H.

    2015-01-01

    Mitochondrial function is key for maintaining cellular health, while mitochondrial failure is associated with various pathologies, including inherited metabolic disorders and age-related diseases. In order to maintain mitochondrial quality, several pathways of mitochondrial quality control have

  15. Nucleotide metabolism in Lactococcus lactis: Salvage pathways of exogenous pyrimidines

    DEFF Research Database (Denmark)

    Martinussen, Jan; Andersen, Paal Skytt; Hammer, Karin

    1994-01-01

    By measuring enzyme activities in crude extracts and studying the effect of toxic analogs (5-fluoropyrimidines) on cell growth, the metabolism of pyrimidines in Lactococcus lactis was analyzed. Pathways by which uracil, uridine, deoxyuridine, cytidine, and deoxycytidine are metabolized in L. lact...

  16. Nucleotide metabolism in Lactococcus lactis: Salvage pathways of exogenous pyrimidines

    DEFF Research Database (Denmark)

    Martinussen, Jan; Andersen, Paal Skytt; Hammer, Karin

    1994-01-01

    By measuring enzyme activities in crude extracts and studying the effect of toxic analogs (5-fluoropyrimidines) on cell growth, the metabolism of pyrimidines in Lactococcus lactis was analyzed. Pathways by which uracil, uridine, deoxyuridine, cytidine, and deoxycytidine are metabolized in L. lactis...

  17. Interdisciplinary Pathways for Urban Metabolism Research

    Science.gov (United States)

    Newell, J. P.

    2011-12-01

    With its rapid rise as a metaphor to express coupled natural-human systems in cities, the concept of urban metabolism is evolving into a series of relatively distinct research frameworks amongst various disciplines, with varying definitions, theories, models, and emphases. In industrial ecology, housed primarily within the disciplinary domain of engineering, urban metabolism research has focused on quantifying material and energy flows into, within, and out of cities, using methodologies such as material flow analysis and life cycle assessment. In the field of urban ecology, which is strongly influenced by ecology and urban planning, research focus has been placed on understanding and modeling the complex patterns and processes of human-ecological systems within urban areas. Finally, in political ecology, closely aligned with human geography and anthropology, scholars theorize about the interwoven knots of social and natural processes, material flows, and spatial structures that form the urban metabolism. This paper offers three potential interdisciplinary urban metabolism research tracks that might integrate elements of these three "ecologies," thereby bridging engineering and the social and physical sciences. First, it presents the idea of infrastructure ecology, which explores the complex, emergent interdependencies between gray (water and wastewater, transportation, etc) and green (e.g. parks, greenways) infrastructure systems, as nested within a broader socio-economic context. For cities to be sustainable and resilient over time-space, the theory follows, these is a need to understand and redesign these infrastructure linkages. Second, there is the concept of an urban-scale carbon metabolism model which integrates consumption-based material flow analysis (including goods, water, and materials), with the carbon sink and source dynamics of the built environment (e.g. buildings, etc) and urban ecosystems. Finally, there is the political ecology of the material

  18. The MetaCyc database of metabolic pathways and enzymes.

    Science.gov (United States)

    Caspi, Ron; Billington, Richard; Fulcher, Carol A; Keseler, Ingrid M; Kothari, Anamika; Krummenacker, Markus; Latendresse, Mario; Midford, Peter E; Ong, Quang; Ong, Wai Kit; Paley, Suzanne; Subhraveti, Pallavi; Karp, Peter D

    2018-01-04

    MetaCyc (https://MetaCyc.org) is a comprehensive reference database of metabolic pathways and enzymes from all domains of life. It contains more than 2570 pathways derived from >54 000 publications, making it the largest curated collection of metabolic pathways. The data in MetaCyc is strictly evidence-based and richly curated, resulting in an encyclopedic reference tool for metabolism. MetaCyc is also used as a knowledge base for generating thousands of organism-specific Pathway/Genome Databases (PGDBs), which are available in the BioCyc (https://BioCyc.org) and other PGDB collections. This article provides an update on the developments in MetaCyc during the past two years, including the expansion of data and addition of new features. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Metabolic switching of drug pathways as a consequence of deuterium substitution

    International Nuclear Information System (INIS)

    Horning, M.G.; Haegele, K.D.; Sommer, K.R.; Nowlin, J.; Stafford, M.

    1975-01-01

    An investigation was made of the metabolism of deuterated analogs of caffeine (1-CD 3 -caffeine and 7-CD 3 -caffeine) and antipyrine (N-CD 3 -antipyrine and 3-CD 3 -antipyrine) because both caffeine and antipyrine are metabolized by multiple alternate pathways. Since it is well established that carbon-deuterium bonds are more stable than carbon-hydrogen bonds, it was postulated that oxidation of the CD 3 group would be depressed and that metabolism of the labeled compounds would be shifted to another pathway that did not involve cleavage of a carbon-deuterium bond. Metabolic switching of drug pathways was observed in vivo for both of the caffeine analogs and was observed both in vivo and in vitro for 3-CD 3 -antipyrine

  20. Metabolic Pathway Assignment of Plant Genes based on Phylogenetic Profiling–A Feasibility Study

    Directory of Open Access Journals (Sweden)

    Sandra Weißenborn

    2017-10-01

    study highlights the potential and challenges associated with phylogenetic profiling methods for the detection of functional relationships between genes as well as the need to enlarge the set of plant genes with proven secondary metabolism involvement as well as the limitations of distinct pathways as abstractions of relationships between genes.

  1. Analyzing the regulation of metabolic pathways in human breast cancer

    Directory of Open Access Journals (Sweden)

    Schramm Gunnar

    2010-09-01

    Full Text Available Abstract Background Tumor therapy mainly attacks the metabolism to interfere the tumor's anabolism and signaling of proliferative second messengers. However, the metabolic demands of different cancers are very heterogeneous and depend on their origin of tissue, age, gender and other clinical parameters. We investigated tumor specific regulation in the metabolism of breast cancer. Methods For this, we mapped gene expression data from microarrays onto the corresponding enzymes and their metabolic reaction network. We used Haar Wavelet transforms on optimally arranged grid representations of metabolic pathways as a pattern recognition method to detect orchestrated regulation of neighboring enzymes in the network. Significant combined expression patterns were used to select metabolic pathways showing shifted regulation of the aggressive tumors. Results Besides up-regulation for energy production and nucleotide anabolism, we found an interesting cellular switch in the interplay of biosynthesis of steroids and bile acids. The biosynthesis of steroids was up-regulated for estrogen synthesis which is needed for proliferative signaling in breast cancer. In turn, the decomposition of steroid precursors was blocked by down-regulation of the bile acid pathway. Conclusion We applied an intelligent pattern recognition method for analyzing the regulation of metabolism and elucidated substantial regulation of human breast cancer at the interplay of cholesterol biosynthesis and bile acid metabolism pointing to specific breast cancer treatment.

  2. Associations between successful palliative cancer pathways and community nurse involvement

    DEFF Research Database (Denmark)

    Neergaard, Mette Asbjoern; Vedsted, Peter; Olesen, Frede

    2009-01-01

    between bereaved relatives' evaluation of palliative pathways at home and place of death and CN involvement were analysed. RESULTS: 'A successful palliative pathway at home' was positively associated with home-death and death at a nursing home compared with death at an institution. No significant......ABSTRACT: BACKGROUND: Most terminally ill cancer patients and their relatives wish that the patient dies at home. Community nurses (CNs) are often frontline workers in the patients' homes and CN involvement may be important in attaining successful palliative pathways at home.The aim of the present...... study was to examine associations between bereaved relatives' evaluation of palliative treatment at home and 1) place of death and 2) CN involvement. METHODS: The study is a population-based, cross-sectional combined register and questionnaire study performed in Aarhus County, Denmark. CN questionnaires...

  3. Metabolic pathway involved in 2-methyl-6-ethylaniline degradation by Sphingobium sp. strain MEA3-1 and cloning of the novel flavin-dependent monooxygenase system meaBA.

    Science.gov (United States)

    Dong, Weiliang; Chen, Qiongzhen; Hou, Ying; Li, Shuhuan; Zhuang, Kai; Huang, Fei; Zhou, Jie; Li, Zhoukun; Wang, Jue; Fu, Lei; Zhang, Zhengguang; Huang, Yan; Wang, Fei; Cui, Zhongli

    2015-12-01

    2-Methyl-6-ethylaniline (MEA) is the main microbial degradation intermediate of the chloroacetanilide herbicides acetochlor and metolachlor. Sphingobium sp. strain MEA3-1 can utilize MEA and various alkyl-substituted aniline and phenol compounds as sole carbon and energy sources for growth. We isolated the mutant strain MEA3-1Mut, which converts MEA only to 2-methyl-6-ethyl-hydroquinone (MEHQ) and 2-methyl-6-ethyl-benzoquinone (MEBQ). MEA may be oxidized by the P450 monooxygenase system to 4-hydroxy-2-methyl-6-ethylaniline (4-OH-MEA), which can be hydrolytically spontaneously deaminated to MEBQ or MEHQ. The MEA microbial metabolic pathway was reconstituted based on the substrate spectra and identification of the intermediate metabolites in both the wild-type and mutant strains. Plasmidome sequencing indicated that both strains harbored 7 plasmids with sizes ranging from 6,108 bp to 287,745 bp. Among the 7 plasmids, 6 were identical, and pMEA02' in strain MEA3-1Mut lost a 37,000-bp fragment compared to pMEA02 in strain MEA3-1. Two-dimensional electrophoresis (2-DE) and protein mass fingerprinting (PMF) showed that MEA3-1Mut lost the two-component flavin-dependent monooxygenase (TC-FDM) MeaBA, which was encoded by a gene in the lost fragment of pMEA02. MeaA shared 22% to 25% amino acid sequence identity with oxygenase components of some TC-FDMs, whereas MeaB showed no sequence identity with the reductase components of those TC-FDMs. Complementation with meaBA in MEA3-1Mut and heterologous expression in Pseudomonas putida strain KT2440 resulted in the production of an active MEHQ monooxygenase. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. Novel personalized pathway-based metabolomics models reveal key metabolic pathways for breast cancer diagnosis

    DEFF Research Database (Denmark)

    Huang, Sijia; Chong, Nicole; Lewis, Nathan

    2016-01-01

    diagnosis. We applied this method to predict breast cancer occurrence, in combination with correlation feature selection (CFS) and classification methods. Results: The resulting all-stage and early-stage diagnosis models are highly accurate in two sets of testing blood samples, with average AUCs (Area Under.......993. Moreover, important metabolic pathways, such as taurine and hypotaurine metabolism and the alanine, aspartate, and glutamate pathway, are revealed as critical biological pathways for early diagnosis of breast cancer. Conclusions: We have successfully developed a new type of pathway-based model to study...... metabolomics data for disease diagnosis. Applying this method to blood-based breast cancer metabolomics data, we have discovered crucial metabolic pathway signatures for breast cancer diagnosis, especially early diagnosis. Further, this modeling approach may be generalized to other omics data types for disease...

  5. Rewriting the Metabolic Blueprint: Advances in Pathway Diversification in Microorganisms

    Directory of Open Access Journals (Sweden)

    Gazi Sakir Hossain

    2018-02-01

    Full Text Available Living organisms have evolved over millions of years to fine tune their metabolism to create efficient pathways for producing metabolites necessary for their survival. Advancement in the field of synthetic biology has enabled the exploitation of these metabolic pathways for the production of desired compounds by creating microbial cell factories through metabolic engineering, thus providing sustainable routes to obtain value-added chemicals. Following the past success in metabolic engineering, there is increasing interest in diversifying natural metabolic pathways to construct non-natural biosynthesis routes, thereby creating possibilities for producing novel valuable compounds that are non-natural or without elucidated biosynthesis pathways. Thus, the range of chemicals that can be produced by biological systems can be expanded to meet the demands of industries for compounds such as plastic precursors and new antibiotics, most of which can only be obtained through chemical synthesis currently. Herein, we review and discuss novel strategies that have been developed to rewrite natural metabolic blueprints in a bid to broaden the chemical repertoire achievable in microorganisms. This review aims to provide insights on recent approaches taken to open new avenues for achieving biochemical production that are beyond currently available inventions.

  6. Metabolic pathway of non-alcoholic fatty liver disease: Network properties and robustness

    Directory of Open Access Journals (Sweden)

    WenJun Zhang

    2017-03-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD is a systematic and complex disease involving various cytokines/metabolites. In present article, we use methodology of network biology to analyze network properties of NAFLD metabolic pathway. It is found that the metabolic pathway of NAFLD is not a typical complex network with power-law degree distribution, p(x=x^(-4.4275, x>=5. There is only one connected component in the metabolic pathway. The calculated cut cytokines/metabolites of the metabolic pathway are SREBP-1c, ChREBP, ObR, AMPK, IRE1alpha, ROS, PERK, elF2alpha, ATF4, CHOP, Bim, CASP8, Bid, CxII, Lipogenic enzymes, XBP1, and FFAs. The most important cytokine/metabolite for possible network robustness is FFAs, seconded by TNF-alpha. It is concluded that FFAs is the most important cytokine/metabolite in the metabolic pathway, seconded by ROS. FFAs, LEP, ACDC, CYP2E1, and Glucose are the only cytokines/metabolites that affect others without influences from other cytokines/metabolites. Finally, the IDs matrix for identifying possible sub-networks/modules is given. However, jointly combining the results of connectedness analysis and sub-networks/modules identification, we hold that there are not significant sub-networks/modules in the pathway.

  7. Kynurenine pathway metabolism and the microbiota-gut-brain axis.

    Science.gov (United States)

    Kennedy, P J; Cryan, J F; Dinan, T G; Clarke, G

    2017-01-01

    It has become increasingly clear that the gut microbiota influences not only gastrointestinal physiology but also central nervous system (CNS) function by modulating signalling pathways of the microbiota-gut-brain axis. Understanding the neurobiological mechanisms underpinning the influence exerted by the gut microbiota on brain function and behaviour has become a key research priority. Microbial regulation of tryptophan metabolism has become a focal point in this regard, with dual emphasis on the regulation of serotonin synthesis and the control of kynurenine pathway metabolism. Here, we focus in detail on the latter pathway and begin by outlining the structural and functional dynamics of the gut microbiota and the signalling pathways of the brain-gut axis. We summarise preclinical and clinical investigations demonstrating that the gut microbiota influences CNS physiology, anxiety, depression, social behaviour, cognition and visceral pain. Pertinent studies are drawn from neurogastroenterology demonstrating the importance of tryptophan and its metabolites in CNS and gastrointestinal function. We outline how kynurenine pathway metabolism may be regulated by microbial control of neuroendocrine function and components of the immune system. Finally, preclinical evidence demonstrating direct and indirect mechanisms by which the gut microbiota can regulate tryptophan availability for kynurenine pathway metabolism, with downstream effects on CNS function, is reviewed. Targeting the gut microbiota represents a tractable target to modulate kynurenine pathway metabolism. Efforts to develop this approach will markedly increase our understanding of how the gut microbiota shapes brain and behaviour and provide new insights towards successful translation of microbiota-gut-brain axis research from bench to bedside. This article is part of the Special Issue entitled 'The Kynurenine Pathway in Health and Disease'. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Improving fatty acids production by engineering dynamic pathway regulation and metabolic control

    Science.gov (United States)

    Xu, Peng; Li, Lingyun; Zhang, Fuming; Stephanopoulos, Gregory; Koffas, Mattheos

    2014-01-01

    Global energy demand and environmental concerns have stimulated increasing efforts to produce carbon-neutral fuels directly from renewable resources. Microbially derived aliphatic hydrocarbons, the petroleum-replica fuels, have emerged as promising alternatives to meet this goal. However, engineering metabolic pathways with high productivity and yield requires dynamic redistribution of cellular resources and optimal control of pathway expression. Here we report a genetically encoded metabolic switch that enables dynamic regulation of fatty acids (FA) biosynthesis in Escherichia coli. The engineered strains were able to dynamically compensate the critical enzymes involved in the supply and consumption of malonyl-CoA and efficiently redirect carbon flux toward FA biosynthesis. Implementation of this metabolic control resulted in an oscillatory malonyl-CoA pattern and a balanced metabolism between cell growth and product formation, yielding 15.7- and 2.1-fold improvement in FA titer compared with the wild-type strain and the strain carrying the uncontrolled metabolic pathway. This study provides a new paradigm in metabolic engineering to control and optimize metabolic pathways facilitating the high-yield production of other malonyl-CoA–derived compounds. PMID:25049420

  9. Compartmentalization of metabolic pathways in yeast mitochondria improves production of branched chain alcohols

    Science.gov (United States)

    Avalos, José L.; Fink, Gerald R.; Stephanopoulos, Gregory

    2013-01-01

    Efforts to improve the production of a compound of interest in Saccharomyces cerevisiae have mainly involved engineering or overexpression of cytoplasmic enzymes. We show that targeted expression of metabolic pathways to mitochondria can increase production levels compared with expression of the same pathways in the cytoplasm. Compartmentalisation of the Ehrlich pathway into mitochondria increased isobutanol production by 260%, whereas overexpression of the same pathway in the cytoplasm only improved yields by 10%, compared with a strain overexpressing only the first three steps of the biosynthetic pathway. Subcellular fractionation of engineered strains reveals that targeting the enzymes of the Ehrlich pathway to the mitochondria achieves higher local enzyme concentrations. Other benefits of compartmentalization may include increased availability of intermediates, removing the need to transport intermediates out of the mitochondrion, and reducing the loss of intermediates to competing pathways. PMID:23417095

  10. Novel metabolic pathways for linoleic and arachidonic acid metabolism.

    Science.gov (United States)

    Moghaddam, M; Motoba, K; Borhan, B; Pinot, F; Hammock, B D

    1996-08-13

    Mouse liver microsomes oxidized linoleic acid to form 9,10- or 12,13-epoxyoctadecenoate. These monoepoxides were subsequently hydrolyzed to their corresponding diols in the absence of the microsomal epoxide hydrolase inhibitor, 1,2-epoxy-3,3,3-trichloropropane. Furthermore, both 9,10- and 12,13-epoxyoctadecenoates were oxidized to diepoxyoctadecanoate at apparently identical rates by mouse liver microsomal P-450 epoxidation. Both epoxyoctadecanoates and diepoxyoctadecanoates were converted to tetrahydrofuran-diols by microsomes. Tetrahydroxides of linoleate were produced as minor metabolites. Arachidonic acid was metabolized to epoxyeicosatrienoates, dihydroxyeicosatrienoates, and monohydroxyeicosatetraenoates by the microsomes. Microsomes prepared from clofibrate (but not phenobarbital) -treated mice exhibited much higher production rates for epoxyeicosatrienoates and vic-dihydroxyeicosatrienoates. This indicated an induction of P-450 epoxygenase(s) and microsomal epoxide hydrolase in mice by clofibrate and not by phenobarbital. Incubation of synthetic epoxyeicosatrienoates with microsomes led to the production of diepoxyeicosadienoates. Among chemically generated diepoxyeicosadienoate isomers, three of them possessing adjacent diepoxides were hydrolyzed to their diol epoxides which cyclized to the corresponding tetrahydrofuran-diols by microsomes as well as soluble epoxide hydrolase at a much higher rate. Larger cyclic products from non-adjacent diepoxides were not observed. The results of our in vitro experiments suggest that linoleic and arachidonic acid can be metabolized to their tetrahydrofuran-diols by two consecutive microsomal cytochrome P-450 epoxidations followed by microsomal or soluble epoxide hydrolase catalyzed hydrolysis of the epoxides. Incubation experiments with the S-9 fractions indicate that the soluble epoxide hydrolase is more important in this conversion. This manuscript is the first report of techniques for the separation and

  11. Systems analysis of gene ontology and biological pathways involved in post-myocardial infarction responses.

    Science.gov (United States)

    Nguyen, Nguyen T; Lindsey, Merry L; Jin, Yu-Fang

    2015-01-01

    Pathway analysis has been widely used to gain insight into essential mechanisms of the response to myocardial infarction (MI). Currently, there exist multiple pathway databases that organize molecular datasets and manually curate pathway maps for biological interpretation at varying forms of organization. However, inconsistencies among different databases in pathway descriptions, frequently due to conflicting results in the literature, can generate incorrect interpretations. Furthermore, although pathway analysis software provides detailed images of interactions among molecules, it does not exhibit how pathways interact with one another or with other biological processes under specific conditions. We propose a novel method to standardize descriptions of enriched pathways for a set of genes/proteins using Gene Ontology terms. We used this method to examine the relationships among pathways and biological processes for a set of condition-specific genes/proteins, represented as a functional biological pathway-process network. We applied this algorithm to a set of 613 MI-specific proteins we previously identified. A total of 96 pathways from Biocarta, KEGG, and Reactome, and 448 Gene Ontology Biological Processes were enriched with these 613 proteins. The pathways were represented as Boolean functions of biological processes, delivering an interactive scheme to organize enriched information with an emphasis on involvement of biological processes in pathways. We extracted a network focusing on MI to demonstrate that tyrosine phosphorylation of Signal Transducer and Activator of Transcription (STAT) protein, positive regulation of collagen metabolic process, coagulation, and positive/negative regulation of blood coagulation have immediate impacts on the MI response. Our method organized biological processes and pathways in an unbiased approach to provide an intuitive way to identify biological properties of pathways under specific conditions. Pathways from different

  12. NF-Y activates genes of metabolic pathways altered in cancer cells.

    Science.gov (United States)

    Benatti, Paolo; Chiaramonte, Maria Luisa; Lorenzo, Mariangela; Hartley, John A; Hochhauser, Daniel; Gnesutta, Nerina; Mantovani, Roberto; Imbriano, Carol; Dolfini, Diletta

    2016-01-12

    The trimeric transcription factor NF-Y binds to the CCAAT box, an element enriched in promoters of genes overexpressed in tumors. Previous studies on the NF-Y regulome identified the general term metabolism as significantly enriched. We dissect here in detail the targeting of metabolic genes by integrating analysis of NF-Y genomic binding and profilings after inactivation of NF-Y subunits in different cell types. NF-Y controls de novo biosynthetic pathways of lipids, teaming up with the master SREBPs regulators. It activates glycolytic genes, but, surprisingly, is neutral or represses mitochondrial respiratory genes. NF-Y targets the SOCG (Serine, One Carbon, Glycine) and Glutamine pathways, as well as genes involved in the biosynthesis of polyamines and purines. Specific cancer-driving nodes are generally under NF-Y control. Altogether, these data delineate a coherent strategy to promote expression of metabolic genes fuelling anaerobic energy production and other anabolic pathways commonly altered in cancer cells.

  13. Gestational diabetes mellitus epigenetically affects genes predominantly involved in metabolic diseases

    Science.gov (United States)

    Ruchat, Stephanie-May; Houde, Andrée-Anne; Voisin, Grégory; St-Pierre, Julie; Perron, Patrice; Baillargeon, Jean-Patrice; Gaudet, Daniel; Hivert, Marie-France; Brisson, Diane; Bouchard, Luigi

    2013-01-01

    Offspring exposed to gestational diabetes mellitus (GDM) have an increased risk for chronic diseases, and one promising mechanism for fetal metabolic programming is epigenetics. Therefore, we postulated that GDM exposure impacts the offspring’s methylome and used an epigenomic approach to explore this hypothesis. Placenta and cord blood samples were obtained from 44 newborns, including 30 exposed to GDM. Women were recruited at first trimester of pregnancy and followed until delivery. GDM was assessed after a 75-g oral glucose tolerance test at 24–28 weeks of pregnancy. DNA methylation was measured at > 485,000 CpG sites (Infinium HumanMethylation450 BeadChips). Ingenuity Pathway Analysis was conducted to identify metabolic pathways epigenetically affected by GDM. Our results showed that 3,271 and 3,758 genes in placenta and cord blood, respectively, were potentially differentially methylated between samples exposed or not to GDM (p-values down to 1 × 10−06; none reached the genome-wide significance levels), with more than 25% (n = 1,029) being common to both tissues. Mean DNA methylation differences between groups were 5.7 ± 3.2% and 3.4 ± 1.9% for placenta and cord blood, respectively. These genes were likely involved in the metabolic diseases pathway (up to 115 genes (11%), p-values for pathways = 1.9 × 10−13 < p < 4.0 × 10−03; including diabetes mellitus p = 4.3 × 10−11). Among the differentially methylated genes, 326 in placenta and 117 in cord blood were also associated with newborn weight. Our results therefore suggest that GDM has epigenetic effects on genes preferentially involved in the metabolic diseases pathway, with consequences on fetal growth and development, and provide supportive evidence that DNA methylation is involved in fetal metabolic programming. PMID:23975224

  14. Role of Heme and Heme-Proteins in Trypanosomatid Essential Metabolic Pathways

    Directory of Open Access Journals (Sweden)

    Karina E. J. Tripodi

    2011-01-01

    Full Text Available Around the world, trypanosomatids are known for being etiological agents of several highly disabling and often fatal diseases like Chagas disease (Trypanosoma cruzi, leishmaniasis (Leishmania spp., and African trypanosomiasis (Trypanosoma brucei. Throughout their life cycle, they must cope with diverse environmental conditions, and the mechanisms involved in these processes are crucial for their survival. In this review, we describe the role of heme in several essential metabolic pathways of these protozoans. Notwithstanding trypanosomatids lack of the complete heme biosynthetic pathway, we focus our discussion in the metabolic role played for important heme-proteins, like cytochromes. Although several genes for different types of cytochromes, involved in mitochondrial respiration, polyunsaturated fatty acid metabolism, and sterol biosynthesis, are annotated at the Tritryp Genome Project, the encoded proteins have not yet been deeply studied. We pointed our attention into relevant aspects of these protein functions that are amenable to be considered for rational design of trypanocidal agents.

  15. Highly proliferative primitive fetal liver hematopoietic stem cells are fueled by oxidative metabolic pathways

    Directory of Open Access Journals (Sweden)

    Javed K. Manesia

    2015-11-01

    Full Text Available Hematopoietic stem cells (HSCs in the fetal liver (FL unlike adult bone marrow (BM proliferate extensively, posing different metabolic demands. However, metabolic pathways responsible for the production of energy and cellular building blocks in FL HSCs have not been described. Here, we report that FL HSCs use oxygen dependent energy generating pathways significantly more than their BM counterparts. RNA-Seq analysis of E14.5 FL versus BM derived HSCs identified increased expression levels of genes involved in oxidative phosphorylation (OxPhos and the citric acid cycle (TCA. We demonstrated that FL HSCs contain more mitochondria than BM HSCs, which resulted in increased levels of oxygen consumption and reactive oxygen species (ROS production. Higher levels of DNA repair and antioxidant pathway gene expression may prevent ROS-mediated (genotoxicity in FL HSCs. Thus, we here for the first time highlight the underestimated importance of oxygen dependent pathways for generating energy and building blocks in FL HSCs.

  16. Malaria Parasite Metabolic Pathways (MPMP) Upgraded with Targeted Chemical Compounds.

    Science.gov (United States)

    Ginsburg, Hagai; Abdel-Haleem, Alyaa M

    2016-01-01

    Malaria Parasite Metabolic Pathways (MPMP) is the website for the functional genomics of intraerythrocytic Plasmodium falciparum. All the published information about targeted chemical compounds has now been added. Users can find the drug target and publication details linked to a drug database for further information about the medicinal properties of each compound. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Consensus and conflict cards for metabolic pathway databases

    NARCIS (Netherlands)

    Stobbe, M.D.; Swertz, M.A.; Thiele, I.; Rengaw, T.; van Kampen, A.H.C.; Moerland, P.D.

    2013-01-01

    BACKGROUND: The metabolic network of H. sapiens and many other organisms is described in multiple pathway databases. The level of agreement between these descriptions, however, has proven to be low. We can use these different descriptions to our advantage by identifying conflicting information and

  18. Consensus and conflict cards for metabolic pathway databases

    NARCIS (Netherlands)

    Stobbe, Miranda D.; Swertz, Morris A.; Thiele, Ines; Rengaw, Trebor; van Kampen, Antoine H. C.; Moerland, Perry D.

    2013-01-01

    Background: The metabolic network of H. sapiens and many other organisms is described in multiple pathway databases. The level of agreement between these descriptions, however, has proven to be low. We can use these different descriptions to our advantage by identifying conflicting information and

  19. Consensus and conflict cards for metabolic pathway databases

    NARCIS (Netherlands)

    Stobbe, Miranda D.; Swertz, Morris A.; Thiele, Ines; Rengaw, Trebor; van Kampen, Antoine H. C.; Moerland, Perry D.

    2013-01-01

    The metabolic network of H. sapiens and many other organisms is described in multiple pathway databases. The level of agreement between these descriptions, however, has proven to be low. We can use these different descriptions to our advantage by identifying conflicting information and combining

  20. Clinical pathways for inborn errors of metabolism : warranted and feasible

    NARCIS (Netherlands)

    Demirdas, Serwet; van Kessel, Imke N.; Korndewal, Marjolein J.; Hollak, Carla E. M.; Meutgeert, Hanka; Klaren, Anja; van Rijn, Margreet; van Spronsen, Francjan J.; Bosch, Annet M.

    2013-01-01

    Inborn errors of metabolism (IEMs) are known for their low prevalence and multidisciplinary care mostly founded on expert opinion. Clinical pathways are multidisciplinary tools to organise care which provide a clear route to the best care and improve communication. In 2010 the Dutch Society for

  1. Malaria Parasite Metabolic Pathways (MPMP) Upgraded with Targeted Chemical Compounds

    KAUST Repository

    Ginsburg, Hagai

    2015-10-31

    Malaria Parasite Metabolic Pathways (MPMP) is the website for the functional genomics of intraerythrocytic Plasmodium falciparum. All the published information about targeted chemical compounds has now been added. Users can find the drug target and publication details linked to a drug database for further information about the medicinal properties of each compound.

  2. Metabolic pathways variability and sequence/networks comparisons

    Science.gov (United States)

    Tun, Kyaw; Dhar, Pawan K; Palumbo, Maria Concetta; Giuliani, Alessandro

    2006-01-01

    Background In this work a simple method for the computation of relative similarities between homologous metabolic network modules is presented. The method is similar to classical sequence alignment and allows for the generation of phenotypic trees amenable to be compared with correspondent sequence based trees. The procedure can be applied to both single metabolic modules and whole metabolic network data without the need of any specific assumption. Results We demonstrate both the ability of the proposed method to build reliable biological classification of a set of microrganisms and the strong correlation between the metabolic network wiringand involved enzymes sequence space. Conclusion The method represents a valuable tool for the investigation of genotype/phenotype correlationsallowing for a direct comparison of different species as for their metabolic machinery. In addition the detection of enzymes whose sequence space is maximally correlated with the metabolicnetwork space gives an indication of the most crucial (on an evolutionary viewpoint) steps of the metabolic process. PMID:16420696

  3. Metabolic pathways variability and sequence/networks comparisons

    Directory of Open Access Journals (Sweden)

    Palumbo Maria

    2006-01-01

    Full Text Available Abstract Background In this work a simple method for the computation of relative similarities between homologous metabolic network modules is presented. The method is similar to classical sequence alignment and allows for the generation of phenotypic trees amenable to be compared with correspondent sequence based trees. The procedure can be applied to both single metabolic modules and whole metabolic network data without the need of any specific assumption. Results We demonstrate both the ability of the proposed method to build reliable biological classification of a set of microrganisms and the strong correlation between the metabolic network wiringand involved enzymes sequence space. Conclusion The method represents a valuable tool for the investigation of genotype/phenotype correlationsallowing for a direct comparison of different species as for their metabolic machinery. In addition the detection of enzymes whose sequence space is maximally correlated with the metabolicnetwork space gives an indication of the most crucial (on an evolutionary viewpoint steps of the metabolic process.

  4. Enhancing microbial production of biofuels by expanding microbial metabolic pathways.

    Science.gov (United States)

    Yu, Ping; Chen, Xingge; Li, Peng

    2017-09-01

    Fatty acid, isoprenoid, and alcohol pathways have been successfully engineered to produce biofuels. By introducing three genes, atfA, adhE, and pdc, into Escherichia coli to expand fatty acid pathway, up to 1.28 g/L of fatty acid ethyl esters can be achieved. The isoprenoid pathway can be expanded to produce bisabolene with a high titer of 900 mg/L in Saccharomyces cerevisiae. Short- and long-chain alcohols can also be effectively biosynthesized by extending the carbon chain of ketoacids with an engineered "+1" alcohol pathway. Thus, it can be concluded that expanding microbial metabolic pathways has enormous potential for enhancing microbial production of biofuels for future industrial applications. However, some major challenges for microbial production of biofuels should be overcome to compete with traditional fossil fuels: lowering production costs, reducing the time required to construct genetic elements and to increase their predictability and reliability, and creating reusable parts with useful and predictable behavior. To address these challenges, several aspects should be further considered in future: mining and transformation of genetic elements related to metabolic pathways, assembling biofuel elements and coordinating their functions, enhancing the tolerance of host cells to biofuels, and creating modular subpathways that can be easily interconnected. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  5. Global profiling strategies for mapping dysregulated metabolic pathways in cancer.

    Science.gov (United States)

    Benjamin, Daniel I; Cravatt, Benjamin F; Nomura, Daniel K

    2012-11-07

    Cancer cells possess fundamentally altered metabolism that provides a foundation to support tumorigenicity and malignancy. Our understanding of the biochemical underpinnings of cancer has benefited from the integrated utilization of large-scale profiling platforms (e.g., genomics, proteomics, and metabolomics), which, together, can provide a global assessment of how enzymes and their parent metabolic networks become altered in cancer to fuel tumor growth. This review presents several examples of how these integrated platforms have yielded fundamental insights into dysregulated metabolism in cancer. We will also discuss questions and challenges that must be addressed to more completely describe, and eventually control, the diverse metabolic pathways that support tumorigenesis. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Human Cytomegalovirus: Coordinating Cellular Stress, Signaling, and Metabolic Pathways.

    Science.gov (United States)

    Shenk, Thomas; Alwine, James C

    2014-11-01

    Viruses face a multitude of challenges when they infect a host cell. Cells have evolved innate defenses to protect against pathogens, and an infecting virus may induce a stress response that antagonizes viral replication. Further, the metabolic, oxidative, and cell cycle state may not be conducive to the viral infection. But viruses are fabulous manipulators, inducing host cells to use their own characteristic mechanisms and pathways to provide what the virus needs. This article centers on the manipulation of host cell metabolism by human cytomegalovirus (HCMV). We review the features of the metabolic program instituted by the virus, discuss the mechanisms underlying these dramatic metabolic changes, and consider how the altered program creates a synthetic milieu that favors efficient HCMV replication and spread.

  7. Metabolic Pathway Signatures Associated with Urinary Metabolite Biomarkers Differentiate Bladder Cancer Patients from Healthy Controls.

    Science.gov (United States)

    Kim, Won Tae; Yun, Seok Joong; Yan, Chunri; Jeong, Pildu; Kim, Ye Hwan; Lee, Il Seok; Kang, Ho Won; Park, Sunghyouk; Moon, Sung Kwon; Choi, Yung Hyun; Choi, Young Deuk; Kim, Isaac Yi; Kim, Jayoung; Kim, Wun Jae

    2016-07-01

    Our previous high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry study identified bladder cancer (BCA)-specific urine metabolites, including carnitine, acylcarnitines, and melatonin. The objective of the current study was to determine which metabolic pathways are perturbed in BCA, based on our previously identified urinary metabolome. A total of 135 primary BCA samples and 26 control tissue samples from healthy volunteers were analyzed. The association between specific urinary metabolites and their related encoding genes was analyzed. Significant alterations in the carnitine-acylcarnitine and tryptophan metabolic pathways were detected in urine specimens from BCA patients compared to those of healthy controls. The expression of eight genes involved in the carnitine-acylcarnitine metabolic pathway (CPT1A, CPT1B, CPT1C, CPT2, SLC25A20, and CRAT) or tryptophan metabolism (TPH1 and IDO1) was assessed by RT-PCR in our BCA cohort (n=135). CPT1B, CPT1C, SLC25A20, CRAT, TPH1, and IOD1 were significantly downregulated in tumor tissues compared to normal bladder tissues (pmetabolic pathways, which were the most perturbed pathways in BCA, were determined.

  8. Novel personalized pathway-based metabolomics models reveal key metabolic pathways for breast cancer diagnosis.

    Science.gov (United States)

    Huang, Sijia; Chong, Nicole; Lewis, Nathan E; Jia, Wei; Xie, Guoxiang; Garmire, Lana X

    2016-03-31

    More accurate diagnostic methods are pressingly needed to diagnose breast cancer, the most common malignant cancer in women worldwide. Blood-based metabolomics is a promising diagnostic method for breast cancer. However, many metabolic biomarkers are difficult to replicate among studies. We propose that higher-order functional representation of metabolomics data, such as pathway-based metabolomic features, can be used as robust biomarkers for breast cancer. Towards this, we have developed a new computational method that uses personalized pathway dysregulation scores for disease diagnosis. We applied this method to predict breast cancer occurrence, in combination with correlation feature selection (CFS) and classification methods. The resulting all-stage and early-stage diagnosis models are highly accurate in two sets of testing blood samples, with average AUCs (Area Under the Curve, a receiver operating characteristic curve) of 0.968 and 0.934, sensitivities of 0.946 and 0.954, and specificities of 0.934 and 0.918. These two metabolomics-based pathway models are further validated by RNA-Seq-based TCGA (The Cancer Genome Atlas) breast cancer data, with AUCs of 0.995 and 0.993. Moreover, important metabolic pathways, such as taurine and hypotaurine metabolism and the alanine, aspartate, and glutamate pathway, are revealed as critical biological pathways for early diagnosis of breast cancer. We have successfully developed a new type of pathway-based model to study metabolomics data for disease diagnosis. Applying this method to blood-based breast cancer metabolomics data, we have discovered crucial metabolic pathway signatures for breast cancer diagnosis, especially early diagnosis. Further, this modeling approach may be generalized to other omics data types for disease diagnosis.

  9. Pathway thermodynamics highlights kinetic obstacles in central metabolism.

    Science.gov (United States)

    Noor, Elad; Bar-Even, Arren; Flamholz, Avi; Reznik, Ed; Liebermeister, Wolfram; Milo, Ron

    2014-02-01

    In metabolism research, thermodynamics is usually used to determine the directionality of a reaction or the feasibility of a pathway. However, the relationship between thermodynamic potentials and fluxes is not limited to questions of directionality: thermodynamics also affects the kinetics of reactions through the flux-force relationship, which states that the logarithm of the ratio between the forward and reverse fluxes is directly proportional to the change in Gibbs energy due to a reaction (ΔrG'). Accordingly, if an enzyme catalyzes a reaction with a ΔrG' of -5.7 kJ/mol then the forward flux will be roughly ten times the reverse flux. As ΔrG' approaches equilibrium (ΔrG' = 0 kJ/mol), exponentially more enzyme counterproductively catalyzes the reverse reaction, reducing the net rate at which the reaction proceeds. Thus, the enzyme level required to achieve a given flux increases dramatically near equilibrium. Here, we develop a framework for quantifying the degree to which pathways suffer these thermodynamic limitations on flux. For each pathway, we calculate a single thermodynamically-derived metric (the Max-min Driving Force, MDF), which enables objective ranking of pathways by the degree to which their flux is constrained by low thermodynamic driving force. Our framework accounts for the effect of pH, ionic strength and metabolite concentration ranges and allows us to quantify how alterations to the pathway structure affect the pathway's thermodynamics. Applying this methodology to pathways of central metabolism sheds light on some of their features, including metabolic bypasses (e.g., fermentation pathways bypassing substrate-level phosphorylation), substrate channeling (e.g., of oxaloacetate from malate dehydrogenase to citrate synthase), and use of alternative cofactors (e.g., quinone as an electron acceptor instead of NAD). The methods presented here place another arrow in metabolic engineers' quiver, providing a simple means of evaluating the

  10. Pathway thermodynamics highlights kinetic obstacles in central metabolism.

    Directory of Open Access Journals (Sweden)

    Elad Noor

    2014-02-01

    Full Text Available In metabolism research, thermodynamics is usually used to determine the directionality of a reaction or the feasibility of a pathway. However, the relationship between thermodynamic potentials and fluxes is not limited to questions of directionality: thermodynamics also affects the kinetics of reactions through the flux-force relationship, which states that the logarithm of the ratio between the forward and reverse fluxes is directly proportional to the change in Gibbs energy due to a reaction (ΔrG'. Accordingly, if an enzyme catalyzes a reaction with a ΔrG' of -5.7 kJ/mol then the forward flux will be roughly ten times the reverse flux. As ΔrG' approaches equilibrium (ΔrG' = 0 kJ/mol, exponentially more enzyme counterproductively catalyzes the reverse reaction, reducing the net rate at which the reaction proceeds. Thus, the enzyme level required to achieve a given flux increases dramatically near equilibrium. Here, we develop a framework for quantifying the degree to which pathways suffer these thermodynamic limitations on flux. For each pathway, we calculate a single thermodynamically-derived metric (the Max-min Driving Force, MDF, which enables objective ranking of pathways by the degree to which their flux is constrained by low thermodynamic driving force. Our framework accounts for the effect of pH, ionic strength and metabolite concentration ranges and allows us to quantify how alterations to the pathway structure affect the pathway's thermodynamics. Applying this methodology to pathways of central metabolism sheds light on some of their features, including metabolic bypasses (e.g., fermentation pathways bypassing substrate-level phosphorylation, substrate channeling (e.g., of oxaloacetate from malate dehydrogenase to citrate synthase, and use of alternative cofactors (e.g., quinone as an electron acceptor instead of NAD. The methods presented here place another arrow in metabolic engineers' quiver, providing a simple means of

  11. Pathway Thermodynamics Highlights Kinetic Obstacles in Central Metabolism

    Science.gov (United States)

    Flamholz, Avi; Reznik, Ed; Liebermeister, Wolfram; Milo, Ron

    2014-01-01

    In metabolism research, thermodynamics is usually used to determine the directionality of a reaction or the feasibility of a pathway. However, the relationship between thermodynamic potentials and fluxes is not limited to questions of directionality: thermodynamics also affects the kinetics of reactions through the flux-force relationship, which states that the logarithm of the ratio between the forward and reverse fluxes is directly proportional to the change in Gibbs energy due to a reaction (ΔrG′). Accordingly, if an enzyme catalyzes a reaction with a ΔrG′ of -5.7 kJ/mol then the forward flux will be roughly ten times the reverse flux. As ΔrG′ approaches equilibrium (ΔrG′ = 0 kJ/mol), exponentially more enzyme counterproductively catalyzes the reverse reaction, reducing the net rate at which the reaction proceeds. Thus, the enzyme level required to achieve a given flux increases dramatically near equilibrium. Here, we develop a framework for quantifying the degree to which pathways suffer these thermodynamic limitations on flux. For each pathway, we calculate a single thermodynamically-derived metric (the Max-min Driving Force, MDF), which enables objective ranking of pathways by the degree to which their flux is constrained by low thermodynamic driving force. Our framework accounts for the effect of pH, ionic strength and metabolite concentration ranges and allows us to quantify how alterations to the pathway structure affect the pathway's thermodynamics. Applying this methodology to pathways of central metabolism sheds light on some of their features, including metabolic bypasses (e.g., fermentation pathways bypassing substrate-level phosphorylation), substrate channeling (e.g., of oxaloacetate from malate dehydrogenase to citrate synthase), and use of alternative cofactors (e.g., quinone as an electron acceptor instead of NAD). The methods presented here place another arrow in metabolic engineers' quiver, providing a simple means of evaluating

  12. Metabolic Engineering of Chemical Defence Pathways in Plant Disease Control

    DEFF Research Database (Denmark)

    Rook, Frederik

    2016-01-01

    with antimicrobial properties for use in crop protection. It presents an overview of the metabolic engineering efforts made in the area of plant chemical defence. For in-depth information on the characteristics of a specific class of chemical defence compounds, the reader is referred to the specialized reviews......Plants produce a wide variety of specialized (or secondary) metabolites that function as chemical defence compounds and provide protection against microbial pathogens or herbivores. This chapter focuses on the metabolic engineering of biosynthetic pathways for plant chemical defence compounds...

  13. Strategies for metabolic pathway engineering with multiple transgenes.

    Science.gov (United States)

    Bock, Ralph

    2013-09-01

    The engineering of metabolic pathways in plants often requires the concerted expression of more than one gene. While with traditional transgenic approaches, the expression of multiple transgenes has been challenging, recent progress has greatly expanded our repertoire of powerful techniques making this possible. New technological options include large-scale co-transformation of the nuclear genome, also referred to as combinatorial transformation, and transformation of the chloroplast genome with synthetic operon constructs. This review describes the state of the art in multigene genetic engineering of plants. It focuses on the methods currently available for the introduction of multiple transgenes into plants and the molecular mechanisms underlying successful transgene expression. Selected examples of metabolic pathway engineering are used to illustrate the attractions and limitations of each method and to highlight key factors that influence the experimenter's choice of the best strategy for multigene engineering.

  14. Signaling transduction pathways involved in basophil adhesion and histamine release

    DEFF Research Database (Denmark)

    Sha, Quan; Poulsen, Lars K.; Gerwien, Jens

    2006-01-01

    Little is known about basophil with respect to the different signaling transduction pathways involved in spontaneous, cytokine or anti-IgE induced adhesion and how this compares to IgE-dependent and IgE-independent mediator secretion. The purpose of the present study was to investigate the roles ...... of beta1 and beta2 integrins in basophil adhesion as well as hosphatidylinositol 3-kinase (PI3K), src-kinases and extracellular signal regulated kinase (ERK) 1/2 in basophil adhesion and histamine release (HR)....

  15. Plant cholesterol biosynthetic pathway overlaps with phytosterol metabolism.

    Science.gov (United States)

    Sonawane, Prashant D; Pollier, Jacob; Panda, Sayantan; Szymanski, Jedrzej; Massalha, Hassan; Yona, Meital; Unger, Tamar; Malitsky, Sergey; Arendt, Philipp; Pauwels, Laurens; Almekias-Siegl, Efrat; Rogachev, Ilana; Meir, Sagit; Cárdenas, Pablo D; Masri, Athar; Petrikov, Marina; Schaller, Hubert; Schaffer, Arthur A; Kamble, Avinash; Giri, Ashok P; Goossens, Alain; Aharoni, Asaph

    2016-12-22

    The amount of cholesterol made by many plants is not negligible. Whereas cholesterogenesis in animals was elucidated decades ago, the plant pathway has remained enigmatic. Among other roles, cholesterol is a key precursor for thousands of bioactive plant metabolites, including the well-known Solanum steroidal glycoalkaloids. Integrating tomato transcript and protein co-expression data revealed candidate genes putatively associated with cholesterol biosynthesis. A combination of functional assays including gene silencing, examination of recombinant enzyme activity and yeast mutant complementation suggests the cholesterol pathway comprises 12 enzymes acting in 10 steps. It appears that half of the cholesterogenesis-specific enzymes evolved through gene duplication and divergence from phytosterol biosynthetic enzymes, whereas others act reciprocally in both cholesterol and phytosterol metabolism. Our findings provide a unique example of nature's capacity to exploit existing protein folds and catalytic machineries from primary metabolism to assemble a new, multi-step metabolic pathway. Finally, the engineering of a 'high-cholesterol' model plant underscores the future value of our gene toolbox to produce high-value steroidal compounds via synthetic biology.

  16. A new course in the clinical pathways for metabolic syndrome

    International Nuclear Information System (INIS)

    Kageyama, Shoko; Wada, Yumi; Nakamura, Rie

    2006-01-01

    Metabolic syndrome is consisted with multiple risk factors such as diabetes, dyslipidemia, and hypertension based on visceral fat accumulation, for the development of arteriosclerosis. We present, here, a clinical pathway for education of patients with metabolic syndrome. The program contains an adequate explanation of the high risk for arteriosclerosis to the patients, the measurement of visceral fat content by computed tomography, and several clinical examinations for the evaluation of arteriosclerotic lesions. We have presented this program on the ward of diabetes center in our hospital for patients diagnosed as having metabolic syndrome. Because the focus of education is to clarify understanding of the harmful effects of visceral fat and the benefits of its reduction, it might be a valuable tool to motivate and empower the patient and improve the patient's lifestyle. (author)

  17. Signaling Pathways Involved in Lunar Dust Induced Cytotoxicity

    Science.gov (United States)

    Zhang, Ye; Lam, Chiu-Wing; Scully, Robert R.; Williams, Kyle; Zalesak, Selina; Wu, Honglu; James, John T.

    2014-01-01

    The Moon's surface is covered by a layer of fine, reactive dust. Lunar dust contain about 1-2% of very fine dust (pathways involved in lunar dust-induced toxicity. F344 rats were exposed for 4 weeks (6h/d; 5d/wk) in nose-only inhalation chambers to concentrations of 0 (control air), 2.1, 6.1, 21, and 61 mg/m(exp 3) of lunar dust. Five rats per group were euthanized 1 day, 1 week, 1 month, and 3 months after the last inhalation exposure. The total RNAs were isolated from the blood or lung tissue after being lavaged, using the Qigen RNeasy kit. The Rat Fibrosis RT2 Profile PCR Array was used to profile the expression of 84 genes relevant to fibrosis. The genes with significant expression changes are identified and the gene expression data were further analyzed using IPA pathway analysis tool to determine the signaling pathways with significant changes.

  18. The Neural Baroreflex Pathway in Subjects With Metabolic Syndrome

    Science.gov (United States)

    Zanoli, Luca; Empana, Jean-Philippe; Estrugo, Nicolas; Escriou, Guillaume; Ketthab, Hakim; Pruny, Jean-Francois; Castellino, Pietro; Laude, Dominique; Thomas, Frederique; Pannier, Bruno; Jouven, Xavier; Boutouyrie, Pierre; Laurent, Stephane

    2016-01-01

    Abstract The mechanisms that link metabolic syndrome (MetS) to increased cardiovascular risk are incompletely understood. We examined whether MetS is associated with the neural baroreflex pathway (NBP) and whether any such associations are independent of blood pressure values. This study involved the cross-sectional analysis of data on 2835 subjects aged 50 to 75 years from the Paris Prospective Study 3. The prevalence of MetS was defined according to the American Heart Association/National Heart Blood and Lung Institute definition. NBP values were calculated from the fluctuation of the common carotid distension rate and heart rate using fast Fourier transformation and cross-spectral analysis. The prevalence of MetS was 20.1% in men and 10.4% in women. Compared with controls, subjects with MetS (≥3 components), and those at risk for MetS (1–2 components) had lower NBP (−5.3% and −2.3%, respectively) and higher carotid stiffness (+13.5% and +6.8%, respectively). The negative association between MetS components and NBP was confirmed, even after adjustment for age, sex, and carotid stiffness. After stratification for blood pressure (BP) levels, NBP was reduced only in MetS subjects and those at risk with high BP. The NBP was positively associated with carotid stiffness in controls and subjects at risk for MetS. This association was lost in subjects with MetS, regardless of BP levels. Subjects with MetS had reduced NBP values. The role of BP is fundamental in the reduction of NBP. The mechanisms that link carotid stiffness and NBP are inactive in subjects with MetS, independent of BP levels. PMID:26765449

  19. Putative drug and vaccine target protein identification using comparative genomic analysis of KEGG annotated metabolic pathways of Mycoplasma hyopneumoniae.

    Science.gov (United States)

    Damte, Dereje; Suh, Joo-Won; Lee, Seung-Jin; Yohannes, Sileshi Belew; Hossain, Md Akil; Park, Seung-Chun

    2013-07-01

    In the present study, a computational comparative and subtractive genomic/proteomic analysis aimed at the identification of putative therapeutic target and vaccine candidate proteins from Kyoto Encyclopedia of Genes and Genomes (KEGG) annotated metabolic pathways of Mycoplasma hyopneumoniae was performed for drug design and vaccine production pipelines against M.hyopneumoniae. The employed comparative genomic and metabolic pathway analysis with a predefined computational systemic workflow extracted a total of 41 annotated metabolic pathways from KEGG among which five were unique to M. hyopneumoniae. A total of 234 proteins were identified to be involved in these metabolic pathways. Although 125 non homologous and predicted essential proteins were found from the total that could serve as potential drug targets and vaccine candidates, additional prioritizing parameters characterize 21 proteins as vaccine candidate while druggability of each of the identified proteins evaluated by the DrugBank database prioritized 42 proteins suitable for drug targets. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. The effect of selected metals on the central metabolic pathways in ...

    African Journals Online (AJOL)

    compounds, interfere with xenobiotic metabolic pathways, and may also affect glycolysis, the Krebs cycle, oxidative phosphorylation, protein amino acid metabolism as well as carbohydrate and lipid metabolism. Therefore, in this review, we discuss the two phases of the central metabolic pathways, as well as how metals ...

  1. Characterization, expression, and mutation of the Lactococcus lactis galPMKTE genes, involved in galactose utilization via the Leloir pathway

    NARCIS (Netherlands)

    Groossiord, B.P.; Luesink, E.J.; Vaughan, E.E.; Arnaud, A.; Vos, de W.M.

    2003-01-01

    A cluster containing five similarly oriented genes involved in the metabolism of galactose via the Leloir pathway in Lactococcus lactis subsp. cremoris MG1363 was cloned and characterized. The order of the genes is galPMKTE, and these genes encode a galactose permease (GalP), an aldose I-epimerase

  2. Molecular pathways involved in the improvement of non-alcoholic fatty liver disease.

    Science.gov (United States)

    Paz-Filho, Gilberto; Mastronardi, Claudio Alberto; Parker, Brian J; Khan, Ainy; Inserra, Antonio; Matthaei, Klaus I; Ehrhart-Bornstein, Monika; Bornstein, Stefan; Wong, Ma-Li; Licinio, Julio

    2013-01-01

    Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis are components of the metabolic syndrome. Serum leptin levels are elevated in obesity, but the role of leptin in the pathophysiology of the liver involvement is still unclear. To identify the effects and mechanisms by which leptin influences the pathogenesis of NAFLD, we performed epididymal white adipose tissue (eWAT) transplantation from congenic wild-type mice into the subcutaneous dorsal area of Lep(ob/ob) recipient mice and compared the results with those of the Lep(ob/ob) sham-operated mice. The mice were followed for 102-216 days. During killing, the transplanted mice had significantly lost body weight and exhibited significantly higher leptin levels, improved glucose tolerance, and lower liver injury scores than the sham-operated mice. Liver microarray analysis showed that novel pathways related to GA-binding protein (GABP) transcription factor targets, pheromone binding, and olfactory signaling were differentially expressed in the transplanted mice. Our data also replicate pathways known to be involved in NAFLD, such as those involved in the regulation of microRNAs, lipid, glucose, and glutathione metabolism, peroxisome proliferator-activated receptor signaling, cellular regulation, carboxylic acid processes, iron, heme, and tetrapyrrole binding, immunity and inflammation, insulin signaling, cytochrome P450 function, and cancer. wild-type eWAT transplantation into Lep(ob/ob) mice led to improvements in metabolism, body weight, and liver injury, possibly attributed to the production of leptin by the transplanted eWAT. These improvements were accompanied by the differential expression of novel pathways. The causal relationship between GABP downregulation and NAFLD improvement remains to be determined.

  3. Improving Metabolic Pathway Efficiency by Statistical Model-Based Multivariate Regulatory Metabolic Engineering.

    Science.gov (United States)

    Xu, Peng; Rizzoni, Elizabeth Anne; Sul, Se-Yeong; Stephanopoulos, Gregory

    2017-01-20

    Metabolic engineering entails target modification of cell metabolism to maximize the production of a specific compound. For empowering combinatorial optimization in strain engineering, tools and algorithms are needed to efficiently sample the multidimensional gene expression space and locate the desirable overproduction phenotype. We addressed this challenge by employing design of experiment (DoE) models to quantitatively correlate gene expression with strain performance. By fractionally sampling the gene expression landscape, we statistically screened the dominant enzyme targets that determine metabolic pathway efficiency. An empirical quadratic regression model was subsequently used to identify the optimal gene expression patterns of the investigated pathway. As a proof of concept, our approach yielded the natural product violacein at 525.4 mg/L in shake flasks, a 3.2-fold increase from the baseline strain. Violacein production was further increased to 1.31 g/L in a controlled benchtop bioreactor. We found that formulating discretized gene expression levels into logarithmic variables (Linlog transformation) was essential for implementing this DoE-based optimization procedure. The reported methodology can aid multivariate combinatorial pathway engineering and may be generalized as a standard procedure for accelerating strain engineering and improving metabolic pathway efficiency.

  4. Absolute quantitative profiling of the key metabolic pathways in slow and fast skeletal muscle

    DEFF Research Database (Denmark)

    Rakus, Dariusz; Gizak, Agnieszka; Deshmukh, Atul

    2015-01-01

    . Proteomic analysis of mouse slow and fast muscles allowed estimation of the titers of enzymes involved in the carbohydrate, lipid, and energy metabolism. Notably, we observed that differences observed between the two muscle types occur simultaneously for all proteins involved in a specific process......Slow and fast skeletal muscles are composed of, respectively, mainly oxidative and glycolytic muscle fibers, which are the basic cellular motor units of the motility apparatus. They largely differ in excitability, contraction mechanism, and metabolism. Because of their pivotal role in body motion...... and homeostasis, the skeletal muscles have been extensively studied using biochemical and molecular biology approaches. Here we describe a simple analytical and computational approach to estimate titers of enzymes of basic metabolic pathways and proteins of the contractile machinery in the skeletal muscles...

  5. Perturbations in amino acids and metabolic pathways in osteoarthritis patients determined by targeted metabolomics analysis.

    Science.gov (United States)

    Chen, Rui; Han, Su; Liu, Xuefeng; Wang, Kunpeng; Zhou, Yong; Yang, Chundong; Zhang, Xi

    2018-05-15

    Osteoarthritis (OA) is a degenerative synovial joint disease affecting people worldwide. However, the exact pathogenesis of OA remains unclear. Metabolomics analysis was performed to obtain insight into possible pathogenic mechanisms and diagnostic biomarkers of OA. Ultra-high performance liquid chromatography-triple quadrupole mass spectrometry (UPLC-TQ-MS), followed by multivariate statistical analysis, was used to determine the serum amino acid profiles of 32 OA patients and 35 healthy controls. Variable importance for project values and Student's t-test were used to determine the metabolic abnormalities in OA. Another 30 OA patients were used as independent samples to validate the alterations in amino acids. MetaboAnalyst was used to identify the key amino acid pathways and construct metabolic networks describing their relationships. A total of 25 amino acids and four biogenic amines were detected by UPLC-TQ-MS. Differences in amino acid profiles were found between the healthy controls and OA patients. Alanine, γ-aminobutyric acid and 4-hydroxy-l-proline were important biomarkers distinguishing OA patients from healthy controls. The metabolic pathways with the most significant effects were involved in metabolism of alanine, aspartate, glutamate, arginine and proline. The results of this study improve understanding of the amino acid metabolic abnormalities and pathogenic mechanisms of OA at the molecular level. The metabolic perturbations may be important for the diagnosis and prevention of OA. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Effect of CAR activation on selected metabolic pathways in normal and hyperlipidemic mouse livers.

    Science.gov (United States)

    Rezen, Tadeja; Tamasi, Viola; Lövgren-Sandblom, Anita; Björkhem, Ingemar; Meyer, Urs A; Rozman, Damjana

    2009-08-19

    Detoxification in the liver involves activation of nuclear receptors, such as the constitutive androstane receptor (CAR), which regulate downstream genes of xenobiotic metabolism. Frequently, the metabolism of endobiotics is also modulated, resulting in potentially harmful effects. We therefore used 1,4-Bis [2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP) to study the effect of CAR activation on mouse hepatic transcriptome and lipid metabolome under conditions of diet-induced hyperlipidemia. Using gene expression profiling with a dedicated microarray, we show that xenobiotic metabolism, PPARalpha and adipocytokine signaling, and steroid synthesis are the pathways most affected by TCPOBOP in normal and hyperlipidemic mice. TCPOBOP-induced CAR activation prevented the increased hepatic and serum cholesterol caused by feeding mice a diet containing 1% cholesterol. We show that this is due to increased bile acid metabolism and up-regulated removal of LDL, even though TCPOBOP increased cholesterol synthesis under conditions of hyperlipidemia. Up-regulation of cholesterol synthesis was not accompanied by an increase in mature SREBP2 protein. As determined by studies in CAR -/- mice, up-regulation of cholesterol synthesis is however CAR-dependent; and no obvious CAR binding sites were detected in promoters of cholesterogenic genes. TCPOBOP also affected serum glucose and triglyceride levels and other metabolic processes in the liver, irrespective of the diet. Our data show that CAR activation modulates hepatic metabolism by lowering cholesterol and glucose levels, through effects on PPARalpha and adiponectin signaling pathways, and by compromising liver adaptations to hyperlipidemia.

  7. ­Genomic data mining of the marine actinobacteria Streptomyces sp. H-KF8 unveils insights into multi-stress related genes and metabolic pathways involved in antimicrobial synthesis

    Directory of Open Access Journals (Sweden)

    Agustina Undabarrena

    2017-02-01

    Full Text Available Streptomyces sp. H-KF8 is an actinobacterial strain isolated from marine sediments of a Chilean Patagonian fjord. Morphological characterization together with antibacterial activity was assessed in various culture media, revealing a carbon-source dependent activity mainly against Gram-positive bacteria (S. aureus and L. monocytogenes. Genome mining of this antibacterial-producing bacterium revealed the presence of 26 biosynthetic gene clusters (BGCs for secondary metabolites, where among them, 81% have low similarities with known BGCs. In addition, a genomic search in Streptomyces sp. H-KF8 unveiled the presence of a wide variety of genetic determinants related to heavy metal resistance (49 genes, oxidative stress (69 genes and antibiotic resistance (97 genes. This study revealed that the marine-derived Streptomyces sp. H-KF8 bacterium has the capability to tolerate a diverse set of heavy metals such as copper, cobalt, mercury, chromate and nickel; as well as the highly toxic tellurite, a feature first time described for Streptomyces. In addition, Streptomyces sp. H-KF8 possesses a major resistance towards oxidative stress, in comparison to the soil reference strain Streptomyces violaceoruber A3(2. Moreover, Streptomyces sp. H-KF8 showed resistance to 88% of the antibiotics tested, indicating overall, a strong response to several abiotic stressors. The combination of these biological traits confirms the metabolic versatility of Streptomyces sp. H-KF8, a genetically well-prepared microorganism with the ability to confront the dynamics of the fjord-unique marine environment.

  8. Genome wide expression analysis in HPV16 Cervical Cancer: identification of altered metabolic pathways

    Science.gov (United States)

    Pérez-Plasencia, Carlos; Vázquez-Ortiz, Guelaguetza; López-Romero, Ricardo; Piña-Sanchez, Patricia; Moreno, José; Salcedo, Mauricio

    2007-01-01

    Background Cervical carcinoma (CC) is a leading cause of death among women worldwide. Human papilloma virus (HPV) is a major etiological factor in CC and HPV 16 is the more frequent viral type present. Our aim was to characterize metabolic pathways altered in HPV 16 tumor samples by means of transcriptome wide analysis and bioinformatics tools for visualizing expression data in the context of KEGG biological pathways. Results We found 2,067 genes significantly up or down-modulated (at least 2-fold) in tumor clinical samples compared to normal tissues, representing ~3.7% of analyzed genes. Cervical carcinoma was associated with an important up-regulation of Wnt signaling pathway, which was validated by in situ hybridization in clinical samples. Other up-regulated pathways were those of calcium signaling and MAPK signaling, as well as cell cycle-related genes. There was down-regulation of focal adhesion, TGF-β signaling, among other metabolic pathways. Conclusion This analysis of HPV 16 tumors transcriptome could be useful for the identification of genes and molecular pathways involved in the pathogenesis of cervical carcinoma. Understanding the possible role of these proteins in the pathogenesis of CC deserves further studies. PMID:17822553

  9. Genome wide expression analysis in HPV16 Cervical Cancer: identification of altered metabolic pathways

    Directory of Open Access Journals (Sweden)

    Salcedo Mauricio

    2007-09-01

    Full Text Available Abstract Background Cervical carcinoma (CC is a leading cause of death among women worldwide. Human papilloma virus (HPV is a major etiological factor in CC and HPV 16 is the more frequent viral type present. Our aim was to characterize metabolic pathways altered in HPV 16 tumor samples by means of transcriptome wide analysis and bioinformatics tools for visualizing expression data in the context of KEGG biological pathways. Results We found 2,067 genes significantly up or down-modulated (at least 2-fold in tumor clinical samples compared to normal tissues, representing ~3.7% of analyzed genes. Cervical carcinoma was associated with an important up-regulation of Wnt signaling pathway, which was validated by in situ hybridization in clinical samples. Other up-regulated pathways were those of calcium signaling and MAPK signaling, as well as cell cycle-related genes. There was down-regulation of focal adhesion, TGF-β signaling, among other metabolic pathways. Conclusion This analysis of HPV 16 tumors transcriptome could be useful for the identification of genes and molecular pathways involved in the pathogenesis of cervical carcinoma. Understanding the possible role of these proteins in the pathogenesis of CC deserves further studies.

  10. Metabolic pathway of 3,6-anhydro-D-galactose in carrageenan-degrading microorganisms.

    Science.gov (United States)

    Lee, Sun Bok; Kim, Jeong Ah; Lim, Hyun Seung

    2016-05-01

    Complete hydrolysis of κ-carrageenan produces two sugars, D-galactose and 3,6-anhydro-D-galactose (D-AnG). At present, however, we do not know how carrageenan-degrading microorganisms metabolize D-AnG. In this study, we investigated the metabolic pathway of D-AnG degradation by comparative genomic analysis of Cellulophaga lytica LIM-21, Pseudoalteromonas atlantica T6c, and Epulopiscium sp. N.t. morphotype B, which represent the classes Flavobacteria, Gammaproteobacteria, and Clostridia, respectively. In this bioinformatic analysis, we found candidate common genes that were believed to be involved in D-AnG metabolism. We then experimentally confirmed the enzymatic function of each gene product in the D-AnG cluster. In all three microorganisms, D-AnG metabolizing genes were clustered and organized in operon-like arrangements, which we named as the dan operon (3,6-d-anhydro-galactose). Combining bioinformatic analysis and experimental data, we showed that D-AnG is metabolized to pyruvate and D-glyceraldehyde-3-phosphate via four enzyme-catalyzed reactions in the following route: 3,6-anhydro-D-galactose → 3,6-anhydro-D-galactonate → 2-keto-3-deoxy-D-galactonate (D-KDGal) → 2-keto-3-deoxy-6-phospho-D-galactonate → pyruvate + D-glyceraldehyde-3-phosphate. The pathway of D-AnG degradation is composed of two parts: transformation of D-AnG to D-KDGal using two D-AnG specific enzymes and breakdown of D-KDGal to two glycolysis intermediates using two DeLey-Doudoroff pathway enzymes. To our knowledge, this is the first report on the metabolic pathway of D-AnG degradation.

  11. Anatomical pathways involved in generating and sensing rhythmic whisker movements

    Directory of Open Access Journals (Sweden)

    Laurens W.J. Bosman

    2011-10-01

    Full Text Available The rodent whisker system is widely used as a model system for investigating sensorimotor integration, neural mechanisms of complex cognitive tasks, neural development, and robotics. The whisker pathways to the barrel cortex have received considerable attention. However, many subcortical structures are paramount to the whisker system. They contribute to important processes, like filtering out salient features, integration with other senses and adaptation of the whisker system to the general behavioral state of the animal. We present here an overview of the brain regions and their connections involved in the whisker system. We do not only describe the anatomy and functional roles of the cerebral cortex, but also those of subcortical structures like the striatum, superior colliculus, cerebellum, pontomedullary reticular formation, zona incerta and anterior pretectal nucleus as well as those of level setting systems like the cholinergic, histaminergic, serotonergic and noradrenergic pathways. We conclude by discussing how these brain regions may affect each other and how they together may control the precise timing of whisker movements and coordinate whisker perception.

  12. Cellular metabolism in colorectal carcinogenesis: Influence of lifestyle, gut microbiome and metabolic pathways.

    Science.gov (United States)

    Hagland, Hanne R; Søreide, Kjetil

    2015-01-28

    The interconnectivity between diet, gut microbiota and cell molecular responses is well known; however, only recently has technology allowed the identification of strains of microorganisms harbored in the gastrointestinal tract that may increase susceptibility to cancer. The colonic environment appears to play a role in the development of colon cancer, which is influenced by the human metabolic lifestyle and changes in the gut microbiome. Studying metabolic changes at the cellular level in cancer be useful for developing novel improved preventative measures, such as screening through metabolic breath-tests or treatment options that directly affect the metabolic pathways responsible for the carcinogenicity. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  13. Dietary modification of metabolic pathways via nuclear hormone receptors.

    Science.gov (United States)

    Caiozzi, Gianella; Wong, Brian S; Ricketts, Marie-Louise

    2012-10-01

    Nuclear hormone receptors (NHRs), as ligand-dependent transcription factors, have emerged as important mediators in the control of whole body metabolism. Because of the promiscuous nature of several members of this superfamily that have been found to bind ligand with lower affinity than the classical steroid NHRs, they consequently display a broader ligand selectivity. This promiscuous nature has facilitated various bioactive dietary components being able to act as agonist ligands for certain members of the NHR superfamily. By binding to these NHRs, bioactive dietary components are able to mediate changes in various metabolic pathways, including, glucose, cholesterol and triglyceride homeostasis among others. This review will provide a general overview of the nuclear hormone receptors that have been shown to be activated by dietary components. The physiological consequences of such receptor activation by these dietary components will then be discussed in more detail. Copyright © 2012 John Wiley & Sons, Ltd.

  14. Metabolic syndrome and Cancer: Do they share common molecular pathways?

    Directory of Open Access Journals (Sweden)

    Veniou E.

    2016-06-01

    Full Text Available Metabolic syndrome, a clustering of risk factors including obesity, has emerged as a global health plague. A lot of epidemiological and clinical evidence suggests that the metabolic syndrome is linked not only to cardiovascular diseases and diabetes mellitus type 2 but also to cancer development and progression. In this review the potential mechanisms tying the metabolic syndrome with cancer are presented. The role of insulin resistance and hyperinsulinemia, the activation of insulin-like growth factor-1 (IGF-1 pathway, and the induction of cytotoxic products are highlighted. Subsequent effects leading to oxidative stress, release of lipokines with signaling properties by adipocytes, development of a sustained systemic inflammation, production of inflammatory cytokines, and establishment of a tumorigenic environment are also discussed. The importance of the metabolic syndrome and obesity coupled with the deeper understanding of the underlying molecular mechanisms has trigger intensive clinical research with an aim to prevent the risk of cancer and improve outcomes. Moreover, the need for lifestyle changes with increased physical activity and improved dietary quality has been emerged as urgent health priority.

  15. Coexistence of competing metabolic pathways in well-mixed populations.

    Science.gov (United States)

    Fernández, Lenin; Amado, André; Campos, Paulo R A; Ferreira, Fernando Fagundes

    2016-05-01

    Understanding why strains with different metabolic pathways that compete for a single limiting resource coexist is a challenging issue within a theoretical perspective. Previous investigations rely on mechanisms such as group or spatial structuring to achieve a stable coexistence between competing metabolic strategies. Nevertheless, coexistence has been experimentally reported even in situations where it cannot be attributed to spatial effects [Heredity 100, 471 (2008)HDTYAT0018-067X10.1038/sj.hdy.6801073]. According to that study a toxin expelled by one of the strains can be responsible for the stable maintenance of the two strain types. We propose a resource-based model in which an efficient strain with a slow metabolic rate competes with a second strain type which presents a fast but inefficient metabolism. Moreover, the model assumes that the inefficient strain produces a toxin as a by-product. This toxin affects the growth rate of both strains with different strength. Through an extensive exploration of the parameter space we determine the situations at which the coexistence of the two strains is possible. Interestingly, we observe that the resource influx rate plays a key role in the maintenance of the two strain types. In a scenario of resource scarcity the inefficient is favored, though as the resource influx rate is augmented the coexistence becomes possible and its domain is enlarged.

  16. Cerebellar involvement in metabolic disorders: a pattern-recognition approach

    International Nuclear Information System (INIS)

    Steinlin, M.; Boltshauser, E.; Blaser, S.

    1998-01-01

    Inborn errors of metabolism can affect the cerebellum during development, maturation and later during life. We have established criteria for pattern recognition of cerebellar abnormalities in metabolic disorders. The abnormalities can be divided into four major groups: cerebellar hypoplasia (CH), hyperplasia, cerebellar atrophy (CA), cerebellar white matter abnormalities (WMA) or swelling, and involvement of the dentate nuclei (DN) or cerebellar cortex. CH can be an isolated typical finding, as in adenylsuccinase deficiency, but is also occasionally seen in many other disorders. Differentiation from CH and CA is often difficult, as in carbohydrate deficient glycoprotein syndrome or 2-l-hydroxyglutaric acidaemia. In cases of atrophy the relationship of cerebellar to cerebral atrophy is important. WMA may be diffuse or patchy, frequently predominantly around the DN. Severe swelling of white matter is present during metabolic crisis in maple syrup urine disease. The DN can be affected by metabolite deposition, necrosis, calcification or demyelination. Involvement of cerebellar cortex is seen in infantile neuroaxonal dystrophy. Changes in DN and cerebellar cortex are rather typical and therefore most helpful; additional features should be sought as they are useful in narrowing down the differential diagnosis. (orig.)

  17. Representing metabolic pathway information: an object-oriented approach.

    Science.gov (United States)

    Ellis, L B; Speedie, S M; McLeish, R

    1998-01-01

    The University of Minnesota Biocatalysis/Biodegradation Database (UM-BBD) is a website providing information and dynamic links for microbial metabolic pathways, enzyme reactions, and their substrates and products. The Compound, Organism, Reaction and Enzyme (CORE) object-oriented database management system was developed to contain and serve this information. CORE was developed using Java, an object-oriented programming language, and PSE persistent object classes from Object Design, Inc. CORE dynamically generates descriptive web pages for reactions, compounds and enzymes, and reconstructs ad hoc pathway maps starting from any UM-BBD reaction. CORE code is available from the authors upon request. CORE is accessible through the UM-BBD at: http://www. labmed.umn.edu/umbbd/index.html.

  18. Engineering of a Xylose Metabolic Pathway in Rhodococcus Strains

    Science.gov (United States)

    Xiong, Xiaochao; Wang, Xi

    2012-01-01

    The two metabolically versatile actinobacteria Rhodococcus opacus PD630 and R. jostii RHA1 can efficiently convert diverse organic substrates into neutral lipids mainly consisting of triacylglycerol (TAG), the precursor of energy-rich hydrocarbon. Neither, however, is able to utilize xylose, the important component present in lignocellulosic biomass, as the carbon source for growth and lipid accumulation. In order to broaden their substrate utilization range, the metabolic pathway of d-xylose utilization was introduced into these two strains. This was accomplished by heterogenous expression of two well-selected genes, xylA, encoding xylose isomerase, and xylB, encoding xylulokinase from Streptomyces lividans TK23, under the control of the tac promoter with an Escherichia coli-Rhodococcus shuttle vector. The recombinant R. jostii RHA1 bearing xylA could grow on xylose as the sole carbon source, and additional expression of xylB further improved the biomass yield. The recombinant could consume both glucose and xylose in the sugar mixture, although xylose metabolism was still affected by the presence of glucose. The xylose metabolic pathway was also introduced into the high-lipid-producing strain R. opacus PD630 by expression of xylA and xylB. Under nitrogen-limited conditions, the fatty acid composition was determined, and lipid produced from xylose by recombinants of R. jostii RHA1 and R. opacus PD630 carrying xylA and xylB represented up to 52.5% and 68.3% of the cell dry weight (CDW), respectively. This work demonstrates that it is feasible to produce lipid from the sugars, including xylose, derived from renewable feedstock by genetic modification of rhodococcus strains. PMID:22636009

  19. Altered placental tryptophan metabolic pathway in human fetal growth restriction.

    Science.gov (United States)

    Murthi, Padma; Wallace, Euan M; Walker, David W

    2017-04-01

    Tryptophan is a substrate for kynurenine pathway metabolism in the placenta. We investigated if kynurenine metabolites change over gestation, if they are different between pregnancies with normal and fetal growth restriction (FGR), and if the oxygen environment modulated kynurenine pathway activity in the human placenta. Tryptophan, kynurenine, and downstream kynurenine metabolites were determined in maternal venous blood, umbilical cord blood, and placental samples obtained in 1st and 3rd trimester pregnancies including FGR, and in the media of placental explants incubated with 20% or 5-8% O 2 for 24, 48 or 72 h. All the major kynurenine metabolites were present in cord blood, and in general were higher than in maternal blood. IDO and TDO mRNA and protein expression, responsible for kynurenine production from tryptophan, were significantly lower in placentas from FGR pregnancies compared with control. Explants prepared from 1st and 3rd trimester placentas actively produced all the major kynurenine pathway metabolites which, together with expression of IDO, TDO, KYN-OHase and 3HAO mRNAs, were significantly lower after 24 h exposure to 5-8% O 2 compared to 20% O 2 CONCLUSIONS: Expression and activity of the kynurenine pathway is present in the placenta from early gestation, and is down-regulated by hypoxia and in FGR pregnancies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Topics in Xenobiochemistry: do metabolic pathways exist for xenobiotics? The micro-metabolism hypothesis.

    Science.gov (United States)

    Wilson, I D; Nicholson, J K

    2003-09-01

    1. The relevance of the concept of 'the metabolic pathway' for the understanding of xenobiotic metabolism is discussed in the light of advances in modern analytical methods that have enabled the detection and identification of minor metabolites present at ever lower concentrations. 2. A model is suggested where the overall metabolic fate of a xenobiotic is the sum of all the possible metabolic reactions permitted by the solution chemistry of the compound modulated by factors such as the metabolizing enzyme complement of the organism, the affinity of those enzymes for the xenobiotic substrates and the probabilities of all of these processes. 3. In this probabilistic, rather than deterministic, system, the resulting proportions of particular metabolites will, therefore, depend on the sums of the probabilities of particular biotransformation reactions occurring and the stability (chemical or metabolic) of the resulting metabolite. 4. In this model, all the potential metabolic possibilities that could result for any individual xenobiotic will occur to some extent. However, in actuality, many of the resulting metabolites will be produced or excreted in such small quantities as to defy ready detection with current methods.

  1. Adipocyte Metabolic Pathways Regulated by Diet Control the Female Germline Stem Cell Lineage inDrosophila melanogaster.

    Science.gov (United States)

    Matsuoka, Shinya; Armstrong, Alissa R; Sampson, Leesa L; Laws, Kaitlin M; Drummond-Barbosa, Daniela

    2017-06-01

    Nutrients affect adult stem cells through complex mechanisms involving multiple organs. Adipocytes are highly sensitive to diet and have key metabolic roles, and obesity increases the risk for many cancers. How diet-regulated adipocyte metabolic pathways influence normal stem cell lineages, however, remains unclear. Drosophila melanogaster has highly conserved adipocyte metabolism and a well-characterized female germline stem cell (GSC) lineage response to diet. Here, we conducted an isobaric tags for relative and absolute quantification (iTRAQ) proteomic analysis to identify diet-regulated adipocyte metabolic pathways that control the female GSC lineage. On a rich (relative to poor) diet, adipocyte Hexokinase-C and metabolic enzymes involved in pyruvate/acetyl-CoA production are upregulated, promoting a shift of glucose metabolism toward macromolecule biosynthesis. Adipocyte-specific knockdown shows that these enzymes support early GSC progeny survival. Further, enzymes catalyzing fatty acid oxidation and phosphatidylethanolamine synthesis in adipocytes promote GSC maintenance, whereas lipid and iron transport from adipocytes controls vitellogenesis and GSC number, respectively. These results show a functional relationship between specific metabolic pathways in adipocytes and distinct processes in the GSC lineage, suggesting the adipocyte metabolism-stem cell link as an important area of investigation in other stem cell systems. Copyright © 2017 by the Genetics Society of America.

  2. Multi-Omics Reveals that Lead Exposure Disturbs Gut Microbiome Development, Key Metabolites, and Metabolic Pathways.

    Science.gov (United States)

    Gao, Bei; Chi, Liang; Mahbub, Ridwan; Bian, Xiaoming; Tu, Pengcheng; Ru, Hongyu; Lu, Kun

    2017-04-17

    Lead exposure remains a global public health issue, and the recent Flint water crisis has renewed public concern about lead toxicity. The toxicity of lead has been well established in a variety of systems and organs. The gut microbiome has been shown to be highly involved in many critical physiological processes, including food digestion, immune system development, and metabolic homeostasis. However, despite the key role of the gut microbiome in human health, the functional impact of lead exposure on the gut microbiome has not been studied. The aim of this study is to define gut microbiome toxicity induced by lead exposure in C57BL/6 mice using multiomics approaches, including 16S rRNA sequencing, whole genome metagenomics sequencing, and gas chromatography-mass spectrometry (GC-MS) metabolomics. 16S rRNA sequencing revealed that lead exposure altered the gut microbiome trajectory and phylogenetic diversity. Metagenomics sequencing and metabolomics profiling showed that numerous metabolic pathways, including vitamin E, bile acids, nitrogen metabolism, energy metabolism, oxidative stress, and the defense/detoxification mechanism, were significantly disturbed by lead exposure. These perturbed molecules and pathways may have important implications for lead toxicity in the host. Taken together, these results demonstrated that lead exposure not only altered the gut microbiome community structures/diversity but also greatly affected metabolic functions, leading to gut microbiome toxicity.

  3. Gene-based mapping and pathway analysis of metabolic traits in dairy cows.

    Directory of Open Access Journals (Sweden)

    Ngoc-Thuy Ha

    Full Text Available The metabolic adaptation of dairy cows during the transition period has been studied intensively in the last decades. However, until now, only few studies have paid attention to the genetic aspects of this process. Here, we present the results of a gene-based mapping and pathway analysis with the measurements of three key metabolites, (1 non-esterified fatty acids (NEFA, (2 beta-hydroxybutyrate (BHBA and (3 glucose, characterizing the metabolic adaptability of dairy cows before and after calving. In contrast to the conventional single-marker approach, we identify 99 significant and biologically sensible genes associated with at least one of the considered phenotypes and thus giving evidence for a genetic basis of the metabolic adaptability. Moreover, our results strongly suggest three pathways involved in the metabolism of steroids and lipids are potential candidates for the adaptive regulation of dairy cows in their early lactation. From our perspective, a closer investigation of our findings will lead to a step forward in understanding the variability in the metabolic adaptability of dairy cows in their early lactation.

  4. Two distinct pathways for metabolism of theophylline and caffeine are coexpressed in Pseudomonas putida CBB5.

    Science.gov (United States)

    Yu, Chi Li; Louie, Tai Man; Summers, Ryan; Kale, Yogesh; Gopishetty, Sridhar; Subramanian, Mani

    2009-07-01

    Pseudomonas putida CBB5 was isolated from soil by enrichment on caffeine. This strain used not only caffeine, theobromine, paraxanthine, and 7-methylxanthine as sole carbon and nitrogen sources but also theophylline and 3-methylxanthine. Analyses of metabolites in spent media and resting cell suspensions confirmed that CBB5 initially N demethylated theophylline via a hitherto unreported pathway to 1- and 3-methylxanthines. NAD(P)H-dependent conversion of theophylline to 1- and 3-methylxanthines was also detected in the crude cell extracts of theophylline-grown CBB5. 1-Methylxanthine and 3-methylxanthine were subsequently N demethylated to xanthine. CBB5 also oxidized theophylline and 1- and 3-methylxanthines to 1,3-dimethyluric acid and 1- and 3-methyluric acids, respectively. However, these methyluric acids were not metabolized further. A broad-substrate-range xanthine-oxidizing enzyme was responsible for the formation of these methyluric acids. In contrast, CBB5 metabolized caffeine to theobromine (major metabolite) and paraxanthine (minor metabolite). These dimethylxanthines were further N demethylated to xanthine via 7-methylxanthine. Theobromine-, paraxanthine-, and 7-methylxanthine-grown cells also metabolized all of the methylxanthines mentioned above via the same pathway. Thus, the theophylline and caffeine N-demethylation pathways converged at xanthine via different methylxanthine intermediates. Xanthine was eventually oxidized to uric acid. Enzymes involved in theophylline and caffeine degradation were coexpressed when CBB5 was grown on theophylline or on caffeine or its metabolites. However, 3-methylxanthine-grown CBB5 cells did not metabolize caffeine, whereas theophylline was metabolized at much reduced levels to only methyluric acids. To our knowledge, this is the first report of theophylline N demethylation and coexpression of distinct pathways for caffeine and theophylline degradation in bacteria.

  5. A New Family of Biuret Hydrolases Involved in S-Triazine Ring Metabolism.

    Science.gov (United States)

    Cameron, Stephan M; Durchschein, Katharina; Richman, Jack E; Sadowsky, Michael J; Wackett, Lawrence P

    2011-08-01

    Biuret is an intermediate in the bacterial metabolism of s-triazine ring compounds and is occasionally used as a ruminant feed supplement. We used bioinformatics to identify a biuret hydrolase, an enzyme that has previously resisted efforts to stabilize, purify and characterize. This newly discovered enzyme is a member of the cysteine hydrolase superfamily, a family of enzymes previously not found to be involved in s-triazine metabolism. The gene from Rhizobium leguminosarum bv. viciae strain 3841 encoding biuret hydrolase was synthesized, transformed into Escherichia coli, and expressed. The enzyme was purified and found to be stable. Biuret hydrolase catalyzed the hydrolysis of biuret to allophanate and ammonia. The k(cat)/K(M) of 1.7 × 10(5) M(-1)s(-1) and the relatively low K(M) of 23 ± 4 μM together suggested that this enzyme acts uniquely on biuret physiologically. This is supported by the fact that of the 34 substrate analogs of biuret tested, only two demonstrated reactivity, both at less than 5% of the rate determined for biuret. Biuret hydrolase does not react with carboxybiuret, the product of the enzyme immediately preceding biuret hydrolase in the metabolic pathway for cyanuric acid. This suggests an unusual metabolic strategy of an enzymatically-produced intermediate undergoing non-enzymatic decarboxylation to produce the substrate for the next enzyme in the pathway.

  6. Rho-kinase inhibition ameliorates metabolic disorders through activation of AMPK pathway in mice.

    Directory of Open Access Journals (Sweden)

    Kazuki Noda

    Full Text Available BACKGROUND: Metabolic disorders, caused by excessive calorie intake and low physical activity, are important cardiovascular risk factors. Rho-kinase, an effector protein of the small GTP-binding protein RhoA, is an important cardiovascular therapeutic target and its activity is increased in patients with metabolic syndrome. We aimed to examine whether Rho-kinase inhibition improves high-fat diet (HFD-induced metabolic disorders, and if so, to elucidate the involvement of AMP-activated kinase (AMPK, a key molecule of metabolic conditions. METHODS AND RESULTS: Mice were fed a high-fat diet, which induced metabolic phenotypes, such as obesity, hypercholesterolemia and glucose intolerance. These phenotypes are suppressed by treatment with selective Rho-kinase inhibitor, associated with increased whole body O2 consumption and AMPK activation in the skeletal muscle and liver. Moreover, Rho-kinase inhibition increased mRNA expression of the molecules linked to fatty acid oxidation, mitochondrial energy production and glucose metabolism, all of which are known as targets of AMPK in those tissues. In systemic overexpression of dominant-negative Rho-kinase mice, body weight, serum lipid levels and glucose metabolism were improved compared with littermate control mice. Furthermore, in AMPKα2-deficient mice, the beneficial effects of fasudil, a Rho-kinase inhibitor, on body weight, hypercholesterolemia, mRNA expression of the AMPK targets and increase of whole body O2 consumption were absent, whereas glucose metabolism was restored by fasudil to the level in wild-type mice. In cultured mouse myocytes, pharmacological and genetic inhibition of Rho-kinase increased AMPK activity through liver kinase b1 (LKB1, with up-regulation of its targets, which effects were abolished by an AMPK inhibitor, compound C. CONCLUSIONS: These results indicate that Rho-kinase inhibition ameliorates metabolic disorders through activation of the LKB1/AMPK pathway, suggesting that

  7. Triple negative breast cancer: the role of metabolic pathways.

    Science.gov (United States)

    Dean, S J R; Rhodes, A

    2014-12-01

    The incidence of breast cancer in Malaysia and other Asian countries is on the increase, reflecting lifestyle changes some of which are known risk factors for the development of breast cancer. Most breast cancers are amenable to adjuvant therapies that target hormone receptors or HER2 receptors on the surface of the cancer cells and bring about significant improvement in survival. However, approximately 17% of Malaysian women with breast cancer, present with tumours that are devoid of these receptors and are consequently termed 'triple negative' breast cancers. These triple negative breast cancers typically occur in women of a younger age than receptor positive cancers, are predominantly of high grade tumours and the prognosis is usually poor. There is therefore a pressing need to understand the biological pathways that drive these tumours, in order that effective strategies are developed to treat these aggressive tumours. With the increasing affluence of developing countries, obesity and Type II Diabetes are also on the rise. These diseases are associated with an increased risk of developing a range of cancers including those of the breast. In particular, the metabolic syndrome has been shown to be associated with triple negative breast cancer. This article reviews some of the metabolic pathways and biomarkers which have been shown to be aberrantly expressed in triple negative breast cancer and highlights some of the ongoing work in this area.

  8. A metabolic pathway for catabolizing levulinic acid in bacteria

    International Nuclear Information System (INIS)

    Rand, Jacqueline M.; Pisithkul, Tippapha; Clark, Ryan L.; Thiede, Joshua M.; Mehrer, Christopher R.

    2017-01-01

    Microorganisms can catabolize a wide range of organic compounds and therefore have the potential to perform many industrially relevant bioconversions. One barrier to realizing the potential of biorefining strategies lies in our incomplete knowledge of metabolic pathways, including those that can be used to assimilate naturally abundant or easily generated feedstocks. For instance, levulinic acid (LA) is a carbon source that is readily obtainable as a dehydration product of lignocellulosic biomass and can serve as the sole carbon source for some bacteria. Yet, the genetics and structure of LA catabolism have remained unknown. Here, we report the identification and characterization of a seven-gene operon that enables LA catabolism in Pseudomonas putida KT2440. When the pathway was reconstituted with purified proteins, we observed the formation of four acyl-CoA intermediates, including a unique 4-phosphovaleryl-CoA and the previously observed 3-hydroxyvaleryl-CoA product. Using adaptive evolution, we obtained a mutant of Escherichia coli LS5218 with functional deletions of fadE and atoC that was capable of robust growth on LA when it expressed the five enzymes from the P. putida operon. Here, this discovery will enable more efficient use of biomass hydrolysates and metabolic engineering to develop bioconversions using LA as a feedstock.

  9. Proteomic Analysis of Hylocereus polyrhizus Reveals Metabolic Pathway Changes.

    Science.gov (United States)

    Hua, Qingzhu; Zhou, Qianjun; Gan, Susheng; Wu, Jingyu; Chen, Canbin; Li, Jiaqiang; Ye, Yaoxiong; Zhao, Jietang; Hu, Guibing; Qin, Yonghua

    2016-09-28

    Red dragon fruit or red pitaya ( Hylocereus polyrhizus ) is the only edible fruit that contains betalains. The color of betalains ranges from red and violet to yellow in plants. Betalains may also serve as an important component of health-promoting and disease-preventing functional food. Currently, the biosynthetic and regulatory pathways for betalain production remain to be fully deciphered. In this study, isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analyses were used to reveal the molecular mechanism of betalain biosynthesis in H. polyrhizus fruits at white and red pulp stages, respectively. A total of 1946 proteins were identified as the differentially expressed between the two samples, and 936 of them were significantly highly expressed at the red pulp stage of H. polyrhizus . RNA-seq and iTRAQ analyses showed that some transcripts and proteins were positively correlated; they belonged to "phenylpropanoid biosynthesis", "tyrosine metabolism", "flavonoid biosynthesis", "ascorbate and aldarate metabolism", "betalains biosynthesis" and "anthocyanin biosynthesis". In betalains biosynthesis pathway, several proteins/enzymes such as polyphenol oxidase, CYP76AD3 and 4,5-dihydroxy-phenylalanine (DOPA) dioxygenase extradiol-like protein were identified. The present study provides a new insight into the molecular mechanism of the betalain biosynthesis at the posttranscriptional level.

  10. The PPARα - FGF21 hormone axis contributes to metabolic regulation by the hepatic JNK signaling pathway

    Science.gov (United States)

    Vernia, Santiago; Cavanagh-Kyros, Julie; Garcia-Haro, Luisa; Sabio, Guadalupe; Barrett, Tamera; Jung, Dae Young; Kim, Jason K.; Xu, Jia; Shulha, Hennady P.; Garber, Manuel; Gao, Guangping; Davis, Roger J.

    2014-01-01

    The cJun NH2-terminal kinase (JNK) stress signaling pathway is implicated in the metabolic response to the consumption of a high fat diet, including the development of obesity and insulin resistance. These metabolic adaptations involve altered liver function. Here we demonstrate that hepatic JNK potently represses the nuclear hormone receptor peroxisome proliferator-activated receptor α (PPARα). JNK therefore causes decreased expression of PPARα target genes that increase fatty acid oxidation / ketogenesis and promote the development of insulin resistance. We show that the PPARα target gene fibroblast growth factor 21 (Fgf21) plays a key role in this response because disruption of the hepatic PPARα - FGF21 hormone axis suppresses the metabolic effects of JNK-deficiency. This analysis identifies the hepatokine FGF21 as a critical mediator of JNK signaling in the liver. PMID:25043817

  11. Metabolism of cysteine by cyteinesulfinate-independent pathway(s) in rat hepatocytes

    International Nuclear Information System (INIS)

    Stipanuk, M.H.; De La Rosa, J.; Drake, M.R.

    1986-01-01

    The metabolism of cysteine (CYS) and that of cysteinesulfinate (CSA) were studied in freshly isolated hepatocytes from fed rats. In incubations of rat hepatocytes with either 1 or 25 mM CSA, over 90% of the 14 CO 2 formed from [1- 14 C]CSA could be accounted for by production of hypotaurine plus taurine. In similar incubations with 1 or 25 mM CYS, only 4% of 14 CO 2 evolution from [1- 14 C]CYS could be accounted for by production of hypotaurine plus taurine. Addition of unlabeled CSA inhibited recovery of label from [1- 14 C]CYS as 14 CO 2 by 33%. Metabolism of CYS and of CSA were affected differently by addition of α-ketoglutarate, a cosubstrate for transamination, or of propargylglycine, an inhibitor of cystathionase activity. These data suggest that a substantial proportion of CYS is catabolized by CSA-independent pathways in the rat hepatocyte. Although addition of α-ketoglutarate to incubations of hepatocytes with CSA resulted in a marked increase in CSA catabolism via the transamination pathway, addition of keto acids to incubation systems had little or no effect on production of any metabolite from CYS. Thus, CYS transamination does not appear to be a major pathway of CYS metabolism in the hepatocyte. Inhibition of cystathionase with propargylglycine reduced both 14 CO 2 production from [1- 14 C]CYS and ammonia plus urea nitrogen production from CYS by about 50%; CSA catabolism was not affected. Thus, cleavage of cyst(e)ine by cystathionase may be an important physiological pathway for CYS catabolism in the liver

  12. New insights into uremia-induced alterations in metabolic pathways.

    Science.gov (United States)

    Rhee, Eugene P; Thadhani, Ravi

    2011-11-01

    This article summarizes recent studies on uremia-induced alterations in metabolism, with particular emphasis on the application of emerging metabolomics technologies. The plasma metabolome is estimated to include more than 4000 distinct metabolites. Because these metabolites can vary dramatically in size and polarity and are distributed across several orders of magnitude in relative abundance, no single analytical method is capable of comprehensive metabolomic profiling. Instead, a variety of analytical techniques, including targeted and nontargeted liquid chromatography-mass spectrometry, have been employed for metabolomic analysis of human plasma. Recent efforts to apply this technology to study uremia have reinforced the common view that end-stage renal disease is a state of generalized small molecule excess. However, the identification of precursor depletion and downstream metabolite excess - for example, with tryptophan and downstream kynurenine metabolites, with low molecular weight triglycerides and dicarboxylic acids, and with phosphatidylcholines, choline, and trimethylamine-N-oxide - suggest that uremia may directly modulate these metabolic pathways. Metabolomic studies have also begun to expand some of these findings to individuals with chronic kidney disease and in model systems. Uremia is associated with diverse, but incompletely understood metabolic disturbances. Metabolomic approaches permit higher resolution phenotyping of these disturbances, but significant efforts will be required to understand the functional significance of select findings.

  13. Tools and strategies for discovering novel enzymes and metabolic pathways

    Directory of Open Access Journals (Sweden)

    John A. Gerlt

    2016-12-01

    Full Text Available The number of entries in the sequence databases continues to increase exponentially – the UniProt database is increasing with a doubling time of ∼4 years (2% increase/month. Approximately 50% of the entries have uncertain, unknown, or incorrect function annotations because these are made by automated methods based on sequence homology. If the potential in complete genome sequences is to be realized, strategies and tools must be developed to facilitate experimental assignment of functions to uncharacterized proteins discovered in genome projects. The Enzyme Function Initiative (EFI; previously supported by U54GM093342 from the National Institutes of Health, now supported by P01GM118303 developed web tools for visualizing and analyzing (1 sequence and function space in protein families (EFI-EST and (2 genome neighbourhoods in microbial and fungal genomes (EFI-GNT to assist the design of experimental strategies for discovering the in vitro activities and in vivo metabolic functions of uncharacterized enzymes. The EFI developed an experimental platform for large-scale production of the solute binding proteins (SBPs for ABC, TRAP, and TCT transport systems and their screening with a physical ligand library to identify the identities of the ligands for these transport systems. Because the genes that encode transport systems are often co-located with the genes that encode the catabolic pathways for the transported solutes, the identity of the SBP ligand together with the EFI-EST and EFI-GNT web tools can be used to discover new enzyme functions and new metabolic pathways. This approach is demonstrated with the characterization of a novel pathway for ethanolamine catabolism.

  14. Pancreatic tumor cell metabolism: focus on glycolysis and its connected metabolic pathways.

    Science.gov (United States)

    Guillaumond, Fabienne; Iovanna, Juan Lucio; Vasseur, Sophie

    2014-03-01

    Because of lack of effective treatment, pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of death by cancer in Western countries, with a very weak improvement of survival rate over the last 40years. Defeat of numerous conventional therapies to cure this cancer makes urgent to develop new tools usable by clinicians for a better management of the disease. Aggressiveness of pancreatic cancer relies on its own hallmarks: a low vascular network as well as a prominent stromal compartment (desmoplasia), which creates a severe hypoxic environment impeding correct oxygen and nutrients diffusion to the tumoral cells. To survive and proliferate in those conditions, pancreatic cancer cells set up specific metabolic pathways to meet their tremendous energetic and biomass demands. However, as PDAC is a heterogenous tumor, a complex reprogramming of metabolic processes is engaged by cancer cells according to their level of oxygenation and nutrients supply. In this review, we focus on the glycolytic activity of PDAC and the glucose-connected metabolic pathways which contribute to the progression and dissemination of this disease. We also discuss possible therapeutic strategies targeting these pathways in order to cure this disease which still until now is resistant to numerous conventional treatments. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Methamphetamine addiction: involvement of CREB and neuroinflammatory signaling pathways.

    Science.gov (United States)

    Krasnova, Irina N; Justinova, Zuzana; Cadet, Jean Lud

    2016-05-01

    Addiction to psychostimulant methamphetamine (METH) remains a major public health problem in the world. Animal models that use METH self-administration incorporate many features of human drug-taking behavior and are very helpful in elucidating mechanisms underlying METH addiction. These models are also helping to decipher the neurobiological substrates of associated neuropsychiatric complications. This review summarizes our work on the influence of METH self-administration on dopamine systems, transcription and immune responses in the brain. We used the rat model of METH self-administration with extended access (15 h/day for eight consecutive days) to investigate the effects of voluntary METH intake on the markers of dopamine system integrity and changes in gene expression observed in the brain at 2 h-1 month after cessation of drug exposure. Extended access to METH self-administration caused changes in the rat brain that are consistent with clinical findings reported in neuroimaging and postmortem studies of human METH addicts. In addition, gene expression studies using striatal tissues from METH self-administering rats revealed increased expression of genes involved in cAMP response element binding protein (CREB) signaling pathway and in the activation of neuroinflammatory response in the brain. These data show an association of METH exposure with activation of neuroplastic and neuroinflammatory cascades in the brain. The neuroplastic changes may be involved in promoting METH addiction. Neuroinflammatory processes in the striatum may underlie cognitive deficits, depression, and parkinsonism reported in METH addicts. Therapeutic approaches that include suppression of neuroinflammation may be beneficial to addicted patients.

  16. Antioxidized LDL Antibodies Are Associated With Different Metabolic Pathways in Patients With Atherosclerotic Plaque and Type 2 Diabetes

    OpenAIRE

    Bernal-Lopez, M. Rosa; Garrido-Sanchez, Lourdes; Gomez-Carrillo, Victor; Gallego-Perales, Jose Luis; Llorente-Cortes, Vicenta; Calleja, Fernando; Gomez-Huelgas, Ricardo; Badimon, Lina; Tinahones, Francisco J.

    2013-01-01

    OBJECTIVE Oxidized lipoproteins and antioxidized LDL antibodies (antioxLDL abs) have been detected in human plasma and atherosclerotic lesions. The principle aim of this study was to analyze the possible relationship between IgG and IgM antioxLDL abs and factors involved in different metabolic pathways (inflammation, lipid metabolism, apoptosis, and cell cycle arrest profile) in the occluded popliteal artery (OPA) compared with the femoral vein (FV). RESEARCH DESIGN AND METHODS Fifteen patien...

  17. Intrinsic JNK-MAPK pathway involvement requires daf-16-mediated immune response during Shigella flexneri infection in C. elegans.

    Science.gov (United States)

    Marudhupandiyan, Shanmugam; Balamurugan, Krishnaswamy

    2017-06-01

    The c-Jun N-terminal kinase-mitogen-activated protein kinase (JNK-MAPK) pathway assists in modulating signals for growth, survival, and metabolism, thereby coordinating many cellular events during normal and stress conditions. To understand the role of the JNK-MAPK pathway during bacterial infection, an in vivo model organism Caenorhabditis elegans was used. In order to check the involvement of the JNK-MAPK pathway, the survival rate of C. elegans wild type (WT), and JNK-MAPK pathway mutant worms' upon exposure to selective Gram-positive and Gram-negative pathogenic bacteria, was studied. Among the pathogens, Shigella flexneri M9OT was found to efficiently colonize inside the WT and JNK-MAPK pathway mutant worms. qPCR studies had suggested that the above pathway-specific genes kgb-2 and jnk-1 were prominently responsible for the immune response elicited by the host during the M9OT infection. In addition, daf-16, which is a major transcription factor of the insulin/insulin growth factor-1 signaling (IIS) pathway, was also found to be involved during the host response. Crosstalk between IIS and JNK-MAPK pathways has probably been involved in the activation of the host immune system, which consequently leads to lifespan extension. Furthermore, it is also observed that daf-16 activation by JNK-MAPK pathway leads to antimicrobial response, by activating lys-7 expression. These findings suggest that JNK-MAPK is not the sole pathway that enhances the immunity of the host. Nonetheless, the IIS pathway bridges the JNK-MAPK pathway that influences in protecting the host in counter to the M9OT infection.

  18. The role of arginine metabolic pathway during embryogenesis and germination in maritime pine (Pinus pinaster Ait.).

    Science.gov (United States)

    Llebrés, María-Teresa; Pascual, María-Belén; Debille, Sandrine; Trontin, Jean-François; Harvengt, Luc; Avila, Concepción; Cánovas, Francisco M

    2018-03-01

    Vegetative propagation through somatic embryogenesis is critical in conifer biotechnology towards multivarietal forestry that uses elite varieties to cope with environmental and socio-economic issues. An important and still sub-optimal process during in vitro maturation of somatic embryos (SE) is the biosynthesis and deposition of storage proteins, which are rich in amino acids with high nitrogen (N) content, such as arginine. Mobilization of these N-rich proteins is essential for the germination and production of vigorous somatic seedlings. Somatic embryos accumulate lower levels of N reserves than zygotic embryos (ZE) at a similar stage of development. To understand the molecular basis for this difference, the arginine metabolic pathway has been characterized in maritime pine (Pinus pinaster Ait.). The genes involved in arginine metabolism have been identified and GFP-fusion constructs were used to locate the enzymes in different cellular compartments and clarify their metabolic roles during embryogenesis and germination. Analysis of gene expression during somatic embryo maturation revealed high levels of transcripts for genes involved in the biosynthesis and metabolic utilization of arginine. By contrast, enhanced expression levels were only observed during the last stages of maturation and germination of ZE, consistent with the adequate accumulation and mobilization of protein reserves. These results suggest that arginine metabolism is unbalanced in SE (simultaneous biosynthesis and degradation of arginine) and could explain the lower accumulation of storage proteins observed during the late stages of somatic embryogenesis.

  19. Short-chain 3-hydroxyacyl-coenzyme A dehydrogenase associates with a protein super-complex integrating multiple metabolic pathways.

    Directory of Open Access Journals (Sweden)

    Srinivas B Narayan

    Full Text Available Proteins involved in mitochondrial metabolic pathways engage in functionally relevant multi-enzyme complexes. We previously described an interaction between short-chain 3-hydroxyacyl-coenzyme A dehydrogenase (SCHAD and glutamate dehydrogenase (GDH explaining the clinical phenotype of hyperinsulinism in SCHAD-deficient patients and adding SCHAD to the list of mitochondrial proteins capable of forming functional, multi-pathway complexes. In this work, we provide evidence of SCHAD's involvement in additional interactions forming tissue-specific metabolic super complexes involving both membrane-associated and matrix-dwelling enzymes and spanning multiple metabolic pathways. As an example, in murine liver, we find SCHAD interaction with aspartate transaminase (AST and GDH from amino acid metabolic pathways, carbamoyl phosphate synthase I (CPS-1 from ureagenesis, other fatty acid oxidation and ketogenesis enzymes and fructose-bisphosphate aldolase, an extra-mitochondrial enzyme of the glycolytic pathway. Most of the interactions appear to be independent of SCHAD's role in the penultimate step of fatty acid oxidation suggesting an organizational, structural or non-enzymatic role for the SCHAD protein.

  20. Pathway analysis of kidney cancer using proteomics and metabolic profiling

    Directory of Open Access Journals (Sweden)

    Fiehn Oliver

    2006-11-01

    Full Text Available Abstract Background Renal cell carcinoma (RCC is the sixth leading cause of cancer death and is responsible for 11,000 deaths per year in the US. Approximately one-third of patients present with disease which is already metastatic and for which there is currently no adequate treatment, and no biofluid screening tests exist for RCC. In this study, we have undertaken a comprehensive proteomic analysis and subsequently a pathway and network approach to identify biological processes involved in clear cell RCC (ccRCC. We have used these data to investigate urinary markers of RCC which could be applied to high-risk patients, or to those being followed for recurrence, for early diagnosis and treatment, thereby substantially reducing mortality of this disease. Results Using 2-dimensional electrophoresis and mass spectrometric analysis, we identified 31 proteins which were differentially expressed with a high degree of significance in ccRCC as compared to adjacent non-malignant tissue, and we confirmed some of these by immunoblotting, immunohistochemistry, and comparison to published transcriptomic data. When evaluated by several pathway and biological process analysis programs, these proteins are demonstrated to be involved with a high degree of confidence (p values Conclusion Extensive pathway and network analysis allowed for the discovery of highly significant pathways from a set of clear cell RCC samples. Knowledge of activation of these processes will lead to novel assays identifying their proteomic and/or metabolomic signatures in biofluids of patient at high risk for this disease; we provide pilot data for such a urinary bioassay. Furthermore, we demonstrate how the knowledge of networks, processes, and pathways altered in kidney cancer may be used to influence the choice of optimal therapy.

  1. Review of metabolic pathways activated in cancer cells as determined through isotopic labeling and network analysis.

    Science.gov (United States)

    Dong, Wentao; Keibler, Mark A; Stephanopoulos, Gregory

    2017-09-01

    Cancer metabolism has emerged as an indispensable part of contemporary cancer research. During the past 10 years, the use of stable isotopic tracers and network analysis have unveiled a number of metabolic pathways activated in cancer cells. Here, we review such pathways along with the particular tracers and labeling observations that led to the discovery of their rewiring in cancer cells. The list of such pathways comprises the reductive metabolism of glutamine, altered glycolysis, serine and glycine metabolism, mutant isocitrate dehydrogenase (IDH) induced reprogramming and the onset of acetate metabolism. Additionally, we demonstrate the critical role of isotopic labeling and network analysis in identifying these pathways. The alterations described in this review do not constitute a complete list, and future research using these powerful tools is likely to discover other cancer-related pathways and new metabolic targets for cancer therapy. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  2. Metabolic responses and pathway changes of mammalian cells under different culture conditions with media supplementations.

    Science.gov (United States)

    Park, Seo-Young; Reimonn, Thomas M; Agarabi, Cyrus D; Brorson, Kurt A; Yoon, Seongkyu

    2018-02-21

    Amino acids and glucose consumption, cell growth and monoclonal antibody (mAb) production in mammalian cell culture are key considerations during upstream process and particularly media optimization. Understanding the interrelations and the relevant cellular physiology will provide insight for setting strategy of robust and effective mAb production. The aim of this study was to further our understanding of nutrient consumption metabolism, since this could have significant impact on enhancing mAb titer, cell proliferation, designing feeding strategies, and development of feed media. The nutrient consumption pattern, mAb concentration, and cell growth were analyzed in three sets of cell cultures with media supplementation of glucose, methionine, threonine, tryptophan, and tyrosine. The amino acids metabolism and its impact on cell growth and mAb production during the batch and fed-batch culture were closely analyzed. It was shown that the phenylalanine, tyrosine and tryptophan biosynthesis pathways were significantly altered under different culture conditions with different media. These changes were more apparent in the fed-batch process in which higher mAb titer was observed due to the metabolic changes than mAb titer in the batch process. The pathway analysis approach was well utilized for evaluating the impact on the relevant pathways involved under different cell culture conditions to improve cell growth and mAb titer. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018. © 2018 American Institute of Chemical Engineers.

  3. Identification of sugarcane genes involved in the purine synthesis pathway

    Directory of Open Access Journals (Sweden)

    Mario A. Jancso

    2001-12-01

    Full Text Available Nucleotide synthesis is of central importance to all cells. In most organisms, the purine nucleotides are synthesized de novo from non-nucleotide precursors such as amino acids, ammonia and carbon dioxide. An understanding of the enzymes involved in sugarcane purine synthesis opens the possibility of using these enzymes as targets for chemicals which may be effective in combating phytopathogen. Such an approach has already been applied to several parasites and types of cancer. The strategy described in this paper was applied to identify sugarcane clusters for each step of the de novo purine synthesis pathway. Representative sequences of this pathway were chosen from the National Center for Biotechnology Information (NCBI database and used to search the translated sugarcane expressed sequence tag (SUCEST database using the available basic local alignment search tool (BLAST facility. Retrieved clusters were further tested for the statistical significance of the alignment by an implementation (PRSS3 of the Monte Carlo shuffling algorithm calibrated using known protein sequences of divergent taxa along the phylogenetic tree. The sequences were compared to each other and to the sugarcane clusters selected using BLAST analysis, with the resulting table of p-values indicating the degree of divergence of each enzyme within different taxa and in relation to the sugarcane clusters. The results obtained by this strategy allowed us to identify the sugarcane proteins participating in the purine synthesis pathway.A via de síntese de purino nucleotídeos é considerada uma via de central importância para todas as células. Na maioria dos organismos, os purino nucleotídeos são sintetizados ''de novo'' a partir de precursores não-nucleotídicos como amino ácidos, amônia e dióxido de carbono. O conhecimento das enzimas envolvidas na via de síntese de purinas da cana-de-açúcar vai abrir a possibilidade do uso dessas enzimas como alvos no desenho

  4. The "parallel pathway": a novel nutritional and metabolic approach to cancer patients.

    Science.gov (United States)

    Muscaritoli, Maurizio; Molfino, Alessio; Gioia, Gianfranco; Laviano, Alessandro; Rossi Fanelli, Filippo

    2011-04-01

    Cancer-associated malnutrition results from a deadly combination of anorexia, which leads to reduced food intake, and derangements of host metabolism inducing body weight loss, and hindering its reversal with nutrient supplementation. Cancer patients often experience both anorexia and weight loss, contributing to the onset of the clinical feature named as anorexia-cachexia syndrome. This condition has a negative impact upon patients' nutritional status. The pathogenesis of the anorexia-cachexia syndrome is multifactorial, and is related to: tumour-derived factors, host-derived factors inducing metabolic derangements, and side effects of anticancer therapies. In addition, the lack of awareness of cancer patients' nutritional issues and status by many oncologists, frequently results in progressive weight loss going undiagnosed until it becomes severe. The critical involvement of host inflammatory response in the development of weight loss, and, in particular, lean body mass depletion, limits the response to the provision of standard nutrition support. A novel nutritional and metabolic approach, named "parallel pathway", has been devised that may help maintain or improve nutritional status, and prevent or delay the onset of cancer cachexia. Such an approach may improve tolerance to aggressive anticancer therapies, and ameliorate the functional capacity and quality of life even in advanced disease stages. The "parallel pathway" implies a multiprofessional and multimodal approach aimed at ensuring early, appropriate and continuous nutritional and metabolic support to cancer patients in any phase of their cancer journey.

  5. miR2Pathway: A Novel Analytical Method to Discover MicroRNA-mediated Dysregulated Pathways Involved in Hepatocellular Carcinoma.

    Science.gov (United States)

    Li, Chaoxing; Dinu, Valentin

    2018-03-22

    MicroRNAs (miRNAs) are small, non-coding RNAs involved in the regulation of gene expression at a post-transcriptional level. Recent studies have shown miRNAs as key regulators of a variety of biological processes, such as proliferation, differentiation, apoptosis, metabolism, etc. Aberrantly expressed miRNAs influence individual gene expression level, but rewired miRNA-mRNA connections can influence the activity of biological pathways. Here, we define rewired miRNA-mRNA connections as the differential (rewiring) effects on the activity of biological pathways between hepatocellular carcinoma (HCC) and normal phenotypes. Our work presented here uses a PageRank-based approach to measure the degree of miRNA-mediated dysregulation of biological pathways between HCC and normal samples based on rewired miRNA-mRNA connections. In our study, we regard the degree of miRNA-mediated dysregulation of biological pathways as disease risk of biological pathways. Therefore, we propose a new method, miR2Pathway, to measure and rank the degree of miRNA-mediated dysregulation of biological pathways by measuring the total differential influence of miRNAs on the activity of pathways between HCC and normal states. miR2Pathway proposed here systematically shows the first evidence for a mechanism of biological pathways being dysregulated by rewired miRNA-mRNA connections, and provides new insight into exploring mechanisms behind HCC. Thus, miR2Pathway is a novel method to identify and rank miRNA-dysregulated pathways in HCC. Copyright © 2018. Published by Elsevier Inc.

  6. Involvement of the kynurenine pathway in human glioma pathophysiology.

    Directory of Open Access Journals (Sweden)

    Seray Adams

    Full Text Available The kynurenine pathway (KP is the principal route of L-tryptophan (TRP catabolism leading to the production of kynurenine (KYN, the neuroprotectants, kynurenic acid (KYNA and picolinic acid (PIC, the excitotoxin, quinolinic acid (QUIN and the essential pyridine nucleotide, nicotinamide adenine dinucleotide (NAD(+. The enzymes indoleamine 2,3-dioxygenase-1 (IDO-1, indoleamine 2,3-dioxygenase-2 (IDO-2 and tryptophan 2,3-dioxygenase (TDO-2 initiate the first step of the KP. IDO-1 and TDO-2 induction in tumors are crucial mechanisms implicated to play pivotal roles in suppressing anti-tumor immunity. Here, we report the first comprehensive characterisation of the KP in 1 cultured human glioma cells and 2 plasma from patients with glioblastoma (GBM. Our data revealed that interferon-gamma (IFN-γ stimulation significantly potentiated the expression of the KP enzymes, IDO-1 IDO-2, kynureninase (KYNU, kynurenine hydroxylase (KMO and significantly down-regulated 2-amino-3-carboxymuconate semialdehyde decarboxylase (ACMSD and kynurenine aminotransferase-I (KAT-I expression in cultured human glioma cells. This significantly increased KP activity but significantly lowered the KYNA/KYN neuroprotective ratio in human cultured glioma cells. KP activation (KYN/TRP was significantly higher, whereas the concentrations of the neuroreactive KP metabolites TRP, KYNA, QUIN and PIC and the KYNA/KYN ratio were significantly lower in GBM patient plasma (n = 18 compared to controls. These results provide further evidence for the involvement of the KP in glioma pathophysiology and highlight a potential role of KP products as novel and highly attractive therapeutic targets to evaluate for the treatment of brain tumors, aimed at restoring anti-tumor immunity and reducing the capacity for malignant cells to produce NAD(+, which is necessary for energy production and DNA repair.

  7. Quantifying environmental adaptation of metabolic pathways in metagenomics

    DEFF Research Database (Denmark)

    Gianoulis, Tara A; Raes, Jeroen; Patel, Prianka V

    2009-01-01

    Recently, approaches have been developed to sample the genetic content of heterogeneous environments (metagenomics). However, by what means these sequences link distinct environmental conditions with specific biological processes is not well understood. Thus, a major challenge is how the usage...... of particular pathways and subnetworks reflects the adaptation of microbial communities across environments and habitats-i.e., how network dynamics relates to environmental features. Previous research has treated environments as discrete, somewhat simplified classes (e.g., terrestrial vs. marine), and searched...... for obvious metabolic differences among them (i.e., treating the analysis as a typical classification problem). However, environmental differences result from combinations of many factors, which often vary only slightly. Therefore, we introduce an approach that employs correlation and regression to relate...

  8. Novel pathway of NAD metabolism in Aspergillus niger

    International Nuclear Information System (INIS)

    Kuwahara, Masaaki

    1977-01-01

    New steps of NAD metabolism were shown in Aspergillus niger. Radioactive nicotinic acid and nicotinamide were incorporated into nicotinamide ribose diphosphate ribose (NAmRDPR), which had been isolated from the culture filtrate. The enzyme preparation of the mold degraded NAmRDPR to form nicotinamide mononucleotide and nicotinic acid under the neutral and alkaline conditions. In the acid extracts of the mycelia grown on the radioactive precursors, high level of radioactivity was detected on NAD. The experimental results showed that the Preiss-Handler pathway and the NAD cycling system function in the NAD biosynthesis in A. niger. A part of the radioactive precursors was also incorporated into nicotinic acid ribonucleoside, which was thought to be formed from nicotinic acid mononucleotide. (auth.)

  9. The β-cyanoalanine pathway is involved in the response to water deficit in Arabidopsis thaliana.

    Science.gov (United States)

    Machingura, Marylou; Sidibe, Aissatou; Wood, Andrew J; Ebbs, Stephen D

    2013-02-01

    The β-cyanoalanine pathway is primarily responsible for detoxification of excess cyanide produced by plants. Recent evidence suggests that cyanide detoxification via this pathway may be involved in the response and tolerance to water deficit in plants. The aim of this study was to explore this role in Arabidopsis thaliana in greater detail. The first objective was to establish responsiveness of the pathway to the magnitude and duration of water deficit. The second objective was to examine how interruption of single genes (AtCysA1, AtCysC1 and AtNIT4) encoding enzymes of the pathway influenced the ability to metabolize cyanide and withstand water deficit. Arabidopsis plants were exposed to conditions which emulated acute and chronic water deficit, followed by measurement of tissue cyanide concentration, activity of enzymes, and physiological parameters. The results for wild-type Arabidopsis demonstrated a transient increase in cyanide concentration and β-cyanoalanine synthase activity, followed by a decrease in both. The increase in enzyme activity was localized to the tissue in direct proximity to the stress. The knockdown AtCysA1 mutant did not differ from wild-type while AtCysC1 mutants were slightly more sensitive to water deficit. The AtNIT4 mutant was the most sensitive showing decreased growth along with altered chlorophyll content under water deficit as compared to wild-type. Collectively, the results indicated that the pathway is responsive to water deficit although the severity of stress did not alter the nature of the response, implying that the capacity to remove cyanide generated during water deficit may contribute to tolerance to this stress in Arabidopsis. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  10. Pyrrolizidine Alkaloids: Metabolic Activation Pathways Leading to Liver Tumor Initiation.

    Science.gov (United States)

    Fu, Peter P

    2017-01-17

    Pyrrolizidine alkaloids (PAs) and PA N-oxides are a class of phytochemical carcinogens contained in over 6000 plant species spread around the world. It has been estimated that approximately half of the 660 PAs and PA N-oxides that have been characterized are cytotoxic, genotoxic, and tumorigenic. It was recently determined that a genotoxic mechanism of liver tumor initiation mediated by PA-derived DNA adducts is a common metabolic activation pathway of a number of PAs. We proposed this set of PA-derived DNA adducts could be a common biological biomarker of PA exposure and a potential biomarker of PA-induced liver tumor formation. We have also found that several reactive secondary pyrrolic metabolites can dissociate and interconvert to other secondary pyrrolic metabolites, resulting in the formation of the same exogenous DNA adducts. This present perspective reports the current progress on these new findings and proposes future research needed for obtaining a greater understanding of the role of this activation pathway and validating the use of this set of PA-derived DNA adducts as a biological biomarker of PA-induced liver tumor initiation.

  11. Identification of diagnostic biomarkers and metabolic pathway shifts of heat-stressed lactating dairy cows.

    Science.gov (United States)

    Tian, He; Wang, Weiyu; Zheng, Nan; Cheng, Jianbo; Li, Songli; Zhang, Yangdong; Wang, Jiaqi

    2015-07-01

    Controlling heat stress (HS) is a global challenge for the dairy industry. However, simple and reliable biomarkers that aid the diagnoses of HS-induced metabolic disorders have not yet been identified. In this work, an integrated metabolomic and lipidomic approach using (1)H nuclear magnetic resonance and ultra-fast LC-MS was employed to investigate the discrimination of plasma metabolic profiles between HS-free and HS lactating dairy cows. Targeted detection using LC-MS in multiple reaction monitoring mode was used to verify the reliability of the metabolites as biomarker candidates. Overall, 41 metabolites were identified as candidates for lactating dairy cows exposed to HS, among which 13 metabolites, including trimethylamine, glucose, lactate, betaine, creatine, pyruvate, acetoacetate, acetone, β-hydroxybutyrate, C16 sphinganine, lysophosphatidylcholine (18:0), phosphatidylcholine (16:0/14:0), and arachidonic acid, had high sensitivity and specificity in diagnosing HS status, and are likely to be the potential biomarkers of HS dairy cows. All of these potentially diagnostic biomarkers were involved in carbohydrate, amino acid, lipid, or gut microbiome-derived metabolism, indicating that HS affected the metabolic pathways in lactating dairy cows. Further research is warranted to evaluate these biomarkers in practical applications and to elucidate the physiological mechanisms of HS-induced metabolic disorders. Heat stress (HS) annually causes huge losses to global dairy industry, including animal performance decrease, metabolic disorder and health problem. So far, physiological mechanisms underlying HS of dairy cows still remain elusive. To our best knowledge, this is the first attempt to elucidate the HS-induced metabolic disorders of dairy cows using integrated (1)H NMR and LC-MS-based metabolic study. The results not only provided potential diagnostic biomarkers for HS lactating dairy cows, but also significantly explored the related physiological mechanisms

  12. Vitamin D metabolic pathway genes and pancreatic cancer risk.

    Directory of Open Access Journals (Sweden)

    Hannah Arem

    Full Text Available Evidence on the association between vitamin D status and pancreatic cancer risk is inconsistent. This inconsistency may be partially attributable to variation in vitamin D regulating genes. We selected 11 vitamin D-related genes (GC, DHCR7, CYP2R1, VDR, CYP27B1, CYP24A1, CYP27A1, RXRA, CRP2, CASR and CUBN totaling 213 single nucleotide polymorphisms (SNPs, and examined associations with pancreatic adenocarcinoma. Our study included 3,583 pancreatic cancer cases and 7,053 controls from the genome-wide association studies of pancreatic cancer PanScans-I-III. We used the Adaptive Joint Test and the Adaptive Rank Truncated Product statistic for pathway and gene analyses, and unconditional logistic regression for SNP analyses, adjusting for age, sex, study and population stratification. We examined effect modification by circulating vitamin D concentration (≤50, >50 nmol/L for the most significant SNPs using a subset of cohort cases (n = 713 and controls (n = 878. The vitamin D metabolic pathway was not associated with pancreatic cancer risk (p = 0.830. Of the individual genes, none were associated with pancreatic cancer risk at a significance level of p<0.05. SNPs near the VDR (rs2239186, LRP2 (rs4668123, CYP24A1 (rs2762932, GC (rs2282679, and CUBN (rs1810205 genes were the top SNPs associated with pancreatic cancer (p-values 0.008-0.037, but none were statistically significant after adjusting for multiple comparisons. Associations between these SNPs and pancreatic cancer were not modified by circulating concentrations of vitamin D. These findings do not support an association between vitamin D-related genes and pancreatic cancer risk. Future research should explore other pathways through which vitamin D status might be associated with pancreatic cancer risk.

  13. Targeting tissue-specific metabolic signaling pathways in aging: the promise and limitations.

    Science.gov (United States)

    Hu, Fang; Liu, Feng

    2014-01-01

    It has been well established that most of the age-related diseases such as insulin resistance, type 2 diabetes, hypertension, cardiovascular disease, osteoporosis, and atherosclerosis are all closely related to metabolic dysfunction. On the other hand, interventions on metabolism such as calorie restriction or genetic manipulations of key metabolic signaling pathways such as the insulin and mTOR signaling pathways slow down the aging process and improve healthy aging. These findings raise an important question as to whether improving energy homeostasis by targeting certain metabolic signaling pathways in specific tissues could be an effective anti-aging strategy. With a more comprehensive understanding of the tissue-specific roles of distinct metabolic signaling pathways controlling energy homeostasis and the cross-talks between these pathways during aging may lead to the development of more effective therapeutic interventions not only for metabolic dysfunction but also for aging.

  14. Biological pathways and genetic mechanisms involved in social functioning

    NARCIS (Netherlands)

    Ordonana, J.R.; Bartels, M.; Boomsma, D.I.; Cella, D.; Mosing, M.; Oliveira, J.R.; Patrick, D.L.; Veenhoven, R.; Wagner, G.G.; Sprangers, M.A.G.

    2013-01-01

    Purpose: To describe the major findings in the literature regarding associations between biological and genetic factors and social functioning, paying special attention to: (1) heritability studies on social functioning and related concepts; (2) hypothesized biological pathways and genetic variants

  15. Metabolic pathways regulated by TAp73 in response to oxidative stress.

    Science.gov (United States)

    Agostini, Massimiliano; Annicchiarico-Petruzzelli, Margherita; Melino, Gerry; Rufini, Alessandro

    2016-05-24

    Reactive oxygen species are involved in both physiological and pathological processes including neurodegeneration and cancer. Therefore, cells have developed scavenging mechanisms to maintain redox homeostasis under control. Tumor suppressor genes play a critical role in the regulation of antioxidant genes. Here, we investigated whether the tumor suppressor gene TAp73 is involved in the regulation of metabolic adaptations triggered in response to oxidative stress. H2O2 treatment resulted in numerous biochemical changes in both control and TAp73 knockout (TAp73-/-) mouse embryonic fibroblasts, however the extent of these changes was more pronounced in TAp73-/- cells when compared to control cells. In particular, loss of TAp73 led to alterations in glucose, nucleotide and amino acid metabolism. In addition, H2O2 treatment resulted in increased pentose phosphate pathway (PPP) activity in null mouse embryonic fibroblasts. Overall, our results suggest that in the absence of TAp73, H2O2 treatment results in an enhanced oxidative environment, and at the same time in an increased pro-anabolic phenotype. In conclusion, the metabolic profile observed reinforces the role of TAp73 as tumor suppressor and indicates that TAp73 exerts this function, at least partially, by regulation of cellular metabolism.

  16. Serum metabonomics coupled with Ingenuity Pathway Analysis characterizes metabolic perturbations in response to hypothyroidism induced by propylthiouracil in rats.

    Science.gov (United States)

    Wu, Si; Gao, Yue; Dong, Xin; Tan, Guangguo; Li, Wuhong; Lou, Ziyang; Chai, Yifeng

    2013-01-01

    A serum metabonomic profiling method based on ultra-performance liquid chromatography/time-of-flight mass spectrometry (UHPLC/TOF-MS) was applied to investigate the metabolic changes in hypothyroid rats induced by propylthiouracil (PTU). With Significance Analysis of Microarray (SAM) for classification and selection of biomarkers, 13 potential biomarkers in rat serum were screened out. Furthermore, Ingenuity Pathway Analysis (IPA) was introduced to deeply analyze unique pathways of hypothyroidism that were primarily involved in sphingolipid metabolism, fatty acid transportation, phospholipid metabolism and phenylalanine metabolism. Our results demonstrated that the metabonomic approach integrating with IPA was a promising tool for providing a novel methodological clue to systemically dissect the underlying molecular mechanism of hypothyroidism. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. A possible new mechanism involved in ferro-cyanide metabolism by plants.

    Science.gov (United States)

    Yu, Xiao-Zhang; Li, Fan; Li, Kun

    2011-09-01

    Ferro-cyanide is one of the commonly found species at cyanide-contaminated soils and groundwater. Unlike botanical metabolism of KCN via the β-cyanoalanine pathway, processes involved in the plant-mediated assimilation of ferro-cyanide are still unclear. The objective of this study was to investigate a possible mechanism involved in uptake and assimilation of ferro-cyanide by plants. Detached roots of plants were exposed to ferro-cyanide in a closed-dark hydroponic system amended with HgCl(2), AgNO(3), LaCl(3), tetraethylammonium chloride (TEACl), or Na(3)VO(4), respectively, at 25 ± 0.5°C for 24 h. Total CN, free CN(-), and dissolved Fe(2+) were analyzed spectrophotometrically. Activity of β-cyanoalanine synthase involved in cyanide assimilation was also assayed using detached roots of plants in vivo. Dissociation of ferro-cyanide [Fe(II)(CN)(6)](-4) to free CN(-) and Fe(2+) in solution was negligible. The applied inhibitors did not show any significant impact on the uptake of ferro-cyanide by soybean (Glycine max L. cv. JD 1) and hybrid willows (Salix matsudana Koidz × alba L.; p > 0.05), but rice (Oryza sativa L. cv. JY 98) was more susceptible to the inhibitors compared with the controls (p ferro-cyanide by soybean, hybrid willows, and maize (Zea mays L. cv. PA 78; p ferro-cyanide was observed compared with the control without any cyanides (p > 0.05), whereas roots exposed to KCN showed a considerable increase in enzyme activity (p ferro-cyanide. Ferro-cyanide is likely metabolized by plants directly through an unknown pathway rather than the β-cyanoalanine pathway.

  18. Effects of insulin and its related signaling pathways on lipid metabolism in the yellow catfish Pelteobagrus fulvidraco.

    Science.gov (United States)

    Zhuo, Mei-Qin; Luo, Zhi; Pan, Ya-Xiong; Wu, Kun; Fan, Yao-Fang; Zhang, Li-Han; Song, Yu-Feng

    2015-10-01

    The influence of insulin on hepatic metabolism in fish is not well understood. The present study was therefore conducted to investigate the effects of insulin on lipid metabolism, and the related signaling pathways, in the yellow catfish Pelteobagrus fulvidraco. Hepatic lipid and intracellular triglyceride (TG) content, the activity and expression levels of several enzymes and the mRNA expression of transcription factors (PPARα and PPARγ) involved in lipid metabolism were determined. Troglitazone, GW6471, fenofibrate and wortmannin were used to explore the signaling pathways by which insulin influences lipid metabolism. Insulin tended to increase hepatic lipid accumulation, the activity of lipogenic enzymes (6PGD, G6PD, ME, ICDH and FAS) and mRNA levels of FAS, G6PD, 6PGD, CPT IA and PPARγ, but down-regulated PPARα mRNA level. The insulin-induced effect could be stimulated by the specific PPARγ activator troglitazone or reversed by the PI3 kinase/Akt inhibitor wortmannin, demonstrating that signaling pathways of PPARγ and PI3 kinase/Akt were involved in the insulin-induced alteration of lipid metabolism. The specific PPARα pathway activator fenofibrate reduced insulin-induced TG accumulation, down-regulated the mRNA levels of FAS, G6PD and 6PGD, and up-regulated mRNA levels of CPT IA, PPARα and PPARγ. The specific PPARα pathway inhibitor GW6471 reduced insulin-induced changes in the expression of all the tested genes, indicating that PPARα mediated the insulin-induced changes of lipid metabolism. The present results contribute new knowledge on the regulatory role of insulin in hepatic metabolism in fish. © 2015. Published by The Company of Biologists Ltd.

  19. Metabolic Pathway Genes Associated with Susceptibility Genes to Coronary Artery Disease

    Directory of Open Access Journals (Sweden)

    Heng Lu

    2018-01-01

    Full Text Available Coronary artery disease (CAD is one of the leading threats to global health. Previous research has proven that metabolic pathway disorders, such as high blood lipids and diabetes, are one of the risk factors that mostly cause CAD. However, the crosstalk between metabolic pathways and CAD was mostly studied on physiology processes by analyzing a single gene function. A canonical correlation analysis was used to identify the metabolic pathways, which were integrated as a unit to coexpress with CAD susceptibility genes, and to resolve additional metabolic factors that are related to CAD. Seven pathways, including citrate cycle, ubiquinone, terpenoid quinone biosynthesis, and N-glycan biosynthesis, were identified as an integrated unit coexpressed with CAD genes. These pathways could not be revealed as a coexpressed pathway through traditional methods as each single gene has weak correlation. Furthermore, sets of genes in these pathways were candidate markers for diagnosis and detection from patients’ serum.

  20. The Fas pathway is involved in pancreatic beta cell secretory function

    DEFF Research Database (Denmark)

    Schumann, Desiree M; Maedler, Kathrin; Franklin, Isobel

    2007-01-01

    Pancreatic beta cell mass and function increase in conditions of enhanced insulin demand such as obesity. Failure to adapt leads to diabetes. The molecular mechanisms controlling this adaptive process are unclear. Fas is a death receptor involved in beta cell apoptosis or proliferation, depending...... on the activity of the caspase-8 inhibitor FLIP. Here we show that the Fas pathway also regulates beta cell secretory function. We observed impaired glucose tolerance in Fas-deficient mice due to a delayed and decreased insulin secretory pattern. Expression of PDX-1, a beta cell-specific transcription factor...... regulating insulin gene expression and mitochondrial metabolism, was decreased in Fas-deficient beta cells. As a consequence, insulin and ATP production were severely reduced and only partly compensated for by increased beta cell mass. Up-regulation of FLIP enhanced NF-kappaB activity via NF...

  1. ROS signaling under metabolic stress: cross-talk between AMPK and AKT pathway

    OpenAIRE

    Zhao, Yang; Hu, Xingbin; Liu, Yajing; Dong, Shumin; Wen, Zhaowei; He, Wanming; Zhang, Shuyi; Huang, Qiong; Shi, Min

    2017-01-01

    Cancer cells are frequently confronted with metabolic stress in tumor microenvironments due to their rapid growth and limited nutrient supply. Metabolic stress induces cell death through ROS-induced apoptosis. However, cancer cells can adapt to it by altering the metabolic pathways. AMPK and AKT are two primary effectors in response to metabolic stress: AMPK acts as an energy-sensing factor which rewires metabolism and maintains redox balance. AKT broadly promotes energy production in the nut...

  2. Metatranscriptomic analysis of diverse microbial communities reveals core metabolic pathways and microbiome-specific functionality.

    Science.gov (United States)

    Jiang, Yue; Xiong, Xuejian; Danska, Jayne; Parkinson, John

    2016-01-12

    Metatranscriptomics is emerging as a powerful technology for the functional characterization of complex microbial communities (microbiomes). Use of unbiased RNA-sequencing can reveal both the taxonomic composition and active biochemical functions of a complex microbial community. However, the lack of established reference genomes, computational tools and pipelines make analysis and interpretation of these datasets challenging. Systematic studies that compare data across microbiomes are needed to demonstrate the ability of such pipelines to deliver biologically meaningful insights on microbiome function. Here, we apply a standardized analytical pipeline to perform a comparative analysis of metatranscriptomic data from diverse microbial communities derived from mouse large intestine, cow rumen, kimchi culture, deep-sea thermal vent and permafrost. Sequence similarity searches allowed annotation of 19 to 76% of putative messenger RNA (mRNA) reads, with the highest frequency in the kimchi dataset due to its relatively low complexity and availability of closely related reference genomes. Metatranscriptomic datasets exhibited distinct taxonomic and functional signatures. From a metabolic perspective, we identified a common core of enzymes involved in amino acid, energy and nucleotide metabolism and also identified microbiome-specific pathways such as phosphonate metabolism (deep sea) and glycan degradation pathways (cow rumen). Integrating taxonomic and functional annotations within a novel visualization framework revealed the contribution of different taxa to metabolic pathways, allowing the identification of taxa that contribute unique functions. The application of a single, standard pipeline confirms that the rich taxonomic and functional diversity observed across microbiomes is not simply an artefact of different analysis pipelines but instead reflects distinct environmental influences. At the same time, our findings show how microbiome complexity and availability of

  3. Enhanced Biosynthesis of Hyaluronic Acid Using Engineered Corynebacterium glutamicum Via Metabolic Pathway Regulation.

    Science.gov (United States)

    Cheng, Fangyu; Luozhong, Sijin; Guo, Zhigang; Yu, Huimin; Stephanopoulos, Gregory

    2017-10-01

    Hyaluronic acid (HA) is a polysaccharide used in many industries such as medicine, surgery, cosmetics, and food. To avoid potential pathogenicity caused by its native producer, Streptococcus, efforts have been made to create a recombinant host for HA production. In this work, a GRAS (generally recognized as safe) strain, Corynebacterium glutamicum, is engineered for enhanced biosynthesis of HA via metabolic pathway regulation. Five enzymes (HasA-HasE) involved in the HA biosynthetic pathway are highlighted, and eight diverse operon combinations, including HasA, HasAB, HasAC, HasAD, HasAE, HasABC, HasABD, and HasABE, are compared. HasAB and HasABC are found to be optimal for HA biosynthesis in C. glutamicum. To meet the energy demand for HA synthesis, the metabolic pathway that produces lactate is blocked by knocking out the lactate dehydrogenase (LDH) gene using single crossover homologous recombination. Engineered C. glutamicum/Δldh-AB is superior and had a significantly higher HA titer than C. glutamicum/Δldh-ABC. Batch and fed-batch cultures of C. glutamicum/Δldh-AB are performed in a 5-L fermenter. Using glucose feeding, the maximum HA titer reached 21.6 g L -1 , more than threefolds of that of the wild-type Streptococcus. This work provides an efficient, safe, and novel recombinant HA producer, C. glutamicum/Δldh-AB, via metabolic pathway regulation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Metabolic pathway alignment between species using a comprehensive and flexible similarity measure

    Directory of Open Access Journals (Sweden)

    de Ridder Dick

    2008-12-01

    Full Text Available Abstract Background Comparative analysis of metabolic networks in multiple species yields important information on their evolution, and has great practical value in metabolic engineering, human disease analysis, drug design etc. In this work, we aim to systematically search for conserved pathways in two species, quantify their similarities, and focus on the variations between them. Results We present an efficient framework, Metabolic Pathway Alignment and Scoring (M-PAS, for identifying and ranking conserved metabolic pathways. M-PAS aligns all reactions in entire metabolic networks of two species and assembles them into pathways, taking mismatches, gaps and crossovers into account. It uses a comprehensive scoring function, which quantifies pathway similarity such that we can focus on different pathways given different biological motivations. Using M-PAS, we detected 1198 length-four pathways fully conserved between Saccharomyces cerevisiae and Escherichia coli, and also revealed 1399 cases of a species using a unique route in otherwise highly conserved pathways. Conclusion Our method efficiently automates the process of exploring reaction arrangement possibilities, both between species and within species, to find conserved pathways. We not only reconstruct conventional pathways such as those found in KEGG, but also discover new pathway possibilities. Our results can help to generate hypotheses on missing reactions and manifest differences in highly conserved pathways, which is useful for biology and life science applications.

  5. Controlled sumoylation of the mevalonate pathway enzyme HMGS-1 regulates metabolism during aging

    NARCIS (Netherlands)

    Sapir, Amir; Tsur, Assaf; Koorman, Thijs; Ching, Kaitlin; Mishra, Prashant; Bardenheier, Annabelle; Podolsky, Lisa; Bening-Abu-Shach, Ulrike; Boxem, Mike; Chou, Tsui-Fen; Broday, Limor; Sternberg, Paul W

    2014-01-01

    Many metabolic pathways are critically regulated during development and aging but little is known about the molecular mechanisms underlying this regulation. One key metabolic cascade in eukaryotes is the mevalonate pathway. It catalyzes the synthesis of sterol and nonsterol isoprenoids, such as

  6. Gene expression of sphingolipid metabolism pathways is altered in hidradenitis suppurativa.

    Science.gov (United States)

    Dany, Mohammed; Elston, Dirk

    2017-08-01

    Hidradenitis suppurativa (HS) is a debilitating skin disease characterized by painful recurrent nodules and abscesses caused by chronic inflammation. Early events in the development of HS are believed to occur in the folliculopilosebaceous unit; however, the signaling pathways behind this mechanism are unknown. Sphingolipids, such as ceramide, are essential components of the skin and appendages and have important structural and signaling roles. We sought to explore whether the gene expression of enzymes involved in sphingolipid metabolic pathways is altered in HS. A microarray data set including 30 samples was used to compare the expression of sphingolipid-related enzymes in inflammatory skin lesions from HS patients (n = 17) with the expression in clinically healthy skin tissue (n = 13). Differential expression of sphingolipid metabolism-related genes was analyzed using Gene Expression Omnibus 2R. HS lesional skin samples have significantly decreased expression of enzymes generating ceramide and sphingomyelin, increased expression of enzymes catabolizing ceramide to sphingosine, and increased expression of enzymes converting ceramide to galactosylceramide and gangliosides. Limitations of this study include assessing the expression of sphingolipid-related enzymes without assessing the levels of the related sphingolipids. Our study suggests that sphingolipid metabolism is altered in HS lesional skin compared with normal skin. Copyright © 2017 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  7. Regulatory network of secondary metabolism in Brassica rapa: insight into the glucosinolate pathway.

    Science.gov (United States)

    Pino Del Carpio, Dunia; Basnet, Ram Kumar; Arends, Danny; Lin, Ke; De Vos, Ric C H; Muth, Dorota; Kodde, Jan; Boutilier, Kim; Bucher, Johan; Wang, Xiaowu; Jansen, Ritsert; Bonnema, Guusje

    2014-01-01

    Brassica rapa studies towards metabolic variation have largely been focused on the profiling of the diversity of metabolic compounds in specific crop types or regional varieties, but none aimed to identify genes with regulatory function in metabolite composition. Here we followed a genetical genomics approach to identify regulatory genes for six biosynthetic pathways of health-related phytochemicals, i.e carotenoids, tocopherols, folates, glucosinolates, flavonoids and phenylpropanoids. Leaves from six weeks-old plants of a Brassica rapa doubled haploid population, consisting of 92 genotypes, were profiled for their secondary metabolite composition, using both targeted and LC-MS-based untargeted metabolomics approaches. Furthermore, the same population was profiled for transcript variation using a microarray containing EST sequences mainly derived from three Brassica species: B. napus, B. rapa and B. oleracea. The biochemical pathway analysis was based on the network analyses of both metabolite QTLs (mQTLs) and transcript QTLs (eQTLs). Co-localization of mQTLs and eQTLs lead to the identification of candidate regulatory genes involved in the biosynthesis of carotenoids, tocopherols and glucosinolates. We subsequently focused on the well-characterized glucosinolate pathway and revealed two hotspots of co-localization of eQTLs with mQTLs in linkage groups A03 and A09. Our results indicate that such a large-scale genetical genomics approach combining transcriptomics and metabolomics data can provide new insights into the genetic regulation of metabolite composition of Brassica vegetables.

  8. Regulatory network of secondary metabolism in Brassica rapa: insight into the glucosinolate pathway.

    Directory of Open Access Journals (Sweden)

    Dunia Pino Del Carpio

    Full Text Available Brassica rapa studies towards metabolic variation have largely been focused on the profiling of the diversity of metabolic compounds in specific crop types or regional varieties, but none aimed to identify genes with regulatory function in metabolite composition. Here we followed a genetical genomics approach to identify regulatory genes for six biosynthetic pathways of health-related phytochemicals, i.e carotenoids, tocopherols, folates, glucosinolates, flavonoids and phenylpropanoids. Leaves from six weeks-old plants of a Brassica rapa doubled haploid population, consisting of 92 genotypes, were profiled for their secondary metabolite composition, using both targeted and LC-MS-based untargeted metabolomics approaches. Furthermore, the same population was profiled for transcript variation using a microarray containing EST sequences mainly derived from three Brassica species: B. napus, B. rapa and B. oleracea. The biochemical pathway analysis was based on the network analyses of both metabolite QTLs (mQTLs and transcript QTLs (eQTLs. Co-localization of mQTLs and eQTLs lead to the identification of candidate regulatory genes involved in the biosynthesis of carotenoids, tocopherols and glucosinolates. We subsequently focused on the well-characterized glucosinolate pathway and revealed two hotspots of co-localization of eQTLs with mQTLs in linkage groups A03 and A09. Our results indicate that such a large-scale genetical genomics approach combining transcriptomics and metabolomics data can provide new insights into the genetic regulation of metabolite composition of Brassica vegetables.

  9. Mapping of sulfur metabolic pathway by LC Orbitrap mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Rao Yulan [Institute for National Measurement Standard, National Research Council Canada, Ottawa, Ontario K1A 0R6 (Canada); Department of Forensic Medicine, Shanghai Medical College, Fudan University, Shanghai 200032 (China); McCooeye, Margaret [Institute for National Measurement Standard, National Research Council Canada, Ottawa, Ontario K1A 0R6 (Canada); Mester, Zoltan, E-mail: zoltan.mester@nrc.ca [Institute for National Measurement Standard, National Research Council Canada, Ottawa, Ontario K1A 0R6 (Canada)

    2012-04-06

    Highlights: Black-Right-Pointing-Pointer LCMS method for the determination of free, oxidized and protein bound thiols in yeast was developed. Black-Right-Pointing-Pointer In freshly harvested yeast, most of the thiols were in the reduced forms. Black-Right-Pointing-Pointer The stress response of yeast to H{sub 2}O{sub 2}, Cd and As was studied via changes in the thiol profiles. - Abstract: For the first time a liquid chromatography method with high resolution mass spectrometric detection has been developed for the simultaneous determination all key metabolites of the sulfur pathway in yeast, including all thiolic (cysteine (Cys), homocysteine (HCys), glutathione (GSH), cysteinyl-glycine (Cys-Gly), {gamma}-glutamyl-cysteine (Glu-Cys)) and non-thiolic compounds (methionine (Met), s-adenosyl-methionine (AdoMet), s-adenosyl-homocysteine (AdoHcy), and cystathionine (Cysta)). The developed assay also permits the speciation and selective determination of reduced, oxidized and protein bound fractions of all of the five thiols. Iodoacetic acid (IAA) was chosen as the derivatizing reagent. Thiols were extracted from sub-mg quantities of yeast using hot 75% ethanol. The detection limits were in the range of 1-12 nmol L{sup -1} for standard solution (high femotomole, absolute), except AdoMet (116 nmol L{sup -1}), which was unstable. In freshly harvested yeast, most of the thiols were in the reduced forms and low levels of protein-bound GSH and Glu-Cys were found. In a selenium enriched yeast, the thiols were mainly in the oxidized forms, and a significant amount of protein-bound Cys, HCys, GSH, Cys-Gly and Glu-Cys were found. The method was also applied to the metabolic study of the adaptive response of Saccharomyces cerevisiae to hydrogen peroxide, cadmium, and arsenite, and the change in concentration of thiols in the sulfur pathway was monitored over a period of 4 h.

  10. VitisCyc: a metabolic pathway knowledgebase for grapevine (Vitis vinifera).

    Science.gov (United States)

    Naithani, Sushma; Raja, Rajani; Waddell, Elijah N; Elser, Justin; Gouthu, Satyanarayana; Deluc, Laurent G; Jaiswal, Pankaj

    2014-01-01

    We have developed VitisCyc, a grapevine-specific metabolic pathway database that allows researchers to (i) search and browse the database for its various components such as metabolic pathways, reactions, compounds, genes and proteins, (ii) compare grapevine metabolic networks with other publicly available plant metabolic networks, and (iii) upload, visualize and analyze high-throughput data such as transcriptomes, proteomes, metabolomes etc. using OMICs-Viewer tool. VitisCyc is based on the genome sequence of the nearly homozygous genotype PN40024 of Vitis vinifera "Pinot Noir" cultivar with 12X v1 annotations and was built on BioCyc platform using Pathway Tools software and MetaCyc reference database. Furthermore, VitisCyc was enriched for plant-specific pathways and grape-specific metabolites, reactions and pathways. Currently VitisCyc harbors 68 super pathways, 362 biosynthesis pathways, 118 catabolic pathways, 5 detoxification pathways, 36 energy related pathways and 6 transport pathways, 10,908 enzymes, 2912 enzymatic reactions, 31 transport reactions and 2024 compounds. VitisCyc, as a community resource, can aid in the discovery of candidate genes and pathways that are regulated during plant growth and development, and in response to biotic and abiotic stress signals generated from a plant's immediate environment. VitisCyc version 3.18 is available online at http://pathways.cgrb.oregonstate.edu.

  11. Different functions of AKT1 and AKT2 in molecular pathways, cell migration and metabolism in colon cancer cells.

    Science.gov (United States)

    Häggblad Sahlberg, Sara; Mortensen, Anja C; Haglöf, Jakob; Engskog, Mikael K R; Arvidsson, Torbjörn; Pettersson, Curt; Glimelius, Bengt; Stenerlöw, Bo; Nestor, Marika

    2017-01-01

    AKT is a central protein in many cellular pathways such as cell survival, proliferation, glucose uptake, metabolism, angiogenesis, as well as radiation and drug response. The three isoforms of AKT (AKT1, AKT2 and AKT3) are proposed to have different physiological functions, properties and expression patterns in a cell type-dependent manner. As of yet, not much is known about the influence of the different AKT isoforms in the genome and their effects in the metabolism of colorectal cancer cells. In the present study, DLD-1 isogenic AKT1, AKT2 and AKT1/2 knockout colon cancer cell lines were used as a model system in conjunction with the parental cell line in order to further elucidate the differences between the AKT isoforms and how they are involved in various cellular pathways. This was done using genome wide expression analyses, metabolic profiling and cell migration assays. In conclusion, downregulation of genes in the cell adhesion, extracellular matrix and Notch-pathways and upregulation of apoptosis and metastasis inhibitory genes in the p53-pathway, confirm that the knockout of both AKT1 and AKT2 will attenuate metastasis and tumor cell growth. This was verified with a reduction in migration rate in the AKT1 KO and AKT2 KO and most explicitly in the AKT1/2 KO. Furthermore, the knockout of AKT1, AKT2 or both, resulted in a reduction in lactate and alanine, suggesting that the metabolism of carbohydrates and glutathione was impaired. This was further verified in gene expression analyses, showing downregulation of genes involved in glucose metabolism. Additionally, both AKT1 KO and AKT2 KO demonstrated an impaired fatty acid metabolism. However, genes were upregulated in the Wnt and cell proliferation pathways, which could oppose this effect. AKT inhibition should therefore be combined with other effectors to attain the best effect.

  12. Multiple metabolic pathways for metabolism of l-tryptophan in Fusarium graminearum.

    Science.gov (United States)

    Luo, Kun; DesRoches, Caro-Lyne; Johnston, Anne; Harris, Linda J; Zhao, Hui-Yan; Ouellet, Thérèse

    2017-11-01

    Fusarium graminearum is a plant pathogen that can cause the devastating cereal grain disease fusarium head blight in temperate regions of the world. Previous studies have shown that F. graminearum can synthetize indole-3-acetic acid (auxin) using l-tryptophan (L-TRP)-dependent pathways. In the present study, we have taken a broader approach to examine the metabolism of L-TRP in F. graminearum liquid culture. Our results showed that F. graminearum was able to transiently produce the indole tryptophol when supplied with L-TRP. Comparative gene expression profiling between L-TRP-treated and control cultures showed that L-TRP treatment induced the upregulation of a series of genes with predicted function in the metabolism of L-TRP via anthranilic acid and catechol towards the tricarboxylic acid cycle. It is proposed that this metabolic activity provides extra energy for 15-acetyldeoxynivalenol production, as observed in our experiments. This is the first report of the use of L-TRP to increase energy resources in a Fusarium species.

  13. PDP-1 links the TGF-β and IIS pathways to regulate longevity, development, and metabolism.

    Directory of Open Access Journals (Sweden)

    Sri Devi Narasimhan

    2011-04-01

    Full Text Available The insulin/IGF-1 signaling (IIS pathway is a conserved regulator of longevity, development, and metabolism. In Caenorhabditis elegans IIS involves activation of DAF-2 (insulin/IGF-1 receptor tyrosine kinase, AGE-1 (PI 3-kinase, and additional downstream serine/threonine kinases that ultimately phosphorylate and negatively regulate the single FOXO transcription factor homolog DAF-16. Phosphatases help to maintain cellular signaling homeostasis by counterbalancing kinase activity. However, few phosphatases have been identified that negatively regulate the IIS pathway. Here we identify and characterize pdp-1 as a novel negative modulator of the IIS pathway. We show that PDP-1 regulates multiple outputs of IIS such as longevity, fat storage, and dauer diapause. In addition, PDP-1 promotes DAF-16 nuclear localization and transcriptional activity. Interestingly, genetic epistasis analyses place PDP-1 in the DAF-7/TGF-β signaling pathway, at the level of the R-SMAD proteins DAF-14 and DAF-8. Further investigation into how a component of TGF-β signaling affects multiple outputs of IIS/DAF-16, revealed extensive crosstalk between these two well-conserved signaling pathways. We find that PDP-1 modulates the expression of several insulin genes that are likely to feed into the IIS pathway to regulate DAF-16 activity. Importantly, dysregulation of IIS and TGF-β signaling has been implicated in diseases such as Type 2 Diabetes, obesity, and cancer. Our results may provide a new perspective in understanding of the regulation of these pathways under normal conditions and in the context of disease.

  14. Diet and liver apoptosis in rats: a particular metabolic pathway.

    Science.gov (United States)

    Monteiro, Maria Emilia Lopes; Xavier, Analucia Rampazzo; Azeredo, Vilma Blondet

    2017-03-30

    Various studies have indicated an association between modifi cation in dietary macronutrient composition and liver apoptosis. To explain how changes in metabolic pathways associated with a high-protein, high-fat, and low-carbohydrate diet causes liver apoptosis. Two groups of rats were compared. An experimental diet group (n = 8) using a high-protein (59.46%), high-fat (31.77%), and low-carbohydrate (8.77%) diet versus a control one (n = 9) with American Institute of Nutrition (AIN)-93-M diet. Animals were sacrificed after eight weeks, the adipose tissue weighed, the liver removed for flow cytometry analysis, and blood collected to measure glucose, insulin, glucagon, IL-6, TNF, triglycerides, malondialdehyde, and β-hydroxybutyrate. Statistical analysis was carried out using the unpaired and parametric Student's t-test and Pearson's correlation coeffi ents. Significance was set at p triglycerides lower levels compared with the control group. The results show a positive and significant correlation between the percentage of nonviable hepatocytes and malondialdehyde levels (p = 0.0217) and a statistically significant negative correlation with triglycerides levels (p = 0.006). Results suggest that plasmatic malondialdehyde and triglyceride levels are probably good predictors of liver damage associated with an experimental low-carbohydrate diet in rats.

  15. Involvement of p53-EGFR-ERK pathway

    Indian Academy of Sciences (India)

    The tumour suppressor gene p53 is mutated in approximately 50% of the human cancers. p53 is involved in genotoxicstress-induced cellular responses. The role of EGFR and ERK in DNA-damage-induced apoptosis is well known. Weinvestigated the involvement of activation of ERK signalling as a consequence of ...

  16. Involvement of DNA Damage Response Pathways in Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Sheau-Fang Yang

    2014-01-01

    Full Text Available Hepatocellular carcinoma (HCC has been known as one of the most lethal human malignancies, due to the difficulty of early detection, chemoresistance, and radioresistance, and is characterized by active angiogenesis and metastasis, which account for rapid recurrence and poor survival. Its development has been closely associated with multiple risk factors, including hepatitis B and C virus infection, alcohol consumption, obesity, and diet contamination. Genetic alterations and genomic instability, probably resulted from unrepaired DNA lesions, are increasingly recognized as a common feature of human HCC. Dysregulation of DNA damage repair and signaling to cell cycle checkpoints, known as the DNA damage response (DDR, is associated with a predisposition to cancer and affects responses to DNA-damaging anticancer therapy. It has been demonstrated that various HCC-associated risk factors are able to promote DNA damages, formation of DNA adducts, and chromosomal aberrations. Hence, alterations in the DDR pathways may accumulate these lesions to trigger hepatocarcinogenesis and also to facilitate advanced HCC progression. This review collects some of the most known information about the link between HCC-associated risk factors and DDR pathways in HCC. Hopefully, the review will remind the researchers and clinicians of further characterizing and validating the roles of these DDR pathways in HCC.

  17. Evolutionary Rate Heterogeneity of Primary and Secondary Metabolic Pathway Genes in Arabidopsis thaliana.

    Science.gov (United States)

    Mukherjee, Dola; Mukherjee, Ashutosh; Ghosh, Tapash Chandra

    2015-11-10

    Primary metabolism is essential to plants for growth and development, and secondary metabolism helps plants to interact with the environment. Many plant metabolites are industrially important. These metabolites are produced by plants through complex metabolic pathways. Lack of knowledge about these pathways is hindering the successful breeding practices for these metabolites. For a better knowledge of the metabolism in plants as a whole, evolutionary rate variation of primary and secondary metabolic pathway genes is a prerequisite. In this study, evolutionary rate variation of primary and secondary metabolic pathway genes has been analyzed in the model plant Arabidopsis thaliana. Primary metabolic pathway genes were found to be more conserved than secondary metabolic pathway genes. Several factors such as gene structure, expression level, tissue specificity, multifunctionality, and domain number are the key factors behind this evolutionary rate variation. This study will help to better understand the evolutionary dynamics of plant metabolism. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  18. Glycogen Synthase Kinase-3 is involved in glycogen metabolism control and embryogenesis of Rhodnius prolixus.

    Science.gov (United States)

    Mury, Flávia B; Lugon, Magda D; DA Fonseca, Rodrigo Nunes; Silva, Jose R; Berni, Mateus; Araujo, Helena M; Fontenele, Marcio Ribeiro; Abreu, Leonardo Araujo DE; Dansa, Marílvia; Braz, Glória; Masuda, Hatisaburo; Logullo, Carlos

    2016-10-01

    Rhodnius prolixus is a blood-feeding insect that transmits Trypanosoma cruzi and Trypanosoma rangeli to vertebrate hosts. Rhodnius prolixus is also a classical model in insect physiology, and the recent availability of R. prolixus genome has opened new avenues on triatomine research. Glycogen synthase kinase 3 (GSK-3) is classically described as a key enzyme involved in glycogen metabolism, also acting as a downstream component of the Wnt pathway during embryogenesis. GSK-3 has been shown to be highly conserved among several organisms, mainly in the catalytic domain region. Meanwhile, the role of GSK-3 during R. prolixus embryogenesis or glycogen metabolism has not been investigated. Here we show that chemical inhibition of GSK-3 by alsterpaullone, an ATP-competitive inhibitor of GSK3, does not affect adult survival rate, though it alters oviposition and egg hatching. Specific GSK-3 gene silencing by dsRNA injection in adult females showed a similar phenotype. Furthermore, bright field and 4'-6-diamidino-2-phenylindole (DAPI) staining analysis revealed that ovaries and eggs from dsGSK-3 injected females exhibited specific morphological defects. We also demonstrate that glycogen content was inversely related to activity and transcription levels of GSK-3 during embryogenesis. Lastly, after GSK-3 knockdown, we observed changes in the expression of the Wingless (Wnt) downstream target β-catenin as well as in members of other pathways such as the receptor Notch. Taken together, our results show that GSK-3 regulation is essential for R. prolixus oogenesis and embryogenesis.

  19. Identifying genes and gene networks involved in chromium metabolism and detoxification in Crambe abyssinica

    Energy Technology Data Exchange (ETDEWEB)

    Zulfiqar, Asma, E-mail: asmazulfiqar08@yahoo.com [Department of Plant, Soil, and Insect Sciences, 270 Stockbridge Road, University of Massachusetts Amherst, MA 01003 (United States); Paulose, Bibin, E-mail: bpaulose@psis.umass.edu [Department of Plant, Soil, and Insect Sciences, 270 Stockbridge Road, University of Massachusetts Amherst, MA 01003 (United States); Chhikara, Sudesh, E-mail: sudesh@psis.umass.edu [Department of Plant, Soil, and Insect Sciences, 270 Stockbridge Road, University of Massachusetts Amherst, MA 01003 (United States); Dhankher, Om Parkash, E-mail: parkash@psis.umass.edu [Department of Plant, Soil, and Insect Sciences, 270 Stockbridge Road, University of Massachusetts Amherst, MA 01003 (United States)

    2011-10-15

    Chromium pollution is a serious environmental problem with few cost-effective remediation strategies available. Crambe abyssinica (a member of Brassicaseae), a non-food, fast growing high biomass crop, is an ideal candidate for phytoremediation of heavy metals contaminated soils. The present study used a PCR-Select Suppression Subtraction Hybridization approach in C. abyssinica to isolate differentially expressed genes in response to Cr exposure. A total of 72 differentially expressed subtracted cDNAs were sequenced and found to represent 43 genes. The subtracted cDNAs suggest that Cr stress significantly affects pathways related to stress/defense, ion transporters, sulfur assimilation, cell signaling, protein degradation, photosynthesis and cell metabolism. The regulation of these genes in response to Cr exposure was further confirmed by semi-quantitative RT-PCR. Characterization of these differentially expressed genes may enable the engineering of non-food, high-biomass plants, including C. abyssinica, for phytoremediation of Cr-contaminated soils and sediments. - Highlights: > Molecular mechanism of Cr uptake and detoxification in plants is not well known. > We identified differentially regulated genes upon Cr exposure in Crambe abyssinica. > 72 Cr-induced subtracted cDNAs were sequenced and found to represent 43 genes. > Pathways linked to stress, ion transport, and sulfur assimilation were affected. > This is the first Cr transcriptome study in a crop with phytoremediation potential. - This study describes the identification and isolation of differentially expressed genes involved in chromium metabolism and detoxification in a non-food industrial oil crop Crambe abyssinica.

  20. Incorporation of enzyme concentrations into FBA and identification of optimal metabolic pathways

    Directory of Open Access Journals (Sweden)

    Mukhopadhyay Subhasis

    2008-07-01

    Full Text Available Abstract Background In the present article, we propose a method for determining optimal metabolic pathways in terms of the level of concentration of the enzymes catalyzing various reactions in the entire metabolic network. The method, first of all, generates data on reaction fluxes in a pathway based on steady state condition. A set of constraints is formulated incorporating weighting coefficients corresponding to concentration of enzymes catalyzing reactions in the pathway. Finally, the rate of yield of the target metabolite, starting with a given substrate, is maximized in order to identify an optimal pathway through these weighting coefficients. Results The effectiveness of the present method is demonstrated on two synthetic systems existing in the literature, two pentose phosphate, two glycolytic pathways, core carbon metabolism and a large network of carotenoid biosynthesis pathway of various organisms belonging to different phylogeny. A comparative study with the existing extreme pathway analysis also forms a part of this investigation. Biological relevance and validation of the results are provided. Finally, the impact of the method on metabolic engineering is explained with a few examples. Conclusions The method may be viewed as determining an optimal set of enzymes that is required to get an optimal metabolic pathway. Although it is a simple one, it has been able to identify a carotenoid biosynthesis pathway and the optimal pathway of core carbon metabolic network that is closer to some earlier investigations than that obtained by the extreme pathway analysis. Moreover, the present method has identified correctly optimal pathways for pentose phosphate and glycolytic pathways. It has been mentioned using some examples how the method can suitably be used in the context of metabolic engineering.

  1. VitisCyc: A metabolic pathway knowledgebase for grapevine (Vitis vinifera

    Directory of Open Access Journals (Sweden)

    Sushma eNaithani

    2014-12-01

    Full Text Available We have developed VitisCyc, a grapevine-specific metabolic pathway database that allows researchers to i search and browse the database for its various components such as metabolic pathways, reactions, compounds, genes and proteins, ii compare grapevine metabolic networks with other publicly available plant metabolic networks, and iii upload, visualize and analyze high-throughput data such as transcriptomes, proteomes, metabolomes etc. using OMICs-Viewer tool. VitisCyc is based on the genome sequence of the nearly homozygous genotype PN40024 of Vitis vinifera ‘Pinot Noir’ cultivar with 12X v1 annotations and was built on BioCyc platform using Pathway Tools software and MetaCyc reference database. Furthermore, VitisCyc was enriched for plant-specific pathways and grape-specific metabolites, reactions and pathways. Currently VitisCyc harbors 68 super pathways, 362 biosynthesis pathways, 118 catabolic pathways, 5 detoxification pathways, 36 energy related and 6 transport pathways, 10,908 enzymes, 2912 enzymatic reactions, 31 transport reactions and 2,024 compounds. VitisCyc, as a community resource, can aid in the discovery of candidate genes and pathways that are regulated during plant growth and development, and in response to biotic and abiotic stress signals generated from a plant’s immediate environment. VitisCyc version 3.18 is available online at http://pathways.cgrb.oregonstate.edu.

  2. Quantitative Proteogenomics and the Reconstruction of the Metabolic Pathway in Lactobacillus mucosae LM1.

    Science.gov (United States)

    Pajarillo, Edward Alain B; Kim, Sang Hoon; Lee, Ji-Yoon; Valeriano, Valerie Diane V; Kang, Dae-Kyung

    2015-01-01

    Lactobacillus mucosae is a natural resident of the gastrointestinal tract of humans and animals and a potential probiotic bacterium. To understand the global protein expression profile and metabolic features of L. mucosae LM1 in the early stationary phase, the QExactive(TM) Hybrid Quadrupole-Orbitrap Mass Spectrometer was used. Characterization of the intracellular proteome identified 842 proteins, accounting for approximately 35% of the 2,404 protein-coding sequences in the complete genome of L. mucosae LM1. Proteome quantification using QExactive(TM) Orbitrap MS detected 19 highly abundant proteins (> 1.0% of the intracellular proteome), including CysK (cysteine synthase, 5.41%) and EF-Tu (elongation factor Tu, 4.91%), which are involved in cell survival against environmental stresses. Metabolic pathway annotation of LM1 proteome using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database showed that half of the proteins expressed are important for basic metabolic and biosynthetic processes, and the other half might be structurally important or involved in basic cellular processes. In addition, glycogen biosynthesis was activated in the early stationary phase, which is important for energy storage and maintenance. The proteogenomic data presented in this study provide a suitable reference to understand the protein expression pattern of lactobacilli in standard conditions.

  3. Transcriptomic Analysis of Metabolic Pathways in Milkfish That Respond to Salinity and Temperature Changes.

    Science.gov (United States)

    Hu, Yau-Chung; Kang, Chao-Kai; Tang, Cheng-Hao; Lee, Tsung-Han

    2015-01-01

    Milkfish (Chanos chanos), an important marine aquaculture species in southern Taiwan, show considerable euryhalinity but have low tolerance to sudden drops in water temperatures in winter. Here, we used high throughput next-generation sequencing (NGS) to identify molecular and biological processes involved in the responses to environmental changes. Preliminary tests revealed that seawater (SW)-acclimated milkfish tolerated lower temperatures than the fresh water (FW)-acclimated group. Although FW- and SW-acclimated milkfish have different levels of tolerance for hypothermal stress, to date, the molecular physiological basis of this difference has not been elucidated. Here, we performed a next-generation sequence analysis of mRNAs from four groups of milkfish. We obtained 29669 unigenes with an average length of approximately 1936 base pairs. Gene ontology (GO) analysis was performed after gene annotation. A large number of genes for molecular regulation were identified through a transcriptomic comparison in a KEGG analysis. Basal metabolic pathways involved in hypothermal tolerance, such as glycolysis, fatty acid metabolism, amino acid catabolism and oxidative phosphorylation, were analyzed using PathVisio and Cytoscape software. Our results indicate that in response to hypothermal stress, genes for oxidative phosphorylation, e.g., succinate dehydrogenase, were more highly up-regulated in SW than FW fish. Moreover, SW and FW milkfish used different strategies when exposed to hypothermal stress: SW milkfish up-regulated oxidative phosphorylation and catabolism genes to produce more energy budget, whereas FW milkfish down-regulated genes related to basal metabolism to reduce energy loss.

  4. GROWTH RETARDANTS: Effects on Gibberellin Biosynthesis and Other Metabolic Pathways.

    Science.gov (United States)

    Rademacher, Wilhelm

    2000-06-01

    Plant growth retardants are applied in agronomic and horticultural crops to reduce unwanted longitudinal shoot growth without lowering plant productivity. Most growth retardants act by inhibiting gibberellin (GA) biosynthesis. To date, four different types of such inhibitors are known: (a) Onium compounds, such as chlormequat chloride, mepiquat chloride, chlorphonium, and AMO-1618, which block the cyclases copalyl-diphosphate synthase and ent-kaurene synthase involved in the early steps of GA metabolism. (b) Compounds with an N-containing heterocycle, e.g. ancymidol, flurprimidol, tetcyclacis, paclobutrazol, uniconazole-P, and inabenfide. These retardants block cytochrome P450-dependent monooxygenases, thereby inhibiting oxidation of ent-kaurene into ent-kaurenoic acid. (c) Structural mimics of 2-oxoglutaric acid, which is the co-substrate of dioxygenases that catalyze late steps of GA formation. Acylcyclohexanediones, e.g. prohexadione-Ca and trinexapac-ethyl and daminozide, block particularly 3ss-hydroxylation, thereby inhibiting the formation of highly active GAs from inactive precursors, and (d) 16,17-Dihydro-GA5 and related structures act most likely by mimicking the GA precursor substrate of the same dioxygenases. Enzymes, similar to the ones involved in GA biosynthesis, are also of importance in the formation of abscisic acid, ethylene, sterols, flavonoids, and other plant constituents. Changes in the levels of these compounds found after treatment with growth retardants can mostly be explained by side activities on such enzymes.

  5. The Amino Acid Metabolic and Carbohydrate Metabolic Pathway Play Important Roles during Salt-Stress Response in Tomato.

    Science.gov (United States)

    Zhang, Zhi; Mao, Cuiyu; Shi, Zheng; Kou, Xiaohong

    2017-01-01

    Salt stress affects the plant quality, which affects the productivity of plants and the quality of water storage. In a recent study, we conducted the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) analysis and RNA-Seq, bioinformatics study methods, and detection of the key genes with qRT-PCR. Our findings suggested that the optimum salt treatment conditions are 200 mM and 19d for the identification of salt tolerance in tomato. Based on the RNA-Seq, we found 17 amino acid metabolic and 17 carbohydrate metabolic pathways enriched in the biological metabolism during the response to salt stress in tomato. We found 7 amino acid metabolic and 6 carbohydrate metabolic pathways that were significantly enriched in the adaption to salt stress. Moreover, we screened 17 and 19 key genes in 7 amino acid metabolic and 6 carbohydrate metabolic pathways respectively. We chose some of the key genes for verifying by qRT-PCR. The results showed that the expression of these genes was the same as that of RNA-seq. We found that these significant pathways and vital genes occupy an important roles in a whole process of adaptation to salt stress. These results provide valuable information, improve the ability to resist pressure, and improve the quality of the plant.

  6. Mannitol metabolism in brown algae involves a new phosphatase family.

    Science.gov (United States)

    Groisillier, Agnès; Shao, Zhanru; Michel, Gurvan; Goulitquer, Sophie; Bonin, Patricia; Krahulec, Stefan; Nidetzky, Bernd; Duan, Delin; Boyen, Catherine; Tonon, Thierry

    2014-02-01

    Brown algae belong to a phylogenetic lineage distantly related to green plants and animals, and are found predominantly in the intertidal zone, a harsh and frequently changing environment. Because of their unique evolutionary history and of their habitat, brown algae feature several peculiarities in their metabolism. One of these is the mannitol cycle, which plays a central role in their physiology, as mannitol acts as carbon storage, osmoprotectant, and antioxidant. This polyol is derived directly from the photoassimilate fructose-6-phosphate via the action of a mannitol-1-phosphate dehydrogenase and a mannitol-1-phosphatase (M1Pase). Genome analysis of the brown algal model Ectocarpus siliculosus allowed identification of genes potentially involved in the mannitol cycle. Among these, two genes coding for haloacid dehalogenase (HAD)-like enzymes were suggested to correspond to M1Pase activity, and thus were named EsM1Pase1 and EsM1Pase2, respectively. To test this hypothesis, both genes were expressed in Escherichia coli. Recombinant EsM1Pase2 was shown to hydrolyse the phosphate group from mannitol-1-phosphate to produce mannitol but was not active on the hexose monophosphates tested. Gene expression analysis showed that transcription of both E. siliculosus genes was under the influence of the diurnal cycle. Sequence analysis and three-dimensional homology modelling indicated that EsM1Pases, and their orthologues in Prasinophytes, should be seen as founding members of a new family of phosphatase with original substrate specificity within the HAD superfamily of proteins. This is the first report describing the characterization of a gene encoding M1Pase activity in photosynthetic organisms.

  7. Pathways of topological rank analysis (PoTRA): a novel method to detect pathways involved in hepatocellular carcinoma.

    Science.gov (United States)

    Li, Chaoxing; Liu, Li; Dinu, Valentin

    2018-01-01

    Complex diseases such as cancer are usually the result of a combination of environmental factors and one or several biological pathways consisting of sets of genes. Each biological pathway exerts its function by delivering signaling through the gene network. Theoretically, a pathway is supposed to have a robust topological structure under normal physiological conditions. However, the pathway's topological structure could be altered under some pathological condition. It is well known that a normal biological network includes a small number of well-connected hub nodes and a large number of nodes that are non-hubs. In addition, it is reported that the loss of connectivity is a common topological trait of cancer networks, which is an assumption of our method. Hence, from normal to cancer, the process of the network losing connectivity might be the process of disrupting the structure of the network, namely, the number of hub genes might be altered in cancer compared to that in normal or the distribution of topological ranks of genes might be altered. Based on this, we propose a new PageRank-based method called Pathways of Topological Rank Analysis (PoTRA) to detect pathways involved in cancer. We use PageRank to measure the relative topological ranks of genes in each biological pathway, then select hub genes for each pathway, and use Fisher's exact test to test if the number of hub genes in each pathway is altered from normal to cancer. Alternatively, if the distribution of topological ranks of gene in a pathway is altered between normal and cancer, this pathway might also be involved in cancer. Hence, we use the Kolmogorov-Smirnov test to detect pathways that have an altered distribution of topological ranks of genes between two phenotypes. We apply PoTRA to study hepatocellular carcinoma (HCC) and several subtypes of HCC. Very interestingly, we discover that all significant pathways in HCC are cancer-associated generally, while several significant pathways in subtypes

  8. Trichoderma Biocontrol: Signal Transduction Pathways Involved in Host Sensing and Mycoparasitism

    Directory of Open Access Journals (Sweden)

    Susanne Zeilinger

    2007-01-01

    Full Text Available Fungi of the genus Trichoderma are used as biocontrol agents against several plant pathogenic fungi like Rhizoctonia spp., Pythium spp., Botrytis cinerea and Fusarium spp. which cause both soil-borne and leaf- or flower-borne diseases of agricultural plants. Plant disease control by Trichoderma is based on complex interactions between Trichoderma, the plant pathogen and the plant. Until now, two main components of biocontrol have been identified: direct activity of Trichoderma against the plant pathogen by mycoparasitism and induced systemic resistance in plants. As the mycoparasitic interaction is host-specific and not merely a contact response, it is likely that signals from the host fungus are recognised by Trichoderma and provoke transcription of mycoparasitism-related genes.In the last few years examination of signalling pathways underlying Trichoderma biocontrol started and it was shown that heterotrimeric G-proteins and mitogen-activated protein (MAP kinases affected biocontrol-relevant processes such as the production of hydrolytic enzymes and antifungal metabolites and the formation of infection structures. MAPK signalling was also found to be involved in induction of plant systemic resistance in Trichoderma virens and in the hyperosmotic stress response in Trichoderma harzianum. Analyses of the function of components of the cAMP pathway during Trichoderma biocontrol revealed that mycoparasitism-associated coiling and chitinase production as well as secondary metabolism are affected by the internal cAMP level; in addition, a cross talk between regulation of light responses and the cAMP signalling pathway was found in Trichoderma atroviride.

  9. Functional characterization of Sporothrix schenckii glycosidases involved in the N-linked glycosylation pathway.

    Science.gov (United States)

    Lopes-Bezerra, Leila M; Lozoya-Pérez, Nancy E; López-Ramírez, Luz A; Martínez-Álvarez, José A; Teixeira, Marcus M; Felipe, Maria S S; Flores-Carreón, Arturo; Mora-Montes, Héctor M

    2015-01-01

    Protein glycosylation pathways are conserved metabolic processes in eukaryotic organisms and are required for cell fitness. In fungal pathogens, the N-linked glycosylation pathway is indispensable for proper cell wall composition and virulence. In Sporothrix schenckii sensu stricto, the causative agent of sporotrichosis, little is known about this glycosylation pathway. Here, using a genome-wide screening for putative members of the glycosyl hydrolase (CAZy - GH) families 47 and 63, which group enzymes involved in the processing step during N-linked glycan maturation, we found seven homologue genes belonging to family 47 and one to family 63. The eight genes were individually expressed in C. albicans null mutants lacking either MNS1 (for members of family 47) or CWH41 (for the member of family 63). Our results indicate that SsCWH41 is the functional ortholog of CaCWH41, whereas SsMNS1 is the functional ortholog of CaMNS1. The remaining genes of family 47 encode Golgi mannosidases and endoplasmic reticulum degradation-enhancing alpha-mannosidase-like proteins (EDEMs). Since these GH families gather proteins used as target for drugs to control cell growth, identification of these genes could help in the design of antifungals that could be used to treat sporotrichosis and other fungal diseases. In addition, to our knowledge, we are the first to report that Golgi mannosidases and EDEMs are expressed and characterized in yeast cells. © The Author 2014. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Shaofu Zhuyu decoction ameliorates obesity-mediated hepatic steatosis and systemic inflammation by regulating metabolic pathways.

    Directory of Open Access Journals (Sweden)

    Moonju Hong

    Full Text Available Shaofu Zhuyu decoction (SFZYD, also known as Sobokchugeo-tang, a classical prescription drug in traditional East Asian medicine, has been used to treat blood stasis syndrome (BSS. Hepatic steatosis is the result of excess caloric intake, and its pathogenesis involves internal retention of phlegm and dampness, blood stasis, and liver Qi stagnation. To evaluate the effects of treatment with SFZYD on obesity-induced inflammation and hepatic steatosis, we fed male C57BL/6N mice a high fat diet (HFD for 8 weeks and then treated them with SFZYD by oral gavage for an additional 4 weeks. The results of histological and biochemical examinations indicated that SFZYD treatment ameliorates systemic inflammation and hepatic steatosis. A partial least squares-discriminant analysis (PLS-DA scores plot of serum metabolites showed that HFD mice began to produce metabolites similar to those of normal chow (NC mice after SFZYD administration. We noted significant alterations in the levels of twenty-seven metabolites, alterations indicating that SFZYD regulates the TCA cycle, the pentose phosphate pathway and aromatic amino acid metabolism. Increases in the levels of TCA cycle intermediate metabolites, such as 2-oxoglutaric acid, isocitric acid, and malic acid, in the serum of obese mice were significantly reversed after SFZYD treatment. In addition to inducing changes in the above metabolites, treatment with SFZYD also recovered the expression of genes related to hepatic mitochondrial dysfunction, including Ucp2, Cpt1α, and Ppargc1α, as well as the expression of genes involved in lipid metabolism and inflammation, without affecting glucose uptake or insulin signaling. Taken together, these findings suggest that treatment with SFZYD ameliorated obesity-induced systemic inflammation and hepatic steatosis by regulating inflammatory cytokine and adipokine levels in the circulation and various tissues. Moreover, treatment with SFZYD also reversed alterations in the

  11. The involvement of calcium and MAP kinase signaling pathways in the production of radiation-induced bystander effects.

    LENUS (Irish Health Repository)

    Lyng, F M

    2006-04-01

    Much evidence now exists regarding radiation-induced bystander effects, but the mechanisms involved in the transduction of the signal are still unclear. The mitogen-activated protein kinase (MAPK) pathways have been linked to growth factor-mediated regulation of cellular events such as proliferation, senescence, differentiation and apoptosis. Activation of multiple MAPK pathways such as the ERK, JNK and p38 pathways have been shown to occur after exposure of cells to radiation and a variety of other toxic stresses. Previous studies have shown oxidative stress and calcium signaling to be important in radiation-induced bystander effects. The aim of the present study was to investigate MAPK signaling pathways in bystander cells exposed to irradiated cell conditioned medium (ICCM) and the role of oxidative metabolism and calcium signaling in the induction of bystander responses. Human keratinocytes (HPV-G cell line) were irradiated (0.005-5 Gy) using a cobalt-60 teletherapy unit. The medium was harvested 1 h postirradiation and transferred to recipient HPV-G cells. Phosphorylated forms of p38, JNK and ERK were studied by immunofluorescence 30 min-24 h after exposure to ICCM. Inhibitors of the ERK pathway (PD98059 and U0126), the JNK pathway (SP600125), and the p38 pathway (SB203580) were used to investigate whether bystander-induced cell death could be blocked. Cells were also incubated with ICCM in the presence of superoxide dismutase, catalase, EGTA, verapamil, nifedipine and thapsigargin to investigate whether bystander effects could be inhibited because of the known effects on calcium homeostasis. Activated forms of JNK and ERK proteins were observed after exposure to ICCM. Inhibition of the ERK pathway appeared to increase bystander-induced apoptosis, while inhibition of the JNK pathway appeared to decrease apoptosis. In addition, reactive oxygen species, such as superoxide and hydrogen peroxide, and calcium signaling were found to be important modulators of

  12. Pathways of topological rank analysis (PoTRA: a novel method to detect pathways involved in hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Chaoxing Li

    2018-04-01

    Full Text Available Complex diseases such as cancer are usually the result of a combination of environmental factors and one or several biological pathways consisting of sets of genes. Each biological pathway exerts its function by delivering signaling through the gene network. Theoretically, a pathway is supposed to have a robust topological structure under normal physiological conditions. However, the pathway’s topological structure could be altered under some pathological condition. It is well known that a normal biological network includes a small number of well-connected hub nodes and a large number of nodes that are non-hubs. In addition, it is reported that the loss of connectivity is a common topological trait of cancer networks, which is an assumption of our method. Hence, from normal to cancer, the process of the network losing connectivity might be the process of disrupting the structure of the network, namely, the number of hub genes might be altered in cancer compared to that in normal or the distribution of topological ranks of genes might be altered. Based on this, we propose a new PageRank-based method called Pathways of Topological Rank Analysis (PoTRA to detect pathways involved in cancer. We use PageRank to measure the relative topological ranks of genes in each biological pathway, then select hub genes for each pathway, and use Fisher’s exact test to test if the number of hub genes in each pathway is altered from normal to cancer. Alternatively, if the distribution of topological ranks of gene in a pathway is altered between normal and cancer, this pathway might also be involved in cancer. Hence, we use the Kolmogorov–Smirnov test to detect pathways that have an altered distribution of topological ranks of genes between two phenotypes. We apply PoTRA to study hepatocellular carcinoma (HCC and several subtypes of HCC. Very interestingly, we discover that all significant pathways in HCC are cancer-associated generally, while several

  13. Prolonged root hypoxia effects on enzymes involved in nitrogen assimilation pathway in tomato plants.

    Science.gov (United States)

    Horchani, Faouzi; Aschi-Smiti, Samira

    2010-12-01

    In order to investigate the effects of root hypoxia (1-2 % oxygen) on the nitrogen (N) metabolism of tomato plants (Solanum lycopersicum L. cv. Micro-Tom), a range of N compounds and N-assimilating enzymes were performed on roots and leaves of plants submitted to root hypoxia at the second leaf stage for three weeks. Obtained results showed that root hypoxia led to a significant decrease in dry weight (DW) production and nitrate content in roots and leaves. Conversely, shoot to root DW ratio and nitrite content were significantly increased. Contrary to that in leaves, glutamine synthetase activity was significantly enhanced in roots. The activities of nitrate and nitrite reductase were enhanced in roots as well as leaves. The higher increase in the NH(4)(+) content and in the protease activities in roots and leaves of hypoxically treated plants coincide with a greater decrease in soluble protein contents. Taken together, these results suggest that root hypoxia leaded to higher protein degradation. The hypoxia-induced increase in the aminating glutamate dehydrogenase activity may be considered as an alternative N assimilation pathway involved in detoxifying the NH(4)(+), accumulated under hypoxic conditions. With respect to hypoxic stress, the distinct sensitivity of the enzymes involved in N assimilation is discussed.

  14. The Effects of PPAR Stimulation on Cardiac Metabolic Pathways in Barth Syndrome Mice

    Directory of Open Access Journals (Sweden)

    Caitlin Schafer

    2018-04-01

    Full Text Available Aim: Tafazzin knockdown (TazKD in mice is widely used to create an experimental model of Barth syndrome (BTHS that exhibits dilated cardiomyopathy and impaired exercise capacity. Peroxisome proliferator-activated receptors (PPARs are a group of nuclear receptor proteins that play essential roles as transcription factors in the regulation of carbohydrate, lipid, and protein metabolism. We hypothesized that the activation of PPAR signaling with PPAR agonist bezafibrate (BF may ameliorate impaired cardiac and skeletal muscle function in TazKD mice. This study examined the effects of BF on cardiac function, exercise capacity, and metabolic status in the heart of TazKD mice. Additionally, we elucidated the impact of PPAR activation on molecular pathways in TazKD hearts.Methods: BF (0.05% w/w was given to TazKD mice with rodent chow. Cardiac function in wild type-, TazKD-, and BF-treated TazKD mice was evaluated by echocardiography. Exercise capacity was evaluated by exercising mice on the treadmill until exhaustion. The impact of BF on metabolic pathways was evaluated by analyzing the total transcriptome of the heart by RNA sequencing.Results: The uptake of BF during a 4-month period at a clinically relevant dose effectively protected the cardiac left ventricular systolic function in TazKD mice. BF alone did not improve the exercise capacity however, in combination with everyday voluntary running on the running wheel BF significantly ameliorated the impaired exercise capacity in TazKD mice. Analysis of cardiac transcriptome revealed that BF upregulated PPAR downstream target genes involved in a wide spectrum of metabolic (energy and protein pathways as well as chromatin modification and RNA processing. In addition, the Ostn gene, which encodes the metabolic hormone musclin, is highly induced in TazKD myocardium and human failing hearts, likely as a compensatory response to diminished bioenergetic homeostasis in cardiomyocytes.Conclusion: The PPAR

  15. Precursors and metabolic pathway for guaiacol production by Alicyclobacillus acidoterrestris.

    Science.gov (United States)

    Cai, Rui; Yuan, Yahong; Wang, Zhouli; Guo, Chunfeng; Liu, Bin; Liu, Laping; Wang, Yutang; Yue, Tianli

    2015-12-02

    Alicyclobacillus acidoterrestris has recently received much attention due to its implication in the spoilage of pasteurized fruit juices, which was manifested by the production of guaiacol. Vanillic acid and vanillin have been accepted as the biochemical precursors of guaiacol in fruit juices. The purpose of this study was to try to find other precursors and elucidate details about the conversion of vanillic acid and vanillin to guaiacol by A. acidoterrestris. Four potential substrates including ferulic acid, catechol, phenylalanine and tyrosine were analyzed, but they could not be metabolized to guaiacol by all the thirty A. acidoterrestris strains tested. Resting cell studies and enzyme assays demonstrated that vanillin was reduced to vanillyl alcohol by NADPH-dependent vanillin reductase and oxidized to vanillic acid by NAD(P)(+)-dependent vanillin dehydrogenases in A. acidoterrestris DSM 3923. Vanillic acid underwent a nonoxidative decarboxylation to guaiacol. The reversible vanillic acid decarboxylase involved was oxygen insensitive and pyridine nucleotide-independent. Copyright © 2015. Published by Elsevier B.V.

  16. Composition influences the pathway but not the outcome of the metabolic response of bacterioplankton to resource shifts.

    Directory of Open Access Journals (Sweden)

    Jérôme Comte

    Full Text Available Bacterioplankton community metabolism is central to the functioning of aquatic ecosystems, and strongly reactive to changes in the environment, yet the processes underlying this response remain unclear. Here we explore the role that community composition plays in shaping the bacterial metabolic response to resource gradients that occur along aquatic ecotones in a complex watershed in Québec. Our results show that the response is mediated by complex shifts in community structure, and structural equation analysis confirmed two main pathways, one involving adjustments in the level of activity of existing phylotypes, and the other the replacement of the dominant phylotypes. These contrasting response pathways were not determined by the type or the intensity of the gradients involved, as we had hypothesized, but rather it would appear that some compositional configurations may be intrinsically more plastic than others. Our results suggest that community composition determines this overall level of community plasticity, but that composition itself may be driven by factors independent of the environmental gradients themselves, such that the response of bacterial communities to a given type of gradient may alternate between the adjustment and replacement pathways. We conclude that community composition influences the pathways of response in these bacterial communities, but not the metabolic outcome itself, which is driven by the environment, and which can be attained through multiple alternative configurations.

  17. Involvement of Notch1/Hes signaling pathway in ankylosing spondylitis.

    Science.gov (United States)

    Xu, Wei; Liang, Chao-Ge; Li, Yi-Fan; Ji, Yun-Han; Qiu, Wen-Jun; Tang, Xian-Zhong

    2015-01-01

    We aimed to investigate the role of Notch1/Hes signaling pathway in the pathogenesis of abnormal ossification of hip ligament in patients with ankylosing spondylitis (AS). 22 AS patients scheduled for artificial hip arthroplasty were randomly chosen as AS group. As controls, we used 4 patients diagnosed with transcervical fracture who underwent hip replacement surgery. Notch1 and Hes mRNA expressions were detected by real-time fluorescent quantitative polymerase chain reaction (RFQ-PCR). Immunohistochemistry (IHC) was used to detect Notch1 and Hes protein expression. Correlation analyses of Notch-l and Hes with AS-related clinical factors were conducted with spearman's correlation analysis and partial correlation analysis. RFQ-PCR results showed significant differences in Notch1 and Hes mRNA expressions between AS group and the control group (all Ppathways. Semi-quantitative IHC showed a higher Notch1 and Hes expression levels in AS group compared to the control group (all Ppathways mediated by Notch1-Hes may contribute to ligament ossification of hip joints in AS patients.

  18. ROS signaling under metabolic stress: cross-talk between AMPK and AKT pathway.

    Science.gov (United States)

    Zhao, Yang; Hu, Xingbin; Liu, Yajing; Dong, Shumin; Wen, Zhaowei; He, Wanming; Zhang, Shuyi; Huang, Qiong; Shi, Min

    2017-04-13

    Cancer cells are frequently confronted with metabolic stress in tumor microenvironments due to their rapid growth and limited nutrient supply. Metabolic stress induces cell death through ROS-induced apoptosis. However, cancer cells can adapt to it by altering the metabolic pathways. AMPK and AKT are two primary effectors in response to metabolic stress: AMPK acts as an energy-sensing factor which rewires metabolism and maintains redox balance. AKT broadly promotes energy production in the nutrient abundance milieu, but the role of AKT under metabolic stress is in dispute. Recent studies show that AMPK and AKT display antagonistic roles under metabolic stress. Metabolic stress-induced ROS signaling lies in the hub between metabolic reprogramming and redox homeostasis. Here, we highlight the cross-talk between AMPK and AKT and their regulation on ROS production and elimination, which summarizes the mechanism of cancer cell adaptability under ROS stress and suggests potential options for cancer therapeutics.

  19. Carbohydrate metabolism in Archaea: current insights into unusual enzymes and pathways and their regulation.

    Science.gov (United States)

    Bräsen, Christopher; Esser, Dominik; Rauch, Bernadette; Siebers, Bettina

    2014-03-01

    The metabolism of Archaea, the third domain of life, resembles in its complexity those of Bacteria and lower Eukarya. However, this metabolic complexity in Archaea is accompanied by the absence of many "classical" pathways, particularly in central carbohydrate metabolism. Instead, Archaea are characterized by the presence of unique, modified variants of classical pathways such as the Embden-Meyerhof-Parnas (EMP) pathway and the Entner-Doudoroff (ED) pathway. The pentose phosphate pathway is only partly present (if at all), and pentose degradation also significantly differs from that known for bacterial model organisms. These modifications are accompanied by the invention of "new," unusual enzymes which cause fundamental consequences for the underlying regulatory principles, and classical allosteric regulation sites well established in Bacteria and Eukarya are lost. The aim of this review is to present the current understanding of central carbohydrate metabolic pathways and their regulation in Archaea. In order to give an overview of their complexity, pathway modifications are discussed with respect to unusual archaeal biocatalysts, their structural and mechanistic characteristics, and their regulatory properties in comparison to their classic counterparts from Bacteria and Eukarya. Furthermore, an overview focusing on hexose metabolic, i.e., glycolytic as well as gluconeogenic, pathways identified in archaeal model organisms is given. Their energy gain is discussed, and new insights into different levels of regulation that have been observed so far, including the transcript and protein levels (e.g., gene regulation, known transcription regulators, and posttranslational modification via reversible protein phosphorylation), are presented.

  20. Cytokinin Metabolism of Pathogenic Fungus Leptosphaeria maculans Involves Isopentenyltransferase, Adenosine Kinase and Cytokinin Oxidase/Dehydrogenase

    Directory of Open Access Journals (Sweden)

    Lucie Trdá

    2017-07-01

    Full Text Available Among phytohormones, cytokinins (CKs play an important role in controlling crucial aspects of plant development. Not only plants but also diverse microorganisms are able to produce phytohormones, including CKs, though knowledge concerning their biosynthesis and metabolism is still limited. In this work we demonstrate that the fungus Leptosphaeria maculans, a hemi-biotrophic pathogen of oilseed rape (Brassica napus, causing one of the most damaging diseases of this crop, is able to modify the CK profile in infected B. napus tissues, as well as produce a wide range of CKs in vitro, with the cis-zeatin derivatives predominating. The endogenous CK spectrum of L. maculans in vitro consists mainly of free CK bases, as opposed to plants, where other CK forms are mostly more abundant. Using functional genomics, enzymatic and feeding assays with CK bases supplied to culture media, we show that L. maculans contains a functional: (i isopentenyltransferase (IPT involved in cZ production; (ii adenosine kinase (AK involved in phosphorylation of CK ribosides to nucleotides; and (iii CK-degradation enzyme cytokinin oxidase/dehydrogenase (CKX. Our data further indicate the presence of cis–trans isomerase, zeatin O-glucosyltransferase(s and N6-(Δ2-isopentenyladenine hydroxylating enzyme. Besides, we report on a crucial role of LmAK for L. maculans fitness and virulence. Altogether, in this study we characterize in detail the CK metabolism of the filamentous fungi L. maculans and report its two novel components, the CKX and CK-related AK activities, according to our knowledge for the first time in the fungal kingdom. Based on these findings, we propose a model illustrating CK metabolism pathways in L. maculans.

  1. Effects of the mitogen concanavalin A on pathways of thymocyte energy metabolism.

    Science.gov (United States)

    Krauss, S; Buttgereit, F; Brand, M D

    1999-06-30

    The lectin concanavalin A (Con A) acts as a mitogen that preferentially activates T-cells. It stimulates the energy metabolism of thymocytes within seconds of exposure. We studied short-term effects (<30 min) of Con A on a conceptually simplified model system of rat thymocyte energy metabolism in the concentration range of 0-2 microg Con A per 107 cells, using metabolic control analysis. The model system consisted of three blocks of reactions, linked by the common intermediate mitochondrial membrane potential (Delta[psi]m): the substrate oxidation reactions, which produce the linking intermediate, and the proton conductance (or leak) and ATP turnover pathways which consume Delta[psi]m. Firstly, we used top-down elasticity analysis to establish which subsystems are targeted by Con A. Secondly, we quantitatively analysed the steady-state regulation of the system variables by Con A: how do the subsystem fluxes respond to Con A individually and as a whole? Our results indicate that: (1) steady-state respiration and Delta[psi]m increase as Con A concentration is raised, but at higher concentrations the increase in respiration is less and Delta[psi]m falls; (2) Con A independently changes the kinetics of the reactions that produce and consume Delta[psi]m: the Delta[psi]m-producing reactions are inhibited, and the reactions involved in ATP turnover are stimulated; and (3) the overall effects of Con A are mostly mediated by effects on ATP turnover.

  2. β-N-Methylamino-L-alanine (BMAA) perturbs alanine, aspartate and glutamate metabolism pathways in human neuroblastoma cells as determined by metabolic profiling.

    Science.gov (United States)

    Engskog, Mikael K R; Ersson, Lisa; Haglöf, Jakob; Arvidsson, Torbjörn; Pettersson, Curt; Brittebo, Eva

    2017-05-01

    β-Methylamino-L-alanine (BMAA) is a non-proteinogenic amino acid that induces long-term cognitive deficits, as well as an increased neurodegeneration and intracellular fibril formation in the hippocampus of adult rodents following short-time neonatal exposure and in vervet monkey brain following long-term exposure. It has also been proposed to be involved in the etiology of neurodegenerative disease in humans. The aim of this study was to identify metabolic effects not related to excitotoxicity or oxidative stress in human neuroblastoma SH-SY5Y cells. The effects of BMAA (50, 250, 1000 µM) for 24 h on cells differentiated with retinoic acid were studied. Samples were analyzed using LC-MS and NMR spectroscopy to detect altered intracellular polar metabolites. The analysis performed, followed by multivariate pattern recognition techniques, revealed significant perturbations in protein biosynthesis, amino acid metabolism pathways and citrate cycle. Of specific interest were the BMAA-induced alterations in alanine, aspartate and glutamate metabolism and as well as alterations in various neurotransmitters/neuromodulators such as GABA and taurine. The results indicate that BMAA can interfere with metabolic pathways involved in neurotransmission in human neuroblastoma cells.

  3. Effects of introducing heterologous pathways on microbial metabolism with respect to metabolic optimality

    DEFF Research Database (Denmark)

    Kim, Hyun Uk; Kim, Byoungjin; Seung, Do Young

    2014-01-01

    Although optimality of microbial metabolism under genetic and environmental perturbations is well studied, the effects of introducing heterologous reactions on the overall metabolism are not well understood. This point is important in the field of metabolic engineering because heterologous reacti...

  4. Caveat emptor: limitations of the automated reconstruction of metabolic pathways in Plasmodium.

    Science.gov (United States)

    Ginsburg, Hagai

    2009-01-01

    The functional reconstruction of metabolic pathways from an annotated genome is a tedious and demanding enterprise. Automation of this endeavor using bioinformatics algorithms could cope with the ever-increasing number of sequenced genomes and accelerate the process. Here, the manual reconstruction of metabolic pathways in the functional genomic database of Plasmodium falciparum--Malaria Parasite Metabolic Pathways--is described and compared with pathways generated automatically as they appear in PlasmoCyc, metaSHARK and the Kyoto Encyclopedia for Genes and Genomes. A critical evaluation of this comparison discloses that the automatic reconstruction of pathways generates manifold paths that need an expert manual verification to accept some and reject most others based on manually curated gene annotation.

  5. Flavin-containing monooxygenase 3 (FMO3 role in busulphan metabolic pathway.

    Directory of Open Access Journals (Sweden)

    Ibrahim El-Serafi

    Full Text Available Busulphan (Bu is an alkylating agent used in the conditioning regimen prior to hematopoietic stem cell transplantation (HSCT. Bu is extensively metabolized in the liver via conjugations with glutathione to form the intermediate metabolite (sulfonium ion which subsequently is degraded to tetrahydrothiophene (THT. THT was reported to be oxidized forming THT-1-oxide that is further oxidized to sulfolane and finally 3-hydroxysulfolane. However, the underlying mechanisms for the formation of these metabolites remain poorly understood. In the present study, we performed in vitro and in vivo investigations to elucidate the involvement of flavin-containing monooxygenase-3 (FMO3 and cytochrome P450 enzymes (CYPs in Bu metabolic pathway. Rapid clearance of THT was observed when incubated with human liver microsomes. Furthermore, among different recombinant microsomal enzymes, the highest intrinsic clearance for THT was obtained via FMO3 followed by several CYPs including 2B6, 2C8, 2C9, 2C19, 2E1 and 3A4. In Bu- or THT-treated mice, inhibition of FMO3 by phenylthiourea significantly suppressed the clearance of both Bu and THT. Moreover, the simultaneous administration of a high dose of THT (200μmol/kg to Bu-treated mice reduced the clearance of Bu. Consistently, in patients undergoing HSCT, repeated administration of Bu resulted in a significant up-regulation of FMO3 and glutathione-S-transfrase -1 (GSTA1 genes. Finally, in a Bu-treated patient, additional treatment with voriconazole (an antimycotic drug known as an FMO3-substrate significantly altered the Bu clearance. In conclusion, we demonstrate for the first time that FMO3 along with CYPs contribute a major part in busulphan metabolic pathway and certainly can affect its kinetics. The present results have high clinical impact. Furthermore, these findings might be important for reducing the treatment-related toxicity of Bu, through avoiding interaction with other concomitant used drugs during

  6. PPAR ligands improve impaired metabolic pathways in fetal hearts of diabetic rats.

    Science.gov (United States)

    Kurtz, Melisa; Capobianco, Evangelina; Martinez, Nora; Roberti, Sabrina Lorena; Arany, Edith; Jawerbaum, Alicia

    2014-10-01

    In maternal diabetes, the fetal heart can be structurally and functionally affected. Maternal diets enriched in certain unsaturated fatty acids can activate the nuclear receptors peroxisome proliferator-activated receptors (PPARs) and regulate metabolic and anti-inflammatory pathways during development. Our aim was to investigate whether PPARα expression, lipid metabolism, lipoperoxidation, and nitric oxide (NO) production are altered in the fetal hearts of diabetic rats, and to analyze the putative effects of in vivo PPAR activation on these parameters. We found decreased PPARα expression in the hearts of male but not female fetuses of diabetic rats when compared with controls. Fetal treatments with the PPARα ligand leukotriene B4 upregulated the expression of PPARα and target genes involved in fatty acid oxidation in the fetal hearts. Increased concentrations of triglycerides, cholesterol, and phospholipids were found in the hearts of fetuses of diabetic rats. Maternal treatments with diets supplemented with 6% olive oil or 6% safflower oil, enriched in unsaturated fatty acids that can activate PPARs, led to few changes in lipid concentrations, but up-regulated PPARα expression in fetal hearts. NO production, which was increased in the hearts of male and female fetuses in the diabetic group, and lipoperoxidation, which was increased in the hearts of male fetuses in the diabetic group, was reduced by the maternal treatments supplemented with safflower oil. In conclusion, impaired PPARα expression, altered lipid metabolism, and increased oxidative and nitridergic pathways were evidenced in hearts of fetuses of diabetic rats and were regulated in a gender-dependent manner by treatments enriched with PPAR ligands. © 2014 Society for Endocrinology.

  7. GC-MS Metabolomic Analysis to Reveal the Metabolites and Biological Pathways Involved in the Developmental Stages and Tissue Response of Panax ginseng

    Directory of Open Access Journals (Sweden)

    Jia Liu

    2017-03-01

    Full Text Available Ginsenosides, the major compounds present in ginseng, are known to have numerous physiological and pharmacological effects. The physiological processes, enzymes and genes involved in ginsenoside synthesis in P. ginseng have been well characterized. However, relatively little information is known about the dynamic metabolic changes that occur during ginsenoside accumulation in ginseng. To explore this topic, we isolated metabolites from different tissues at different growth stages, and identified and characterized them by using gas chromatography coupled with mass spectrometry (GC-MS. The results showed that a total of 30, 16, 20, 36 and 31 metabolites were identified and involved in different developmental stages in leaf, stem, petiole, lateral root and main root, respectively. To investigate the contribution of tissue to the biosynthesis of ginsenosides, we examined the metabolic changes of leaf, stem, petiole, lateral root and main root during five development stages: 1-, 2-, 3-, 4- and 5-years. The score plots of partial least squares-discriminate analysis (PLS-DA showed clear discrimination between growth stages and tissue samples. Kyoto Encyclopedia of Genes and Genomes (KEGG pathway analysis in the same tissue at different growth stages indicated profound biochemical changes in several pathways, including carbohydrate metabolism and pentose phosphate metabolism, in addition, the tissues displayed significant variations in amino acid metabolism, sugar metabolism and energy metabolism. These results should facilitate further dissection of the metabolic flux regulation of ginsenoside accumulation in different developmental stages or different tissues of ginseng.

  8. Role of the cAMP Pathway in Glucose and Lipid Metabolism.

    Science.gov (United States)

    Ravnskjaer, Kim; Madiraju, Anila; Montminy, Marc

    2016-01-01

    3'-5'-Cyclic adenosine monophosphate (cyclic AMP or cAMP) was first described in 1957 as an intracellular second messenger mediating the effects of glucagon and epinephrine on hepatic glycogenolysis (Berthet et al., J Biol Chem 224(1):463-475, 1957). Since this initial characterization, cAMP has been firmly established as a versatile molecular signal involved in both central and peripheral regulation of energy homeostasis and nutrient partitioning. Many of these effects appear to be mediated at the transcriptional level, in part through the activation of the transcription factor CREB and its coactivators. Here we review current understanding of the mechanisms by which the cAMP signaling pathway triggers metabolic programs in insulin-responsive tissues.

  9. Effects of CD44 Ligation on Signaling and Metabolic Pathways in Acute Myeloid Leukemia

    KAUST Repository

    Madhoun, Nour Y.

    2017-04-01

    Acute myeloid leukemia (AML) is characterized by a blockage in the differentiation of myeloid cells at different stages. CD44-ligation using anti-CD44 monoclonal antibodies (mAbs) has been shown to reverse the blockage of differentiation and to inhibit the proliferation of blasts in most AML-subtypes. However, the molecular mechanisms underlying this property have not been fully elucidated. Here, we sought to I) analyze the effects of anti-CD44 mAbs on downstream signaling pathways, including the ERK1/2 (extracellular signal-regulated kinase 1 and 2) and mTOR (mammalian target of rapamycin) pathways and II) use state-of-the-art Nuclear Magnetic Resonance (NMR) technology to determine the global metabolic changes during differentiation induction of AML cells using anti-CD44 mAbs and other two previously reported differentiation agents. In the first objective (Chapter 4), our studies provide evidence that CD44-ligation with specific mAbs in AML cells induced an increase in ERK1/2 phosphorylation. The use of the MEK inhibitor (U0126) significantly inhibited the CD44-induced differentiation of HL60 cells, suggesting that ERK1/2 is critical for the CD44-triggered differentiation in AML. In addition, this was accompanied by a marked decrease in the phosphorylation of the mTORC1 and mTORC2 complexes, which are strongly correlated with the inhibition of the PI3K/Akt pathway. In the second objective (Chapter 5), 1H NMR experiments demonstrated that considerable changes in the metabolic profiles of HL60 cells were induced in response to each differentiation agent. These most notable metabolites that significantly changed upon CD44 ligation were involved in the tricarboxylic acid (TCA) cycle and glycolysis such as, succinate, fumarate and lactate. Therefore, we sought to analyze the mechanisms underlying their alterations. Our results revealed that anti-CD44 mAbs treatment induced upregulation in fumarate hydratase (FH) expression and its activity which was accompanied by a

  10. Pathway analysis of bladder cancer genome-wide association study identifies novel pathways involved in bladder cancer development.

    Science.gov (United States)

    Chen, Meng; Rothman, Nathaniel; Ye, Yuanqing; Gu, Jian; Scheet, Paul A; Huang, Maosheng; Chang, David W; Dinney, Colin P; Silverman, Debra T; Figueroa, Jonine D; Chanock, Stephen J; Wu, Xifeng

    2016-07-01

    Genome-wide association studies (GWAS) are designed to identify individual regions associated with cancer risk, but only explain a small fraction of the inherited variability. Alternative approach analyzing genetic variants within biological pathways has been proposed to discover networks of susceptibility genes with additional effects. The gene set enrichment analysis (GSEA) may complement and expand traditional GWAS analysis to identify novel genes and pathways associated with bladder cancer risk. We selected three GSEA methods: Gen-Gen, Aligator, and the SNP Ratio Test to evaluate cellular signaling pathways involved in bladder cancer susceptibility in a Texas GWAS population. The candidate genetic polymorphisms from the significant pathway selected by GSEA were validated in an independent NCI GWAS. We identified 18 novel pathways ( P CACNA1S, COL4A2, SRC , and CACNA1C were associated with bladder cancer risk. Two CCNE1 variants, rs8102137 and rs997669, from cell cycle pathways showed the strongest associations; the CCNE1 signal at 19q12 has already been reported in previous GWAS. These findings offer additional etiologic insights highlighting the specific genes and pathways associated with bladder cancer development. GSEA may be a complementary tool to GWAS to identify additional loci of cancer susceptibility.

  11. Light Modulates Metabolic Pathways and Other Novel Physiological Traits in the Human Pathogen Acinetobacter baumannii.

    Science.gov (United States)

    Müller, Gabriela L; Tuttobene, Marisel; Altilio, Matías; Martínez Amezaga, Maitena; Nguyen, Meaghan; Cribb, Pamela; Cybulski, Larisa E; Ramírez, María Soledad; Altabe, Silvia; Mussi, María Alejandra

    2017-05-15

    Light sensing in chemotrophic bacteria has been relatively recently ascertained. In the human pathogen Acinetobacter baumannii , light modulates motility, biofilm formation, and virulence through the blue-light-sensing-using flavin (BLUF) photoreceptor BlsA. In addition, light can induce a reduction in susceptibility to certain antibiotics, such as minocycline and tigecycline, in a photoreceptor-independent manner. In this work, we identified new traits whose expression levels are modulated by light in this pathogen, which comprise not only important determinants related to pathogenicity and antibiotic resistance but also metabolic pathways, which represents a novel concept for chemotrophic bacteria. Indeed, the phenylacetic acid catabolic pathway and trehalose biosynthesis were modulated by light, responses that completely depend on BlsA. We further show that tolerance to some antibiotics and modulation of antioxidant enzyme levels are also influenced by light, likely contributing to bacterial persistence in adverse environments. Also, we present evidence indicating that surfactant production is modulated by light. Finally, the expression of whole pathways and gene clusters, such as genes involved in lipid metabolism and genes encoding components of the type VI secretion system, as well as efflux pumps related to antibiotic resistance, was differentially induced by light. Overall, our results indicate that light modulates global features of the A. baumannii lifestyle. IMPORTANCE The discovery that nonphototrophic bacteria respond to light constituted a novel concept in microbiology. In this context, we demonstrated that light could modulate aspects related to bacterial virulence, persistence, and resistance to antibiotics in the human pathogen Acinetobacter baumannii In this work, we present the novel finding that light directly regulates metabolism in this chemotrophic bacterium. Insights into the mechanism show the involvement of the photoreceptor BlsA. In

  12. Pathway elucidation and metabolic engineering of specialized plant metabolites

    DEFF Research Database (Denmark)

    Salomonsen, Bo

    A worldwide need to liberate ourselves from unsustainable petrochemicals has led to numerous metabolic engineering projects, mostly carried out in microbial hosts. Using systems biology for predicting and altering the metabolism of microorganisms towards production of a desired metabolite...... and fluxomics for a considerable number of organisms. Unfortunately, transferring the wealth of data to valuable information for metabolic engineering purposes is a non-obvious task. This PhD thesis describes a palate of tools used in generation of cell factories for production of specialized plant metabolites...

  13. Automation of gene assignments to metabolic pathways using high-throughput expression data

    Directory of Open Access Journals (Sweden)

    Yona Golan

    2005-08-01

    Full Text Available Abstract Background Accurate assignment of genes to pathways is essential in order to understand the functional role of genes and to map the existing pathways in a given genome. Existing algorithms predict pathways by extrapolating experimental data in one organism to other organisms for which this data is not available. However, current systems classify all genes that belong to a specific EC family to all the pathways that contain the corresponding enzymatic reaction, and thus introduce ambiguity. Results Here we describe an algorithm for assignment of genes to cellular pathways that addresses this problem by selectively assigning specific genes to pathways. Our algorithm uses the set of experimentally elucidated metabolic pathways from MetaCyc, together with statistical models of enzyme families and expression data to assign genes to enzyme families and pathways by optimizing correlated co-expression, while minimizing conflicts due to shared assignments among pathways. Our algorithm also identifies alternative ("backup" genes and addresses the multi-domain nature of proteins. We apply our model to assign genes to pathways in the Yeast genome and compare the results for genes that were assigned experimentally. Our assignments are consistent with the experimentally verified assignments and reflect characteristic properties of cellular pathways. Conclusion We present an algorithm for automatic assignment of genes to metabolic pathways. The algorithm utilizes expression data and reduces the ambiguity that characterizes assignments that are based only on EC numbers.

  14. Intracellular thiols: involvement in drug metabolism and radiation response

    International Nuclear Information System (INIS)

    Astor, M.

    1983-01-01

    Nitro compunds are activated by coupled enzyme reactions to oxygen reactive intermediates leading to the formation of peroxide, under aerobic conditions, and to the depletion of thiols, under anaerobic conditions. Some nitro compounds as substrates for glutathione-S-transferase, show peroxide production without prior thiol removal. Other drugs reacting spontaneouly with glutathione also produce peroxide. Glutathione plays an important role in the metabolism of the nitrocompounds either by directly reacting with them or their reduced intermediates such as the nitroso, nitro and hydroxyl radical. In the case of misonidazole, protection against their cytotoxic effects can be achieved by the addition of exogenous thiols such as glutathione or cysteamine. Results indicate that oxygen and peroxide electrodes provide convenient means for measuring the products of metabolic activation of nitro compounds. Mechanisms are proposed whereby protein, nonprotein and glutathione thiols can interact with drug radicals or with DNA radicals. 60 references, 14 figures, 5 tables

  15. Effect of multiple mutations in tricarboxylic acid cycle and one-carbon metabolism pathways on Edwardsiella ictaluri pathogenesis.

    Science.gov (United States)

    Dahal, N; Abdelhamed, H; Lu, J; Karsi, A; Lawrence, M L

    2014-02-21

    Edwardsiella ictaluri is a Gram-negative facultative intracellular pathogen causing enteric septicemia of catfish (ESC). We have shown recently that tricarboxylic acid cycle (TCA) and one-carbon (C1) metabolism are involved in E. ictaluri pathogenesis. However, the effect of multiple mutations in these pathways is unknown. Here, we report four novel E. ictaluri mutants carrying double gene mutations in TCA cycle (EiΔmdhΔsdhC, EiΔfrdAΔsdhC), C1 metabolism (EiΔglyAΔgcvP), and both TCA and C1 metabolism pathways (EiΔgcvPΔsdhC). In-frame gene deletions were constructed by allelic exchange and mutants' virulence and vaccine efficacy were evaluated using in vivo bioluminescence imaging (BLI) as well as end point mortality counts in catfish fingerlings. Results indicated that all the double gene mutants were attenuated compared to wild-type (wt) E. ictaluri. There was a 1.39-fold average reduction in bioluminescence, and hence bacterial numbers, from all the mutants except for EiΔfrdAΔsdhC at 144 h post-infection. Vaccination with mutants was very effective in protecting channel catfish against subsequent infection with virulent E. ictaluri 93-146 strain. In particular, immersion vaccination resulted in complete protection. Our results provide further evidence on the importance of TCA and C1 metabolism pathways in bacterial pathogenesis. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Glucuronidation by UGT1A1 is the dominant pathway of the metabolic disposition of belinostat in liver cancer patients.

    Directory of Open Access Journals (Sweden)

    Ling-Zhi Wang

    Full Text Available Belinostat is a hydroxamate class HDAC inhibitor that has demonstrated activity in peripheral T-cell lymphoma and is undergoing clinical trials for non-hematologic malignancies. We studied the pharmacokinetics of belinostat in hepatocellular carcinoma patients to determine the main pathway of metabolism of belinostat. The pharmacokinetics of belinostat in liver cancer patients were characterized by rapid plasma clearance of belinostat with extensive metabolism with more than 4-fold greater relative systemic exposure of major metabolite, belinostat glucuronide than that of belinostat. There was significant interindividual variability of belinostat glucuronidation. The major pathway of metabolism involves UGT1A1-mediated glucuronidation and a good correlation has been identified between belinostat glucuronide formation and glucuronidation of known UGT1A1 substrates. In addition, liver microsomes harboring UGT1A1*28 alleles have lower glucuronidation activity for belinostat compared to those with wildtype UGT1A1. The main metabolic pathway of belinostat is through glucuronidation mediated primarily by UGT1A1, a highly polymorphic enzyme. The clinical significance of this finding remains to be determined.ClinicalTrials.gov NCT00321594.

  17. Acute Psychological Stress Modulates the Expression of Enzymes Involved in the Kynurenine Pathway throughout Corticolimbic Circuits in Adult Male Rats

    Directory of Open Access Journals (Sweden)

    Haley A. Vecchiarelli

    2016-01-01

    Full Text Available Tryptophan is an essential dietary amino acid that is necessary for protein synthesis, but also serves as the precursor for serotonin. However, in addition to these biological functions, tryptophan also serves as a precursor for the kynurenine pathway, which has neurotoxic (quinolinic acid and neuroprotective (kynurenic acid metabolites. Glucocorticoid hormones and inflammatory mediators, both of which are increased by stress, have been shown to bias tryptophan along the kynurenine pathway and away from serotonin synthesis; however, to date, there is no published data regarding the effects of stress on enzymes regulating the kynurenine pathway in a regional manner throughout the brain. Herein, we examined the effects of an acute psychological stress (120 min restraint on gene expression patterns of enzymes along the kynurenine pathway over a protracted time-course (1–24 h post-stress termination within the amygdala, hippocampus, hypothalamus, and medial prefrontal cortex. Time-dependent changes in differential enzymes along the kynurenine metabolism pathway, particularly those involved in the production of quinolinic acid, were found within the amygdala, hypothalamus, and medial prefrontal cortex, with no changes seen in the hippocampus. These regional differences acutely may provide mechanistic insight into processes that become dysregulated chronically in stress-associated disorders.

  18. Transcriptomic Analysis of Metabolic Pathways in Milkfish That Respond to Salinity and Temperature Changes.

    Directory of Open Access Journals (Sweden)

    Yau-Chung Hu

    Full Text Available Milkfish (Chanos chanos, an important marine aquaculture species in southern Taiwan, show considerable euryhalinity but have low tolerance to sudden drops in water temperatures in winter. Here, we used high throughput next-generation sequencing (NGS to identify molecular and biological processes involved in the responses to environmental changes. Preliminary tests revealed that seawater (SW-acclimated milkfish tolerated lower temperatures than the fresh water (FW-acclimated group. Although FW- and SW-acclimated milkfish have different levels of tolerance for hypothermal stress, to date, the molecular physiological basis of this difference has not been elucidated. Here, we performed a next-generation sequence analysis of mRNAs from four groups of milkfish. We obtained 29669 unigenes with an average length of approximately 1936 base pairs. Gene ontology (GO analysis was performed after gene annotation. A large number of genes for molecular regulation were identified through a transcriptomic comparison in a KEGG analysis. Basal metabolic pathways involved in hypothermal tolerance, such as glycolysis, fatty acid metabolism, amino acid catabolism and oxidative phosphorylation, were analyzed using PathVisio and Cytoscape software. Our results indicate that in response to hypothermal stress, genes for oxidative phosphorylation, e.g., succinate dehydrogenase, were more highly up-regulated in SW than FW fish. Moreover, SW and FW milkfish used different strategies when exposed to hypothermal stress: SW milkfish up-regulated oxidative phosphorylation and catabolism genes to produce more energy budget, whereas FW milkfish down-regulated genes related to basal metabolism to reduce energy loss.

  19. Determination of key enzymes for threonine synthesis through in vitro metabolic pathway analysis.

    Science.gov (United States)

    Zhang, Yanfei; Meng, Qinglong; Ma, Hongwu; Liu, Yongfei; Cao, Guoqiang; Zhang, Xiaoran; Zheng, Ping; Sun, Jibin; Zhang, Dawei; Jiang, Wenxia; Ma, Yanhe

    2015-06-13

    The overexpression of key enzymes in a metabolic pathway is a frequently used genetic engineering strategy for strain improvement. Metabolic control analysis has been proposed to quantitatively determine key enzymes. However, the lack of quality data often makes it difficult to correctly identify key enzymes through control analysis. Here, we proposed a method combining in vitro metabolic pathway analysis and proteomics measurement to find the key enzymes in threonine synthesis pathway. All enzymes in the threonine synthesis pathway were purified for the reconstruction and perturbation of the in vitro pathway. Label-free proteomics technology combined with APEX (absolute protein expression measurements) data analysis method were employed to determine the absolute enzyme concentrations in the crude enzyme extract obtained from a threonine production strain during the fastest threonine production period. The flux control coefficient of each enzyme in the pathway was then calculated by measuring the flux changes after titration of the corresponding enzyme. The isoenzyme LysC catalyzing the first step in the pathway has the largest flux control coefficient, and thus its concentration change has the biggest impact on pathway flux. To verify that the key enzyme identified through in vitro pathway analysis is also the key enzyme in vivo, we overexpressed LysC in the original threonine production strain. Fermentation results showed that the threonine concentration was increased 30% and the yield was increased 20%. In vitro metabolic pathways simulating in vivo cells can be built based on precise measurement of enzyme concentrations through proteomics technology and used for the determination of key enzymes through metabolic control analysis. This provides a new way to find gene overexpression targets for industrial strain improvement.

  20. Exploring metabolic pathway disruption in the subchronic phencyclidine model of schizophrenia with the Generalized Singular Value Decomposition

    Directory of Open Access Journals (Sweden)

    Morris Brian J

    2011-05-01

    Encyclopedia of Genes and Genomes (KEGG metabolite pathway database were altered in the PFC of PCP-treated rats. Several significant changes were discovered, notably: 1 neuroactive ligands active at glutamate and GABA receptors are disrupted in the PFC of PCP-treated animals, 2 glutamate dysfunction in these animals was not limited to compromised glutamatergic neurotransmission but also involves the disruption of metabolic pathways linked to glutamate; and 3 a specific series of purine reactions Xanthine ← Hypoxyanthine ↔ Inosine ← IMP → adenylosuccinate is also disrupted in the PFC of PCP-treated animals. Conclusions Network reordering via the GSVD provides a means to discover statistically validated differences in clustering between a pair of networks. In practice this analytical approach, when applied to metabolomic data, allows us to quantify the alterations in metabolic pathways between two experimental groups. With this new computational technique we identified metabolic pathway alterations that are consistent with known results. Furthermore, we discovered disruption in a novel series of purine reactions that may contribute to the PFC dysfunction and cognitive deficits seen in schizophrenia.

  1. Deciphering the biological effects of acupuncture treatment modulating multiple metabolism pathways.

    Science.gov (United States)

    Zhang, Aihua; Yan, Guangli; Sun, Hui; Cheng, Weiping; Meng, Xiangcai; Liu, Li; Xie, Ning; Wang, Xijun

    2016-02-16

    Acupuncture is an alternative therapy that is widely used to treat various diseases. However, detailed biological interpretation of the acupuncture stimulations is limited. We here used metabolomics and proteomics technology, thereby identifying the serum small molecular metabolites into the effect and mechanism pathways of standardized acupuncture treatments at 'Zusanli' acupoint which was the most often used acupoint in previous reports. Comprehensive overview of serum metabolic profiles during acupuncture stimulation was investigated. Thirty-four differential metabolites were identified in serum metabolome and associated with ten metabolism pathways. Importantly, we have found that high impact glycerophospholipid metabolism, fatty acid metabolism, ether lipid metabolism were acutely perturbed by acupuncture stimulation. As such, these alterations may be useful to clarify the biological mechanism of acupuncture stimulation. A series of differentially expressed proteins were identified and such effects of acupuncture stimulation were found to play a role in transport, enzymatic activity, signaling pathway or receptor interaction. Pathway analysis further revealed that most of these proteins were found to play a pivotal role in the regulation of multiple metabolism pathways. It demonstrated that the metabolomics coupled with proteomics as a powerful approach for potential applications in understanding the biological effects of acupuncture stimulation.

  2. Carboxylesterase-involved metabolism of di-n-butyl phthalate in pumpkin (Cucurbita moschata) seedlings.

    Science.gov (United States)

    Lin, Qingqi; Chen, Siyuan; Chao, Yuanqing; Huang, Xiongfei; Wang, Shizhong; Qiu, Rongliang

    2017-01-01

    Uptake and accumulation by plants is a significant pathway in the migration and transformation of phthalate esters (PAEs) in the environment. However, limited information is available on the mechanisms of PAE metabolism in plants. Here, we investigated the metabolism of di-n-butyl phthalate (DnBP), one of the most frequently detected PAEs, in pumpkin (Cucurbita moschata) seedlings via a series of hydroponic experiments with an initial concentration of 10 mg L -1 . DnBP hydrolysis occurred primarily in the root, and two of its metabolites, mono-n-butyl phthalate (MnBP) and phthalic acid (PA), were detected in all plant tissues. The MnBP concentration was an order of magnitude higher than that of PA in shoots, which indicated MnBP was more readily transported to the shoot than was PA because of the former's dual hydrophilic and lipophilic characteristics. More than 80% of MnBP and PA were located in the cell water-soluble component except that 96% of MnBP was distributed into the two solid cellular fractions (i.e., cell wall and organelles) at 96 h. A 13-20% and 29-54% increase of carboxylesterase (CXE) activity shown in time-dependent and concentration-dependent experiments, respectively, indicated the involvement of CXEs in plant metabolism of DnBP. The level of CXE activity in root subcellular fractions was in the order: the cell water-soluble component (88-94%) > cell wall (3-7%) > cell organelles (3-4%), suggesting that the cell water-soluble component is the dominant locus of CXE activity and also the domain of CXE-catalyzed hydrolysis of DnBP. The addition of triphenyl phosphate, a CXE inhibitor, led to 43-56% inhibition of CXE activity and 16-25% increase of DnBP content, which demonstrated the involvement of CXEs in plant metabolism of DnBP. This study contributes to our understanding of enzymitic mechanisms of PAE transformation in plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Metabolic profiling reveals reprogramming of lipid metabolic pathways in treatment of polycystic ovary syndrome with 3-iodothyronamine.

    Science.gov (United States)

    Selen Alpergin, Ebru S; Bolandnazar, Zeinab; Sabatini, Martina; Rogowski, Michael; Chiellini, Grazia; Zucchi, Riccardo; Assadi-Porter, Fariba M

    2017-01-01

    Complex diseases such as polycystic ovary syndrome (PCOS) are associated with intricate pathophysiological, hormonal, and metabolic feedbacks that make their early diagnosis challenging, thus increasing the prevalence risks for obesity, cardiovascular, and fatty liver diseases. To explore the crosstalk between endocrine and lipid metabolic pathways, we administered 3-iodothyronamine (T1AM), a natural analog of thyroid hormone, in a mouse model of PCOS and analyzed plasma and tissue extracts using multidisciplinary omics and biochemical approaches. T1AM administration induces a profound tissue-specific antilipogenic effect in liver and muscle by lowering gene expression of key regulators of lipid metabolism, PTP1B and PLIN2, significantly increasing metabolites (glucogenic, amino acids, carnitine, and citrate) levels, while enhancing protection against oxidative stress. In contrast, T1AM has an opposing effect on the regulation of estrogenic pathways in the ovary by upregulating STAR, CYP11A1, and CYP17A1. Biochemical measurements provide further evidence of significant reduction in liver cholesterol and triglycerides in post-T1AM treatment. Our results shed light onto tissue-specific metabolic vs. hormonal pathway interactions, thus illuminating the intricacies within the pathophysiology of PCOS This study opens up new avenues to design drugs for targeted therapeutics to improve quality of life in complex metabolic diseases. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  4. A novel strategy involved in [corrected] anti-oxidative defense: the conversion of NADH into NADPH by a metabolic network.

    Directory of Open Access Journals (Sweden)

    Ranji Singh

    Full Text Available The reduced nicotinamide adenine dinucleotide phosphate (NADPH is pivotal to the cellular anti-oxidative defence strategies in most organisms. Although its production mediated by different enzyme systems has been relatively well-studied, metabolic networks dedicated to the biogenesis of NADPH have not been fully characterized. In this report, a metabolic pathway that promotes the conversion of reduced nicotinamide adenine dinucleotide (NADH, a pro-oxidant into NADPH has been uncovered in Pseudomonas fluorescens exposed to oxidative stress. Enzymes such as pyruvate carboxylase (PC, malic enzyme (ME, malate dehydrogenase (MDH, malate synthase (MS, and isocitrate lyase (ICL that are involved in disparate metabolic modules, converged to create a metabolic network aimed at the transformation of NADH into NADPH. The downregulation of phosphoenol carboxykinase (PEPCK and the upregulation of pyruvate kinase (PK ensured that this metabolic cycle fixed NADH into NADPH to combat the oxidative stress triggered by the menadione insult. This is the first demonstration of a metabolic network invoked to generate NADPH from NADH, a process that may be very effective in combating oxidative stress as the increase of an anti-oxidant is coupled to the decrease of a pro-oxidant.

  5. Regulation of dual glycolytic pathways for fructose metabolism in heterofermentative Lactobacillus panis PM1.

    Science.gov (United States)

    Kang, Tae Sun; Korber, Darren R; Tanaka, Takuji

    2013-12-01

    Lactobacillus panis PM1 belongs to the group III heterofermentative lactobacilli that use the 6-phosphogluconate/phosphoketolase (6-PG/PK) pathway as their central metabolic pathway and are reportedly unable to grow on fructose as a sole carbon source. We isolated a variant PM1 strain capable of sporadic growth on fructose medium and observed its distinctive characteristics of fructose metabolism. The end product pattern was different from what is expected in typical group III lactobacilli using the 6-PG/PK pathway (i.e., more lactate, less acetate, and no mannitol). In addition, in silico analysis revealed the presence of genes encoding most of critical enzymes in the Embden-Meyerhof (EM) pathway. These observations indicated that fructose was metabolized via two pathways. Fructose metabolism in the PM1 strain was influenced by the activities of two enzymes, triosephosphate isomerase (TPI) and glucose 6-phosphate isomerase (PGI). A lack of TPI resulted in the intracellular accumulation of dihydroxyacetone phosphate (DHAP) in PM1, the toxicity of which caused early growth cessation during fructose fermentation. The activity of PGI was enhanced by the presence of glyceraldehyde 3-phosphate (GAP), which allowed additional fructose to enter into the 6-PG/PK pathway to avoid toxicity by DHAP. Exogenous TPI gene expression shifted fructose metabolism from heterolactic to homolactic fermentation, indicating that TPI enabled the PM1 strain to mainly use the EM pathway for fructose fermentation. These findings clearly demonstrate that the balance in the accumulation of GAP and DHAP determines the fate of fructose metabolism and the activity of TPI plays a critical role during fructose fermentation via the EM pathway in L. panis PM1.

  6. Metabolic fate of glucose and candidate signaling and excess-fuel detoxification pathways in pancreatic β-cells.

    Science.gov (United States)

    Mugabo, Yves; Zhao, Shangang; Lamontagne, Julien; Al-Mass, Anfal; Peyot, Marie-Line; Corkey, Barbara E; Joly, Erik; Madiraju, S R Murthy; Prentki, Marc

    2017-05-05

    Glucose metabolism promotes insulin secretion in β-cells via metabolic coupling factors that are incompletely defined. Moreover, chronically elevated glucose causes β-cell dysfunction, but little is known about how cells handle excess fuels to avoid toxicity. Here we sought to determine which among the candidate pathways and coupling factors best correlates with glucose-stimulated insulin secretion (GSIS), define the fate of glucose in the β-cell, and identify pathways possibly involved in excess-fuel detoxification. We exposed isolated rat islets for 1 h to increasing glucose concentrations and measured various pathways and metabolites. Glucose oxidation, oxygen consumption, and ATP production correlated well with GSIS and saturated at 16 mm glucose. However, glucose utilization, glycerol release, triglyceride and glycogen contents, free fatty acid (FFA) content and release, and cholesterol and cholesterol esters increased linearly up to 25 mm glucose. Besides being oxidized, glucose was mainly metabolized via glycerol production and release and lipid synthesis (particularly FFA, triglycerides, and cholesterol), whereas glycogen production was comparatively low. Using targeted metabolomics in INS-1(832/13) cells, we found that several metabolites correlated well with GSIS, in particular some Krebs cycle intermediates, malonyl-CoA, and lower ADP levels. Glucose dose-dependently increased the dihydroxyacetone phosphate/glycerol 3-phosphate ratio in INS-1(832/13) cells, indicating a more oxidized state of NAD in the cytosol upon glucose stimulation. Overall, the data support a role for accelerated oxidative mitochondrial metabolism, anaplerosis, and malonyl-CoA/lipid signaling in β-cell metabolic signaling and suggest that a decrease in ADP levels is important in GSIS. The results also suggest that excess-fuel detoxification pathways in β-cells possibly comprise glycerol and FFA formation and release extracellularly and the diversion of glucose carbons to

  7. Two Distinct Pathways for Metabolism of Theophylline and Caffeine Are Coexpressed in Pseudomonas putida CBB5▿ †

    Science.gov (United States)

    Yu, Chi Li; Louie, Tai Man; Summers, Ryan; Kale, Yogesh; Gopishetty, Sridhar; Subramanian, Mani

    2009-01-01

    Pseudomonas putida CBB5 was isolated from soil by enrichment on caffeine. This strain used not only caffeine, theobromine, paraxanthine, and 7-methylxanthine as sole carbon and nitrogen sources but also theophylline and 3-methylxanthine. Analyses of metabolites in spent media and resting cell suspensions confirmed that CBB5 initially N demethylated theophylline via a hitherto unreported pathway to 1- and 3-methylxanthines. NAD(P)H-dependent conversion of theophylline to 1- and 3-methylxanthines was also detected in the crude cell extracts of theophylline-grown CBB5. 1-Methylxanthine and 3-methylxanthine were subsequently N demethylated to xanthine. CBB5 also oxidized theophylline and 1- and 3-methylxanthines to 1,3-dimethyluric acid and 1- and 3-methyluric acids, respectively. However, these methyluric acids were not metabolized further. A broad-substrate-range xanthine-oxidizing enzyme was responsible for the formation of these methyluric acids. In contrast, CBB5 metabolized caffeine to theobromine (major metabolite) and paraxanthine (minor metabolite). These dimethylxanthines were further N demethylated to xanthine via 7-methylxanthine. Theobromine-, paraxanthine-, and 7-methylxanthine-grown cells also metabolized all of the methylxanthines mentioned above via the same pathway. Thus, the theophylline and caffeine N-demethylation pathways converged at xanthine via different methylxanthine intermediates. Xanthine was eventually oxidized to uric acid. Enzymes involved in theophylline and caffeine degradation were coexpressed when CBB5 was grown on theophylline or on caffeine or its metabolites. However, 3-methylxanthine-grown CBB5 cells did not metabolize caffeine, whereas theophylline was metabolized at much reduced levels to only methyluric acids. To our knowledge, this is the first report of theophylline N demethylation and coexpression of distinct pathways for caffeine and theophylline degradation in bacteria. PMID:19447909

  8. Enzymes involved in branched-chain amino acid metabolism in humans.

    Science.gov (United States)

    Adeva-Andany, María M; López-Maside, Laura; Donapetry-García, Cristóbal; Fernández-Fernández, Carlos; Sixto-Leal, Cristina

    2017-06-01

    Branched-chain amino acids (leucine, isoleucine and valine) are structurally related to branched-chain fatty acids. Leucine is 2-amino-4-methyl-pentanoic acid, isoleucine is 2-amino-3-methyl-pentanoic acid, and valine is 2-amino-3-methyl-butanoic acid. Similar to fatty acid oxidation, leucine and isoleucine produce acetyl-coA. Additionally, leucine generates acetoacetate and isoleucine yields propionyl-coA. Valine oxidation produces propionyl-coA, which is converted into methylmalonyl-coA and succinyl-coA. Branched-chain aminotransferase catalyzes the first reaction in the catabolic pathway of branched-chain amino acids, a reversible transamination that converts branched-chain amino acids into branched-chain ketoacids. Simultaneously, glutamate is converted in 2-ketoglutarate. The branched-chain ketoacid dehydrogenase complex catalyzes the irreversible oxidative decarboxylation of branched-chain ketoacids to produce branched-chain acyl-coA intermediates, which then follow separate catabolic pathways. Human tissue distribution and function of most of the enzymes involved in branched-chain amino acid catabolism is unknown. Congenital deficiencies of the enzymes involved in branched-chain amino acid metabolism are generally rare disorders. Some of them are associated with reduced pyruvate dehydrogenase complex activity and respiratory chain dysfunction that may contribute to their clinical phenotype. The biochemical phenotype is characterized by accumulation of the substrate to the deficient enzyme and its carnitine and/or glycine derivatives. It was established at the beginning of the twentieth century that the plasma level of the branched-chain amino acids is increased in conditions associated with insulin resistance such as obesity and diabetes mellitus. However, the potential clinical relevance of this elevation is uncertain.

  9. Enumerating metabolic pathways for the production of heterologous target chemicals in chassis organisms

    Directory of Open Access Journals (Sweden)

    Carbonell Pablo

    2012-02-01

    Full Text Available Abstract Background We consider the possibility of engineering metabolic pathways in a chassis organism in order to synthesize novel target compounds that are heterologous to the chassis. For this purpose, we model metabolic networks through hypergraphs where reactions are represented by hyperarcs. Each hyperarc represents an enzyme-catalyzed reaction that transforms set of substrates compounds into product compounds. We follow a retrosynthetic approach in order to search in the metabolic space (hypergraphs for pathways (hyperpaths linking the target compounds to a source set of compounds. Results To select the best pathways to engineer, we have developed an objective function that computes the cost of inserting a heterologous pathway in a given chassis organism. In order to find minimum-cost pathways, we propose in this paper two methods based on steady state analysis and network topology that are to the best of our knowledge, the first to enumerate all possible heterologous pathways linking a target compounds to a source set of compounds. In the context of metabolic engineering, the source set is composed of all naturally produced chassis compounds (endogenuous chassis metabolites and the target set can be any compound of the chemical space. We also provide an algorithm for identifying precursors which can be supplied to the growth media in order to increase the number of ways to synthesize specific target compounds. Conclusions We find the topological approach to be faster by several orders of magnitude than the steady state approach. Yet both methods are generally scalable in time with the number of pathways in the metabolic network. Therefore this work provides a powerful tool for pathway enumeration with direct application to biosynthetic pathway design.

  10. Effectiveness of a clinical pathway for the emergency treatment of patients with inborn errors of metabolism.

    Science.gov (United States)

    Zand, Dina J; Brown, Kathleen M; Lichter-Konecki, Uta; Campbell, Joyce K; Salehi, Vesta; Chamberlain, James M

    2008-12-01

    The goal was to measure the effectiveness of a clinical pathway for the emergency department care of patients with inborn errors of metabolism. Two years after the implementation of a multidisciplinary clinical pathway for patients with inborn errors of metabolism in our urban, academic, pediatric emergency department, we compared measures of timeliness and effectiveness for patients treated before the pathway with the same measures for patients treated after implementation of the pathway. Measures of timeliness included time to room, time to doctor, time to glucose infusion, and total emergency department length of stay. Measures of clinical effectiveness included the proportion of patients receiving adequate glucose infusions, proportion of patients admitted, inpatient length of stay, and proportion of patients requiring PICU admission. A total of 214 emergency department visits for patients with inborn errors of metabolism were analyzed, 90 before and 124 after initiation of the pathway. All measures of timeliness of care except total emergency department length of stay demonstrated significant improvement in comparisons of values before and after initiation of the pathway. Measures of clinical effectiveness also demonstrated significant improvements after initiation of the pathway. There was improvement in the proportion of patients who received adequate glucose infusions, with a decrease in the proportion of patients who required admission to the PICU. Emergency department length of stay, inpatient length of stay, and the proportion of patients admitted to the hospital were not affected. Most measures of timeliness and 2 measures of effectiveness showed improvement after implementation of an emergency department pathway for patients with inborn errors of metabolism. Therefore, a clinical pathway can improve the emergency care of patients with inborn errors of metabolism.

  11. The effect of alterations in total coenzyme A on metabolic pathways in the liver and heart

    Energy Technology Data Exchange (ETDEWEB)

    Schlosser, C.A.S.

    1989-01-01

    The first set of experiments involved in vitro experiments using primary cultures of rat hepatocytes. A range of conditions were developed which resulted in cell cultures with variations in total CoA over a range of 1.3 to 2.9 nmol/mg protein with identical hormonal activation which simulated metabolic stress. Elevations of total CoA levels above that of controls due to preincubation with cyanamide plus pantothenate were correlated with diminished rates of total ketone body production, 3-hydroxybutyrate production and ratios of 3 hydroxybutyrate/acetoactetate with palmitate as substrate. In contrast, cells with elevated total CoA levels had higher rates of ({sup 14}C) CO{sub 2} production from radioactive palmitate which implied greater flux of acetyl CoA units into the TCA cycle and less to the pathway of ketogenesis. The second set of experiments were designed to alter total CoA levels in vivo by maintaining rats on a chronic ethanol diet with or without pantothenate-supplementation. The effect of alterations of CoA on mitochondrial metabolism was evaluated by measuring substrate oxidation rates in liver and heat mitochondria as well as ketone body production with palmitoyl-1-carnitine as substrate.

  12. GABA metabolism pathway genes, UGA1 and GAD1, regulate replicative lifespan in Saccharomycescerevisiae

    International Nuclear Information System (INIS)

    Kamei, Yuka; Tamura, Takayuki; Yoshida, Ryo; Ohta, Shinji; Fukusaki, Eiichiro; Mukai, Yukio

    2011-01-01

    Highlights: →We demonstrate that two genes in the yeast GABA metabolism pathway affect aging. → Deletion of the UGA1 or GAD1 genes extends replicative lifespan. → Addition of GABA to wild-type cultures has no effect on lifespan. → Intracellular GABA levels do not differ in longevity mutants and wild-type cells. → Levels of tricarboxylic acid cycle intermediates positively correlate with lifespan. -- Abstract: Many of the genes involved in aging have been identified in organisms ranging from yeast to human. Our previous study showed that deletion of the UGA3 gene-which encodes a zinc-finger transcription factor necessary for γ-aminobutyric acid (GABA)-dependent induction of the UGA1 (GABA aminotransferase), UGA2 (succinate semialdehyde dehydrogenase), and UGA4 (GABA permease) genes-extends replicative lifespan in the budding yeast Saccharomycescerevisiae. Here, we found that deletion of UGA1 lengthened the lifespan, as did deletion of UGA3; in contrast, strains with UGA2 or UGA4 deletions exhibited no lifespan extension. The Δuga1 strain cannot deaminate GABA to succinate semialdehyde. Deletion of GAD1, which encodes the glutamate decarboxylase that converts glutamate into GABA, also increased lifespan. Therefore, two genes in the GABA metabolism pathway, UGA1 and GAD1, were identified as aging genes. Unexpectedly, intracellular GABA levels in mutant cells (except for Δuga2 cells) did not differ from those in wild-type cells. Addition of GABA to culture media, which induces transcription of the UGA structural genes, had no effect on replicative lifespan of wild-type cells. Multivariate analysis of 1 H nuclear magnetic resonance spectra for the whole-cell metabolite levels demonstrated a separation between long-lived and normal-lived strains. Gas chromatography-mass spectrometry analysis of identified metabolites showed that levels of tricarboxylic acid cycle intermediates positively correlated with lifespan extension. These results strongly suggest

  13. GABA metabolism pathway genes, UGA1 and GAD1, regulate replicative lifespan in Saccharomycescerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Kamei, Yuka; Tamura, Takayuki [Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829 (Japan); Yoshida, Ryo [Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Ohta, Shinji [Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829 (Japan); Fukusaki, Eiichiro [Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Mukai, Yukio, E-mail: y_mukai@nagahama-i-bio.ac.jp [Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829 (Japan)

    2011-04-01

    Highlights: {yields}We demonstrate that two genes in the yeast GABA metabolism pathway affect aging. {yields} Deletion of the UGA1 or GAD1 genes extends replicative lifespan. {yields} Addition of GABA to wild-type cultures has no effect on lifespan. {yields} Intracellular GABA levels do not differ in longevity mutants and wild-type cells. {yields} Levels of tricarboxylic acid cycle intermediates positively correlate with lifespan. -- Abstract: Many of the genes involved in aging have been identified in organisms ranging from yeast to human. Our previous study showed that deletion of the UGA3 gene-which encodes a zinc-finger transcription factor necessary for {gamma}-aminobutyric acid (GABA)-dependent induction of the UGA1 (GABA aminotransferase), UGA2 (succinate semialdehyde dehydrogenase), and UGA4 (GABA permease) genes-extends replicative lifespan in the budding yeast Saccharomycescerevisiae. Here, we found that deletion of UGA1 lengthened the lifespan, as did deletion of UGA3; in contrast, strains with UGA2 or UGA4 deletions exhibited no lifespan extension. The {Delta}uga1 strain cannot deaminate GABA to succinate semialdehyde. Deletion of GAD1, which encodes the glutamate decarboxylase that converts glutamate into GABA, also increased lifespan. Therefore, two genes in the GABA metabolism pathway, UGA1 and GAD1, were identified as aging genes. Unexpectedly, intracellular GABA levels in mutant cells (except for {Delta}uga2 cells) did not differ from those in wild-type cells. Addition of GABA to culture media, which induces transcription of the UGA structural genes, had no effect on replicative lifespan of wild-type cells. Multivariate analysis of {sup 1}H nuclear magnetic resonance spectra for the whole-cell metabolite levels demonstrated a separation between long-lived and normal-lived strains. Gas chromatography-mass spectrometry analysis of identified metabolites showed that levels of tricarboxylic acid cycle intermediates positively correlated with lifespan

  14. Aluminum hydroxide adjuvant differentially activates the three complement pathways with major involvement of the alternative pathway

    DEFF Research Database (Denmark)

    Güven, Esin; Duus, Karen; Laursen, Inga

    2013-01-01

    Al(OH)3 is the most common adjuvant in human vaccines, but its mode of action remains poorly understood. Complement involvement in the adjuvant properties of Al(OH)3 has been suggested in several reports together with a depot effect. It is here confirmed that Al(OH)3 treatment of serum depletes c...

  15. Metabolic pathways of benzimidazole anthelmintics in harebell (Campanula rotundifolia)

    Czech Academy of Sciences Publication Activity Database

    Stuchlíková, L.; Jirásko, R.; Skálová, L.; Pavlík, F.; Szotáková, B.; Holčapek, M.; Vaněk, Tomáš; Podlipná, Radka

    2016-01-01

    Roč. 157, AUG (2016), s. 10-17 ISSN 0045-6535 R&D Projects: GA ČR(CZ) GA15-05325S Institutional support: RVO:61389030 Keywords : Drug metabolism * Biotransformation * Albendazole Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.208, year: 2016

  16. Metabolic pathway analysis using a nash equilibrium approach

    NARCIS (Netherlands)

    Lucia, Angelo; DiMaggio, Peter A.; Alonso-Martinez, Diego

    2018-01-01

    A novel approach to metabolic network analysis using a Nash Equilibrium (NE) formulation is proposed in which enzymes are considered players in a multi-player game. Each player has its own payoff function with the objective of minimizing the Gibbs free energy associated with the biochemical

  17. Carbohydrate Metabolism in Archaea: Current Insights into Unusual Enzymes and Pathways and Their Regulation

    Science.gov (United States)

    Esser, Dominik; Rauch, Bernadette

    2014-01-01

    SUMMARY The metabolism of Archaea, the third domain of life, resembles in its complexity those of Bacteria and lower Eukarya. However, this metabolic complexity in Archaea is accompanied by the absence of many “classical” pathways, particularly in central carbohydrate metabolism. Instead, Archaea are characterized by the presence of unique, modified variants of classical pathways such as the Embden-Meyerhof-Parnas (EMP) pathway and the Entner-Doudoroff (ED) pathway. The pentose phosphate pathway is only partly present (if at all), and pentose degradation also significantly differs from that known for bacterial model organisms. These modifications are accompanied by the invention of “new,” unusual enzymes which cause fundamental consequences for the underlying regulatory principles, and classical allosteric regulation sites well established in Bacteria and Eukarya are lost. The aim of this review is to present the current understanding of central carbohydrate metabolic pathways and their regulation in Archaea. In order to give an overview of their complexity, pathway modifications are discussed with respect to unusual archaeal biocatalysts, their structural and mechanistic characteristics, and their regulatory properties in comparison to their classic counterparts from Bacteria and Eukarya. Furthermore, an overview focusing on hexose metabolic, i.e., glycolytic as well as gluconeogenic, pathways identified in archaeal model organisms is given. Their energy gain is discussed, and new insights into different levels of regulation that have been observed so far, including the transcript and protein levels (e.g., gene regulation, known transcription regulators, and posttranslational modification via reversible protein phosphorylation), are presented. PMID:24600042

  18. PGC-1β regulates HER2-overexpressing breast cancer cells proliferation by metabolic and redox pathways.

    Science.gov (United States)

    Victorino, Vanessa Jacob; Barroso, W A; Assunção, A K M; Cury, V; Jeremias, I C; Petroni, R; Chausse, B; Ariga, S K; Herrera, A C S A; Panis, C; Lima, T M; Souza, H P

    2016-05-01

    Breast cancer is a prevalent neoplastic disease among women worldwide which treatments still present several side effects and resistance. Considering that cancer cells present derangements in their energetic homeostasis, and that peroxisome proliferator-activated receptor- gamma coactivator 1 (PGC-1) is crucial for cellular metabolism and redox signaling, the main objective of this study was to investigate whether there is a relationship between PGC-1 expression, the proliferation of breast cancer cells and the mechanisms involved. We initially assessed PGC-1β expression in complementary DNA (cDNA) from breast tumor of patients bearing luminal A, luminal B, and HER2-overexpressed and triple negative tumors. Our data showed that PGC-1β expression is increased in patients bearing HER2-overexpressing tumors as compared to others subtypes. Using quantitative PCR and immunoblotting, we showed that breast cancer cells with HER2-amplification (SKBR-3) have greater expression of PGC-1β as compared to a non-tumorous breast cell (MCF-10A) and higher proliferation rate. PGC-1β expression was knocked down with short interfering RNA in HER2-overexpressing cells, and cells decreased proliferation. In these PGC-1β-inhibited cells, we found increased citrate synthase activity and no marked changes in mitochondrial respiration. Glycolytic pathway was decreased, characterized by lower intracellular lactate levels. In addition, after PGC-1β knockdown, SKBR-3 cells showed increased reactive oxygen species production, no changes in antioxidant activity, and decreased expression of ERRα, a modulator of metabolism. In conclusion, we show an association of HER2-overexpression and PGC-1β. PGC-1β knockdown impairs HER2-overexpressing cells proliferation acting on ERRα signaling, metabolism, and redox balance.

  19. Alterations of specific biomarkers of metabolic pathways in vascular tree from patients with Type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Rosa Bernal-Lopez M

    2012-07-01

    Full Text Available Abstract The aims of this study were to check whether different biomarkers of inflammatory, apoptotic, immunological or lipid pathways had altered their expression in the occluded popliteal artery (OPA compared with the internal mammary artery (IMA and femoral vein (FV and to examine whether glycemic control influenced the expression of these genes. The study included 20 patients with advanced atherosclerosis and type 2 diabetes mellitus, 15 of whom had peripheral arterial occlusive disease (PAOD, from whom samples of OPA and FV were collected. PAOD patients were classified based on their HbA1c as well (HbA1c ≤ 6.5 or poorly (HbA1c > 6.5 controlled patients. Controls for arteries without atherosclerosis comprised 5 IMA from patients with ischemic cardiomyopathy (ICM. mRNA, protein expression and histological studies were analyzed in IMA, OPA and FV. After analyzing 46 genes, OPA showed higher expression levels than IMA or FV for genes involved in thrombosis (F3, apoptosis (MMP2, MMP9, TIMP1 and TIM3, lipid metabolism (LRP1 and NDUFA, immune response (TLR2 and monocytes adhesion (CD83. Remarkably, MMP-9 expression was lower in OPA from well-controlled patients. In FV from diabetic patients with HbA1c ≤6.5, gene expression levels of BCL2, CDKN1A, COX2, NDUFA and SREBP2 were higher than in FV from those with HbA1c >6.5. The atherosclerotic process in OPA from diabetic patients was associated with high expression levels of inflammatory, lipid metabolism and apoptotic biomarkers. The degree of glycemic control was associated with gene expression markers of apoptosis, lipid metabolism and antioxidants in FV. However, the effect of glycemic control on pro-atherosclerotic gene expression was very low in arteries with established atherosclerosis.

  20. A Bayesian method for identifying missing enzymes in predicted metabolic pathway databases

    Directory of Open Access Journals (Sweden)

    Karp Peter D

    2004-06-01

    Full Text Available Abstract Background The PathoLogic program constructs Pathway/Genome databases by using a genome's annotation to predict the set of metabolic pathways present in an organism. PathoLogic determines the set of reactions composing those pathways from the enzymes annotated in the organism's genome. Most annotation efforts fail to assign function to 40–60% of sequences. In addition, large numbers of sequences may have non-specific annotations (e.g., thiolase family protein. Pathway holes occur when a genome appears to lack the enzymes needed to catalyze reactions in a pathway. If a protein has not been assigned a specific function during the annotation process, any reaction catalyzed by that protein will appear as a missing enzyme or pathway hole in a Pathway/Genome database. Results We have developed a method that efficiently combines homology and pathway-based evidence to identify candidates for filling pathway holes in Pathway/Genome databases. Our program not only identifies potential candidate sequences for pathway holes, but combines data from multiple, heterogeneous sources to assess the likelihood that a candidate has the required function. Our algorithm emulates the manual sequence annotation process, considering not only evidence from homology searches, but also considering evidence from genomic context (i.e., is the gene part of an operon? and functional context (e.g., are there functionally-related genes nearby in the genome? to determine the posterior belief that a candidate has the required function. The method can be applied across an entire metabolic pathway network and is generally applicable to any pathway database. The program uses a set of sequences encoding the required activity in other genomes to identify candidate proteins in the genome of interest, and then evaluates each candidate by using a simple Bayes classifier to determine the probability that the candidate has the desired function. We achieved 71% precision at a

  1. Transcriptional regulation of metabolic pathways, alternative respiration and enterotoxin genes in anaerobic growth of Bacillus cereus ATCC 14579.

    Science.gov (United States)

    van der Voort, M; Abee, T

    2009-09-01

    To assess genes specifically activated during anaerobic growth that are involved in metabolism and pathogenesis of the foodborne pathogen Bacillus cereus. Growth under anaerobic conditions in Brain Heart Infusion (BHI) broth revealed a reduced growth rate and lower yield as compared to growth under aerobic conditions. Subsequently, comparative transcriptome analysis showed specific genes induced under anaerobic conditions. These included novel genes identified for anaerobic growth of B. cereus, encoding metabolic pathways, such as the arginine deiminase pathway (ArcABDC), formate dehydrogenase (FdhF) and pyruvate formate lyase (Pfl), and alternative respiratory proteins, such as arsenate reductases. Notably, haemolytic enzyme encoding genes were induced during anaerobic growth, and enterotoxin genes were induced in high cell density transition and stationary phases of aerobic cultures. These data point to induction of stress adaptation and pathogenicity factors and rearrangements of expression of metabolic pathways in response to oxygen limitations in B. cereus. The reported changes in gene expression show that the foodborne pathogen B. cereus can adjust to anaerobic conditions, such as encountered in the human GI-tract.

  2. Characterization of Carbohydrate Active Enzymes Involved in Arabinogalactan Protein Metabolism

    DEFF Research Database (Denmark)

    Knoch, Eva

    and tissues, their functions and synthesis are still poorly understood. The aim of the research presented in the thesis was to characterize carbohydrate active enzymes involved in AGP biosynthesis and modification to gain insights into the biosynthesis of the glycoproteins in plants. Candidate....... The enzymatic activity of a hydrolase from GH family 17 was investigated, without successful determination of the activity. Members of hydrolase family 43 appeared to be localized in the Golgi-apparatus, which is also the compartment for glycan biosynthesis. The localization of these glycoside hydrolases...

  3. Modulation of the pentose phosphate pathway alters phase I metabolism of testosterone and dextromethorphan in HepG2 cells.

    Science.gov (United States)

    Xiao, Wen-jing; Ma, Ting; Ge, Chun; Xia, Wen-juan; Mao, Yong; Sun, Run-bin; Yu, Xiao-yi; Aa, Ji-ye; Wang, Guang-ji

    2015-02-01

    The pentose phosphate pathway (PPP) is involved in the activity of glucose-6-phosphate dehydrogenase (G6PD) and generation of NADPH, which plays a key role in drug metabolism. The aim of this study was to investigate the effects of modulation of the PPP on drug metabolism capacity in vitro. A pair of hepatic cell lines, ie, the cancerous HepG2 cells and normal L02 cells, was used. The expression of CYP450 enzymes, p53 and G6PD in the cells were analyzed. The metabolism of testosterone (TEST, 10 μmol/L) and dextromethorphan (DEM, 1 μmol/L), the two typical substrates for CYP3A4 and CYP2D6, in the cells was examined in the presence of different agents. Both the expression and metabolic activities of CYP3A4 and CYP2D6 were considerably higher in HepG2 cells than in L02 cells. The metabolism of TEST and DEM in HepG2 cells was dose-dependently inhibited by the specific CYP3A4 inhibitor ketoconazole and CYP2D6 inhibitor quinidine. Addition of the p53 inhibitor cyclic PFT-α (5, 25 μmol/L) in HepG2 cells dose-dependently enhanced the metabolism of DEM and TEST, whereas addition of the p53 activator NSC 66811 (3, 10, 25 μmol/L) dose-dependently inhibited the metabolism. Furthermore, addition of the G6PD inhibitor 6-aminonicotinamide (5, 15 μmol/L) in HepG2 cells dose-dependently inhibited the metabolism of DEM and TEST, whereas addition of the PPP activity stimulator menadione (1, 5, 15 μmol/L) dose-dependently enhanced the metabolism. Modulation of p53 and the PPP alters the metabolism of DEM and TEST, suggesting that the metabolic flux pattern of PPP may be closely involved in drug metabolism and the individual variance.

  4. Glucose Metabolism in Legionella pneumophila: Dependence on the Entner-Doudoroff Pathway and Connection with Intracellular Bacterial Growth† ▿

    Science.gov (United States)

    Harada, Eiji; Iida, Ken-Ichiro; Shiota, Susumu; Nakayama, Hiroaki; Yoshida, Shin-Ichi

    2010-01-01

    Glucose metabolism in Legionella pneumophila was studied by focusing on the Entner-Doudoroff (ED) pathway with a combined genetic and biochemical approach. The bacterium utilized exogenous glucose for synthesis of acid-insoluble cell components but manifested no discernible increase in the growth rate. Assays with permeabilized cell preparations revealed the activities of three enzymes involved in the pathway, i.e., glucokinase, phosphogluconate dehydratase, and 2-dehydro-3-deoxy-phosphogluconate aldolase, presumed to be encoded by the glk, edd, and eda genes, respectively. Gene-disrupted mutants for the three genes and the ywtG gene encoding a putative sugar transporter were devoid of the ability to metabolize exogenous glucose, indicating that the pathway is almost exclusively responsible for glucose metabolism and that the ywtG gene product is the glucose transporter. It was also established that these four genes formed part of an operon in which the gene order was edd-glk-eda-ywtG, as predicted by genomic information. Intriguingly, while the mutants exhibited no appreciable change in growth characteristics in vitro, they were defective in multiplication within eukaryotic cells, strongly indicating that the ED pathway must be functional for the intracellular growth of the bacterium to occur. Curiously, while the deficient glucose metabolism of the ywtG mutant was successfully complemented by the ywtG+ gene supplied in trans via plasmid, its defect in intracellular growth was not. However, the latter defect was also manifested in wild-type cells when a plasmid carrying the mutant ywtG gene was introduced. This phenomenon, resembling so-called dominant negativity, awaits further investigation. PMID:20363943

  5. Metabolic pathways for lipid synthesis under nitrogen stress in Chlamydomonas and Nannochloropsis.

    Science.gov (United States)

    Banerjee, Avik; Maiti, Subodh K; Guria, Chandan; Banerjee, Chiranjib

    2017-01-01

    Microalgae are currently being considered as a clean, sustainable and renewable energy source. Enzymes that catalyse the metabolic pathways for biofuel production are specific and require strict regulation and co-ordination. Thorough knowledge of these key enzymes along with their regulatory molecules is essential to enable rational metabolic engineering, to drive the metabolic flux towards the desired metabolites of importance. This paper reviews two key enzymes that play their role in production of bio-oil: DGAT (acyl-CoA:diacylglycerol acyltransferase) and PDAT (phospholipid:diacylglycerol acyltransferase). It also deals with the transcription factors that control the enzymes while cell undergoes a metabolic shift under stress. The paper also discusses the association of other enzymes and pathways that provide substrates and precursors for oil accumulation. Finally a futuristic solution has been proposed about a synthetic algal cell platform that would be committed towards biofuel synthesis.

  6. Regulation of Hydroxylation and Nitroreduction Pathways during Metabolism of the Neonicotinoid Insecticide Imidacloprid by Pseudomonas putida.

    Science.gov (United States)

    Lu, Tian-Qi; Mao, Shi-Yun; Sun, Shi-Lei; Yang, Wen-Long; Ge, Feng; Dai, Yi-Jun

    2016-06-22

    Imidacloprid (IMI) is mainly metabolized via nitroreduction and hydroxylation pathways, which produce different metabolites that are toxic to mammals and insects. However, regulation of IMI metabolic flux between nitroreduction and hydroxylation pathways is still unclear. In this study, Pseudomonas putida was found to metabolize IMI to 5-hydroxy and nitroso IMI and was therefore used for investigating the regulation of IMI metabolic flux. The cell growth time, cosubstrate, dissolved oxygen concentration, and pH showed significant effect on IMI degradation and nitroso and 5-hydroxy IMI formation. Gene cloning and overexpression in Escherichia coli proved that P. putida KT2440 aldehyde oxidase mediated IMI nitroreduction to nitroso IMI, while cytochrome P450 monooxygenase (CYP) failed to improve IMI hydroxylation. Moreover, E. coli cells without CYP could hydroxylate IMI, demonstrating the role of a non-CYP enzyme in IMI hydroxylation. Thus, the present study helps to further understand the environmental fate of IMI and its underlying mechanism.

  7. The return of metabolism: biochemistry and physiology of the pentose phosphate pathway

    Science.gov (United States)

    Stincone, Anna; Prigione, Alessandro; Cramer, Thorsten; Wamelink, Mirjam M. C.; Campbell, Kate; Cheung, Eric; Olin-Sandoval, Viridiana; Grüning, Nana-Maria; Krüger, Antje; Alam, Mohammad Tauqeer; Keller, Markus A.; Breitenbach, Michael; Brindle, Kevin M.; Rabinowitz, Joshua D.; Ralser, Markus

    2015-01-01

    The pentose phosphate pathway (PPP) is a fundamental component of cellular metabolism. The PPP is important to maintain carbon homoeostasis, to provide precursors for nucleotide and amino acid biosynthesis, to provide reducing molecules for anabolism, and to defeat oxidative stress. The PPP shares reactions with the Entner–Doudoroff pathway and Calvin cycle and divides into an oxidative and non-oxidative branch. The oxidative branch is highly active in most eukaryotes and converts glucose 6-phosphate into carbon dioxide, ribulose 5-phosphate and NADPH. The latter function is critical to maintain redox balance under stress situations, when cells proliferate rapidly, in ageing, and for the ‘Warburg effect’ of cancer cells. The non-oxidative branch instead is virtually ubiquitous, and metabolizes the glycolytic intermediates fructose 6-phosphate and glyceraldehyde 3-phosphate as well as sedoheptulose sugars, yielding ribose 5-phosphate for the synthesis of nucleic acids and sugar phosphate precursors for the synthesis of amino acids. Whereas the oxidative PPP is considered unidirectional, the non-oxidative branch can supply glycolysis with intermediates derived from ribose 5-phosphate and vice versa, depending on the biochemical demand. These functions require dynamic regulation of the PPP pathway that is achieved through hierarchical interactions between transcriptome, proteome and metabolome. Consequently, the biochemistry and regulation of this pathway, while still unresolved in many cases, are archetypal for the dynamics of the metabolic network of the cell. In this comprehensive article we review seminal work that led to the discovery and description of the pathway that date back now for 80 years, and address recent results about genetic and metabolic mechanisms that regulate its activity. These biochemical principles are discussed in the context of PPP deficiencies causing metabolic disease and the role of this pathway in biotechnology, bacterial and

  8. The return of metabolism: biochemistry and physiology of the pentose phosphate pathway.

    Science.gov (United States)

    Stincone, Anna; Prigione, Alessandro; Cramer, Thorsten; Wamelink, Mirjam M C; Campbell, Kate; Cheung, Eric; Olin-Sandoval, Viridiana; Grüning, Nana-Maria; Krüger, Antje; Tauqeer Alam, Mohammad; Keller, Markus A; Breitenbach, Michael; Brindle, Kevin M; Rabinowitz, Joshua D; Ralser, Markus

    2015-08-01

    The pentose phosphate pathway (PPP) is a fundamental component of cellular metabolism. The PPP is important to maintain carbon homoeostasis, to provide precursors for nucleotide and amino acid biosynthesis, to provide reducing molecules for anabolism, and to defeat oxidative stress. The PPP shares reactions with the Entner-Doudoroff pathway and Calvin cycle and divides into an oxidative and non-oxidative branch. The oxidative branch is highly active in most eukaryotes and converts glucose 6-phosphate into carbon dioxide, ribulose 5-phosphate and NADPH. The latter function is critical to maintain redox balance under stress situations, when cells proliferate rapidly, in ageing, and for the 'Warburg effect' of cancer cells. The non-oxidative branch instead is virtually ubiquitous, and metabolizes the glycolytic intermediates fructose 6-phosphate and glyceraldehyde 3-phosphate as well as sedoheptulose sugars, yielding ribose 5-phosphate for the synthesis of nucleic acids and sugar phosphate precursors for the synthesis of amino acids. Whereas the oxidative PPP is considered unidirectional, the non-oxidative branch can supply glycolysis with intermediates derived from ribose 5-phosphate and vice versa, depending on the biochemical demand. These functions require dynamic regulation of the PPP pathway that is achieved through hierarchical interactions between transcriptome, proteome and metabolome. Consequently, the biochemistry and regulation of this pathway, while still unresolved in many cases, are archetypal for the dynamics of the metabolic network of the cell. In this comprehensive article we review seminal work that led to the discovery and description of the pathway that date back now for 80 years, and address recent results about genetic and metabolic mechanisms that regulate its activity. These biochemical principles are discussed in the context of PPP deficiencies causing metabolic disease and the role of this pathway in biotechnology, bacterial and parasite

  9. Targeting Metabolic Survival Pathways in Lung Cancer via Combination Therapy

    Science.gov (United States)

    2014-06-01

    Irie, H.Y., Gao, S., Puigserver, P., and Brugge, J.S. (2009). Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix...HG levels alone are unable to inhibit reductive carboxylation activity, even though this dose of exogenous D-2-HG is suffi- A M 5 ci tr at e...glutamine to lipogenic AcCoA under hypoxia was significantly lower in cells with IDH1 mutations but not those with IDH2 mutations or exogenous 2-HG

  10. Flux analysis of central metabolic pathways in Geobactermetallireducens during reduction of solubleFe(III)-NTA

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yinjie J.; Chakraborty, Romy; Garcia-Martin, Hector; Chu,Jeannie; Hazen, Terry C.; Keasling, Jay D.

    2007-01-01

    We analyzed the carbon fluxes in the central metabolism ofGeobacter metallireducens strain GS-15 using 13C isotopomer modeling.Acetate labeled in the 1st or 2nd position was the sole carbon source,and Fe-NTA was the sole terminal electron acceptor. The measured labeledacetate uptake rate was 21 mmol/gdw/h in the exponential growth phase.The resulting isotope labeling pattern of amino acids allowed an accuratedetermination of the in vivo global metabolic reaction rates (fluxes)through the central metabolic pathways using a computational isotopomermodel. The tracer experiments showed that G. metallireducens containedcomplete biosynthesis pathways for essential metabolism, and this strainmight also have an unusual isoleucine biosynthesis route (usingacetyl-CoA and pyruvate as the precursors). The model indicated that over90 percent of the acetate was completely oxidized to CO2 via a completetricarboxylic acid (TCA) cycle while reducing iron. Pyruvate carboxylaseand phosphoenolpyruvate carboxykinase were present under theseconditions, but enzymes in the glyoxylate shunt and malic enzyme wereabsent. Gluconeogenesis and the pentose phosphate pathway were mainlyemployed for biosynthesis and accounted for less than 3 percent of totalcarbon consumption. The model also indicated surprisingly highreversibility in the reaction between oxoglutarate and succinate. Thisstep operates close to the thermodynamic equilibrium possibly becausesuccinate is synthesized via a transferase reaction, and the conversionof oxoglutarate to succinate is a rate limiting step for carbonmetabolism. These findings enable a better understanding of therelationship between genome annotation and extant metabolic pathways inG. metallireducens.

  11. Exposure to atrazine affects the expression of key genes in metabolic pathways integral to energy homeostasis in Xenopus laevis tadpoles

    International Nuclear Information System (INIS)

    Zaya, Renee M.; Amini, Zakariya; Whitaker, Ashley S.; Ide, Charles F.

    2011-01-01

    In our laboratory, Xenopus laevis tadpoles exposed throughout development to 200 or 400 μg/L atrazine, concentrations reported to periodically occur in puddles, vernal ponds and runoff soon after application, were smaller and had smaller fat bodies (the tadpole's lipid storage organ) than controls. It was hypothesized that these changes were due to atrazine-related perturbations of energy homeostasis. To investigate this hypothesis, selected metabolic responses to exposure at the transcriptional and biochemical levels in atrazine-exposed tadpoles were measured. DNA microarray technology was used to determine which metabolic pathways were affected after developmental exposure to 400 μg/L atrazine. From these data, genes representative of the affected pathways were selected for assay using quantitative real time polymerase chain reaction (qRT-PCR) to measure changes in expression during a 2-week exposure to 400 μg/L. Finally, ATP levels were measured from tadpoles both early in and at termination of exposure to 200 and 400 μg/L. Microarray analysis revealed significant differential gene expression in metabolic pathways involved with energy homeostasis. Pathways with increased transcription were associated with the conversion of lipids and proteins into energy. Pathways with decreased transcription were associated with carbohydrate metabolism, fat storage, and protein synthesis. Using qRT-PCR, changes in gene expression indicative of an early stress response to atrazine were noted. Exposed tadpoles had significant decreases in acyl-CoA dehydrogenase (AD) and glucocorticoid receptor protein (GR) mRNA after 24 h of exposure, and near-significant (p = 0.07) increases in peroxisome proliferator-activated receptor β (PPAR-β) mRNA by 72 h. Decreases in AD suggested decreases in fatty acid β-oxidation while decreases in GR may have been a receptor desensitization response to a glucocorticoid surge. Involvement of PPAR-β, an energy homeostasis regulatory molecule

  12. Exposure to atrazine affects the expression of key genes in metabolic pathways integral to energy homeostasis in Xenopus laevis tadpoles

    Energy Technology Data Exchange (ETDEWEB)

    Zaya, Renee M., E-mail: renee.zaya@wmich.edu [Great Lakes Environmental and Molecular Sciences Center, Department of Biological Sciences, 3425 Wood Hall, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, MI 49008 (United States); Amini, Zakariya, E-mail: zakariya.amini@wmich.edu [Great Lakes Environmental and Molecular Sciences Center, Department of Biological Sciences, 3425 Wood Hall, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, MI 49008 (United States); Whitaker, Ashley S., E-mail: ashley.s.whitaker@wmich.edu [Great Lakes Environmental and Molecular Sciences Center, Department of Biological Sciences, 3425 Wood Hall, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, MI 49008 (United States); Ide, Charles F., E-mail: charles.ide@wmich.edu [Great Lakes Environmental and Molecular Sciences Center, Department of Biological Sciences, 3425 Wood Hall, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, MI 49008 (United States)

    2011-08-15

    In our laboratory, Xenopus laevis tadpoles exposed throughout development to 200 or 400 {mu}g/L atrazine, concentrations reported to periodically occur in puddles, vernal ponds and runoff soon after application, were smaller and had smaller fat bodies (the tadpole's lipid storage organ) than controls. It was hypothesized that these changes were due to atrazine-related perturbations of energy homeostasis. To investigate this hypothesis, selected metabolic responses to exposure at the transcriptional and biochemical levels in atrazine-exposed tadpoles were measured. DNA microarray technology was used to determine which metabolic pathways were affected after developmental exposure to 400 {mu}g/L atrazine. From these data, genes representative of the affected pathways were selected for assay using quantitative real time polymerase chain reaction (qRT-PCR) to measure changes in expression during a 2-week exposure to 400 {mu}g/L. Finally, ATP levels were measured from tadpoles both early in and at termination of exposure to 200 and 400 {mu}g/L. Microarray analysis revealed significant differential gene expression in metabolic pathways involved with energy homeostasis. Pathways with increased transcription were associated with the conversion of lipids and proteins into energy. Pathways with decreased transcription were associated with carbohydrate metabolism, fat storage, and protein synthesis. Using qRT-PCR, changes in gene expression indicative of an early stress response to atrazine were noted. Exposed tadpoles had significant decreases in acyl-CoA dehydrogenase (AD) and glucocorticoid receptor protein (GR) mRNA after 24 h of exposure, and near-significant (p = 0.07) increases in peroxisome proliferator-activated receptor {beta} (PPAR-{beta}) mRNA by 72 h. Decreases in AD suggested decreases in fatty acid {beta}-oxidation while decreases in GR may have been a receptor desensitization response to a glucocorticoid surge. Involvement of PPAR-{beta}, an energy

  13. Exposure to atrazine affects the expression of key genes in metabolic pathways integral to energy homeostasis in Xenopus laevis tadpoles.

    Science.gov (United States)

    Zaya, Renee M; Amini, Zakariya; Whitaker, Ashley S; Ide, Charles F

    2011-08-01

    In our laboratory, Xenopus laevis tadpoles exposed throughout development to 200 or 400 μg/L atrazine, concentrations reported to periodically occur in puddles, vernal ponds and runoff soon after application, were smaller and had smaller fat bodies (the tadpole's lipid storage organ) than controls. It was hypothesized that these changes were due to atrazine-related perturbations of energy homeostasis. To investigate this hypothesis, selected metabolic responses to exposure at the transcriptional and biochemical levels in atrazine-exposed tadpoles were measured. DNA microarray technology was used to determine which metabolic pathways were affected after developmental exposure to 400 μg/L atrazine. From these data, genes representative of the affected pathways were selected for assay using quantitative real time polymerase chain reaction (qRT-PCR) to measure changes in expression during a 2-week exposure to 400 μg/L. Finally, ATP levels were measured from tadpoles both early in and at termination of exposure to 200 and 400 μg/L. Microarray analysis revealed significant differential gene expression in metabolic pathways involved with energy homeostasis. Pathways with increased transcription were associated with the conversion of lipids and proteins into energy. Pathways with decreased transcription were associated with carbohydrate metabolism, fat storage, and protein synthesis. Using qRT-PCR, changes in gene expression indicative of an early stress response to atrazine were noted. Exposed tadpoles had significant decreases in acyl-CoA dehydrogenase (AD) and glucocorticoid receptor protein (GR) mRNA after 24 h of exposure, and near-significant (p=0.07) increases in peroxisome proliferator-activated receptor β (PPAR-β) mRNA by 72 h. Decreases in AD suggested decreases in fatty acid β-oxidation while decreases in GR may have been a receptor desensitization response to a glucocorticoid surge. Involvement of PPAR-β, an energy homeostasis regulatory molecule, also

  14. Pathway Analysis of Metabolic Syndrome Using a Genome-Wide Association Study of Korea Associated Resource (KARE Cohorts

    Directory of Open Access Journals (Sweden)

    Unjin Shim

    2014-12-01

    Full Text Available Metabolic syndrome (MetS is a complex disorder related to insulin resistance, obesity, and inflammation. Genetic and environmental factors also contribute to the development of MetS, and through genome-wide association studies (GWASs, important susceptibility loci have been identified. However, GWASs focus more on individual single-nucleotide polymorphisms (SNPs, explaining only a small portion of genetic heritability. To overcome this limitation, pathway analyses are being applied to GWAS datasets. The aim of this study is to elucidate the biological pathways involved in the pathogenesis of MetS through pathway analysis. Cohort data from the Korea Associated Resource (KARE was used for analysis, which include 8,842 individuals (age, 52.2 ± 8.9 years; body mass index, 24.6 ± 3.2 kg/m2. A total of 312,121 autosomal SNPs were obtained after quality control. Pathway analysis was conducted using Meta-analysis Gene-Set Enrichment of Variant Associations (MAGENTA to discover the biological pathways associated with MetS. In the discovery phase, SNPs from chromosome 12, including rs11066280, rs2074356, and rs12229654, were associated with MetS (p < 5 × 10-6, and rs11066280 satisfied the Bonferroni-corrected cutoff (unadjusted p < 1.38 × 10-7, Bonferroni-adjusted p < 0.05. Through pathway analysis, biological pathways, including electron carrier activity, signaling by platelet-derived growth factor (PDGF, the mitogen-activated protein kinase kinase kinase cascade, PDGF binding, peroxisome proliferator-activated receptor (PPAR signaling, and DNA repair, were associated with MetS. Through pathway analysis of MetS, pathways related with PDGF, mitogen-activated protein kinase, and PPAR signaling, as well as nucleic acid binding, protein secretion, and DNA repair, were identified. Further studies will be needed to clarify the genetic pathogenesis leading to MetS.

  15. Cloning and Partial Characterization of an Aniline Metabolic Pathway (Preprint)

    Science.gov (United States)

    1995-08-03

    formation of 2 dioxygenases and a suite of meta cleavage enzymes. The size of the fragment containing the operon is 20.66 kilo base pairs and is of...dehydrogenase or a hydrolase to TCA cycle intermediates. Studies are presently underway to subclone the pathway and to fully characterize the operon ...and expresses catechol 2,3 dioxygenase from the lactose promoter. Plasmid pSMT4 contains a 20.66 kb fragment from P. sp. CIT1 and 4 ( confers the

  16. Genome wide expression analysis in HPV16 Cervical Cancer: identification of altered metabolic pathways

    OpenAIRE

    Pérez-Plasencia, Carlos; Vázquez-Ortiz, Guelaguetza; López-Romero, Ricardo; Piña-Sanchez, Patricia; Moreno, José; Salcedo, Mauricio

    2007-01-01

    Abstract Background Cervical carcinoma (CC) is a leading cause of death among women worldwide. Human papilloma virus (HPV) is a major etiological factor in CC and HPV 16 is the more frequent viral type present. Our aim was to characterize metabolic pathways altered in HPV 16 tumor samples by means of transcriptome wide analysis and bioinformatics tools for visualizing expression data in the context of KEGG biological pathways. Results We found 2,067 genes significantly up or down-modulated (a...

  17. Turmeric (Curcuma longa): miRNAs and their regulating targets are involved in development and secondary metabolite pathways.

    Science.gov (United States)

    Singh, Noopur; Sharma, Ashok

    Turmeric has been used as a therapeutic herb over centuries in traditional medicinal systems due to the presence of several secondary metabolite compounds. microRNAs are known to regulate gene expression at the post-transcriptional level by transcriptional cleavage or translation repression. miRNAs have been demonstrated to play an active role in secondary metabolism regulation. The present work was focused on the identification of the miRNAs involved in the regulation of secondary metabolite and development process of turmeric. Eighteen miRNA families were identified for turmeric. Sixteen miRNA families were observed to regulate 238 target transcripts. LncRNAs targets of the putative miRNA candidates were also predicted. Our results indicated their role in binding, reproduction, stress, and other developmental processes. Gene annotation and pathway analysis illustrated the biological function of the targets regulated by the putative miRNAs. The miRNA-mediated gene regulatory network also revealed co-regulated targets that were regulated by two or more miRNA families. miR156 and miR5015 were observed to be involved in rhizome development. miR5021 showed regulation for terpenoid backbone biosynthesis and isoquinoline alkaloid biosynthesis pathways. The flavonoid biosynthesis pathway was observed to be regulated by miR2919. The analysis revealed the probable involvement of three miRNAs (miR1168.2, miR156b and miR1858) in curcumin biosynthesis. Other miRNAs were found to be involved in the growth and developmental process of turmeric. Phylogenetic analysis of selective miRNAs was also performed. Copyright © 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

  18. Proteomic Analysis of Hylocereus polyrhizus Reveals Metabolic Pathway Changes

    Directory of Open Access Journals (Sweden)

    Qingzhu Hua

    2016-09-01

    Full Text Available Red dragon fruit or red pitaya (Hylocereus polyrhizus is the only edible fruit that contains betalains. The color of betalains ranges from red and violet to yellow in plants. Betalains may also serve as an important component of health-promoting and disease-preventing functional food. Currently, the biosynthetic and regulatory pathways for betalain production remain to be fully deciphered. In this study, isobaric tags for relative and absolute quantitation (iTRAQ-based proteomic analyses were used to reveal the molecular mechanism of betalain biosynthesis in H. polyrhizus fruits at white and red pulp stages, respectively. A total of 1946 proteins were identified as the differentially expressed between the two samples, and 936 of them were significantly highly expressed at the red pulp stage of H. polyrhizus. RNA-seq and iTRAQ analyses showed that some transcripts and proteins were positively correlated; they belonged to “phenylpropanoid biosynthesis”, “tyrosine metabolism”, “flavonoid biosynthesis”, “ascorbate and aldarate metabolism”, “betalains biosynthesis” and “anthocyanin biosynthesis”. In betalains biosynthesis pathway, several proteins/enzymes such as polyphenol oxidase, CYP76AD3 and 4,5-dihydroxy-phenylalanine (DOPA dioxygenase extradiol-like protein were identified. The present study provides a new insight into the molecular mechanism of the betalain biosynthesis at the posttranscriptional level.

  19. Energizing miRNA research: a review of the role of miRNAs in lipid metabolism, with a prediction that miR-103/107 regulates human metabolic pathways.

    Science.gov (United States)

    Wilfred, Bernard R; Wang, Wang-Xia; Nelson, Peter T

    2007-07-01

    MicroRNAs (miRNAs) are powerful regulators of gene expression. Although first discovered in worm larvae, miRNAs play fundamental biological roles-including in humans-well beyond development. MiRNAs participate in the regulation of metabolism (including lipid metabolism) for all animal species studied. A review of the fascinating and fast-growing literature on miRNA regulation of metabolism can be parsed into three main categories: (1) adipocyte biochemistry and cell fate determination; (2) regulation of metabolic biochemistry in invertebrates; and (3) regulation of metabolic biochemistry in mammals. Most research into the 'function' of a given miRNA in metabolic pathways has concentrated on a given miRNA acting upon a particular 'target' mRNA. Whereas in some biological contexts the effects of a given miRNA:mRNA pair may predominate, this might not be the case generally. In order to provide an example of how a single miRNA could regulate multiple 'target' mRNAs or even entire human metabolic pathways, we include a discussion of metabolic pathways that are predicted to be regulated by the miRNA paralogs, miR-103 and miR-107. These miRNAs, which exist in vertebrate genomes within introns of the pantothenate kinase (PANK) genes, are predicted by bioinformatics to affect multiple mRNA targets in pathways that involve cellular Acetyl-CoA and lipid levels. Significantly, PANK enzymes also affect these pathways, so the miRNA and 'host' gene may act synergistically. These predictions require experimental verification. In conclusion, a review of the literature on miRNA regulation of metabolism leads us believe that the future will provide researchers with many additional energizing revelations.

  20. Reconstruction of biological pathways and metabolic networks from in silico labeled metabolites.

    Science.gov (United States)

    Hadadi, Noushin; Hafner, Jasmin; Soh, Keng Cher; Hatzimanikatis, Vassily

    2017-01-01

    Reaction atom mappings track the positional changes of all of the atoms between the substrates and the products as they undergo the biochemical transformation. However, information on atom transitions in the context of metabolic pathways is not widely available in the literature. The understanding of metabolic pathways at the atomic level is of great importance as it can deconvolute the overlapping catabolic/anabolic pathways resulting in the observed metabolic phenotype. The automated identification of atom transitions within a metabolic network is a very challenging task since the degree of complexity of metabolic networks dramatically increases when we transit from metabolite-level studies to atom-level studies. Despite being studied extensively in various approaches, the field of atom mapping of metabolic networks is lacking an automated approach, which (i) accounts for the information of reaction mechanism for atom mapping and (ii) is extendable from individual atom-mapped reactions to atom-mapped reaction networks. Hereby, we introduce a computational framework, iAM.NICE (in silico Atom Mapped Network Integrated Computational Explorer), for the systematic atom-level reconstruction of metabolic networks from in silico labelled substrates. iAM.NICE is to our knowledge the first automated atom-mapping algorithm that is based on the underlying enzymatic biotransformation mechanisms, and its application goes beyond individual reactions and it can be used for the reconstruction of atom-mapped metabolic networks. We illustrate the applicability of our method through the reconstruction of atom-mapped reactions of the KEGG database and we provide an example of an atom-level representation of the core metabolic network of E. coli. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Response to Cardiac Resynchronization Therapy: The Muscular Metabolic Pathway

    Directory of Open Access Journals (Sweden)

    Jérémie Jaussaud

    2011-01-01

    245±140 seconds (=.01. Peak VO2, VE/VCO2, peak circulatory power and NYHA were improved after CRT (13±4 to16±5 ml/kg/min (<.05, 45±16 to 39±13 (<.01, 1805±844 to 2225±1171 mmHg.ml/kg/min (<.01 and 3±0.35 to 1.88±0.4 (=.01. In addition, left ventricular ejection fraction and end-systolic volumes were improved from 24±8 to 29±7% (<.01 and from 157±69 to 122±55 ml (<.01. Conclusion. We suggest that CRT leads to an increase in oxidative muscular metabolism and postponed anaerobic threshold reducing exaggerated hyperventilation during exercise.

  2. The Gustatory Signaling Pathway and Bitter Taste Receptors Affect the Development of Obesity and Adipocyte Metabolism in Mice.

    Directory of Open Access Journals (Sweden)

    Bert Avau

    Full Text Available Intestinal chemosensory signaling pathways involving the gustatory G-protein, gustducin, and bitter taste receptors (TAS2R have been implicated in gut hormone release. Alterations in gut hormone profiles may contribute to the success of bariatric surgery. This study investigated the involvement of the gustatory signaling pathway in the development of diet-induced obesity and the therapeutic potential of targeting TAS2Rs to induce body weight loss. α-gustducin-deficient (α-gust-/- mice became less obese than wild type (WT mice when fed a high-fat diet (HFD. White adipose tissue (WAT mass was lower in α-gust-/- mice due to increased heat production as a result of increases in brown adipose tissue (BAT thermogenic activity, involving increased protein expression of uncoupling protein 1. Intra-gastric treatment of obese WT and α-gust-/- mice with the bitter agonists denatonium benzoate (DB or quinine (Q during 4 weeks resulted in an α-gustducin-dependent decrease in body weight gain associated with a decrease in food intake (DB, but not involving major changes in gut peptide release. Both WAT and 3T3-F442A pre-adipocytes express TAS2Rs. Treatment of pre-adipocytes with DB or Q decreased differentiation into mature adipocytes. In conclusion, interfering with the gustatory signaling pathway protects against the development of HFD-induced obesity presumably through promoting BAT activity. Intra-gastric bitter treatment inhibits weight gain, possibly by directly affecting adipocyte metabolism.

  3. Evolutionary optimization of metabolic pathways. Theoretical reconstruction of the stoichiometry of ATP and NADH producing systems.

    Science.gov (United States)

    Ebenhöh, O; Heinrich, R

    2001-01-01

    The structural design of ATP and NADH producing systems, such as glycolysis and the citric acid cycle (TCA), is analysed using optimization principles. It is assumed that these pathways combined with oxidative phosphorylation have reached, during their evolution, a high efficiency with respect to ATP production rates. On the basis of kinetic and thermodynamic principles, conclusions are derived concerning the optimal stoichiometry of such pathways. Extending previous investigations, both the concentrations of adenine nucleotides as well as nicotinamide adenine dinucleotides are considered variable quantities. This implies the consideration of the interaction of an ATP and NADH producing system, an ATP consuming system, a system coupling NADH consumption with ATP production and a system consuming NADH decoupled from ATP production. It is examined in what respect real metabolic pathways can be considered optimal by studying a large number of alternative pathways. The kinetics of the individual reactions are described by linear or bilinear functions of reactant concentrations. In this manner, the steady-state ATP production rate can be calculated for any possible ATP and NADH producing pathway. It is shown that most of the possible pathways result in a very low ATP production rate and that the very efficient pathways share common structural properties. Optimization with respect to the ATP production rate is performed by an evolutionary algorithm. The following results of our analysis are in close correspondence to the real design of glycolysis and the TCA cycle. (1) In all efficient pathways the ATP consuming reactions are located near the beginning. (2) In all efficient pathways NADH producing reactions as well as ATP producing reactions are located near the end. (3) The number of NADH molecules produced by the consumption of one energy-rich molecule (glucose) amounts to four in all efficient pathways. A distance measure and a measure for the internal ordering of

  4. p38 Mapk signal pathway involved in anti-inflammatory effect of ...

    African Journals Online (AJOL)

    In conclusion, CSS and SLBZS might work as a significant anti-inflammatory effect on hepatocyte of NASH by inhibiting the activation of TLR4, p-p38 MAPK and p38 MAPK involved in p38 MAPK signal pathway. Conclusion: To some extent, CSS and SLBZS may be a potential alternative and complementary medicine to ...

  5. Actin filaments as the fast pathways for calcium ions involved in ...

    Indian Academy of Sciences (India)

    ... Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Journal of Biosciences; Volume 40; Issue 3. Actin filaments as the fast pathways for calcium ions involved in auditory processes. Miljko V Sataric Dalibor L Sekulic Bogdan M Sataric. Articles Volume 40 Issue 3 September 2015 pp 549- ...

  6. TEC protein tyrosine kinase is involved in the Erk signaling pathway induced by HGF.

    Science.gov (United States)

    Li, Feifei; Jiang, Yinan; Zheng, Qiping; Yang, Xiaoming; Wang, Siying

    2011-01-07

    TEC, a member of the TEC family of non-receptor type protein tyrosine kinases, has recently been suggested to play a role in hepatocyte proliferation and liver regeneration. This study aims to investigate the putative mechanisms of TEC kinase regulation of hepatocyte differentiation, i.e. to explore which signaling pathway TEC is involved in, and how TEC is activated in hepatocyte after hepatectomy and hepatocyte growth factor (HGF) stimulation. We performed immunoprecipitation (IP) and immunoblotting (IB) to examine TEC tyrosine phosphorylation after partial hepatectomy in mice and HGF stimulation in WB F-344 hepatic cells. The TEC kinase activity was determined by in vitro kinase assay. Reporter gene assay, antisense oligonucleotide and TEC dominant negative mutant (TEC(KM)) were used to examine the possible signaling pathways in which TEC is involved. The cell proliferation rate was evaluated by (3)H-TdR incorporation. TEC phosphorylation and kinase activity were increased in 1 h after hepatectomy or HGF treatment. TEC enhanced the activity of Elk and serum response element (SRE). Inhibition of MEK1 suppressed TEC phosphorylation. Blocking TEC activity dramatically decreased the activation of Erk. Reduced TEC kinase activity also suppressed the proliferation of WB F-344 cells. These results suggest TEC is involved in the Ras-MAPK pathway and acts between MEK1 and Erk. TEC promotes hepatocyte proliferation and regeneration and is involved in HGF-induced Erk signaling pathway. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Regulating the balance between the kynurenine and serotonin pathways of tryptophan metabolism.

    Science.gov (United States)

    Li, Yang; Hu, Nan; Yang, Dan; Oxenkrug, Gregory; Yang, Qing

    2017-03-01

    Tryptophan is metabolized along the kynurenine and serotonin pathways, resulting in formation of kynurenine metabolites, neuroactive serotonin and melatonin. Each pathway is critical for maintaining healthy homeostasis. However, the two pathways are extremely unequal in their ability to degrade tryptophan, and little is known about the mechanisms maintaining the balance between them. Here, we demonstrated that in PC12 cells, a change of expression of key genes of one pathway resulted in a change of expression of key genes of the other. Melatonin, the end product of the serotonin pathway, played an important role in tryptophan metabolism by affecting both key enzymes of the two pathways. Melatonin treatment induced the expression of indole-2,3-dioxygenase 1 (IDO1) and enhanced the activity of the IDO1 promoter while decreasing the expression of arylalkylamine N-acetyl transferase. Melatonin treatment up-regulated the expression of forkhead box protein O1 (FoxO1) and enhanced the binding of FoxO1 to the IDO1 promoter. FoxO1 was shown to be a new regulator for IDO1 expression. Melatonin treatment decreased the phosphorylation of FoxO1 by extracellular signal-regulated kinases 1 and 2 and protein kinase B (Akt) and increased the phosphorylation of binding protein 14-3-3 by c-Jun N-terminal kinase (JNK), and thus the complex of FoxO1-14-3-3 in the cytoplasm was disassembled and FoxO1 was relocated to the nucleus to induce IDO1 expression. The JNK signaling pathway played an important role in melatonin-induced IDO1 up-regulation. In conclusion, this study suggests a link between melatonin, JNK, FoxO1 and IDO1 that acts as a potential balance regulator of tryptophan metabolism, and offers a new approach to treat diseases related to dysregulation of tryptophan metabolism. © 2017 Federation of European Biochemical Societies.

  8. Integration of transcriptomic and metabolic data reveals hub transcription factors involved in drought stress response in sunflower (Helianthus annuus L.).

    Science.gov (United States)

    Moschen, Sebastián; Di Rienzo, Julio A; Higgins, Janet; Tohge, Takayuki; Watanabe, Mutsumi; González, Sergio; Rivarola, Máximo; García-García, Francisco; Dopazo, Joaquin; Hopp, H Esteban; Hoefgen, Rainer; Fernie, Alisdair R; Paniego, Norma; Fernández, Paula; Heinz, Ruth A

    2017-07-01

    By integration of transcriptional and metabolic profiles we identified pathways and hubs transcription factors regulated during drought conditions in sunflower, useful for applications in molecular and/or biotechnological breeding. Drought is one of the most important environmental stresses that effects crop productivity in many agricultural regions. Sunflower is tolerant to drought conditions but the mechanisms involved in this tolerance remain unclear at the molecular level. The aim of this study was to characterize and integrate transcriptional and metabolic pathways related to drought stress in sunflower plants, by using a system biology approach. Our results showed a delay in plant senescence with an increase in the expression level of photosynthesis related genes as well as higher levels of sugars, osmoprotectant amino acids and ionic nutrients under drought conditions. In addition, we identified transcription factors that were upregulated during drought conditions and that may act as hubs in the transcriptional network. Many of these transcription factors belong to families implicated in the drought response in model species. The integration of transcriptomic and metabolomic data in this study, together with physiological measurements, has improved our understanding of the biological responses during droughts and contributes to elucidate the molecular mechanisms involved under this environmental condition. These findings will provide useful biotechnological tools to improve stress tolerance while maintaining crop yield under restricted water availability.

  9. Pathway confirmation and flux analysis of central metabolic pathways in Desulfovibrio vulgaris Hildenborough using Gas Chromatography-Mass Spectrometry and Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry

    International Nuclear Information System (INIS)

    Tang, Yinjie; Pingitore, Francesco; Mukhopadhyay, Aindrila; Phan, Richard; Hazen, Terry C.; Keasling, Jay D.

    2007-01-01

    Flux distribution in central metabolic pathways of Desulfovibrio vulgaris Hildenborough was examined using 13C tracer experiments. Consistent with the current genome annotation and independent evidence from enzyme activity assays, the isotopomer results from both GC-MS and Fourier Transform-Ion Cyclotron Resonance mass spectrometry (FT-ICR MS) indicate the lack of oxidatively functional TCA cycle and an incomplete pentose phosphate pathway. Results from this study suggest that fluxes through both pathways are limited to biosynthesis. The data also indicate that >80 percent of the lactate was converted to acetate and the reactions involved are the primary route of energy production (NAD(P)H and ATP production). Independent of the TCA cycle, direct cleavage of acetyl-CoA to CO and 5,10-methyl-THF also leads to production of NADH and ATP. Although the genome annotation implicates a ferredoxin-dependent oxoglutarate synthase, isotopic evidence does not support flux through this reaction in either the oxidative or reductive mode; therefore, the TCA cycle is incomplete. FT-ICR MS was used to locate the labeled carbon distribution in aspartate and glutamate and confirmed the presence of an atypical enzyme for citrate formation suggested in previous reports (the citrate synthesized by this enzyme is the isotopic antipode of the citrate synthesized by the (S)-citrate synthase). These findings enable a better understanding of the relation between genome annotation and actual metabolic pathways in D. vulgaris, and also demonstrate FT-ICR MS as a powerful tool for isotopomer analysis, overcoming problems in both GC-MS and NMR spectroscopy

  10. Key Roles of Glutamine Pathways in Reprogramming the Cancer Metabolism

    Directory of Open Access Journals (Sweden)

    Krzysztof Piotr Michalak

    2015-01-01

    Full Text Available Glutamine (GLN is commonly known as an important metabolite used for the growth of cancer cells but the effects of its intake in cancer patients are still not clear. However, GLN is the main substrate for DNA and fatty acid synthesis. On the other hand, it reduces the oxidative stress by glutathione synthesis stimulation, stops the process of cancer cachexia, and nourishes the immunological system and the intestine epithelium, as well. The current paper deals with possible positive effects of GLN supplementation and conditions that should be fulfilled to obtain these effects. The analysis of GLN metabolism suggests that the separation of GLN and carbohydrates in the diet can minimize simultaneous supply of ATP (from glucose and NADPH2 (from glutamine to cancer cells. It should support to a larger extent the organism to fight against the cancer rather than the cancer cells. GLN cannot be considered the effective source of ATP for cancers with the impaired oxidative phosphorylation and pyruvate dehydrogenase inhibition. GLN intake restores decreased levels of glutathione in the case of chemotherapy and radiotherapy; thus, it facilitates regeneration processes of the intestine epithelium and immunological system.

  11. Bayesian inference of the sites of perturbations in metabolic pathways via Markov chain Monte Carlo

    NARCIS (Netherlands)

    Jayawardhana, Bayu; Kell, Douglas B.; Rattray, Magnus

    2008-01-01

    Motivation: Genetic modifications or pharmaceutical interventions can influence multiple sites in metabolic pathways, and often these are ‘distant’ from the primary effect. In this regard, the ability to identify target and off-target effects of a specific compound or gene therapy is both a major

  12. Validation of RetroPath, a computer-aided design tool for metabolic pathway engineering.

    Science.gov (United States)

    Fehér, Tamás; Planson, Anne-Gaëlle; Carbonell, Pablo; Fernández-Castané, Alfred; Grigoras, Ioana; Dariy, Ekaterina; Perret, Alain; Faulon, Jean-Loup

    2014-11-01

    Metabolic engineering has succeeded in biosynthesis of numerous commodity or high value compounds. However, the choice of pathways and enzymes used for production was many times made ad hoc, or required expert knowledge of the specific biochemical reactions. In order to rationalize the process of engineering producer strains, we developed the computer-aided design (CAD) tool RetroPath that explores and enumerates metabolic pathways connecting the endogenous metabolites of a chassis cell to the target compound. To experimentally validate our tool, we constructed 12 top-ranked enzyme combinations producing the flavonoid pinocembrin, four of which displayed significant yields. Namely, our tool queried the enzymes found in metabolic databases based on their annotated and predicted activities. Next, it ranked pathways based on the predicted efficiency of the available enzymes, the toxicity of the intermediate metabolites and the calculated maximum product flux. To implement the top-ranking pathway, our procedure narrowed down a list of nine million possible enzyme combinations to 12, a number easily assembled and tested. One round of metabolic network optimization based on RetroPath output further increased pinocembrin titers 17-fold. In total, 12 out of the 13 enzymes tested in this work displayed a relative performance that was in accordance with its predicted score. These results validate the ranking function of our CAD tool, and open the way to its utilization in the biosynthesis of novel compounds. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Metabolomics-Based Elucidation of Active Metabolic Pathways in Erythrocytes and HSC-Derived Reticulocytes.

    Science.gov (United States)

    Srivastava, Anubhav; Evans, Krystal J; Sexton, Anna E; Schofield, Louis; Creek, Darren J

    2017-04-07

    A detailed analysis of the metabolic state of human-stem-cell-derived erythrocytes allowed us to characterize the existence of active metabolic pathways in younger reticulocytes and compare them to mature erythrocytes. Using high-resolution LC-MS-based untargeted metabolomics, we found that reticulocytes had a comparatively much richer repertoire of metabolites, which spanned a range of metabolite classes. An untargeted metabolomics analysis using stable-isotope-labeled glucose showed that only glycolysis and the pentose phosphate pathway actively contributed to the biosynthesis of metabolites in erythrocytes, and these pathways were upregulated in reticulocytes. Most metabolite species found to be enriched in reticulocytes were residual pools of metabolites produced by earlier erythropoietic processes, and their systematic depletion in mature erythrocytes aligns with the simplification process, which is also seen at the cellular and the structural level. Our work shows that high-resolution LC-MS-based untargeted metabolomics provides a global coverage of the biochemical species that are present in erythrocytes. However, the incorporation of stable isotope labeling provides a more accurate description of the active metabolic processes that occur in each developmental stage. To our knowledge, this is the first detailed characterization of the active metabolic pathways of the erythroid lineage, and it provides a rich database for understanding the physiology of the maturation of reticulocytes into mature erythrocytes.

  14. Reconstructing phylogeny by aligning multiple metabolic pathways using functional module mapping

    NARCIS (Netherlands)

    Huang, Yiran; Zhong, Cheng; Lin, H.X.; Wang, Jianyi; Peng, Yuzhong

    2018-01-01

    Comparison of metabolic pathways provides a systematic way for understanding the evolutionary and phylogenetic relationships in systems biology. Although a number of phylogenetic methods have been developed, few efforts have been made to provide a unified phylogenetic framework that sufficiently

  15. Fluctuation of multiple metabolic pathways is required for Escherichia coli in response to chlortetracycline stress.

    Science.gov (United States)

    Lin, Xiangmin; Kang, Liqun; Li, Hui; Peng, Xuanxian

    2014-04-01

    Bacterial antibiotic resistance has become a worldwide challenge with the overuse and misuse of drugs. Several mechanisms for the resistance are revealed, but information regarding the bacterial global response to antibiotics is largely absent. In this study, we characterized the differential proteome of Escherichia coli K12 BW25113 in response to chlortetracycline stress using isobaric tags for relative and absolute quantitation labeling quantitative proteomics technology. A total of 723 proteins including 10,763 peptides were identified with 184 decreasing and 147 increasing in abundance by liquid chromatography matrix assisted laser desorption ionization mass spectrometry. Most interestingly, crucial metabolic pathways such as the tricarboxylic acid cycle, pyruvate metabolism and glycolysis/gluconeogenesis sharply fluctuated, while the ribosome protein complexes contributing to the translation process were generally elevated in chlortetracycline stress, which is known for a compensative tactic due to the action of chlortetracycline on the ribosome. Further antimicrobial susceptibility assays validated the role of differential proteins in metabolic pathways using genetically modified mutants of gene deletion of these differential proteins. Our study demonstrated that the down-regulation of metabolic pathways was a part of the global response and played an important role in the antibiotics resistance. These results indicate that reverting of these fluctuated pathways may become a novel strategy to combat antibiotic-resistant bacteria.

  16. The return of metabolism: biochemistry and physiology of the pentose phosphate pathway

    NARCIS (Netherlands)

    Stincone, A.; Prigione, A.; Cramer, T.; Wamelink, M.M.C.; Campbell, K.; Cheung, E.; Olin-Sandoval, V.; Gruning, N.M.; Kruger, A.; Alam, M.T.; Keller, M.A.; Breitenbach, M.; Brindle, K.M.; Rabinowitz, J.D.; Ralser, M.

    2015-01-01

    The pentose phosphate pathway (PPP) is a fundamental component of cellular metabolism. The PPP is important to maintain carbon homoeostasis, to provide precursors for nucleotide and amino acid biosynthesis, to provide reducing molecules for anabolism, and to defeat oxidative stress. The PPP shares

  17. Metabolic signature of sun exposed skin suggests catabolic pathway overweighs anabolic pathway.

    Directory of Open Access Journals (Sweden)

    Manpreet Randhawa

    Full Text Available Skin chronically exposed to sun results in phenotypic changes referred as photoaging. This aspect of aging has been studied extensively through genomic and proteomic tools. Metabolites, the end product are generated as a result of biochemical reactions are often studied as a culmination of complex interplay of gene and protein expression. In this study, we focused exclusively on the metabolome to study effects from sun-exposed and sun-protected skin sites from 25 human subjects. We generated a highly accurate metabolomic signature for the skin that is exposed to sun. Biochemical pathway analysis from this data set showed that sun-exposed skin resides under high oxidative stress and the chains of reactions to produce these metabolites are inclined toward catabolism rather than anabolism. These catabolic activities persuade the skin cells to generate metabolites through the salvage pathway instead of de novo synthesis pathways. Metabolomic profile suggests catabolic pathways and reactive oxygen species operate in a feed forward fashion to alter the biology of sun exposed skin.

  18. Skeletal muscle lipid accumulation in type 2 diabetes may involve the liver X receptor pathway

    DEFF Research Database (Denmark)

    Kase, E.T.; Wensaas, A.J.; Aas, V.

    2005-01-01

    Liver X receptors (LXRs) are important regulators of cholesterol and lipid metabolism and are also involved in glucose metabolism. However, the functional role of LXRs in human skeletal muscle is at present unknown. This study demonstrates that chronic ligand activation of LXRs by a synthetic LXR....... Interestingly, in response to activation of LXRs, myotubes from patients with type 2 diabetes showed an elevated uptake and incorporation of palmitate into complex lipids but an absence of palmitate oxidation to CO(2). These results provide evidence for a functional role of LXRs in both lipid and glucose...

  19. Studies on xylitol production by metabolic pathway engineered Debaryomyces hansenii.

    Science.gov (United States)

    Pal, Suksham; Choudhary, Vikas; Kumar, Anil; Biswas, Dipanwita; Mondal, Alok K; Sahoo, Debendra K

    2013-11-01

    Debaryomyces hansenii is one of the most promising natural xylitol producers. As the conversion of xylitol to xylulose mediated by NAD(+) cofactor dependent xylitol dehydrogenase (XDH) reduces its xylitol yield, xylitol dehydrogenase gene (DhXDH)-disrupted mutant of D. hansenii having potential for xylose assimilating pathway stopping at xylitol, was used to study the effects of co-substrates, xylose and oxygen availability on xylitol production. Compared to low cell growth and xylitol production in cultivation medium containing xylose as the only substrate, XDH disrupted mutants grown on glycerol as co-substrate accumulated 2.5-fold increased xylitol concentration over those cells grown on glucose as co-substrate. The oxygen availability, in terms of volumetric oxygen transfer coefficient, kLa (23.86-87.96 h(-1)), affected both xylitol productivity and yield, though the effect is more pronounced on the former. The addition of extra xylose at different phases of xylitol fermentation did not enhance xylitol productivity under experimental conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Cutis laxa: intersection of elastic fiber biogenesis, TGFβ signaling, the secretory pathway and metabolism.

    Science.gov (United States)

    Urban, Zsolt; Davis, Elaine C

    2014-01-01

    Cutis laxa (CL), a disease characterized by redundant and inelastic skin, displays extensive locus heterogeneity. Together with geroderma osteodysplasticum and arterial tortuosity syndrome, which show phenotypic overlap with CL, eleven CL-related genes have been identified to date, which encode proteins within 3 groups. Elastin, fibulin-4, fibulin-5 and latent transforming growth factor-β-binding protein 4 are secreted proteins which form elastic fibers and are involved in the sequestration and subsequent activation of transforming growth factor-β (TGFβ). Proteins within the second group, localized to the secretory pathway, perform transport and membrane trafficking functions necessary for the modification and secretion of elastic fiber components. Key proteins include a subunit of the vacuolar-type proton pump, which ensures the efficient secretion of tropoelastin, the precursor or elastin. A copper transporter is required for the activity of lysyl oxidases, which crosslink collagen and elastin. A Rab6-interacting goglin recruits kinesin motors to Golgi-vesicles facilitating the transport from the Golgi to the plasma membrane. The Rab and Ras interactor 2 regulates the activity of Rab5, a small guanosine triphosphatase essential for the endocytosis of various cell surface receptors, including integrins. Proteins of the third group related to CL perform metabolic functions within the mitochondria, inhibiting the accumulation of reactive oxygen species. Two of these proteins catalyze subsequent steps in the conversion of glutamate to proline. The third transports dehydroascorbate into mitochondria. Recent studies on CL-related proteins highlight the intricate connections among membrane trafficking, metabolism, extracellular matrix assembly, and TGFβ signaling. © 2013 Elsevier B.V. All rights reserved.

  1. Metabolic pathways of the wheat (Triticum aestivum endosperm amyloplast revealed by proteomics

    Directory of Open Access Journals (Sweden)

    Dupont Frances M

    2008-04-01

    Full Text Available Abstract Background By definition, amyloplasts are plastids specialized for starch production. However, a proteomic study of amyloplasts isolated from wheat (Triticum aestivum Butte 86 endosperm at 10 days after anthesis (DPA detected enzymes from many other metabolic and biosynthetic pathways. To better understand the role of amyloplasts in food production, the data from that study were evaluated in detail and an amyloplast metabolic map was outlined. Results Analysis of 288 proteins detected in an amyloplast preparation predicted that 178 were amyloplast proteins. Criteria included homology with known plastid proteins, prediction of a plastid transit peptide for the wheat gene product or a close homolog, known plastid location of the pathway, and predicted plastid location for other members of the same pathway. Of these, 135 enzymes were arranged into 18 pathways for carbohydrate, lipid, amino acid, nucleic acid and other biosynthetic processes that are critical for grain-fill. Functions of the other proteins are also discussed. Conclusion The pathways outlined in this paper suggest that amyloplasts play a central role in endosperm metabolism. The interacting effects of genetics and environment on starch and protein production may be mediated in part by regulatory mechanisms within this organelle.

  2. The mTORC2/PKC pathway sustains compensatory insulin secretion of pancreatic β cells in response to metabolic stress.

    Science.gov (United States)

    Xie, Yun; Cui, Canqi; Nie, Aifang; Wang, Yan; Ni, Qicheng; Liu, Yun; Yin, Qinglei; Zhang, Hongli; Li, Yong; Wang, Qidi; Gu, Yanyun; Ning, Guang

    2017-08-01

    Compensation of the pancreatic β cell functional mass in response to metabolic stress is key to the pathogenesis of Type 2 Diabetes. The mTORC2 pathway governs fuel metabolism and β cell functional mass. It is unknown whether mTORC2 is required for regulating metabolic stress-induced β cell compensation. We challenged four-week-old β-cell-specific Rictor (a key component of mTORC2)-knockout mice with a high fat diet (HFD) for 4weeks and measured metabolic and pancreatic morphological parameters. We performed ex vivo experiments to analyse β cell insulin secretion and electrophysiology characteristics. Adenoviral-mediated overexpression and lentiviral-ShRNA-mediated knocking down proteins were applied in Min6 cells and cultured primary mouse islets. βRicKO mice showed a significant glucose intolerance and a reduced plasma insulin level and an unchanged level β cell mass versus the control mice under HFD. A HFD or palmitate treatment enhanced both glucose-induced insulin secretion (GIIS) and the PMA (phorbol 12-myristate 13-acetate)-induced insulin secretion in the control islets but not in the βRicKO islets. The KO β cells showed similar glucose-induced Ca 2+ influx but lower membrane capacitance increments versus the control cells. The enhanced mTORC2/PKC proteins levels in the control HFD group were ablated by Rictor deletion. Replenishing PKCα by overexpression of PKCα-T638D restored the defective GIIS in βRicKO islets. The mTORC2/Rictor pathway modulates β cell compensatory GIIS under nutrient overload mediated by its phosphorylation of PKCα. This study suggests that the mTORC2/PKC pathway in β cells is involved in the pathogenesis of T2D. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Metabolic intervention on lipid synthesis converging pathways abrogates prostate cancer growth.

    Science.gov (United States)

    Fritz, V; Benfodda, Z; Henriquet, C; Hure, S; Cristol, J-P; Michel, F; Carbonneau, M-A; Casas, F; Fajas, L

    2013-10-17

    One of the most conserved features of all cancers is a profound reprogramming of cellular metabolism, favoring biosynthetic processes and limiting catalytic processes. With the acquired knowledge of some of these important changes, we have designed a combination therapy in order to force cancer cells to use a particular metabolic pathway that ultimately results in the accumulation of toxic products. This innovative approach consists of blocking lipid synthesis, at the same time that we force the cell, through the inhibition of AMP-activated kinase, to accumulate toxic intermediates, such as malonyl-coenzyme A (malonyl-CoA) or nicotinamide adenine dinucleotide phosphate. This results in excess of oxidative stress and cancer cell death. Our new therapeutic strategy, based on the manipulation of metabolic pathways, will certainly set up the basis for new upcoming studies defining a new paradigm of cancer treatment.

  4. Distinct DNA repair pathways involving RecA and nonhomologous end joining in Mycobacterium smegmatis.

    Science.gov (United States)

    Korycka-Machala, Malgorzata; Brzostek, Anna; Rozalska, Sylwia; Rumijowska-Galewicz, Anna; Dziedzic, Renata; Bowater, Richard; Dziadek, Jaroslaw

    2006-05-01

    Mycobacterium smegmatis was used to study the relationship between DNA repair processes involving RecA and nonhomologous end joining (NHEJ). The effect of gene deletions in recA and/or in two genes involved in NHEJ (ku and ligD) was tested on the ability of bacteria to join breaks in plasmids transformed into them and in their response to chemicals that damage DNA. The results provide in vivo evidence that only NHEJ is required for the repair of noncompatible DNA ends. By contrast, the response of mycobacteria to mitomycin C preferentially involved a RecA-dependent pathway.

  5. Machine Learning Methods for Analysis of Metabolic Data and Metabolic Pathway Modeling.

    Science.gov (United States)

    Cuperlovic-Culf, Miroslava

    2018-01-11

    Machine learning uses experimental data to optimize clustering or classification of samples or features, or to develop, augment or verify models that can be used to predict behavior or properties of systems. It is expected that machine learning will help provide actionable knowledge from a variety of big data including metabolomics data, as well as results of metabolism models. A variety of machine learning methods has been applied in bioinformatics and metabolism analyses including self-organizing maps, support vector machines, the kernel machine, Bayesian networks or fuzzy logic. To a lesser extent, machine learning has also been utilized to take advantage of the increasing availability of genomics and metabolomics data for the optimization of metabolic network models and their analysis. In this context, machine learning has aided the development of metabolic networks, the calculation of parameters for stoichiometric and kinetic models, as well as the analysis of major features in the model for the optimal application of bioreactors. Examples of this very interesting, albeit highly complex, application of machine learning for metabolism modeling will be the primary focus of this review presenting several different types of applications for model optimization, parameter determination or system analysis using models, as well as the utilization of several different types of machine learning technologies.

  6. Machine Learning Methods for Analysis of Metabolic Data and Metabolic Pathway Modeling

    Science.gov (United States)

    Cuperlovic-Culf, Miroslava

    2018-01-01

    Machine learning uses experimental data to optimize clustering or classification of samples or features, or to develop, augment or verify models that can be used to predict behavior or properties of systems. It is expected that machine learning will help provide actionable knowledge from a variety of big data including metabolomics data, as well as results of metabolism models. A variety of machine learning methods has been applied in bioinformatics and metabolism analyses including self-organizing maps, support vector machines, the kernel machine, Bayesian networks or fuzzy logic. To a lesser extent, machine learning has also been utilized to take advantage of the increasing availability of genomics and metabolomics data for the optimization of metabolic network models and their analysis. In this context, machine learning has aided the development of metabolic networks, the calculation of parameters for stoichiometric and kinetic models, as well as the analysis of major features in the model for the optimal application of bioreactors. Examples of this very interesting, albeit highly complex, application of machine learning for metabolism modeling will be the primary focus of this review presenting several different types of applications for model optimization, parameter determination or system analysis using models, as well as the utilization of several different types of machine learning technologies. PMID:29324649

  7. Database constraints applied to metabolic pathway reconstruction tools.

    Science.gov (United States)

    Vilaplana, Jordi; Solsona, Francesc; Teixido, Ivan; Usié, Anabel; Karathia, Hiren; Alves, Rui; Mateo, Jordi

    2014-01-01

    Our group developed two biological applications, Biblio-MetReS and Homol-MetReS, accessing the same database of organisms with annotated genes. Biblio-MetReS is a data-mining application that facilitates the reconstruction of molecular networks based on automated text-mining analysis of published scientific literature. Homol-MetReS allows functional (re)annotation of proteomes, to properly identify both the individual proteins involved in the process(es) of interest and their function. It also enables the sets of proteins involved in the process(es) in different organisms to be compared directly. The efficiency of these biological applications is directly related to the design of the shared database. We classified and analyzed the different kinds of access to the database. Based on this study, we tried to adjust and tune the configurable parameters of the database server to reach the best performance of the communication data link to/from the database system. Different database technologies were analyzed. We started the study with a public relational SQL database, MySQL. Then, the same database was implemented by a MapReduce-based database named HBase. The results indicated that the standard configuration of MySQL gives an acceptable performance for low or medium size databases. Nevertheless, tuning database parameters can greatly improve the performance and lead to very competitive runtimes.

  8. Transcript Profiling of Paoenia ostii during Artificial Chilling Induced Dormancy Release Identifies Activation of GA Pathway and Carbohydrate Metabolism

    Science.gov (United States)

    Liu, Chunying; Zhang, Yang; Zheng, Guosheng

    2013-01-01

    Endo-dormant flower buds must pass through a period of chilling to reinitiate growth and subsequent flowering, which is a major obstacle to the forcing culture of tree peony in winter. Customized cDNA microarray (8×15 K element) was used to investigate gene expression profiling in tree peony ‘Feng Dan Bai’ buds during 24 d chilling treatment at 0–4°C. According to the morphological changes after the whole plants were transferred to green house, endo-dormancy was released after 18 d chilling treatment, and prolonged chilling treatment increased bud break rate. Pearson correlation hierarchical clustering of sample groups was highly consistent with the dormancy transitions revealed by morphological changes. Totally 3,174 significantly differentially-expressed genes (Pdormancy release process, of which the number of up-regulated (1,611) and that of down-regulated (1,563) was almost the same. Functional annotation of differentially-expressed genes revealed that cellular process, metabolic process, response to stimulus, regulation of biological process and development process were well-represented. Hierarchical clustering indicated that activation of genes involved in carbohydrate metabolism (Glycolysis, Citrate cycle and Pentose phosphate pathway), energy metabolism and cell growth. Based on the results of GO analysis, totally 51 probes presented in the microarray were associated with GA response and GA signaling pathway, and 22 of them were differently expressed. The expression profiles also revealed that the genes of GA biosynthesis, signaling and response involved in endo-dormancy release. We hypothesized that activation of GA pathway played a central role in the regulation of dormancy release in tree peony. PMID:23405132

  9. Peretinoin, an Acyclic Retinoid, Inhibits Hepatitis B Virus Replication by Suppressing Sphingosine Metabolic Pathway In Vitro

    Directory of Open Access Journals (Sweden)

    Kazuhisa Murai

    2018-01-01

    Full Text Available Hepatocellular carcinoma (HCC frequently develops from hepatitis C virus (HCV and hepatitis B virus (HBV infection. We previously reported that peretinoin, an acyclic retinoid, inhibits HCV replication. This study aimed to examine the influence of peretinoin on the HBV lifecycle. HBV-DNA and covalently closed circular DNA (cccDNA were evaluated by a qPCR method in HepG2.2.15 cells. Peretinoin significantly reduced the levels of intracellular HBV-DNA, nuclear cccDNA, and HBV transcript at a concentration that did not induce cytotoxicity. Conversely, other retinoids, such as 9-cis, 13-cis retinoic acid (RA, and all-trans-retinoic acid (ATRA, had no effect or rather increased HBV replication. Mechanistically, although peretinoin increased the expression of HBV-related transcription factors, as observed for other retinoids, peretinoin enhanced the binding of histone deacetylase 1 (HDAC1 to cccDNA in the nucleus and negatively regulated HBV transcription. Moreover, peretinoin significantly inhibited the expression of SPHK1, a potential inhibitor of HDAC activity, and might be involved in hepatic inflammation, fibrosis, and HCC. SPHK1 overexpression in cells cancelled the inhibition of HBV replication induced by peretinoin. This indicates that peretinoin activates HDAC1 and thereby suppresses HBV replication by inhibiting the sphingosine metabolic pathway. Therefore, peretinoin may be a novel therapeutic agent for HBV replication and chemoprevention against HCC.

  10. Analysis of gene evolution and metabolic pathways using the Candida Gene Order Browser

    LENUS (Irish Health Repository)

    Fitzpatrick, David A

    2010-05-10

    Abstract Background Candida species are the most common cause of opportunistic fungal infection worldwide. Recent sequencing efforts have provided a wealth of Candida genomic data. We have developed the Candida Gene Order Browser (CGOB), an online tool that aids comparative syntenic analyses of Candida species. CGOB incorporates all available Candida clade genome sequences including two Candida albicans isolates (SC5314 and WO-1) and 8 closely related species (Candida dubliniensis, Candida tropicalis, Candida parapsilosis, Lodderomyces elongisporus, Debaryomyces hansenii, Pichia stipitis, Candida guilliermondii and Candida lusitaniae). Saccharomyces cerevisiae is also included as a reference genome. Results CGOB assignments of homology were manually curated based on sequence similarity and synteny. In total CGOB includes 65617 genes arranged into 13625 homology columns. We have also generated improved Candida gene sets by merging\\/removing partial genes in each genome. Interrogation of CGOB revealed that the majority of tandemly duplicated genes are under strong purifying selection in all Candida species. We identified clusters of adjacent genes involved in the same metabolic pathways (such as catabolism of biotin, galactose and N-acetyl glucosamine) and we showed that some clusters are species or lineage-specific. We also identified one example of intron gain in C. albicans. Conclusions Our analysis provides an important resource that is now available for the Candida community. CGOB is available at http:\\/\\/cgob.ucd.ie.

  11. An efficient tool for metabolic pathway construction and gene integration for Aspergillus niger.

    Science.gov (United States)

    Sarkari, Parveen; Marx, Hans; Blumhoff, Marzena L; Mattanovich, Diethard; Sauer, Michael; Steiger, Matthias G

    2017-12-01

    Metabolic engineering requires functional genetic tools for easy and quick generation of multiple pathway variants. A genetic engineering toolbox for A. niger is presented, which facilitates the generation of strains carrying heterologous expression cassettes at a defined genetic locus. The system is compatible with Golden Gate cloning, which facilitates the DNA construction process and provides high design flexibility. The integration process is mediated by a CRISPR/Cas9 strategy involving the cutting of both the genetic integration locus (pyrG) as well as the integrating plasmid. Only a transient expression of Cas9 is necessary and the carrying plasmid is readily lost using a size-reduced AMA1 variant. A high integration efficiency into the fungal genome of up to 100% can be achieved, thus reducing the screening process significantly. The feasibility of the approach was demonstrated by the integration of an expression cassette enabling the production of aconitic acid in A. niger. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. A New Family of Biuret Hydrolases Involved in S-Triazine Ring Metabolism

    OpenAIRE

    Cameron, Stephan M.; Durchschein, Katharina; Richman, Jack E.; Sadowsky, Michael J.; Wackett, Lawrence P.

    2011-01-01

    Biuret is an intermediate in the bacterial metabolism of s-triazine ring compounds and is occasionally used as a ruminant feed supplement. We used bioinformatics to identify a biuret hydrolase, an enzyme that has previously resisted efforts to stabilize, purify and characterize. This newly discovered enzyme is a member of the cysteine hydrolase superfamily, a family of enzymes previously not found to be involved in s-triazine metabolism. The gene from Rhizobium leguminosarum bv. viciae strain...

  13. Signalling pathways involved in adult heart formation revealed by gene expression profiling in Drosophila.

    Directory of Open Access Journals (Sweden)

    Bruno Zeitouni

    2007-10-01

    Full Text Available Drosophila provides a powerful system for defining the complex genetic programs that drive organogenesis. Under control of the steroid hormone ecdysone, the adult heart in Drosophila forms during metamorphosis by a remodelling of the larval cardiac organ. Here, we evaluated the extent to which transcriptional signatures revealed by genomic approaches can provide new insights into the molecular pathways that underlie heart organogenesis. Whole-genome expression profiling at eight successive time-points covering adult heart formation revealed a highly dynamic temporal map of gene expression through 13 transcript clusters with distinct expression kinetics. A functional atlas of the transcriptome profile strikingly points to the genomic transcriptional response of the ecdysone cascade, and a sharp regulation of key components belonging to a few evolutionarily conserved signalling pathways. A reverse genetic analysis provided evidence that these specific signalling pathways are involved in discrete steps of adult heart formation. In particular, the Wnt signalling pathway is shown to participate in inflow tract and cardiomyocyte differentiation, while activation of the PDGF-VEGF pathway is required for cardiac valve formation. Thus, a detailed temporal map of gene expression can reveal signalling pathways responsible for specific developmental programs and provides here substantial grasp into heart formation.

  14. Source of metabolizable energy affects gene transcription in metabolic pathways in adipose and liver tissue of nonlactating, pregnant dairy cows.

    Science.gov (United States)

    Crookenden, M A; Mandok, K S; Grala, T M; Phyn, C V C; Kay, J K; Greenwood, S L; Roche, J R

    2015-02-01

    The objective of this experiment was to determine if transcript abundance of genes involved in metabolic pathways in adipose and liver tissue could provide some explanation for the low efficiency with which ME in autumn pasture is used for BW gain. Nonlactating, pregnant (208 ± 19 d of gestation or approximately 75 d precalving) dairy cows (n = 90) were randomly allocated to either a control diet (i.e., offered fresh autumn pasture to maintenance requirements: 0.55 MJ ME/kg of measured metabolic BW [BW0.75] per day) or, in addition to the control diet, 1 of 2 supplement amounts (2.5 and 5.0 kg DM/d) of autumn pasture or 1 of 4 supplementary feeds (i.e., a control and 2 levels of feeding for each of 5 feeds: 11 groups of cows). Along with autumn pasture, evaluated feeds included spring pasture silage, maize silage, maize grain, and palm kernel expeller. Adipose and liver tissues were biopsied in wk 4 of the experiment and transcript abundance of genes involved in metabolic pathways associated with energy metabolism, lipolysis, and lipogenesis was determined. Additional feed, irrespective of type, increased BW gain (P cows offered maize grain and maize silage (i.e., starch-containing feeds). In comparison, pasture-fed cows demonstrated a degree of uncoupling of the somatotropic axis, with lower hepatic transcript abundance of both GHR1A and IGF-1 compared with cows offered any of the other 4 feeds. Changes to gene transcription indicate a possible molecular mechanism for the poor BW gain evident in ruminants consuming autumn pasture.

  15. Mechanisms of formation and function of eosinophil lipid bodies: inducible intracellular sites involved in arachidonic acid metabolism

    Directory of Open Access Journals (Sweden)

    Bozza Patricia T

    1997-01-01

    Full Text Available Lipid bodies, inducible lipid-rich cytoplasmic inclusions, are characteristically abundant in cells associated with inflammation, including eosinophils. Here we reviewed the formation and function of lipid bodies in human eosinophils. We now have evidence that the formation of lipid bodies is not attributable to adverse mechanisms, but is centrally mediated by specific signal transduction pathways. Arachidonic acid and other cis fatty acids by an NSAID-inhibitable process, diglycerides, and PAF by a 5-lipoxygenase dependent pathway are potent stimulators of lipid body induction. Lipid body formation develops rapidly by processes that involve PKC, PLC, and de novo mRNA and protein synthesis. These structures clearly serve as repositoires of arachidonyl-phospholipids and are more than inert depots. Specific enzymes, including cytosolic phospholipase A2, MAP kinases, lipoxygenases and cyclooxygenases, associate with lipid bodies. Lipid bodies appear to be dynamic, organelle-like structures involved in intracellular pathways of lipid mobilization and metabolism. Indeed, increases in lipid body numbers correlated with enhanced production of both lipoxygenase- and cyclooxygenase-derived eicosanoids. We hypothesize that lipid bodies are distinct inducible sites for generating eicosanoids as paracrine mediators with varied activities in inflammation. The capacity of lipid body formation to be specifically and rapidly induced in leukocytes enhances eicosanoid mediator formation, and conversely pharmacologic inhibition of lipid body induction represents a potential novel and specific target for anti-inflammatory therapy.

  16. Integrated Systems Approach Reveals Sphingolipid Metabolism Pathway Dysregulation in Association with Late-Onset Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    John Stephen Malamon

    2018-02-01

    Full Text Available Late-onset Alzheimer’s disease (LOAD and age are significantly correlated such that one-third of Americans beyond 85 years of age are afflicted. We have designed and implemented a pilot study that combines systems biology approaches with traditional next-generation sequencing (NGS analysis techniques to identify relevant regulatory pathways, infer functional relationships and confirm the dysregulation of these biological pathways in LOAD. Our study design is a most comprehensive systems approach combining co-expression network modeling derived from RNA-seq data, rigorous quality control (QC standards, functional ontology, and expression quantitative trait loci (eQTL derived from whole exome (WES single nucleotide variant (SNV genotype data. Our initial results reveal several statistically significant, biologically relevant genes involved in sphingolipid metabolism. To validate these findings, we performed a gene set enrichment analysis (GSEA. The GSEA revealed the sphingolipid metabolism pathway and regulation of autophagy in association with LOAD cases. In the execution of this study, we have successfully tested an integrative approach to identify both novel and known LOAD drivers in order to develop a broader and more detailed picture of the highly complex transcriptional and regulatory landscape of age-related dementia.

  17. Damaging effects of hyperglycemia on cardiovascular function: spotlight on glucose metabolic pathways.

    Science.gov (United States)

    Mapanga, Rudo F; Essop, M Faadiel

    2016-01-15

    The incidence of cardiovascular complications associated with hyperglycemia is a growing global health problem. This review discusses the link between hyperglycemia and cardiovascular diseases onset, focusing on the role of recently emerging downstream mediators, namely, oxidative stress and glucose metabolic pathway perturbations. The role of hyperglycemia-mediated activation of nonoxidative glucose pathways (NOGPs) [i.e., the polyol pathway, hexosamine biosynthetic pathway, advanced glycation end products (AGEs), and protein kinase C] in this process is extensively reviewed. The proposal is made that there is a unique interplay between NOGPs and a downstream convergence of detrimental effects that especially affect cardiac endothelial cells, thereby contributing to contractile dysfunction. In this process the AGE pathway emerges as a crucial mediator of hyperglycemia-mediated detrimental effects. In addition, a vicious metabolic cycle is established whereby hyperglycemia-induced NOGPs further fuel their own activation by generating even more oxidative stress, thereby exacerbating damaging effects on cardiac function. Thus NOGP inhibition, and particularly that of the AGE pathway, emerges as a novel therapeutic intervention for the treatment of cardiovascular complications such as acute myocardial infarction in the presence hyperglycemia. Copyright © 2016 the American Physiological Society.

  18. Pathway analysis of Pichia pastoris to elucidate methanol metabolism and its regulation for production of recombinant proteins.

    Science.gov (United States)

    Unrean, Pornkamol

    2014-01-01

    This research rationally analyzes metabolic pathways of Pichia pastoris to study the metabolic flux responses of this yeast under methanol metabolism. A metabolic model of P. pastoris was constructed and analyzed by elementary mode analysis (EMA). EMA was used to comprehensively identify the cell's metabolic flux profiles and its underlying regulation mechanisms for the production of recombinant proteins from methanol. Change in phenotypes and flux profiles during methanol adaptation with varying feed mixture of glycerol and methanol was examined. EMA identified increasing and decreasing fluxes during the glycerol-methanol metabolic shift, which well agreed with experimental observations supporting the validity of the metabolic network model. Analysis of all the identified pathways also led to the determination of the metabolic capacities as well as the optimum metabolic pathways for recombinant protein synthesis during methanol induction. The network sensitivity analysis revealed that the production of proteins can be improved by manipulating the flux ratios at the pyruvate branch point. In addition, EMA suggested that protein synthesis is optimum under hypoxic culture conditions. The metabolic modeling and analysis presented in this study could potentially form a valuable knowledge base for future research on rational design and optimization of P. pastoris by determining target genes, pathways, and culture conditions for enhanced recombinant protein synthesis. The metabolic pathway analysis is also of considerable value for production of therapeutic proteins by P. pastoris in biopharmaceutical applications. © 2013 American Institute of Chemical Engineers.

  19. Identification of human cytochrome P450 and UGT enzymes involved in the metabolism of ferulic acid, a major bioactive component in traditional Chinese medicines.

    Science.gov (United States)

    Zhuang, Xiao-Mei; Chen, Lin; Tan, Yan; Yang, Hai-Ying; Lu, Chuang; Gao, Yue; Li, Hua

    2017-09-01

    Ferulic acid (FA) is an active component of herbal medicines. One of the best documented activities of FA is its antioxidant property. Moreover, FA exerts antiallergic, anti-inflammatory, and hepatoprotective effects. However, the metabolic pathways of FA in humans remain unclear. To identify whether human CYP or UGT enzymes are involved in the metabolism of FA, reaction phenotyping of FA was conducted using major CYP-selective chemical inhibitors together with individual CYP and UGT Supersomes. The CYP- and/or UGT-mediated metabolism kinetics were examined simultaneously or individually. Relative activity factor and total normalized rate approaches were used to assess the relative contributions of each major human CYPs towards the FA metabolism. Incubations of FA with human liver microsomes (HLM) displayed NADPH- and UDPGA-dependent metabolism with multiple CYP and UGT isoforms involved. CYPs and UGTs contributed equally to the metabolism of FA in HLM. Although CYP1A2 and CYP3A4 appeared to be the major contributors in the CYP-mediated clearance, their contributions to the overall clearance are still minor (medicines because multiple phase I and phase II enzymes are involved in its metabolism. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  20. FoxO1 regulates multiple metabolic pathways in the liver: effects on gluconeogenic, glycolytic, and lipogenic gene expression.

    Science.gov (United States)

    Zhang, Wenwei; Patil, Sandip; Chauhan, Balwant; Guo, Shaodong; Powell, David R; Le, Jamie; Klotsas, Angelos; Matika, Ryan; Xiao, Xiangshan; Franks, Roberta; Heidenreich, Kim A; Sajan, Mini P; Farese, Robert V; Stolz, Donna Beer; Tso, Patrick; Koo, Seung-Hoi; Montminy, Marc; Unterman, Terry G

    2006-04-14

    FoxO transcription factors are important targets of insulin action. To better understand the role of FoxO proteins in the liver, we created transgenic mice expressing constitutively active FoxO1 in the liver using the alpha1-antitrypsin promoter. Fasting glucose levels are increased, and glucose tolerance is impaired in transgenic (TGN) versus wild type (WT) mice. Interestingly, fasting triglyceride and cholesterol levels are reduced despite hyperinsulinemia, and post-prandial changes in triglyceride levels are markedly suppressed in TGN versus WT mice. Activation of pro-lipogenic signaling pathways (atypical protein kinase C and protein kinase B) and the ability to suppress beta-hydroxybutyrate levels are not impaired in TGN. In contrast, de novo lipogenesis measured with (3)H(2)O is suppressed by approximately 70% in the liver of TGN versus WT mice after refeeding. Gene-array studies reveal that the expression of genes involved in gluconeogenesis, glycerol transport, and amino acid catabolism is increased, whereas genes involved in glucose utilization by glycolysis, the pentose phosphate shunt, lipogenesis, and sterol synthesis pathways are suppressed in TGN versus WT. Studies with adenoviral vectors in isolated hepatocytes confirm that FoxO1 stimulates expression of gluconeogenic genes and suppresses expression of genes involved in glycolysis, the shunt pathway, and lipogenesis, including glucokinase and SREBP-1c. Together, these results indicate that FoxO proteins promote hepatic glucose production through multiple mechanisms and contribute to the regulation of other metabolic pathways important in the adaptation to fasting and feeding in the liver, including glycolysis, the pentose phosphate shunt, and lipogenic and sterol synthetic pathways.

  1. Nontargeted elucidation of metabolic pathways using stable-isotope tracers and mass spectrometry.

    Science.gov (United States)

    Hiller, Karsten; Metallo, Christian M; Kelleher, Joanne K; Stephanopoulos, Gregory

    2010-08-01

    Systems level tools for the quantitative analysis of metabolic networks are required to engineer metabolism for biomedical and industrial applications. While current metabolomics techniques enable high-throughput quantification of metabolites, these methods provide minimal information on the rates and connectivity of metabolic pathways. Here we present a new method, nontargeted tracer fate detection (NTFD), that expands upon the concept of metabolomics to solve the above problems. Through the combined use of stable isotope tracers and chromatography coupled to mass spectrometry, our computational analysis enables the quantitative detection of all measurable metabolites derived from a specific labeled compound. Without a priori knowledge of a reaction network or compound library, NTFD provides information about relative flux magnitudes into each metabolite pool by determining the mass isotopomer distribution for all labeled compounds. This novel method adds a new dimension to the metabolomics tool box and provides a framework for global analysis of metabolic fluxes.

  2. Carbon metabolism of peach fruit after harvest: changes in enzymes involved in organic acid and sugar level modifications.

    Science.gov (United States)

    Borsani, Julia; Budde, Claudio O; Porrini, Lucía; Lauxmann, Martin A; Lombardo, Verónica A; Murray, Ricardo; Andreo, Carlos S; Drincovich, María F; Lara, María V

    2009-01-01

    Peach (Prunus persica L. Batsch) is a climacteric fruit that ripens after harvest, prior to human consumption. Organic acids and soluble sugars contribute to the overall organoleptic quality of fresh peach; thus, the integrated study of the metabolic pathways controlling the levels of these compounds is of great relevance. Therefore, in this work, several metabolites and enzymes involved in carbon metabolism were analysed during the post-harvest ripening of peach fruit cv 'Dixiland'. Depending on the enzyme studied, activity, protein level by western blot, or transcript level by quantitative real time-PCR were analysed. Even though sorbitol did not accumulate at a high level in relation to sucrose at harvest, it was rapidly consumed once the fruit was separated from the tree. During the ripening process, sucrose degradation was accompanied by an increase of glucose and fructose. Specific transcripts encoding neutral invertases (NIs) were up-regulated or down-regulated, indicating differential functions for each putative NI isoform. Phosphoenolpyruvate carboxylase was markedly induced, and may participate as a glycolytic shunt, since the malate level did not increase during post-harvest ripening. The fermentative pathway was highly induced, with increases in both the acetaldehyde level and the enzymes involved in this process. In addition, proteins differentially expressed during the post-harvest ripening process were also analysed. Overall, the present study identified enzymes and pathways operating during the post-harvest ripening of peach fruit, which may contribute to further identification of varieties with altered levels of enzymes/metabolites or in the evaluation of post-harvest treatments to produce fruit of better organoleptic attributes.

  3. Sugarcane expressed sequences tags (ESTs encoding enzymes involved in lignin biosynthesis pathways

    Directory of Open Access Journals (Sweden)

    Ramos Rose Lucia Braz

    2001-01-01

    Full Text Available Lignins are phenolic polymers found in the secondary wall of plant conductive systems where they play an important role by reducing the permeability of the cell wall to water. Lignins are also responsible for the rigidity of the cell wall and are involved in mechanisms of resistance to pathogens. The metabolic routes and enzymes involved in synthesis of lignins have been largely characterized and representative genes that encode enzymes involved in these processes have been cloned from several plant species. The synthesis of lignins is liked to the general metabolism of the phenylpropanoids in plants, having enzymes (e.g. phenylalanine ammonia-lyase (PAL, cinnamate 4-hydroxylase (C4H and caffeic acid O-methyltransferase (COMT common to other processes as well as specific enzymes such as cinnamoyl-CoA reductase (CCR and cinnamyl alcohol dehydrogenase (CAD. Some maize and sorghum mutants, shown to have defective in CAD and/or COMT activity, are easier to digest because they have a reduced lignin content, something which has motivated different research groups to alter the lignin content and composition of model plants by genetic engineering try to improve, for example, the efficiency of paper pulping and digestibility. In the work reported in this paper, we have made an inventory of the sugarcane expressed sequence tag (EST coding for enzymes involved in lignin metabolism which are present in the sugarcane EST genome project (SUCEST database. Our analysis focused on the key enzymes ferulate-5-hydroxylase (F5H, caffeic acid O-methyltransferase (COMT, caffeoyl CoA O-methyltransferase (CCoAOMT, hydroxycinnamate CoA ligase (4CL, cinnamoyl-CoA reductase (CCR and cinnamyl alcohol dehydrogenase (CAD. The comparative analysis of these genes with those described in other species could be used as molecular markers for breeding as well as for the manipulation of lignin metabolism in sugarcane.

  4. Specific metabolic pathway in vitro of pinazepam and diazepam by liver microsomal enzymes of different animal species.

    Science.gov (United States)

    Comi, V; Fossati, A; Gervasi, G B

    1977-04-01

    The metabolic pathway of Pinazepam and Diazepam in vitro was studied with rat, guinea pig and dog liver microsomes using a chromatographic and spectrophotometric technique. Two main pathways were observed, N1-dealkylation and C3-hydroxylation. N1-dealkylation was shown to be the predominant reaction for Pinazepam in all the animal species studied, while C3-hydroxylation was the major metabolic pathway for Diazepam in the rat. No oxazepam was found when Pinazepam and Diazepam were incubated with liver microsomes.

  5. Shared Selective Pressures on Fungal and Human Metabolic Pathways Lead to Divergent yet Analogous Genetic Responses.

    Science.gov (United States)

    Eidem, Haley R; McGary, Kriston L; Rokas, Antonis

    2015-06-01

    Reduced metabolic efficiency, toxic intermediate accumulation, and deficits of molecular building blocks, which all stem from disruptions of flux through metabolic pathways, reduce organismal fitness. Although these represent shared selection pressures across organisms, the genetic signatures of the responses to them may differ. In fungi, a frequently observed signature is the physical linkage of genes from the same metabolic pathway. In contrast, human metabolic genes are rarely tightly linked; rather, they tend to show tissue-specific coexpression. We hypothesized that the physical linkage of fungal metabolic genes and the tissue-specific coexpression of human metabolic genes are divergent yet analogous responses to the range of selective pressures imposed by disruptions of flux. To test this, we examined the degree to which the human homologs of physically linked metabolic genes in fungi (fungal linked homologs or FLOs) are coexpressed across six human tissues. We found that FLOs are significantly more correlated in their expression profiles across human tissues than other metabolic genes. We obtained similar results in analyses of the same six tissues from chimps, gorillas, orangutans, and macaques. We suggest that when selective pressures remain stable across large evolutionary distances, evidence of selection in a given evolutionary lineage can become a highly reliable predictor of the signature of selection in another, even though the specific adaptive response in each lineage is markedly different. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Spatial localization of the first and last enzymes effectively connects active metabolic pathways in bacteria.

    Science.gov (United States)

    Meyer, Pablo; Cecchi, Guillermo; Stolovitzky, Gustavo

    2014-12-14

    Although much is understood about the enzymatic cascades that underlie cellular biosynthesis, comparatively little is known about the rules that determine their cellular organization. We performed a detailed analysis of the localization of E.coli GFP-tagged enzymes for cells growing exponentially. We found that out of 857 globular enzymes, at least 219 have a discrete punctuate localization in the cytoplasm and catalyze the first or the last reaction in 60% of biosynthetic pathways. A graph-theoretic analysis of E.coli's metabolic network shows that localized enzymes, in contrast to non-localized ones, form a tree-like hierarchical structure, have a higher within-group connectivity, and are traversed by a higher number of feed-forward and feedback loops than their non-localized counterparts. A Gene Ontology analysis of these enzymes reveals an enrichment of terms related to essential metabolic functions in growing cells. Given that these findings suggest a distinct metabolic role for localization, we studied the dynamics of cellular localization of the cell wall synthesizing enzymes in B. subtilis and found that enzymes localize during exponential growth but not during stationary growth. We conclude that active biochemical pathways inside the cytoplasm are organized spatially following a rule where their first or their last enzymes localize to effectively connect the different active pathways and thus could reflect the activity state of the cell's metabolic network.

  7. De Novo transcriptome sequencing reveals important molecular networks and metabolic pathways of the plant, Chlorophytum borivilianum.

    Directory of Open Access Journals (Sweden)

    Shikha Kalra

    Full Text Available Chlorophytum borivilianum, an endangered medicinal plant species is highly recognized for its aphrodisiac properties provided by saponins present in the plant. The transcriptome information of this species is limited and only few hundred expressed sequence tags (ESTs are available in the public databases. To gain molecular insight of this plant, high throughput transcriptome sequencing of leaf RNA was carried out using Illumina's HiSeq 2000 sequencing platform. A total of 22,161,444 single end reads were retrieved after quality filtering. Available (e.g., De-Bruijn/Eulerian graph and in-house developed bioinformatics tools were used for assembly and annotation of transcriptome. A total of 101,141 assembled transcripts were obtained, with coverage size of 22.42 Mb and average length of 221 bp. Guanine-cytosine (GC content was found to be 44%. Bioinformatics analysis, using non-redundant proteins, gene ontology (GO, enzyme commission (EC and kyoto encyclopedia of genes and genomes (KEGG databases, extracted all the known enzymes involved in saponin and flavonoid biosynthesis. Few genes of the alkaloid biosynthesis, along with anticancer and plant defense genes, were also discovered. Additionally, several cytochrome P450 (CYP450 and glycosyltransferase unique sequences were also found. We identified simple sequence repeat motifs in transcripts with an abundance of di-nucleotide simple sequence repeat (SSR; 43.1% markers. Large scale expression profiling through Reads per Kilobase per Million mapped reads (RPKM showed major genes involved in different metabolic pathways of the plant. Genes, expressed sequence tags (ESTs and unique sequences from this study provide an important resource for the scientific community, interested in the molecular genetics and functional genomics of C. borivilianum.

  8. De Novo transcriptome sequencing reveals important molecular networks and metabolic pathways of the plant, Chlorophytum borivilianum.

    Science.gov (United States)

    Kalra, Shikha; Puniya, Bhanwar Lal; Kulshreshtha, Deepika; Kumar, Sunil; Kaur, Jagdeep; Ramachandran, Srinivasan; Singh, Kashmir

    2013-01-01

    Chlorophytum borivilianum, an endangered medicinal plant species is highly recognized for its aphrodisiac properties provided by saponins present in the plant. The transcriptome information of this species is limited and only few hundred expressed sequence tags (ESTs) are available in the public databases. To gain molecular insight of this plant, high throughput transcriptome sequencing of leaf RNA was carried out using Illumina's HiSeq 2000 sequencing platform. A total of 22,161,444 single end reads were retrieved after quality filtering. Available (e.g., De-Bruijn/Eulerian graph) and in-house developed bioinformatics tools were used for assembly and annotation of transcriptome. A total of 101,141 assembled transcripts were obtained, with coverage size of 22.42 Mb and average length of 221 bp. Guanine-cytosine (GC) content was found to be 44%. Bioinformatics analysis, using non-redundant proteins, gene ontology (GO), enzyme commission (EC) and kyoto encyclopedia of genes and genomes (KEGG) databases, extracted all the known enzymes involved in saponin and flavonoid biosynthesis. Few genes of the alkaloid biosynthesis, along with anticancer and plant defense genes, were also discovered. Additionally, several cytochrome P450 (CYP450) and glycosyltransferase unique sequences were also found. We identified simple sequence repeat motifs in transcripts with an abundance of di-nucleotide simple sequence repeat (SSR; 43.1%) markers. Large scale expression profiling through Reads per Kilobase per Million mapped reads (RPKM) showed major genes involved in different metabolic pathways of the plant. Genes, expressed sequence tags (ESTs) and unique sequences from this study provide an important resource for the scientific community, interested in the molecular genetics and functional genomics of C. borivilianum.

  9. Distributing a metabolic pathway among a microbial consortium enhances production of natural products.

    Science.gov (United States)

    Zhou, Kang; Qiao, Kangjian; Edgar, Steven; Stephanopoulos, Gregory

    2015-04-01

    Metabolic engineering of microorganisms such as Escherichia coli and Saccharomyces cerevisiae to produce high-value natural metabolites is often done through functional reconstitution of long metabolic pathways. Problems arise when parts of pathways require specialized environments or compartments for optimal function. Here we solve this problem through co-culture of engineered organisms, each of which contains the part of the pathway that it is best suited to hosting. In one example, we divided the synthetic pathway for the acetylated diol paclitaxel precursor into two modules, expressed in either S. cerevisiae or E. coli, neither of which can produce the paclitaxel precursor on their own. Stable co-culture in the same bioreactor was achieved by designing a mutualistic relationship between the two species in which a metabolic intermediate produced by E. coli was used and functionalized by yeast. This synthetic consortium produced 33 mg/L oxygenated taxanes, including a monoacetylated dioxygenated taxane. The same method was also used to produce tanshinone precursors and functionalized sesquiterpenes.

  10. Structure of glycerol-3-phosphate dehydrogenase, an essential monotopic membrane enzyme involved in respiration and metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Joanne I.; Chinte, Unmesh; Du, Shoucheng (Pitt)

    2008-04-02

    Sn-glycerol-3-phosphate dehydrogenase (GlpD) is an essential membrane enzyme, functioning at the central junction of respiration, glycolysis, and phospholipid biosynthesis. Its critical role is indicated by the multitiered regulatory mechanisms that stringently controls its expression and function. Once expressed, GlpD activity is regulated through lipid-enzyme interactions in Escherichia coli. Here, we report seven previously undescribed structures of the fully active E. coli GlpD, up to 1.75 {angstrom} resolution. In addition to elucidating the structure of the native enzyme, we have determined the structures of GlpD complexed with substrate analogues phosphoenolpyruvate, glyceric acid 2-phosphate, glyceraldehyde-3-phosphate, and product, dihydroxyacetone phosphate. These structural results reveal conformational states of the enzyme, delineating the residues involved in substrate binding and catalysis at the glycerol-3-phosphate site. Two probable mechanisms for catalyzing the dehydrogenation of glycerol-3-phosphate are envisioned, based on the conformational states of the complexes. To further correlate catalytic dehydrogenation to respiration, we have additionally determined the structures of GlpD bound with ubiquinone analogues menadione and 2-n-heptyl-4-hydroxyquinoline N-oxide, identifying a hydrophobic plateau that is likely the ubiquinone-binding site. These structures illuminate probable mechanisms of catalysis and suggest how GlpD shuttles electrons into the respiratory pathway. Glycerol metabolism has been implicated in insulin signaling and perturbations in glycerol uptake and catabolism are linked to obesity in humans. Homologs of GlpD are found in practically all organisms, from prokaryotes to humans, with >45% consensus protein sequences, signifying that these structural results on the prokaryotic enzyme may be readily applied to the eukaryotic GlpD enzymes.

  11. A summary of genomic data relating to E. coli organized by metabolic pathways: An initial version

    Energy Technology Data Exchange (ETDEWEB)

    Price, M.; Raju, M.; Taylor, R.

    1993-01-01

    This report summarizes the reactions that occur in some of the principal metabolic pathways of E. coli. These pathways have been encoded as objects in GenoBase, an integrated database under development at Argonne National Laboratory in collaboration with researchers at the National Institutes of Health and at Harvard University. The report lists the substrates, products, enzymes, and cofactors for each pathway as a whole, followed by a detailed description of each reaction in the pathway. In addition, for each enzyme, the report displays a description and activity as listed in the Enzyme Data Bank, followed by the corresponding Swiss Protein Data Bank entries. Separate summary lines are included for each of the E. coli genes associated with each enzyme.

  12. Interconnection of Estrogen/Testosterone Metabolism and Mevalonate Pathway in Breast and Prostate Cancers.

    Science.gov (United States)

    Mokarram, Pooneh; Alizadeh, Javad; Razban, Vahid; Barazeh, Mahdi; Solomon, Claudia; Kavousipour, Soudabeh

    2017-01-01

    The metabolic steroid hormones, 17β stradiol (E2) and testosterone play key roles in several functions including carbohydrate, lipid and protein metabolism, cellular signaling, cell proliferation, and cancer promotion. Steroid hormones have long been characterized as cell proliferation and differentiation regulators and are closely related to the development of breast and prostate cancers. Moreover, cholesterol metabolism, mainly in adipose tissue, leads to the production of steroids and cytokines, thus increasing the risk of metabolic syndrome, obesity, and ER+ breast cancer in postmenopausal women. Recent studies also shown that testosterone and E2 increase the levels of key enzymes of the mevalonate pathway, leading to post-translational prenylation and farnesylation of numerous proteins in RAS signaling in several cancers, including breast and prostate cancers. There is accumulating evidence both clinically and experimentally suggesting that changes in the metabolism of cholesterol may also have an important role in carcinogenesis. In this regard, the cells treated with mevalonate in culture showed elevated proliferation. Therefore, investigation on cholesterol as a precursor of steroid hormones has confirmed the effects cholesterol metabolite on breast and prostate cancers. Indeed, recent evidence strongly suggests that the MVA pathway and 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCOA) have a crucial regulatory role in cellular proliferation and transformation. Therefore, the use of mevalonate inhibitors decreases the production of several biologically active downstream products of the mevalonate pathway, including cholesterol. Although for approximately 20 years statins have been identified as anticancer agents, recent studies have sparked some controversy. Therefore, further investigation to evaluate mevalonate- dependent therapeutic agents per se and in combination with other agents is merited. The current review is an attempt to elucidate the

  13. Ankylosing spondylitis monocytes show upregulation of proteins involved in inflammation and the ubiquitin proteasome pathway.

    Science.gov (United States)

    Wright, C; Edelmann, M; diGleria, K; Kollnberger, S; Kramer, H; McGowan, S; McHugh, K; Taylor, S; Kessler, B; Bowness, P

    2009-10-01

    To determine if peripheral blood monocytes from patients with ankylosing spondylitis (AS) differed in protein expression compared to rheumatoid arthritis (RA) and healthy controls (HC). Monocyte protein expression was characterised by 2D gel electrophoresis and by label-free quantitative expression profiling, using nano-ultra performance liquid chromatography coupled to electrospray ionisation mass spectrometry (ESI-MS(E), where (E) refers to low/high collision energy switching). Data sets were analysed using the Waters expression profiling system and Ingenuity pathway analysis (IPA). Two-dimensional gel electrophoresis showed upregulation of proteasomal constituents in AS monocytes, including the beta subunit of proteasome activator (PA)28. Monocyte expression profiling and IPA showed that significant changes in protein expression within the ubiquitin proteasome pathway (UPP) were restricted to AS monocytes. Statistically significant differences in protein expression involving the leucocyte extravasation, vascular endothelial growth factor, integrin and Toll-like receptor signalling pathways were seen in AS and RA monocytes compared to healthy controls. No evidence of upregulation of proteins involved in the endoplasmic reticulum stress response pathway was found in either AS or RA monocytes. Finally, the PA28 complex was shown to increase the generation of human leucocyte antigen (HLA)-B27 antigenic epitopes by the proteasome in vitro. Our proteomic analyses support the hypothesis that monocytes play an important role in the pathogenesis of AS and RA, and further suggest a specific role in AS for the UPP. Quantitative proteomic expression profiling constitutes a powerful new tool for rheumatology research.

  14. Metabolic modelling of denitrification in Agrobacterium tumefaciens: a tool to study inhibiting and activating compounds for the denitrification pathway

    Directory of Open Access Journals (Sweden)

    Marlies J. Kampschreur

    2012-10-01

    Full Text Available A metabolic network model for facultative denitrification was developed based on experimental data obtained with Agrobacterium tumefaciens. The model includes kinetic regulation at the enzyme level and transcription regulation at the enzyme synthesis level. The objective of this work was to study the key factors regulating the metabolic response of the denitrification pathway to transition from oxic to anoxic respiration and to find parameter values for the biological processes that were modelled. The metabolic model was used to test hypotheses that were formulated based on the experimental results and offers a structured look on the processes that occur in the cell during transition in respiration. The main phenomena that were modelled are the inhibition of the cytochrome c oxidase by nitric oxide (NO, the (indirect inhibition of oxygen on the denitrification enzymes. The activation of transcription of nitrite reductase and NO reductase by their respective substrates were hypothesized. The general assumption that nitrite and NO reduction are controlled interdependently to prevent NO accumulation does not hold for A. tumefaciens. The metabolic network model was demonstrated to be a useful tool for unravelling the different factors involved in the complex response of A. tumefaciens to highly dynamic environmental conditions.

  15. Vitamin D3 Induces Tolerance in Human Dendritic Cells by Activation of Intracellular Metabolic Pathways

    Directory of Open Access Journals (Sweden)

    Gabriela Bomfim Ferreira

    2015-02-01

    Full Text Available Metabolic switches in various immune cell subsets enforce phenotype and function. In the present study, we demonstrate that the active form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25(OH2D3, induces human monocyte-derived tolerogenic dendritic cells (DC by metabolic reprogramming. Microarray analysis demonstrated that 1,25(OH2D3 upregulated several genes directly related to glucose metabolism, tricarboxylic acid cycle (TCA, and oxidative phosphorylation (OXPHOS. Although OXPHOS was promoted by 1,25(OH2D3, hypoxia did not change the tolerogenic function of 1,25(OH2D3-treated DCs. Instead, glucose availability and glycolysis, controlled by the PI3K/Akt/mTOR pathway, dictate the induction and maintenance of the 1,25(OH2D3-conditioned tolerogenic DC phenotype and function. This metabolic reprogramming is unique for 1,25(OH2D3, because the tolerogenic DC phenotype induced by other immune modulators did not depend on similar metabolic changes. We put forward that these metabolic insights in tolerogenic DC biology can be used to advance DC-based immunotherapies, influencing DC longevity and their resistance to environmental metabolic stress.

  16. Involvement of the ethylene response pathway in dormancy induction in chrysanthemum

    Science.gov (United States)

    Sumitomo, Katsuhiko; Satoh, Shigeru; Hisamatsu, Tamotsu

    2008-01-01

    Temperature plays a significant role in the annual cycling between growth and dormancy of the herbaceous perennial chrysanthemum (Chrysanthemum morifolium Ramat.). After exposure to high summer temperatures, cool temperature triggers dormancy. The cessation of flowering and rosette formation by the cessation of elongation are characteristic of dormant plants, and can be stimulated by exogenous ethylene. Thus, the ethylene response pathway may be involved in temperature-induced dormancy of chrysanthemum. Transgenic chrysanthemums expressing a mutated ethylene receptor gene were used to assess this involvement. The transgenic lines showed reduced ethylene sensitivity: ethylene causes leaf yellowing in wild-type chrysanthemums, but leaves remained green in the transgenic lines. Extension growth and flowering of wild-type and transgenic lines varied between temperatures: at 20 °C, the transgenic lines showed the same stem elongation and flowering as the wild type; at cooler temperatures, the wild type formed rosettes with an inability to flower and entered dormancy, but some transgenic lines continued to elongate and flower. This supports the involvement of the ethylene response pathway in the temperature-induced dormancy of chrysanthemum. At the highest dosage of ethephon, an ethylene-releasing agent, wild-type plants formed rosettes with an inability to flower and became dormant, but one transgenic line did not. This confirms that dormancy is induced via the ethylene response pathway. PMID:18952907

  17. Candidate genes and pathways downstream of PAX8 involved in ovarian high-grade serous carcinoma.

    Science.gov (United States)

    de Cristofaro, Tiziana; Di Palma, Tina; Soriano, Amata Amy; Monticelli, Antonella; Affinito, Ornella; Cocozza, Sergio; Zannini, Mariastella

    2016-07-05

    Understanding the biology and molecular pathogenesis of ovarian epithelial cancer (EOC) is key to developing improved diagnostic and prognostic indicators and effective therapies. Although research has traditionally focused on the hypothesis that high-grade serous carcinoma (HGSC) arises from the ovarian surface epithelium (OSE), recent studies suggest that additional sites of origin exist and a substantial proportion of cases may arise from precursor lesions located in the Fallopian tubal epithelium (FTE). In FTE cells, the transcription factor PAX8 is a marker of the secretory cell lineage and its expression is retained in 96% of EOC. We have recently reported that PAX8 is involved in the tumorigenic phenotype of ovarian cancer cells. In this study, to uncover genes and pathways downstream of PAX8 involved in ovarian carcinoma we have determined the molecular profiles of ovarian cancer cells and in parallel of Fallopian tube epithelial cells by means of a silencing approach followed by an RNA-seq analysis. Interestingly, we highlighted the involvement of pathways like WNT signaling, epithelial-mesenchymal transition, p53 and apoptosis. We believe that our analysis has led to the identification of candidate genes and pathways regulated by PAX8 that could be additional targets for the therapy of ovarian carcinoma.

  18. The Application of the Weighted k-Partite Graph Problem to the Multiple Alignment for Metabolic Pathways.

    Science.gov (United States)

    Chen, Wenbin; Hendrix, William; Samatova, Nagiza F

    2017-12-01

    The problem of aligning multiple metabolic pathways is one of very challenging problems in computational biology. A metabolic pathway consists of three types of entities: reactions, compounds, and enzymes. Based on similarities between enzymes, Tohsato et al. gave an algorithm for aligning multiple metabolic pathways. However, the algorithm given by Tohsato et al. neglects the similarities among reactions, compounds, enzymes, and pathway topology. How to design algorithms for the alignment problem of multiple metabolic pathways based on the similarity of reactions, compounds, and enzymes? It is a difficult computational problem. In this article, we propose an algorithm for the problem of aligning multiple metabolic pathways based on the similarities among reactions, compounds, enzymes, and pathway topology. First, we compute a weight between each pair of like entities in different input pathways based on the entities' similarity score and topological structure using Ay et al.'s methods. We then construct a weighted k-partite graph for the reactions, compounds, and enzymes. We extract a mapping between these entities by solving the maximum-weighted k-partite matching problem by applying a novel heuristic algorithm. By analyzing the alignment results of multiple pathways in different organisms, we show that the alignments found by our algorithm correctly identify common subnetworks among multiple pathways.

  19. Combining metabolic and protein engineering of a terpenoid biosynthetic pathway for overproduction and selectivity control

    Science.gov (United States)

    Leonard, Effendi; Ajikumar, Parayil Kumaran; Thayer, Kelly; Xiao, Wen-Hai; Mo, Jeffrey D.; Tidor, Bruce; Stephanopoulos, Gregory; Prather, Kristala L. J.

    2010-01-01

    A common strategy of metabolic engineering is to increase the endogenous supply of precursor metabolites to improve pathway productivity. The ability to further enhance heterologous production of a desired compound may be limited by the inherent capacity of the imported pathway to accommodate high precursor supply. Here, we present engineered diterpenoid biosynthesis as a case where insufficient downstream pathway capacity limits high-level levopimaradiene production in Escherichia coli. To increase levopimaradiene synthesis, we amplified the flux toward isopentenyl diphosphate and dimethylallyl diphosphate precursors and reprogrammed the rate-limiting downstream pathway by generating combinatorial mutations in geranylgeranyl diphosphate synthase and levopimaradiene synthase. The mutant library contained pathway variants that not only increased diterpenoid production but also tuned the selectivity toward levopimaradiene. The most productive pathway, combining precursor flux amplification and mutant synthases, conferred approximately 2,600-fold increase in levopimaradiene levels. A maximum titer of approximately 700 mg/L was subsequently obtained by cultivation in a bench-scale bioreactor. The present study highlights the importance of engineering proteins along with pathways as a key strategy in achieving microbial biosynthesis and overproduction of pharmaceutical and chemical products. PMID:20643967

  20. Transcriptome analysis of grain-filling caryopses reveals involvement of multiple regulatory pathways in chalky grain formation in rice

    Directory of Open Access Journals (Sweden)

    Mao Bigang

    2010-12-01

    Full Text Available Abstract Background Grain endosperm chalkiness of rice is a varietal characteristic that negatively affects not only the appearance and milling properties but also the cooking texture and palatability of cooked rice. However, grain chalkiness is a complex quantitative genetic trait and the molecular mechanisms underlying its formation are poorly understood. Results A near-isogenic line CSSL50-1 with high chalkiness was compared with its normal parental line Asominori for grain endosperm chalkiness. Physico-biochemical analyses of ripened grains showed that, compared with Asominori, CSSL50-1 contains higher levels of amylose and 8 DP (degree of polymerization short-chain amylopectin, but lower medium length 12 DP amylopectin. Transcriptome analysis of 15 DAF (day after flowering caryopses of the isogenic lines identified 623 differential expressed genes (P Conclusion Extensive gene expression changes were detected during rice grain chalkiness formation. Over half of these differentially expressed genes are implicated in several important categories of genes, including signal transduction, transcription, carbohydrate metabolism and redox homeostasis, suggesting that chalkiness formation involves multiple metabolic and regulatory pathways.

  1. Biosynthesis of promatrix metalloproteinase-9/chondroitin sulphate proteoglycan heteromer involves a Rottlerin-sensitive pathway.

    Directory of Open Access Journals (Sweden)

    Nabin Malla

    Full Text Available BACKGROUND: Previously we have shown that a fraction of the matrix metalloproteinase-9 (MMP-9 synthesized by the macrophage cell line THP-1 was bound to a chondroitin sulphate proteoglycan (CSPG core protein as a reduction sensitive heteromer. Several biochemical properties of the enzyme were changed when it was bound to the CSPG. METHODOLOGY/PRINCIPAL FINDINGS: By use of affinity chromatography, zymography, and radioactive labelling, various macrophage stimulators were tested for their effect on the synthesis of the proMMP-9/CSPG heteromer and its components by THP-1 cells. Of the stimulators, only PMA largely increased the biosynthesis of the heteromer. As PMA is an activator of PKC, we determined which PKC isoenzymes were expressed by performing RT-PCR and Western Blotting. Subsequently specific inhibitors were used to investigate their involvement in the biosynthesis of the heteromer. Of the inhibitors, only Rottlerin repressed the biosynthesis of proMMP-9/CSPG and its two components. Much lower concentrations of Rottlerin were needed to reduce the amount of CSPG than what was needed to repress the synthesis of the heteromer and MMP-9. Furthermore, Rottlerin caused a minor reduction in the activation of the PKC isoenzymes δ, ε, θ and υ (PKD3 in both control and PMA exposed cells. CONCLUSIONS/SIGNIFICANCE: The biosynthesis of the proMMP-9/CSPG heteromer and proMMP-9 in THP-1 cells involves a Rottlerin-sensitive pathway that is different from the Rottlerin sensitive pathway involved in the CSPG biosynthesis. MMP-9 and CSPGs are known to be involved in various physiological and pathological processes. Formation of complexes may influence both the specificity and localization of the enzyme. Therefore, knowledge about biosynthetic pathways and factors involved in the formation of the MMP-9/CSPG heteromer may contribute to insight in the heteromers biological function as well as pointing to future targets for therapeutic agents.

  2. The berry constituents quercetin, kaempferol, and pterostilbene synergistically attenuate reactive oxygen species: involvement of the Nrf2-ARE signaling pathway.

    Science.gov (United States)

    Saw, Constance Lay Lay; Guo, Yue; Yang, Anne Yuqing; Paredes-Gonzalez, Ximena; Ramirez, Christina; Pung, Douglas; Kong, Ah-Ng Tony

    2014-10-01

    Quercetin, kaempferol, and pterostilbene are abundant in berries. The anti-oxidative properties of these constituents may contribute to cancer chemoprevention. However, their precise mechanisms of action and their combinatorial effects are not completely understood. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) regulates anti-oxidative stress enzymes and Phase II drug metabolizing/detoxifying enzymes by binding to antioxidant response element (ARE). This study aimed to investigate the anti-oxidative stress activities of quercetin, kaempferol, and pterostilbene individually and in combination, as well as the involvement of the Nrf2-ARE signaling pathway. Quercetin, kaempferol, and pterostilbene all exhibited strong free-radical scavenging activity in the DPPH assay. The MTS assay revealed that low concentration combinations we tested were relatively non-toxic to HepG2-C8 cells. The results of the DCFH-DA assay and combination index (CI) indicated that quercetin, kaempferol, and pterostilbene attenuated intracellular reactive oxygen species (ROS) levels when pretreated individually and had synergistic effects when used in combination. In addition, the combination treatment significantly induced ARE and increased the mRNA and protein expression of Nrf2-regulated genes. Collectively, our study demonstrated that the berry constituents quercetin, kaempferol, and pterostilbene activated the Nrf2-ARE signaling pathway and exhibited synergistic anti-oxidative stress activity at appropriate concentrations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. FOXO/TXNIP pathway is involved in the suppression of hepatocellular carcinoma growth by glutamate antagonist MK-801

    International Nuclear Information System (INIS)

    Yamaguchi, Fuminori; Hirata, Yuko; Akram, Hossain; Kamitori, Kazuyo; Dong, Youyi; Sui, Li; Tokuda, Masaaki

    2013-01-01

    Accumulating evidence has suggested the importance of glutamate signaling in cancer growth, yet the signaling pathway has not been fully elucidated. N-methyl-D-aspartic acid (NMDA) receptor activates intracellular signaling pathways such as the extracellular-signal-regulated kinase (ERK) and forkhead box, class O (FOXO). Suppression of lung carcinoma growth by NMDA receptor antagonists via the ERK pathway has been reported. However, series of evidences suggested the importance of FOXO pathways for the regulation of normal and cancer cell growth. In the liver, FOXO1 play important roles for the cell proliferation such as hepatic stellate cells as well as liver metabolism. Our aim was to investigate the involvement of the FOXO pathway and the target genes in the growth inhibitory effects of NMDA receptor antagonist MK-801 in human hepatocellular carcinoma. Expression of NMDAR1 in cancer cell lines from different tissues was examined by Western blot. NMDA receptor subunits in HepG2, HuH-7, and HLF were examined by reverse transcriptase polymerase chain reaction (RT-PCR), and growth inhibition by MK-801 and NBQX was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The effects of MK-801 on the cell cycle were examined by flow cytometry and Western blot analysis. Expression of thioredoxin-interacting protein (TXNIP) and p27 was determined by real-time PCR and Western blotting. Activation of the FOXO pathway and TXNIP induction were examined by Western blotting, fluorescence microscopy, Chromatin immunoprecipitation (ChIP) assay, and reporter gene assay. The effects of TXNIP on growth inhibition were examined using the gene silencing technique. NMDA receptor subunits were expressed in all cell lines examined, and MK-801, but not NBQX, inhibited cell growth of hepatocellular carcinomas. Cell cycle analysis showed that MK-801 induced G1 cell cycle arrest by down-regulating cyclin D1 and up-regulating p27. MK-801 dephosphorylated

  4. Methylation, Glucuronidation, and Sulfonation of Daphnetin in Human Hepatic Preparations In Vitro: Metabolic Profiling, Pathway Comparison, and Bioactivity Analysis.

    Science.gov (United States)

    Liang, Si-Cheng; Xia, Yang-Liu; Hou, Jie; Ge, Guang-Bo; Zhang, Jiang-Wei; He, Yu-Qi; Wang, Jia-Yue; Qi, Xiao-Yi; Yang, Ling

    2016-02-01

    Our previous study demonstrated that daphnetin is subject to glucuronidation in vitro. However, daphnetin metabolism is still poorly documented. This study aimed to investigate daphnetin metabolism and its consequent effect on the bioactivity. Metabolic profiles obtained by human liver S9 fractions and human hepatocytes showed that daphnetin was metabolized by glucuronidation, sulfonation, and methylation to form 6 conjugates which were synthesized and identified as 7-O-glucuronide, 8-O-glucuronide, 7-O-sulfate and 8-O-sulfate, 8-O-methylate, and 7-O-suflo-8-O-methylate. Regioselective 8-O-methylation of daphnetin was investigated using in silico docking calculations, and the results suggested that a close proximity (2.03 Å) of 8-OH to the critical residue Lysine 144 might be the responsible mechanism. Compared with glucuronidation and sulfonation pathways, the methylation of daphnetin had a high clearance rate (470 μL/min/mg) in human liver S9 fractions and contributed to a large amount (37.3%) of the methyl-derived metabolites in human hepatocyte. Reaction phenotyping studies showed the major role of SULT1A1, -1A2, and -1A3 in daphnetin sulfonation, and soluble COMT in daphnetin 8-O-methylation. Of the metabolites, only 8-O-methyldaphnetin exhibited an inhibitory activity on lymphocyte proliferation comparable to that of daphnetin. In conclusion, methylation is a crucial pathway for daphnetin clearance and might be involved in pharmacologic actions of daphnetin in humans. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  5. Defective glucose and lipid metabolism in human immunodeficiency virus-infected patients with lipodystrophy involve liver, muscle tissue and pancreatic beta-cells

    DEFF Research Database (Denmark)

    Haugaard, Steen B; Andersen, Ove; Dela, Flemming

    2005-01-01

    of glucose metabolism, lipid metabolism and beta-cell function in lipodystrophic HIV-infected patients. METHODS: [3-3H]glucose was applied during euglycaemic hyperinsulinaemic clamps in association with indirect calorimetry in 43 normoglycaemic HIV-infected patients (18 lipodystrophic patients on HAART (LIPO....... CONCLUSION: Our data suggest that normoglycaemic lipodystrophic HIV-infected patients display impaired glucose and lipid metabolism in multiple pathways involving liver, muscle tissue and beta-cell function.......OBJECTIVES: Lipodystrophy and insulin resistance are prevalent among human immunodeficiency virus (HIV)-infected patients on combined antiretroviral therapy (HAART). Aiming to provide a detailed description of the metabolic adverse effects of HIV-lipodystrophy, we investigated several aspects...

  6. Defective glucose and lipid metabolism in human immunodeficiency virus-infected patients with lipodystrophy involve liver, muscle tissue and pancreatic beta-cells

    DEFF Research Database (Denmark)

    Haugaard, Steen B; Andersen, Ove; Dela, Flemming

    2005-01-01

    OBJECTIVES: Lipodystrophy and insulin resistance are prevalent among human immunodeficiency virus (HIV)-infected patients on combined antiretroviral therapy (HAART). Aiming to provide a detailed description of the metabolic adverse effects of HIV-lipodystrophy, we investigated several aspects...... of glucose metabolism, lipid metabolism and beta-cell function in lipodystrophic HIV-infected patients. METHODS: [3-3H]glucose was applied during euglycaemic hyperinsulinaemic clamps in association with indirect calorimetry in 43 normoglycaemic HIV-infected patients (18 lipodystrophic patients on HAART (LIPO....... CONCLUSION: Our data suggest that normoglycaemic lipodystrophic HIV-infected patients display impaired glucose and lipid metabolism in multiple pathways involving liver, muscle tissue and beta-cell function....

  7. Autotrophic microbe metagenomes and metabolic pathways differentiate adjacent red sea brine pools

    KAUST Repository

    Wang, Yong

    2013-04-29

    In the Red Sea, two neighboring deep-sea brine pools, Atlantis II and Discovery, have been studied extensively, and the results have shown that the temperature and concentrations of metal and methane in Atlantis II have increased over the past decades. Therefore, we investigated changes in the microbial community and metabolic pathways. Here, we compared the metagenomes of the two pools to each other and to those of deep-sea water samples. Archaea were generally absent in the Atlantis II metagenome; Bacteria in the metagenome were typically heterotrophic and depended on aromatic compounds and other extracellular organic carbon compounds as indicated by enrichment of the related metabolic pathways. In contrast, autotrophic Archaea capable of CO2 fixation and methane oxidation were identified in Discovery but not in Atlantis II. Our results suggest that hydrothermal conditions and metal precipitation in the Atlantis II pool have resulted in elimination of the autotrophic community and methanogens.

  8. [Engineering of the xylose metabolic pathway for microbial production of bio-based chemicals].

    Science.gov (United States)

    Liu, Weixi; Fu, Jing; Zhang, Bo; Chen, Tao

    2013-08-01

    As the rapid development of economy necessitates a large number of oil, the contradiction between energy supply and demand is further exacerbated by the dwindling reserves of petroleum resource. Therefore, the research of the renewable cellulosic biomass resources is gaining unprecedented momentum. Because xylose is the second most abundant monosaccharide after glucose in lignocellulose hydrolyzes, high-efficiency bioconversion of xylose becomes one of the vital factors that affect the industrial prospects of lignocellulose application. According to the research progresses in recent years, this review summarized the advances in bioconversion of xylose, which included identification and redesign of the xylose metabolic pathway, engineering the xylose transport pathway and bio-based chemicals production. In order to solve the energy crisis and environmental pollution issues, the development of advanced bio-fuel technology, especially engineering the microbe able to metabolize xylose and produce ethanol by synthetic biology, is environmentally benign and sustainable.

  9. iTRAQ-Based Quantitative Proteomics Analysis of Black Rice Grain Development Reveals Metabolic Pathways Associated with Anthocyanin Biosynthesis.

    Science.gov (United States)

    Chen, Linghua; Huang, Yining; Xu, Ming; Cheng, Zuxin; Zhang, Dasheng; Zheng, Jingui

    2016-01-01

    Black rice (Oryza sativa L.), whose pericarp is rich in anthocyanins (ACNs), is considered as a healthier alternative to white rice. Molecular species of ACNs in black rice have been well documented in previous studies; however, information about the metabolic mechanisms underlying ACN biosynthesis during black rice grain development is unclear. The aim of the present study was to determine changes in the metabolic pathways that are involved in the dynamic grain proteome during the development of black rice indica cultivar, (Oryza sativa L. indica var. SSP). Isobaric tags for relative and absolute quantification (iTRAQ) MS/MS were employed to identify statistically significant alterations in the grain proteome. Approximately 928 proteins were detected, of which 230 were differentially expressed throughout 5 successive developmental stages, starting from 3 to 20 days after flowering (DAF). The greatest number of differentially expressed proteins was observed on 7 and 10 DAF, including 76 proteins that were upregulated and 39 that were downregulated. The biological process analysis of gene ontology revealed that the 230 differentially expressed proteins could be sorted into 14 functional groups. Proteins in the largest group were related to metabolic process, which could be integrated into multiple biochemical pathways. Specifically, proteins with a role in ACN biosynthesis, sugar synthesis, and the regulation of gene expression were upregulated, particularly from the onset of black rice grain development and during development. In contrast, the expression of proteins related to signal transduction, redox homeostasis, photosynthesis and N-metabolism decreased during grain maturation. Finally, 8 representative genes encoding different metabolic proteins were verified via quantitative real-time polymerase chain reaction (qRT-PCR) analysis, these genes had differed in transcriptional and translational expression during grain development. Expression analyses of

  10. iTRAQ-Based Quantitative Proteomics Analysis of Black Rice Grain Development Reveals Metabolic Pathways Associated with Anthocyanin Biosynthesis

    Science.gov (United States)

    Chen, Linghua; Huang, Yining; Xu, Ming; Cheng, Zuxin; Zhang, Dasheng; Zheng, Jingui

    2016-01-01

    Background Black rice (Oryza sativa L.), whose pericarp is rich in anthocyanins (ACNs), is considered as a healthier alternative to white rice. Molecular species of ACNs in black rice have been well documented in previous studies; however, information about the metabolic mechanisms underlying ACN biosynthesis during black rice grain development is unclear. Results The aim of the present study was to determine changes in the metabolic pathways that are involved in the dynamic grain proteome during the development of black rice indica cultivar, (Oryza sativa L. indica var. SSP). Isobaric tags for relative and absolute quantification (iTRAQ) MS/MS were employed to identify statistically significant alterations in the grain proteome. Approximately 928 proteins were detected, of which 230 were differentially expressed throughout 5 successive developmental stages, starting from 3 to 20 days after flowering (DAF). The greatest number of differentially expressed proteins was observed on 7 and 10 DAF, including 76 proteins that were upregulated and 39 that were downregulated. The biological process analysis of gene ontology revealed that the 230 differentially expressed proteins could be sorted into 14 functional groups. Proteins in the largest group were related to metabolic process, which could be integrated into multiple biochemical pathways. Specifically, proteins with a role in ACN biosynthesis, sugar synthesis, and the regulation of gene expression were upregulated, particularly from the onset of black rice grain development and during development. In contrast, the expression of proteins related to signal transduction, redox homeostasis, photosynthesis and N-metabolism decreased during grain maturation. Finally, 8 representative genes encoding different metabolic proteins were verified via quantitative real-time polymerase chain reaction (qRT-PCR) analysis, these genes had differed in transcriptional and translational expression during grain development. Conclusions

  11. Association genetics and transcriptome analysis reveal a gibberellin-responsive pathway involved in regulating photosynthesis.

    Science.gov (United States)

    Xie, Jianbo; Tian, Jiaxing; Du, Qingzhang; Chen, Jinhui; Li, Ying; Yang, Xiaohui; Li, Bailian; Zhang, Deqiang

    2016-05-01

    Gibberellins (GAs) regulate a wide range of important processes in plant growth and development, including photosynthesis. However, the mechanism by which GAs regulate photosynthesis remains to be understood. Here, we used multi-gene association to investigate the effect of genes in the GA-responsive pathway, as constructed by RNA sequencing, on photosynthesis, growth, and wood property traits, in a population of 435 Populus tomentosa By analyzing changes in the transcriptome following GA treatment, we identified many key photosynthetic genes, in agreement with the observed increase in measurements of photosynthesis. Regulatory motif enrichment analysis revealed that 37 differentially expressed genes related to photosynthesis shared two essential GA-related cis-regulatory elements, the GA response element and the pyrimidine box. Thus, we constructed a GA-responsive pathway consisting of 47 genes involved in regulating photosynthesis, including GID1, RGA, GID2, MYBGa, and 37 photosynthetic differentially expressed genes. Single nucleotide polymorphism (SNP)-based association analysis showed that 142 SNPs, representing 40 candidate genes in this pathway, were significantly associated with photosynthesis, growth, and wood property traits. Epistasis analysis uncovered interactions between 310 SNP-SNP pairs from 37 genes in this pathway, revealing possible genetic interactions. Moreover, a structural gene-gene matrix based on a time-course of transcript abundances provided a better understanding of the multi-gene pathway affecting photosynthesis. The results imply a functional role for these genes in mediating photosynthesis, growth, and wood properties, demonstrating the potential of combining transcriptome-based regulatory pathway construction and genetic association approaches to detect the complex genetic networks underlying quantitative traits. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights

  12. Glucose metabolism via the Entner-Doudoroff pathway in Campylobacter

    DEFF Research Database (Denmark)

    Vegge, Christina Skovgaard; van Rensburg, Melissa J. Jansen; Rasmussen, Janus Jagd

    2016-01-01

    enhanced stationary phase survival of a set of ED-positive C. coli isolates. Unexpectedly, glucose massively promoted floating biofilm formation in some of these ED-positive isolates. Metabolic profiling by gas chromatography-mass spectrometry revealed distinct responses to glucose in a low biofilm strain......), some glucose-utilizing isolates exhibit specific fitness advantages, including stationary-phase survival and biofilm production, highlighting key physiological benefits of this pathway in addition to energy conservation....

  13. Altered Placental Tryptophan Metabolism: A Crucial Molecular Pathway for the Fetal Programming of Neurodevelopmental Disorders

    Science.gov (United States)

    2016-09-01

    trophic factor for the fetal brain before it acts as a neurotransmitter . 5-HT signaling modulates fetal brain wiring mechanisms and its disruption at...metabolism in the placenta, and consequently placental 5-HT synthesis , may directly affect fetal brain development and constitute a new molecular...Aim I: To determine whether maternal inflammation alters placental synthesis and fetal exposure to 5-HT and kynurenine-pathway compounds. This

  14. Interrelationship of canonical and non-canonical Wnt signalling pathways in chronic metabolic diseases.

    Science.gov (United States)

    Ackers, Ian; Malgor, Ramiro

    2018-01-01

    Chronic diseases account for approximately 45% of all deaths in developed countries and are particularly prevalent in countries with the most sophisticated and robust public health systems. Chronic metabolic diseases, specifically lifestyle-related diseases pertaining to diet and exercise, continue to be difficult to treat clinically. The most prevalent of these chronic metabolic diseases include obesity, diabetes, non-alcoholic fatty liver disease, chronic kidney disease and cardiovascular disease and will be the focus of this review. Wnt proteins are highly conserved glycoproteins best known for their role in development and homeostasis of tissues. Given the importance of Wnt signalling in homeostasis, aberrant Wnt signalling likely regulates metabolic processes and may contribute to the development of chronic metabolic diseases. Expression of Wnt proteins and dysfunctional Wnt signalling has been reported in multiple chronic diseases. It is interesting to speculate about an interrelationship between the Wnt signalling pathways as a potential pathological mechanism in chronic metabolic diseases. The aim of this review is to summarize reported findings on the contrasting roles of Wnt signalling in lifestyle-related chronic metabolic diseases; specifically, the contribution of Wnt signalling to lipid accumulation, fibrosis and chronic low-grade inflammation.

  15. Targeting cancer stem-like cells in glioblastoma and colorectal cancer through metabolic pathways.

    Science.gov (United States)

    Kahlert, U D; Mooney, S M; Natsumeda, M; Steiger, H-J; Maciaczyk, J

    2017-01-01

    Cancer stem-like cells (CSCs) are thought to be the main cause of tumor occurrence, progression and therapeutic resistance. Strong research efforts in the last decade have led to the development of several tailored approaches to target CSCs with some very promising clinical trials underway; however, until now no anti-CSC therapy has been approved for clinical use. Given the recent improvement in our understanding of how onco-proteins can manipulate cellular metabolic networks to promote tumorigenesis, cancer metabolism research may well lead to innovative strategies to identify novel regulators and downstream mediators of CSC maintenance. Interfering with distinct stages of CSC-associated metabolics may elucidate novel, more efficient strategies to target this highly malignant cell population. Here recent discoveries regarding the metabolic properties attributed to CSCs in glioblastoma (GBM) and malignant colorectal cancer (CRC) were summarized. The association between stem cell markers, the response to hypoxia and other environmental stresses including therapeutic insults as well as developmentally conserved signaling pathways with alterations in cellular bioenergetic networks were also discussed. The recent developments in metabolic imaging to identify CSCs were also summarized. This summary should comprehensively update basic and clinical scientists on the metabolic traits of CSCs in GBM and malignant CRC. © 2016 UICC.

  16. Metabolism via arginase or nitric oxide synthase: two competing arginine pathways in macrophages

    Directory of Open Access Journals (Sweden)

    Meera eRath

    2014-10-01

    Full Text Available Macrophages play a major role in the immune system, both as antimicrobial effector cells and as immunoregulatory cells, which induce, suppress or modulate adaptive immune responses. These key aspects of macrophage biology are fundamentally driven by the phenotype of macrophage arginine metabolism that is prevalent in an evolving or ongoing immune response. M1 macrophages express the enzyme nitric oxide synthase (NOS, which metabolizes arginine to nitric oxide (NO and citrulline. NO can be metabolized to further downstream reactive nitrogen species, while citrulline might be reused for efficient NO synthesis via the citrulline-NO cycle. M2 macrophages are characterized by expression of the enzyme arginase, which hydrolyzes arginine to ornithine and urea. The arginase pathway limits arginine availability for NO synthesis and ornithine itself can further feed into the important downstream pathways of polyamine and proline syntheses, which are important for cellular proliferation and tissue repair. M1 versus M2 polarization leads to opposing outcomes of inflammatory reactions, but depending on the context, M1 and M2 macrophages can be both pro- and antiinflammatory. Notably, M1/M2 macrophage polarization can be driven by microbial infection or innate danger signals without any influence of adaptive immune cells, secondarily driving the T helper (Th1/Th2 polarization of the evolving adaptive immune response. Since both arginine metabolic pathways cross-inhibit each other on the level of the respective arginine break-down products and Th1 and Th2 lymphocytes can drive or amplify macrophage M1/M2 dichotomy via cytokine activation, this forms the basis of a self-sustaining M1/M2 polarization of the whole immune response. Understanding the arginine metabolism of M1/M2 macrophage phenotypes is therefore central to find new possibilities to manipulate immune responses in infection, autoimmune diseases, chronic inflammatory conditions and cancer.

  17. Regional cerebral glucose metabolic changes in oculopalatal myoclonus: implication for neural pathways, underlying the disorder

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sang Soo; Moon, So Young; Kim, Ji Soo; Kim, Sang Eun [College of Medicine, Seoul National University, Seoul (Korea, Republic of)

    2004-07-01

    Palatal myoclonus (PM) is characterized by rhythmic involuntary jerky movements of the soft palate of the throat. When associated with eye movements, it is called oculopalatal myoclonus (OPM). Ordinary PM is characterized by hypertrophic olivary degeneration, a trans-synaptic degeneration following loss of neuronal input to the inferior olivary nucleus due to an interruption of the Guillain-Mollaret triangle usually by a hemorrhage. However, the neural pathways underlying the disorder are uncertain. In an attempt to understand the pathologic neural pathways, we examined the metabolic correlates of this tremulous condition. Brain FDG PET scans were acquired in 8 patients with OPM (age, 49.9{+-}4.6 y: all males: 7 with pontine hemorrhage, 1 with diffuse brainstem infarction) and age-matched 50 healthy males (age, 50.7{+-} 9.0) and the regional glucose metabolism compared using SPM99. For group analysis, the hemispheres containing lesions were assigned to the right side of the brain. Patients with OPM had significant hypometabolism in the ipsilateral (to the lesion) brainstem and superior temporal and parahippocampal gyri (P < 0.05 corrected, k = 100). By contrast, there was significant hypermetabolism in the contralateral middle and inferior temporal gyri, thalamus, middle frontal gyrus and precuneus (P < 0.05 corrected, k=l00). Our data demonstrate the distinct metabolic changes between several ipsilateral and contralateral brain regions (hypometabolism vs. hypermetabolism) in patients with OPM. This may provide clues for understanding the neural pathways underlying the disorder.

  18. Biochemical Mechanisms and Microorganisms Involved in Anaerobic Testosterone Metabolism in Estuarine Sediments.

    Science.gov (United States)

    Shih, Chao-Jen; Chen, Yi-Lung; Wang, Chia-Hsiang; Wei, Sean T-S; Lin, I-Ting; Ismail, Wael A; Chiang, Yin-Ru

    2017-01-01

    Current knowledge on the biochemical mechanisms underlying microbial steroid metabolism in anaerobic ecosystems is extremely limited. Sulfate, nitrate, and iron [Fe (III)] are common electron acceptors for anaerobes in estuarine sediments. Here, we investigated anaerobic testosterone metabolism in anaerobic sediments collected from the estuary of Tamsui River, Taiwan. The anaerobic sediment samples were spiked with testosterone (1 mM) and individual electron acceptors (10 mM), including nitrate, Fe 3+ , and sulfate. The analysis of androgen metabolites indicated that testosterone biodegradation under denitrifying conditions proceeds through the 2,3- seco pathway, whereas testosterone biodegradation under iron-reducing conditions may proceed through an unidentified alternative pathway. Metagenomic analysis and PCR-based functional assays suggested that Thauera spp. were the major testosterone degraders in estuarine sediment samples incubated with testosterone and nitrate. Thauera sp. strain GDN1, a testosterone-degrading betaproteobacterium, was isolated from the denitrifying sediment sample. This strain tolerates a broad range of salinity (0-30 ppt). Although testosterone biodegradation did not occur under sulfate-reducing conditions, we observed the anaerobic biotransformation of testosterone to estrogens in some testosterone-spiked sediment samples. This is unprecedented since biotransformation of androgens to estrogens is known to occur only under oxic conditions. Our metagenomic analysis suggested that Clostridium spp. might play a role in this anaerobic biotransformation. These results expand our understanding of microbial metabolism of steroids under strictly anoxic conditions.

  19. Biochemical Mechanisms and Microorganisms Involved in Anaerobic Testosterone Metabolism in Estuarine Sediments

    Directory of Open Access Journals (Sweden)

    Chao-Jen Shih

    2017-08-01

    Full Text Available Current knowledge on the biochemical mechanisms underlying microbial steroid metabolism in anaerobic ecosystems is extremely limited. Sulfate, nitrate, and iron [Fe (III] are common electron acceptors for anaerobes in estuarine sediments. Here, we investigated anaerobic testosterone metabolism in anaerobic sediments collected from the estuary of Tamsui River, Taiwan. The anaerobic sediment samples were spiked with testosterone (1 mM and individual electron acceptors (10 mM, including nitrate, Fe3+, and sulfate. The analysis of androgen metabolites indicated that testosterone biodegradation under denitrifying conditions proceeds through the 2,3-seco pathway, whereas testosterone biodegradation under iron-reducing conditions may proceed through an unidentified alternative pathway. Metagenomic analysis and PCR-based functional assays suggested that Thauera spp. were the major testosterone degraders in estuarine sediment samples incubated with testosterone and nitrate. Thauera sp. strain GDN1, a testosterone-degrading betaproteobacterium, was isolated from the denitrifying sediment sample. This strain tolerates a broad range of salinity (0–30 ppt. Although testosterone biodegradation did not occur under sulfate-reducing conditions, we observed the anaerobic biotransformation of testosterone to estrogens in some testosterone-spiked sediment samples. This is unprecedented since biotransformation of androgens to estrogens is known to occur only under oxic conditions. Our metagenomic analysis suggested that Clostridium spp. might play a role in this anaerobic biotransformation. These results expand our understanding of microbial metabolism of steroids under strictly anoxic conditions.

  20. Involvement of wnt signaling pathways in the metamorphosis of the bryozoan bugula neritina

    KAUST Repository

    Wong, Yue Him

    2012-03-20

    In this study, we analyzed the metamorphosis of the marine bryozoan Bugula neritina. We observed the morphogenesis of the ancestrula. We defined three distinct pre-ancestrula stages based on the anatomy of the developing polypide and the overall morphology of pre-ancestrula. We then used an annotation based enrichment analysis tool to analyze the B. neritina transcriptome and identified over-representation of genes related to Wnt signaling pathways, suggesting its involvement in metamorphosis. Finally, we studied the temporal-spatial gene expression studies of several Wnt pathway genes. We found that one of the Wnt ligand, BnWnt10, was expressed spatially opposite to the Wnt antagonist BnsFRP within the blastemas, which is the presumptive polypide. Down-stream components of the canonical Wnt signaling pathway were exclusively expressed in the blastemas. Bn?catenin and BnFz5/8 were exclusively expressed in the blastemas throughout the metamorphosis. Based on the genes expression patterns, we propose that BnWnt10 and BnsFRP may relate to the patterning of the polypide, in which the two genes served as positional signals and contributed to the polarization of the blastemas. Another Wnt ligand, BnWnt6, was expressed in the apical part of the pre-ancestrula epidermis. Overall, our findings suggest that the Wnt signaling pathway may be important to the pattern formation of polypide and the development of epidermis. © 2012 Wong et al.

  1. TAB3 involves in hepatic insulin resistance through activation of MAPK pathway.

    Science.gov (United States)

    Zhao, Yun; Tang, Zhuqi; Zhu, Xiaohui; Wang, Xueqin; Wang, Cuifang; Zhang, Wanlu; Xia, Nana; Wang, Suxin; Huang, Jieru; Cui, Shiwei

    2015-12-01

    Insulin resistance is often accompanied by chronic inflammatory responses. The mitogen-activated protein kinase (MAPK) pathway is rapidly activated in response to many inflammatory cytokines. But the functional role of MAPKs in palmitate-induced insulin resistance has yet to be clarified. In this study, we found that transforming growth factor β-activated kinase binding protein-3 (TAB3) was up-regulated in insulin resistance. Considering the relationship between transforming growth factor β-activated kinase (TAK1) and MAPK pathway, we assumed TAB3 involved in insulin resistance through activation of MAPK pathway. To certify this hypothesis, we knocked down TAB3 in palmitate treated HepG2 cells and detected subsequent biological responses. Importantly, TAB3 siRNA directly reversed insulin sensitivity by improving insulin signal transduction. Moreover, silencing of TAB3 could facilitate hepatic glucose uptake, reverse gluconeogenesis and improve ectopic fat accumulation. Meanwhile, we found that the positive effect of knocking down TAB3 was more significant when insulin resistance occurred. All these results indicate that TAB3 acts as a negative regulator in insulin resistance through activation of MAPK pathway. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Layered dynamic regulation for improving metabolic pathway productivity inEscherichia coli.

    Science.gov (United States)

    Doong, Stephanie J; Gupta, Apoorv; Prather, Kristala L J

    2018-03-20

    Microbial production of value-added chemicals from biomass is a sustainable alternative to chemical synthesis. To improve product titer, yield, and selectivity, the pathways engineered into microbes must be optimized. One strategy for optimization is dynamic pathway regulation, which modulates expression of pathway-relevant enzymes over the course of fermentation. Metabolic engineers have used dynamic regulation to redirect endogenous flux toward product formation, balance the production and consumption rates of key intermediates, and suppress production of toxic intermediates until later in the fermentation. Most cases, however, have utilized a single strategy for dynamically regulating pathway fluxes. Here we layer two orthogonal, autonomous, and tunable dynamic regulation strategies to independently modulate expression of two different enzymes to improve production of D-glucaric acid from a heterologous pathway. The first strategy uses a previously described pathway-independent quorum sensing system to dynamically knock down glycolytic flux and redirect carbon into production of glucaric acid, thereby switching cells from "growth" to "production" mode. The second strategy, developed in this work, uses a biosensor for myo -inositol (MI), an intermediate in the glucaric acid production pathway, to induce expression of a downstream enzyme upon sufficient buildup of MI. The latter, pathway-dependent strategy leads to a 2.5-fold increase in titer when used in isolation and a fourfold increase when added to a strain employing the former, pathway-independent regulatory system. The dual-regulation strain produces nearly 2 g/L glucaric acid, representing the highest glucaric acid titer reported to date in Escherichia coli K-12 strains.

  3. Origin and mechanism of crassulacean acid metabolism in orchids as implied by comparative transcriptomics and genomics of the carbon fixation pathway.

    Science.gov (United States)

    Zhang, Liangsheng; Chen, Fei; Zhang, Guo-Qiang; Zhang, Yong-Qiang; Niu, Shance; Xiong, Jin-Song; Lin, Zhenguo; Cheng, Zong-Ming Max; Liu, Zhong-Jian

    2016-04-01

    Crassulacean acid metabolism (CAM) is a CO2 fixation pathway that maximizes water-use efficiency (WUE), compared with the C3/C4 CO2 pathway, which permits CAM plants to adapt to arid environments. The CAM pathway provides excellent opportunities to genetically design plants, especially bioenergy crops, with a high WUE and better photosynthetic performance than C3/C4 in arid environments. The information available on the origin and evolution of CAM is scant, however. Here, we analyzed transcriptomes from 13 orchid species and two existing orchid genomes, covering CAM and C3 plants, with an emphasis on comparing 13 gene families involved in the complete carbon fixation pathway. The dosage of the core photosynthesis-related genes plays no substantial role in the evolution of CAM in orchids; however, CAM may have evolved primarily by changes at the transcription level of key carbon fixation pathway genes. We proposed that in both dark and light, CO2 is primarily fixed and then released through two metabolic pathways via known genes, such as PPC1, PPDK and PPCK. This study reports a comprehensive comparison of carbon fixation pathway genes across different photosynthetic plants, and reveals the importance of the level of expression of key genes in the origin and evolution of CAM. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  4. Impact of Ocean Acidification on Energy Metabolism of Oyster, Crassostrea gigas—Changes in Metabolic Pathways and Thermal Response

    Directory of Open Access Journals (Sweden)

    Christian Bock

    2010-08-01

    Full Text Available Climate change with increasing temperature and ocean acidification (OA poses risks for marine ecosystems. According to Pörtner and Farrell [1], synergistic effects of elevated temperature and CO2-induced OA on energy metabolism will narrow the thermal tolerance window of marine ectothermal animals. To test this hypothesis, we investigated the effect of an acute temperature rise on energy metabolism of the oyster, Crassostrea gigas chronically exposed to elevated CO2 levels (partial pressure of CO2 in the seawater ~0.15 kPa, seawater pH ~ 7.7. Within one month of incubation at elevated PCO2 and 15 °C hemolymph pH fell (pHe = 7.1 ± 0.2 (CO2-group vs. 7.6 ± 0.1 (control and PeCO2 values in hemolymph increased (0.5 ± 0.2 kPa (CO2-group vs. 0.2 ± 0.04 kPa (control. Slightly but significantly elevated bicarbonate concentrations in the hemolymph of CO2-incubated oysters ([HCO-3]e = 1.8 ± 0.3 mM (CO2-group vs. 1.3 ± 0.1 mM (control indicate only minimal regulation of extracellular acid-base status. At the acclimation temperature of 15 °C the OA-induced decrease in pHe did not lead to metabolic depression in oysters as standard metabolism rates (SMR of CO2-exposed oysters were similar to controls. Upon acute warming SMR rose in both groups, but displayed a stronger increase in the CO2-incubated group. Investigation in isolated gill cells revealed a similar temperature-dependence of respiration between groups. Furthermore, the fraction of cellular energy demand for ion regulation via Na+/K+-ATPase was not affected by chronic hypercapnia or temperature. Metabolic profiling using 1H-NMR spectroscopy revealed substantial changes in some tissues following OA exposure at 15 °C. In mantle tissue alanine and ATP levels decreased significantly whereas an increase in succinate levels was observed in gill tissue. These findings suggest shifts in metabolic pathways following OA-exposure. Our study confirms that OA affects energy metabolism in oysters and

  5. Effect of okadaic acid on cultured clam heart cells: involvement of MAPkinase pathways

    Directory of Open Access Journals (Sweden)

    Houda Hanana

    2012-09-01

    Okadaic acid (OA is one of the main diarrhetic shellfish poisoning toxins and a potent inhibitor of protein phosphatases 1 and 2A. The downstream signal transduction pathways following the protein phosphatase inhibition are still unknown and the results of most of the previous studies are often conflicting. The aim of the present study was to evaluate the effects of OA on heart clam cells and to analyse its possible mechanisms of action by investigating the signal transduction pathways involved in OA cytotoxicity. We showed that OA at 1 µM after 24 h of treatment induces disorganization of the actin cytoskeleton, rounding and detachment of fibroblastic cells. Moreover, treatment of heart cells revealed a sequential activation of MAPK proteins depending on the OA concentration. We suggest that the duration of p38 and JNK activation is a critical factor in determining cell apoptosis in clam cardiomyocytes. In the opposite, ERK activation could be involved in cell survival. The cell death induced by OA is a MAPK modulated pathway, mediated by caspase 3-dependent mechanism. OA was found to induce no significant effect on spontaneous beating rate or inward L-type calcium current in clam cardiomyocytes, suggesting that PP1 was not inhibited even by the highest dose of OA.

  6. Identification of Circular RNAs From the Parental Genes Involved in Multiple Aspects of Cellular Metabolism in Barley

    Directory of Open Access Journals (Sweden)

    Behrooz eDarbani

    2016-06-01

    Full Text Available RNA circularization made by head-to-tail back-splicing events is involved in the regulation of gene expression from transcriptional to post-translational levels. By exploiting RNA-Seq data and down-stream analysis, we shed light on the importance of circular RNAs in plants. The results introduce circular RNAs as novel interactors in the regulation of gene expression in plants and imply the comprehensiveness of this regulatory pathway by identifying circular RNAs for a diverse set of genes. These genes are involved in several aspects of cellular metabolism as hormonal signaling, intracellular protein sorting, carbohydrate metabolism and cell-wall biogenesis, respiration, amino acid biosynthesis, transcription and translation, and protein ubiquitination. Additionally, these parental loci of circular RNAs, from both nuclear and mitochondrial genomes, encode for different transcript classes including protein coding transcripts, microRNA, rRNA, and long non-coding/microprotein coding RNAs. The results shed light on the mitochondrial exonic circular RNAs and imply the importance of circular RNAs for regulation of mitochondrial genes. Importantly, we introduce circular RNAs in barley and elucidate their cellular-level alterations across tissues and in response to micronutrients iron and zinc. In further support of circular RNAs' functional roles in plants, we report several cases where fluctuations of circRNAs do not correlate with the levels of their parental-loci encoded linear transcripts.Keywords: circular RNAs, coding and non-coding transcripts, leaves, seeds, transfer cells, micronutrients, mitochondria

  7. Global Metabolic Engineering of Glycolytic Pathway via Multicopy Integration in Saccharomyces cerevisiae.

    Science.gov (United States)

    Yamada, Ryosuke; Wakita, Kazuki; Ogino, Hiroyasu

    2017-04-21

    The use of renewable feedstocks for producing biofuels and biobased chemicals by engineering metabolic pathways of yeast Saccharomyces cerevisiae has recently become an attractive option. Many researchers attempted to increase glucose consumption rate by overexpressing some glycolytic enzymes because most target biobased chemicals are derived through glycolysis. However, these attempts have met with little success. In this study, to create a S. cerevisiae strain with high glucose consumption rate, we used multicopy integration to develop a global metabolic engineering strategy. Among approximately 350 metabolically engineered strains, YPH499/dPdA3-34 exhibited the highest glucose consumption rate. This strain showed 1.3-fold higher cell growth rate and glucose consumption rate than the control strain. Real-time PCR analysis revealed that transcription levels of glycolysis-related genes such as HXK2, PFK1, PFK2, PYK2, PGI1, and PGK1 in YPH499/dPdA3-34 were increased. Our strategy is thus a promising approach to optimize global metabolic pathways in S. cerevisiae.

  8. Tracing the Repertoire of Promiscuous Enzymes along the Metabolic Pathways in Archaeal Organisms

    Science.gov (United States)

    Rodríguez-Vázquez, Katya

    2017-01-01

    The metabolic pathways that carry out the biochemical transformations sustaining life depend on the efficiency of their associated enzymes. In recent years, it has become clear that promiscuous enzymes have played an important role in the function and evolution of metabolism. In this work we analyze the repertoire of promiscuous enzymes in 89 non-redundant genomes of the Archaea cellular domain. Promiscuous enzymes are defined as those proteins with two or more different Enzyme Commission (E.C.) numbers, according the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. From this analysis, it was found that the fraction of promiscuous enzymes is lower in Archaea than in Bacteria. A greater diversity of superfamily domains is associated with promiscuous enzymes compared to specialized enzymes, both in Archaea and Bacteria, and there is an enrichment of substrate promiscuity rather than catalytic promiscuity in the archaeal enzymes. Finally, the presence of promiscuous enzymes in the metabolic pathways was found to be heterogeneously distributed at the domain level and in the phyla that make up the Archaea. These analyses increase our understanding of promiscuous enzymes and provide additional clues to the evolution of metabolism in Archaea. PMID:28703743

  9. Review of the pathophysiological aspects involved in urological disease associated with metabolic syndrome.

    Science.gov (United States)

    Sáenz Medina, J; Carballido Rodríguez, J

    2016-06-01

    Metabolic syndrome is a constellation of disorders that includes insulin resistance, central obesity, arterial hypertension and hyperlipidaemia. These disorders can have implications for the genitourinary apparatus. To conduct a review on the pathophysiological aspects that explain the relationship between metabolic syndrome and sexual dysfunction, lower urinary tract syndrome, prostate cancer and stone disease. We performed a qualitative, narrative literature review through a literature search on PubMed of articles published between 1997 and 2015, using the terms pathophysiology, metabolic syndrome, endothelial dysfunction, lipotoxicity, mitochondrial dysfunction, kidney stones, hypogonadism, erectile dysfunction, lower urinary tract syndrome and prostate cancer. Metabolic syndrome constitutes an established complex of symptoms, defined as the presence of insulin resistance, central obesity, hypertension and hyperlipidaemia. Endothelial dysfunction secondary to lipotoxicity generates an inflammatory state, which involves renal cell metabolism, vascularisation of the pelvis and androgen production. These facts explain the relationship between metabolic syndrome, nephrolithiasis, lower urinary tract syndrome, hypogonadism and erectile dysfunction in men. Strategies such as proper diet, regular exercise, insulin treatment, testosterone-replacement therapy, therapy with antioxidants and free-radical inhibitors and urological treatments classically used for lower urinary tract syndrome have shown promising results in this syndrome. Copyright © 2015 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. Fatty Acids Consumption: The Role Metabolic Aspects Involved in Obesity and Its Associated Disorders

    Directory of Open Access Journals (Sweden)

    Priscila Silva Figueiredo

    2017-10-01

    Full Text Available Obesity and its associated disorders, such as insulin resistance, dyslipidemia, metabolic inflammation, dysbiosis, and non-alcoholic hepatic steatosis, are involved in several molecular and inflammatory mechanisms that alter the metabolism. Food habit changes, such as the quality of fatty acids in the diet, are proposed to treat and prevent these disorders. Some studies demonstrated that saturated fatty acids (SFA are considered detrimental for treating these disorders. A high fat diet rich in palmitic acid, a SFA, is associated with lower insulin sensitivity and it may also increase atherosclerosis parameters. On the other hand, a high intake of eicosapentaenoic (EPA and docosahexaenoic (DHA fatty acids may promote positive effects, especially on triglyceride levels and increased high-density lipoprotein (HDL levels. Moreover, polyunsaturated fatty acids (PUFAs and monounsaturated fatty acids (MUFAs are effective at limiting the hepatic steatosis process through a series of biochemical events, such as reducing the markers of non-alcoholic hepatic steatosis, increasing the gene expression of lipid metabolism, decreasing lipogenic activity, and releasing adiponectin. This current review shows that the consumption of unsaturated fatty acids, MUFA, and PUFA, and especially EPA and DHA, which can be applied as food supplements, may promote effects on glucose and lipid metabolism, as well as on metabolic inflammation, gut microbiota, and hepatic metabolism.

  11. Identification of metabolic pathways essential for fitness of Salmonella Typhimurium in vivo.

    Directory of Open Access Journals (Sweden)

    Lotte Jelsbak

    Full Text Available Bacterial infections remain a threat to human and animal health worldwide, and there is an urgent need to find novel targets for intervention. In the current study we used a computer model of the metabolic network of Salmonella enterica serovar Typhimurium and identified pairs of reactions (cut sets predicted to be required for growth in vivo. We termed such cut sets synthetic auxotrophic pairs. We tested whether these would reveal possible combined targets for new antibiotics by analyzing the performance of selected single and double mutants in systemic mouse infections. One hundred and two cut sets were identified. Sixty-three of these included only pathways encoded by fully annotated genes, and from this sub-set we selected five cut sets involved in amino acid or polyamine biosynthesis. One cut set (asnA/asnB demonstrated redundancy in vitro and in vivo and showed that asparagine is essential for S. Typhimurium during infection. trpB/trpA as well as single mutants were attenuated for growth in vitro, while only the double mutant was a cut set in vivo, underlining previous observations that tryptophan is essential for successful outcome of infection. speB/speF,speC was not affected in vitro but was attenuated during infection showing that polyamines are essential for virulence apparently in a growth independent manner. The serA/glyA cut-set was found to be growth attenuated as predicted by the model. However, not only the double mutant, but also the glyA mutant, were found to be attenuated for virulence. This adds glycine production or conversion of glycine to THF to the list of essential reactions during infection. One pair (thrC/kbl showed true redundancy in vitro but not in vivo demonstrating that threonine is available to the bacterium during infection. These data add to the existing knowledge of available nutrients in the intra-host environment, and have identified possible new targets for antibiotics.

  12. A simplified method for power-law modelling of metabolic pathways from time-course data and steady-state flux profiles

    Directory of Open Access Journals (Sweden)

    Sugimoto Masahiro

    2006-07-01

    Full Text Available Abstract Background In order to improve understanding of metabolic systems there have been attempts to construct S-system models from time courses. Conventionally, non-linear curve-fitting algorithms have been used for modelling, because of the non-linear properties of parameter estimation from time series. However, the huge iterative calculations required have hindered the development of large-scale metabolic pathway models. To solve this problem we propose a novel method involving power-law modelling of metabolic pathways from the Jacobian of the targeted system and the steady-state flux profiles by linearization of S-systems. Results The results of two case studies modelling a straight and a branched pathway, respectively, showed that our method reduced the number of unknown parameters needing to be estimated. The time-courses simulated by conventional kinetic models and those described by our method behaved similarly under a wide range of perturbations of metabolite concentrations. Conclusion The proposed method reduces calculation complexity and facilitates the construction of large-scale S-system models of metabolic pathways, realizing a practical application of reverse engineering of dynamic simulation models from the Jacobian of the targeted system and steady-state flux profiles.

  13. Critical assessment of human metabolic pathway databases: a stepping stone for future integration

    Directory of Open Access Journals (Sweden)

    Stobbe Miranda D

    2011-10-01

    Full Text Available Abstract Background Multiple pathway databases are available that describe the human metabolic network and have proven their usefulness in many applications, ranging from the analysis and interpretation of high-throughput data to their use as a reference repository. However, so far the various human metabolic networks described by these databases have not been systematically compared and contrasted, nor has the extent to which they differ been quantified. For a researcher using these databases for particular analyses of human metabolism, it is crucial to know the extent of the differences in content and their underlying causes. Moreover, the outcomes of such a comparison are important for ongoing integration efforts. Results We compared the genes, EC numbers and reactions of five frequently used human metabolic pathway databases. The overlap is surprisingly low, especially on reaction level, where the databases agree on 3% of the 6968 reactions they have combined. Even for the well-established tricarboxylic acid cycle the databases agree on only 5 out of the 30 reactions in total. We identified the main causes for the lack of overlap. Importantly, the databases are partly complementary. Other explanations include the number of steps a conversion is described in and the number of possible alternative substrates listed. Missing metabolite identifiers and ambiguous names for metabolites also affect the comparison. Conclusions Our results show that each of the five networks compared provides us with a valuable piece of the puzzle of the complete reconstruction of the human metabolic network. To enable integration of the networks, next to a need for standardizing the metabolite names and identifiers, the conceptual differences between the databases should be resolved. Considerable manual intervention is required to reach the ultimate goal of a unified and biologically accurate model for studying the systems biology of human metabolism. Our comparison

  14. Sulfonation of maternal steroids is a conserved metabolic pathway in vertebrates.

    Science.gov (United States)

    Paitz, Ryan T; Bowden, Rachel M

    2013-12-01

    All vertebrate embryos develop in the presence of maternally derived steroids, and maternal steroids have been hypothesized to link phenotype of the offspring to maternal physiology. In placental vertebrates, it is known that maternally derived steroids are metabolized during development via the sulfonation pathway. We used eggs from the red-eared slider turtle (Trachemys scripta) to determine whether the same metabolic pathway is used to metabolize maternally derived steroids in an oviparous vertebrate. To examine the relationship between estradiol and estrogen sulfates during development, levels of maternally derived estradiol were compared with levels of estradiol sulfate, estrone sulfate, and estriol sulfate at oviposition and after 20 days of embryonic development. Estrone sulfate was the only detectable estrogen sulfate. At oviposition, levels of both estradiol and estrone sulfate varied seasonally with clutches from later in the nesting season having significantly higher concentrations of both steroids. Levels of estrone sulfate increased during development, demonstrating that the sulfonation of maternally derived steroids occurs in oviparous vertebrates as well as in placental vertebrates. We also found that exogenous estrone sulfate increases the production of female hatchlings, thereby demonstrating the ability of this metabolite to influence embryonic development. To examine the role of sulfonation in the metabolism of maternal progesterone and testosterone, we characterized the metabolic fate of both steroids by applying tritiated forms of each steroid at oviposition and characterizing metabolites after 20 days of incubation. Similar to what was demonstrated for estradiol, both progesterone and testosterone are converted to sulfonated metabolites during embryonic development. These data suggest that steroid sulfates, both those that are maternally derived and those resulting from the metabolism of maternal steroids, are a key component of the mechanism

  15. Muconic Acid Production via Alternative Pathways and a Synthetic "Metabolic Funnel".

    Science.gov (United States)

    Thompson, Brian; Pugh, Shawn; Machas, Michael; Nielsen, David R

    2018-02-16

    Muconic acid is a promising platform biochemical and precursor to adipic acid, which can be used to synthesize various plastics and polymers. In this study, the systematic construction and comparative evaluation of a modular network of non-natural pathways for muconic acid biosynthesis was investigated in Escherichia coli, including via three distinct and novel pathways proceeding via phenol as a common intermediate. However, poor recombinant activity and high promiscuity of phenol hydroxylase ultimately limited "phenol-dependent" muconic acid production. A fourth pathway proceeding via p-hydroxybenzoate, protocatechuate, and catechol was accordingly developed, though with muconic acid titers by this route reaching just 819 mg/L, its performance lagged behind that of the established, "3-dehydroshikimiate-derived" route. Finally, these two most promising pathways were coexpressed in parallel to create a synthetic "metabolic funnel" that, by enabling maximal net precursor assimilation and flux while preserving native chorismate biosynthesis, nearly doubled muconic acid production to up to >3.1 g/L at a glucose yield of 158 mg/g while introducing only a single auxotrophy. This generalizable, "funneling" strategy is expected to have broad applications in metabolic engineering for further enhancing production of muconic acid, as well as other important bioproducts of interest.

  16. Metabolic pathway redundancy within the apicomplexan-dinoflagellate radiation argues against an ancient chromalveolate plastid

    KAUST Repository

    Waller, Ross F.

    2015-12-08

    The chromalveolate hypothesis presents an attractively simple explanation for the presence of red algal-derived secondary plastids in 5 major eukaryotic lineages: “chromista” phyla, cryptophytes, haptophytes and ochrophytes; and alveolate phyla, dinoflagellates and apicomplexans. It posits that a single secondary endosymbiotic event occurred in a common ancestor of these diverse groups, and that this ancient plastid has since been maintained by vertical inheritance only. Substantial testing of this hypothesis by molecular phylogenies has, however, consistently failed to provide support for the predicted monophyly of the host organisms that harbour these plastids—the “chromalveolates.” This lack of support does not disprove the chromalveolate hypothesis per se, but rather drives the proposed endosymbiosis deeper into the eukaryotic tree, and requires multiple plastid losses to have occurred within intervening aplastidic lineages. An alternative perspective on plastid evolution is offered by considering the metabolic partnership between the endosymbiont and its host cell. A recent analysis of metabolic pathways in a deep-branching dinoflagellate indicates a high level of pathway redundancy in the common ancestor of apicomplexans and dinoflagellates, and differential losses of these pathways soon after radiation of the major extant lineages. This suggests that vertical inheritance of an ancient plastid in alveolates is highly unlikely as it would necessitate maintenance of redundant pathways over very long evolutionary timescales.

  17. Metabolic engineering of the phenylpropanoid pathway enhances the antioxidant capacity of Saussurea involucrata.

    Directory of Open Access Journals (Sweden)

    Jian Qiu

    Full Text Available The rare wild species of snow lotus Saussurea involucrata is a commonly used medicinal herb with great pharmacological value for human health, resulting from its uniquely high level of phenylpropanoid compound production. To gain information on the phenylpropanid biosynthetic pathway genes in this critically important medicinal plant, global transcriptome sequencing was performed. It revealed that the phenylpropanoid pathway genes were well represented in S. involucrata. In addition, we introduced two key phenylpropanoid pathway inducing transcription factors (PAP1 and Lc into this medicinal plant. Transgenic S. involucrata co-expressing PAP1 and Lc exhibited purple pigments due to a massive accumulation of anthocyanins. The over-expression of PAP1 and Lc largely activated most of the phenylpropanoid pathway genes, and increased accumulation of several phenylpropanoid compounds significantly, including chlorogenic acid, syringin, cyanrine and rutin. Both ABTS (2,2'-azinobis-3-ethylbenzotiazo-line-6-sulfonic acid and FRAP (ferric reducing anti-oxidant power assays revealed that the antioxidant capacity of transgenic S. involucrata lines was greatly enhanced over controls. In addition to providing a deeper understanding of the molecular basis of phenylpropanoid metabolism, our results potentially enable an alternation of bioactive compound production in S. involucrata through metabolic engineering.

  18. Metabolic Disorder, Inflammation, and Deregulated Molecular Pathways Converging in Pancreatic Cancer Development: Implications for New Therapeutic Strategies

    Energy Technology Data Exchange (ETDEWEB)

    Motoo, Yoshiharu, E-mail: motoo@kanazawa-med.ac.jp [Department of Medical Oncology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293 (Japan); Shimasaki, Takeo [Department of Medical Oncology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293 (Japan); Division of Translational & Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa (Japan); Ishigaki, Yasuhito [Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293 (Japan); Nakajima, Hideo [Department of Medical Oncology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293 (Japan); Kawakami, Kazuyuki; Minamoto, Toshinari [Division of Translational & Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa (Japan)

    2011-01-24

    Pancreatic cancer develops and progresses through complex, cumulative biological processes involving metabolic disorder, local inflammation, and deregulated molecular pathways. The resulting tumor aggressiveness hampers surgical intervention and renders pancreatic cancer resistant to standard chemotherapy and radiation therapy. Based on these pathologic properties, several therapeutic strategies are being developed to reverse refractory pancreatic cancer. Here, we outline molecular targeting therapies, which are primarily directed against growth factor receptor-type tyrosine kinases deregulated in tumors, but have failed to improve the survival of pancreatic cancer patients. Glycogen synthase kinase-3β (GSK3β) is a member of a serine/threonine protein kinase family that plays a critical role in various cellular pathways. GSK3β has also emerged as a mediator of pathological states, including glucose intolerance, inflammation, and various cancers (e.g., pancreatic cancer). We review recent studies that demonstrate the anti-tumor effects of GSK3β inhibition alone or in combination with chemotherapy and radiation. GSK3β inhibition may exert indirect anti-tumor actions in pancreatic cancer by modulating metabolic disorder and inflammation.

  19. A board game to assist pharmacy students in learning metabolic pathways.

    Science.gov (United States)

    Rose, Tyler M

    2011-11-10

    To develop and evaluate a board game designed to increase students' enjoyment of learning metabolic pathways; their familiarity with pathway reactions, intermediates, and regulation; and, their understanding of how pathways relate to one another and to selected biological conditions. The board game, entitled Race to Glucose, was created as a team activity for first-year pharmacy students in the biochemistry curriculum. A majority of respondents agreed that the game was helpful for learning regulation, intermediates, and interpathway relationships but not for learning reactions, formation of energetic molecules, or relationships, to biological conditions. There was a significant increase in students' scores on game-related examination questions (68.8% pretest vs. 81.3% posttest), but the improvement was no greater than that for examination questions not related to the game (12.5% vs. 10.9%). First-year pharmacy students considered Race to Glucose to be an enjoyable and helpful tool for learning intermediates, regulation, and interpathway relationships.

  20. Pathway-Consensus Approach to Metabolic Network Reconstruction for Pseudomonas putida KT2440 by Systematic Comparison of Published Models.

    Science.gov (United States)

    Yuan, Qianqian; Huang, Teng; Li, Peishun; Hao, Tong; Li, Feiran; Ma, Hongwu; Wang, Zhiwen; Zhao, Xueming; Chen, Tao; Goryanin, Igor

    2017-01-01

    Over 100 genome-scale metabolic networks (GSMNs) have been published in recent years and widely used for phenotype prediction and pathway design. However, GSMNs for a specific organism reconstructed by different research groups usually produce inconsistent simulation results, which makes it difficult to use the GSMNs for precise optimal pathway design. Therefore, it is necessary to compare and identify the discrepancies among networks and build a consensus metabolic network for an organism. Here we proposed a process for systematic comparison of metabolic networks at pathway level. We compared four published GSMNs of Pseudomonas putida KT2440 and identified the discrepancies leading to inconsistent pathway calculation results. The mistakes in the models were corrected based on information from literature so that all the calculated synthesis and uptake pathways were the same. Subsequently we built a pathway-consensus model and then further updated it with the latest genome annotation information to obtain modelPpuQY1140 for P. putida KT2440, which includes 1140 genes, 1171 reactions and 1104 metabolites. We found that even small errors in a GSMN could have great impacts on the calculated optimal pathways and thus may lead to incorrect pathway design strategies. Careful investigation of the calculated pathways during the metabolic network reconstruction process is essential for building proper GSMNs for pathway design.

  1. Pathway-Consensus Approach to Metabolic Network Reconstruction for Pseudomonas putida KT2440 by Systematic Comparison of Published Models.

    Directory of Open Access Journals (Sweden)

    Qianqian Yuan

    Full Text Available Over 100 genome-scale metabolic networks (GSMNs have been published in recent years and widely used for phenotype prediction and pathway design. However, GSMNs for a specific organism reconstructed by different research groups usually produce inconsistent simulation results, which makes it difficult to use the GSMNs for precise optimal pathway design. Therefore, it is necessary to compare and identify the discrepancies among networks and build a consensus metabolic network for an organism. Here we proposed a process for systematic comparison of metabolic networks at pathway level. We compared four published GSMNs of Pseudomonas putida KT2440 and identified the discrepancies leading to inconsistent pathway calculation results. The mistakes in the models were corrected based on information from literature so that all the calculated synthesis and uptake pathways were the same. Subsequently we built a pathway-consensus model and then further updated it with the latest genome annotation information to obtain modelPpuQY1140 for P. putida KT2440, which includes 1140 genes, 1171 reactions and 1104 metabolites. We found that even small errors in a GSMN could have great impacts on the calculated optimal pathways and thus may lead to incorrect pathway design strategies. Careful investigation of the calculated pathways during the metabolic network reconstruction process is essential for building proper GSMNs for pathway design.

  2. Current evidence for a role of the Kynurenine pathway of tryptophan metabolism in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Michael D. Lovelace

    2016-08-01

    Full Text Available The kynurenine pathway (KP is the major metabolic pathway of the essential amino acid tryptophan (TRP. Stimulation by inflammatory molecules such as interferon-γ (IFN-γ is the trigger for induction of the KP, driving a complex cascade of production of both neuroprotective and neurotoxic metabolites and in turn, regulation of the immune response and responses of brain cells to the KP metabolites. Consequently, substantial evidence has accumulated over the past couple of decades that dysregulation of the KP and the production of neurotoxic metabolites are associated with many neuroinflammatory and neurodegenerative diseases, including Parkinson’s disease, AIDS-related dementia, motor neurone disease (MND, schizophrenia, Huntington’s disease and brain cancers. In the past decade, evidence of the link between the KP and multiple sclerosis (MS has rapidly grown and has implicated the KP in MS pathogenesis. KP enzymes indoleamine 2,3-dioxygenase (IDO-1 and tryptophan dioxygenase (TDO; highest expression in hepatic cells are the principal enzymes triggering activation of the KP to produce kynurenine from TRP. This is in preference to other routes such as serotonin and melatonin production. In neurological disease, degradation of the blood-brain-barrier (BBB, even if transient, allows the entry of blood monocytes into the brain parenchyma. Like microglia and macrophages, these cells are highly responsive to IFN-γ, which upregulates the expression of enzymes including IDO-1, producing neurotoxic KP metabolites such as quinolinic acid (QUIN. These metabolites circulate systemically or are released locally in the brain, and can contribute to the excitotoxic death of oligodendrocytes and neurons in neurological disease principally by virtue of their agonist activity at NMDA receptors. The latest evidence is presented and discussed. The enzymes that control the checkpoints in the KP represent an attractive therapeutic target, and consequently several

  3. Expression profiling of Crambe abyssinica under arsenate stress identifies genes and gene networks involved in arsenic metabolism and detoxification

    Directory of Open Access Journals (Sweden)

    Kandasamy Suganthi

    2010-06-01

    Full Text Available Abstract Background Arsenic contamination is widespread throughout the world and this toxic metalloid is known to cause cancers of organs such as liver, kidney, skin, and lung in human. In spite of a recent surge in arsenic related studies, we are still far from a comprehensive understanding of arsenic uptake, detoxification, and sequestration in plants. Crambe abyssinica, commonly known as 'abyssinian mustard', is a non-food, high biomass oil seed crop that is naturally tolerant to heavy metals. Moreover, it accumulates significantly higher levels of arsenic as compared to other species of the Brassicaceae family. Thus, C. abyssinica has great potential to be utilized as an ideal inedible crop for phytoremediation of heavy metals and metalloids. However, the mechanism of arsenic metabolism in higher plants, including C. abyssinica, remains elusive. Results To identify the differentially expressed transcripts and the pathways involved in arsenic metabolism and detoxification, C. abyssinica plants were subjected to arsenate stress and a PCR-Select Suppression Subtraction Hybridization (SSH approach was employed. A total of 105 differentially expressed subtracted cDNAs were sequenced which were found to represent 38 genes. Those genes encode proteins functioning as antioxidants, metal transporters, reductases, enzymes involved in the protein degradation pathway, and several novel uncharacterized proteins. The transcripts corresponding to the subtracted cDNAs showed strong upregulation by arsenate stress as confirmed by the semi-quantitative RT-PCR. Conclusions Our study revealed novel insights into the plant defense mechanisms and the regulation of genes and gene networks in response to arsenate toxicity. The differential expression of transcripts encoding glutathione-S-transferases, antioxidants, sulfur metabolism, heat-shock proteins, metal transporters, and enzymes in the ubiquitination pathway of protein degradation as well as several unknown

  4. Metabolic Circuit Involving Free Fatty Acids, microRNA 122, and Triglyceride Synthesis in Liver and Muscle Tissues.

    Science.gov (United States)

    Chai, Chofit; Rivkin, Mila; Berkovits, Liav; Simerzin, Alina; Zorde-Khvalevsky, Elina; Rosenberg, Nofar; Klein, Shiri; Yaish, Dayana; Durst, Ronen; Shpitzen, Shoshana; Udi, Shiran; Tam, Joseph; Heeren, Joerg; Worthmann, Anna; Schramm, Christoph; Kluwe, Johannes; Ravid, Revital; Hornstein, Eran; Giladi, Hilla; Galun, Eithan

    2017-11-01

    Effective treatments are needed for hepatic steatosis characterized by accumulation of triglycerides in hepatocytes, which leads to hepatocellular carcinoma. MicroRNA 122 (MIR122) is expressed only in the liver, where it regulates lipid metabolism. We investigated the mechanism by which free fatty acids (FFAs) regulate MIR122 expression and the effect of MIR122 on triglyceride synthesis. We analyzed MIR122 promoter activity and validated its target mRNAs by transfection of Luciferase reporter plasmids into Huh7, BNL-1ME, and HEK293 cultured cell lines. We measured levels of microRNAs and mRNAs by quantitative real-time PCR analysis of RNA extracted from plasma, liver, muscle, and adipose tissues of C57BL/6 mice given the FFA-inducer CL316243. MIR122 was inhibited using an inhibitor of MIR122. Metabolic profiles of mice were determined using metabolic chambers and by histologic analyses of liver tissues. We performed RNA sequence analyses to identify metabolic pathways involving MIR122. We validated human Agpat1 and Dgat1 mRNAs, involved in triglyceride synthesis, as targets of MIR122. FFAs increased MIR122 expression in livers of mice by activating the retinoic acid-related orphan receptor alpha, and induced secretion of MIR122 from liver to blood. Circulating MIR122 entered muscle and adipose tissues of mice, reducing mRNA levels of genes involved in triglyceride synthesis. Mice injected with an inhibitor of MIR122 and then given CL316243, accumulated triglycerides in liver and muscle tissues, and had reduced rates of β-oxidation. There was a positive correlation between level of FFAs and level of MIR122 in plasma samples from 6 healthy individuals, collected before and during fasting. In biochemical and histologic studies of plasma, liver, muscle, and adipose tissues from mice, we found that FFAs increase hepatic expression and secretion of MIR122, which regulates energy storage vs expenditure in liver and peripheral tissues. Strategies to reduce

  5. Proteomics of buccal squamous cell carcinoma: the involvement of multiple pathways in tumorigenesis.

    Science.gov (United States)

    Chen, Jia; He, Qing-Yu; Yuen, Anthony Po-Wing; Chiu, Jeng-Fu

    2004-08-01

    Squamous cell carcinoma (SCC) of the buccal mucosa is an aggressive oral cancer. It mainly occurs in Central and Southeast Asia, and is closely related to the practice of tobacco smoking and betel squid chewing. The high recurrence and low survival rates of buccal SCC require our continued efforts to understand the pathogenesis of the disease for designing better therapeutic strategies. We used proteomic technology to analyze buccal SCC tissues aiming at identifying tumor-associated proteins for the utilization as biomarkers or molecular targets. With the exception of alpha B-crystallin being substantially reduced, a number of proteins were found to be significantly over-expressed in cancer tissues. These increased proteins included glycolytic enzymes, heat-shock proteins, tumor antigens, cytoskeleton proteins, enzymes involved in detoxification and anti-oxidation systems, and proteins involved in mitochondrial and intracellular signaling pathways. These extensive protein variations indicate that multiple cellular pathways were involved in the process of tumorigenesis, and suggest that multiple protein molecules should be simultaneously targeted as an effective strategy to counter the disease. At least, SCC antigen, G protein, glutathione S-transferase, manganese superoxide dismutase, annexins, voltage-dependent anion channel, cyclophilin A, stratifin and galectin 7 are candidates for targeted proteins. The present findings also demonstrated that rich protein information can be produced by means of proteomic analysis for a better understanding of the oncogenesis and pathogenesis in a global way, which in turn is a basis for the rational designs of diagnostic and therapeutic methods.

  6. Ultraperformance liquid chromatography-mass spectrometry based comprehensive metabolomics combined with pattern recognition and network analysis methods for characterization of metabolites and metabolic pathways from biological data sets.

    Science.gov (United States)

    Zhang, Ai-hua; Sun, Hui; Han, Ying; Yan, Guang-li; Yuan, Ye; Song, Gao-chen; Yuan, Xiao-xia; Xie, Ning; Wang, Xi-jun

    2013-08-06

    Metabolomics is the study of metabolic changes in biological systems and provides the small molecule fingerprints related to the disease. Extracting biomedical information from large metabolomics data sets by multivariate data analysis is of considerable complexity. Therefore, more efficient and optimizing metabolomics data processing technologies are needed to improve mass spectrometry applications in biomarker discovery. Here, we report the findings of urine metabolomic investigation of hepatitis C virus (HCV) patients by high-throughput ultraperformance liquid chromatography-mass spectrometry (UPLC-MS) coupled with pattern recognition methods (principal component analysis, partial least-squares, and OPLS-DA) and network pharmacology. A total of 20 urinary differential metabolites (13 upregulated and 7 downregulated) were identified and contributed to HCV progress, involve several key metabolic pathways such as taurine and hypotaurine metabolism, glycine, serine and threonine metabolism, histidine metabolism, arginine and proline metabolism, and so forth. Metabolites identified through metabolic profiling may facilitate the development of more accurate marker algorithms to better monitor disease progression. Network analysis validated close contact between these metabolites and implied the importance of the metabolic pathways. Mapping altered metabolites to KEGG pathways identified alterations in a variety of biological processes mediated through complex networks. These findings may be promising to yield a valuable and noninvasive tool that insights into the pathophysiology of HCV and to advance the early diagnosis and monitor the progression of disease. Overall, this investigation illustrates the power of the UPLC-MS platform combined with the pattern recognition and network analysis methods that can engender new insights into HCV pathobiology.

  7. Induction of autophagy by ARHI (DIRAS3) alters fundamental metabolic pathways in ovarian cancer models.

    Science.gov (United States)

    Ornelas, Argentina; McCullough, Christopher R; Lu, Zhen; Zacharias, Niki M; Kelderhouse, Lindsay E; Gray, Joshua; Yang, Hailing; Engel, Brian J; Wang, Yan; Mao, Weiqun; Sutton, Margie N; Bhattacharya, Pratip K; Bast, Robert C; Millward, Steven W

    2016-10-26

    Autophagy is a bulk catabolic process that modulates tumorigenesis, therapeutic resistance, and dormancy. The tumor suppressor ARHI (DIRAS3) is a potent inducer of autophagy and its expression results in necroptotic cell death in vitro and tumor dormancy in vivo. ARHI is down-regulated or lost in over 60 % of primary ovarian tumors yet is dramatically up-regulated in metastatic disease. The metabolic changes that occur during ARHI induction and their role in modulating death and dormancy are unknown. We employed Nuclear Magnetic Resonance (NMR)-based metabolomic strategies to characterize changes in key metabolic pathways in both cell culture and xenograft models of ARHI expression and autophagy. These pathways were further interrogated by cell-based immunofluorescence imaging, tracer uptake studies, targeted metabolic inhibition, and in vivo PET/CT imaging. Induction of ARHI in cell culture models resulted in an autophagy-dependent increase in lactate production along with increased glucose uptake and enhanced sensitivity to glycolytic inhibitors. Increased uptake of glutamine was also dependent on autophagy and dramatically sensitized cultured ARHI-expressing ovarian cancer cell lines to glutaminase inhibition. Induction of ARHI resulted in a reduction in mitochondrial respiration, decreased mitochondrial membrane potential, and decreased Tom20 staining suggesting an ARHI-dependent loss of mitochondrial function. ARHI induction in mouse xenograft models resulted in an increase in free amino acids, a transient increase in [ 18 F]-FDG uptake, and significantly altered choline metabolism. ARHI expression has previously been shown to trigger autophagy-associated necroptosis in cell culture. In this study, we have demonstrated that ARHI expression results in decreased cellular ATP/ADP, increased oxidative stress, and decreased mitochondrial function. While this bioenergetic shock is consistent with programmed necrosis, our data indicates that the accompanying up

  8. Integrated pathway modules using time-course metabolic profiles and EST data from Milnesium tardigradum

    Directory of Open Access Journals (Sweden)

    Beisser Daniela

    2012-06-01

    Full Text Available Abstract Background Tardigrades are multicellular organisms, resistant to extreme environmental changes such as heat, drought, radiation and freezing. They outlast these conditions in an inactive form (tun to escape damage to cellular structures and cell death. Tardigrades are apparently able to prevent or repair such damage and are therefore a crucial model organism for stress tolerance. Cultures of the tardigrade Milnesium tardigradum were dehydrated by removing the surrounding water to induce tun formation. During this process and the subsequent rehydration, metabolites were measured in a time series by GC-MS. Additionally expressed sequence tags are available, especially libraries generated from the active and inactive state. The aim of this integrated analysis is to trace changes in tardigrade metabolism and identify pathways responsible for their extreme resistance against physical stress. Results In this study we propose a novel integrative approach for the analysis of metabolic networks to identify modules of joint shifts on the transcriptomic and metabolic levels. We derive a tardigrade-specific metabolic network represented as an undirected graph with 3,658 nodes (metabolites and 4,378 edges (reactions. Time course metabolite profiles are used to score the network nodes showing a significant change over time. The edges are scored according to information on enzymes from the EST data. Using this combined information, we identify a key subnetwork (functional module of concerted changes in metabolic pathways, specific for de- and rehydration. The module is enriched in reactions showing significant changes in metabolite levels and enzyme abundance during the transition. It resembles the cessation of a measurable metabolism (e.g. glycolysis and amino acid anabolism during the tun formation, the production of storage metabolites and bioprotectants, such as DNA stabilizers, and the generation of amino acids and cellular components from

  9. The yeast magmas ortholog pam16 has an essential function in fermentative growth that involves sphingolipid metabolism.

    Directory of Open Access Journals (Sweden)

    Mary K Short

    Full Text Available Magmas is a growth factor responsive gene encoding an essential mitochondrial protein in mammalian cells. Pam16, the Magmas ortholog in Saccharomyces cerevisiae, is a component of the presequence translocase-associated motor. A temperature-sensitive allele (pam16-I61N was used to query an array of non-essential gene-deletion strains for synthetic genetic interactions. The pam16-I61N mutation at ambient temperature caused synthetic lethal or sick phenotypes with genes involved in lipid metabolism, perixosome synthesis, histone deacetylation and mitochondrial protein import. The gene deletion array was also screened for suppressors of the pam16-I61N growth defect to identify compensatory pathways. Five suppressor genes were identified (SUR4, ISC1, IPT1, SKN1, and FEN1 and all are involved in sphingolipid metabolism. pam16-I61N cells cultured in glucose at non-permissive temperatures resulted in rapid growth inhibition and G1 cell cycle arrest, but cell viability was maintained. Altered mitochondria morphology, reduced peroxisome induction in glycerol/ethanol and oleate, and changes in the levels of several sphingolipids including C18 alpha-hydroxy-phytoceramide, were also observed in the temperature sensitive strain. Deletion of SUR4, the strongest suppressor, reversed the temperature sensitive fermentative growth defect, the morphological changes and the elevated levels of C18 alpha-hydroxy phytoceramide in pam16-I61N. Deletion of the other four suppressor genes had similar effects on C18 alpha-hydroxy-phytoceramide levels and restored proliferation to the pam16-I61N strain. In addition, pam16-I61N inhibited respiratory growth, likely by reducing cardiolipin, which is essential for mitochondrial function. Our results suggest that the pleiotropic effects caused by impaired Pam16/Magmas function are mediated in part by changes in lipid metabolism.

  10. Whole genome association study identifies regions of the bovine genome and biological pathways involved in carcass trait performance in Holstein-Friesian cattle.

    Science.gov (United States)

    Doran, Anthony G; Berry, Donagh P; Creevey, Christopher J

    2014-10-01

    Four traits related to carcass performance have been identified as economically important in beef production: carcass weight, carcass fat, carcass conformation of progeny and cull cow carcass weight. Although Holstein-Friesian cattle are primarily utilized for milk production, they are also an important source of meat for beef production and export. Because of this, there is great interest in understanding the underlying genomic structure influencing these traits. Several genome-wide association studies have identified regions of the bovine genome associated with growth or carcass traits, however, little is known about the mechanisms or underlying biological pathways involved. This study aims to detect regions of the bovine genome associated with carcass performance traits (employing a panel of 54,001 SNPs) using measures of genetic merit (as predicted transmitting abilities) for 5,705 Irish Holstein-Friesian animals. Candidate genes and biological pathways were then identified for each trait under investigation. Following adjustment for false discovery (q-value 0.5) with at least one of the four traits. In total, 557 unique bovine genes, which mapped to 426 human orthologs, were within 500kbs of QTL found associated with a trait using the Bayesian approach. Using this information, 24 significantly over-represented pathways were identified across all traits. The most significantly over-represented biological pathway was the peroxisome proliferator-activated receptor (PPAR) signaling pathway. A large number of genomic regions putatively associated with bovine carcass traits were detected using two different statistical approaches. Notably, several significant associations were detected in close proximity to genes with a known role in animal growth such as glucagon and leptin. Several biological pathways, including PPAR signaling, were shown to be involved in various aspects of bovine carcass performance. These core genes and biological processes may form the

  11. LncRNA pathway involved in premature preterm rupture of membrane (PPROM): an epigenomic approach to study the pathogenesis of reproductive disorders.

    Science.gov (United States)

    Luo, Xiucui; Shi, Qingxi; Gu, Yang; Pan, Jing; Hua, Maofang; Liu, Meilin; Dong, Ziqing; Zhang, Meijiao; Wang, Leilei; Gu, Ying; Zhong, Julia; Zhao, Xinliang; Jenkins, Edmund C; Brown, W Ted; Zhong, Nanbert

    2013-01-01

    Preterm birth (PTB) is a live birth delivered before 37 weeks of gestation (GW). About one-third of PTBs result from the preterm premature rupture of membranes (PPROM). Up to the present, the pathogenic mechanisms underlying PPROM are not clearly understood. Here, we investigated the differential expression of long chain non-coding RNAs (lncRNAs) in placentas of PTBs with PPROM, and their possible involvement in the pathogenic pathways leading to PPROM. A total number of 1954, 776, and 1050 lncRNAs were identified with a microarray from placentas of PPROM (group A), which were compared to full-term birth (FTB) (group B), PTB (group C), and premature rupture of membrane (PROM) (group D) at full-term, respectively. Instead of investigating the individual pathogenic role of each lncRNA involved in the molecular mechanism underlying PPROM, we have focused on investigating the metabolic pathways and their functions to explore what is the likely association and how they are possibly involved in the development of PPROM. Six groups, including up-regulation and down-regulation in the comparisons of A vs. B, A vs. C, and A vs. D, of pathways were analyzed. Our results showed that 22 pathways were characterized as up-regulated 7 down-regulated in A vs. C, 18 up-regulated and 15 down-regulated in A vs. D, and 33 up-regulated and 7 down-regulated in A vs. B. Functional analysis showed pathways of infection and inflammatory response, ECM-receptor interactions, apoptosis, actin cytoskeleton, and smooth muscle contraction are the major pathogenic mechanisms involved in the development of PPROM. Characterization of these pathways through identification of lncRNAs opened new avenues for further investigating the epigenomic mechanisms of lncRNAs in PPROM as well as PTB.

  12. LncRNA pathway involved in premature preterm rupture of membrane (PPROM: an epigenomic approach to study the pathogenesis of reproductive disorders.

    Directory of Open Access Journals (Sweden)

    Xiucui Luo

    Full Text Available Preterm birth (PTB is a live birth delivered before 37 weeks of gestation (GW. About one-third of PTBs result from the preterm premature rupture of membranes (PPROM. Up to the present, the pathogenic mechanisms underlying PPROM are not clearly understood. Here, we investigated the differential expression of long chain non-coding RNAs (lncRNAs in placentas of PTBs with PPROM, and their possible involvement in the pathogenic pathways leading to PPROM. A total number of 1954, 776, and 1050 lncRNAs were identified with a microarray from placentas of PPROM (group A, which were compared to full-term birth (FTB (group B, PTB (group C, and premature rupture of membrane (PROM (group D at full-term, respectively. Instead of investigating the individual pathogenic role of each lncRNA involved in the molecular mechanism underlying PPROM, we have focused on investigating the metabolic pathways and their functions to explore what is the likely association and how they are possibly involved in the development of PPROM. Six groups, including up-regulation and down-regulation in the comparisons of A vs. B, A vs. C, and A vs. D, of pathways were analyzed. Our results showed that 22 pathways were characterized as up-regulated 7 down-regulated in A vs. C, 18 up-regulated and 15 down-regulated in A vs. D, and 33 up-regulated and 7 down-regulated in A vs. B. Functional analysis showed pathways of infection and inflammatory response, ECM-receptor interactions, apoptosis, actin cytoskeleton, and smooth muscle contraction are the major pathogenic mechanisms involved in the development of PPROM. Characterization of these pathways through identification of lncRNAs opened new avenues for further investigating the epigenomic mechanisms of lncRNAs in PPROM as well as PTB.

  13. Plasmid linkage of the D-tagatose 6-phosphate pathway in Streptococcus lactis: effect on lactose and galactose metabolism.

    Science.gov (United States)

    Crow, V L; Davey, G P; Pearce, L E; Thomas, T D

    1983-01-01

    The three enzymes of the D-tagatose 6-phosphate pathway (galactose 6-phosphate isomerase, D-tagatose 6-phosphate kinase, and tagatose 1,6-diphosphate aldolase) were absent in lactose-negative (Lac-) derivatives of Streptococcus lactis C10, H1, and 133 grown on galactose. The lactose phosphoenolpyruvate-dependent phosphotransferase system and phospho-beta-galactosidase activities were also absent in Lac- derivatives of strains H1 and 133 and were low (possibly absent) in C10 Lac-. In all three Lac- derivatives, low galactose phosphotransferase system activity was found. On galactose, Lac- derivatives grew more slowly (presumably using the Leloir pathway) than the wild-type strains and accumulated high intracellular concentrations of galactose 6-phosphate (up to 49 mM); no intracellular tagatose 1,6-diphosphate was detected. The data suggest that the Lac phenotype is plasmid linked in the three strains studied, with the evidence being more substantial for strain H1. A Lac- derivative of H1 contained a single plasmid (33 megadaltons) which was absent from the Lac- mutant. We suggest that the genes linked to the lactose plasmid in S. lactis are more numerous than previously envisaged, coding for all of the enzymes involved in lactose metabolism from initial transport to the formation of triose phosphates via the D-tagatose 6-phosphate pathway. Images PMID:6294064

  14. GAIP interacting protein C-terminus regulates autophagy and exosome biogenesis of pancreatic cancer through metabolic pathways.

    Directory of Open Access Journals (Sweden)

    Santanu Bhattacharya

    Full Text Available GAIP interacting protein C terminus (GIPC is known to play an important role in a variety of physiological and disease states. In the present study, we have identified a novel role for GIPC as a master regulator of autophagy and the exocytotic pathways in cancer. We show that depletion of GIPC-induced autophagy in pancreatic cancer cells, as evident from the upregulation of the autophagy marker LC3II. We further report that GIPC regulates cellular trafficking pathways by modulating the secretion, biogenesis, and molecular composition of exosomes. We also identified the involvement of GIPC on metabolic stress pathways regulating autophagy and microvesicular shedding, and observed that GIPC status determines the loading of cellular cargo in the exosome. Furthermore, we have shown the overexpression of the drug resistance gene ABCG2 in exosomes from GIPC-depleted pancreatic cancer cells. We also demonstrated that depletion of GIPC from cancer cells sensitized them to gemcitabine treatment, an avenue that can be explored as a potential therapeutic strategy to overcome drug resistance in cancer.

  15. GAIP interacting protein C-terminus regulates autophagy and exosome biogenesis of pancreatic cancer through metabolic pathways.

    Science.gov (United States)

    Bhattacharya, Santanu; Pal, Krishnendu; Sharma, Anil K; Dutta, Shamit K; Lau, Julie S; Yan, Irene K; Wang, Enfeng; Elkhanany, Ahmed; Alkharfy, Khalid M; Sanyal, Arunik; Patel, Tushar C; Chari, Suresh T; Spaller, Mark R; Mukhopadhyay, Debabrata

    2014-01-01

    GAIP interacting protein C terminus (GIPC) is known to play an important role in a variety of physiological and disease states. In the present study, we have identified a novel role for GIPC as a master regulator of autophagy and the exocytotic pathways in cancer. We show that depletion of GIPC-induced autophagy in pancreatic cancer cells, as evident from the upregulation of the autophagy marker LC3II. We further report that GIPC regulates cellular trafficking pathways by modulating the secretion, biogenesis, and molecular composition of exosomes. We also identified the involvement of GIPC on metabolic stress pathways regulating autophagy and microvesicular shedding, and observed that GIPC status determines the loading of cellular cargo in the exosome. Furthermore, we have shown the overexpression of the drug resistance gene ABCG2 in exosomes from GIPC-depleted pancreatic cancer cells. We also demonstrated that depletion of GIPC from cancer cells sensitized them to gemcitabine treatment, an avenue that can be explored as a potential therapeutic strategy to overcome drug resistance in cancer.

  16. From elementary flux modes to elementary flux vectors: Metabolic pathway analysis with arbitrary linear flux constraints

    Science.gov (United States)

    Klamt, Steffen; Gerstl, Matthias P.; Jungreuthmayer, Christian; Mahadevan, Radhakrishnan; Müller, Stefan

    2017-01-01

    Elementary flux modes (EFMs) emerged as a formal concept to describe metabolic pathways and have become an established tool for constraint-based modeling and metabolic network analysis. EFMs are characteristic (support-minimal) vectors of the flux cone that contains all feasible steady-state flux vectors of a given metabolic network. EFMs account for (homogeneous) linear constraints arising from reaction irreversibilities and the assumption of steady state; however, other (inhomogeneous) linear constraints, such as minimal and maximal reaction rates frequently used by other constraint-based techniques (such as flux balance analysis [FBA]), cannot be directly integrated. These additional constraints further restrict the space of feasible flux vectors and turn the flux cone into a general flux polyhedron in which the concept of EFMs is not directly applicable anymore. For this reason, there has been a conceptual gap between EFM-based (pathway) analysis methods and linear optimization (FBA) techniques, as they operate on different geometric objects. One approach to overcome these limitations was proposed ten years ago and is based on the concept of elementary flux vectors (EFVs). Only recently has the community started to recognize the potential of EFVs for metabolic network analysis. In fact, EFVs exactly represent the conceptual development required to generalize the idea of EFMs from flux cones to flux polyhedra. This work aims to present a concise theoretical and practical introduction to EFVs that is accessible to a broad audience. We highlight the close relationship between EFMs and EFVs and demonstrate that almost all applications of EFMs (in flux cones) are possible for EFVs (in flux polyhedra) as well. In fact, certain properties can only be studied with EFVs. Thus, we conclude that EFVs provide a powerful and unifying framework for constraint-based modeling of metabolic networks. PMID:28406903

  17. Danqi Pill regulates lipid metabolism disorder induced by myocardial ischemia through FATP-CPTI pathway.

    Science.gov (United States)

    Wang, Yong; Li, Chun; Wang, Qiyan; Shi, Tianjiao; Wang, Jing; Chen, Hui; Wu, Yan; Han, Jing; Guo, Shuzhen; Wang, Yuanyuan; Wang, Wei

    2015-02-21

    Danqi Pill (DQP), which contains Chinese herbs Salvia miltiorrhiza Bunge and Panax notoginseng, is widely used in the treatment of myocardial ischemia (MI) in China. Its regulatory effects on MI-associated lipid metabolism disorders haven't been comprehensively studied so far. We aimed to systematically investigate the regulatory mechanism of DQP on myocardial ischemia-induced lipid metabolism disorders. Myocardial ischemia rat model was induced by left anterior descending coronary artery ligation. The rat models were divided into three groups: model group with administration of normal saline, study group with administration of DanQi aqueous solution (1.5 mg/kg) and positive-control group with administration of pravastatin aqueous solution (1.2 mg/kg). In addition, another sham-operated group was set as negative control. At 28 days after treatment, cardiac function and degree of lipid metabolism disorders in rats of different groups were measured. Plasma lipid disorders were induced by myocardial ischemia, with manifestation of up-regulation of triglyceride (TG), low density lipoprotein (LDL), Apolipoprotein B (Apo-B) and 3-hydroxy-3-methyl glutaryl coenzyme A reductase (HMGCR). DQP could down-regulate the levels of TG, LDL, Apo-B and HMGCR. The Lipid transport pathway, fatty acids transport protein (FATP) and Carnitine palmitoyltransferase I (CPTI) were down-regulated in model group. DQP could improve plasma lipid metabolism by up-regulating this lipid transport pathway. The transcription factors peroxisome proliferator-activated receptor α (PPARα) and retinoid X receptors (RXRs), which regulate lipid metabolism, were also up-regulated by DQP. Furthermore, DQP was able to improve heart function and up-regulate ejection fraction (EF) by increasing the cardiac diastolic volume. Our study reveals that DQP would be an ideal alternative drug for the treatment of dyslipidemia which is induced by myocardial ischemia.

  18. Xylan catabolism is improved by blending bioprospecting and metabolic pathway engineering in Saccharomyces cerevisiae.

    Science.gov (United States)

    Lee, Sun-Mi; Jellison, Taylor; Alper, Hal S

    2015-04-01

    Complete utilization of all available carbon sources in lignocellulosic biomass still remains a challenge in engineering Saccharomyces cerevisiae. Even with efficient heterologous xylose catabolic pathways, S. cerevisiae is unable to utilize xylose in lignocellulosic biomass unless xylan is depolymerized to xylose. Here we demonstrate that a blended bioprospecting approach along with pathway engineering and evolutionary engineering can be used to improve xylan catabolism in S. cerevisiae. Specifically, we perform whole genome sequencing-based bioprospecting of a strain with remarkable pentose catabolic potential that we isolated and named Ustilago bevomyces. The heterologous expression of xylan catabolic genes enabled S. cerevisiae to grow on xylan as a single carbon source in minimal medium. A combination of bioprospecting and metabolic pathway evolution demonstrated that the xylan catabolic pathway could be further improved. Ultimately, engineering efforts were able to achieve xylan conversion into ethanol of up to 0.22 g/L on minimal medium compositions with xylan. This pathway provides a novel starting point for improving lignocellulosic conversion by yeast. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Masking of a circadian behavior in larval zebrafish involves the thalamo-habenula pathway.

    Science.gov (United States)

    Lin, Qian; Jesuthasan, Suresh

    2017-06-22

    Changes in illumination can rapidly influence behavior that is normally controlled by the circadian clock. This effect is termed masking. In mice, masking requires melanopsin-expressing retinal ganglion cells that detect blue light and project to the thalamus. It is not known whether masking is wavelength-dependent in other vertebrates, nor is it known whether the thalamus is also involved or how it influences masking. Here, we address these questions in zebrafish. We find that diel vertical migration, a circadian behavior in larval zebrafish, is effectively triggered by blue, but not by red light. Two-photon calcium imaging reveals that a thalamic nucleus and a downstream structure, the habenula, have a sustained response to blue but not to red light. Lesioning the habenula reduces light-evoked climbing. These data suggest that the thalamo-habenula pathway is involved in the ability of blue light to influence a circadian behavior.

  20. Suprasellar ganglioglioma with unusual diffuse involvement of the entire optico-chiasmal hypothalamic pathway

    Directory of Open Access Journals (Sweden)

    Jalali Rakesh

    2008-01-01

    Full Text Available Gangliogliomas (GG are mixed glioneuronal tumors of the central nervous system (CNS, occurring mostly in the pediatric population, with common sites being temporal lobes and less commonly in the frontal and parietal lobes. We report a case of a 7-year-old child who presented with bilateral visual defects for 6 months. Magnetic resonance imaging (MRI of the brain revealed an intensely enhancing mass lesion with calcification in the sellar and suprasellar region involving the optic chiasm and the left optic nerve. The mass showed almost bilaterally symmetrical diffuse spread along the optic tracts posteriorly and hypothalamus, temporal lobes, thalami and the basal ganglia. The lesion was radiologically indistinguishable from chiasmatic astrocytoma or a germ cell tumor but histopathological features were of a ganglioglioma. While a few optic apparatus gangliogliomas have been reported in the literature, such widespread diffuse involvement of the entire optico-chiasmal hypothalamic pathway is unusual.

  1. Metabolite and light regulation of metabolism in plants: lessons from the study of a single biochemical pathway

    Directory of Open Access Journals (Sweden)

    I.C. Oliveira

    2001-05-01

    Full Text Available We are using molecular, biochemical, and genetic approaches to study the structural and regulatory genes controlling the assimilation of inorganic nitrogen into the amino acids glutamine, glutamate, aspartate and asparagine. These amino acids serve as the principal nitrogen-transport amino acids in most crop and higher plants including Arabidopsis thaliana. We have begun to investigate the regulatory mechanisms controlling nitrogen assimilation into these amino acids in plants using molecular and genetic approaches in Arabidopsis. The synthesis of the amide amino acids glutamine and asparagine is subject to tight regulation in response to environmental factors such as light and to metabolic factors such as sucrose and amino acids. For instance, light induces the expression of glutamine synthetase (GLN2 and represses expression of asparagine synthetase (ASN1 genes. This reciprocal regulation of GLN2 and ASN1 genes by light is reflected at the level of transcription and at the level of glutamine and asparagine biosynthesis. Moreover, we have shown that the regulation of these genes is also reciprocally controlled by both organic nitrogen and carbon metabolites. We have recently used a reverse genetic approach to study putative components of such metabolic sensing mechanisms in plants that may be conserved in evolution. These components include an Arabidopsis homolog for a glutamate receptor gene originally found in animal systems and a plant PII gene, which is a homolog of a component of the bacterial Ntr system. Based on our observations on the biology of both structural and regulatory genes of the nitrogen assimilatory pathway, we have developed a model for metabolic control of the genes involved in the nitrogen assimilatory pathway in plants.

  2. Androgen receptor-mediated regulation of the anti-atherogenic enzyme CYP27A1 involves the JNK/c-jun pathway.

    Science.gov (United States)

    Norlin, Maria; Pettersson, Hanna; Tang, Wanjin; Wikvall, Kjell

    2011-02-15

    CYP27A1, an enzyme with several important roles in cholesterol homeostasis and vitamin D₃ metabolism, has been ascribed anti-atherogenic properties. This study addresses an important problem regarding how this enzyme, involved in cholesterol metabolism in the liver and peripheral tissues, is regulated. Our results identify the human CYP27A1 gene as a new target for the JNK/c-jun pathway. Initial experiments showed that an inhibitor of c-Jun N-terminal kinase (JNK) downregulated basal CYP27A1 promoter activity whereas overexpression of JNK slightly enhanced promoter activity. Androgen receptor (AR)-mediated upregulation of mRNA levels and endogenous enzyme activity was recently reported. In the present study, the AR antagonist nilutamide blocked the androgen induction of CYP27A1. The present data revealed that inhibition of the JNK/c-jun pathway abolishes the AR-mediated effect on CYP27A1 transcription and enzyme activity, whereas overexpression of JNK markedly increased androgenic upregulation of CYP27A1. In conclusion, the current results indicate involvement of the JNK/c-jun pathway in AR-mediated upregulation of human CYP27A1. The link to JNK signaling is interesting since inflammatory processes may upregulate CYP27A1 to clear cholesterol from peripheral tissues. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Differential selection on carotenoid biosynthesis genes as a function of gene position in the metabolic pathway: a study on the carrot and dicots.

    Directory of Open Access Journals (Sweden)

    Jérémy Clotault

    Full Text Available Selection of genes involved in metabolic pathways could target them differently depending on the position of genes in the pathway and on their role in controlling metabolic fluxes. This hypothesis was tested in the carotenoid biosynthesis pathway using population genetics and phylogenetics.Evolutionary rates of seven genes distributed along the carotenoid biosynthesis pathway, IPI, PDS, CRTISO, LCYB, LCYE, CHXE and ZEP, were compared in seven dicot taxa. A survey of deviations from neutrality expectations at these genes was also undertaken in cultivated carrot (Daucus carota subsp. sativus, a species that has been intensely bred for carotenoid pattern diversification in its root during its cultivation history. Parts of sequences of these genes were obtained from 46 individuals representing a wide diversity of cultivated carrots. Downstream genes exhibited higher deviations from neutral expectations than upstream genes. Comparisons of synonymous and nonsynonymous substitution rates between genes among dicots revealed greater constraints on upstream genes than on downstream genes. An excess of intermediate frequency polymorphisms, high nucleotide diversity and/or high differentiation of CRTISO, LCYB1 and LCYE in cultivated carrot suggest that balancing selection may have targeted genes acting centrally in the pathway.Our results are consistent with relaxed constraints on downstream genes and selection targeting the central enzymes of the carotenoid biosynthesis pathway during carrot breeding history.

  4. Metabolic pathways of decabromodiphenyl ether (BDE209) in rainbow trout (Oncorhynchus mykiss) via intraperitoneal injection.

    Science.gov (United States)

    Feng, Chenglian; Xu, Yiping; Zha, Jinmiao; Li, Jian; Wu, Fengchang; Wang, Zijian

    2015-03-01

    Decabromodiphenyl ether (BDE209) was of great concern due to its biotransformation in different organisms. However, most studies devoted to the metabolic intermediates of BDE209, less has been done on the metabolic pathways in vivo, especially on the relationships among debrominated-BDEs, OH-BDEs and MeO-BDEs. In this study, the metabolic pathways and intermediates of BDE209 in rainbow trout (Oncorhynchus mykiss) were investigated, and the time-dependent transformations of the metabolites were also examined. The primary debrominated metabolites were BDE47, 49, 99, 197, 207; the main MeO-BDEs were MeO-BDE47, MeO-BDE68 and MeO-BDE100; OH-BDEs were primarily composed of OH-BDE28 and OH-BDE42. From the time-dependent and dose-effect relationships, the debromination should be followed by hydroxylation, and then by methoxylation. The increasing in body burden of MeO-BDEs corresponded to the decreasing of OH-BDEs, which could indirectly prove the inter-conversion between OH-BDEs and MeO-BDEs. This study would motivate the future research of toxicological mechanisms of BDEs. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Characterization of Genes Encoding Key Enzymes Involved in Anthocyanin Metabolism of Kiwifruit during Storage Period

    OpenAIRE

    Li, Boqiang; Xia, Yongxiu; Wang, Yuying; Qin, Guozheng; Tian, Shiping

    2017-01-01

    ‘Hongyang’ is a red fleshed kiwifruit with high anthocyanin content. In this study, we mainly investigated effects of different temperatures (25 and 0°C) on anthocyanin biosynthesis in harvested kiwifruit, and characterized the genes encoding key enzymes involved in anthocyanin metabolism, as well as evaluated the mode of the action, by which low temperature regulates anthocyanin accumulation in ‘Hongyang’ kiwifruit during storage period. The results showed that low temperature could effectiv...

  6. Metabolic Engineering and Modeling of Metabolic Pathways to Improve Hydrogen Production by Photosynthetic Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Y. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Navid, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-12-19

    traits act as the biocatalysts of the process designed to both enhance the system efficiency of CO2 fixation and the net hydrogen production rate. Additionally we applied metabolic engineering approaches guided by computational modeling for the chosen model microorganisms to enable efficient hydrogen production.

  7. Evolution of multiple phosphodiesterase isoforms in stickleback involved in cAMP signal transduction pathway.

    Science.gov (United States)

    Sato, Yukuto; Hashiguchi, Yasuyuki; Nishida, Mutsumi

    2009-02-20

    Duplicate genes are considered to have evolved through the partitioning of ancestral functions among duplicates (subfunctionalization) and/or the acquisition of novel functions from a beneficial mutation (neofunctionalization). Additionally, an increase in gene dosage resulting from duplication may also confer an advantageous effect, as has been suggested for histone, tRNA, and rRNA genes. Currently, there is little understanding of the effect of increased gene dosage on subcellular networks like signal transduction pathways. Addressing this issue may provide further insights into the evolution by gene duplication. We analyzed the evolution of multiple stickleback phosphodiesterase (PDE, EC: 3.1.4.17) 1C genes involved in the cyclic nucleotide signaling pathway. Stickleback has 8-9 copies of this gene, whereas only one or two loci exist in other model vertebrates. Our phylogenetic and synteny analyses suggested that the multiple PDE1C genes in stickleback were generated by repeated duplications of >100-kbp chromosome segments. Sequence evolution analysis did not provide strong evidence for neofunctionalization in the coding sequences of stickleback PDE1C isoforms. On the other hand, gene expression analysis suggested that the derived isoforms acquired expression in new organs, implying their neofunctionalization in terms of expression patterns. In addition, at least seven isoforms of the stickleback PDE1C were co-expressed with olfactory-type G-proteins in the nose, suggesting that PDE1C dosage is increased in the stickleback olfactory transduction (OT) pathway. In silico simulations of OT implied that the increased PDE1C dosage extends the longevity of the depolarization signals of the olfactory receptor neuron. The predicted effect of the increase in PDE1C products on the OT pathway may play an important role in stickleback behavior and ecology. However, this possibility should be empirically examined. Our analyses imply that an increase in gene product sometimes

  8. Evolution of multiple phosphodiesterase isoforms in stickleback involved in cAMP signal transduction pathway

    Directory of Open Access Journals (Sweden)

    Nishida Mutsumi

    2009-02-01

    Full Text Available Abstract Background Duplicate genes are considered to have evolved through the partitioning of ancestral functions among duplicates (subfunctionalization and/or the acquisition of novel functions from a beneficial mutation (neofunctionalization. Additionally, an increase in gene dosage resulting from duplication may also confer an advantageous effect, as has been suggested for histone, tRNA, and rRNA genes. Currently, there is little understanding of the effect of increased gene dosage on subcellular networks like signal transduction pathways. Addressing this issue may provide further insights into the evolution by gene duplication. Results We analyzed the evolution of multiple stickleback phosphodiesterase (PDE, EC: 3.1.4.17 1C genes involved in the cyclic nucleotide signaling pathway. Stickleback has 8–9 copies of this gene, whereas only one or two loci exist in other model vertebrates. Our phylogenetic and synteny analyses suggested that the multiple PDE1C genes in stickleback were generated by repeated duplications of >100-kbp chromosome segments. Sequence evolution analysis did not provide strong evidence for neofunctionalization in the coding sequences of stickleback PDE1C isoforms. On the other hand, gene expression analysis suggested that the derived isoforms acquired expression in new organs, implying their neofunctionalization in terms of expression patterns. In addition, at least seven isoforms of the stickleback PDE1C were co-expressed with olfactory-type G-proteins in the nose, suggesting that PDE1C dosage is increased in the stickleback olfactory transduction (OT pathway. In silico simulations of OT implied that the increased PDE1C dosage extends the longevity of the depolarization signals of the olfactory receptor neuron. Conclusion The predicted effect of the increase in PDE1C products on the OT pathway may play an important role in stickleback behavior and ecology. However, this possibility should be empirically examined. Our

  9. Genes and Pathways Involved in Adult Onset Disorders Featuring Muscle Mitochondrial DNA Instability

    Directory of Open Access Journals (Sweden)

    Naghia Ahmed

    2015-08-01

    Full Text Available Replication and maintenance of mtDNA entirely relies on a set of proteins encoded by the nuclear genome, which include members of the core replicative machinery, proteins involved in the homeostasis of mitochondrial dNTPs pools or deputed to the control of mitochondrial dynamics and morphology. Mutations in their coding genes have been observed in familial and sporadic forms of pediatric and adult-onset clinical phenotypes featuring mtDNA instability. The list of defects involved in these disorders has recently expanded, including mutations in the exo-/endo-nuclease flap-processing proteins MGME1 and DNA2, supporting the notion that an enzymatic DNA repair system actively takes place in mitochondria. The results obtained in the last few years acknowledge the contribution of next-generation sequencing methods in the identification of new disease loci in small groups of patients and even single probands. Although heterogeneous, these genes can be conveniently classified according to the pathway to which they belong. The definition of the molecular and biochemical features of these pathways might be helpful for fundamental knowledge of these disorders, to accelerate genetic diagnosis of patients and the development of rational therapies. In this review, we discuss the molecular findings disclosed in adult patients with muscle pathology hallmarked by mtDNA instability.

  10. Involvement of a Rac1-Dependent Macropinocytosis Pathway in Plasmid DNA Delivery by Electrotransfection.

    Science.gov (United States)

    Mao, Mao; Wang, Liangli; Chang, Chun-Chi; Rothenberg, Katheryn E; Huang, Jianyong; Wang, Yingxiao; Hoffman, Brenton D; Liton, Paloma B; Yuan, Fan

    2017-03-01

    Electrotransfection is a widely used method for delivering genes into cells with electric pulses. Although different hypotheses have been proposed, the mechanism of electrotransfection remains controversial. Previous studies have indicated that uptake and intracellular trafficking of plasmid DNA (pDNA) are mediated by endocytic pathways, but it is still unclear which pathways are directly involved in the delivery. To this end, the present study investigated the dependence of electrotransfection on macropinocytosis. Data from the study demonstrated that electric pulses induced cell membrane ruffling and actin cytoskeleton remodeling. Using fluorescently labeled pDNA and a macropinocytosis marker (i.e., dextran), the study showed that electrotransfected pDNA co-localized with dextran in intracellular vesicles. Furthermore, electrotransfection efficiency could be decreased significantly by reducing temperature or treatment of cells with a pharmacological inhibitor of Rac1 and could be altered by changing Rac1 activity. Taken together, the findings suggested that electrotransfection of pDNA involved Rac1-dependent macropinocytosis. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  11. Cervical and ocular vestibular evoked potentials in Machado-Joseph disease: Functional involvement of otolith pathways.

    Science.gov (United States)

    Ribeiro, Rodrigo Souza; Pereira, Melissa Marques; Pedroso, José Luiz; Braga-Neto, Pedro; Barsottini, Orlando Graziani Povoas; Manzano, Gilberto Mastrocola

    2015-11-15

    Machado-Joseph disease is defined as an autosomal dominant ataxic disorder caused by degeneration of the cerebellum and its connections and is associated with a broad range of clinical symptoms. The involvement of the vestibular system is responsible for several symptoms and signs observed in the individuals affected by the disease. We measured cervical and ocular vestibular evoked myogenic potentials in a sample of Machado-Joseph disease patients in order to assess functional pathways involved. Bilateral measures of cervical and ocular vestibular evoked myogenic potentials (cVEMP and oVEMP) were obtained from 14 symptomatic patients with genetically proven Machado-Joseph disease and compared with those from a control group of 20 healthy subjects. Thirteen (93%) patients showed at least one abnormal test result; oVEMP and cVEMP responses were absent in 17/28 (61%) and 11/28 (39%) measures, respectively; and prolonged latency of cVEMP was found in 3/28 (11%) measures. Of the 13 patients with abnormal responses, 9/13 (69%) patients showed discordant abnormal responses: four with absent oVEMP and present cVEMP, two with absent cVEMP and present oVEMP, and three showed unilateral prolonged cVEMP latencies. Both otolith-related vestibulocollic and vestibulo-ocular pathways are severely affected in Machado-Joseph disease patients evaluated by VEMPs. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Ecto-F1-ATPase/P2Y pathways in metabolic and vascular functions of high density lipoproteins.

    Science.gov (United States)

    Martinez, Laurent O; Najib, Souad; Perret, Bertrand; Cabou, Cendrine; Lichtenstein, Laeticia

    2015-01-01

    The atheroprotective property of High Density Lipoprotein (HDL) is supported by many epidemiological studies and cellular and in vivo approaches on animal models. While the anti-atherogenic effects of HDL are thought to derive primarily from its role in reverse cholesterol transport, together with anti-inflammatory, anti-oxidant, anti-thrombotic and cytoprotective properties, the mechanisms that support these effects are still not completely understood. However, many advances in identifying the cellular partners involved in HDL functions have been made over the last two decades. This review highlights the diverse roles of the HDL receptor ecto-F1-ATPase coupled to purinergic P2Y receptors in the modulation of important metabolic and vascular functions of HDL. On hepatocytes, the ecto-F1-ATPase is coupled to P2Y13 receptor and contributes to HDL holoparticle endocytosis. On endothelial cells, ecto-F1-ATPase/P2Ys pathway is involved in HDL-mediated endothelial protection and HDL transcytosis. The clinical relevance of this F1-ATPase/P2Ys axis in humans has recently been supported by the identification of serum F1-ATPase inhibitor (IF1) as an independent determinant of HDL-Cholesterol (HDL-C) and coronary heart disease risk. Therapeutic strategies targeting F1-ATPase/P2Y pathways for the treatment of atherosclerosis are currently being explored. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Further characterization of o-nitrobenzaldehyde degrading bacterium Pseudomonas sp. ONBA-17 and deduction on its metabolic pathway.

    Science.gov (United States)

    Yu, Fang-Bo; Li, Xiao-Dan; Ali, Shinawar Waseem; Shan, Sheng-Dao; Luo, Lin-Ping; Guan, Li-Bo

    2014-01-01

    A previously reported o-nitrobenzaldehyde (ONBA) degrading bacterium Pseudomonas sp. ONBA-17 was further identified and characterized. Based on results of DNA base composition and DNA-DNA hybridization, the strain was identified as P. putida. Its degradation effect enhanced with increase of inoculum amount and no lag phase was observed. Higher removal rate was achieved under shaking conditions. All tested ONBA with different initial concentrations could be completely degraded within 5 d. In addition, degradative enzyme(s) involved was confirmed as intra-cellular distributed and constitutively expressed. Effects of different compounds on relative activity of degradative enzyme(s) within cell-free extract were also evaluated. Finally, 2-nitrobenzoic acid and 2, 3-dihydroxybenzoic acid were detected as metabolites of ONBA degradation by P. putida ONBA-17, and relevant metabolic pathway was preliminary proposed. This study might help with future research in better understanding of nitroaromatics biodegradation.

  14. Identification of Metabolic Pathways Essential for Fitness of Salmonella Typhimurium In Vivo

    DEFF Research Database (Denmark)

    Jelsbak, Lotte; Hartman, Hassan; Schroll, Casper

    2014-01-01

    Bacterial infections remain a threat to human and animal health worldwide, and there is an urgent need to find novel targets for intervention. In the current study we used a computer model of the metabolic network of Salmonella enterica serovar Typhimurium and identified pairs of reactions (cut...... sets) predicted to be required for growth in vivo. We termed such cut sets synthetic auxotrophic pairs. We tested whether these would reveal possible combined targets for new antibiotics by analyzing the performance of selected single and double mutants in systemic mouse infections. One hundred and two...... cut sets were identified. Sixty-three of these included only pathways encoded by fully annotated genes, and from this sub-set we selected five cut sets involved in amino acid or polyamine biosynthesis. One cut set (asnA/asnB) demonstrated redundancy in vitro and in vivo and showed that asparagine...

  15. Perturbation of intracellular acyl-CoA metabolism induces the unfolded protein response pathway and autophagy in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Færgeman, Nils J.; Feddersen, Søren

    2008-01-01

    autophagy mainly is a response to the stress of nutrient limitation. In the present study, we demonstrate that perturbation of fatty acid synthesis and transport either through inhibition of fatty acid synthase (FAS) or by depleting cells for the acyl-CoA binding protein, Acb1p, leads to induction of Hac1p....... This and the facts that Acb1p-depleted cells are hypersensitive to the immunosuppressive drug rapamycin and accumulate the transcription factor Msn2p in  the nucleus, indicate that perturbation of intracellular acyl-CoA metabolism leads to  a starvation response that upregulate autophagy, which involves both Ras......Eukaryotic cells have developed several strategies to respond and adapt to changes in their intracellular and extracellular environment. The unfolded protein response (UPR) pathway is activated following accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER), whereas...

  16. Molecular pathways involved in neuronal cell adhesion and membrane scaffolding contribute to schizophrenia and bipolar disorder susceptibility.

    LENUS (Irish Health Repository)

    O'Dushlaine, C

    2011-03-01

    Susceptibility to schizophrenia and bipolar disorder may involve a substantial, shared contribution from thousands of common genetic variants, each of small effect. Identifying whether risk variants map to specific molecular pathways is potentially biologically informative. We report a molecular pathway analysis using the single-nucleotide polymorphism (SNP) ratio test, which compares the ratio of nominally significant (P<0.05) to nonsignificant SNPs in a given pathway to identify the \\'enrichment\\' for association signals. We applied this approach to the discovery (the International Schizophrenia Consortium (n=6909)) and validation (Genetic Association Information Network (n=2729)) of schizophrenia genome-wide association study (GWAS) data sets. We investigated each of the 212 experimentally validated pathways described in the Kyoto Encyclopaedia of Genes and Genomes in the discovery sample. Nominally significant pathways were tested in the validation sample, and five pathways were found to be significant (P=0.03-0.001); only the cell adhesion molecule (CAM) pathway withstood conservative correction for multiple testing. Interestingly, this pathway was also significantly associated with bipolar disorder (Wellcome Trust Case Control Consortium (n=4847)) (P=0.01). At a gene level, CAM genes associated in all three samples (NRXN1 and CNTNAP2), which were previously implicated in specific language disorder, autism and schizophrenia. The CAM pathway functions in neuronal cell adhesion, which is critical for synaptic formation and normal cell signaling. Similar pathways have also emerged from a pathway analysis of autism, suggesting that mechanisms involved in neuronal cell adhesion may contribute broadly to neurodevelopmental psychiatric phenotypes.

  17. Malonylome Analysis Reveals the Involvement of Lysine Malonylation in Metabolism and Photosynthesis in Cyanobacteria.

    Science.gov (United States)

    Ma, Yanyan; Yang, Mingkun; Lin, Xiaohuang; Liu, Xin; Huang, Hui; Ge, Feng

    2017-05-05

    As a recently validated reversible post translational modification, lysine malonylation regulates diverse cellular processes from bacteria to mammals, but its existence and function in photosynthetic organisms remain unknown. Cyanobacteria are the most ancient group of photosynthetic prokaryotes and contribute about 50% of the total primary production on Earth. Previously, we reported the lysine acetylome in the model cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis). Here we performed the first proteomic survey of lysine malonylation in Synechocystis using highly accurate tandem mass spectrometry in combination with affinity purification. We identified 598 lysine malonylation sites on 339 proteins with high confidence in total. A bioinformatic analysis suggested that these malonylated proteins may play various functions and were distributed in diverse subcellular compartments. Among them, many malonylated proteins were involved in cellular metabolism. The functional significance of lysine malonylation in the metabolic enzyme activity of phosphoglycerate kinase (PGK) was determined by site-specific mutagenesis and biochemical studies. Interestingly, 27 proteins involved in photosynthesis were found to be malonylated for the first time, suggesting that lysine malonylation may be involved in photosynthesis. Thus our results provide the first lysine malonylome in a photosynthetic organism and suggest a previously unexplored role of lysine malonylation in the regulation of metabolic processes and photosynthesis in Synechocystis as well as in other photosynthetic organisms.

  18. Regulation of the reserve carbohydrate metabolism by alkaline pH and calcium in Neurospora crassa reveals a possible cross-regulation of both signaling pathways.

    Science.gov (United States)

    Virgilio, Stela; Cupertino, Fernanda Barbosa; Ambrosio, Daniela Luz; Bertolini, Maria Célia

    2017-06-09

    Glycogen and trehalose are storage carbohydrates and their levels in microorganisms vary according to environmental conditions. In Neurospora crassa, alkaline pH stress highly influences glycogen levels, and in Saccharomyces cerevisiae, the response to pH stress also involves the calcineurin signaling pathway mediated by the Crz1 transcription factor. Recently, in yeast, pH stress response genes were identified as targets of Crz1 including genes involved in glycogen and trehalose metabolism. In this work, we present evidence that in N. crassa the glycogen and trehalose metabolism is modulated by alkaline pH and calcium stresses. We demonstrated that the pH signaling pathway in N. crassa controls the accumulation of the reserve carbohydrates glycogen and trehalose via the PAC-3 transcription factor, which is the central regulator of the signaling pathway. The protein binds to the promoters of most of the genes encoding enzymes of glycogen and trehalose metabolism and regulates their expression. We also demonstrated that the reserve carbohydrate levels and gene expression are both modulated under calcium stress and that the response to calcium stress may involve the concerted action of PAC-3. Calcium activates growth of the Δpac-3 strain and influences its glycogen and trehalose accumulation. In addition, calcium stress differently regulates glycogen and trehalose metabolism in the mutant strain compared to the wild-type strain. While glycogen levels are decreased in both strains, the trehalose levels are significantly increased in the wild-type strain and not affected by calcium in the mutant strain when compared to mycelium not exposed to calcium. We previously reported the role of PAC-3 as a transcription factor involved in glycogen metabolism regulation by controlling the expression of the gsn gene, which encodes an enzyme of glycogen synthesis. In this work, we extended the investigation by studying in greater detail the effects of pH on the metabolism of the

  19. Transcription profiling provides insights into gene pathways involved in horn and scurs development in cattle

    Directory of Open Access Journals (Sweden)

    Lehnert Sigrid A

    2010-06-01

    Full Text Available Abstract Background Two types of horns are evident in cattle - fixed horns attached to the skull and a variation called scurs, which refers to small loosely attached horns. Cattle lacking horns are referred to as polled. Although both the Poll and Scurs loci have been mapped to BTA1 and 19 respectively, the underlying genetic basis of these phenotypes is unknown, and so far, no candidate genes regulating these developmental processes have been described. This study is the first reported attempt at transcript profiling to identify genes and pathways contributing to horn and scurs development in Brahman cattle, relative to polled counterparts. Results Expression patterns in polled, horned and scurs tissues were obtained using the Agilent 44 k bovine array. The most notable feature when comparing transcriptional profiles of developing horn tissues against polled was the down regulation of genes coding for elements of the cadherin junction as well as those involved in epidermal development. We hypothesize this as a key event involved in keratinocyte migration and subsequent horn development. In the polled-scurs comparison, the most prevalent differentially expressed transcripts code for genes involved in extracellular matrix remodelling, which were up regulated in scurs tissues relative to polled. Conclusion For this first time we describe networks of genes involved in horn and scurs development. Interestingly, we did not observe differential expression in any of the genes present on the fine mapped region of BTA1 known to contain the Poll locus.

  20. Fetal rat metabonome alteration by prenatal caffeine ingestion probably due to the increased circulatory glucocorticoid level and altered peripheral glucose and lipid metabolic pathways

    International Nuclear Information System (INIS)

    Liu, Yansong; Xu, Dan; Feng, Jianghua; Kou, Hao; Liang, Gai; Yu, Hong; He, Xiaohua; Zhang, Baifang; Chen, Liaobin; Magdalou, Jacques; Wang, Hui

    2012-01-01

    The aims of this study were to clarify the metabonome alteration in fetal rats after prenatal caffeine ingestion and to explore the underlying mechanism pertaining to the increased fetal circulatory glucocorticoid (GC). Pregnant Wistar rats were daily intragastrically administered with different doses of caffeine (0, 20, 60 and 180 mg/kg) from gestational days (GD) 11 to 20. Metabonome of fetal plasma and amniotic fluid on GD20 were analyzed by 1 H nuclear magnetic resonance-based metabonomics. Gene and protein expressions involved in the GC metabolism, glucose and lipid metabolic pathways in fetal liver and gastrocnemius were measured by real-time RT-PCR and immunohistochemistry. Fetal plasma metabonome were significantly altered by caffeine, which presents as the elevated α- and β‐glucose, reduced multiple lipid contents, varied apolipoprotein contents and increased levels of a number of amino acids. The metabonome of amniotic fluids showed a similar change as that in fetal plasma. Furthermore, the expressions of 11β-hydroxysteroid dehydrogenase 2 (11β-HSD-2) were decreased, while the level of blood GC and the expressions of 11β-HSD-1 and glucocorticoid receptor (GR) were increased in fetal liver and gastrocnemius. Meanwhile, the expressions of insulin-like growth factor 1 (IGF-1), IGF-1 receptor and insulin receptor were decreased, while the expressions of adiponectin receptor 2, leptin receptors and AMP-activated protein kinase α2 were increased after caffeine treatment. Prenatal caffeine ingestion characteristically change the fetal metabonome, which is probably attributed to the alterations of glucose and lipid metabolic pathways induced by increased circulatory GC, activated GC metabolism and enhanced GR expression in peripheral metabolic tissues. -- Highlights: ► Prenatal caffeine ingestion altered the metabonome of IUGR fetal rats. ► Caffeine altered the glucose and lipid metabolic pathways of IUGR fetal rats. ► Prenatal caffeine ingestion

  1. Fetal rat metabonome alteration by prenatal caffeine ingestion probably due to the increased circulatory glucocorticoid level and altered peripheral glucose and lipid metabolic pathways

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yansong [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan University, Wuhan, 430071 (China); Xu, Dan [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan University, Wuhan, 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan, 430071 (China); Feng, Jianghua, E-mail: jianghua.feng@xmu.edu.cn [Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071 (China); Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, 361005 (China); Kou, Hao; Liang, Gai [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan University, Wuhan, 430071 (China); Yu, Hong; He, Xiaohua; Zhang, Baifang; Chen, Liaobin [Research Center of Food and Drug Evaluation, Wuhan University, Wuhan, 430071 (China); Magdalou, Jacques [UMR 7561 CNRS-Nancy Université, Faculté de Médicine, Vandoeuvre-lès-Nancy (France); Wang, Hui, E-mail: wanghui19@whu.edu.cn [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan University, Wuhan, 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan, 430071 (China)

    2012-07-15

    The aims of this study were to clarify the metabonome alteration in fetal rats after prenatal caffeine ingestion and to explore the underlying mechanism pertaining to the increased fetal circulatory glucocorticoid (GC). Pregnant Wistar rats were daily intragastrically administered with different doses of caffeine (0, 20, 60 and 180 mg/kg) from gestational days (GD) 11 to 20. Metabonome of fetal plasma and amniotic fluid on GD20 were analyzed by {sup 1}H nuclear magnetic resonance-based metabonomics. Gene and protein expressions involved in the GC metabolism, glucose and lipid metabolic pathways in fetal liver and gastrocnemius were measured by real-time RT-PCR and immunohistochemistry. Fetal plasma metabonome were significantly altered by caffeine, which presents as the elevated α- and β‐glucose, reduced multiple lipid contents, varied apolipoprotein contents and increased levels of a number of amino acids. The metabonome of amniotic fluids showed a similar change as that in fetal plasma. Furthermore, the expressions of 11β-hydroxysteroid dehydrogenase 2 (11β-HSD-2) were decreased, while the level of blood GC and the expressions of 11β-HSD-1 and glucocorticoid receptor (GR) were increased in fetal liver and gastrocnemius. Meanwhile, the expressions of insulin-like growth factor 1 (IGF-1), IGF-1 receptor and insulin receptor were decreased, while the expressions of adiponectin receptor 2, leptin receptors and AMP-activated protein kinase α2 were increased after caffeine treatment. Prenatal caffeine ingestion characteristically change the fetal metabonome, which is probably attributed to the alterations of glucose and lipid metabolic pathways induced by increased circulatory GC, activated GC metabolism and enhanced GR expression in peripheral metabolic tissues. -- Highlights: ► Prenatal caffeine ingestion altered the metabonome of IUGR fetal rats. ► Caffeine altered the glucose and lipid metabolic pathways of IUGR fetal rats. ► Prenatal caffeine

  2. Expanding metabolic pathway for de novo biosynthesis of the chiral pharmaceutical intermediate l-pipecolic acid in Escherichia coli

    OpenAIRE

    Ying, Hanxiao; Tao, Sha; Wang, Jing; Ma, Weichao; Chen, Kequan; Wang, Xin; Ouyang, Pingkai

    2017-01-01

    Background The six-carbon circular non-proteinogenic compound l-pipecolic acid is an important chiral drug intermediate with many applications in the pharmaceutical industry. In the present study, we developed a metabolically engineered strain of Escherichia coli for the overproduction of l-pipecolic acid from glucose. Results The metabolic pathway from l-lysine to l-pipecolic acid was constructed initially by introducing lysine cyclodeaminase (LCD). Next, l-lysine metabolic flux from glucose...

  3. Consortium analysis of gene and gene-folate interactions in purine and pyrimidine metabolism pathways with ovarian carcinoma risk

    NARCIS (Netherlands)

    Kelemen, L.E.; Terry, K.L.; Goodman, M.T.; Webb, P.M.; Bandera, E.V.; McGuire, V.; Rossing, M.A.; Wang, Q.; Dicks, E.; Tyrer, J.P.; Song, H.; Kupryjanczyk, J.; Dansonka-Mieszkowska, A.; Plisiecka-Halasa, J.; Timorek, A.; Menon, U.; Gentry-Maharaj, A.; Gayther, S.A.; Ramus, S.J.; Narod, S.A.; Risch, H.A.; McLaughlin, J.R.; Siddiqui, N.; Glasspool, R.; Paul, J.; Carty, K.; Gronwald, J.; Lubinski, J.; Jakubowska, A.; Cybulski, C.; Kiemeney, L.A.L.M.; Massuger, L.F.A.G.; Altena, A.M. van; Aben, K.K.H.; Olson, S.H.; Orlow, I.; Cramer, D.W; Levine, D.A.; Bisogna, M.; Giles, G.G.; Southey, M.C.; Bruinsma, F.; Kjaer, S.K.; Hogdall, E.; Jensen, A.; Hogdall, C.K.; Lundvall, L.; Engelholm, S.A.; Heitz, F.; Bois, A. du; Harter, P.; Schwaab, I.; Butzow, R.; Nevanlinna, H.; Pelttari, L.M.; Leminen, A.; Thompson, P.J.; Lurie, G.; Wilkens, L.R.; Lambrechts, D.; Nieuwenhuysen, E. Van; Lambrechts, S.; Vergote, I.; Beesley, J.; Investigators, A.S.G.A.; Fasching, P.A.; Beckmann, M.W.; Hein, A.; Ekici, A.B.; Doherty, J.A.; Wu, A.H.; Pearce, C.L.; Pike, M.C.; Stram, D.; Chang-Claude, J.; Rudolph, A.; Dork, T.; Durst, M.; Hillemanns, P.; Runnebaum, I.B.; Bogdanova, N.; Antonenkova, N.; Odunsi, K.; Edwards, R.P.; Kelley, J.L.; Modugno, F.; Ness, R.B.; Karlan, B.Y.; Walsh, C.; Lester, J.; Orsulic, S.; Fridley, B.L.; Vierkant, R.A.; Cunningham, J.M.; Wu, X.; Lu, K.; Liang, D.; Hildebrandt, M.A.T.; Weber, R.P.; Iversen, E.S.

    2014-01-01

    SCOPE: We reevaluated previously reported associations between variants in pathways of one-carbon (1-C) (folate) transfer genes and ovarian carcinoma (OC) risk, and in related pathways of purine and pyrimidine metabolism, and assessed interactions with folate intake. METHODS AND Results : Odds

  4. Genetic polymorphisms associated with lipid metabolism involved in the pathophysiology of ischemic stroke

    Directory of Open Access Journals (Sweden)

    Tamires Flauzino

    2014-12-01

    Full Text Available The stroke is a complex, multifactorial, and polygenic disorder that results from the interaction between the individual genetic components and environmental factors. Previous studies have established hypertension, smoking, diabetes mellitus, dyslipidemia, elevated body mass index, disturbances of coagulation and increasing age as predictors of stroke risk factors. The stroke is a more crippling than deadly disease that requires long-term institutionalization, as it decreases the quality of life of patients, resulting in higher costs to social and economic levels. It thus becomes increasingly important to emphasize the Preventive Medicine strategies. Dyslipidemia has been associated with pathophysiology of ischemic stroke and genetic polymorphisms that occur in the metabolic pathway, such as lipids metabolism, has been one of the hereditary factors related to ischemic stroke. The identification of the genetic component in the cause of dyslipidemia has been intensively investigated in recent years. Among the several genetic polymorphisms, the gene of the low-density lipoprotein receptor has been the object of many studies in the population worldwide. Data on lipid profile and study of polymorphisms of genes encoding structural proteins and enzymes related to lipid metabolism may reveal the prevalence of dyslipidemia in a population, enabling a targeted intervention for the control and prevention of atherosclerotic diseases such as ischemic stroke.

  5. GEM System: automatic prototyping of cell-wide metabolic pathway models from genomes

    Directory of Open Access Journals (Sweden)

    Nakayama Yoichi

    2006-03-01

    Full Text Available Abstract Background Successful realization of a "systems biology" approach to analyzing cells is a grand challenge for our understanding of life. However, current modeling approaches to cell simulation are labor-intensive, manual affairs, and therefore constitute a major bottleneck in the evolution of computational cell biology. Results We developed the Genome-based Modeling (GEM System for the purpose of automatically prototyping simulation models of cell-wide metabolic pathways from genome sequences and other public biological information. Models generated by the GEM System include an entire Escherichia coli metabolism model comprising 968 reactions of 1195 metabolites, achieving 100% coverage when compared with the KEGG database, 92.38% with the EcoCyc database, and 95.06% with iJR904 genome-scale model. Conclusion The GEM System prototypes qualitative models to reduce the labor-intensive tasks required for systems biology research. Models of over 90 bacterial genomes are available at our web site.

  6. SISMA: A SOFTWARE FOR DYNAMIC SIMULATION OF METABOLIC PATHWAYS IN BIOCHEMICAL EDUCATION

    Directory of Open Access Journals (Sweden)

    J.A. Macedo

    2008-05-01

    Full Text Available The main purpose of metabolic pathway charts is  clarifying the flow of reactants and products  devised by enzyme  catalytic  reactions . Learning the wealth of information in metabolic pathways , however, is both challenging and overwhelming for students, mainly due to the static nature of printed charts.  In this sense the goal of this work was to develop a software environment for  metabolic chart studies, enhancing both student learning and retention. The system named SISMA (Sistema de Simulações Metabólicas was developed using  the  Unified Modeling Language (UML and Rational Unified Process (RUP tools for specifying, visualizing, constructing, and documenting  the  software system.  SISMA  was modelled with  JAVA programming  language, due to its versatility, efficiency, platform portability, and security. Use Case diagrams were constructing to describe the available functionality of  the software  and  the set of scenarios describing the interactions with the end user, with constraints defined by B usiness  Rules.  In brief, SISMA  can  dynamically  illustrate standard and physiopathological  flow of reactants, create and modifiy compounds, pathways,  and co-factors, and report kinectic data,  among others.  In this way SISMA  can be used as a complementary tool on both conventional full-time as distance learning courses in biochemistry and biotechnology.

  7. Terpene metabolic engineering via nuclear or chloroplast genomes profoundly and globally impacts off-target pathways through metabolite signalling.

    Science.gov (United States)

    Pasoreck, Elise K; Su, Jin; Silverman, Ian M; Gosai, Sager J; Gregory, Brian D; Yuan, Joshua S; Daniell, Henry

    2016-09-01

    The impact of metabolic engineering on nontarget pathways and outcomes of metabolic engineering from different genomes are poorly understood questions. Therefore, squalene biosynthesis genes FARNESYL DIPHOSPHATE SYNTHASE (FPS) and SQUALENE SYNTHASE (SQS) were engineered via the Nicotiana tabacum chloroplast (C), nuclear (N) or both (CN) genomes to promote squalene biosynthesis. SQS levels were ~4300-fold higher in C and CN lines than in N, but all accumulated ~150-fold higher squalene due to substrate or storage limitations. Abnormal leaf and flower phenotypes, including lower pollen production and reduced fertility, were observed regardless of the compartment or level of transgene expression. Substantial changes in metabolomes of all lines were observed: levels of 65-120 unrelated metabolites, including the toxic alkaloid nicotine, changed by as much as 32-fold. Profound effects of transgenesis on nontarget gene expression included changes in the abundance of 19 076 transcripts by up to 2000-fold in CN; 7784 transcripts by up to 1400-fold in N; and 5224 transcripts by as much as 2200-fold in C. Transporter-related transcripts were induced, and cell cycle-associated transcripts were disproportionally repressed in all three lines. Transcriptome changes were validated by qRT-PCR. The mechanism underlying these large changes likely involves metabolite-mediated anterograde and/or retrograde signalling irrespective of the level of transgene expression or end product, due to imbalance of metabolic pools, offering new insight into both anticipated and unanticipated consequences of metabolic engineering. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  8. A genome-wide approach identifies that the aspartate metabolism pathway contributes to asparaginase sensitivity

    Science.gov (United States)

    Chen, Shih-Hsiang; Yang, Wenjian; Fan, Yiping; Stocco, Gabriele; Crews, Kristine R.; Yang, Jun J.; Paugh, Steven W.; Pui, Ching-Hon; Evans, William E.; Relling, Mary V.

    2011-01-01

    Asparaginase is an important component of treatment for childhood acute lymphoblastic leukemia (ALL). The basis for interindividual differences in asparaginase sensitivity remains unclear. To comprehensively identify genetic variants important in the cytotoxicity of asparaginase, we employed a genome-wide association approach using the HapMap lymphoblastoid cell lines (87 CEU trio members) and 54 primary ALL leukemic blast samples at diagnosis. Asparaginase sensitivity was assessed as the drug concentration necessary to inhibit 50% of growth (IC50). In CEU lines, we tested 2,390,203 SNP genotypes at the individual SNP (p ADSL and DARS genes. We validated that SNPs in the aspartate metabolism pathway were also associated with asparaginase sensitivity in primary ALL leukemic blast samples (p = 5.5 × 10−5). Our genome-wide interrogation of CEU cell lines and primary ALL blasts revealed that inherited genomic interindividual variation in a plausible candidate pathway can contribute to asparaginase sensitivity. PMID:21072045

  9. Systematic identification and analysis of frequent gene fusion events in metabolic pathways.

    Science.gov (United States)

    Henry, Christopher S; Lerma-Ortiz, Claudia; Gerdes, Svetlana Y; Mullen, Jeffrey D; Colasanti, Ric; Zhukov, Aleksey; Frelin, Océane; Thiaville, Jennifer J; Zallot, Rémi; Niehaus, Thomas D; Hasnain, Ghulam; Conrad, Neal; Hanson, Andrew D; de Crécy-Lagard, Valérie

    2016-06-24

    Gene fusions are the most powerful type of in silico-derived functional associations. However, many fusion compilations were made when fusions need updating to handle the current avalanche of sequenced genomes. The availability of a large fusion dataset would help probe functional associations and enable systematic analysis of where and why fusion events occur. Here we present a systematic analysis of fusions in prokaryotes. We manually generated two training sets: (i) 121 fusions in the model organism Escherichia coli; (ii) 131 fusions found in B vitamin metabolism. These sets were used to develop a fusion prediction algorithm that captured the training set fusions with only 7 % false negatives and 50 % false positives, a substantial improvement over existing approaches. This algorithm was then applied to identify 3.8 million potential fusions across 11,473 genomes. The results of the analysis are available in a searchable database at http://modelseed.org/projects/fusions/ . A functional analysis identified 3,000 reactions associated with frequent fusion events and revealed areas of metabolism where fusions are particularly prevalent. Customary definitions of fusions were shown to be ambiguous, and a stricter one was proposed. Exploring the genes participating in fusion events showed that they most commonly encode transporters, regulators, and metabolic enzymes. The major rationales for fusions between metabolic genes appear to be overcoming pathway bottlenecks, avoiding toxicity, controlling competing pathways, and facilitating expression and assembly of protein complexes. Finally, our fusion dataset provides powerful clues to decipher the biological activities of domains of unknown function.

  10. T-plastin expression downstream to the calcineurin/NFAT pathway is involved in keratinocyte migration.

    Directory of Open Access Journals (Sweden)

    Cécilia Brun

    Full Text Available Cutaneous wound healing requires keratinocyte proliferation, migration and differentiation to restore the barrier function of the skin. The calcineurin/nuclear factor of activated-T-cell (NFAT signaling pathway has been recently shown to be involved in keratinocyte growth, differentiation and migration. It is induced by an increased intracellular calcium rate and its inhibition results in decreased capacities of keratinocytes to migrate. Nevertheless, the link between calcineurin activation and keratinocyte migration remains unknown. Recently, Orai1, a pore subunit of a store-operated calcium channel that favors calcium influx, was shown to play a critical role to control proliferation and migration of basal keratinocytes. Of interest, the actin-bundling T-plastin is crucial in cell motility through cross-linking to actin filament and its synthesis was shown to be induced by calcium influx and regulated by the calcineurin/NFAT pathway in tumor Sezary cells. We investigated herein the role of the calcineurin/NFAT pathway-dependent T-plastin in keratinocyte migration, by quantifying T-plastin expression in keratinocytes and by analyzing their migration under calcineurin inhibition or knockdown of NFAT2 or T-plastin. We did confirm the role of the calcineurin/NFAT pathway in keratinocyte migration as shown by their decreased capacities to migrate after FK506 treatment or siNFAT2 transfection in both scratching and Boyden assays. The expression of NFAT2 and T-plastin in keratinocytes was decreased under FK506 treatment, suggesting that T-plastin plays a role in keratinocyte migration downstream to the calcineurin/NFAT pathway. Accordingly, siRNA knockdown of T-plastin expression also decreased their migration capacities. Actin lamellipodia formation as well as FAK and β6-integrin expression were also significantly decreased after treatment with FK506 or siRNA, reinforcing that NFAT2-dependent T-plastin expression plays a role in keratinocyte

  11. Altered Levels of Aroma and Volatiles by Metabolic Engineering of Shikimate Pathway Genes in Tomato Fruits

    Directory of Open Access Journals (Sweden)

    Vered Tzin

    2015-06-01

    Full Text Available The tomato (Solanum lycopersicum fruit is an excellent source of antioxidants, dietary fibers, minerals and vitamins and therefore has been referred to as a “functional food”. Ripe tomato fruits produce a large number of specialized metabolites including volatile organic compounds. These volatiles serve as key components of the tomato fruit flavor, participate in plant pathogen and herbivore defense, and are used to attract seed dispersers. A major class of specialized metabolites is derived from the shikimate pathway followed by aromatic amino acid biosynthesis of phenylalanine, tyrosine and tryptophan. We attempted to modify tomato fruit flavor by overexpressing key regulatory genes in the shikimate pathway. Bacterial genes encoding feedback-insensitive variants of 3-Deoxy-D-Arabino-Heptulosonate 7-Phosphate Synthase (DAHPS; AroG209-9 and bi-functional Chorismate Mutase/Prephenate Dehydratase (CM/PDT; PheA12 were expressed under the control of a fruit-specific promoter. We crossed these transgenes to generate tomato plants expressing both the AroG209 and PheA12 genes. Overexpression of the AroG209-9 gene had a dramatic effect on the overall metabolic profile of the fruit, including enhanced levels of multiple volatile and non-volatile metabolites. In contrast, the PheA12 overexpression line exhibited minor metabolic effects compared to the wild type fruit. Co-expression of both the AroG209-9 and PheA12 genes in tomato resulted overall in a similar metabolic effect to that of expressing only the AroG209-9 gene. However, the aroma ranking attributes of the tomato fruits from PheA12//AroG209-9 were unique and different from those of the lines expressing a single gene, suggesting a contribution of the PheA12 gene to the overall metabolic profile. We suggest that expression of bacterial genes encoding feedback-insensitive enzymes of the shikimate pathway in tomato fruits provides a useful metabolic engineering tool for the modification of

  12. The role of inflammatory pathway genetic variation on maternal metabolic phenotypes during pregnancy.

    Directory of Open Access Journals (Sweden)

    Margrit Urbanek

    Full Text Available Since mediators of inflammation are associated with insulin resistance, and the risk of developing diabetes mellitus and gestational diabetes, we hypothesized that genetic variation in members of the inflammatory gene pathway impact glucose levels and related phenotypes in pregnancy. We evaluated this hypothesis by testing for association between genetic variants in 31 inflammatory pathway genes in the Hyperglycemia and Adverse Pregnancy Outcome (HAPO cohort, a large multiethnic multicenter study designed to address the impact of glycemia less than overt diabetes on pregnancy outcome.Fasting, 1-hour, and 2-hour glucose, fasting and 1-hour C-peptide, and HbA1c levels were measured in blood samples obtained from HAPO participants during an oral glucose tolerance test at 24-32 weeks gestation. We tested for association between 458 SNPs mapping to 31 genes in the inflammatory pathway and metabolic phenotypes in 3836 European ancestry and 1713 Thai pregnant women. The strongest evidence for association was observed with TNF alpha and HbA1c (rs1052248; 0.04% increase per allele C; p-value = 4.4×10(-5, RETN and fasting plasma glucose (rs1423096; 0.7 mg/dl decrease per allele A; p-value = 1.1×10(-4, IL8 and 1 hr plasma glucose (rs2886920; 2.6 mg/dl decrease per allele T; p-value = 1.3×10(-4, ADIPOR2 and fasting C-peptide (rs2041139; 0.55 ug/L decrease per allele A; p-value = 1.4×10(-4, LEPR and 1-hour C-peptide (rs1171278; 0.62 ug/L decrease per allele T; p-value = 2.4×10(-4, and IL6 and 1-hour plasma glucose (rs6954897; -2.29 mg/dl decrease per allele G, p-value = 4.3×10(-4.Based on the genes surveyed in this study the inflammatory pathway is unlikely to have a strong impact on maternal metabolic phenotypes in pregnancy although variation in individual members of the pathway (e.g. RETN, IL8, ADIPOR2, LEPR, IL6, and TNF alpha, may contribute to metabolic phenotypes in pregnant women.

  13. Expression analysis in response to drought stress in soybean: Shedding light on the regulation of metabolic pathway genes.

    Science.gov (United States)

    Guimarães-Dias, Fábia; Neves-Borges, Anna Cristina; Viana, Antonio Americo Barbosa; Mesquita, Rosilene Oliveira; Romano, Eduardo; de Fátima Grossi-de-Sá, Maria; Nepomuceno, Alexandre Lima; Loureiro, Marcelo Ehlers; Alves-Ferreira, Márcio

    2012-06-01

    Metabolomics analysis of wild type Arabidopsis thaliana plants, under control and drought stress conditions revealed several metabolic pathways that are induced under water deficit. The metabolic response to drought stress is also associated with ABA dependent and independent pathways, allowing a better understanding of the molecular mechanisms in this model plant. Through combining an in silico approach and gene expression analysis by quantitative real-time PCR, the present work aims at identifying genes of soybean metabolic pathways potentially associated with water deficit. Digital expression patterns of Arabidopsis genes, which were selected based on the basis of literature reports, were evaluated under drought stress condition by Genevestigator. Genes that showed strong induction under drought stress were selected and used as bait to identify orthologs in the soybean genome. This allowed us to select 354 genes of putative soybean orthologs of 79 Arabidopsis genes belonging to 38 distinct metabolic pathways. The expression pattern of the selected genes was verified in the subtractive libraries available in the GENOSOJA project. Subsequently, 13 genes from different metabolic pathways were selected for validation by qPCR experiments. The expression of six genes was validated in plants undergoing drought stress in both pot-based and hydroponic cultivation systems. The results suggest that the metabolic response to drought stress is conserved in Arabidopsis and soybean plants.

  14. Quantitative proteomic analysis reveals that anti-cancer effects of selenium-binding protein 1 in vivo are associated with metabolic pathways.

    Science.gov (United States)

    Ying, Qi; Ansong, Emmanuel; Diamond, Alan M; Lu, Zhaoxin; Yang, Wancai; Bie, Xiaomei

    2015-01-01

    Previous studies have shown the tumor-suppressive role of selenium-binding protein 1 (SBP1), but the underlying mechanisms are unclear. In this study, we found that induction of SBP1 showed significant inhibition of colorectal cancer cell growth and metastasis in mice. We further employed isobaric tags for relative and absolute quantitation (iTRAQ) to identify proteins that were involved in SBP1-mediated anti-cancer effects in tumor tissues. We identified 132 differentially expressed proteins, among them, 53 proteins were upregulated and 79 proteins were downregulated. Importantly, many of the differentially altered proteins were associated with lipid/glucose metabolism, which were also linked to Glycolysis, MAPK, Wnt, NF-kB, NOTCH and epithelial-mesenchymal transition (EMT) signaling pathways. These results have revealed a novel mechanism that SBP1-mediated cancer inhibition is through altering lipid/glucose metabolic signaling pathways.

  15. Metabolic pathway rewiring in engineered cyanobacteria for solar-to-chemical and solar-to-fuel production from CO2.

    Science.gov (United States)

    Woo, Han Min

    2018-01-01

    Photoautotrophic cyanobacteria have been developed to convert CO 2 to valuable chemicals and fuels as solar-to-chemical (S2C) and solar-to-fuel (S2F) platforms. Here, I describe the rewiring of the metabolic pathways in cyanobacteria to better understand the endogenous carbon flux and to enhance the yield of heterologous products. The plasticity of the cyanobacterial metabolism has been proposed to be advantageous for the development of S2C and S2F processes. The rewiring of the sugar catabolism and of the phosphoketolase pathway in the central cyanobacterial metabolism allowed for an enhancement in the level of target products by redirecting the carbon fluxes. Thus, metabolic pathway rewiring can promote the development of more efficient cyanobacterial cell factories for the generation of feasible S2C and S2F platforms.

  16. The Regulatory Role of MeAIB in Protein Metabolism and the mTOR Signaling Pathway in Porcine Enterocytes

    Directory of Open Access Journals (Sweden)

    Yulong Tang

    2018-03-01

    Full Text Available Amino acid transporters play an important role in cell growth and metabolism. MeAIB, a transporter-selective substrate, often represses the adaptive regulation of sodium-coupled neutral amino acid transporter 2 (SNAT2, which may act as a receptor and regulate cellular amino acid contents, therefore modulating cellular downstream signaling. The aim of this study was to investigate the effects of MeAIB to SNAT2 on cell proliferation, protein turnover, and the mammalian target of rapamycin (mTOR signaling pathway in porcine enterocytes. Intestinal porcine epithelial cells (IPEC-J2 cells were cultured in a high-glucose Dulbecco’s modified Eagle’s (DMEM-H medium with 0 or 5 mmoL/L System A amino acid analogue (MeAIB for 48 h. Cells were collected for analysis of proliferation, cell cycle, protein synthesis and degradation, intracellular free amino acids, and the expression of key genes involved in the mTOR signaling pathway. The results showed that SNAT2 inhibition by MeAIB depleted intracellular concentrations of not only SNAT2 amino acid substrates but also of indispensable amino acids (methionine and leucine, and suppressed cell proliferation and impaired protein synthesis. MeAIB inhibited mTOR phosphorylation, which might be involved in three translation regulators, EIF4EBP1, IGFBP3, and DDIT4 from PCR array analysis of the 84 genes related to the mTOR signaling pathway. These results suggest that SNAT2 inhibition treated with MeAIB plays an important role in regulating protein synthesis and mTOR signaling, and provide some information to further clarify its roles in the absorption of amino acids and signal transduction in the porcine small intestine.

  17. Intersections of pathways involving biotin and iron relative to therapeutic mechanisms for progressive multiple sclerosis.

    Science.gov (United States)

    Heidker, Rebecca M; Emerson, Mitchell R; LeVine, Steven M

    2016-12-01

    While there are a variety of therapies for relapsing remitting multiple sclerosis (MS), there is a lack of treatments for progressive MS. An early study indicated that high dose biotin therapy has beneficial effects in approximately 12-15% of patients with progressive MS. The mechanisms behind the putative improvements seen with biotin therapy are not well understood, but have been postulated to include: 1) improving mitochondrial function which is impaired in MS, 2) increasing synthesis of lipids and cholesterol to facilitate remyelination, and 3) affecting gene expression. We suggest one reason that a greater percentage of patients with MS didn't respond to biotin therapy is the inaccessibility or lack of other nutrients, such as iron. In addition to biotin, iron (or heme) is necessary for energy production, biosynthesis of cholesterol and lipids, and for some protective mechanisms. Both biotin and iron are required for myelination during development, and by inference, remyelination. However, iron can also play a role in the pathology of MS. Increased deposition of iron can occur in some CNS structures possibly promoting oxidative damage while low iron levels can occur in other areas. Thus, the potential, detrimental effects of iron need to be considered together with the need for iron to support metabolic demands associated with repair and/or protective processes. We propose the optimal utilization of iron may be necessary to maximize the beneficial effects of biotin. This review will examine the interactions between biotin and iron in pathways that may have therapeutic or pathogenic implications for MS.

  18. Identification of interphase functions for the NIMA kinase involving microtubules and the ESCRT pathway.

    Directory of Open Access Journals (Sweden)

    Meera Govindaraghavan

    2014-03-01

    Full Text Available The Never in Mitosis A (NIMA kinase (the founding member of the Nek family of kinases has been considered a mitotic specific kinase with nuclear restricted roles in the model fungus Aspergillus nidulans. By extending to A. nidulans the results of a synthetic lethal screen performed in Saccharomyces cerevisiae using the NIMA ortholog KIN3, we identified a conserved genetic interaction between nimA and genes encoding proteins of the Endosomal Sorting Complex Required for Transport (ESCRT pathway. Absence of ESCRT pathway functions in combination with partial NIMA function causes enhanced cell growth defects, including an inability to maintain a single polarized dominant cell tip. These genetic insights suggest NIMA potentially has interphase functions in addition to its established mitotic functions at nuclei. We therefore generated endogenously GFP-tagged NIMA (NIMA-GFP which was fully functional to follow its interphase locations using live cell spinning disc 4D confocal microscopy. During interphase some NIMA-GFP locates to the tips of rapidly growing cells and, when expressed ectopically, also locates to the tips of cytoplasmic microtubules, suggestive of non-nuclear interphase functions. In support of this, perturbation of NIMA function either by ectopic overexpression or through partial inactivation results in marked cell tip growth defects with excess NIMA-GFP promoting multiple growing cell tips. Ectopic NIMA-GFP was found to locate to the plus ends of microtubules in an EB1 dependent manner, while impairing NIMA function altered the dynamic localization of EB1 and the cytoplasmic microtubule network. Together, our genetic and cell biological analyses reveal novel non-nuclear interphase functions for NIMA involving microtubules and the ESCRT pathway for normal polarized fungal cell tip growth. These insights extend the roles of NIMA both spatially and temporally and indicate that this conserved protein kinase could help integrate cell

  19. Nitrogen modulation of legume root architecture signalling pathways involves phytohormones and small regulatory molecules

    Directory of Open Access Journals (Sweden)

    Nadiatul Akmal Mohd-Radzman

    2013-10-01

    Full Text Available Nitrogen, particularly nitrate is an important yield determinant for crops. However, current agricultural practice with excessive fertilizer usage has detrimental effects on the environment. Therefore, legumes have been suggested as a sustainable alternative for replenishing soil nitrogen. Legumes can uniquely form nitrogen-fixing nodules through symbiotic interaction with specialized soil bacteria. Legumes possess a highly plastic root system which modulates its architecture according to the nitrogen availability in the soil. Understanding how legumes regulate root development in response to nitrogen availability is an important step to improving root architecture. The nitrogen-mediated root development pathway starts with sensing soil nitrogen level followed by subsequent signal transduction pathways involving phytohormones, microRNAs and regulatory peptides that collectively modulate the growth and shape of the root system. This review focuses on the current understanding of nitrogen-mediated legume root architecture including local and systemic regulations by different N-sources and the modulations by phytohormones and small regulatory molecules.

  20. Ubiquitin ligase Kf-1 is involved in the endoplasmic reticulum-associated degradation pathway.

    Science.gov (United States)

    Maruyama, Yoshiaki; Yamada, Misa; Takahashi, Kou; Yamada, Mitsuhiko

    2008-10-03

    Kf-1 was first identified as a gene showing enhanced expression in the cerebral cortex of a sporadic Alzheimer's disease patient. To date, however, the functional properties of Kf-1 protein remain unknown. In this study, immunohistochemical analysis showed that Kf-1 immunoreactivity was detected in rat hippocampus and cerebral cortex neurons. Interestingly, it was colocalized with endoplasmic reticulum (ER) marker. To investigate the specific function of Kf-1 protein, we generated Myc tagged wild type Kf-1 (Myc-Kf-1WT) and RING finger domain deletion mutant of Kf-1 (Myc-Kf-1DeltaR), and then transfected in HEK293 cells. Myc-Kf-1WT displayed a reticular pattern typical of ER localization, with large perinuclear aggregates and colocalized with ER marker, calnexin. Myc-Kf-1WT facilitated ubiquitination of endogenous proteins, whereas Myc-Kf-1DeltaR did not show ubiquitin ligase activity. In addition, we found that Kf-1 interacted with components of the ER-associated degradation (ERAD) pathway, including Derlin-1 and VCP. Taken together, these properties suggest that Kf-1 is an ER ubiquitin ligase involved in the ERAD pathway.

  1. Induction of alternative respiratory pathway involves nitric oxide, hydrogen peroxide and ethylene under salt stress.

    Science.gov (United States)

    Wang, Huahua; Huang, Junjun; Bi, Yurong

    2010-12-01

    Alternative respiratory pathway (AP) plays an important role in plant thermogenesis, fruit ripening and responses to environmental stresses. AP may participate in the adaptation to salt stress since salt stress increased the activity of the AP. Recently, new evidence revealed that ethylene and hydrogen peroxide (H(2)O(2)) are involved in the salt-induced increase of the AP, which plays an important role in salt tolerance in Arabidopsis callus, and ethylene may be acting downstream of H(2)O(2). Recent observations also indicated both ethylene and nitric oxide (NO) act as signaling molecules in responses to salt stress, and ethylene may be a part of the downstream signal molecular in NO action. In this addendum, a hypothetical model for NO function in regulation of H(2)O(2)- and ethylene-mediated induction of AP under salt stress is presented.

  2. B cell receptor signaling pathway involved in benign lymphoepithelial lesions of the lacrimal gland

    Directory of Open Access Journals (Sweden)

    Xiao-Na Wang

    2017-05-01

    Full Text Available AIM: To detect the expression of B cell receptor signaling pathway (BCRSP in lacrimal gland benign lymphoepithelial lesions (LGBLEL. METHODS: Gene microarray was used to compare whole-genome expression in lacrimal gland tissues from LGBLEL patients to tissues from orbital cavernous hemangioma (control tissues. Expression of BCRSP was confirmed by polymerase chain reaction (PCR and immunohistochemistry. RESULTS: The expression of 22 genes of the BCRSP increased significantly in LGBLEL patients. PCR analysis showed that CD22, CR2, and BTK were all highly expressed in LGBLEL tissues. Immunohistochemical analysis showed that CR2 protein was present in LGBLEL, but CD22 and BTK proteins were negative. CR2, CD22, and BTK were not observed in the orbital cavernous hemangiomas with either PCR or immunohistochemistry. CONCLUSION: BCRSP might be involved in the pathogenesis of LGBLEL.

  3. Definition of a Bidirectional Activity-Dependent Pathway Involving BDNF and Narp

    Directory of Open Access Journals (Sweden)

    Abigail Mariga

    2015-12-01

    Full Text Available One of the cardinal features