WorldWideScience

Sample records for metabolic network analysis

  1. Ecological network analysis of China's societal metabolism.

    Science.gov (United States)

    Zhang, Yan; Liu, Hong; Li, Yating; Yang, Zhifeng; Li, Shengsheng; Yang, Naijin

    2012-01-01

    Uncontrolled socioeconomic development has strong negative effects on the ecological environment, including pollution and the depletion and waste of natural resources. These serious consequences result from the high flows of materials and energy through a socioeconomic system produced by exchanges between the system and its surroundings, causing the disturbance of metabolic processes. In this paper, we developed an ecological network model for a societal system, and used China in 2006 as a case study to illustrate application of the model. We analyzed China's basic metabolic processes and used ecological network analysis to study the network relationships within the system. Basic components comprised the internal environment, five sectors (agriculture, exploitation, manufacturing, domestic, and recycling), and the external environment. We defined 21 pairs of ecological relationships in China's societal metabolic system (excluding self-mutualism within a component). Using utility and throughflow analysis, we found that exploitation, mutualism, and competition relationships accounted for 76.2, 14.3, and 9.5% of the total relationships, respectively. In our trophic level analysis, the components were divided into producers, consumers, and decomposers according to their positions in the system. Our analyses revealed ways to optimize the system's structure and adjust its functions, thereby promoting healthier socioeconomic development, and suggested ways to apply ecological network analysis in future socioeconomic research. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Hierarchical analysis of dependency in metabolic networks.

    Science.gov (United States)

    Gagneur, Julien; Jackson, David B; Casari, Georg

    2003-05-22

    Elucidation of metabolic networks for an increasing number of organisms reveals that even small networks can contain thousands of reactions and chemical species. The intimate connectivity between components complicates their decomposition into biologically meaningful sub-networks. Moreover, traditional higher-order representations of metabolic networks as metabolic pathways, suffers from the lack of rigorous definition, yielding pathways of disparate content and size. We introduce a hierarchical representation that emphasizes the gross organization of metabolic networks in largely independent pathways and sub-systems at several levels of independence. The approach highlights the coupling of different pathways and the shared compounds responsible for those couplings. By assessing our results on Escherichia coli (E.coli metabolic reactions, Genetic Circuits Research Group, University of California, San Diego, http://gcrg.ucsd.edu/organisms/ecoli.html, 'model v 1.01. reactions') against accepted biochemical annotations, we provide the first systematic synopsis of an organism's metabolism. Comparison with operons of E.coli shows that low-level clusters are reflected in genome organization and gene regulation. Source code, data sets and supplementary information are available at http://www.mas.ecp.fr/labo/equipe/gagneur/hierarchy/hierarchy.html

  3. The reconstruction and analysis of tissue specific human metabolic networks.

    Science.gov (United States)

    Hao, Tong; Ma, Hong-Wu; Zhao, Xue-Ming; Goryanin, Igor

    2012-02-01

    Human tissues have distinct biological functions. Many proteins/enzymes are known to be expressed only in specific tissues and therefore the metabolic networks in various tissues are different. Though high quality global human metabolic networks and metabolic networks for certain tissues such as liver have already been studied, a systematic study of tissue specific metabolic networks for all main tissues is still missing. In this work, we reconstruct the tissue specific metabolic networks for 15 main tissues in human based on the previously reconstructed Edinburgh Human Metabolic Network (EHMN). The tissue information is firstly obtained for enzymes from Human Protein Reference Database (HPRD) and UniprotKB databases and transfers to reactions through the enzyme-reaction relationships in EHMN. As our knowledge of tissue distribution of proteins is still very limited, we replenish the tissue information of the metabolic network based on network connectivity analysis and thorough examination of the literature. Finally, about 80% of proteins and reactions in EHMN are determined to be in at least one of the 15 tissues. To validate the quality of the tissue specific network, the brain specific metabolic network is taken as an example for functional module analysis and the results reveal that the function of the brain metabolic network is closely related with its function as the centre of the human nervous system. The tissue specific human metabolic networks are available at .

  4. Framework for network modularization and Bayesian network analysis to investigate the perturbed metabolic network.

    Science.gov (United States)

    Kim, Hyun Uk; Kim, Tae Yong; Lee, Sang Yup

    2011-01-01

    Genome-scale metabolic network models have contributed to elucidating biological phenomena, and predicting gene targets to engineer for biotechnological applications. With their increasing importance, their precise network characterization has also been crucial for better understanding of the cellular physiology. We herein introduce a framework for network modularization and Bayesian network analysis (FMB) to investigate organism's metabolism under perturbation. FMB reveals direction of influences among metabolic modules, in which reactions with similar or positively correlated flux variation patterns are clustered, in response to specific perturbation using metabolic flux data. With metabolic flux data calculated by constraints-based flux analysis under both control and perturbation conditions, FMB, in essence, reveals the effects of specific perturbations on the biological system through network modularization and Bayesian network analysis at metabolic modular level. As a demonstration, this framework was applied to the genetically perturbed Escherichia coli metabolism, which is a lpdA gene knockout mutant, using its genome-scale metabolic network model. After all, it provides alternative scenarios of metabolic flux distributions in response to the perturbation, which are complementary to the data obtained from conventionally available genome-wide high-throughput techniques or metabolic flux analysis.

  5. Thermodynamics-based Metabolite Sensitivity Analysis in metabolic networks.

    Science.gov (United States)

    Kiparissides, A; Hatzimanikatis, V

    2017-01-01

    The increasing availability of large metabolomics datasets enhances the need for computational methodologies that can organize the data in a way that can lead to the inference of meaningful relationships. Knowledge of the metabolic state of a cell and how it responds to various stimuli and extracellular conditions can offer significant insight in the regulatory functions and how to manipulate them. Constraint based methods, such as Flux Balance Analysis (FBA) and Thermodynamics-based flux analysis (TFA), are commonly used to estimate the flow of metabolites through genome-wide metabolic networks, making it possible to identify the ranges of flux values that are consistent with the studied physiological and thermodynamic conditions. However, unless key intracellular fluxes and metabolite concentrations are known, constraint-based models lead to underdetermined problem formulations. This lack of information propagates as uncertainty in the estimation of fluxes and basic reaction properties such as the determination of reaction directionalities. Therefore, knowledge of which metabolites, if measured, would contribute the most to reducing this uncertainty can significantly improve our ability to define the internal state of the cell. In the present work we combine constraint based modeling, Design of Experiments (DoE) and Global Sensitivity Analysis (GSA) into the Thermodynamics-based Metabolite Sensitivity Analysis (TMSA) method. TMSA ranks metabolites comprising a metabolic network based on their ability to constrain the gamut of possible solutions to a limited, thermodynamically consistent set of internal states. TMSA is modular and can be applied to a single reaction, a metabolic pathway or an entire metabolic network. This is, to our knowledge, the first attempt to use metabolic modeling in order to provide a significance ranking of metabolites to guide experimental measurements. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier

  6. Identification of Conserved Moieties in Metabolic Networks by Graph Theoretical Analysis of Atom Transition Networks

    Science.gov (United States)

    Haraldsdóttir, Hulda S.; Fleming, Ronan M. T.

    2016-01-01

    Conserved moieties are groups of atoms that remain intact in all reactions of a metabolic network. Identification of conserved moieties gives insight into the structure and function of metabolic networks and facilitates metabolic modelling. All moiety conservation relations can be represented as nonnegative integer vectors in the left null space of the stoichiometric matrix corresponding to a biochemical network. Algorithms exist to compute such vectors based only on reaction stoichiometry but their computational complexity has limited their application to relatively small metabolic networks. Moreover, the vectors returned by existing algorithms do not, in general, represent conservation of a specific moiety with a defined atomic structure. Here, we show that identification of conserved moieties requires data on reaction atom mappings in addition to stoichiometry. We present a novel method to identify conserved moieties in metabolic networks by graph theoretical analysis of their underlying atom transition networks. Our method returns the exact group of atoms belonging to each conserved moiety as well as the corresponding vector in the left null space of the stoichiometric matrix. It can be implemented as a pipeline of polynomial time algorithms. Our implementation completes in under five minutes on a metabolic network with more than 4,000 mass balanced reactions. The scalability of the method enables extension of existing applications for moiety conservation relations to genome-scale metabolic networks. We also give examples of new applications made possible by elucidating the atomic structure of conserved moieties. PMID:27870845

  7. (Im) Perfect robustness and adaptation of metabolic networks subject to metabolic and gene-expression regulation: marrying control engineering with metabolic control analysis

    NARCIS (Netherlands)

    He, F.; Fromion, V.; Westerhoff, H.V.

    2013-01-01

    Background: Metabolic control analysis (MCA) and supply-demand theory have led to appreciable understanding of the systems properties of metabolic networks that are subject exclusively to metabolic regulation. Supply-demand theory has not yet considered gene-expression regulation explicitly whilst a

  8. Comparative Analysis of Yeast Metabolic Network Models Highlights Progress, Opportunities for Metabolic Reconstruction.

    Directory of Open Access Journals (Sweden)

    Benjamin D Heavner

    2015-11-01

    Full Text Available We have compared 12 genome-scale models of the Saccharomyces cerevisiae metabolic network published since 2003 to evaluate progress in reconstruction of the yeast metabolic network. We compared the genomic coverage, overlap of annotated metabolites, predictive ability for single gene essentiality with a selection of model parameters, and biomass production predictions in simulated nutrient-limited conditions. We have also compared pairwise gene knockout essentiality predictions for 10 of these models. We found that varying approaches to model scope and annotation reflected the involvement of multiple research groups in model development; that single-gene essentiality predictions were affected by simulated medium, objective function, and the reference list of essential genes; and that predictive ability for single-gene essentiality did not correlate well with predictive ability for our reference list of synthetic lethal gene interactions (R = 0.159. We conclude that the reconstruction of the yeast metabolic network is indeed gradually improving through the iterative process of model development, and there remains great opportunity for advancing our understanding of biology through continued efforts to reconstruct the full biochemical reaction network that constitutes yeast metabolism. Additionally, we suggest that there is opportunity for refining the process of deriving a metabolic model from a metabolic network reconstruction to facilitate mechanistic investigation and discovery. This comparative study lays the groundwork for developing improved tools and formalized methods to quantitatively assess metabolic network reconstructions independently of any particular model application, which will facilitate ongoing efforts to advance our understanding of the relationship between genotype and cellular phenotype.

  9. Review of metabolic pathways activated in cancer cells as determined through isotopic labeling and network analysis.

    Science.gov (United States)

    Dong, Wentao; Keibler, Mark A; Stephanopoulos, Gregory

    2017-09-01

    Cancer metabolism has emerged as an indispensable part of contemporary cancer research. During the past 10 years, the use of stable isotopic tracers and network analysis have unveiled a number of metabolic pathways activated in cancer cells. Here, we review such pathways along with the particular tracers and labeling observations that led to the discovery of their rewiring in cancer cells. The list of such pathways comprises the reductive metabolism of glutamine, altered glycolysis, serine and glycine metabolism, mutant isocitrate dehydrogenase (IDH) induced reprogramming and the onset of acetate metabolism. Additionally, we demonstrate the critical role of isotopic labeling and network analysis in identifying these pathways. The alterations described in this review do not constitute a complete list, and future research using these powerful tools is likely to discover other cancer-related pathways and new metabolic targets for cancer therapy. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  10. Comparative analysis of Salmonella genomes identifies a metabolic network for escalating growth in the inflamed gut.

    Science.gov (United States)

    Nuccio, Sean-Paul; Bäumler, Andreas J

    2014-03-18

    The Salmonella genus comprises a group of pathogens associated with illnesses ranging from gastroenteritis to typhoid fever. We performed an in silico analysis of comparatively reannotated Salmonella genomes to identify genomic signatures indicative of disease potential. By removing numerous annotation inconsistencies and inaccuracies, the process of reannotation identified a network of 469 genes involved in central anaerobic metabolism, which was intact in genomes of gastrointestinal pathogens but degrading in genomes of extraintestinal pathogens. This large network contained pathways that enable gastrointestinal pathogens to utilize inflammation-derived nutrients as well as many of the biochemical reactions used for the enrichment and biochemical discrimination of Salmonella serovars. Thus, comparative genome analysis identifies a metabolic network that provides clues about the strategies for nutrient acquisition and utilization that are characteristic of gastrointestinal pathogens. IMPORTANCE While some Salmonella serovars cause infections that remain localized to the gut, others disseminate throughout the body. Here, we compared Salmonella genomes to identify characteristics that distinguish gastrointestinal from extraintestinal pathogens. We identified a large metabolic network that is functional in gastrointestinal pathogens but decaying in extraintestinal pathogens. While taxonomists have used traits from this network empirically for many decades for the enrichment and biochemical discrimination of Salmonella serovars, our findings suggest that it is part of a "business plan" for growth in the inflamed gastrointestinal tract. By identifying a large metabolic network characteristic of Salmonella serovars associated with gastroenteritis, our in silico analysis provides a blueprint for potential strategies to utilize inflammation-derived nutrients and edge out competing gut microbes.

  11. Construction of phylogenetic trees by kernel-based comparative analysis of metabolic networks

    Directory of Open Access Journals (Sweden)

    Chang Jeong-Ho

    2006-06-01

    Full Text Available Abstract Background To infer the tree of life requires knowledge of the common characteristics of each species descended from a common ancestor as the measuring criteria and a method to calculate the distance between the resulting values of each measure. Conventional phylogenetic analysis based on genomic sequences provides information about the genetic relationships between different organisms. In contrast, comparative analysis of metabolic pathways in different organisms can yield insights into their functional relationships under different physiological conditions. However, evaluating the similarities or differences between metabolic networks is a computationally challenging problem, and systematic methods of doing this are desirable. Here we introduce a graph-kernel method for computing the similarity between metabolic networks in polynomial time, and use it to profile metabolic pathways and to construct phylogenetic trees. Results To compare the structures of metabolic networks in organisms, we adopted the exponential graph kernel, which is a kernel-based approach with a labeled graph that includes a label matrix and an adjacency matrix. To construct the phylogenetic trees, we used an unweighted pair-group method with arithmetic mean, i.e., a hierarchical clustering algorithm. We applied the kernel-based network profiling method in a comparative analysis of nine carbohydrate metabolic networks from 81 biological species encompassing Archaea, Eukaryota, and Eubacteria. The resulting phylogenetic hierarchies generally support the tripartite scheme of three domains rather than the two domains of prokaryotes and eukaryotes. Conclusion By combining the kernel machines with metabolic information, the method infers the context of biosphere development that covers physiological events required for adaptation by genetic reconstruction. The results show that one may obtain a global view of the tree of life by comparing the metabolic pathway

  12. Construction and analysis of a genome-scale metabolic network for Bacillus licheniformis WX-02.

    Science.gov (United States)

    Guo, Jing; Zhang, Hong; Wang, Cheng; Chang, Ji-Wei; Chen, Ling-Ling

    2016-05-01

    We constructed the genome-scale metabolic network of Bacillus licheniformis (B. licheniformis) WX-02 by combining genomic annotation, high-throughput phenotype microarray (PM) experiments and literature-based metabolic information. The accuracy of the metabolic network was assessed by an OmniLog PM experiment. The final metabolic model iWX1009 contains 1009 genes, 1141 metabolites and 1762 reactions, and the predicted metabolic phenotypes showed an agreement rate of 76.8% with experimental PM data. In addition, key metabolic features such as growth yield, utilization of different substrates and essential genes were identified by flux balance analysis. A total of 195 essential genes were predicted from LB medium, among which 149 were verified with the experimental essential gene set of B. subtilis 168. With the removal of 5 reactions from the network, pathways for poly-γ-glutamic acid (γ-PGA) synthesis were optimized and the γ-PGA yield reached 83.8 mmol/h. Furthermore, the important metabolites and pathways related to γ-PGA synthesis and bacterium growth were comprehensively analyzed. The present study provides valuable clues for exploring the metabolisms and metabolic regulation of γ-PGA synthesis in B. licheniformis WX-02. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  13. Metabolic network reconstruction, growth characterization and 13C-metabolic flux analysis of the extremophile Thermus thermophilus HB8.

    Science.gov (United States)

    Swarup, Aditi; Lu, Jing; DeWoody, Kathleen C; Antoniewicz, Maciek R

    2014-07-01

    Thermus thermophilus is an extremely thermophilic bacterium with significant biotechnological potential. In this work, we have characterized aerobic growth characteristics of T. thermophilus HB8 at temperatures between 50 and 85°C, constructed a metabolic network model of its central carbon metabolism and validated the model using (13)C-metabolic flux analysis ((13)C-MFA). First, cells were grown in batch cultures in custom constructed mini-bioreactors at different temperatures to determine optimal growth conditions. The optimal temperature for T. thermophilus grown on defined medium with glucose was 81°C. The maximum growth rate was 0.25h(-1). Between 50 and 81°C the growth rate increased by 7-fold and the temperature dependence was described well by an Arrhenius model with an activation energy of 47kJ/mol. Next, we performed a (13)C-labeling experiment with [1,2-(13)C] glucose as the tracer and calculated intracellular metabolic fluxes using (13)C-MFA. The results provided support for the constructed network model and highlighted several interesting characteristics of T. thermophilus metabolism. We found that T. thermophilus largely uses glycolysis and TCA cycle to produce biosynthetic precursors, ATP and reducing equivalents needed for cells growth. Consistent with its proposed metabolic network model, we did not detect any oxidative pentose phosphate pathway flux or Entner-Doudoroff pathway activity. The biomass precursors erythrose-4-phosphate and ribose-5-phosphate were produced via the non-oxidative pentose phosphate pathway, and largely via transketolase, with little contribution from transaldolase. The high biomass yield on glucose that was measured experimentally was also confirmed independently by (13)C-MFA. The results presented here provide a solid foundation for future studies of T. thermophilus and its metabolic engineering applications. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  14. Integrated analysis of transcript-level regulation of metabolism reveals disease-relevant nodes of the human metabolic network.

    Science.gov (United States)

    Galhardo, Mafalda; Sinkkonen, Lasse; Berninger, Philipp; Lin, Jake; Sauter, Thomas; Heinäniemi, Merja

    2014-02-01

    Metabolic diseases and comorbidities represent an ever-growing epidemic where multiple cell types impact tissue homeostasis. Here, the link between the metabolic and gene regulatory networks was studied through experimental and computational analysis. Integrating gene regulation data with a human metabolic network prompted the establishment of an open-sourced web portal, IDARE (Integrated Data Nodes of Regulation), for visualizing various gene-related data in context of metabolic pathways. Motivated by increasing availability of deep sequencing studies, we obtained ChIP-seq data from widely studied human umbilical vein endothelial cells. Interestingly, we found that association of metabolic genes with multiple transcription factors (TFs) enriched disease-associated genes. To demonstrate further extensions enabled by examining these networks together, constraint-based modeling was applied to data from human preadipocyte differentiation. In parallel, data on gene expression, genome-wide ChIP-seq profiles for peroxisome proliferator-activated receptor (PPAR) γ, CCAAT/enhancer binding protein (CEBP) α, liver X receptor (LXR) and H3K4me3 and microRNA target identification for miR-27a, miR-29a and miR-222 were collected. Disease-relevant key nodes, including mitochondrial glycerol-3-phosphate acyltransferase (GPAM), were exposed from metabolic pathways predicted to change activity by focusing on association with multiple regulators. In both cell types, our analysis reveals the convergence of microRNAs and TFs within the branched chain amino acid (BCAA) metabolic pathway, possibly providing an explanation for its downregulation in obese and diabetic conditions.

  15. Detection of driver metabolites in the human liver metabolic network using structural controllability analysis

    Science.gov (United States)

    2014-01-01

    Background Abnormal states in human liver metabolism are major causes of human liver diseases ranging from hepatitis to hepatic tumor. The accumulation in relevant data makes it feasible to derive a large-scale human liver metabolic network (HLMN) and to discover important biological principles or drug-targets based on network analysis. Some studies have shown that interesting biological phenomenon and drug-targets could be discovered by applying structural controllability analysis (which is a newly prevailed concept in networks) to biological networks. The exploration on the connections between structural controllability theory and the HLMN could be used to uncover valuable information on the human liver metabolism from a fresh perspective. Results We applied structural controllability analysis to the HLMN and detected driver metabolites. The driver metabolites tend to have strong ability to influence the states of other metabolites and weak susceptibility to be influenced by the states of others. In addition, the metabolites were classified into three classes: critical, high-frequency and low-frequency driver metabolites. Among the identified 36 critical driver metabolites, 27 metabolites were found to be essential; the high-frequency driver metabolites tend to participate in different metabolic pathways, which are important in regulating the whole metabolic systems. Moreover, we explored some other possible connections between the structural controllability theory and the HLMN, and find that transport reactions and the environment play important roles in the human liver metabolism. Conclusion There are interesting connections between the structural controllability theory and the human liver metabolism: driver metabolites have essential biological functions; the crucial role of extracellular metabolites and transport reactions in controlling the HLMN highlights the importance of the environment in the health of human liver metabolism. PMID:24885538

  16. Molecular network analysis of phosphotyrosine and lipid metabolism in hepatic PTP1b deletion mice.

    Science.gov (United States)

    Miraldi, Emily R; Sharfi, Hadar; Friedline, Randall H; Johnson, Hannah; Zhang, Tejia; Lau, Ken S; Ko, Hwi Jin; Curran, Timothy G; Haigis, Kevin M; Yaffe, Michael B; Bonneau, Richard; Lauffenburger, Douglas A; Kahn, Barbara B; Kim, Jason K; Neel, Benjamin G; Saghatelian, Alan; White, Forest M

    2013-07-24

    Metabolic syndrome describes a set of obesity-related disorders that increase diabetes, cardiovascular, and mortality risk. Studies of liver-specific protein-tyrosine phosphatase 1b (PTP1b) deletion mice (L-PTP1b(-/-)) suggest that hepatic PTP1b inhibition would mitigate metabolic-syndrome through amelioration of hepatic insulin resistance, endoplasmic-reticulum stress, and whole-body lipid metabolism. However, the altered molecular-network states underlying these phenotypes are poorly understood. We used mass spectrometry to quantify protein-phosphotyrosine network changes in L-PTP1b(-/-) mouse livers relative to control mice on normal and high-fat diets. We applied a phosphosite-set-enrichment analysis to identify known and novel pathways exhibiting PTP1b- and diet-dependent phosphotyrosine regulation. Detection of a PTP1b-dependent, but functionally uncharacterized, set of phosphosites on lipid-metabolic proteins motivated global lipidomic analyses that revealed altered polyunsaturated-fatty-acid (PUFA) and triglyceride metabolism in L-PTP1b(-/-) mice. To connect phosphosites and lipid measurements in a unified model, we developed a multivariate-regression framework, which accounts for measurement noise and systematically missing proteomics data. This analysis resulted in quantitative models that predict roles for phosphoproteins involved in oxidation-reduction in altered PUFA and triglyceride metabolism.

  17. Network-based analysis of the sphingolipid metabolism in hypertension

    DEFF Research Database (Denmark)

    Fenger, Mogens; Linneberg, Allan; Jeppesen, Jørgen

    2015-01-01

    of the complex genotype determines the state and dynamics of any trait, which may be modified to various extent by non-genetic factors. Thus, diseases are heterogenous ensembles of conditions with a common endpoint. Numerous studies have been performed to define genes of importance for a trait or disease......Common diseases like essential hypertension or diabetes mellitus are complex as they are polygenic in nature, such that each genetic variation only has a small influence on the disease. Genes operates in integrated networks providing the blue-print for all biological processes and conditional......, but only a few genes with small effect have been identified. The major reasons for this modest progress is the unresolved heterogeneity of the regulation of blood pressure and the shortcomings of the prevailing monogenic approach to capture genetic effects in a polygenic condition. Here, a two...

  18. Genome-scale metabolic network of Cordyceps militaris useful for comparative analysis of entomopathogenic fungi.

    Science.gov (United States)

    Vongsangnak, Wanwipa; Raethong, Nachon; Mujchariyakul, Warasinee; Nguyen, Nam Ninh; Leong, Hon Wai; Laoteng, Kobkul

    2017-08-30

    The first genome-scale metabolic network of Cordyceps militaris (iWV1170) was constructed representing its whole metabolisms, which consisted of 894 metabolites and 1,267 metabolic reactions across five compartments, including the plasma membrane, cytoplasm, mitochondria, peroxisome and extracellular space. The iWV1170 could be exploited to explain its phenotypes of growth ability, cordycepin and other metabolites production on various substrates. A high number of genes encoding extracellular enzymes for degradation of complex carbohydrates, lipids and proteins were existed in C. militaris genome. By comparative genome-scale analysis, the adenine metabolic pathway towards putative cordycepin biosynthesis was reconstructed, indicating their evolutionary relationships across eleven species of entomopathogenic fungi. The overall metabolic routes involved in the putative cordycepin biosynthesis were also identified in C. militaris, including central carbon metabolism, amino acid metabolism (glycine, l-glutamine and l-aspartate) and nucleotide metabolism (adenosine and adenine). Interestingly, a lack of the sequence coding for ribonucleotide reductase inhibitor was observed in C. militaris that might contribute to its over-production of cordycepin. Copyright © 2017. Published by Elsevier B.V.

  19. VRML metabolic network visualizer.

    Science.gov (United States)

    Rojdestvenski, Igor

    2003-03-01

    A successful date collection visualization should satisfy a set of many requirements: unification of diverse data formats, support for serendipity research, support of hierarchical structures, algorithmizability, vast information density, Internet-readiness, and other. Recently, virtual reality has made significant progress in engineering, architectural design, entertainment and communication. We experiment with the possibility of using the immersive abstract three-dimensional visualizations of the metabolic networks. We present the trial Metabolic Network Visualizer software, which produces graphical representation of a metabolic network as a VRML world from a formal description written in a simple SGML-type scripting language.

  20. Multiobjective flux balancing using the NISE method for metabolic network analysis.

    Science.gov (United States)

    Oh, Young-Gyun; Lee, Dong-Yup; Lee, Sang Yup; Park, Sunwon

    2009-01-01

    Flux balance analysis (FBA) is well acknowledged as an analysis tool of metabolic networks in the framework of metabolic engineering. However, FBA has a limitation for solving a multiobjective optimization problem which considers multiple conflicting objectives. In this study, we propose a novel multiobjective flux balance analysis method, which adapts the noninferior set estimation (NISE) method (Solanki et al., 1993) for multiobjective linear programming (MOLP) problems. NISE method can generate an approximation of the Pareto curve for conflicting objectives without redundant iterations of single objective optimization. Furthermore, the flux distributions at each Pareto optimal solution can be obtained for understanding the internal flux changes in the metabolic network. The functionality of this approach is shown by applying it to a genome-scale in silico model of E. coli. Multiple objectives for the poly(3-hydroxybutyrate) [P(3HB)] production are considered simultaneously, and relationships among them are identified. The Pareto curve for maximizing succinic acid production vs. maximizing biomass production is used for the in silico analysis of various combinatorial knockout strains. This proposed method accelerates the strain improvement in the metabolic engineering by reducing computation time of obtaining the Pareto curve and analysis time of flux distribution at each Pareto optimal solution. (c) 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009.

  1. GAM: a web-service for integrated transcriptional and metabolic network analysis.

    Science.gov (United States)

    Sergushichev, Alexey A; Loboda, Alexander A; Jha, Abhishek K; Vincent, Emma E; Driggers, Edward M; Jones, Russell G; Pearce, Edward J; Artyomov, Maxim N

    2016-07-08

    Novel techniques for high-throughput steady-state metabolomic profiling yield information about changes of nearly thousands of metabolites. Such metabolomic profiles, when analyzed together with transcriptional profiles, can reveal novel insights about underlying biological processes. While a number of conceptual approaches have been developed for data integration, easily accessible tools for integrated analysis of mammalian steady-state metabolomic and transcriptional data are lacking. Here we present GAM ('genes and metabolites'): a web-service for integrated network analysis of transcriptional and steady-state metabolomic data focused on identification of the most changing metabolic subnetworks between two conditions of interest. In the web-service, we have pre-assembled metabolic networks for humans, mice, Arabidopsis and yeast and adapted exact solvers for an optimal subgraph search to work in the context of these metabolic networks. The output is the most regulated metabolic subnetwork of size controlled by false discovery rate parameters. The subnetworks are then visualized online and also can be downloaded in Cytoscape format for subsequent processing. The web-service is available at: https://artyomovlab.wustl.edu/shiny/gam/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Modeling and Robustness Analysis of Biochemical Networks of Glycerol Metabolism by Klebsiella Pneumoniae

    Science.gov (United States)

    Ye, Jianxiong; Feng, Enmin; Wang, Lei; Xiu, Zhilong; Sun, Yaqin

    Glycerol bioconversion to 1,3-propanediol (1,3-PD) by Klebsiella pneumoniae (K. pneumoniae) can be characterized by an intricate network of interactions among biochemical fluxes, metabolic compounds, key enzymes and genetic regulatory. To date, there still exist some uncertain factors in this complex network because of the limitation in bio-techniques, especially in measuring techniques for intracellular substances. In this paper, among these uncertain factors, we aim to infer the transport mechanisms of glycerol and 1,3-PD across the cell membrane, which have received intensive interest in recent years. On the basis of different inferences of the transport mechanisms, we reconstruct various metabolic networks correspondingly and subsequently develop their dynamical systems (S-systems). To determine the most reasonable metabolic network from all possible ones, we establish a quantitative definition of biological robustness and undertake parameter identification and robustness analysis for each system. Numerical results show that it is most possible that both glycerol and 1,3-PD pass the cell membrane by active transport and passive diffusion.

  3. Exploring photosynthesis evolution by comparative analysis of metabolic networks between chloroplasts and photosynthetic bacteria

    Directory of Open Access Journals (Sweden)

    Hou Jing

    2006-04-01

    Full Text Available Abstract Background Chloroplasts descended from cyanobacteria and have a drastically reduced genome following an endosymbiotic event. Many genes of the ancestral cyanobacterial genome have been transferred to the plant nuclear genome by horizontal gene transfer. However, a selective set of metabolism pathways is maintained in chloroplasts using both chloroplast genome encoded and nuclear genome encoded enzymes. As an organelle specialized for carrying out photosynthesis, does the chloroplast metabolic network have properties adapted for higher efficiency of photosynthesis? We compared metabolic network properties of chloroplasts and prokaryotic photosynthetic organisms, mostly cyanobacteria, based on metabolic maps derived from genome data to identify features of chloroplast network properties that are different from cyanobacteria and to analyze possible functional significance of those features. Results The properties of the entire metabolic network and the sub-network that consists of reactions directly connected to the Calvin Cycle have been analyzed using hypergraph representation. Results showed that the whole metabolic networks in chloroplast and cyanobacteria both possess small-world network properties. Although the number of compounds and reactions in chloroplasts is less than that in cyanobacteria, the chloroplast's metabolic network has longer average path length, a larger diameter, and is Calvin Cycle -centered, indicating an overall less-dense network structure with specific and local high density areas in chloroplasts. Moreover, chloroplast metabolic network exhibits a better modular organization than cyanobacterial ones. Enzymes involved in the same metabolic processes tend to cluster into the same module in chloroplasts. Conclusion In summary, the differences in metabolic network properties may reflect the evolutionary changes during endosymbiosis that led to the improvement of the photosynthesis efficiency in higher plants. Our

  4. (Im)Perfect robustness and adaptation of metabolic networks subject to metabolic and gene-expression regulation: marrying control engineering with metabolic control analysis.

    Science.gov (United States)

    He, Fei; Fromion, Vincent; Westerhoff, Hans V

    2013-11-21

    Metabolic control analysis (MCA) and supply-demand theory have led to appreciable understanding of the systems properties of metabolic networks that are subject exclusively to metabolic regulation. Supply-demand theory has not yet considered gene-expression regulation explicitly whilst a variant of MCA, i.e. Hierarchical Control Analysis (HCA), has done so. Existing analyses based on control engineering approaches have not been very explicit about whether metabolic or gene-expression regulation would be involved, but designed different ways in which regulation could be organized, with the potential of causing adaptation to be perfect. This study integrates control engineering and classical MCA augmented with supply-demand theory and HCA. Because gene-expression regulation involves time integration, it is identified as a natural instantiation of the 'integral control' (or near integral control) known in control engineering. This study then focuses on robustness against and adaptation to perturbations of process activities in the network, which could result from environmental perturbations, mutations or slow noise. It is shown however that this type of 'integral control' should rarely be expected to lead to the 'perfect adaptation': although the gene-expression regulation increases the robustness of important metabolite concentrations, it rarely makes them infinitely robust. For perfect adaptation to occur, the protein degradation reactions should be zero order in the concentration of the protein, which may be rare biologically for cells growing steadily. A proposed new framework integrating the methodologies of control engineering and metabolic and hierarchical control analysis, improves the understanding of biological systems that are regulated both metabolically and by gene expression. In particular, the new approach enables one to address the issue whether the intracellular biochemical networks that have been and are being identified by genomics and systems

  5. Flux Balance Analysis of Cyanobacterial Metabolism.The Metabolic Network of Synechocystis sp. PCC 6803

    Czech Academy of Sciences Publication Activity Database

    Knoop, H.; Gründel, M.; Zilliges, Y.; Lehmann, R.; Hoffmann, S.; Lockau, W.; Steuer, Ralf

    2013-01-01

    Roč. 9, č. 6 (2013), e1003081-e1003081 ISSN 1553-7358 R&D Projects: GA MŠk(CZ) EE2.3.20.0256 Institutional support: RVO:67179843 Keywords : SP STRAIN PCC-6803 * SP ATCC 51142 * photoautotrophic metabolism * anacystis-nidulans * reconstructions * pathway * plants * models * growth Subject RIV: EI - Biotechnology ; Bionics Impact factor: 4.829, year: 2013

  6. Reconstruction and in silico analysis of metabolic network for an oleaginous yeast, Yarrowia lipolytica.

    Directory of Open Access Journals (Sweden)

    Pengcheng Pan

    Full Text Available With the emergence of energy scarcity, the use of renewable energy sources such as biodiesel is becoming increasingly necessary. Recently, many researchers have focused their minds on Yarrowia lipolytica, a model oleaginous yeast, which can be employed to accumulate large amounts of lipids that could be further converted to biodiesel. In order to understand the metabolic characteristics of Y. lipolytica at a systems level and to examine the potential for enhanced lipid production, a genome-scale compartmentalized metabolic network was reconstructed based on a combination of genome annotation and the detailed biochemical knowledge from multiple databases such as KEGG, ENZYME and BIGG. The information about protein and reaction associations of all the organisms in KEGG and Expasy-ENZYME database was arranged into an EXCEL file that can then be regarded as a new useful database to generate other reconstructions. The generated model iYL619_PCP accounts for 619 genes, 843 metabolites and 1,142 reactions including 236 transport reactions, 125 exchange reactions and 13 spontaneous reactions. The in silico model successfully predicted the minimal media and the growing abilities on different substrates. With flux balance analysis, single gene knockouts were also simulated to predict the essential genes and partially essential genes. In addition, flux variability analysis was applied to design new mutant strains that will redirect fluxes through the network and may enhance the production of lipid. This genome-scale metabolic model of Y. lipolytica can facilitate system-level metabolic analysis as well as strain development for improving the production of biodiesels and other valuable products by Y. lipolytica and other closely related oleaginous yeasts.

  7. A multi-tissue type genome-scale metabolic network for analysis of whole-body systems physiology

    OpenAIRE

    Bordbar, Aarash; Feist, Adam M; Usaite-Black, Renata; Woodcock, Joseph; Palsson, Bernhard O; Famili, Iman

    2011-01-01

    Abstract Background Genome-scale metabolic reconstructions provide a biologically meaningful mechanistic basis for the genotype-phenotype relationship. The global human metabolic network, termed Recon 1, has recently been reconstructed allowing the systems analysis of human metabolic physiology and pathology. Utilizing high-throughput data, Recon 1 has recently been tailored to different cells and tissues, including the liver, kidney, brain, and alveolar macrophage. These models have shown ut...

  8. Structural correlations in bacterial metabolic networks

    Directory of Open Access Journals (Sweden)

    Lizana Ludvig

    2011-01-01

    Full Text Available Abstract Background Evolution of metabolism occurs through the acquisition and loss of genes whose products acts as enzymes in metabolic reactions, and from a presumably simple primordial metabolism the organisms living today have evolved complex and highly variable metabolisms. We have studied this phenomenon by comparing the metabolic networks of 134 bacterial species with known phylogenetic relationships, and by studying a neutral model of metabolic network evolution. Results We consider the 'union-network' of 134 bacterial metabolisms, and also the union of two smaller subsets of closely related species. Each reaction-node is tagged with the number of organisms it belongs to, which we denote organism degree (OD, a key concept in our study. Network analysis shows that common reactions are found at the centre of the network and that the average OD decreases as we move to the periphery. Nodes of the same OD are also more likely to be connected to each other compared to a random OD relabelling based on their occurrence in the real data. This trend persists up to a distance of around five reactions. A simple growth model of metabolic networks is used to investigate the biochemical constraints put on metabolic-network evolution. Despite this seemingly drastic simplification, a 'union-network' of a collection of unrelated model networks, free of any selective pressure, still exhibit similar structural features as their bacterial counterpart. Conclusions The OD distribution quantifies topological properties of the evolutionary history of bacterial metabolic networks, and lends additional support to the importance of horizontal gene transfer during bacterial metabolic evolution where new reactions are attached at the periphery of the network. The neutral model of metabolic network growth can reproduce the main features of real networks, but we observe that the real networks contain a smaller common core, while they are more similar at the periphery

  9. Structural correlations in bacterial metabolic networks.

    Science.gov (United States)

    Bernhardsson, Sebastian; Gerlee, Philip; Lizana, Ludvig

    2011-01-20

    Evolution of metabolism occurs through the acquisition and loss of genes whose products acts as enzymes in metabolic reactions, and from a presumably simple primordial metabolism the organisms living today have evolved complex and highly variable metabolisms. We have studied this phenomenon by comparing the metabolic networks of 134 bacterial species with known phylogenetic relationships, and by studying a neutral model of metabolic network evolution. We consider the 'union-network' of 134 bacterial metabolisms, and also the union of two smaller subsets of closely related species. Each reaction-node is tagged with the number of organisms it belongs to, which we denote organism degree (OD), a key concept in our study. Network analysis shows that common reactions are found at the centre of the network and that the average OD decreases as we move to the periphery. Nodes of the same OD are also more likely to be connected to each other compared to a random OD relabelling based on their occurrence in the real data. This trend persists up to a distance of around five reactions. A simple growth model of metabolic networks is used to investigate the biochemical constraints put on metabolic-network evolution. Despite this seemingly drastic simplification, a 'union-network' of a collection of unrelated model networks, free of any selective pressure, still exhibit similar structural features as their bacterial counterpart. The OD distribution quantifies topological properties of the evolutionary history of bacterial metabolic networks, and lends additional support to the importance of horizontal gene transfer during bacterial metabolic evolution where new reactions are attached at the periphery of the network. The neutral model of metabolic network growth can reproduce the main features of real networks, but we observe that the real networks contain a smaller common core, while they are more similar at the periphery of the network. This suggests that natural selection and

  10. Robustness of metabolic networks

    Science.gov (United States)

    Jeong, Hawoong

    2009-03-01

    We investigated the robustness of cellular metabolism by simulating the system-level computational models, and also performed the corresponding experiments to validate our predictions. We address the cellular robustness from the ``metabolite''-framework by using the novel concept of ``flux-sum,'' which is the sum of all incoming or outgoing fluxes (they are the same under the pseudo-steady state assumption). By estimating the changes of the flux-sum under various genetic and environmental perturbations, we were able to clearly decipher the metabolic robustness; the flux-sum around an essential metabolite does not change much under various perturbations. We also identified the list of the metabolites essential to cell survival, and then ``acclimator'' metabolites that can control the cell growth were discovered. Furthermore, this concept of ``metabolite essentiality'' should be useful in developing new metabolic engineering strategies for improved production of various bioproducts and designing new drugs that can fight against multi-antibiotic resistant superbacteria by knocking-down the enzyme activities around an essential metabolite. Finally, we combined a regulatory network with the metabolic network to investigate its effect on dynamic properties of cellular metabolism.

  11. Finding elementary flux modes in metabolic networks based on flux balance analysis and flux coupling analysis: application to the analysis of Escherichia coli metabolism.

    Science.gov (United States)

    Tabe-Bordbar, Shayan; Marashi, Sayed-Amir

    2013-12-01

    Elementary modes (EMs) are steady-state metabolic flux vectors with minimal set of active reactions. Each EM corresponds to a metabolic pathway. Therefore, studying EMs is helpful for analyzing the production of biotechnologically important metabolites. However, memory requirements for computing EMs may hamper their applicability as, in most genome-scale metabolic models, no EM can be computed due to running out of memory. In this study, we present a method for computing randomly sampled EMs. In this approach, a network reduction algorithm is used for EM computation, which is based on flux balance-based methods. We show that this approach can be used to recover the EMs in the medium- and genome-scale metabolic network models, while the EMs are sampled in an unbiased way. The applicability of such results is shown by computing “estimated” control-effective flux values in Escherichia coli metabolic network.

  12. Gap-filling analysis of the iJO1366 Escherichia coli metabolic network reconstruction for discovery of metabolic functions

    Directory of Open Access Journals (Sweden)

    Orth Jeffrey D

    2012-05-01

    Full Text Available Abstract Background The iJO1366 reconstruction of the metabolic network of Escherichia coli is one of the most complete and accurate metabolic reconstructions available for any organism. Still, because our knowledge of even well-studied model organisms such as this one is incomplete, this network reconstruction contains gaps and possible errors. There are a total of 208 blocked metabolites in iJO1366, representing gaps in the network. Results A new model improvement workflow was developed to compare model based phenotypic predictions to experimental data to fill gaps and correct errors. A Keio Collection based dataset of E. coli gene essentiality was obtained from literature data and compared to model predictions. The SMILEY algorithm was then used to predict the most likely missing reactions in the reconstructed network, adding reactions from a KEGG based universal set of metabolic reactions. The feasibility of these putative reactions was determined by comparing updated versions of the model to the experimental dataset, and genes were predicted for the most feasible reactions. Conclusions Numerous improvements to the iJO1366 metabolic reconstruction were suggested by these analyses. Experiments were performed to verify several computational predictions, including a new mechanism for growth on myo-inositol. The other predictions made in this study should be experimentally verifiable by similar means. Validating all of the predictions made here represents a substantial but important undertaking.

  13. Uncovering transcriptional regulation of metabolism by using metabolic network topology

    DEFF Research Database (Denmark)

    Patil, Kiran Raosaheb; Nielsen, Jens

    2005-01-01

    therefore developed an algorithm that is based on hypothesis-driven data analysis to uncover the transcriptional regulatory architecture of metabolic networks. By using information on the metabolic network topology from genome-scale metabolic reconstruction, we show that it is possible to reveal patterns...... changes induced by complex regulatory mechanisms coordinating the activity of different metabolic pathways. It is difficult to map such global transcriptional responses by using traditional methods, because many genes in the metabolic network have relatively small changes at their transcription level. We...... in the metabolic network that follow a common transcriptional response. Thus, the algorithm enables identification of so-called reporter metabolites (metabolites around which the most significant transcriptional changes occur) and a set of connected genes with significant and coordinated response to genetic...

  14. Reconstruction and Analysis of Human Kidney-Specific Metabolic Network Based on Omics Data

    Directory of Open Access Journals (Sweden)

    Ai-Di Zhang

    2013-01-01

    Full Text Available With the advent of the high-throughput data production, recent studies of tissue-specific metabolic networks have largely advanced our understanding of the metabolic basis of various physiological and pathological processes. However, for kidney, which plays an essential role in the body, the available kidney-specific model remains incomplete. This paper reports the reconstruction and characterization of the human kidney metabolic network based on transcriptome and proteome data. In silico simulations revealed that house-keeping genes were more essential than kidney-specific genes in maintaining kidney metabolism. Importantly, a total of 267 potential metabolic biomarkers for kidney-related diseases were successfully explored using this model. Furthermore, we found that the discrepancies in metabolic processes of different tissues are directly corresponding to tissue's functions. Finally, the phenotypes of the differentially expressed genes in diabetic kidney disease were characterized, suggesting that these genes may affect disease development through altering kidney metabolism. Thus, the human kidney-specific model constructed in this study may provide valuable information for the metabolism of kidney and offer excellent insights into complex kidney diseases.

  15. Metabolic Brain Network Analysis of Hypothyroidism Symptom Based on [18F]FDG-PET of Rats.

    Science.gov (United States)

    Wan, Hongkai; Tan, Ziyu; Zheng, Qiang; Yu, Jing

    2018-03-12

    Recent researches have demonstrated the value of using 2-deoxy-2-[ 18 F]fluoro-D-glucose ([ 18 F]FDG) positron emission tomography (PET) imaging to reveal the hypothyroidism-related damages in local brain regions. However, the influence of hypothyroidism on the entire brain network is barely studied. This study focuses on the application of graph theory on analyzing functional brain networks of the hypothyroidism symptom. For both the hypothyroidism and the control groups of Wistar rats, the functional brain networks were constructed by thresholding the glucose metabolism correlation matrices of 58 brain regions. The network topological properties (including the small-world properties and the nodal centralities) were calculated and compared between the two groups. We found that the rat brains, like human brains, have typical properties of the small-world network in both the hypothyroidism and the control groups. However, the hypothyroidism group demonstrated lower global efficiency and decreased local cliquishness of the brain network, indicating hypothyroidism-related impairment to the brain network. The hypothyroidism group also has decreased nodal centrality in the left posterior hippocampus, the right hypothalamus, pituitary, pons, and medulla. This observation accorded with the hypothyroidism-related functional disorder of hypothalamus-pituitary-thyroid (HPT) feedback regulation mechanism. Our research quantitatively confirms that hypothyroidism hampers brain cognitive function by causing impairment to the brain network of glucose metabolism. This study reveals the feasibility and validity of applying graph theory method to preclinical [ 18 F]FDG-PET images and facilitates future study on human subjects.

  16. Genome-scale reconstruction and analysis of the Pseudomonas putida KT2440 metabolic network facilitates applications in biotechnology.

    Science.gov (United States)

    Puchałka, Jacek; Oberhardt, Matthew A; Godinho, Miguel; Bielecka, Agata; Regenhardt, Daniela; Timmis, Kenneth N; Papin, Jason A; Martins dos Santos, Vítor A P

    2008-10-01

    A cornerstone of biotechnology is the use of microorganisms for the efficient production of chemicals and the elimination of harmful waste. Pseudomonas putida is an archetype of such microbes due to its metabolic versatility, stress resistance, amenability to genetic modifications, and vast potential for environmental and industrial applications. To address both the elucidation of the metabolic wiring in P. putida and its uses in biocatalysis, in particular for the production of non-growth-related biochemicals, we developed and present here a genome-scale constraint-based model of the metabolism of P. putida KT2440. Network reconstruction and flux balance analysis (FBA) enabled definition of the structure of the metabolic network, identification of knowledge gaps, and pin-pointing of essential metabolic functions, facilitating thereby the refinement of gene annotations. FBA and flux variability analysis were used to analyze the properties, potential, and limits of the model. These analyses allowed identification, under various conditions, of key features of metabolism such as growth yield, resource distribution, network robustness, and gene essentiality. The model was validated with data from continuous cell cultures, high-throughput phenotyping data, (13)C-measurement of internal flux distributions, and specifically generated knock-out mutants. Auxotrophy was correctly predicted in 75% of the cases. These systematic analyses revealed that the metabolic network structure is the main factor determining the accuracy of predictions, whereas biomass composition has negligible influence. Finally, we drew on the model to devise metabolic engineering strategies to improve production of polyhydroxyalkanoates, a class of biotechnologically useful compounds whose synthesis is not coupled to cell survival. The solidly validated model yields valuable insights into genotype-phenotype relationships and provides a sound framework to explore this versatile bacterium and to

  17. Genome-scale reconstruction and analysis of the Pseudomonas putida KT2440 metabolic network facilitates applications in biotechnology.

    Directory of Open Access Journals (Sweden)

    Jacek Puchałka

    2008-10-01

    Full Text Available A cornerstone of biotechnology is the use of microorganisms for the efficient production of chemicals and the elimination of harmful waste. Pseudomonas putida is an archetype of such microbes due to its metabolic versatility, stress resistance, amenability to genetic modifications, and vast potential for environmental and industrial applications. To address both the elucidation of the metabolic wiring in P. putida and its uses in biocatalysis, in particular for the production of non-growth-related biochemicals, we developed and present here a genome-scale constraint-based model of the metabolism of P. putida KT2440. Network reconstruction and flux balance analysis (FBA enabled definition of the structure of the metabolic network, identification of knowledge gaps, and pin-pointing of essential metabolic functions, facilitating thereby the refinement of gene annotations. FBA and flux variability analysis were used to analyze the properties, potential, and limits of the model. These analyses allowed identification, under various conditions, of key features of metabolism such as growth yield, resource distribution, network robustness, and gene essentiality. The model was validated with data from continuous cell cultures, high-throughput phenotyping data, (13C-measurement of internal flux distributions, and specifically generated knock-out mutants. Auxotrophy was correctly predicted in 75% of the cases. These systematic analyses revealed that the metabolic network structure is the main factor determining the accuracy of predictions, whereas biomass composition has negligible influence. Finally, we drew on the model to devise metabolic engineering strategies to improve production of polyhydroxyalkanoates, a class of biotechnologically useful compounds whose synthesis is not coupled to cell survival. The solidly validated model yields valuable insights into genotype-phenotype relationships and provides a sound framework to explore this versatile

  18. The origin of modern metabolic networks inferred from phylogenomic analysis of protein architecture.

    Science.gov (United States)

    Caetano-Anollés, Gustavo; Kim, Hee Shin; Mittenthal, Jay E

    2007-05-29

    Metabolism represents a complex collection of enzymatic reactions and transport processes that convert metabolites into molecules capable of supporting cellular life. Here we explore the origins and evolution of modern metabolism. Using phylogenomic information linked to the structure of metabolic enzymes, we sort out recruitment processes and discover that most enzymatic activities were associated with the nine most ancient and widely distributed protein fold architectures. An analysis of newly discovered functions showed enzymatic diversification occurred early, during the onset of the modern protein world. Most importantly, phylogenetic reconstruction exercises and other evidence suggest strongly that metabolism originated in enzymes with the P-loop hydrolase fold in nucleotide metabolism, probably in pathways linked to the purine metabolic subnetwork. Consequently, the first enzymatic takeover of an ancient biochemistry or prebiotic chemistry was related to the synthesis of nucleotides for the RNA world.

  19. Metabolic network analysis of Bacillus clausii on minimal and semirich medium using C-13-Labeled glucose

    DEFF Research Database (Denmark)

    Christiansen, Torben; Christensen, Bjarke; Nielsen, Jens

    2002-01-01

    to increase with increasing specific growth rate but at a much lower level than previously reported for Bacillus subtilis. Two futile cycles in the pyruvate metabolism were included in the metabolic network. A substantial flux in the futile cycle involving malic enzyme was estimated, whereas only a very small...... or zero flux through PEP carboxykinase was estimated, indicating that the latter enzyme was not active during growth on glucose. The uptake of the amino acids in a semirich medium containing 15 of the 20 amino acids normally present in proteins was estimated using fully labeled glucose in batch...

  20. Metabolic network analysis-based identification of antimicrobial drug targets in category A bioterrorism agents.

    Directory of Open Access Journals (Sweden)

    Yong-Yeol Ahn

    Full Text Available The 2001 anthrax mail attacks in the United States demonstrated the potential threat of bioterrorism, hence driving the need to develop sophisticated treatment and diagnostic protocols to counter biological warfare. Here, by performing flux balance analyses on the fully-annotated metabolic networks of multiple, whole genome-sequenced bacterial strains, we have identified a large number of metabolic enzymes as potential drug targets for each of the three Category A-designated bioterrorism agents including Bacillus anthracis, Francisella tularensis and Yersinia pestis. Nine metabolic enzymes- belonging to the coenzyme A, folate, phosphatidyl-ethanolamine and nucleic acid pathways common to all strains across the three distinct genera were identified as targets. Antimicrobial agents against some of these enzymes are available. Thus, a combination of cross species-specific antibiotics and common antimicrobials against shared targets may represent a useful combinatorial therapeutic approach against all Category A bioterrorism agents.

  1. Genome-scale reconstruction and analysis of the metabolic network in the hyperthermophilic archaeon Sulfolobus solfataricus.

    Directory of Open Access Journals (Sweden)

    Thomas Ulas

    Full Text Available We describe the reconstruction of a genome-scale metabolic model of the crenarchaeon Sulfolobus solfataricus, a hyperthermoacidophilic microorganism. It grows in terrestrial volcanic hot springs with growth occurring at pH 2-4 (optimum 3.5 and a temperature of 75-80°C (optimum 80°C. The genome of Sulfolobus solfataricus P2 contains 2,992,245 bp on a single circular chromosome and encodes 2,977 proteins and a number of RNAs. The network comprises 718 metabolic and 58 transport/exchange reactions and 705 unique metabolites, based on the annotated genome and available biochemical data. Using the model in conjunction with constraint-based methods, we simulated the metabolic fluxes induced by different environmental and genetic conditions. The predictions were compared to experimental measurements and phenotypes of S. solfataricus. Furthermore, the performance of the network for 35 different carbon sources known for S. solfataricus from the literature was simulated. Comparing the growth on different carbon sources revealed that glycerol is the carbon source with the highest biomass flux per imported carbon atom (75% higher than glucose. Experimental data was also used to fit the model to phenotypic observations. In addition to the commonly known heterotrophic growth of S. solfataricus, the crenarchaeon is also able to grow autotrophically using the hydroxypropionate-hydroxybutyrate cycle for bicarbonate fixation. We integrated this pathway into our model and compared bicarbonate fixation with growth on glucose as sole carbon source. Finally, we tested the robustness of the metabolism with respect to gene deletions using the method of Minimization of Metabolic Adjustment (MOMA, which predicted that 18% of all possible single gene deletions would be lethal for the organism.

  2. Evolution of metabolic network organization

    Directory of Open Access Journals (Sweden)

    Bonchev Danail

    2010-05-01

    Full Text Available Abstract Background Comparison of metabolic networks across species is a key to understanding how evolutionary pressures shape these networks. By selecting taxa representative of different lineages or lifestyles and using a comprehensive set of descriptors of the structure and complexity of their metabolic networks, one can highlight both qualitative and quantitative differences in the metabolic organization of species subject to distinct evolutionary paths or environmental constraints. Results We used a novel representation of metabolic networks, termed network of interacting pathways or NIP, to focus on the modular, high-level organization of the metabolic capabilities of the cell. Using machine learning techniques we identified the most relevant aspects of cellular organization that change under evolutionary pressures. We considered the transitions from prokarya to eukarya (with a focus on the transitions among the archaea, bacteria and eukarya, from unicellular to multicellular eukarya, from free living to host-associated bacteria, from anaerobic to aerobic, as well as the acquisition of cell motility or growth in an environment of various levels of salinity or temperature. Intuitively, we expect organisms with more complex lifestyles to have more complex and robust metabolic networks. Here we demonstrate for the first time that such organisms are not only characterized by larger, denser networks of metabolic pathways but also have more efficiently organized cross communications, as revealed by subtle changes in network topology. These changes are unevenly distributed among metabolic pathways, with specific categories of pathways being promoted to more central locations as an answer to environmental constraints. Conclusions Combining methods from graph theory and machine learning, we have shown here that evolutionary pressures not only affects gene and protein sequences, but also specific details of the complex wiring of functional modules

  3. A network perspective on metabolic inconsistency

    Directory of Open Access Journals (Sweden)

    Sonnenschein Nikolaus

    2012-05-01

    Full Text Available Abstract Background Integrating gene expression profiles and metabolic pathways under different experimental conditions is essential for understanding the coherence of these two layers of cellular organization. The network character of metabolic systems can be instrumental in developing concepts of agreement between expression data and pathways. A network-driven interpretation of gene expression data has the potential of suggesting novel classifiers for pathological cellular states and of contributing to a general theoretical understanding of gene regulation. Results Here, we analyze the coherence of gene expression patterns and a reconstruction of human metabolism, using consistency scores obtained from network and constraint-based analysis methods. We find a surprisingly strong correlation between the two measures, demonstrating that a substantial part of inconsistencies between metabolic processes and gene expression can be understood from a network perspective alone. Prompted by this finding, we investigate the topological context of the individual biochemical reactions responsible for the observed inconsistencies. On this basis, we are able to separate the differential contributions that bear physiological information about the system, from the unspecific contributions that unravel gaps in the metabolic reconstruction. We demonstrate the biological potential of our network-driven approach by analyzing transcriptome profiles of aldosterone producing adenomas that have been obtained from a cohort of Primary Aldosteronism patients. We unravel systematics in the data that could not have been resolved by conventional microarray data analysis. In particular, we discover two distinct metabolic states in the adenoma expression patterns. Conclusions The methodology presented here can help understand metabolic inconsistencies from a network perspective. It thus serves as a mediator between the topology of metabolic systems and their dynamical

  4. Thermodynamic analysis of computed pathways integrated into the metabolic networks of E. coli and Synechocystis reveals contrasting expansion potential.

    Science.gov (United States)

    Asplund-Samuelsson, Johannes; Janasch, Markus; Hudson, Elton P

    2018-01-01

    Introducing biosynthetic pathways into an organism is both reliant on and challenged by endogenous biochemistry. Here we compared the expansion potential of the metabolic network in the photoautotroph Synechocystis with that of the heterotroph E. coli using the novel workflow POPPY (Prospecting Optimal Pathways with PYthon). First, E. coli and Synechocystis metabolomic and fluxomic data were combined with metabolic models to identify thermodynamic constraints on metabolite concentrations (NET analysis). Then, thousands of automatically constructed pathways were placed within each network and subjected to a network-embedded variant of the max-min driving force analysis (NEM). We found that the networks had different capabilities for imparting thermodynamic driving forces toward certain compounds. Key metabolites were constrained differently in Synechocystis due to opposing flux directions in glycolysis and carbon fixation, the forked tri-carboxylic acid cycle, and photorespiration. Furthermore, the lysine biosynthesis pathway in Synechocystis was identified as thermodynamically constrained, impacting both endogenous and heterologous reactions through low 2-oxoglutarate levels. Our study also identified important yet poorly covered areas in existing metabolomics data and provides a reference for future thermodynamics-based engineering in Synechocystis and beyond. The POPPY methodology represents a step in making optimal pathway-host matches, which is likely to become important as the practical range of host organisms is diversified. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Robust Regression Analysis of GCMS Data Reveals Differential Rewiring of Metabolic Networks in Hepatitis B and C Patients

    Directory of Open Access Journals (Sweden)

    Cedric Simillion

    2017-10-01

    Full Text Available About one in 15 of the world’s population is chronically infected with either hepatitis virus B (HBV or C (HCV, with enormous public health consequences. The metabolic alterations caused by these infections have never been directly compared and contrasted. We investigated groups of HBV-positive, HCV-positive, and uninfected healthy controls using gas chromatography-mass spectrometry analyses of their plasma and urine. A robust regression analysis of the metabolite data was conducted to reveal correlations between metabolite pairs. Ten metabolite correlations appeared for HBV plasma and urine, with 18 for HCV plasma and urine, none of which were present in the controls. Metabolic perturbation networks were constructed, which permitted a differential view of the HBV- and HCV-infected liver. HBV hepatitis was consistent with enhanced glucose uptake, glycolysis, and pentose phosphate pathway metabolism, the latter using xylitol and producing threonic acid, which may also be imported by glucose transporters. HCV hepatitis was consistent with impaired glucose uptake, glycolysis, and pentose phosphate pathway metabolism, with the tricarboxylic acid pathway fueled by branched-chain amino acids feeding gluconeogenesis and the hepatocellular loss of glucose, which most probably contributed to hyperglycemia. It is concluded that robust regression analyses can uncover metabolic rewiring in disease states.

  6. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network

    DEFF Research Database (Denmark)

    Förster, Jochen; Famili, I.; Fu, P.

    2003-01-01

    and the environment were included. A total of 708 structural open reading frames (ORFs) were accounted for in the reconstructed network, corresponding to 1035 metabolic reactions. Further, 140 reactions were included on the basis of biochemical evidence resulting in a genome-scale reconstructed metabolic network...... with Escherichia coli. The reconstructed metabolic network is the first comprehensive network for a eukaryotic organism, and it may be used as the basis for in silico analysis of phenotypic functions....

  7. Optimal flux patterns in cellular metabolic networks

    Energy Technology Data Exchange (ETDEWEB)

    Almaas, E

    2007-01-20

    The availability of whole-cell level metabolic networks of high quality has made it possible to develop a predictive understanding of bacterial metabolism. Using the optimization framework of flux balance analysis, I investigate metabolic response and activity patterns to variations in the availability of nutrient and chemical factors such as oxygen and ammonia by simulating 30,000 random cellular environments. The distribution of reaction fluxes is heavy-tailed for the bacteria H. pylori and E. coli, and the eukaryote S. cerevisiae. While the majority of flux balance investigations have relied on implementations of the simplex method, it is necessary to use interior-point optimization algorithms to adequately characterize the full range of activity patterns on metabolic networks. The interior-point activity pattern is bimodal for E. coli and S. cerevisiae, suggesting that most metabolic reaction are either in frequent use or are rarely active. The trimodal activity pattern of H. pylori indicates that a group of its metabolic reactions (20%) are active in approximately half of the simulated environments. Constructing the high-flux backbone of the network for every environment, there is a clear trend that the more frequently a reaction is active, the more likely it is a part of the backbone. Finally, I briefly discuss the predicted activity patterns of the central-carbon metabolic pathways for the sample of random environments.

  8. Genome-scale metabolic network validation of Shewanella oneidensis using transposon insertion frequency analysis.

    Directory of Open Access Journals (Sweden)

    Hong Yang

    2014-09-01

    Full Text Available Transposon mutagenesis, in combination with parallel sequencing, is becoming a powerful tool for en-masse mutant analysis. A probability generating function was used to explain observed miniHimar transposon insertion patterns, and gene essentiality calls were made by transposon insertion frequency analysis (TIFA. TIFA incorporated the observed genome and sequence motif bias of the miniHimar transposon. The gene essentiality calls were compared to: 1 previous genome-wide direct gene-essentiality assignments; and, 2 flux balance analysis (FBA predictions from an existing genome-scale metabolic model of Shewanella oneidensis MR-1. A three-way comparison between FBA, TIFA, and the direct essentiality calls was made to validate the TIFA approach. The refinement in the interpretation of observed transposon insertions demonstrated that genes without insertions are not necessarily essential, and that genes that contain insertions are not always nonessential. The TIFA calls were in reasonable agreement with direct essentiality calls for S. oneidensis, but agreed more closely with E. coli essentiality calls for orthologs. The TIFA gene essentiality calls were in good agreement with the MR-1 FBA essentiality predictions, and the agreement between TIFA and FBA predictions was substantially better than between the FBA and the direct gene essentiality predictions.

  9. Coexpression network analysis in abdominal and gluteal adipose tissue reveals regulatory genetic loci for metabolic syndrome and related phenotypes.

    Directory of Open Access Journals (Sweden)

    Josine L Min

    Full Text Available Metabolic Syndrome (MetS is highly prevalent and has considerable public health impact, but its underlying genetic factors remain elusive. To identify gene networks involved in MetS, we conducted whole-genome expression and genotype profiling on abdominal (ABD and gluteal (GLU adipose tissue, and whole blood (WB, from 29 MetS cases and 44 controls. Co-expression network analysis for each tissue independently identified nine, six, and zero MetS-associated modules of coexpressed genes in ABD, GLU, and WB, respectively. Of 8,992 probesets expressed in ABD or GLU, 685 (7.6% were expressed in ABD and 51 (0.6% in GLU only. Differential eigengene network analysis of 8,256 shared probesets detected 22 shared modules with high preservation across adipose depots (D(ABD-GLU = 0.89, seven of which were associated with MetS (FDR P100,000 individuals; rs10282458, affecting expression of RARRES2 (encoding chemerin, was associated with body mass index (BMI (P = 6.0×10(-4; and rs2395185, affecting inter-depot differences of HLA-DRB1 expression, was associated with high-density lipoprotein (P = 8.7×10(-4 and BMI-adjusted waist-to-hip ratio (P = 2.4×10(-4. Since many genes and their interactions influence complex traits such as MetS, integrated analysis of genotypes and coexpression networks across multiple tissues relevant to clinical traits is an efficient strategy to identify novel associations.

  10. Metabolic network analysis and experimental study of lipid production in Rhodosporidium toruloides grown on single and mixed substrates.

    Science.gov (United States)

    Bommareddy, Rajesh Reddy; Sabra, Wael; Maheshwari, Garima; Zeng, An-Ping

    2015-03-18

    Microbial lipids (triacylglycerols, TAG) have received large attention for a sustainable production of oleochemicals and biofuels. Rhodosporidium toruloides can accumulate lipids up to 70% of its cell mass under certain conditions. However, our understanding of lipid production in this yeast is still much limited, especially for growth with mixed substrates at the level of metabolic network. In this work, the potentials of several important carbon sources for TAG production in R.toruloides are first comparatively studied in silico by means of elementary mode analysis followed by experimental validation. A simplified metabolic network of R.toruloides was reconstructed based on a combination of genome and proteome annotations. Optimal metabolic space was studied using elementary mode analysis for growth on glycerol, glucose, xylose and arabinose or in mixtures. The in silico model predictions of growth and lipid production are in agreement with experimental results. Both the in silico and experimental studies revealed that glycerol is an attractive substrate for lipid synthesis in R. toruloides either alone or in blend with sugars. A lipid yield as high as 0.53 (C-mol TAG/C-mol) has been experimentally obtained for growth on glycerol, compared to a theoretical maximum of 0.63 (C-mol TAG/C-mol). The lipid yield on glucose is much lower (0.29 (experimental) vs. 0.58 (predicted) C-mol TAG/C-mol). The blend of glucose with glycerol decreased the lipid yield on substrate but can significantly increase the overall volumetric productivity. Experimental studies revealed catabolite repression of glycerol by the presence of glucose for the first time. Significant influence of oxygen concentration on the yield and composition of lipids were observed which have not been quantitatively studied before. This study provides for the first time a simplified metabolic model of R.toruloides and its detailed in silico analysis for growth on different carbon sources for their potential of

  11. From genomes to in silico cells via metabolic networks

    DEFF Research Database (Denmark)

    Borodina, Irina; Nielsen, Jens

    2005-01-01

    Genome-scale metabolic models are the focal point of systems biology as they allow the collection of various data types in a form suitable for mathematical analysis. High-quality metabolic networks and metabolic networks with incorporated regulation have been successfully used for the analysis of...... approaches to obtain an in silico prediction of cellular function based on the interaction of all of the cellular components....

  12. Ultraperformance liquid chromatography-mass spectrometry based comprehensive metabolomics combined with pattern recognition and network analysis methods for characterization of metabolites and metabolic pathways from biological data sets.

    Science.gov (United States)

    Zhang, Ai-hua; Sun, Hui; Han, Ying; Yan, Guang-li; Yuan, Ye; Song, Gao-chen; Yuan, Xiao-xia; Xie, Ning; Wang, Xi-jun

    2013-08-06

    Metabolomics is the study of metabolic changes in biological systems and provides the small molecule fingerprints related to the disease. Extracting biomedical information from large metabolomics data sets by multivariate data analysis is of considerable complexity. Therefore, more efficient and optimizing metabolomics data processing technologies are needed to improve mass spectrometry applications in biomarker discovery. Here, we report the findings of urine metabolomic investigation of hepatitis C virus (HCV) patients by high-throughput ultraperformance liquid chromatography-mass spectrometry (UPLC-MS) coupled with pattern recognition methods (principal component analysis, partial least-squares, and OPLS-DA) and network pharmacology. A total of 20 urinary differential metabolites (13 upregulated and 7 downregulated) were identified and contributed to HCV progress, involve several key metabolic pathways such as taurine and hypotaurine metabolism, glycine, serine and threonine metabolism, histidine metabolism, arginine and proline metabolism, and so forth. Metabolites identified through metabolic profiling may facilitate the development of more accurate marker algorithms to better monitor disease progression. Network analysis validated close contact between these metabolites and implied the importance of the metabolic pathways. Mapping altered metabolites to KEGG pathways identified alterations in a variety of biological processes mediated through complex networks. These findings may be promising to yield a valuable and noninvasive tool that insights into the pathophysiology of HCV and to advance the early diagnosis and monitor the progression of disease. Overall, this investigation illustrates the power of the UPLC-MS platform combined with the pattern recognition and network analysis methods that can engender new insights into HCV pathobiology.

  13. Differential RNA-seq, Multi-Network Analysis and Metabolic Regulation Analysis of Kluyveromyces marxianus Reveals a Compartmentalised Response to Xylose.

    Directory of Open Access Journals (Sweden)

    Du Toit W P Schabort

    Full Text Available We investigated the transcriptomic response of a new strain of the yeast Kluyveromyces marxianus, in glucose and xylose media using RNA-seq. The data were explored in a number of innovative ways using a variety of networks types, pathway maps, enrichment statistics, reporter metabolites and a flux simulation model, revealing different aspects of the genome-scale response in an integrative systems biology manner. The importance of the subcellular localisation in the transcriptomic response is emphasised here, revealing new insights. As was previously reported by others using a rich medium, we show that peroxisomal fatty acid catabolism was dramatically up-regulated in a defined xylose mineral medium without fatty acids, along with mechanisms to activate fatty acids and transfer products of β-oxidation to the mitochondria. Notably, we observed a strong up-regulation of the 2-methylcitrate pathway, supporting capacity for odd-chain fatty acid catabolism. Next we asked which pathways would respond to the additional requirement for NADPH for xylose utilisation, and rationalised the unexpected results using simulations with Flux Balance Analysis. On a fundamental level, we investigated the contribution of the hierarchical and metabolic regulation levels to the regulation of metabolic fluxes. Metabolic regulation analysis suggested that genetic level regulation plays a major role in regulating metabolic fluxes in adaptation to xylose, even for the high capacity reactions, which is unexpected. In addition, isozyme switching may play an important role in re-routing of metabolic fluxes in subcellular compartments in K. marxianus.

  14. Profiling metabolic networks to study cancer metabolism.

    Science.gov (United States)

    Hiller, Karsten; Metallo, Christian M

    2013-02-01

    Cancer is a disease of unregulated cell growth and survival, and tumors reprogram biochemical pathways to aid these processes. New capabilities in the computational and bioanalytical characterization of metabolism have now emerged, facilitating the identification of unique metabolic dependencies that arise in specific cancers. By understanding the metabolic phenotype of cancers as a function of their oncogenic profiles, metabolic engineering may be applied to design synthetically lethal therapies for some tumors. This process begins with accurate measurement of metabolic fluxes. Here we review advanced methods of quantifying pathway activity and highlight specific examples where these approaches have uncovered potential opportunities for therapeutic intervention. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Artificial neural network analysis of factors controlling ecosystem metabolism in coastal systems

    NARCIS (Netherlands)

    Rochelle-Newall, E.J.; Winter, C.; Barrón, C.; Borges, A.V.; Duarte, C.M.; Elliott, M.; Frankignoulle, M.; Gazeau, F.P.H.; Middelburg, J.J.; Pizay, M-D.; Thioulouse, J.; Gattuso, J.P.

    2007-01-01

    Knowing the metabolic balance of an ecosystem is of utmost importance in determining whether the system is a net source or net sink of carbon dioxide to the atmosphere. However, obtaining these estimates often demands significant amounts of time and manpower. Here we present a simplified way to

  16. Coexpression network analysis in abdominal and gluteal adipose tissue reveals regulatory genetic loci for metabolic syndrome and related phenotypes

    DEFF Research Database (Denmark)

    Min, Josine L; Nicholson, George; Halgrimsdottir, Ingileif

    2012-01-01

    Metabolic Syndrome (MetS) is highly prevalent and has considerable public health impact, but its underlying genetic factors remain elusive. To identify gene networks involved in MetS, we conducted whole-genome expression and genotype profiling on abdominal (ABD) and gluteal (GLU) adipose tissue, ...

  17. A genome scale metabolic network for rice and accompanying analysis of tryptophan, auxin and serotonin biosynthesis regulation under biotic stress

    Science.gov (United States)

    Functional annotations of large plant genome projects mostly provide information on gene function and gene families based on the presence of protein domains and gene homology, but not necessarily in association with gene expression or metabolic and regulatory networks. These additional annotations a...

  18. Principal Metabolic Flux Mode Analysis.

    Science.gov (United States)

    Bhadra, Sahely; Blomberg, Peter; Castillo, Sandra; Rousu, Juho; Wren, Jonathan

    2018-02-06

    In the analysis of metabolism, two distinct and complementary approaches are frequently used: Principal component analysis (PCA) and stoichiometric flux analysis. PCA is able to capture the main modes of variability in a set of experiments and does not make many prior assumptions about the data, but does not inherently take into account the flux mode structure of metabolism. Stoichiometric flux analysis methods, such as Flux Balance Analysis (FBA) and Elementary Mode Analysis, on the other hand, are able to capture the metabolic flux modes, however, they are primarily designed for the analysis of single samples at a time, and not best suited for exploratory analysis on a large sets of samples. We propose a new methodology for the analysis of metabolism, called Principal Metabolic Flux Mode Analysis (PMFA), which marries the PCA and stoichiometric flux analysis approaches in an elegant regularized optimization framework. In short, the method incorporates a variance maximization objective form PCA coupled with a stoichiometric regularizer, which penalizes projections that are far from any flux modes of the network. For interpretability, we also introduce a sparse variant of PMFA that favours flux modes that contain a small number of reactions. Our experiments demonstrate the versatility and capabilities of our methodology. The proposed method can be applied to genome-scale metabolic network in efficient way as PMFA does not enumerate elementary modes. In addition, the method is more robust on out-of-steady steady-state experimental data than competing flux mode analysis approaches. Matlab software for PMFA and SPMFA and data set used for experiments are available in https://github.com/aalto-ics-kepaco/PMFA. sahely@iitpkd.ac.in, juho.rousu@aalto.fi, Peter.Blomberg@vtt.fi, Sandra.Castillo@vtt.fi. Detailed results are in Supplementary files. Supplementary data are available at https://github.com/aalto-ics-kepaco/PMFA/blob/master/Results.zip.

  19. Genealogy profiling through strain improvement by using metabolic network analysis: metabolic flux genealogy of several generations of lysine-producing corynebacteria.

    Science.gov (United States)

    Wittmann, Christoph; Heinzle, Elmar

    2002-12-01

    A comprehensive approach of metabolite balancing, (13)C tracer studies, gas chromatography-mass spectrometry, matrix-assisted laser desorption ionization-time of flight mass spectrometry, and isotopomer modeling was applied for comparative metabolic network analysis of a genealogy of five successive generations of lysine-producing Corynebacterium glutamicum. The five strains examined (C. glutamicum ATCC 13032, 13287, 21253, 21526, and 21543) were previously obtained by random mutagenesis and selection. Throughout the genealogy, the lysine yield in batch cultures increased markedly from 1.2 to 24.9% relative to the glucose uptake flux. Strain optimization was accompanied by significant changes in intracellular flux distributions. The relative pentose phosphate pathway (PPP) flux successively increased, clearly corresponding to the product yield. Moreover, the anaplerotic net flux increased almost twofold as a consequence of concerted regulation of C(3) carboxylation and C(4) decarboxylation fluxes to cover the increased demand for lysine formation; thus, the overall increase was a consequence of concerted regulation of C(3) carboxylation and C(4) decarboxylation fluxes. The relative flux through isocitrate dehydrogenase dropped from 82.7% in the wild type to 59.9% in the lysine-producing mutants. In contrast to the NADPH demand, which increased from 109 to 172% due to the increasing lysine yield, the overall NADPH supply remained constant between 185 and 196%, resulting in a decrease in the apparent NADPH excess through strain optimization. Extrapolated to industrial lysine producers, the NADPH supply might become a limiting factor. The relative contributions of PPP and the tricarboxylic acid cycle to NADPH generation changed markedly, indicating that C. glutamicum is able to maintain a constant supply of NADPH under completely different flux conditions. Statistical analysis by a Monte Carlo approach revealed high precision for the estimated fluxes, underlining the

  20. The topology of metabolic isotope labeling networks

    Directory of Open Access Journals (Sweden)

    Wiechert Wolfgang

    2007-08-01

    Full Text Available Abstract Background Metabolic Flux Analysis (MFA based on isotope labeling experiments (ILEs is a widely established tool for determining fluxes in metabolic pathways. Isotope labeling networks (ILNs contain all essential information required to describe the flow of labeled material in an ILE. Whereas recent experimental progress paves the way for high-throughput MFA, large network investigations and exact statistical methods, these developments are still limited by the poor performance of computational routines used for the evaluation and design of ILEs. In this context, the global analysis of ILN topology turns out to be a clue for realizing large speedup factors in all required computational procedures. Results With a strong focus on the speedup of algorithms the topology of ILNs is investigated using graph theoretic concepts and algorithms. A rigorous determination of all cyclic and isomorphic subnetworks, accompanied by the global analysis of ILN connectivity is performed. Particularly, it is proven that ILNs always brake up into a large number of small strongly connected components (SCCs and, moreover, there are natural isomorphisms between many of these SCCs. All presented techniques are universal, i.e. they do not require special assumptions on the network structure, bidirectionality of fluxes, measurement configuration, or label input. The general results are exemplified with a practically relevant metabolic network which describes the central metabolism of E. coli comprising 10390 isotopomer pools. Conclusion Exploiting the topological features of ILNs leads to a significant speedup of all universal algorithms for ILE evaluation. It is proven in theory and exemplified with the E. coli example that a speedup factor of about 1000 compared to standard algorithms is achieved. This widely opens the door for new high performance algorithms suitable for high throughput applications and large ILNs. Moreover, for the first time the global

  1. Stability from Structure : Metabolic Networks Are Unlike Other Biological Networks

    NARCIS (Netherlands)

    Van Nes, P.; Bellomo, D.; Reinders, M.J.T.; De Ridder, D.

    2009-01-01

    In recent work, attempts have been made to link the structure of biochemical networks to their complex dynamics. It was shown that structurally stable network motifs are enriched in such networks. In this work, we investigate to what extent these findings apply to metabolic networks. To this end, we

  2. Metabolic network analysis on Phaffia rhodozyma yeast using C-13-labeled glucose and gas chromatography-mass spectrometry

    DEFF Research Database (Denmark)

    Cannizzaro, C.; Christensen, B.; Nielsen, Jens

    2004-01-01

    labeling patterns, as determined by GC-MS, were in accordance with a metabolic network consisting of the Embden-Meyerhof-Parnas pathway, the pentose phosphate pathway, and the TCA cycle. Glucose was mainly consumed along the pentose phosphate pathway (similar to65% for wildtype strain), which reflected...... to that of the wildtype strain, though the relative pentose phosphate flux was lower and the TCA cycle flux in accordance with the biomass yield being lower....

  3. Metabolic network analysis on Phaffia rhodozyma yeast using C-13-labeled glucose and gas chromatography-mass spectrometry

    DEFF Research Database (Denmark)

    Cannizzaro, C.; Christensen, B.; Nielsen, Jens

    2004-01-01

    high NADPH requirements for lipid biosynthesis. Although common to other oleaginous yeast, there was no, or very little, malic enzyme activity for carbon-limited growth. In addition, there was no evidence of phosphoketolase activity. The central carbon metabolism of the mutant strain was similar......Carotenoid production by micro organisms, as opposed to chemical synthesis, could fulfill an ever-increasing demand for 'all natural' products. The yeast Phaffia rhodozyma has received considerable attention because it produces the red pigment astaxanthin, commonly used as an animal feed supplement....... In order to have a better understanding of its metabolism, labeling experiments with [1-C-13]glucose were conducted with the wildtype strain (CBS5905T) and a hyper-producing carotenoid strain (J4-3) in order to determine their metabolic network structure and estimate intracellular fluxes. Amino acid...

  4. Correlation-Based Network Generation, Visualization, and Analysis as a Powerful Tool in Biological Studies: A Case Study in Cancer Cell Metabolism

    Directory of Open Access Journals (Sweden)

    Albert Batushansky

    2016-01-01

    Full Text Available In the last decade vast data sets are being generated in biological and medical studies. The challenge lies in their summary, complexity reduction, and interpretation. Correlation-based networks and graph-theory based properties of this type of networks can be successfully used during this process. However, the procedure has its pitfalls and requires specific knowledge that often lays beyond classical biology and includes many computational tools and software. Here we introduce one of a series of methods for correlation-based network generation and analysis using freely available software. The pipeline allows the user to control each step of the network generation and provides flexibility in selection of correlation methods and thresholds. The pipeline was implemented on published metabolomics data of a population of human breast carcinoma cell lines MDA-MB-231 under two conditions: normal and hypoxia. The analysis revealed significant differences between the metabolic networks in response to the tested conditions. The network under hypoxia had 1.7 times more significant correlations between metabolites, compared to normal conditions. Unique metabolic interactions were identified which could lead to the identification of improved markers or aid in elucidating the mechanism of regulation between distantly related metabolites induced by the cancer growth.

  5. Extraction of elementary rate constants from global network analysis of E. coli central metabolism

    Science.gov (United States)

    Zhao, Jiao; Ridgway, Douglas; Broderick, Gordon; Kovalenko, Andriy; Ellison, Michael

    2008-01-01

    Background As computational performance steadily increases, so does interest in extending one-particle-per-molecule models to larger physiological problems. Such models however require elementary rate constants to calculate time-dependent rate coefficients under physiological conditions. Unfortunately, even when in vivo kinetic data is available, it is often in the form of aggregated rate laws (ARL) that do not specify the required elementary rate constants corresponding to mass-action rate laws (MRL). There is therefore a need to develop a method which is capable of automatically transforming ARL kinetic information into more detailed MRL rate constants. Results By incorporating proteomic data related to enzyme abundance into an MRL modelling framework, here we present an efficient method operating at a global network level for extracting elementary rate constants from experiment-based aggregated rate law (ARL) models. The method combines two techniques that can be used to overcome the difficult properties in parameterization. The first, a hybrid MRL/ARL modelling technique, is used to divide the parameter estimation problem into sub-problems, so that the parameters of the mass action rate laws for each enzyme are estimated in separate steps. This reduces the number of parameters that have to be optimized simultaneously. The second, a hybrid algebraic-numerical simulation and optimization approach, is used to render some rate constants identifiable, as well as to greatly narrow the bounds of the other rate constants that remain unidentifiable. This is done by incorporating equality constraints derived from the King-Altman and Cleland method into the simulated annealing algorithm. We apply these two techniques to estimate the rate constants of a model of E. coli glycolytic pathways. The simulation and statistical results show that our innovative method performs well in dealing with the issues of high computation cost, stiffness, local minima and uncertainty

  6. Genome-scale reconstruction of the Streptococcus pyogenes M49 metabolic network reveals growth requirements and indicates potential drug targets

    NARCIS (Netherlands)

    Levering, J.; Fiedler, T.; Sieg, A.; van Grinsven, K.W.A.; Hering, S.; Veith, N.; Olivier, B.G.; Klett, L.; Hugenholtz, J.; Teusink, B.; Kreikemeyer, B.; Kummer, U.

    2016-01-01

    Genome-scale metabolic models comprise stoichiometric relations between metabolites, as well as associations between genes and metabolic reactions and facilitate the analysis of metabolism. We computationally reconstructed the metabolic network of the lactic acid bacterium Streptococcus pyogenes

  7. A compendium of inborn errors of metabolism mapped onto the human metabolic network.

    Science.gov (United States)

    Sahoo, Swagatika; Franzson, Leifur; Jonsson, Jon J; Thiele, Ines

    2012-10-01

    Inborn errors of metabolism (IEMs) are hereditary metabolic defects, which are encountered in almost all major metabolic pathways occurring in man. Many IEMs are screened for in neonates through metabolomic analysis of dried blood spot samples. To enable the mapping of these metabolomic data onto the published human metabolic reconstruction, we added missing reactions and pathways involved in acylcarnitine (AC) and fatty acid oxidation (FAO) metabolism. Using literary data, we reconstructed an AC/FAO module consisting of 352 reactions and 139 metabolites. When this module was combined with the human metabolic reconstruction, the synthesis of 39 acylcarnitines and 22 amino acids, which are routinely measured, was captured and 235 distinct IEMs could be mapped. We collected phenotypic and clinical features for each IEM enabling comprehensive classification. We found that carbohydrate, amino acid, and lipid metabolism were most affected by the IEMs, while the brain was the most commonly affected organ. Furthermore, we analyzed the IEMs in the context of metabolic network topology to gain insight into common features between metabolically connected IEMs. While many known examples were identified, we discovered some surprising IEM pairs that shared reactions as well as clinical features but not necessarily causal genes. Moreover, we could also re-confirm that acetyl-CoA acts as a central metabolite. This network based analysis leads to further insight of hot spots in human metabolism with respect to IEMs. The presented comprehensive knowledge base of IEMs will provide a valuable tool in studying metabolic changes involved in inherited metabolic diseases.

  8. Horizontal and vertical growth of S. cerevisiae metabolic network.

    KAUST Repository

    Grassi, Luigi

    2011-10-14

    BACKGROUND: The growth and development of a biological organism is reflected by its metabolic network, the evolution of which relies on the essential gene duplication mechanism. There are two current views about the evolution of metabolic networks. The retrograde model hypothesizes that a pathway evolves by recruiting novel enzymes in a direction opposite to the metabolic flow. The patchwork model is instead based on the assumption that the evolution is based on the exploitation of broad-specificity enzymes capable of catalysing a variety of metabolic reactions. RESULTS: We analysed a well-studied unicellular eukaryotic organism, S. cerevisiae, and studied the effect of the removal of paralogous gene products on its metabolic network. Our results, obtained using different paralog and network definitions, show that, after an initial period when gene duplication was indeed instrumental in expanding the metabolic space, the latter reached an equilibrium and subsequent gene duplications were used as a source of more specialized enzymes rather than as a source of novel reactions. We also show that the switch between the two evolutionary strategies in S. cerevisiae can be dated to about 350 million years ago. CONCLUSIONS: Our data, obtained through a novel analysis methodology, strongly supports the hypothesis that the patchwork model better explains the more recent evolution of the S. cerevisiae metabolic network. Interestingly, the effects of a patchwork strategy acting before the Euascomycete-Hemiascomycete divergence are still detectable today.

  9. Does habitat variability really promote metabolic network modularity?

    Science.gov (United States)

    Takemoto, Kazuhiro

    2013-01-01

    The hypothesis that variability in natural habitats promotes modular organization is widely accepted for cellular networks. However, results of some data analyses and theoretical studies have begun to cast doubt on the impact of habitat variability on modularity in metabolic networks. Therefore, we re-evaluated this hypothesis using statistical data analysis and current metabolic information. We were unable to conclude that an increase in modularity was the result of habitat variability. Although horizontal gene transfer was also considered because it may contribute for survival in a variety of environments, closely related to habitat variability, and is known to be positively correlated with network modularity, such a positive correlation was not concluded in the latest version of metabolic networks. Furthermore, we demonstrated that the previously observed increase in network modularity due to habitat variability and horizontal gene transfer was probably due to a lack of available data on metabolic reactions. Instead, we determined that modularity in metabolic networks is dependent on species growth conditions. These results may not entirely discount the impact of habitat variability and horizontal gene transfer. Rather, they highlight the need for a more suitable definition of habitat variability and a more careful examination of relationships of the network modularity with horizontal gene transfer, habitats, and environments.

  10. Metabolic networks of Cucurbita maxima phloem.

    Science.gov (United States)

    Fiehn, Oliver

    2003-03-01

    Metabolomic analysis aims at a comprehensive characterization of biological samples. Yet, biologically meaningful interpretations are often limited by the poor spatial and temporal resolution of the acquired data sets. One way to remedy this is to limit the complexity of the cell types being studied. Cucurbita maxima Duch. vascular exudates provide an excellent material for metabolomics in this regard. Using automated mass spectral deconvolution, over 400 components have been detected in these exudates, but only 90 of them were tentatively identified. Many amino compounds were found in vascular exudates from leaf petioles at concentrations several orders of magnitude higher than in tissue disks from the same leaves, whereas hexoses and sucrose were found in far lower amounts. In order to find the expected impact of assimilation rates on sugar levels, total phloem composition of eight leaves from four plants was followed over 4.5 days. Surprisingly, no diurnal rhythm was found for any of the phloem metabolites that was statistically valid for all eight leaves. Instead, each leaf had its own distinct vascular exudate profile similar to leaves from the same plant, but clearly different from leaves harvested from plants at the same developmental stage. Thirty to forty per cent of all metabolite levels of individual leaves were different from the average of all metabolite profiles. Using metabolic co-regulation analysis, similarities and differences between the exudate profiles were more accurately characterized through network computation, specifically with respect to nitrogen metabolism.

  11. Thermodynamic calculations for biochemical transport and reaction processes in metabolic networks

    NARCIS (Netherlands)

    Jol, Stefan J; Kümmel, Anne; Hatzimanikatis, Vassily; Beard, Daniel A; Heinemann, Matthias

    2010-01-01

    Thermodynamic analysis of metabolic networks has recently generated increasing interest for its ability to add constraints on metabolic network operation, and to combine metabolic fluxes and metabolite measurements in a mechanistic manner. Concepts for the calculation of the change in Gibbs energy

  12. Network reconstruction of platelet metabolism identifies metabolic signature for aspirin resistance

    Science.gov (United States)

    Thomas, Alex; Rahmanian, Sorena; Bordbar, Aarash; Palsson, Bernhard Ø.; Jamshidi, Neema

    2014-01-01

    Recently there has not been a systematic, objective assessment of the metabolic capabilities of the human platelet. A manually curated, functionally tested, and validated biochemical reaction network of platelet metabolism, iAT-PLT-636, was reconstructed using 33 proteomic datasets and 354 literature references. The network contains enzymes mapping to 403 diseases and 231 FDA approved drugs, alluding to an expansive scope of biochemical transformations that may affect or be affected by disease processes in multiple organ systems. The effect of aspirin (ASA) resistance on platelet metabolism was evaluated using constraint-based modeling, which revealed a redirection of glycolytic, fatty acid, and nucleotide metabolism reaction fluxes in order to accommodate eicosanoid synthesis and reactive oxygen species stress. These results were confirmed with independent proteomic data. The construction and availability of iAT-PLT-636 should stimulate further data-driven, systems analysis of platelet metabolism towards the understanding of pathophysiological conditions including, but not strictly limited to, coagulopathies.

  13. Modeling the Differences in Biochemical Capabilities of Pseudomonas Species by Flux Balance Analysis: How Good Are Genome-Scale Metabolic Networks at Predicting the Differences?

    Directory of Open Access Journals (Sweden)

    Parizad Babaei

    2014-01-01

    Full Text Available To date, several genome-scale metabolic networks have been reconstructed. These models cover a wide range of organisms, from bacteria to human. Such models have provided us with a framework for systematic analysis of metabolism. However, little effort has been put towards comparing biochemical capabilities of closely related species using their metabolic models. The accuracy of a model is highly dependent on the reconstruction process, as some errors may be included in the model during reconstruction. In this study, we investigated the ability of three Pseudomonas metabolic models to predict the biochemical differences, namely, iMO1086, iJP962, and iSB1139, which are related to P. aeruginosa PAO1, P. putida KT2440, and P. fluorescens SBW25, respectively. We did a comprehensive literature search for previous works containing biochemically distinguishable traits over these species. Amongst more than 1700 articles, we chose a subset of them which included experimental results suitable for in silico simulation. By simulating the conditions provided in the actual biological experiment, we performed case-dependent tests to compare the in silico results to the biological ones. We found out that iMO1086 and iJP962 were able to predict the experimental data and were much more accurate than iSB1139.

  14. Modeling the differences in biochemical capabilities of pseudomonas species by flux balance analysis: how good are genome-scale metabolic networks at predicting the differences?

    Science.gov (United States)

    Babaei, Parizad; Ghasemi-Kahrizsangi, Tahereh; Marashi, Sayed-Amir

    2014-01-01

    To date, several genome-scale metabolic networks have been reconstructed. These models cover a wide range of organisms, from bacteria to human. Such models have provided us with a framework for systematic analysis of metabolism. However, little effort has been put towards comparing biochemical capabilities of closely related species using their metabolic models. The accuracy of a model is highly dependent on the reconstruction process, as some errors may be included in the model during reconstruction. In this study, we investigated the ability of three Pseudomonas metabolic models to predict the biochemical differences, namely, iMO1086, iJP962, and iSB1139, which are related to P. aeruginosa PAO1, P. putida KT2440, and P. fluorescens SBW25, respectively. We did a comprehensive literature search for previous works containing biochemically distinguishable traits over these species. Amongst more than 1700 articles, we chose a subset of them which included experimental results suitable for in silico simulation. By simulating the conditions provided in the actual biological experiment, we performed case-dependent tests to compare the in silico results to the biological ones. We found out that iMO1086 and iJP962 were able to predict the experimental data and were much more accurate than iSB1139.

  15. Ecological network analysis for carbon metabolism of eco-industrial parks: a case study of a typical eco-industrial park in Beijing.

    Science.gov (United States)

    Lu, Yi; Chen, Bin; Feng, Kuishuang; Hubacek, Klaus

    2015-06-16

    Energy production and industrial processes are crucial economic sectors accounting for about 62% of greenhouse gas (GHG) emissions globally in 2012. Eco-industrial parks are practical attempts to mitigate GHG emissions through cooperation among businesses and the local community in order to reduce waste and pollution, efficiently share resources, and help with the pursuit of sustainable development. This work developed a framework based on ecological network analysis to trace carbon metabolic processes in eco-industrial parks and applied it to a typical eco-industrial park in Beijing. Our findings show that the entire metabolic system is dominated by supply of primary goods from the external environment and final demand. The more carbon flows through a sector, the more influence it would exert upon the whole system. External environment and energy providers are the most active and dominating part of the carbon metabolic system, which should be the first target to mitigate emissions by increasing efficiencies. The carbon metabolism of the eco-industrial park can be seen as an evolutionary system with high levels of efficiency, but this may come at the expense of larger levels of resilience. This work may provide a useful modeling framework for low-carbon design and management of industrial parks.

  16. CardioNet: A human metabolic network suited for the study of cardiomyocyte metabolism

    Directory of Open Access Journals (Sweden)

    Karlstädt Anja

    2012-08-01

    Full Text Available Abstract Background Availability of oxygen and nutrients in the coronary circulation is a crucial determinant of cardiac performance. Nutrient composition of coronary blood may significantly vary in specific physiological and pathological conditions, for example, administration of special diets, long-term starvation, physical exercise or diabetes. Quantitative analysis of cardiac metabolism from a systems biology perspective may help to a better understanding of the relationship between nutrient supply and efficiency of metabolic processes required for an adequate cardiac output. Results Here we present CardioNet, the first large-scale reconstruction of the metabolic network of the human cardiomyocyte comprising 1793 metabolic reactions, including 560 transport processes in six compartments. We use flux-balance analysis to demonstrate the capability of the network to accomplish a set of 368 metabolic functions required for maintaining the structural and functional integrity of the cell. Taking the maintenance of ATP, biosynthesis of ceramide, cardiolipin and further important phospholipids as examples, we analyse how a changed supply of glucose, lactate, fatty acids and ketone bodies may influence the efficiency of these essential processes. Conclusions CardioNet is a functionally validated metabolic network of the human cardiomyocyte that enables theorectical studies of cellular metabolic processes crucial for the accomplishment of an adequate cardiac output.

  17. An integrated text mining framework for metabolic interaction network reconstruction

    Directory of Open Access Journals (Sweden)

    Preecha Patumcharoenpol

    2016-03-01

    Full Text Available Text mining (TM in the field of biology is fast becoming a routine analysis for the extraction and curation of biological entities (e.g., genes, proteins, simple chemicals as well as their relationships. Due to the wide applicability of TM in situations involving complex relationships, it is valuable to apply TM to the extraction of metabolic interactions (i.e., enzyme and metabolite interactions through metabolic events. Here we present an integrated TM framework containing two modules for the extraction of metabolic events (Metabolic Event Extraction module—MEE and for the construction of a metabolic interaction network (Metabolic Interaction Network Reconstruction module—MINR. The proposed integrated TM framework performed well based on standard measures of recall, precision and F-score. Evaluation of the MEE module using the constructed Metabolic Entities (ME corpus yielded F-scores of 59.15% and 48.59% for the detection of metabolic events for production and consumption, respectively. As for the testing of the entity tagger for Gene and Protein (GP and metabolite with the test corpus, the obtained F-score was greater than 80% for the Superpathway of leucine, valine, and isoleucine biosynthesis. Mapping of enzyme and metabolite interactions through network reconstruction showed a fair performance for the MINR module on the test corpus with F-score >70%. Finally, an application of our integrated TM framework on a big-scale data (i.e., EcoCyc extraction data for reconstructing a metabolic interaction network showed reasonable precisions at 69.93%, 70.63% and 46.71% for enzyme, metabolite and enzyme–metabolite interaction, respectively. This study presents the first open-source integrated TM framework for reconstructing a metabolic interaction network. This framework can be a powerful tool that helps biologists to extract metabolic events for further reconstruction of a metabolic interaction network. The ME corpus, test corpus, source

  18. On Functional Module Detection in Metabolic Networks

    Science.gov (United States)

    Koch, Ina; Ackermann, Jörg

    2013-01-01

    Functional modules of metabolic networks are essential for understanding the metabolism of an organism as a whole. With the vast amount of experimental data and the construction of complex and large-scale, often genome-wide, models, the computer-aided identification of functional modules becomes more and more important. Since steady states play a key role in biology, many methods have been developed in that context, for example, elementary flux modes, extreme pathways, transition invariants and place invariants. Metabolic networks can be studied also from the point of view of graph theory, and algorithms for graph decomposition have been applied for the identification of functional modules. A prominent and currently intensively discussed field of methods in graph theory addresses the Q-modularity. In this paper, we recall known concepts of module detection based on the steady-state assumption, focusing on transition-invariants (elementary modes) and their computation as minimal solutions of systems of Diophantine equations. We present the Fourier-Motzkin algorithm in detail. Afterwards, we introduce the Q-modularity as an example for a useful non-steady-state method and its application to metabolic networks. To illustrate and discuss the concepts of invariants and Q-modularity, we apply a part of the central carbon metabolism in potato tubers (Solanum tuberosum) as running example. The intention of the paper is to give a compact presentation of known steady-state concepts from a graph-theoretical viewpoint in the context of network decomposition and reduction and to introduce the application of Q-modularity to metabolic Petri net models. PMID:24958145

  19. Metabolic networks in epilepsy by MR spectroscopic imaging.

    Science.gov (United States)

    Pan, J W; Spencer, D D; Kuzniecky, R; Duckrow, R B; Hetherington, H; Spencer, S S

    2012-12-01

    The concept of an epileptic network has long been suggested from both animal and human studies of epilepsy. Based on the common observation that the MR spectroscopic imaging measure of NAA/Cr is sensitive to neuronal function and injury, we use this parameter to assess for the presence of a metabolic network in mesial temporal lobe epilepsy (MTLE) patients. A multivariate factor analysis is performed with controls and MTLE patients, using NAA/Cr measures from 12 loci: the bilateral hippocampi, thalami, basal ganglia, and insula. The factor analysis determines which and to what extent these loci are metabolically covarying. We extract two independent factors that explain the data's variability in control and MTLE patients. In controls, these factors characterize a 'thalamic' and 'dominant subcortical' function. The MTLE patients also exhibit a 'thalamic' factor, in addition to a second factor involving the ipsilateral insula and bilateral basal ganglia. These data suggest that MTLE patients demonstrate a metabolic network that involves the thalami, also seen in controls. The MTLE patients also display a second set of metabolically covarying regions that may be a manifestation of the epileptic network that characterizes limbic seizure propagation. © 2012 John Wiley & Sons A/S.

  20. Genotype networks, innovation, and robustness in sulfur metabolism

    Science.gov (United States)

    2011-01-01

    Background A metabolism is a complex network of chemical reactions. This network synthesizes multiple small precursor molecules of biomass from chemicals that occur in the environment. The metabolic network of any one organism is encoded by a metabolic genotype, defined as the set of enzyme-coding genes whose products catalyze the network's reactions. Each metabolic genotype has a metabolic phenotype. We define this metabolic phenotype as the spectrum of different sources of a chemical element that a metabolism can use to synthesize biomass. We here focus on the element sulfur. We study properties of the space of all possible metabolic genotypes in sulfur metabolism by analyzing random metabolic genotypes that are viable on different numbers of sulfur sources. Results We show that metabolic genotypes with the same phenotype form large connected genotype networks - networks of metabolic networks - that extend far through metabolic genotype space. How far they reach through this space depends linearly on the number of super-essential reactions. A super-essential reaction is an essential reaction that occurs in all networks viable in a given environment. Metabolic networks can differ in how robust their phenotype is to the removal of individual reactions. We find that this robustness depends on metabolic network size, and on other variables, such as the size of minimal metabolic networks whose reactions are all essential in a specific environment. We show that different neighborhoods of any genotype network harbor very different novel phenotypes, metabolic innovations that can sustain life on novel sulfur sources. We also analyze the ability of evolving populations of metabolic networks to explore novel metabolic phenotypes. This ability is facilitated by the existence of genotype networks, because different neighborhoods of these networks contain very different novel phenotypes. Conclusions We show that the space of metabolic genotypes involved in sulfur metabolism

  1. Correlation network analysis reveals relationships between diet-induced changes in human gut microbiota and metabolic health

    NARCIS (Netherlands)

    Kelder, T.; Stroeve, J.H.M.; Bijlsma, S.; Radonjic, M.; Roeselers, G.

    2014-01-01

    BACKGROUND: Recent evidence suggests that the gut microbiota plays an important role in human metabolism and energy homeostasis and is therefore a relevant factor in the assessment of metabolic health and flexibility. Understanding of these host–microbiome interactions aids the design of nutritional

  2. Estimating the size of the solution space of metabolic networks

    Directory of Open Access Journals (Sweden)

    Mulet Roberto

    2008-05-01

    Full Text Available Abstract Background Cellular metabolism is one of the most investigated system of biological interactions. While the topological nature of individual reactions and pathways in the network is quite well understood there is still a lack of comprehension regarding the global functional behavior of the system. In the last few years flux-balance analysis (FBA has been the most successful and widely used technique for studying metabolism at system level. This method strongly relies on the hypothesis that the organism maximizes an objective function. However only under very specific biological conditions (e.g. maximization of biomass for E. coli in reach nutrient medium the cell seems to obey such optimization law. A more refined analysis not assuming extremization remains an elusive task for large metabolic systems due to algorithmic limitations. Results In this work we propose a novel algorithmic strategy that provides an efficient characterization of the whole set of stable fluxes compatible with the metabolic constraints. Using a technique derived from the fields of statistical physics and information theory we designed a message-passing algorithm to estimate the size of the affine space containing all possible steady-state flux distributions of metabolic networks. The algorithm, based on the well known Bethe approximation, can be used to approximately compute the volume of a non full-dimensional convex polytope in high dimensions. We first compare the accuracy of the predictions with an exact algorithm on small random metabolic networks. We also verify that the predictions of the algorithm match closely those of Monte Carlo based methods in the case of the Red Blood Cell metabolic network. Then we test the effect of gene knock-outs on the size of the solution space in the case of E. coli central metabolism. Finally we analyze the statistical properties of the average fluxes of the reactions in the E. coli metabolic network. Conclusion We propose a

  3. Toward Synthetic Biology Strategies for Adipic Acid Production: An in Silico Tool for Combined Thermodynamics and Stoichiometric Analysis of Metabolic Networks.

    Science.gov (United States)

    Averesch, Nils J H; Martínez, Verónica S; Nielsen, Lars K; Krömer, Jens O

    2018-02-16

    Adipic acid, a nylon-6,6 precursor, has recently gained popularity in synthetic biology. Here, 16 different production routes to adipic acid were evaluated using a novel tool for network-embedded thermodynamic analysis of elementary flux modes. The tool distinguishes between thermodynamically feasible and infeasible modes under determined metabolite concentrations, allowing the thermodynamic feasibility of theoretical yields to be assessed. Further, patterns that always caused infeasible flux distributions were identified, which will aid the development of tailored strain design. A review of cellular efflux mechanisms revealed that significant accumulation of extracellular product is only possible if coupled with ATP hydrolysis. A stoichiometric analysis demonstrated that the maximum theoretical product carbon yield heavily depends on the metabolic route, ranging from 32 to 99% on glucose and/or palmitate in Escherichia coli and Saccharomyces cerevisiae metabolic models. Equally important, metabolite concentrations appeared to be thermodynamically restricted in several pathways. Consequently, the number of thermodynamically feasible flux distributions was reduced, in some cases even rendering whole pathways infeasible, highlighting the importance of pathway choice. Only routes based on the shikimate pathway were thermodynamically favorable over a large concentration and pH range. The low pH capability of S. cerevisiae shifted the thermodynamic equilibrium of some pathways toward product formation. One identified infeasible-pattern revealed that the reversibility of the mitochondrial malate dehydrogenase contradicted the current state of knowledge, which imposes a major restriction on the metabolism of S. cerevisiae. Finally, the evaluation of industrially relevant constraints revealed that two shikimate pathway-based routes in E. coli were the most robust.

  4. Sensitivity of chemical reaction networks: a structural approach. 1. Examples and the carbon metabolic network.

    Science.gov (United States)

    Mochizuki, Atsushi; Fiedler, Bernold

    2015-02-21

    In biological cells, chemical reaction pathways lead to complex network systems like metabolic networks. One experimental approach to the dynamics of such systems examines their "sensitivity": each enzyme mediating a reaction in the system is increased/decreased or knocked out separately, and the responses in the concentrations of chemicals or their fluxes are observed. In this study, we present a mathematical method, named structural sensitivity analysis, to determine the sensitivity of reaction systems from information on the network alone. We investigate how the sensitivity responses of chemicals in a reaction network depend on the structure of the network, and on the position of the perturbed reaction in the network. We establish and prove some general rules which relate the sensitivity response to the structure of the underlying network. We describe a hierarchical pattern in the flux response which is governed by branchings in the network. We apply our method to several hypothetical and real life chemical reaction networks, including the metabolic network of the Escherichia coli TCA cycle. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Novel proteins, putative membrane transporters, and an integrated metabolic network are revealed by quantitative proteomic analysis of Arabidopsis cell culture peroxisomes.

    Science.gov (United States)

    Eubel, Holger; Meyer, Etienne H; Taylor, Nicolas L; Bussell, John D; O'Toole, Nicholas; Heazlewood, Joshua L; Castleden, Ian; Small, Ian D; Smith, Steven M; Millar, A Harvey

    2008-12-01

    Peroxisomes play key roles in energy metabolism, cell signaling, and plant development. A better understanding of these important functions will be achieved with a more complete definition of the peroxisome proteome. The isolation of peroxisomes and their separation from mitochondria and other major membrane systems have been significant challenges in the Arabidopsis (Arabidopsis thaliana) model system. In this study, we present new data on the Arabidopsis peroxisome proteome obtained using two new technical advances that have not previously been applied to studies of plant peroxisomes. First, we followed density gradient centrifugation with free-flow electrophoresis to improve the separation of peroxisomes from mitochondria. Second, we used quantitative proteomics to identify proteins enriched in the peroxisome fractions relative to mitochondrial fractions. We provide evidence for peroxisomal localization of 89 proteins, 36 of which have not previously been identified in other analyses of Arabidopsis peroxisomes. Chimeric green fluorescent protein constructs of 35 proteins have been used to confirm their localization in peroxisomes or to identify endoplasmic reticulum contaminants. The distribution of many of these peroxisomal proteins between soluble, membrane-associated, and integral membrane locations has also been determined. This core peroxisomal proteome from nonphotosynthetic cultured cells contains a proportion of proteins that cannot be predicted to be peroxisomal due to the lack of recognizable peroxisomal targeting sequence 1 (PTS1) or PTS2 signals. Proteins identified are likely to be components in peroxisome biogenesis, beta-oxidation for fatty acid degradation and hormone biosynthesis, photorespiration, and metabolite transport. A considerable number of the proteins found in peroxisomes have no known function, and potential roles of these proteins in peroxisomal metabolism are discussed. This is aided by a metabolic network analysis that reveals a

  6. Phylogeny of metabolic networks: A spectral graph theoretical ...

    Indian Academy of Sciences (India)

    Many methods have been developed for finding the commonalities between different organisms in order to study their phylogeny. The structure of metabolic networks also reveals valuable insights into metabolic capacity of species as well as into the habitats where they have evolved. We constructed metabolic networks of ...

  7. Sequence-based Network Completion Reveals the Integrality of Missing Reactions in Metabolic Networks*

    Science.gov (United States)

    Krumholz, Elias W.; Libourel, Igor G. L.

    2015-01-01

    Genome-scale metabolic models are central in connecting genotypes to metabolic phenotypes. However, even for well studied organisms, such as Escherichia coli, draft networks do not contain a complete biochemical network. Missing reactions are referred to as gaps. These gaps need to be filled to enable functional analysis, and gap-filling choices influence model predictions. To investigate whether functional networks existed where all gap-filling reactions were supported by sequence similarity to annotated enzymes, four draft networks were supplemented with all reactions from the Model SEED database for which minimal sequence similarity was found in their genomes. Quadratic programming revealed that the number of reactions that could partake in a gap-filling solution was vast: 3,270 in the case of E. coli, where 72% of the metabolites in the draft network could connect a gap-filling solution. Nonetheless, no network could be completed without the inclusion of orphaned enzymes, suggesting that parts of the biochemistry integral to biomass precursor formation are uncharacterized. However, many gap-filling reactions were well determined, and the resulting networks showed improved prediction of gene essentiality compared with networks generated through canonical gap filling. In addition, gene essentiality predictions that were sensitive to poorly determined gap-filling reactions were of poor quality, suggesting that damage to the network structure resulting from the inclusion of erroneous gap-filling reactions may be predictable. PMID:26041773

  8. Sequence-based Network Completion Reveals the Integrality of Missing Reactions in Metabolic Networks.

    Science.gov (United States)

    Krumholz, Elias W; Libourel, Igor G L

    2015-07-31

    Genome-scale metabolic models are central in connecting genotypes to metabolic phenotypes. However, even for well studied organisms, such as Escherichia coli, draft networks do not contain a complete biochemical network. Missing reactions are referred to as gaps. These gaps need to be filled to enable functional analysis, and gap-filling choices influence model predictions. To investigate whether functional networks existed where all gap-filling reactions were supported by sequence similarity to annotated enzymes, four draft networks were supplemented with all reactions from the Model SEED database for which minimal sequence similarity was found in their genomes. Quadratic programming revealed that the number of reactions that could partake in a gap-filling solution was vast: 3,270 in the case of E. coli, where 72% of the metabolites in the draft network could connect a gap-filling solution. Nonetheless, no network could be completed without the inclusion of orphaned enzymes, suggesting that parts of the biochemistry integral to biomass precursor formation are uncharacterized. However, many gap-filling reactions were well determined, and the resulting networks showed improved prediction of gene essentiality compared with networks generated through canonical gap filling. In addition, gene essentiality predictions that were sensitive to poorly determined gap-filling reactions were of poor quality, suggesting that damage to the network structure resulting from the inclusion of erroneous gap-filling reactions may be predictable. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Learning Metabolic Brain Networks in MCI and AD by Robustness and Leave-One-Out Analysis: An FDG-PET Study.

    Science.gov (United States)

    Yao, Zhijun; Hu, Bin; Chen, Xuejiao; Xie, Yuanwei; Gutknecht, Jürg; Majoe, Dennis

    2018-02-01

    This study attempted to better understand the properties associated with the metabolic brain network in mild cognitive impairment (MCI) and Alzheimer's disease (AD). Graph theory was employed to investigate the topological organization of metabolic brain network among 86 patients with MCI, 89 patients with AD, and 97 normal controls (NCs) using 18F fluoro-deoxy-glucose positron emission tomography (FDG-PET) data. The whole brain was divided into 82 areas by Brodmann atlas to construct networks. We found that MCI and AD showed a loss of small-world properties and topological aberrations, and MCI showed an intermediate measurement between NC and AD. The networks of MCI and AD were vulnerable to attacks resulting from the altered topological pattern. Furthermore, individual contributions were correlated with Mini-Mental State Examination and Clinical Dementia Rating. The present study indicated that the topological patterns of the metabolic networks were aberrant in patients with MCI and AD, which may be particularly helpful in uncovering the pathophysiology underlying the cognitive dysfunction in MCI and AD.

  10. Genetic networks of liver metabolism revealed by integration of metabolic and transcriptional profiling.

    Directory of Open Access Journals (Sweden)

    Christine T Ferrara

    2008-03-01

    Full Text Available Although numerous quantitative trait loci (QTL influencing disease-related phenotypes have been detected through gene mapping and positional cloning, identification of the individual gene(s and molecular pathways leading to those phenotypes is often elusive. One way to improve understanding of genetic architecture is to classify phenotypes in greater depth by including transcriptional and metabolic profiling. In the current study, we have generated and analyzed mRNA expression and metabolic profiles in liver samples obtained in an F2 intercross between the diabetes-resistant C57BL/6 leptin(ob/ob and the diabetes-susceptible BTBR leptin(ob/ob mouse strains. This cross, which segregates for genotype and physiological traits, was previously used to identify several diabetes-related QTL. Our current investigation includes microarray analysis of over 40,000 probe sets, plus quantitative mass spectrometry-based measurements of sixty-seven intermediary metabolites in three different classes (amino acids, organic acids, and acyl-carnitines. We show that liver metabolites map to distinct genetic regions, thereby indicating that tissue metabolites are heritable. We also demonstrate that genomic analysis can be integrated with liver mRNA expression and metabolite profiling data to construct causal networks for control of specific metabolic processes in liver. As a proof of principle of the practical significance of this integrative approach, we illustrate the construction of a specific causal network that links gene expression and metabolic changes in the context of glutamate metabolism, and demonstrate its validity by showing that genes in the network respond to changes in glutamine and glutamate availability. Thus, the methods described here have the potential to reveal regulatory networks that contribute to chronic, complex, and highly prevalent diseases and conditions such as obesity and diabetes.

  11. Primary Metabolic Pathways and Metabolic Flux Analysis

    DEFF Research Database (Denmark)

    Villadsen, John

    2015-01-01

    his chapter introduces the metabolic flux analysis (MFA) or stoichiometry-based MFA, and describes the quantitative basis for MFA. It discusses the catabolic pathways in which free energy is produced to drive the cell-building anabolic pathways. An overview of these primary pathways provides...... the reader who is primarily trained in the engineering sciences with atleast a preliminary introduction to biochemistry and also shows how carbon is drained off the catabolic pathways to provide precursors for cell mass building and sometimes for important industrial products. The primary pathways...... to be examined in the following are: glycolysis, primarily by the EMP pathway, but other glycolytic pathways is also mentioned; fermentative pathways in which the redox generated in the glycolytic reactions are consumed; reactions in the tricarboxylic acid (TCA) cycle, which produce biomass precursors and redox...

  12. GC-MS metabolic profiling of Cabernet Sauvignon and Merlot cultivars during grapevine berry development and network analysis reveals a stage- and cultivar-dependent connectivity of primary metabolites.

    Science.gov (United States)

    Cuadros-Inostroza, Alvaro; Ruíz-Lara, Simón; González, Enrique; Eckardt, Aenne; Willmitzer, Lothar; Peña-Cortés, Hugo

    Information about the total chemical composition of primary metabolites during grape berry development is scarce, as are comparative studies trying to understand to what extent metabolite modifications differ between cultivars during ripening. Thus, correlating the metabolic profiles with the changes occurring in berry development and ripening processes is essential to progress in their comprehension as well in the development of new approaches to improve fruit attributes. Here, the developmental metabolic profiling analysis across six stages from flowering to fully mature berries of two cultivars, Cabernet Sauvignon and Merlot, is reported at metabolite level. Based on a gas chromatography-mass spectrometry untargeted approach, 115 metabolites were identified and relative quantified in both cultivars. Sugars and amino acids levels show an opposite behaviour in both cultivars undergoing a highly coordinated shift of metabolite associated to primary metabolism during the stages involved in growth, development and ripening of berries. The changes are characteristic for each stage, the most pronounced ones occuring at fruit setting and pre-Veraison. They are associated to a reduction of the levels of metabolites present in the earlier corresponding stage, revealing a required catabolic activity of primary metabolites for grape berry developmental process. Network analysis revealed that the network connectivity of primary metabolites is stage- and cultivar-dependent, suggesting differences in metabolism regulation between both cultivars as the maturity process progresses. Furthermore, network analysis may represent an appropriate method to display the association between primary metabolites during berry developmental processes among different grapevine cultivars and for identifying potential biologically relevant metabolites.

  13. A guide to integrating transcriptional regulatory and metabolic networks using PROM (probabilistic regulation of metabolism).

    Science.gov (United States)

    Simeonidis, Evangelos; Chandrasekaran, Sriram; Price, Nathan D

    2013-01-01

    The integration of transcriptional regulatory and metabolic networks is a crucial step in the process of predicting metabolic behaviors that emerge from either genetic or environmental changes. Here, we present a guide to PROM (probabilistic regulation of metabolism), an automated method for the construction and simulation of integrated metabolic and transcriptional regulatory networks that enables large-scale phenotypic predictions for a wide range of model organisms.

  14. Controllability in cancer metabolic networks according to drug targets as driver nodes.

    Science.gov (United States)

    Asgari, Yazdan; Salehzadeh-Yazdi, Ali; Schreiber, Falk; Masoudi-Nejad, Ali

    2013-01-01

    Networks are employed to represent many nonlinear complex systems in the real world. The topological aspects and relationships between the structure and function of biological networks have been widely studied in the past few decades. However dynamic and control features of complex networks have not been widely researched, in comparison to topological network features. In this study, we explore the relationship between network controllability, topological parameters, and network medicine (metabolic drug targets). Considering the assumption that targets of approved anticancer metabolic drugs are driver nodes (which control cancer metabolic networks), we have applied topological analysis to genome-scale metabolic models of 15 normal and corresponding cancer cell types. The results show that besides primary network parameters, more complex network metrics such as motifs and clusters may also be appropriate for controlling the systems providing the controllability relationship between topological parameters and drug targets. Consequently, this study reveals the possibilities of following a set of driver nodes in network clusters instead of considering them individually according to their centralities. This outcome suggests considering distributed control systems instead of nodal control for cancer metabolic networks, leading to a new strategy in the field of network medicine.

  15. Metabolic Network Discovery by Top-Down and Bottom-Up Approaches and Paths for Reconciliation

    International Nuclear Information System (INIS)

    Çakır, Tunahan; Khatibipour, Mohammad Jafar

    2014-01-01

    The primary focus in the network-centric analysis of cellular metabolism by systems biology approaches is to identify the active metabolic network for the condition of interest. Two major approaches are available for the discovery of the condition-specific metabolic networks. One approach starts from genome-scale metabolic networks, which cover all possible reactions known to occur in the related organism in a condition-independent manner, and applies methods such as the optimization-based Flux-Balance Analysis to elucidate the active network. The other approach starts from the condition-specific metabolome data, and processes the data with statistical or optimization-based methods to extract information content of the data such that the active network is inferred. These approaches, termed bottom-up and top-down, respectively, are currently employed independently. However, considering that both approaches have the same goal, they can both benefit from each other paving the way for the novel integrative analysis methods of metabolome data- and flux-analysis approaches in the post-genomic era. This study reviews the strengths of constraint-based analysis and network inference methods reported in the metabolic systems biology field; then elaborates on the potential paths to reconcile the two approaches to shed better light on how the metabolism functions.

  16. Deciphering transcriptional and metabolic networks associated with lysine metabolism during Arabidopsis seed development.

    Science.gov (United States)

    Angelovici, Ruthie; Fait, Aaron; Zhu, Xiaohong; Szymanski, Jedrzej; Feldmesser, Ester; Fernie, Alisdair R; Galili, Gad

    2009-12-01

    In order to elucidate transcriptional and metabolic networks associated with lysine (Lys) metabolism, we utilized developing Arabidopsis (Arabidopsis thaliana) seeds as a system in which Lys synthesis could be stimulated developmentally without application of chemicals and coupled this to a T-DNA insertion knockout mutation impaired in Lys catabolism. This seed-specific metabolic perturbation stimulated Lys accumulation starting from the initiation of storage reserve accumulation. Our results revealed that the response of seed metabolism to the inducible alteration of Lys metabolism was relatively minor; however, that which was observable operated in a modular manner. They also demonstrated that Lys metabolism is strongly associated with the operation of the tricarboxylic acid cycle while largely disconnected from other metabolic networks. In contrast, the inducible alteration of Lys metabolism was strongly associated with gene networks, stimulating the expression of hundreds of genes controlling anabolic processes that are associated with plant performance and vigor while suppressing a small number of genes associated with plant stress interactions. The most pronounced effect of the developmentally inducible alteration of Lys metabolism was an induction of expression of a large set of genes encoding ribosomal proteins as well as genes encoding translation initiation and elongation factors, all of which are associated with protein synthesis. With respect to metabolic regulation, the inducible alteration of Lys metabolism was primarily associated with altered expression of genes belonging to networks of amino acids and sugar metabolism. The combined data are discussed within the context of network interactions both between and within metabolic and transcriptional control systems.

  17. Transcriptome analysis of ripe and unripe fruit tissue of banana identifies major metabolic networks involved in fruit ripening process.

    Science.gov (United States)

    Asif, Mehar Hasan; Lakhwani, Deepika; Pathak, Sumya; Gupta, Parul; Bag, Sumit K; Nath, Pravendra; Trivedi, Prabodh Kumar

    2014-12-02

    Banana is one of the most important crop plants grown in the tropics and sub-tropics. It is a climacteric fruit and undergoes ethylene dependent ripening. Once ripening is initiated, it proceeds at a fast rate making postharvest life short, which can result in heavy economic losses. During the fruit ripening process a number of physiological and biochemical changes take place and thousands of genes from various metabolic pathways are recruited to produce a ripe and edible fruit. To better understand the underlying mechanism of ripening, we undertook a study to evaluate global changes in the transcriptome of the fruit during the ripening process. We sequenced the transcriptomes of the unripe and ripe stages of banana (Musa accuminata; Dwarf Cavendish) fruit. The transcriptomes were sequenced using a 454 GSFLX-Titanium platform that resulted in more than 7,00,000 high quality (HQ) reads. The assembly of the reads resulted in 19,410 contigs and 92,823 singletons. A large number of the differentially expressed genes identified were linked to ripening dependent processes including ethylene biosynthesis, perception and signalling, cell wall degradation and production of aromatic volatiles. In the banana fruit transcriptomes, we found transcripts included in 120 pathways described in the KEGG database for rice. The members of the expansin and xyloglucan transglycosylase/hydrolase (XTH) gene families were highly up-regulated during ripening, which suggests that they might play important roles in the softening of the fruit. Several genes involved in the synthesis of aromatic volatiles and members of transcription factor families previously reported to be involved in ripening were also identified. A large number of differentially regulated genes were identified during banana fruit ripening. Many of these are associated with cell wall degradation and synthesis of aromatic volatiles. A large number of differentially expressed genes did not align with any of the databases and

  18. The evolution of metabolic networks of E. coli

    Directory of Open Access Journals (Sweden)

    Baumler David J

    2011-11-01

    genome-scale metabolic model based on conserved ortholog groups in all 16 E. coli genomes was also constructed, reflecting the conserved ancestral core of E. coli metabolism (iEco1053_core. Comparative analysis of all six strain-specific E. coli models revealed that some of the pathogenic E. coli strains possess reactions in their metabolic networks enabling higher biomass yields on glucose. Finally the lineage-specific metabolic traits were compared to the ancestral core model predictions to derive new insight into the evolution of metabolism within this species. Conclusion Our findings demonstrate that a pangenome-scale metabolic model can be used to rapidly construct additional E. coli strain-specific models, and that quantitative models of different strains of E. coli can accurately predict strain-specific phenotypes. Such pangenome and strain-specific models can be further used to engineer metabolic phenotypes of interest, such as designing new industrial E. coli strains.

  19. Developmental changes in the metabolic network of snapdragon flowers.

    Directory of Open Access Journals (Sweden)

    Joëlle K Muhlemann

    Full Text Available Evolutionary and reproductive success of angiosperms, the most diverse group of land plants, relies on visual and olfactory cues for pollinator attraction. Previous work has focused on elucidating the developmental regulation of pathways leading to the formation of pollinator-attracting secondary metabolites such as scent compounds and flower pigments. However, to date little is known about how flowers control their entire metabolic network to achieve the highly regulated production of metabolites attracting pollinators. Integrative analysis of transcripts and metabolites in snapdragon sepals and petals over flower development performed in this study revealed a profound developmental remodeling of gene expression and metabolite profiles in petals, but not in sepals. Genes up-regulated during petal development were enriched in functions related to secondary metabolism, fatty acid catabolism, and amino acid transport, whereas down-regulated genes were enriched in processes involved in cell growth, cell wall formation, and fatty acid biosynthesis. The levels of transcripts and metabolites in pathways leading to scent formation were coordinately up-regulated during petal development, implying transcriptional induction of metabolic pathways preceding scent formation. Developmental gene expression patterns in the pathways involved in scent production were different from those of glycolysis and the pentose phosphate pathway, highlighting distinct developmental regulation of secondary metabolism and primary metabolic pathways feeding into it.

  20. An integrated network analysis identifies how ArcAB enables metabolic oscillations in the nitric oxide detoxification network of Escherichia coli.

    Science.gov (United States)

    Sacco, Sarah A; Adolfsen, Kristin J; Brynildsen, Mark P

    2017-08-01

    The virulences of many pathogens depend on their abilities to detoxify the immune antimicrobial nitric oxide (NO•). The functions of bacterial NO• detoxification machinery depend on oxygen (O 2 ), with O 2 inhibiting some enzymes, whereas others use it as a substrate. Previously, Escherichia coli NO• detoxification was found to be highly attenuated under microaerobic conditions and metabolic oscillations were observed. The oscillations in [NO•] and [O 2 ] were found to result from the inhibitory action of NO• on aerobic respiration, the catalytic inactivation of NO• by Hmp (an NO• dioxygenase), and an imbalanced competition for O 2 between Hmp and cytochrome terminal oxidase activity. Here the authors investigated the role of the ArcAB two component system (TCS) in microaerobic NO• detoxification. The authors observed that wild-type, ΔarcA, and ΔarcB had comparable initial NO• clearance times; however, the mutant cultures failed to exhibit [NO•] and [O 2 ] oscillations. Using an approach that employed experimentation and computational modeling, the authors found that the loss of oscillations in ΔarcA was due to insufficient induction of cytochrome bd-I expression. Collectively, these results establish ArcAB as a TCS that influences NO• detoxification in E. coli within the physiologically-relevant microaerobic regime. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Metabolic Network Topology Reveals Transcriptional Regulatory Signatures of Type 2 Diabetes

    DEFF Research Database (Denmark)

    Zelezniak, Aleksej; Pers, Tune Hannes; Pinho Soares, Simao Pedro

    2010-01-01

    mechanisms underlying these transcriptional changes and their impact on the cellular metabolic phenotype is a challenging task due to the complexity of transcriptional regulation and the highly interconnected nature of the metabolic network. In this study we integrate skeletal muscle gene expression datasets...... with human metabolic network reconstructions to identify key metabolic regulatory features of T2DM. These features include reporter metabolites—metabolites with significant collective transcriptional response in the associated enzyme-coding genes, and transcription factors with significant enrichment...... factor regulatory network connecting several parts of metabolism. The identified transcription factors include members of the CREB, NRF1 and PPAR family, among others, and represent regulatory targets for further experimental analysis. Overall, our results provide a holistic picture of key metabolic...

  2. The evolution of modularity in bacterial metabolic networks.

    Science.gov (United States)

    Kreimer, Anat; Borenstein, Elhanan; Gophna, Uri; Ruppin, Eytan

    2008-05-13

    Deciphering the modular organization of metabolic networks and understanding how modularity evolves have attracted tremendous interest in recent years. Here, we present a comprehensive large scale characterization of modularity across the bacterial tree of life, systematically quantifying the modularity of the metabolic networks of >300 bacterial species. Three main determinants of metabolic network modularity are identified. First, network size is an important topological determinant of network modularity. Second, several environmental factors influence network modularity, with endosymbionts and mammal-specific pathogens having lower modularity scores than bacterial species that occupy a wider range of niches. Moreover, even among the pathogens, those that alternate between two distinct niches, such as insect and mammal, tend to have relatively high metabolic network modularity. Third, horizontal gene transfer is an important force that contributes significantly to metabolic modularity. We additionally reconstruct the metabolic network of ancestral bacterial species and examine the evolution of modularity across the tree of life. This reveals a trend of modularity decrease from ancestors to descendants that is likely the outcome of niche specialization and the incorporation of peripheral metabolic reactions.

  3. Genome-Scale Reconstruction of the Human Astrocyte Metabolic Network

    OpenAIRE

    Mart?n-Jim?nez, Cynthia A.; Salazar-Barreto, Diego; Barreto, George E.; Gonz?lez, Janneth

    2017-01-01

    Astrocytes are the most abundant cells of the central nervous system; they have a predominant role in maintaining brain metabolism. In this sense, abnormal metabolic states have been found in different neuropathological diseases. Determination of metabolic states of astrocytes is difficult to model using current experimental approaches given the high number of reactions and metabolites present. Thus, genome-scale metabolic networks derived from transcriptomic data can be used as a framework t...

  4. Synergy between 13C-metabolic flux analysis and flux balance analysis for understanding metabolic adaption to anaerobiosis in e. coli

    Science.gov (United States)

    Genome-based Flux Balance Analysis (FBA, constraints based flux analysis) and steady state isotopic-labeling-based Metabolic Flux Analysis (MFA) are complimentary approaches to predicting and measuring the operation and regulation of metabolic networks. Here a genome-derived model of E. coli metabol...

  5. Graph methods for the investigation of metabolic networks in parasitology.

    Science.gov (United States)

    Cottret, Ludovic; Jourdan, Fabien

    2010-08-01

    Recently, a way was opened with the development of many mathematical methods to model and analyze genome-scale metabolic networks. Among them, methods based on graph models enable to us quickly perform large-scale analyses on large metabolic networks. However, it could be difficult for parasitologists to select the graph model and methods adapted to their biological questions. In this review, after briefly addressing the problem of the metabolic network reconstruction, we propose an overview of the graph-based approaches used in whole metabolic network analyses. Applications highlight the usefulness of this kind of approach in the field of parasitology, especially by suggesting metabolic targets for new drugs. Their development still represents a major challenge to fight against the numerous diseases caused by parasites.

  6. Metabolic pathways variability and sequence/networks comparisons

    Science.gov (United States)

    Tun, Kyaw; Dhar, Pawan K; Palumbo, Maria Concetta; Giuliani, Alessandro

    2006-01-01

    Background In this work a simple method for the computation of relative similarities between homologous metabolic network modules is presented. The method is similar to classical sequence alignment and allows for the generation of phenotypic trees amenable to be compared with correspondent sequence based trees. The procedure can be applied to both single metabolic modules and whole metabolic network data without the need of any specific assumption. Results We demonstrate both the ability of the proposed method to build reliable biological classification of a set of microrganisms and the strong correlation between the metabolic network wiringand involved enzymes sequence space. Conclusion The method represents a valuable tool for the investigation of genotype/phenotype correlationsallowing for a direct comparison of different species as for their metabolic machinery. In addition the detection of enzymes whose sequence space is maximally correlated with the metabolicnetwork space gives an indication of the most crucial (on an evolutionary viewpoint) steps of the metabolic process. PMID:16420696

  7. Metabolic pathways variability and sequence/networks comparisons

    Directory of Open Access Journals (Sweden)

    Palumbo Maria

    2006-01-01

    Full Text Available Abstract Background In this work a simple method for the computation of relative similarities between homologous metabolic network modules is presented. The method is similar to classical sequence alignment and allows for the generation of phenotypic trees amenable to be compared with correspondent sequence based trees. The procedure can be applied to both single metabolic modules and whole metabolic network data without the need of any specific assumption. Results We demonstrate both the ability of the proposed method to build reliable biological classification of a set of microrganisms and the strong correlation between the metabolic network wiringand involved enzymes sequence space. Conclusion The method represents a valuable tool for the investigation of genotype/phenotype correlationsallowing for a direct comparison of different species as for their metabolic machinery. In addition the detection of enzymes whose sequence space is maximally correlated with the metabolicnetwork space gives an indication of the most crucial (on an evolutionary viewpoint steps of the metabolic process.

  8. Metabolic networks of Sodalis glossinidius: a systems biology approach to reductive evolution.

    Science.gov (United States)

    Belda, Eugeni; Silva, Francisco J; Peretó, Juli; Moya, Andrés

    2012-01-01

    Genome reduction is a common evolutionary process affecting bacterial lineages that establish symbiotic or pathogenic associations with eukaryotic hosts. Such associations yield highly reduced genomes with greatly streamlined metabolic abilities shaped by the type of ecological association with the host. Sodalis glossinidius, the secondary endosymbiont of tsetse flies, represents one of the few complete genomes available of a bacterium at the initial stages of this process. In the present study, genome reduction is studied from a systems biology perspective through the reconstruction and functional analysis of genome-scale metabolic networks of S. glossinidius. The functional profile of ancestral and extant metabolic networks sheds light on the evolutionary events underlying transition to a host-dependent lifestyle. Meanwhile, reductive evolution simulations on the extant metabolic network can predict possible future evolution of S. glossinidius in the context of genome reduction. Finally, knockout simulations in different metabolic systems reveal a gradual decrease in network robustness to different mutational events for bacterial endosymbionts at different stages of the symbiotic association. Stoichiometric analysis reveals few gene inactivation events whose effects on the functionality of S. glossinidius metabolic systems are drastic enough to account for the ecological transition from a free-living to host-dependent lifestyle. The decrease in network robustness across different metabolic systems may be associated with the progressive integration in the more stable environment provided by the insect host. Finally, reductive evolution simulations reveal the strong influence that external conditions exert on the evolvability of metabolic systems.

  9. A Computational Solution to Automatically Map Metabolite Libraries in the Context of Genome Scale Metabolic Networks.

    Science.gov (United States)

    Merlet, Benjamin; Paulhe, Nils; Vinson, Florence; Frainay, Clément; Chazalviel, Maxime; Poupin, Nathalie; Gloaguen, Yoann; Giacomoni, Franck; Jourdan, Fabien

    2016-01-01

    This article describes a generic programmatic method for mapping chemical compound libraries on organism-specific metabolic networks from various databases (KEGG, BioCyc) and flat file formats (SBML and Matlab files). We show how this pipeline was successfully applied to decipher the coverage of chemical libraries set up by two metabolomics facilities MetaboHub (French National infrastructure for metabolomics and fluxomics) and Glasgow Polyomics (GP) on the metabolic networks available in the MetExplore web server. The present generic protocol is designed to formalize and reduce the volume of information transfer between the library and the network database. Matching of metabolites between libraries and metabolic networks is based on InChIs or InChIKeys and therefore requires that these identifiers are specified in both libraries and networks. In addition to providing covering statistics, this pipeline also allows the visualization of mapping results in the context of metabolic networks. In order to achieve this goal, we tackled issues on programmatic interaction between two servers, improvement of metabolite annotation in metabolic networks and automatic loading of a mapping in genome scale metabolic network analysis tool MetExplore. It is important to note that this mapping can also be performed on a single or a selection of organisms of interest and is thus not limited to large facilities.

  10. Computational solution to automatically map metabolite libraries in the context of genome scale metabolic networks

    Directory of Open Access Journals (Sweden)

    Benjamin eMerlet

    2016-02-01

    Full Text Available This article describes a generic programmatic method for mapping chemical compound libraries on organism-specific metabolic networks from various databases (KEGG, BioCyc and flat file formats (SBML and Matlab files. We show how this pipeline was successfully applied to decipher the coverage of chemical libraries set up by two metabolomics facilities MetaboHub (French National infrastructure for metabolomics and fluxomics and Glasgow Polyomics on the metabolic networks available in the MetExplore web server. The present generic protocol is designed to formalize and reduce the volume of information transfer between the library and the network database. Matching of metabolites between libraries and metabolic networks is based on InChIs or InChIKeys and therefore requires that these identifiers are specified in both libraries and networks.In addition to providing covering statistics, this pipeline also allows the visualization of mapping results in the context of metabolic networks.In order to achieve this goal we tackled issues on programmatic interaction between two servers, improvement of metabolite annotation in metabolic networks and automatic loading of a mapping in genome scale metabolic network analysis tool MetExplore. It is important to note that this mapping can also be performed on a single or a selection of organisms of interest and is thus not limited to large facilities.

  11. NETWORK ANALYSIS IN PSYCHOLOGY

    Directory of Open Access Journals (Sweden)

    Eduardo Fonseca-Pedrero

    2018-01-01

    Full Text Available The main goal of this work is to introduce a new approach called network analysis for its application in the field of psychology. In this paper we present the network model in a brief, entertaining and simple way and, as far as possible, away from technicalities and the statistical point of view. The aim of this outline is, on the one hand, to take the first steps in network analysis, and on the other, to show the theoretical and clinical implications underlying this model. Firstly, the roots of this approach are discussed as well as its way of understanding psychological phenomena, specifically psychopathological problems. The concepts of network, node and edge, the types of networks and the procedures for their estimation are all addressed. Next, measures of centrality are explained and some applications in the field of psychology are mentioned. Later, this approach is exemplified with a specific case, which estimates and analyzes a network of personality traits within the Big Five model. The syntax of this analysis is provided. Finally, by way of conclusion, a brief recapitulation is provided, and some cautionary reflections and future research lines are discussed.

  12. Integration of Genome Scale Metabolic Networks and Gene Regulation of Metabolic Enzymes With Physiologically Based Pharmacokinetics

    Science.gov (United States)

    Maldonado, Elaina M.; Leoncikas, Vytautas; Fisher, Ciarán P.; Moore, J. Bernadette; Plant, Nick J.

    2017-01-01

    The scope of physiologically based pharmacokinetic (PBPK) modeling can be expanded by assimilation of the mechanistic models of intracellular processes from systems biology field. The genome scale metabolic networks (GSMNs) represent a whole set of metabolic enzymes expressed in human tissues. Dynamic models of the gene regulation of key drug metabolism enzymes are available. Here, we introduce GSMNs and review ongoing work on integration of PBPK, GSMNs, and metabolic gene regulation. We demonstrate example models. PMID:28782239

  13. Integrating data from biological experiments into metabolic networks with the DBE information system.

    Science.gov (United States)

    Borisjuk, Ljudmilla; Hajirezaei, Mohammad-Reza; Klukas, Christian; Rolletschek, Hardy; Schreiber, Falk

    2005-01-01

    Modern 'omics'-technologies result in huge amounts of data about life processes. For analysis and data mining purposes this data has to be considered in the context of the underlying biological networks. This work presents an approach for integrating data from biological experiments into metabolic networks by mapping the data onto network elements and visualising the data enriched networks automatically. This methodology is implemented in DBE, an information system that supports the analysis and visualisation of experimental data in the context of metabolic networks. It consists of five parts: (1) the DBE-Database for consistent data storage, (2) the Excel-Importer application for the data import, (3) the DBE-Website as the interface for the system, (4) the DBE-Pictures application for the up- and download of binary (e. g. image) files, and (5) DBE-Gravisto, a network analysis and graph visualisation system. The usability of this approach is demonstrated in two examples.

  14. Slave nodes and the controllability of metabolic networks

    International Nuclear Information System (INIS)

    Kim, Dong-Hee; Motter, Adilson E

    2009-01-01

    Recent work on synthetic rescues has shown that the targeted deletion of specific metabolic genes can often be used to rescue otherwise non-viable mutants. This raises a fundamental biophysical question: to what extent can the whole-cell behavior of a large metabolic network be controlled by constraining the flux of one or more reactions in the network? This touches upon the issue of the number of degrees of freedom contained by one such network. Using the metabolic network of Escherichia coli as a model system, here we address this question theoretically by exploring not only reaction deletions, but also a continuum of all possible reaction expression levels. We show that the behavior of the metabolic network can be largely manipulated by the pinned expression of a single reaction. In particular, a relevant fraction of the metabolic reactions exhibits canalizing interactions, in that the specification of one reaction flux determines cellular growth as well as the fluxes of most other reactions in optimal steady states. The activity of individual reactions can thus be used as surrogates to monitor and possibly control cellular growth and other whole-cell behaviors. In addition to its implications for the study of control processes, our methodology provides a new approach to study how the integrated dynamics of the entire metabolic network emerges from the coordinated behavior of its component parts.

  15. Social network analysis

    NARCIS (Netherlands)

    de Nooy, W.; Crothers, C.

    2009-01-01

    Social network analysis (SNA) focuses on the structure of ties within a set of social actors, e.g., persons, groups, organizations, and nations, or the products of human activity or cognition such as web sites, semantic concepts, and so on. It is linked to structuralism in sociology stressing the

  16. Bacterial metabolism in immediate response to nutritional perturbation with temporal and network view of metabolites.

    Science.gov (United States)

    Yukihira, Daichi; Fujimura, Yoshinori; Wariishi, Hiroyuki; Miura, Daisuke

    2015-09-01

    In this study, the initial propagation of metabolic perturbation in Escherichia coli was visualized to understand the dynamic characteristics of the metabolic pathways without the association of transcription alterations. E. coli cells were exposed to the sudden relief of glucose starvation, and time-dependent variances in metabolite balances were traced in the second scale. The acquired time-course data were represented by structural variations of the metabolite-metabolite correlation network. The initial correlation structure was altered immediately by the glucose pulse, followed by further structural variations within a few minutes. It was demonstrated that one metabolite temporally correlated with distinct metabolites with different timings, and such a behavior could imply a regulatory role for the metabolite in the metabolic network. Centrality analysis of the networks and partial correlation analysis indicated that preparation for growth and oxidative stress could be coupled as a structural property of the metabolic pathways.

  17. Network performance analysis

    CERN Document Server

    Bonald, Thomas

    2013-01-01

    The book presents some key mathematical tools for the performance analysis of communication networks and computer systems.Communication networks and computer systems have become extremely complex. The statistical resource sharing induced by the random behavior of users and the underlying protocols and algorithms may affect Quality of Service.This book introduces the main results of queuing theory that are useful for analyzing the performance of these systems. These mathematical tools are key to the development of robust dimensioning rules and engineering methods. A number of examples i

  18. Structuring evolution: biochemical networks and metabolic diversification in birds.

    Science.gov (United States)

    Morrison, Erin S; Badyaev, Alexander V

    2016-08-25

    Recurrence and predictability of evolution are thought to reflect the correspondence between genomic and phenotypic dimensions of organisms, and the connectivity in deterministic networks within these dimensions. Direct examination of the correspondence between opportunities for diversification imbedded in such networks and realized diversity is illuminating, but is empirically challenging because both the deterministic networks and phenotypic diversity are modified in the course of evolution. Here we overcome this problem by directly comparing the structure of a "global" carotenoid network - comprising of all known enzymatic reactions among naturally occurring carotenoids - with the patterns of evolutionary diversification in carotenoid-producing metabolic networks utilized by birds. We found that phenotypic diversification in carotenoid networks across 250 species was closely associated with enzymatic connectivity of the underlying biochemical network - compounds with greater connectivity occurred the most frequently across species and were the hotspots of metabolic pathway diversification. In contrast, we found no evidence for diversification along the metabolic pathways, corroborating findings that the utilization of the global carotenoid network was not strongly influenced by history in avian evolution. The finding that the diversification in species-specific carotenoid networks is qualitatively predictable from the connectivity of the underlying enzymatic network points to significant structural determinism in phenotypic evolution.

  19. Phylogeny of metabolic networks: A spectral graph theoretical ...

    Indian Academy of Sciences (India)

    The eigenvalues of this matrix reflect not only the global architecture of a network but also the local topologies that are produced by different graph evolutionary processes like motif duplication or joining. A divergence measure on spectral densities is used to quantify the distances between various metabolic networks, and a ...

  20. Inferring the metabolism of human orphan metabolites from their metabolic network context affirms human gluconokinase activity.

    Science.gov (United States)

    Rolfsson, Óttar; Paglia, Giuseppe; Magnusdóttir, Manuela; Palsson, Bernhard Ø; Thiele, Ines

    2013-01-15

    Metabolic network reconstructions define metabolic information within a target organism and can therefore be used to address incomplete metabolic information. In the present study we used a computational approach to identify human metabolites whose metabolism is incomplete on the basis of their detection in humans but exclusion from the human metabolic network reconstruction RECON 1. Candidate solutions, composed of metabolic reactions capable of explaining the metabolism of these compounds, were then identified computationally from a global biochemical reaction database. Solutions were characterized with respect to how metabolites were incorporated into RECON 1 and their biological relevance. Through detailed case studies we show that biologically plausible non-intuitive hypotheses regarding the metabolism of these compounds can be proposed in a semi-automated manner, in an approach that is similar to de novo network reconstruction. We subsequently experimentally validated one of the proposed hypotheses and report that C9orf103, previously identified as a candidate tumour suppressor gene, encodes a functional human gluconokinase. The results of the present study demonstrate how semi-automatic gap filling can be used to refine and extend metabolic reconstructions, thereby increasing their biological scope. Furthermore, we illustrate how incomplete human metabolic knowledge can be coupled with gene annotation in order to prioritize and confirm gene functions.

  1. Network systems security analysis

    Science.gov (United States)

    Yilmaz, Ä.°smail

    2015-05-01

    Network Systems Security Analysis has utmost importance in today's world. Many companies, like banks which give priority to data management, test their own data security systems with "Penetration Tests" by time to time. In this context, companies must also test their own network/server systems and take precautions, as the data security draws attention. Based on this idea, the study cyber-attacks are researched throughoutly and Penetration Test technics are examined. With these information on, classification is made for the cyber-attacks and later network systems' security is tested systematically. After the testing period, all data is reported and filed for future reference. Consequently, it is found out that human beings are the weakest circle of the chain and simple mistakes may unintentionally cause huge problems. Thus, it is clear that some precautions must be taken to avoid such threats like updating the security software.

  2. BioMet Toolbox: genome-wide analysis of metabolism

    DEFF Research Database (Denmark)

    Cvijovic, M.; Olivares Hernandez, Roberto; Agren, R.

    2010-01-01

    standardized simulations. Model files for various model organisms (fungi and bacteria) are included. Overall, the BioMet Toolbox serves as a valuable resource for exploring the capabilities of these metabolic networks. BioMet Toolbox is freely available at www.sysbio.se/BioMet/....... models. Systematic analysis of biological processes by means of modelling and simulations has made the identification of metabolic networks and prediction of metabolic capabilities under different conditions possible. For facilitating such systemic analysis, we have developed the BioMet Toolbox, a web......-based resource for stoichiometric analysis and for integration of transcriptome and interactome data, thereby exploiting the capabilities of genome-scale metabolic models. The BioMet Toolbox provides an effective user-friendly way to perform linear programming simulations towards maximized or minimized growth...

  3. Integration of metabolome data with metabolic networks reveals reporter reactions

    DEFF Research Database (Denmark)

    Çakir, Tunahan; Patil, Kiran Raosaheb; Önsan, Zeynep Ilsen

    2006-01-01

    network topology. The algorithm thus enables identification of reporter reactions, which are reactions where there are significant coordinated changes in the level of surrounding metabolites following environmental/genetic perturbations. Applicability of the algorithm is demonstrated by using data from......Interpreting quantitative metabolome data is a difficult task owing to the high connectivity in metabolic networks and inherent interdependency between enzymatic regulation, metabolite levels and fluxes. Here we present a hypothesis-driven algorithm for the integration of such data with metabolic...... is measured. By combining the results with transcriptome data, we further show that it is possible to infer whether the reactions are hierarchically or metabolically regulated. Hereby, the reported approach represents an attempt to map different layers of regulation within metabolic networks through...

  4. Microalgal Metabolic Network Model Refinement through High-Throughput Functional Metabolic Profiling

    International Nuclear Information System (INIS)

    Chaiboonchoe, Amphun; Dohai, Bushra Saeed; Cai, Hong; Nelson, David R.; Jijakli, Kenan; Salehi-Ashtiani, Kourosh

    2014-01-01

    Metabolic modeling provides the means to define metabolic processes at a systems level; however, genome-scale metabolic models often remain incomplete in their description of metabolic networks and may include reactions that are experimentally unverified. This shortcoming is exacerbated in reconstructed models of newly isolated algal species, as there may be little to no biochemical evidence available for the metabolism of such isolates. The phenotype microarray (PM) technology (Biolog, Hayward, CA, USA) provides an efficient, high-throughput method to functionally define cellular metabolic activities in response to a large array of entry metabolites. The platform can experimentally verify many of the unverified reactions in a network model as well as identify missing or new reactions in the reconstructed metabolic model. The PM technology has been used for metabolic phenotyping of non-photosynthetic bacteria and fungi, but it has not been reported for the phenotyping of microalgae. Here, we introduce the use of PM assays in a systematic way to the study of microalgae, applying it specifically to the green microalgal model species Chlamydomonas reinhardtii. The results obtained in this study validate a number of existing annotated metabolic reactions and identify a number of novel and unexpected metabolites. The obtained information was used to expand and refine the existing COBRA-based C. reinhardtii metabolic network model iRC1080. Over 254 reactions were added to the network, and the effects of these additions on flux distribution within the network are described. The novel reactions include the support of metabolism by a number of d-amino acids, l-dipeptides, and l-tripeptides as nitrogen sources, as well as support of cellular respiration by cysteamine-S-phosphate as a phosphorus source. The protocol developed here can be used as a foundation to functionally profile other microalgae such as known microalgae mutants and novel isolates.

  5. Microalgal Metabolic Network Model Refinement through High Throughput Functional Metabolic Profiling

    Directory of Open Access Journals (Sweden)

    Amphun eChaiboonchoe

    2014-12-01

    Full Text Available Metabolic modeling provides the means to define metabolic processes at a systems level; however, genome-scale metabolic models often remain incomplete in their description of metabolic networks and may include reactions that are experimentally unverified. This shortcoming is exacerbated in reconstructed models of newly isolated algal species, as there may be little to no biochemical evidence available for the metabolism of such isolates. The Phenotype Microarray (PM technology (Biolog, Hayward, CA, USA provides an efficient, high throughput method to functionally define cellular metabolic activities in response to a large array of entry metabolites. The platform can experimentally verify many of the unverified reactions in a network model as well as identify missing or new reactions in the reconstructed metabolic model. The PM technology has been used for metabolic phenotyping of non-photosynthetic bacteria and fungi but it has not been reported for the phenotyping of microalgae. Here we introduce the use of PM assays in a systematic way to the study of microalgae, applying it specifically to the green microalgal model species Chlamydomonas reinhardtii. The results obtained in this study validate a number of existing annotated metabolic reactions and identify a number of novel and unexpected metabolites. The obtained information was used to expand and refine the existing COBRA-based C. reinhardtii metabolic network model iRC1080. Over 254 reactions were added to the network, and the effects of these additions on flux distribution within the network are described. The novel reactions include the support of metabolism by a number of D-amino acids, L-dipeptides, and L-tripeptides as nitrogen sources, as well as support of cellular respiration by cysteamine-S-phosphate as a phosphorus source. The protocol developed here can be used as a foundation to functionally profile other microalgae such as known microalgae mutants and novel isolates.

  6. Microalgal Metabolic Network Model Refinement through High-Throughput Functional Metabolic Profiling.

    Science.gov (United States)

    Chaiboonchoe, Amphun; Dohai, Bushra Saeed; Cai, Hong; Nelson, David R; Jijakli, Kenan; Salehi-Ashtiani, Kourosh

    2014-01-01

    Metabolic modeling provides the means to define metabolic processes at a systems level; however, genome-scale metabolic models often remain incomplete in their description of metabolic networks and may include reactions that are experimentally unverified. This shortcoming is exacerbated in reconstructed models of newly isolated algal species, as there may be little to no biochemical evidence available for the metabolism of such isolates. The phenotype microarray (PM) technology (Biolog, Hayward, CA, USA) provides an efficient, high-throughput method to functionally define cellular metabolic activities in response to a large array of entry metabolites. The platform can experimentally verify many of the unverified reactions in a network model as well as identify missing or new reactions in the reconstructed metabolic model. The PM technology has been used for metabolic phenotyping of non-photosynthetic bacteria and fungi, but it has not been reported for the phenotyping of microalgae. Here, we introduce the use of PM assays in a systematic way to the study of microalgae, applying it specifically to the green microalgal model species Chlamydomonas reinhardtii. The results obtained in this study validate a number of existing annotated metabolic reactions and identify a number of novel and unexpected metabolites. The obtained information was used to expand and refine the existing COBRA-based C. reinhardtii metabolic network model iRC1080. Over 254 reactions were added to the network, and the effects of these additions on flux distribution within the network are described. The novel reactions include the support of metabolism by a number of d-amino acids, l-dipeptides, and l-tripeptides as nitrogen sources, as well as support of cellular respiration by cysteamine-S-phosphate as a phosphorus source. The protocol developed here can be used as a foundation to functionally profile other microalgae such as known microalgae mutants and novel isolates.

  7. Parallel pigment and transcriptomic analysis of four barley albina and xantha mutants reveals the complex network of the chloroplast-dependent metabolism.

    Science.gov (United States)

    Campoli, Chiara; Caffarri, Stefano; Svensson, Jan T; Bassi, Roberto; Stanca, A Michele; Cattivelli, Luigi; Crosatti, Cristina

    2009-09-01

    We investigated the pigment composition and the transcriptome of albina (alb-e ( 16 ) and alb-f ( 17 )) and xantha (xan-s ( 46 ) and xan-b ( 12 )) barley mutants to provide an overall transcriptional picture of genes whose expression is interconnected with chloroplast activities and to search for candidate genes associated with the mutations. Beside those encoding plastid-localized proteins, more than 3,000 genes involved in non-chloroplast localized metabolism were up-/down-regulated in the mutants revealing the network of chloroplast-dependent metabolic pathways. The alb-e ( 16 ) mutant was characterized by overaccumulation of protoporphyrin IX upon ALA (5-amino levulinic acid) feeding and down-regulation of the gene encoding one subunit of Mg-chelatase, suggesting a block of the chlorophyll biosynthetic pathway before Mg-protoporphyrin IX biosynthesis, while alb-f ( 17 ) overaccumulated Mg-protoporphyrin IX and repressed PorA expression, without alterations in Mg-chelatase mRNA level. The alb-f ( 17 )mutant also showed overexpression of several genes involved in phytochrome and in phytochrome-dependent pathways. The results indicate that the down-regulation of Lhcb genes in alb-e ( 16 ) cannot be mediated by the accumulation of Mg-protoporphyrin IX. After ALA treatment, xan-s ( 46 ) showed overaccumulation of Mg-protoporphyrin IX, while the relative porphyrin composition of xan-b ( 12 ) was similar to wild type. The transcripts encoding the components of several mitochondrial metabolic pathways were up-regulated in albina/xantha leaves to compensate for the absence of active chloroplasts. The mRNAs encoding gun3, gun4, and gun5 barley homologous genes showed significant expression variations and were used to search for co-expressed genes across all samples. These analyses provide additional evidences on a chloroplast-dependent covariation of large sets of nuclear genes.

  8. Analysis of computer networks

    CERN Document Server

    Gebali, Fayez

    2015-01-01

    This textbook presents the mathematical theory and techniques necessary for analyzing and modeling high-performance global networks, such as the Internet. The three main building blocks of high-performance networks are links, switching equipment connecting the links together, and software employed at the end nodes and intermediate switches. This book provides the basic techniques for modeling and analyzing these last two components. Topics covered include, but are not limited to: Markov chains and queuing analysis, traffic modeling, interconnection networks and switch architectures and buffering strategies.   ·         Provides techniques for modeling and analysis of network software and switching equipment; ·         Discusses design options used to build efficient switching equipment; ·         Includes many worked examples of the application of discrete-time Markov chains to communication systems; ·         Covers the mathematical theory and techniques necessary for ana...

  9. A Strategy for Functional Interpretation of Metabolomic Time Series Data in Context of Metabolic Network Information

    Directory of Open Access Journals (Sweden)

    Thomas eNägele

    2016-03-01

    Full Text Available The functional connection of experimental metabolic time series data with biochemical network information is an important, yet complex, issue in systems biology. Frequently, experimental analysis of diurnal, circadian or developmental dynamics of metabolism results in a comprehensive and multidimensional data matrix comprising information about metabolite concentrations, protein levels and/or enzyme activities. While, irrespective of the type of organism, the experimental high-throughput analysis of the transcriptome, proteome and metabolome has become a common part of many systems biology studies, functional data integration in a biochemical and physiological context is still challenging. Here, an approach is presented which addresses the functional connection of experimental time series data with biochemical network information which can be inferred, for example, from a metabolic network reconstruction. Based on a time-continuous and variance-weighted regression analysis of experimental data, metabolic functions, i.e. first-order derivatives of metabolite concentrations, were related to time-dependent changes in other biochemically relevant metabolic functions, i.e. second-order derivatives of metabolite concentrations. This finally revealed time points of perturbed dependencies in metabolic functions indicating a modified biochemical interaction. The approach was validated using previously published experimental data on a diurnal time course of metabolite levels, enzyme activities and metabolic flux simulations. To support and ease the presented approach of functional time series analysis, a graphical user interface including a test data set and a manual is provided which can be run within the numerical software environment Matlab®.

  10. The Importance of Transition Metals in the Expanding Network of Microbial Metabolism in the Archean Eon

    Science.gov (United States)

    Moore, E. K.; Jelen, B. I.; Giovannelli, D.; Prabhu, A.; Raanan, H.; Falkowski, P. G.

    2017-12-01

    Deep time changes in Earth surface redox conditions, particularly due to global oxygenation, has impacted the availability of different metals and substrates that are central in biology. Oxidoreductase proteins are molecular nanomachines responsible for all biological electron transfer processes across the tree of life. These enzymes largely contain transition metals in their active sites. Microbial metabolic pathways form a global network of electron transfer, which expanded throughout the Archean eon. Older metabolisms (sulfur reduction, methanogenesis, anoxygenic photosynthesis) accessed negative redox potentials, while later evolving metabolisms (oxygenic photosynthesis, nitrification/denitrification, aerobic respiration) accessed positive redox potentials. The incorporation of different transition metals facilitated biological innovation and the expansion of the network of microbial metabolism. Network analysis was used to examine the connections between microbial taxa, metabolic pathways, crucial metallocofactors, and substrates in deep time by incorporating biosignatures preserved in the geologic record. Nitrogen fixation and aerobic respiration have the highest level of betweenness among metabolisms in the network, indicating that the oldest metabolisms are not the most central. Fe has by far the highest betweenness among metals. Clustering analysis largely separates High Metal Bacteria (HMB), Low Metal Bacteria (LMB), and Archaea showing that simple un-weighted links between taxa, metabolism, and metals have phylogenetic relevance. On average HMB have the highest betweenness among taxa, followed by Archaea and LMB. There is a correlation between the number of metallocofactors and metabolic pathways in representative bacterial taxa, but Archaea do not follow this trend. In many cases older and more recently evolved metabolisms were clustered together supporting previous findings that proliferation of metabolic pathways is not necessarily chronological.

  11. Metabolic pathway of non-alcoholic fatty liver disease: Network properties and robustness

    Directory of Open Access Journals (Sweden)

    WenJun Zhang

    2017-03-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD is a systematic and complex disease involving various cytokines/metabolites. In present article, we use methodology of network biology to analyze network properties of NAFLD metabolic pathway. It is found that the metabolic pathway of NAFLD is not a typical complex network with power-law degree distribution, p(x=x^(-4.4275, x>=5. There is only one connected component in the metabolic pathway. The calculated cut cytokines/metabolites of the metabolic pathway are SREBP-1c, ChREBP, ObR, AMPK, IRE1alpha, ROS, PERK, elF2alpha, ATF4, CHOP, Bim, CASP8, Bid, CxII, Lipogenic enzymes, XBP1, and FFAs. The most important cytokine/metabolite for possible network robustness is FFAs, seconded by TNF-alpha. It is concluded that FFAs is the most important cytokine/metabolite in the metabolic pathway, seconded by ROS. FFAs, LEP, ACDC, CYP2E1, and Glucose are the only cytokines/metabolites that affect others without influences from other cytokines/metabolites. Finally, the IDs matrix for identifying possible sub-networks/modules is given. However, jointly combining the results of connectedness analysis and sub-networks/modules identification, we hold that there are not significant sub-networks/modules in the pathway.

  12. Observability of plant metabolic networks is reflected in the correlation of metabolic profiles

    DEFF Research Database (Denmark)

    Schwahn, Kevin; Küken, Anika; Kliebenstein, Daniel James

    2016-01-01

    -of-the-art genome-scale metabolic networks. By using metabolic data profiles from a set of seven environmental perturbations as well as from natural variability, we demonstrate that the data profiles of sensor metabolites are more correlated than those of nonsensor metabolites. This pattern was confirmed...

  13. Characterization of the Usage of the Serine Metabolic Network in Human Cancer

    Directory of Open Access Journals (Sweden)

    Mahya Mehrmohamadi

    2014-11-01

    Full Text Available The serine, glycine, one-carbon (SGOC metabolic network is implicated in cancer pathogenesis, but its general functions are unknown. We carried out a computational reconstruction of the SGOC network and then characterized its expression across thousands of cancer tissues. Pathways including methylation and redox metabolism exhibited heterogeneous expression indicating a strong context dependency of their usage in tumors. From an analysis of coexpression, simultaneous up- or downregulation of nucleotide synthesis, NADPH, and glutathione synthesis was found to be a common occurrence in all cancers. Finally, we developed a method to trace the metabolic fate of serine using stable isotopes, high-resolution mass spectrometry, and a mathematical model. Although the expression of single genes didn’t appear indicative of flux, the collective expression of several genes in a given pathway allowed for successful flux prediction. Altogether, these findings identify expansive and heterogeneous functions for the SGOC metabolic network in human cancer.

  14. Preferential attachment in the evolution of metabolic networks

    Directory of Open Access Journals (Sweden)

    Elofsson Arne

    2005-11-01

    Full Text Available Abstract Background Many biological networks show some characteristics of scale-free networks. Scale-free networks can evolve through preferential attachment where new nodes are preferentially attached to well connected nodes. In networks which have evolved through preferential attachment older nodes should have a higher average connectivity than younger nodes. Here we have investigated preferential attachment in the context of metabolic networks. Results The connectivities of the enzymes in the metabolic network of Escherichia coli were determined and representatives for these enzymes were located in 11 eukaryotes, 17 archaea and 46 bacteria. E. coli enzymes which have representatives in eukaryotes have a higher average connectivity while enzymes which are represented only in the prokaryotes, and especially the enzymes only present in βγ-proteobacteria, have lower connectivities than expected by chance. Interestingly, the enzymes which have been proposed as candidates for horizontal gene transfer have a higher average connectivity than the other enzymes. Furthermore, It was found that new edges are added to the highly connected enzymes at a faster rate than to enzymes with low connectivities which is consistent with preferential attachment. Conclusion Here, we have found indications of preferential attachment in the metabolic network of E. coli. A possible biological explanation for preferential attachment growth of metabolic networks is that novel enzymes created through gene duplication maintain some of the compounds involved in the original reaction, throughout its future evolution. In addition, we found that enzymes which are candidates for horizontal gene transfer have a higher average connectivity than other enzymes. This indicates that while new enzymes are attached preferentially to highly connected enzymes, these highly connected enzymes have sometimes been introduced into the E. coli genome by horizontal gene transfer. We speculate

  15. Signatures of arithmetic simplicity in metabolic network architecture.

    Directory of Open Access Journals (Sweden)

    William J Riehl

    2010-04-01

    Full Text Available Metabolic networks perform some of the most fundamental functions in living cells, including energy transduction and building block biosynthesis. While these are the best characterized networks in living systems, understanding their evolutionary history and complex wiring constitutes one of the most fascinating open questions in biology, intimately related to the enigma of life's origin itself. Is the evolution of metabolism subject to general principles, beyond the unpredictable accumulation of multiple historical accidents? Here we search for such principles by applying to an artificial chemical universe some of the methodologies developed for the study of genome scale models of cellular metabolism. In particular, we use metabolic flux constraint-based models to exhaustively search for artificial chemistry pathways that can optimally perform an array of elementary metabolic functions. Despite the simplicity of the model employed, we find that the ensuing pathways display a surprisingly rich set of properties, including the existence of autocatalytic cycles and hierarchical modules, the appearance of universally preferable metabolites and reactions, and a logarithmic trend of pathway length as a function of input/output molecule size. Some of these properties can be derived analytically, borrowing methods previously used in cryptography. In addition, by mapping biochemical networks onto a simplified carbon atom reaction backbone, we find that properties similar to those predicted for the artificial chemistry hold also for real metabolic networks. These findings suggest that optimality principles and arithmetic simplicity might lie beneath some aspects of biochemical complexity.

  16. Ensemble Kinetic Modeling of Metabolic Networks from Dynamic Metabolic Profiles

    Science.gov (United States)

    Jia, Gengjie; Stephanopoulos, Gregory; Gunawan, Rudiyanto

    2012-01-01

    Kinetic modeling of metabolic pathways has important applications in metabolic engineering, but significant challenges still remain. The difficulties faced vary from finding best-fit parameters in a highly multidimensional search space to incomplete parameter identifiability. To meet some of these challenges, an ensemble modeling method is developed for characterizing a subset of kinetic parameters that give statistically equivalent goodness-of-fit to time series concentration data. The method is based on the incremental identification approach, where the parameter estimation is done in a step-wise manner. Numerical efficacy is achieved by reducing the dimensionality of parameter space and using efficient random parameter exploration algorithms. The shift toward using model ensembles, instead of the traditional “best-fit” models, is necessary to directly account for model uncertainty during the application of such models. The performance of the ensemble modeling approach has been demonstrated in the modeling of a generic branched pathway and the trehalose pathway in Saccharomyces cerevisiae using generalized mass action (GMA) kinetics. PMID:24957767

  17. Ensemble Kinetic Modeling of Metabolic Networks from Dynamic Metabolic Profiles

    Directory of Open Access Journals (Sweden)

    Gengjie Jia

    2012-11-01

    Full Text Available Kinetic modeling of metabolic pathways has important applications in metabolic engineering, but significant challenges still remain. The difficulties faced vary from finding best-fit parameters in a highly multidimensional search space to incomplete parameter identifiability. To meet some of these challenges, an ensemble modeling method is developed for characterizing a subset of kinetic parameters that give statistically equivalent goodness-of-fit to time series concentration data. The method is based on the incremental identification approach, where the parameter estimation is done in a step-wise manner. Numerical efficacy is achieved by reducing the dimensionality of parameter space and using efficient random parameter exploration algorithms. The shift toward using model ensembles, instead of the traditional “best-fit” models, is necessary to directly account for model uncertainty during the application of such models. The performance of the ensemble modeling approach has been demonstrated in the modeling of a generic branched pathway and the trehalose pathway in Saccharomyces cerevisiae using generalized mass action (GMA kinetics.

  18. Dead end metabolites--defining the known unknowns of the E. coli metabolic network.

    Directory of Open Access Journals (Sweden)

    Amanda Mackie

    Full Text Available The EcoCyc database is an online scientific database which provides an integrated view of the metabolic and regulatory network of the bacterium Escherichia coli K-12 and facilitates computational exploration of this important model organism. We have analysed the occurrence of dead end metabolites within the database--these are metabolites which lack the requisite reactions (either metabolic or transport that would account for their production or consumption within the metabolic network. 127 dead end metabolites were identified from the 995 compounds that are contained within the EcoCyc metabolic network. Their presence reflects either a deficit in our representation of the network or in our knowledge of E. coli metabolism. Extensive literature searches resulted in the addition of 38 transport reactions and 3 metabolic reactions to the database and led to an improved representation of the pathway for Vitamin B12 salvage. 39 dead end metabolites were identified as components of reactions that are not physiologically relevant to E. coli K-12--these reactions are properties of purified enzymes in vitro that would not be expected to occur in vivo. Our analysis led to improvements in the software that underpins the database and to the program that finds dead end metabolites within EcoCyc. The remaining dead end metabolites in the EcoCyc database likely represent deficiencies in our knowledge of E. coli metabolism.

  19. Machine Learning Methods for Analysis of Metabolic Data and Metabolic Pathway Modeling.

    Science.gov (United States)

    Cuperlovic-Culf, Miroslava

    2018-01-11

    Machine learning uses experimental data to optimize clustering or classification of samples or features, or to develop, augment or verify models that can be used to predict behavior or properties of systems. It is expected that machine learning will help provide actionable knowledge from a variety of big data including metabolomics data, as well as results of metabolism models. A variety of machine learning methods has been applied in bioinformatics and metabolism analyses including self-organizing maps, support vector machines, the kernel machine, Bayesian networks or fuzzy logic. To a lesser extent, machine learning has also been utilized to take advantage of the increasing availability of genomics and metabolomics data for the optimization of metabolic network models and their analysis. In this context, machine learning has aided the development of metabolic networks, the calculation of parameters for stoichiometric and kinetic models, as well as the analysis of major features in the model for the optimal application of bioreactors. Examples of this very interesting, albeit highly complex, application of machine learning for metabolism modeling will be the primary focus of this review presenting several different types of applications for model optimization, parameter determination or system analysis using models, as well as the utilization of several different types of machine learning technologies.

  20. Machine Learning Methods for Analysis of Metabolic Data and Metabolic Pathway Modeling

    Science.gov (United States)

    Cuperlovic-Culf, Miroslava

    2018-01-01

    Machine learning uses experimental data to optimize clustering or classification of samples or features, or to develop, augment or verify models that can be used to predict behavior or properties of systems. It is expected that machine learning will help provide actionable knowledge from a variety of big data including metabolomics data, as well as results of metabolism models. A variety of machine learning methods has been applied in bioinformatics and metabolism analyses including self-organizing maps, support vector machines, the kernel machine, Bayesian networks or fuzzy logic. To a lesser extent, machine learning has also been utilized to take advantage of the increasing availability of genomics and metabolomics data for the optimization of metabolic network models and their analysis. In this context, machine learning has aided the development of metabolic networks, the calculation of parameters for stoichiometric and kinetic models, as well as the analysis of major features in the model for the optimal application of bioreactors. Examples of this very interesting, albeit highly complex, application of machine learning for metabolism modeling will be the primary focus of this review presenting several different types of applications for model optimization, parameter determination or system analysis using models, as well as the utilization of several different types of machine learning technologies. PMID:29324649

  1. A mixed-integer linear programming approach to the reduction of genome-scale metabolic networks.

    Science.gov (United States)

    Röhl, Annika; Bockmayr, Alexander

    2017-01-03

    Constraint-based analysis has become a widely used method to study metabolic networks. While some of the associated algorithms can be applied to genome-scale network reconstructions with several thousands of reactions, others are limited to small or medium-sized models. In 2015, Erdrich et al. introduced a method called NetworkReducer, which reduces large metabolic networks to smaller subnetworks, while preserving a set of biological requirements that can be specified by the user. Already in 2001, Burgard et al. developed a mixed-integer linear programming (MILP) approach for computing minimal reaction sets under a given growth requirement. Here we present an MILP approach for computing minimum subnetworks with the given properties. The minimality (with respect to the number of active reactions) is not guaranteed by NetworkReducer, while the method by Burgard et al. does not allow specifying the different biological requirements. Our procedure is about 5-10 times faster than NetworkReducer and can enumerate all minimum subnetworks in case there exist several ones. This allows identifying common reactions that are present in all subnetworks, and reactions appearing in alternative pathways. Applying complex analysis methods to genome-scale metabolic networks is often not possible in practice. Thus it may become necessary to reduce the size of the network while keeping important functionalities. We propose a MILP solution to this problem. Compared to previous work, our approach is more efficient and allows computing not only one, but even all minimum subnetworks satisfying the required properties.

  2. A genome-scale metabolic network reconstruction of tomato (Solanum lycopersicum L.) and its application to photorespiratory metabolism.

    Science.gov (United States)

    Yuan, Huili; Cheung, C Y Maurice; Poolman, Mark G; Hilbers, Peter A J; van Riel, Natal A W

    2016-01-01

    Tomato (Solanum lycopersicum L.) has been studied extensively due to its high economic value in the market, and high content in health-promoting antioxidant compounds. Tomato is also considered as an excellent model organism for studying the development and metabolism of fleshy fruits. However, the growth, yield and fruit quality of tomatoes can be affected by drought stress, a common abiotic stress for tomato. To investigate the potential metabolic response of tomato plants to drought, we reconstructed iHY3410, a genome-scale metabolic model of tomato leaf, and used this metabolic network to simulate tomato leaf metabolism. The resulting model includes 3410 genes and 2143 biochemical and transport reactions distributed across five intracellular organelles including cytosol, plastid, mitochondrion, peroxisome and vacuole. The model successfully described the known metabolic behaviour of tomato leaf under heterotrophic and phototrophic conditions. The in silico investigation of the metabolic characteristics for photorespiration and other relevant metabolic processes under drought stress suggested that: (i) the flux distributions through the mevalonate (MVA) pathway under drought were distinct from that under normal conditions; and (ii) the changes in fluxes through core metabolic pathways with varying flux ratio of RubisCO carboxylase to oxygenase may contribute to the adaptive stress response of plants. In addition, we improved on previous studies of reaction essentiality analysis for leaf metabolism by including potential alternative routes for compensating reaction knockouts. Altogether, the genome-scale model provides a sound framework for investigating tomato metabolism and gives valuable insights into the functional consequences of abiotic stresses. © 2015 The Authors.The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.

  3. TIGER: Toolbox for integrating genome-scale metabolic models, expression data, and transcriptional regulatory networks

    Directory of Open Access Journals (Sweden)

    Jensen Paul A

    2011-09-01

    Full Text Available Abstract Background Several methods have been developed for analyzing genome-scale models of metabolism and transcriptional regulation. Many of these methods, such as Flux Balance Analysis, use constrained optimization to predict relationships between metabolic flux and the genes that encode and regulate enzyme activity. Recently, mixed integer programming has been used to encode these gene-protein-reaction (GPR relationships into a single optimization problem, but these techniques are often of limited generality and lack a tool for automating the conversion of rules to a coupled regulatory/metabolic model. Results We present TIGER, a Toolbox for Integrating Genome-scale Metabolism, Expression, and Regulation. TIGER converts a series of generalized, Boolean or multilevel rules into a set of mixed integer inequalities. The package also includes implementations of existing algorithms to integrate high-throughput expression data with genome-scale models of metabolism and transcriptional regulation. We demonstrate how TIGER automates the coupling of a genome-scale metabolic model with GPR logic and models of transcriptional regulation, thereby serving as a platform for algorithm development and large-scale metabolic analysis. Additionally, we demonstrate how TIGER's algorithms can be used to identify inconsistencies and improve existing models of transcriptional regulation with examples from the reconstructed transcriptional regulatory network of Saccharomyces cerevisiae. Conclusion The TIGER package provides a consistent platform for algorithm development and extending existing genome-scale metabolic models with regulatory networks and high-throughput data.

  4. Metabolic pathway analysis using a nash equilibrium approach

    NARCIS (Netherlands)

    Lucia, Angelo; DiMaggio, Peter A.; Alonso-Martinez, Diego

    2018-01-01

    A novel approach to metabolic network analysis using a Nash Equilibrium (NE) formulation is proposed in which enzymes are considered players in a multi-player game. Each player has its own payoff function with the objective of minimizing the Gibbs free energy associated with the biochemical

  5. Dynamic brain glucose metabolism identifies anti-correlated cortical-cerebellar networks at rest.

    Science.gov (United States)

    Tomasi, Dardo G; Shokri-Kojori, Ehsan; Wiers, Corinde E; Kim, Sunny W; Demiral, Şukru B; Cabrera, Elizabeth A; Lindgren, Elsa; Miller, Gregg; Wang, Gene-Jack; Volkow, Nora D

    2017-12-01

    It remains unclear whether resting state functional magnetic resonance imaging (rfMRI) networks are associated with underlying synchrony in energy demand, as measured by dynamic 2-deoxy-2-[ 18 F]fluoroglucose (FDG) positron emission tomography (PET). We measured absolute glucose metabolism, temporal metabolic connectivity (t-MC) and rfMRI patterns in 53 healthy participants at rest. Twenty-two rfMRI networks emerged from group independent component analysis (gICA). In contrast, only two anti-correlated t-MC emerged from FDG-PET time series using gICA or seed-voxel correlations; one included frontal, parietal and temporal cortices, the other included the cerebellum and medial temporal regions. Whereas cerebellum, thalamus, globus pallidus and calcarine cortex arose as the strongest t-MC hubs, the precuneus and visual cortex arose as the strongest rfMRI hubs. The strength of the t-MC linearly increased with the metabolic rate of glucose suggesting that t-MC measures are strongly associated with the energy demand of the brain tissue, and could reflect regional differences in glucose metabolism, counterbalanced metabolic network demand, and/or differential time-varying delivery of FDG. The mismatch between metabolic and functional connectivity patterns computed as a function of time could reflect differences in the temporal characteristics of glucose metabolism as measured with PET-FDG and brain activation as measured with rfMRI.

  6. Chronic obstructive pulmonary disease candidate gene prioritization based on metabolic networks and functional information.

    Directory of Open Access Journals (Sweden)

    Xinyan Wang

    Full Text Available Chronic obstructive pulmonary disease (COPD is a multi-factor disease, in which metabolic disturbances played important roles. In this paper, functional information was integrated into a COPD-related metabolic network to assess similarity between genes. Then a gene prioritization method was applied to the COPD-related metabolic network to prioritize COPD candidate genes. The gene prioritization method was superior to ToppGene and ToppNet in both literature validation and functional enrichment analysis. Top-ranked genes prioritized from the metabolic perspective with functional information could promote the better understanding about the molecular mechanism of this disease. Top 100 genes might be potential markers for diagnostic and effective therapies.

  7. Enumeration of minimal stoichiometric precursor sets in metabolic networks

    NARCIS (Netherlands)

    Andrade, R.; Wannagat, M.; Coimbra Klein, C.; Acuna, V.; Marchetti Spaccamela, A.; Vieira Milreu, P.; Stougie, L.; Sagot, M.-F.

    2016-01-01

    Background: What an organism needs at least from its environment to produce a set of metabolites, e.g. target(s) of interest and/or biomass, has been called a minimal precursor set. Early approaches to enumerate all minimal precursor sets took into account only the topology of the metabolic network

  8. Global network reorganization during dynamic adaptations of Bacillus subtilis metabolism

    DEFF Research Database (Denmark)

    Buescher, Joerg Martin; Liebermeister, Wolfram; Jules, Matthieu

    2012-01-01

    Adaptation of cells to environmental changes requires dynamic interactions between metabolic and regulatory networks, but studies typically address only one or a few layers of regulation. For nutritional shifts between two preferred carbon sources of Bacillus subtilis, we combined statistical and...

  9. Global Network Reorganization During Dynamic Adaptations of Bacillus subtilis Metabolism

    NARCIS (Netherlands)

    Buescher, Joerg Martin; Liebermeister, Wolfram; Jules, Matthieu; Uhr, Markus; Muntel, Jan; Botella, Eric; Hessling, Bernd; Kleijn, Roelco Jacobus; Le Chat, Ludovic; Lecointe, Francois; Maeder, Ulrike; Nicolas, Pierre; Piersma, Sjouke; Ruegheimer, Frank; Becher, Doerte; Bessieres, Philippe; Bidnenko, Elena; Denham, Emma L.; Dervyn, Etienne; Devine, Kevin M.; Doherty, Geoff; Drulhe, Samuel; Felicori, Liza; Fogg, Mark J.; Goelzer, Anne; Hansen, Annette; Harwood, Colin R.; Hecker, Michael; Hubner, Sebastian; Hultschig, Claus; Jarmer, Hanne; Klipp, Edda; Leduc, Aurelie; Lewis, Peter; Molina, Frank; Noirot, Philippe; Peres, Sabine; Pigeonneau, Nathalie; Pohl, Susanne; Rasmussen, Simon; Rinn, Bernd; Schaffer, Marc; Schnidder, Julian; Schwikowski, Benno; Van Dijl, Jan Maarten; Veiga, Patrick; Walsh, Sean; Wilkinson, Anthony J.; Stelling, Joerg; Aymerich, Stephane; Sauer, Uwe

    2012-01-01

    Adaptation of cells to environmental changes requires dynamic interactions between metabolic and regulatory networks, but studies typically address only one or a few layers of regulation. For nutritional shifts between two preferred carbon sources of Bacillus subtilis, we combined statistical and

  10. Underground metabolism: network-level perspective and biotechnological potential

    DEFF Research Database (Denmark)

    Notebaart, Richard A; Kintses, Bálint; Feist, Adam

    2018-01-01

    A key challenge in molecular systems biology is understanding how new pathways arise during evolution and how to exploit them for biotechnological applications. New pathways in metabolic networks often evolve by recruiting weak promiscuous activities of pre-existing enzymes. Here we describe recent...

  11. Ecological relationship analysis of the urban metabolic system of Beijing, China

    International Nuclear Information System (INIS)

    Li Shengsheng; Zhang Yan; Yang Zhifeng; Liu Hong; Zhang Jinyun

    2012-01-01

    Cities can be modelled as giant organisms, with their own metabolic processes, and can therefore be studied using the same tools used for biological metabolic systems. The complicated distribution of compartments within these systems and the functional relationships among them define the system's network structure. Taking Beijing as an example, we divided the city's internal system into metabolic compartments, then used ecological network analysis to calculate a comprehensive utility matrix for the flows between compartments within Beijing's metabolic system from 1998 to 2007 and to identify the corresponding functional relationships among the system's compartments. Our results show how ecological network analysis, utility analysis, and relationship analysis can be used to discover the implied ecological relationships within a metabolic system, thereby providing insights into the system's internal metabolic processes. Such analyses provide scientific support for urban ecological management. - Highlights: ► Urban metabolic processes can be analyzed by treating cities as superorganisms. ► We developed an ecological network model for an urban system. ► We studied the system's network relationships using ecological network analysis. ► We developed indices for judging the system's synergism and degree of stability. - Using Beijing as an example of an urban superorganism, we used ecological network analysis to describe the ecological relationships among the urban metabolic system's compartments.

  12. Visualization of Metabolic Interaction Networks in Microbial Communities Using VisANT 5.0.

    Directory of Open Access Journals (Sweden)

    Brian R Granger

    2016-04-01

    Full Text Available The complexity of metabolic networks in microbial communities poses an unresolved visualization and interpretation challenge. We address this challenge in the newly expanded version of a software tool for the analysis of biological networks, VisANT 5.0. We focus in particular on facilitating the visual exploration of metabolic interaction between microbes in a community, e.g. as predicted by COMETS (Computation of Microbial Ecosystems in Time and Space, a dynamic stoichiometric modeling framework. Using VisANT's unique metagraph implementation, we show how one can use VisANT 5.0 to explore different time-dependent ecosystem-level metabolic networks. In particular, we analyze the metabolic interaction network between two bacteria previously shown to display an obligate cross-feeding interdependency. In addition, we illustrate how a putative minimal gut microbiome community could be represented in our framework, making it possible to highlight interactions across multiple coexisting species. We envisage that the "symbiotic layout" of VisANT can be employed as a general tool for the analysis of metabolism in complex microbial communities as well as heterogeneous human tissues. VisANT is freely available at: http://visant.bu.edu and COMETS at http://comets.bu.edu.

  13. The metabolic network of Clostridium acetobutylicum: Comparison of the approximate Bayesian computation via sequential Monte Carlo (ABC-SMC) and profile likelihood estimation (PLE) methods for determinability analysis.

    Science.gov (United States)

    Thorn, Graeme J; King, John R

    2016-01-01

    The Gram-positive bacterium Clostridium acetobutylicum is an anaerobic endospore-forming species which produces acetone, butanol and ethanol via the acetone-butanol (AB) fermentation process, leading to biofuels including butanol. In previous work we looked to estimate the parameters in an ordinary differential equation model of the glucose metabolism network using data from pH-controlled continuous culture experiments. Here we combine two approaches, namely the approximate Bayesian computation via an existing sequential Monte Carlo (ABC-SMC) method (to compute credible intervals for the parameters), and the profile likelihood estimation (PLE) (to improve the calculation of confidence intervals for the same parameters), the parameters in both cases being derived from experimental data from forward shift experiments. We also apply the ABC-SMC method to investigate which of the models introduced previously (one non-sporulation and four sporulation models) have the greatest strength of evidence. We find that the joint approximate posterior distribution of the parameters determines the same parameters as previously, including all of the basal and increased enzyme production rates and enzyme reaction activity parameters, as well as the Michaelis-Menten kinetic parameters for glucose ingestion, while other parameters are not as well-determined, particularly those connected with the internal metabolites acetyl-CoA, acetoacetyl-CoA and butyryl-CoA. We also find that the approximate posterior is strongly non-Gaussian, indicating that our previous assumption of elliptical contours of the distribution is not valid, which has the effect of reducing the numbers of pairs of parameters that are (linearly) correlated with each other. Calculations of confidence intervals using the PLE method back this up. Finally, we find that all five of our models are equally likely, given the data available at present. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Network Analysis, Architecture, and Design

    CERN Document Server

    McCabe, James D

    2007-01-01

    Traditionally, networking has had little or no basis in analysis or architectural development, with designers relying on technologies they are most familiar with or being influenced by vendors or consultants. However, the landscape of networking has changed so that network services have now become one of the most important factors to the success of many third generation networks. It has become an important feature of the designer's job to define the problems that exist in his network, choose and analyze several optimization parameters during the analysis process, and then prioritize and evalua

  15. Network topology analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Kalb, Jeffrey L.; Lee, David S.

    2008-01-01

    Emerging high-bandwidth, low-latency network technology has made network-based architectures both feasible and potentially desirable for use in satellite payload architectures. The selection of network topology is a critical component when developing these multi-node or multi-point architectures. This study examines network topologies and their effect on overall network performance. Numerous topologies were reviewed against a number of performance, reliability, and cost metrics. This document identifies a handful of good network topologies for satellite applications and the metrics used to justify them as such. Since often multiple topologies will meet the requirements of the satellite payload architecture under development, the choice of network topology is not easy, and in the end the choice of topology is influenced by both the design characteristics and requirements of the overall system and the experience of the developer.

  16. Exhaustive Analysis of a Genotype Space Comprising 10(15 Central Carbon Metabolisms Reveals an Organization Conducive to Metabolic Innovation.

    Directory of Open Access Journals (Sweden)

    Sayed-Rzgar Hosseini

    2015-08-01

    Full Text Available All biological evolution takes place in a space of possible genotypes and their phenotypes. The structure of this space defines the evolutionary potential and limitations of an evolving system. Metabolism is one of the most ancient and fundamental evolving systems, sustaining life by extracting energy from extracellular nutrients. Here we study metabolism's potential for innovation by analyzing an exhaustive genotype-phenotype map for a space of 10(15 metabolisms that encodes all possible subsets of 51 reactions in central carbon metabolism. Using flux balance analysis, we predict the viability of these metabolisms on 10 different carbon sources which give rise to 1024 potential metabolic phenotypes. Although viable metabolisms with any one phenotype comprise a tiny fraction of genotype space, their absolute numbers exceed 10(9 for some phenotypes. Metabolisms with any one phenotype typically form a single network of genotypes that extends far or all the way through metabolic genotype space, where any two genotypes can be reached from each other through a series of single reaction changes. The minimal distance of genotype networks associated with different phenotypes is small, such that one can reach metabolisms with novel phenotypes--viable on new carbon sources--through one or few genotypic changes. Exceptions to these principles exist for those metabolisms whose complexity (number of reactions is close to the minimum needed for viability. Increasing metabolic complexity enhances the potential for both evolutionary conservation and evolutionary innovation.

  17. Metabolic network topology reveals transcriptional regulatory signatures of type 2 diabetes.

    Science.gov (United States)

    Zelezniak, Aleksej; Pers, Tune H; Soares, Simão; Patti, Mary Elizabeth; Patil, Kiran Raosaheb

    2010-04-01

    Type 2 diabetes mellitus (T2DM) is a disorder characterized by both insulin resistance and impaired insulin secretion. Recent transcriptomics studies related to T2DM have revealed changes in expression of a large number of metabolic genes in a variety of tissues. Identification of the molecular mechanisms underlying these transcriptional changes and their impact on the cellular metabolic phenotype is a challenging task due to the complexity of transcriptional regulation and the highly interconnected nature of the metabolic network. In this study we integrate skeletal muscle gene expression datasets with human metabolic network reconstructions to identify key metabolic regulatory features of T2DM. These features include reporter metabolites--metabolites with significant collective transcriptional response in the associated enzyme-coding genes, and transcription factors with significant enrichment of binding sites in the promoter regions of these genes. In addition to metabolites from TCA cycle, oxidative phosphorylation, and lipid metabolism (known to be associated with T2DM), we identified several reporter metabolites representing novel biomarker candidates. For example, the highly connected metabolites NAD+/NADH and ATP/ADP were also identified as reporter metabolites that are potentially contributing to the widespread gene expression changes observed in T2DM. An algorithm based on the analysis of the promoter regions of the genes associated with reporter metabolites revealed a transcription factor regulatory network connecting several parts of metabolism. The identified transcription factors include members of the CREB, NRF1 and PPAR family, among others, and represent regulatory targets for further experimental analysis. Overall, our results provide a holistic picture of key metabolic and regulatory nodes potentially involved in the pathogenesis of T2DM.

  18. Random sampling of elementary flux modes in large-scale metabolic networks.

    Science.gov (United States)

    Machado, Daniel; Soons, Zita; Patil, Kiran Raosaheb; Ferreira, Eugénio C; Rocha, Isabel

    2012-09-15

    The description of a metabolic network in terms of elementary (flux) modes (EMs) provides an important framework for metabolic pathway analysis. However, their application to large networks has been hampered by the combinatorial explosion in the number of modes. In this work, we develop a method for generating random samples of EMs without computing the whole set. Our algorithm is an adaptation of the canonical basis approach, where we add an additional filtering step which, at each iteration, selects a random subset of the new combinations of modes. In order to obtain an unbiased sample, all candidates are assigned the same probability of getting selected. This approach avoids the exponential growth of the number of modes during computation, thus generating a random sample of the complete set of EMs within reasonable time. We generated samples of different sizes for a metabolic network of Escherichia coli, and observed that they preserve several properties of the full EM set. It is also shown that EM sampling can be used for rational strain design. A well distributed sample, that is representative of the complete set of EMs, should be suitable to most EM-based methods for analysis and optimization of metabolic networks. Source code for a cross-platform implementation in Python is freely available at http://code.google.com/p/emsampler. dmachado@deb.uminho.pt Supplementary data are available at Bioinformatics online.

  19. Context-specific metabolic networks are consistent with experiments.

    Directory of Open Access Journals (Sweden)

    Scott A Becker

    2008-05-01

    Full Text Available Reconstructions of cellular metabolism are publicly available for a variety of different microorganisms and some mammalian genomes. To date, these reconstructions are "genome-scale" and strive to include all reactions implied by the genome annotation, as well as those with direct experimental evidence. Clearly, many of the reactions in a genome-scale reconstruction will not be active under particular conditions or in a particular cell type. Methods to tailor these comprehensive genome-scale reconstructions into context-specific networks will aid predictive in silico modeling for a particular situation. We present a method called Gene Inactivity Moderated by Metabolism and Expression (GIMME to achieve this goal. The GIMME algorithm uses quantitative gene expression data and one or more presupposed metabolic objectives to produce the context-specific reconstruction that is most consistent with the available data. Furthermore, the algorithm provides a quantitative inconsistency score indicating how consistent a set of gene expression data is with a particular metabolic objective. We show that this algorithm produces results consistent with biological experiments and intuition for adaptive evolution of bacteria, rational design of metabolic engineering strains, and human skeletal muscle cells. This work represents progress towards producing constraint-based models of metabolism that are specific to the conditions where the expression profiling data is available.

  20. WUFlux: an open-source platform for 13C metabolic flux analysis of bacterial metabolism.

    Science.gov (United States)

    He, Lian; Wu, Stephen G; Zhang, Muhan; Chen, Yixin; Tang, Yinjie J

    2016-11-04

    Flux analyses, including flux balance analysis (FBA) and 13 C-metabolic flux analysis ( 13 C-MFA), offer direct insights into cell metabolism, and have been widely used to characterize model and non-model microbial species. Nonetheless, constructing the 13 C-MFA model and performing flux calculation are demanding for new learners, because they require knowledge of metabolic networks, carbon transitions, and computer programming. To facilitate and standardize the 13 C-MFA modeling work, we set out to publish a user-friendly and programming-free platform (WUFlux) for flux calculations in MATLAB ® . We constructed an open-source platform for steady-state 13 C-MFA. Using GUIDE (graphical user interface design environment) in MATLAB, we built a user interface that allows users to modify models based on their own experimental conditions. WUFlux is capable of directly correcting mass spectrum data of TBDMS (N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide)-derivatized proteinogenic amino acids by removing background noise. To simplify 13 C-MFA of different prokaryotic species, the software provides several metabolic network templates, including those for chemoheterotrophic bacteria and mixotrophic cyanobacteria. Users can modify the network and constraints, and then analyze the microbial carbon and energy metabolisms of various carbon substrates (e.g., glucose, pyruvate/lactate, acetate, xylose, and glycerol). WUFlux also offers several ways of visualizing the flux results with respect to the constructed network. To validate our model's applicability, we have compared and discussed the flux results obtained from WUFlux and other MFA software. We have also illustrated how model constraints of cofactor and ATP balances influence fluxome results. Open-source software for 13 C-MFA, WUFlux, with a user-friendly interface and easy-to-modify templates, is now available at http://www.13cmfa.org /or ( http://tang.eece.wustl.edu/ToolDevelopment.htm ). We will continue

  1. Stoichiometric Correlation Analysis: Principles of Metabolic Functionality from Metabolomics Data

    Directory of Open Access Journals (Sweden)

    Kevin Schwahn

    2017-12-01

    Full Text Available Recent advances in metabolomics technologies have resulted in high-quality (time-resolved metabolic profiles with an increasing coverage of metabolic pathways. These data profiles represent read-outs from often non-linear dynamics of metabolic networks. Yet, metabolic profiles have largely been explored with regression-based approaches that only capture linear relationships, rendering it difficult to determine the extent to which the data reflect the underlying reaction rates and their couplings. Here we propose an approach termed Stoichiometric Correlation Analysis (SCA based on correlation between positive linear combinations of log-transformed metabolic profiles. The log-transformation is due to the evidence that metabolic networks can be modeled by mass action law and kinetics derived from it. Unlike the existing approaches which establish a relation between pairs of metabolites, SCA facilitates the discovery of higher-order dependence between more than two metabolites. By using a paradigmatic model of the tricarboxylic acid cycle we show that the higher-order dependence reflects the coupling of concentration of reactant complexes, capturing the subtle difference between the employed enzyme kinetics. Using time-resolved metabolic profiles from Arabidopsis thaliana and Escherichia coli, we show that SCA can be used to quantify the difference in coupling of reactant complexes, and hence, reaction rates, underlying the stringent response in these model organisms. By using SCA with data from natural variation of wild and domesticated wheat and tomato accession, we demonstrate that the domestication is accompanied by loss of such couplings, in these species. Therefore, application of SCA to metabolomics data from natural variation in wild and domesticated populations provides a mechanistic way to understanding domestication and its relation to metabolic networks.

  2. A compendium of inborn errors of metabolism mapped onto the human metabolic network.

    OpenAIRE

    Sahoo, Swagatika; Franzson, Leifur; Jonsson, Jon J; Thiele, Ines

    2012-01-01

    Efst á síðunni er hægt að nálgast greinina í heild sinni með því að smella á hlekkinn Inborn errors of metabolism (IEMs) are hereditary metabolic defects, which are encountered in almost all major metabolic pathways occurring in man. Many IEMs are screened for in neonates through metabolomic analysis of dried blood spot samples. To enable the mapping of these metabolomic data onto the published human metabolic reconstruction, we added missing reactions and pathways involved in acylcarnitin...

  3. Bacterial Unculturability and the Formation of Intercellular Metabolic Networks.

    Science.gov (United States)

    Pande, Samay; Kost, Christian

    2017-05-01

    The majority of known bacterial species cannot be cultivated under laboratory conditions. Here we argue that the adaptive emergence of obligate metabolic interactions in natural bacterial communities can explain this pattern. Bacteria commonly release metabolites into the external environment. Accumulating pools of extracellular metabolites create an ecological niche that benefits auxotrophic mutants, which have lost the ability to autonomously produce the corresponding metabolites. In addition to a diffusion-based metabolite transfer, auxotrophic cells can use contact-dependent means to obtain nutrients from other co-occurring cells. Spatial colocalisation and a continuous coevolution further increase the nutritional dependency and optimise fluxes through combined metabolic networks. Thus, bacteria likely function as networks of interacting cells that reciprocally exchange nutrients and biochemical functions rather than as physiologically autonomous units. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Cerebral metabolic correlates of attention networks in Alzheimer's Disease: A study of the Stroop.

    Science.gov (United States)

    Melrose, Rebecca J; Young, Stephanie; Weissberger, Gali H; Natta, Laura; Harwood, Dylan; Mandelkern, Mark; Sultzer, David L

    2017-11-01

    Patients with Alzheimer's Disease (AD) show difficulties with attention. Cognitive neuroscience models posit that attention can be broken down into alerting, orienting, and executive networks. We used the Stroop Color-Word test to interrogate the neural correlates of attention deficits in AD. We hypothesized that the Word, Color, and Color-Word conditions of the Stroop would all tap into the alerting and orienting networks. The Color-Word condition would additionally tap into the executive network. A ratio of Color-Word to Color naming performance would isolate the executive network from the others. To identify the neural underpinnings of attention in AD we correlated performance on the Stroop with brain metabolic activity. Sixty-six patients with probable AD completed [ 18 F] fluorodeoxyglucose PET scanning and neuropsychological testing. Analysis was conducted with SPM12 (p<0.001 uncorrected, extent threshold 50 voxels). Performance on the Word, Color, and Color-Word conditions directly correlated with metabolic rate in right inferior parietal lobules/intraparietal sulci. The Color-Word/Color ratio revealed associations with metabolic rate in right medial prefrontal cortex and insula/operculum. Overall findings were largely consistent with the hypothesized neuroanatomical substrates of the alerting, orienting, and executive networks. As such, attention deficits in AD reflect compromise to multiple large-scale networks. Published by Elsevier Ltd.

  5. Current Understanding of the Formation and Adaptation of Metabolic Systems Based on Network Theory

    Directory of Open Access Journals (Sweden)

    Kazuhiro Takemoto

    2012-07-01

    Full Text Available Formation and adaptation of metabolic networks has been a long-standing question in biology. With recent developments in biotechnology and bioinformatics, the understanding of metabolism is progressively becoming clearer from a network perspective. This review introduces the comprehensive metabolic world that has been revealed by a wide range of data analyses and theoretical studies; in particular, it illustrates the role of evolutionary events, such as gene duplication and horizontal gene transfer, and environmental factors, such as nutrient availability and growth conditions, in evolution of the metabolic network. Furthermore, the mathematical models for the formation and adaptation of metabolic networks have also been described, according to the current understanding from a perspective of metabolic networks. These recent findings are helpful in not only understanding the formation of metabolic networks and their adaptation, but also metabolic engineering.

  6. Metabolic Network Constrains Gene Regulation of C4 Photosynthesis: The Case of Maize.

    Science.gov (United States)

    Robaina-Estévez, Semidán; Nikoloski, Zoran

    2016-05-01

    Engineering C3 plants to increase their efficiency of carbon fixation as well as of nitrogen and water use simultaneously may be facilitated by understanding the mechanisms that underpin the C4 syndrome. Existing experimental studies have indicated that the emergence of the C4 syndrome requires co-ordination between several levels of cellular organization, from gene regulation to metabolism, across two co-operating cell systems-mesophyll and bundle sheath cells. Yet, determining the extent to which the structure of the C4 plant metabolic network may constrain gene expression remains unclear, although it will provide an important consideration in engineering C4 photosynthesis in C3 plants. Here, we utilize flux coupling analysis with the second-generation maize metabolic models to investigate the correspondence between metabolic network structure and transcriptomic phenotypes along the maize leaf gradient. The examined scenarios with publically available data from independent experiments indicate that the transcriptomic programs of the two cell types are co-ordinated, quantitatively and qualitatively, due to the presence of coupled metabolic reactions in specific metabolic pathways. Taken together, our study demonstrates that precise quantitative coupling will have to be achieved in order to ensure a successfully engineered transition from C3 to C4 crops. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  7. c-Myc activates multiple metabolic networks to generate substrates for cell-cycle entry.

    Energy Technology Data Exchange (ETDEWEB)

    Morrish, Fionnuala M.; Isern, Nancy; Sadilek, Martin; Jeffrey, Mark; Hockenbery, David M.

    2009-05-18

    Cell proliferation requires the coordinated activity of cytosolic and mitochondrial metabolic pathways to provide ATP and building blocks for DNA, RNA, and protein synthesis. Many metabolic pathway genes are targets of the c-myc oncogene and cell cycle regulator. However, the contribution of c-Myc to the activation of cytosolic and mitochondrial metabolic networks during cell cycle entry is unknown. Here, we report the metabolic fates of [U-13C] glucose in serum-stimulated myc-/- and myc+/+ fibroblasts by 13C isotopomer NMR analysis. We demonstrate that endogenous c-myc increased 13C-labeling of ribose sugars, purines, and amino acids, indicating partitioning of glucose carbons into C1/folate and pentose phosphate pathways, and increased tricarboxylic acid cycle turnover at the expense of anaplerotic flux. Myc expression also increased global O-linked GlcNAc protein modification, and inhibition of hexosamine biosynthesis selectively reduced growth of Myc-expressing cells, suggesting its importance in Myc-induced proliferation. These data reveal a central organizing role for the Myc oncogene in the metabolism of cycling cells. The pervasive deregulation of this oncogene in human cancers may be explained by its role in directing metabolic networks required for cell proliferation.

  8. Modeling the Metabolism of Arabidopsis thaliana: Application of Network Decomposition and Network Reduction in the Context of Petri Nets

    Directory of Open Access Journals (Sweden)

    Ina Koch

    2017-06-01

    Full Text Available Motivation:Arabidopsis thaliana is a well-established model system for the analysis of the basic physiological and metabolic pathways of plants. Nevertheless, the system is not yet fully understood, although many mechanisms are described, and information for many processes exists. However, the combination and interpretation of the large amount of biological data remain a big challenge, not only because data sets for metabolic paths are still incomplete. Moreover, they are often inconsistent, because they are coming from different experiments of various scales, regarding, for example, accuracy and/or significance. Here, theoretical modeling is powerful to formulate hypotheses for pathways and the dynamics of the metabolism, even if the biological data are incomplete. To develop reliable mathematical models they have to be proven for consistency. This is still a challenging task because many verification techniques fail already for middle-sized models. Consequently, new methods, like decomposition methods or reduction approaches, are developed to circumvent this problem.Methods: We present a new semi-quantitative mathematical model of the metabolism of Arabidopsis thaliana. We used the Petri net formalism to express the complex reaction system in a mathematically unique manner. To verify the model for correctness and consistency we applied concepts of network decomposition and network reduction such as transition invariants, common transition pairs, and invariant transition pairs.Results: We formulated the core metabolism of Arabidopsis thaliana based on recent knowledge from literature, including the Calvin cycle, glycolysis and citric acid cycle, glyoxylate cycle, urea cycle, sucrose synthesis, and the starch metabolism. By applying network decomposition and reduction techniques at steady-state conditions, we suggest a straightforward mathematical modeling process. We demonstrate that potential steady-state pathways exist, which provide the

  9. Transcriptomic coordination in the human metabolic network reveals links between n-3 fat intake, adipose tissue gene expression and metabolic health.

    Science.gov (United States)

    Morine, Melissa J; Tierney, Audrey C; van Ommen, Ben; Daniel, Hannelore; Toomey, Sinead; Gjelstad, Ingrid M F; Gormley, Isobel C; Pérez-Martinez, Pablo; Drevon, Christian A; López-Miranda, Jose; Roche, Helen M

    2011-11-01

    Understanding the molecular link between diet and health is a key goal in nutritional systems biology. As an alternative to pathway analysis, we have developed a joint multivariate and network-based approach to analysis of a dataset of habitual dietary records, adipose tissue transcriptomics and comprehensive plasma marker profiles from human volunteers with the Metabolic Syndrome. With this approach we identified prominent co-expressed sub-networks in the global metabolic network, which showed correlated expression with habitual n-3 PUFA intake and urinary levels of the oxidative stress marker 8-iso-PGF(2α). These sub-networks illustrated inherent cross-talk between distinct metabolic pathways, such as between triglyceride metabolism and production of lipid signalling molecules. In a parallel promoter analysis, we identified several adipogenic transcription factors as potential transcriptional regulators associated with habitual n-3 PUFA intake. Our results illustrate advantages of network-based analysis, and generate novel hypotheses on the transcriptomic link between habitual n-3 PUFA intake, adipose tissue function and oxidative stress.

  10. Optimization of Bioprocess Productivity Based on Metabolic-Genetic Network Models with Bilevel Dynamic Programming.

    Science.gov (United States)

    Jabarivelisdeh, Banafsheh; Waldherr, Steffen

    2018-03-26

    One of the main goals of metabolic engineering is to obtain high levels of a microbial product through genetic modifications. To improve the productivity of such a process, the dynamic implementation of metabolic engineering strategies has been proven to be more beneficial compared to static genetic manipulations in which the gene expression is not controlled over time, by resolving the trade-off between growth and production. In this work, a bilevel optimization framework based on constraint-based models is applied to identify an optimal strategy for dynamic genetic and process level manipulations to increase productivity. The dynamic enzyme-cost flux balance analysis (deFBA) as underlying metabolic network model captures the network dynamics and enables the analysis of temporal regulation in the metabolic-genetic network. We apply our computational framework to maximize ethanol productivity in a batch process with Escherichia coli. The results highlight the importance of integrating the genetic level and enzyme production and degradation processes for obtaining optimal dynamic gene and process manipulations. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  11. Thermodynamic calculations for biochemical transport and reaction processes in metabolic networks.

    Science.gov (United States)

    Jol, Stefan J; Kümmel, Anne; Hatzimanikatis, Vassily; Beard, Daniel A; Heinemann, Matthias

    2010-11-17

    Thermodynamic analysis of metabolic networks has recently generated increasing interest for its ability to add constraints on metabolic network operation, and to combine metabolic fluxes and metabolite measurements in a mechanistic manner. Concepts for the calculation of the change in Gibbs energy of biochemical reactions have long been established. However, a concept for incorporation of cross-membrane transport in these calculations is still missing, although the theory for calculating thermodynamic properties of transport processes is long known. Here, we have developed two equivalent equations to calculate the change in Gibbs energy of combined transport and reaction processes based on two different ways of treating biochemical thermodynamics. We illustrate the need for these equations by showing that in some cases there is a significant difference between the proposed correct calculation and using an approximative method. With the developed equations, thermodynamic analysis of metabolic networks spanning over multiple physical compartments can now be correctly described. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. Network Thermodynamic Curation of Human and Yeast Genome-Scale Metabolic Models

    Science.gov (United States)

    Martínez, Verónica S.; Quek, Lake-Ee; Nielsen, Lars K.

    2014-01-01

    Genome-scale models are used for an ever-widening range of applications. Although there has been much focus on specifying the stoichiometric matrix, the predictive power of genome-scale models equally depends on reaction directions. Two-thirds of reactions in the two eukaryotic reconstructions Homo sapiens Recon 1 and Yeast 5 are specified as irreversible. However, these specifications are mainly based on biochemical textbooks or on their similarity to other organisms and are rarely underpinned by detailed thermodynamic analysis. In this study, a to our knowledge new workflow combining network-embedded thermodynamic and flux variability analysis was used to evaluate existing irreversibility constraints in Recon 1 and Yeast 5 and to identify new ones. A total of 27 and 16 new irreversible reactions were identified in Recon 1 and Yeast 5, respectively, whereas only four reactions were found with directions incorrectly specified against thermodynamics (three in Yeast 5 and one in Recon 1). The workflow further identified for both models several isolated internal loops that require further curation. The framework also highlighted the need for substrate channeling (in human) and ATP hydrolysis (in yeast) for the essential reaction catalyzed by phosphoribosylaminoimidazole carboxylase in purine metabolism. Finally, the framework highlighted differences in proline metabolism between yeast (cytosolic anabolism and mitochondrial catabolism) and humans (exclusively mitochondrial metabolism). We conclude that network-embedded thermodynamics facilitates the specification and validation of irreversibility constraints in compartmentalized metabolic models, at the same time providing further insight into network properties. PMID:25028891

  13. Computational Social Network Analysis

    CERN Document Server

    Hassanien, Aboul-Ella

    2010-01-01

    Presents insight into the social behaviour of animals (including the study of animal tracks and learning by members of the same species). This book provides web-based evidence of social interaction, perceptual learning, information granulation and the behaviour of humans and affinities between web-based social networks

  14. Network analysis applications in hydrology

    Science.gov (United States)

    Price, Katie

    2017-04-01

    Applied network theory has seen pronounced expansion in recent years, in fields such as epidemiology, computer science, and sociology. Concurrent development of analytical methods and frameworks has increased possibilities and tools available to researchers seeking to apply network theory to a variety of problems. While water and nutrient fluxes through stream systems clearly demonstrate a directional network structure, the hydrological applications of network theory remain under­explored. This presentation covers a review of network applications in hydrology, followed by an overview of promising network analytical tools that potentially offer new insights into conceptual modeling of hydrologic systems, identifying behavioral transition zones in stream networks and thresholds of dynamical system response. Network applications were tested along an urbanization gradient in Atlanta, Georgia, USA. Peachtree Creek and Proctor Creek. Peachtree Creek contains a nest of five long­term USGS streamflow and water quality gages, allowing network application of long­term flow statistics. The watershed spans a range of suburban and heavily urbanized conditions. Summary flow statistics and water quality metrics were analyzed using a suite of network analysis techniques, to test the conceptual modeling and predictive potential of the methodologies. Storm events and low flow dynamics during Summer 2016 were analyzed using multiple network approaches, with an emphasis on tomogravity methods. Results indicate that network theory approaches offer novel perspectives for understanding long­ term and event­based hydrological data. Key future directions for network applications include 1) optimizing data collection, 2) identifying "hotspots" of contaminant and overland flow influx to stream systems, 3) defining process domains, and 4) analyzing dynamic connectivity of various system components, including groundwater­surface water interactions.

  15. Metabolic Network Modeling of Microbial Interactions in Natural and Engineered Environmental Systems

    Science.gov (United States)

    Perez-Garcia, Octavio; Lear, Gavin; Singhal, Naresh

    2016-01-01

    We review approaches to characterize metabolic interactions within microbial communities using Stoichiometric Metabolic Network (SMN) models for applications in environmental and industrial biotechnology. SMN models are computational tools used to evaluate the metabolic engineering potential of various organisms. They have successfully been applied to design and optimize the microbial production of antibiotics, alcohols and amino acids by single strains. To date however, such models have been rarely applied to analyze and control the metabolism of more complex microbial communities. This is largely attributed to the diversity of microbial community functions, metabolisms, and interactions. Here, we firstly review different types of microbial interaction and describe their relevance for natural and engineered environmental processes. Next, we provide a general description of the essential methods of the SMN modeling workflow including the steps of network reconstruction, simulation through Flux Balance Analysis (FBA), experimental data gathering, and model calibration. Then we broadly describe and compare four approaches to model microbial interactions using metabolic networks, i.e., (i) lumped networks, (ii) compartment per guild networks, (iii) bi-level optimization simulations, and (iv) dynamic-SMN methods. These approaches can be used to integrate and analyze diverse microbial physiology, ecology and molecular community data. All of them (except the lumped approach) are suitable for incorporating species abundance data but so far they have been used only to model simple communities of two to eight different species. Interactions based on substrate exchange and competition can be directly modeled using the above approaches. However, interactions based on metabolic feedbacks, such as product inhibition and synthropy require extensions to current models, incorporating gene regulation and compounding accumulation mechanisms. SMN models of microbial interactions can

  16. Metabolic Network Modeling of Microbial Interactions in Natural and Engineered Environmental Systems.

    Science.gov (United States)

    Perez-Garcia, Octavio; Lear, Gavin; Singhal, Naresh

    2016-01-01

    We review approaches to characterize metabolic interactions within microbial communities using Stoichiometric Metabolic Network (SMN) models for applications in environmental and industrial biotechnology. SMN models are computational tools used to evaluate the metabolic engineering potential of various organisms. They have successfully been applied to design and optimize the microbial production of antibiotics, alcohols and amino acids by single strains. To date however, such models have been rarely applied to analyze and control the metabolism of more complex microbial communities. This is largely attributed to the diversity of microbial community functions, metabolisms, and interactions. Here, we firstly review different types of microbial interaction and describe their relevance for natural and engineered environmental processes. Next, we provide a general description of the essential methods of the SMN modeling workflow including the steps of network reconstruction, simulation through Flux Balance Analysis (FBA), experimental data gathering, and model calibration. Then we broadly describe and compare four approaches to model microbial interactions using metabolic networks, i.e., (i) lumped networks, (ii) compartment per guild networks, (iii) bi-level optimization simulations, and (iv) dynamic-SMN methods. These approaches can be used to integrate and analyze diverse microbial physiology, ecology and molecular community data. All of them (except the lumped approach) are suitable for incorporating species abundance data but so far they have been used only to model simple communities of two to eight different species. Interactions based on substrate exchange and competition can be directly modeled using the above approaches. However, interactions based on metabolic feedbacks, such as product inhibition and synthropy require extensions to current models, incorporating gene regulation and compounding accumulation mechanisms. SMN models of microbial interactions can

  17. Metabolic network modeling of microbial interactions in natural and engineered environmental systems

    Directory of Open Access Journals (Sweden)

    Octavio ePerez-Garcia

    2016-05-01

    Full Text Available We review approaches to characterize metabolic interactions within microbial communities using Stoichiometric Metabolic Network (SMN models for applications in environmental and industrial biotechnology. SMN models are computational tools used to evaluate the metabolic engineering potential of various organisms. They have successfully been applied to design and optimize the microbial production of antibiotics, alcohols and amino acids by single strains. To date however, such models have been rarely applied to analyze and control the metabolism of more complex microbial communities. This is largely attributed to the diversity of microbial community functions, metabolisms and interactions. Here, we firstly review different types of microbial interaction and describe their relevance for natural and engineered environmental processes. Next, we provide a general description of the essential methods of the SMN modeling workflow including the steps of network reconstruction, simulation through Flux Balance Analysis (FBA, experimental data gathering, and model calibration. Then we broadly describe and compare four approaches to model microbial interactions using metabolic networks, i.e. i lumped networks, ii compartment per guild networks, iii bi-level optimization simulations and iv dynamic-SMN methods. These approaches can be used to integrate and analyze diverse microbial physiology, ecology and molecular community data. All of them (except the lumped approach are suitable for incorporating species abundance data but so far they have been used only to model simple communities of two to eight different species. Interactions based on substrate exchange and competition can be directly modeled using the above approaches. However, interactions based on metabolic feedbacks, such as product inhibition and synthropy require extensions to current models, incorporating gene regulation and compounding accumulation mechanisms. SMN models of microbial

  18. Predicting selective drug targets in cancer through metabolic networks

    Science.gov (United States)

    Folger, Ori; Jerby, Livnat; Frezza, Christian; Gottlieb, Eyal; Ruppin, Eytan; Shlomi, Tomer

    2011-01-01

    The interest in studying metabolic alterations in cancer and their potential role as novel targets for therapy has been rejuvenated in recent years. Here, we report the development of the first genome-scale network model of cancer metabolism, validated by correctly identifying genes essential for cellular proliferation in cancer cell lines. The model predicts 52 cytostatic drug targets, of which 40% are targeted by known, approved or experimental anticancer drugs, and the rest are new. It further predicts combinations of synthetic lethal drug targets, whose synergy is validated using available drug efficacy and gene expression measurements across the NCI-60 cancer cell line collection. Finally, potential selective treatments for specific cancers that depend on cancer type-specific downregulation of gene expression and somatic mutations are compiled. PMID:21694718

  19. Topological analysis of telecommunications networks

    Directory of Open Access Journals (Sweden)

    Milojko V. Jevtović

    2011-01-01

    Full Text Available A topological analysis of the structure of telecommunications networks is a very interesting topic in the network research, but also a key issue in their design and planning. Satisfying multiple criteria in terms of locations of switching nodes as well as their connectivity with respect to the requests for capacity, transmission speed, reliability, availability and cost are the main research objectives. There are three ways of presenting the topology of telecommunications networks: table, matrix or graph method. The table method is suitable for a network of a relatively small number of nodes in relation to the number of links. The matrix method involves the formation of a connection matrix in which its columns present source traffic nodes and its rows are the switching systems that belong to the destination. The method of the topology graph means that the network nodes are connected via directional or unidirectional links. We can thus easily analyze the structural parameters of telecommunications networks. This paper presents the mathematical analysis of the star-, ring-, fully connected loop- and grid (matrix-shaped topology as well as the topology based on the shortest path tree. For each of these topologies, the expressions for determining the number of branches, the middle level of reliability, the medium length and the average length of the link are given in tables. For the fully connected loop network with five nodes the values of all topological parameters are calculated. Based on the topological parameters, the relationships that represent integral and distributed indicators of reliability are given in this work as well as the values of the particular network. The main objectives of the topology optimization of telecommunications networks are: achieving the minimum complexity, maximum capacity, the shortest path message transfer, the maximum speed of communication and maximum economy. The performance of telecommunications networks is

  20. Comparative genomic reconstruction of transcriptional networks controlling central metabolism in the Shewanella genus

    Directory of Open Access Journals (Sweden)

    Kovaleva Galina

    2011-06-01

    Full Text Available Abstract Background Genome-scale prediction of gene regulation and reconstruction of transcriptional regulatory networks in bacteria is one of the critical tasks of modern genomics. The Shewanella genus is comprised of metabolically versatile gamma-proteobacteria, whose lifestyles and natural environments are substantially different from Escherichia coli and other model bacterial species. The comparative genomics approaches and computational identification of regulatory sites are useful for the in silico reconstruction of transcriptional regulatory networks in bacteria. Results To explore conservation and variations in the Shewanella transcriptional networks we analyzed the repertoire of transcription factors and performed genomics-based reconstruction and comparative analysis of regulons in 16 Shewanella genomes. The inferred regulatory network includes 82 transcription factors and their DNA binding sites, 8 riboswitches and 6 translational attenuators. Forty five regulons were newly inferred from the genome context analysis, whereas others were propagated from previously characterized regulons in the Enterobacteria and Pseudomonas spp.. Multiple variations in regulatory strategies between the Shewanella spp. and E. coli include regulon contraction and expansion (as in the case of PdhR, HexR, FadR, numerous cases of recruiting non-orthologous regulators to control equivalent pathways (e.g. PsrA for fatty acid degradation and, conversely, orthologous regulators to control distinct pathways (e.g. TyrR, ArgR, Crp. Conclusions We tentatively defined the first reference collection of ~100 transcriptional regulons in 16 Shewanella genomes. The resulting regulatory network contains ~600 regulated genes per genome that are mostly involved in metabolism of carbohydrates, amino acids, fatty acids, vitamins, metals, and stress responses. Several reconstructed regulons including NagR for N-acetylglucosamine catabolism were experimentally validated in S

  1. Compartmentalized metabolic network reconstruction of microbial communities to determine the effect of agricultural intervention on soils.

    Science.gov (United States)

    Alvarez-Silva, María Camila; Álvarez-Yela, Astrid Catalina; Gómez-Cano, Fabio; Zambrano, María Mercedes; Husserl, Johana; Danies, Giovanna; Restrepo, Silvia; González-Barrios, Andrés Fernando

    2017-01-01

    Soil microbial communities are responsible for a wide range of ecological processes and have an important economic impact in agriculture. Determining the metabolic processes performed by microbial communities is crucial for understanding and managing ecosystem properties. Metagenomic approaches allow the elucidation of the main metabolic processes that determine the performance of microbial communities under different environmental conditions and perturbations. Here we present the first compartmentalized metabolic reconstruction at a metagenomics scale of a microbial ecosystem. This systematic approach conceives a meta-organism without boundaries between individual organisms and allows the in silico evaluation of the effect of agricultural intervention on soils at a metagenomics level. To characterize the microbial ecosystems, topological properties, taxonomic and metabolic profiles, as well as a Flux Balance Analysis (FBA) were considered. Furthermore, topological and optimization algorithms were implemented to carry out the curation of the models, to ensure the continuity of the fluxes between the metabolic pathways, and to confirm the metabolite exchange between subcellular compartments. The proposed models provide specific information about ecosystems that are generally overlooked in non-compartmentalized or non-curated networks, like the influence of transport reactions in the metabolic processes, especially the important effect on mitochondrial processes, as well as provide more accurate results of the fluxes used to optimize the metabolic processes within the microbial community.

  2. Compartmentalized metabolic network reconstruction of microbial communities to determine the effect of agricultural intervention on soils.

    Directory of Open Access Journals (Sweden)

    María Camila Alvarez-Silva

    Full Text Available Soil microbial communities are responsible for a wide range of ecological processes and have an important economic impact in agriculture. Determining the metabolic processes performed by microbial communities is crucial for understanding and managing ecosystem properties. Metagenomic approaches allow the elucidation of the main metabolic processes that determine the performance of microbial communities under different environmental conditions and perturbations. Here we present the first compartmentalized metabolic reconstruction at a metagenomics scale of a microbial ecosystem. This systematic approach conceives a meta-organism without boundaries between individual organisms and allows the in silico evaluation of the effect of agricultural intervention on soils at a metagenomics level. To characterize the microbial ecosystems, topological properties, taxonomic and metabolic profiles, as well as a Flux Balance Analysis (FBA were considered. Furthermore, topological and optimization algorithms were implemented to carry out the curation of the models, to ensure the continuity of the fluxes between the metabolic pathways, and to confirm the metabolite exchange between subcellular compartments. The proposed models provide specific information about ecosystems that are generally overlooked in non-compartmentalized or non-curated networks, like the influence of transport reactions in the metabolic processes, especially the important effect on mitochondrial processes, as well as provide more accurate results of the fluxes used to optimize the metabolic processes within the microbial community.

  3. Enumeration of minimal stoichiometric precursor sets in metabolic networks.

    Science.gov (United States)

    Andrade, Ricardo; Wannagat, Martin; Klein, Cecilia C; Acuña, Vicente; Marchetti-Spaccamela, Alberto; Milreu, Paulo V; Stougie, Leen; Sagot, Marie-France

    2016-01-01

    What an organism needs at least from its environment to produce a set of metabolites, e.g. target(s) of interest and/or biomass, has been called a minimal precursor set. Early approaches to enumerate all minimal precursor sets took into account only the topology of the metabolic network (topological precursor sets). Due to cycles and the stoichiometric values of the reactions, it is often not possible to produce the target(s) from a topological precursor set in the sense that there is no feasible flux. Although considering the stoichiometry makes the problem harder, it enables to obtain biologically reasonable precursor sets that we call stoichiometric. Recently a method to enumerate all minimal stoichiometric precursor sets was proposed in the literature. The relationship between topological and stoichiometric precursor sets had however not yet been studied. Such relationship between topological and stoichiometric precursor sets is highlighted. We also present two algorithms that enumerate all minimal stoichiometric precursor sets. The first one is of theoretical interest only and is based on the above mentioned relationship. The second approach solves a series of mixed integer linear programming problems. We compared the computed minimal precursor sets to experimentally obtained growth media of several Escherichia coli strains using genome-scale metabolic networks. The results show that the second approach efficiently enumerates minimal precursor sets taking stoichiometry into account, and allows for broad in silico studies of strains or species interactions that may help to understand e.g. pathotype and niche-specific metabolic capabilities. sasita is written in Java, uses cplex as LP solver and can be downloaded together with all networks and input files used in this paper at http://www.sasita.gforge.inria.fr.

  4. Combined metabolomic and correlation networks analyses reveal fumarase insufficiency altered amino acid metabolism.

    Science.gov (United States)

    Hou, Entai; Li, Xian; Liu, Zerong; Zhang, Fuchang; Tian, Zhongmin

    2018-04-01

    Fumarase catalyzes the interconversion of fumarate and l-malate in the tricarboxylic acid cycle. Fumarase insufficiencies were associated with increased levels of fumarate, decreased levels of malate and exacerbated salt-induced hypertension. To gain insights into the metabolism profiles induced by fumarase insufficiency and identify key regulatory metabolites, we applied a GC-MS based metabolomics platform coupled with a network approach to analyze fumarase insufficient human umbilical vein endothelial cells (HUVEC) and negative controls. A total of 24 altered metabolites involved in seven metabolic pathways were identified as significantly altered, and enriched for the biological module of amino acids metabolism. In addition, Pearson correlation network analysis revealed that fumaric acid, l-malic acid, l-aspartic acid, glycine and l-glutamic acid were hub metabolites according to Pagerank based on their three centrality indices. Alanine aminotransferase and glutamate dehydrogenase activities increased significantly in fumarase deficiency HUVEC. These results confirmed that fumarase insufficiency altered amino acid metabolism. The combination of metabolomics and network methods would provide another perspective on expounding the molecular mechanism at metabolomics level. Copyright © 2017 John Wiley & Sons, Ltd.

  5. Analysis of neural networks

    CERN Document Server

    Heiden, Uwe

    1980-01-01

    The purpose of this work is a unified and general treatment of activity in neural networks from a mathematical pOint of view. Possible applications of the theory presented are indica­ ted throughout the text. However, they are not explored in de­ tail for two reasons : first, the universal character of n- ral activity in nearly all animals requires some type of a general approach~ secondly, the mathematical perspicuity would suffer if too many experimental details and empirical peculiarities were interspersed among the mathematical investigation. A guide to many applications is supplied by the references concerning a variety of specific issues. Of course the theory does not aim at covering all individual problems. Moreover there are other approaches to neural network theory (see e.g. Poggio-Torre, 1978) based on the different lev­ els at which the nervous system may be viewed. The theory is a deterministic one reflecting the average be­ havior of neurons or neuron pools. In this respect the essay is writt...

  6. Pareto optimality in organelle energy metabolism analysis.

    Science.gov (United States)

    Angione, Claudio; Carapezza, Giovanni; Costanza, Jole; Lió, Pietro; Nicosia, Giuseppe

    2013-01-01

    In low and high eukaryotes, energy is collected or transformed in compartments, the organelles. The rich variety of size, characteristics, and density of the organelles makes it difficult to build a general picture. In this paper, we make use of the Pareto-front analysis to investigate the optimization of energy metabolism in mitochondria and chloroplasts. Using the Pareto optimality principle, we compare models of organelle metabolism on the basis of single- and multiobjective optimization, approximation techniques (the Bayesian Automatic Relevance Determination), robustness, and pathway sensitivity analysis. Finally, we report the first analysis of the metabolic model for the hydrogenosome of Trichomonas vaginalis, which is found in several protozoan parasites. Our analysis has shown the importance of the Pareto optimality for such comparison and for insights into the evolution of the metabolism from cytoplasmic to organelle bound, involving a model order reduction. We report that Pareto fronts represent an asymptotic analysis useful to describe the metabolism of an organism aimed at maximizing concurrently two or more metabolite concentrations.

  7. Computational Functional Analysis of Lipid Metabolic Enzymes.

    Science.gov (United States)

    Bagnato, Carolina; Have, Arjen Ten; Prados, María B; Beligni, María V

    2017-01-01

    The computational analysis of enzymes that participate in lipid metabolism has both common and unique challenges when compared to the whole protein universe. Some of the hurdles that interfere with the functional annotation of lipid metabolic enzymes that are common to other pathways include the definition of proper starting datasets, the construction of reliable multiple sequence alignments, the definition of appropriate evolutionary models, and the reconstruction of phylogenetic trees with high statistical support, particularly for large datasets. Most enzymes that take part in lipid metabolism belong to complex superfamilies with many members that are not involved in lipid metabolism. In addition, some enzymes that do not have sequence similarity catalyze similar or even identical reactions. Some of the challenges that, albeit not unique, are more specific to lipid metabolism refer to the high compartmentalization of the routes, the catalysis in hydrophobic environments and, related to this, the function near or in biological membranes.In this work, we provide guidelines intended to assist in the proper functional annotation of lipid metabolic enzymes, based on previous experiences related to the phospholipase D superfamily and the annotation of the triglyceride synthesis pathway in algae. We describe a pipeline that starts with the definition of an initial set of sequences to be used in similarity-based searches and ends in the reconstruction of phylogenies. We also mention the main issues that have to be taken into consideration when using tools to analyze subcellular localization, hydrophobicity patterns, or presence of transmembrane domains in lipid metabolic enzymes.

  8. Isotopically nonstationary metabolic flux analysis (INST-MFA) of photosynthesis and photorespiration in plants

    Science.gov (United States)

    Photorespiration is a central component of photosynthesis; however to better understand its role it should be viewed in the context of an integrated metabolic network rather than a series of individual reactions that operate independently. Isotopically nonstationary 13C metabolic flux analysis (INST...

  9. Antenna analysis using neural networks

    Science.gov (United States)

    Smith, William T.

    1992-01-01

    Conventional computing schemes have long been used to analyze problems in electromagnetics (EM). The vast majority of EM applications require computationally intensive algorithms involving numerical integration and solutions to large systems of equations. The feasibility of using neural network computing algorithms for antenna analysis is investigated. The ultimate goal is to use a trained neural network algorithm to reduce the computational demands of existing reflector surface error compensation techniques. Neural networks are computational algorithms based on neurobiological systems. Neural nets consist of massively parallel interconnected nonlinear computational elements. They are often employed in pattern recognition and image processing problems. Recently, neural network analysis has been applied in the electromagnetics area for the design of frequency selective surfaces and beam forming networks. The backpropagation training algorithm was employed to simulate classical antenna array synthesis techniques. The Woodward-Lawson (W-L) and Dolph-Chebyshev (D-C) array pattern synthesis techniques were used to train the neural network. The inputs to the network were samples of the desired synthesis pattern. The outputs are the array element excitations required to synthesize the desired pattern. Once trained, the network is used to simulate the W-L or D-C techniques. Various sector patterns and cosecant-type patterns (27 total) generated using W-L synthesis were used to train the network. Desired pattern samples were then fed to the neural network. The outputs of the network were the simulated W-L excitations. A 20 element linear array was used. There were 41 input pattern samples with 40 output excitations (20 real parts, 20 imaginary). A comparison between the simulated and actual W-L techniques is shown for a triangular-shaped pattern. Dolph-Chebyshev is a different class of synthesis technique in that D-C is used for side lobe control as opposed to pattern

  10. Integration of expression data in genome-scale metabolic network reconstructions

    Directory of Open Access Journals (Sweden)

    Anna S. Blazier

    2012-08-01

    Full Text Available With the advent of high-throughput technologies, the field of systems biology has amassed an abundance of omics data, quantifying thousands of cellular components across a variety of scales, ranging from mRNA transcript levels to metabolite quantities. Methods are needed to not only integrate this omics data but to also use this data to heighten the predictive capabilities of computational models. Several recent studies have successfully demonstrated how flux balance analysis (FBA, a constraint-based modeling approach, can be used to integrate transcriptomic data into genome-scale metabolic network reconstructions to generate predictive computational models. In this review, we summarize such FBA-based methods for integrating expression data into genome-scale metabolic network reconstructions, highlighting their advantages as well as their limitations.

  11. Incremental parameter estimation of kinetic metabolic network models

    Directory of Open Access Journals (Sweden)

    Jia Gengjie

    2012-11-01

    Full Text Available Abstract Background An efficient and reliable parameter estimation method is essential for the creation of biological models using ordinary differential equation (ODE. Most of the existing estimation methods involve finding the global minimum of data fitting residuals over the entire parameter space simultaneously. Unfortunately, the associated computational requirement often becomes prohibitively high due to the large number of parameters and the lack of complete parameter identifiability (i.e. not all parameters can be uniquely identified. Results In this work, an incremental approach was applied to the parameter estimation of ODE models from concentration time profiles. Particularly, the method was developed to address a commonly encountered circumstance in the modeling of metabolic networks, where the number of metabolic fluxes (reaction rates exceeds that of metabolites (chemical species. Here, the minimization of model residuals was performed over a subset of the parameter space that is associated with the degrees of freedom in the dynamic flux estimation from the concentration time-slopes. The efficacy of this method was demonstrated using two generalized mass action (GMA models, where the method significantly outperformed single-step estimations. In addition, an extension of the estimation method to handle missing data is also presented. Conclusions The proposed incremental estimation method is able to tackle the issue on the lack of complete parameter identifiability and to significantly reduce the computational efforts in estimating model parameters, which will facilitate kinetic modeling of genome-scale cellular metabolism in the future.

  12. Origins of Specificity and Promiscuity in Metabolic Networks

    Science.gov (United States)

    Carbonell, Pablo; Lecointre, Guillaume; Faulon, Jean-Loup

    2011-01-01

    How enzymes have evolved to their present form is linked to the question of how pathways emerged and evolved into extant metabolic networks. To investigate this mechanism, we have explored the chemical diversity present in a largely unbiased data set of catalytic reactions processed by modern enzymes across the tree of life. In order to get a quantitative estimate of enzyme chemical diversity, we measure enzyme multispecificity or promiscuity using the reaction molecular signatures. Our main finding is that reactions that are catalyzed by a highly specific enzyme are shared by poorly divergent species, suggesting a later emergence of this function during evolution. In contrast, reactions that are catalyzed by highly promiscuous enzymes are more likely to appear uniformly distributed across species in the tree of life. From a functional point of view, promiscuous enzymes are mainly involved in amino acid and lipid metabolisms, which might be associated with the earliest form of biochemical reactions. In this way, results presented in this paper might assist us with the identification of primeval promiscuous catalytic functions contributing to life's minimal metabolism. PMID:22052908

  13. Pseudomonas fluorescens induces strain-dependent and strain-independent host plant responses in defense networks, primary metabolism and photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Pelletier, Dale A [ORNL; Morrell-Falvey, Jennifer L [ORNL; Karve, Abhijit A [ORNL; Lu, Tse-Yuan S [ORNL; Tschaplinski, Timothy J [ORNL; Tuskan, Gerald A [ORNL; Chen, Jay [ORNL; Martin, Madhavi Z [ORNL; Jawdy, Sara [ORNL; Weston, David [ORNL; Doktycz, Mitchel John [ORNL; Schadt, Christopher Warren [ORNL

    2012-01-01

    Colonization of plants by nonpathogenic Pseudomonas fluorescens strains can confer enhanced defense capacity against a broad spectrum of pathogens. Few studies, however, have linked defense pathway regulation to primary metabolism and physiology. In this study, physiological data, metabolites, and transcript profiles are integrated to elucidate how molecular networks initiated at the root-microbe interface influence shoot metabolism and whole-plant performance. Experiments with Arabidopsis thaliana were performed using the newly identified P. fluorescens GM30 or P. fluorescens Pf-5 strains. Co-expression networks indicated that Pf-5 and GM30 induced a subnetwork specific to roots enriched for genes participating in RNA regulation, protein degradation, and hormonal metabolism. In contrast, only GM30 induced a subnetwork enriched for calcium signaling, sugar and nutrient signaling, and auxin metabolism, suggesting strain dependence in network architecture. In addition, one subnetwork present in shoots was enriched for genes in secondary metabolism, photosynthetic light reactions, and hormone metabolism. Metabolite analysis indicated that this network initiated changes in carbohydrate and amino acid metabolism. Consistent with this, we observed strain-specific responses in tryptophan and phenylalanine abundance. Both strains reduced host plant carbon gain and fitness, yet provided a clear fitness benefit when plants were challenged with the pathogen P. syringae DC3000.

  14. NET-2 Network Analysis Program

    International Nuclear Information System (INIS)

    Malmberg, A.F.

    1974-01-01

    The NET-2 Network Analysis Program is a general purpose digital computer program which solves the nonlinear time domain response and the linearized small signal frequency domain response of an arbitrary network of interconnected components. NET-2 is capable of handling a variety of components and has been applied to problems in several engineering fields, including electronic circuit design and analysis, missile flight simulation, control systems, heat flow, fluid flow, mechanical systems, structural dynamics, digital logic, communications network design, solid state device physics, fluidic systems, and nuclear vulnerability due to blast, thermal, gamma radiation, neutron damage, and EMP effects. Network components may be selected from a repertoire of built-in models or they may be constructed by the user through appropriate combinations of mathematical, empirical, and topological functions. Higher-level components may be defined by subnetworks composed of any combination of user-defined components and built-in models. The program provides a modeling capability to represent and intermix system components on many levels, e.g., from hole and electron spatial charge distributions in solid state devices through discrete and integrated electronic components to functional system blocks. NET-2 is capable of simultaneous computation in both the time and frequency domain, and has statistical and optimization capability. Network topology may be controlled as a function of the network solution. (U.S.)

  15. Maximum entropy modeling of metabolic networks by constraining growth-rate moments predicts coexistence of phenotypes

    Science.gov (United States)

    De Martino, Daniele

    2017-12-01

    In this work maximum entropy distributions in the space of steady states of metabolic networks are considered upon constraining the first and second moments of the growth rate. Coexistence of fast and slow phenotypes, with bimodal flux distributions, emerges upon considering control on the average growth (optimization) and its fluctuations (heterogeneity). This is applied to the carbon catabolic core of Escherichia coli where it quantifies the metabolic activity of slow growing phenotypes and it provides a quantitative map with metabolic fluxes, opening the possibility to detect coexistence from flux data. A preliminary analysis on data for E. coli cultures in standard conditions shows degeneracy for the inferred parameters that extend in the coexistence region.

  16. Novel Plasmodium falciparum metabolic network reconstruction identifies shifts associated with clinical antimalarial resistance.

    Science.gov (United States)

    Carey, Maureen A; Papin, Jason A; Guler, Jennifer L

    2017-07-19

    Malaria remains a major public health burden and resistance has emerged to every antimalarial on the market, including the frontline drug, artemisinin. Our limited understanding of Plasmodium biology hinders the elucidation of resistance mechanisms. In this regard, systems biology approaches can facilitate the integration of existing experimental knowledge and further understanding of these mechanisms. Here, we developed a novel genome-scale metabolic network reconstruction, iPfal17, of the asexual blood-stage P. falciparum parasite to expand our understanding of metabolic changes that support resistance. We identified 11 metabolic tasks to evaluate iPfal17 performance. Flux balance analysis and simulation of gene knockouts and enzyme inhibition predict candidate drug targets unique to resistant parasites. Moreover, integration of clinical parasite transcriptomes into the iPfal17 reconstruction reveals patterns associated with antimalarial resistance. These results predict that artemisinin sensitive and resistant parasites differentially utilize scavenging and biosynthetic pathways for multiple essential metabolites, including folate and polyamines. Our findings are consistent with experimental literature, while generating novel hypotheses about artemisinin resistance and parasite biology. We detect evidence that resistant parasites maintain greater metabolic flexibility, perhaps representing an incomplete transition to the metabolic state most appropriate for nutrient-rich blood. Using this systems biology approach, we identify metabolic shifts that arise with or in support of the resistant phenotype. This perspective allows us to more productively analyze and interpret clinical expression data for the identification of candidate drug targets for the treatment of resistant parasites.

  17. Flux coupling and transcriptional regulation within the metabolic network of the photosynthetic bacterium Synechocystis sp. PCC6803

    DEFF Research Database (Denmark)

    Montagud, Arnau; Zelezniak, Aleksej; Navarro, Emilio

    2011-01-01

    Synechocystis sp. PCC6803 is a model cyanobacterium capable of producing biofuels with CO2 as carbon source and with its metabolism fueled by light, for which it stands as a potential production platform of socio-economic importance. Compilation and characterization of Synechocystis genome...... networks, surrounded by a stable core of pathways leading to biomass building blocks. This analysis identified potential bottlenecks for hydrogen and ethanol production. Integration of transcriptomic data with the Synechocystis flux coupling networks lead to identification of reporter flux coupling pairs...... and reporter flux coupling groups - regulatory hot spots during metabolic shifts triggered by the availability of light. Overall, flux coupling analysis provided insight into the structural organization of Synechocystis sp. PCC6803 metabolic network toward designing of a photosynthesis-based production...

  18. PSAMM: A Portable System for the Analysis of Metabolic Models.

    Directory of Open Access Journals (Sweden)

    Jon Lund Steffensen

    2016-02-01

    Full Text Available The genome-scale models of metabolic networks have been broadly applied in phenotype prediction, evolutionary reconstruction, community functional analysis, and metabolic engineering. Despite the development of tools that support individual steps along the modeling procedure, it is still difficult to associate mathematical simulation results with the annotation and biological interpretation of metabolic models. In order to solve this problem, here we developed a Portable System for the Analysis of Metabolic Models (PSAMM, a new open-source software package that supports the integration of heterogeneous metadata in model annotations and provides a user-friendly interface for the analysis of metabolic models. PSAMM is independent of paid software environments like MATLAB, and all its dependencies are freely available for academic users. Compared to existing tools, PSAMM significantly reduced the running time of constraint-based analysis and enabled flexible settings of simulation parameters using simple one-line commands. The integration of heterogeneous, model-specific annotation information in PSAMM is achieved with a novel format of YAML-based model representation, which has several advantages, such as providing a modular organization of model components and simulation settings, enabling model version tracking, and permitting the integration of multiple simulation problems. PSAMM also includes a number of quality checking procedures to examine stoichiometric balance and to identify blocked reactions. Applying PSAMM to 57 models collected from current literature, we demonstrated how the software can be used for managing and simulating metabolic models. We identified a number of common inconsistencies in existing models and constructed an updated model repository to document the resolution of these inconsistencies.

  19. Brain networks predict metabolism, diagnosis and prognosis at the bedside in disorders of consciousness.

    Science.gov (United States)

    Chennu, Srivas; Annen, Jitka; Wannez, Sarah; Thibaut, Aurore; Chatelle, Camille; Cassol, Helena; Martens, Géraldine; Schnakers, Caroline; Gosseries, Olivia; Menon, David; Laureys, Steven

    2017-08-01

    Recent advances in functional neuroimaging have demonstrated novel potential for informing diagnosis and prognosis in the unresponsive wakeful syndrome and minimally conscious states. However, these technologies come with considerable expense and difficulty, limiting the possibility of wider clinical application in patients. Here, we show that high density electroencephalography, collected from 104 patients measured at rest, can provide valuable information about brain connectivity that correlates with behaviour and functional neuroimaging. Using graph theory, we visualize and quantify spectral connectivity estimated from electroencephalography as a dense brain network. Our findings demonstrate that key quantitative metrics of these networks correlate with the continuum of behavioural recovery in patients, ranging from those diagnosed as unresponsive, through those who have emerged from minimally conscious, to the fully conscious locked-in syndrome. In particular, a network metric indexing the presence of densely interconnected central hubs of connectivity discriminated behavioural consciousness with accuracy comparable to that achieved by expert assessment with positron emission tomography. We also show that this metric correlates strongly with brain metabolism. Further, with classification analysis, we predict the behavioural diagnosis, brain metabolism and 1-year clinical outcome of individual patients. Finally, we demonstrate that assessments of brain networks show robust connectivity in patients diagnosed as unresponsive by clinical consensus, but later rediagnosed as minimally conscious with the Coma Recovery Scale-Revised. Classification analysis of their brain network identified each of these misdiagnosed patients as minimally conscious, corroborating their behavioural diagnoses. If deployed at the bedside in the clinical context, such network measurements could complement systematic behavioural assessment and help reduce the high misdiagnosis rate reported

  20. Yeast 5 – an expanded reconstruction of the Saccharomyces cerevisiae metabolic network

    Directory of Open Access Journals (Sweden)

    Heavner Benjamin D

    2012-06-01

    Full Text Available Abstract Background Efforts to improve the computational reconstruction of the Saccharomyces cerevisiae biochemical reaction network and to refine the stoichiometrically constrained metabolic models that can be derived from such a reconstruction have continued since the first stoichiometrically constrained yeast genome scale metabolic model was published in 2003. Continuing this ongoing process, we have constructed an update to the Yeast Consensus Reconstruction, Yeast 5. The Yeast Consensus Reconstruction is a product of efforts to forge a community-based reconstruction emphasizing standards compliance and biochemical accuracy via evidence-based selection of reactions. It draws upon models published by a variety of independent research groups as well as information obtained from biochemical databases and primary literature. Results Yeast 5 refines the biochemical reactions included in the reconstruction, particularly reactions involved in sphingolipid metabolism; updates gene-reaction annotations; and emphasizes the distinction between reconstruction and stoichiometrically constrained model. Although it was not a primary goal, this update also improves the accuracy of model prediction of viability and auxotrophy phenotypes and increases the number of epistatic interactions. This update maintains an emphasis on standards compliance, unambiguous metabolite naming, and computer-readable annotations available through a structured document format. Additionally, we have developed MATLAB scripts to evaluate the model’s predictive accuracy and to demonstrate basic model applications such as simulating aerobic and anaerobic growth. These scripts, which provide an independent tool for evaluating the performance of various stoichiometrically constrained yeast metabolic models using flux balance analysis, are included as Additional files 1, 2 and 3. Additional file 1 Function testYeastModel.m.m. Click here for file Additional file 2 Function model

  1. NEAT : an efficient network enrichment analysis test

    NARCIS (Netherlands)

    Signorelli, Mirko; Vinciotti, Veronica; Wit, Ernst C

    2016-01-01

    BACKGROUND: Network enrichment analysis is a powerful method, which allows to integrate gene enrichment analysis with the information on relationships between genes that is provided by gene networks. Existing tests for network enrichment analysis deal only with undirected networks, they can be

  2. A state of the art of metabolic networks of unicellular microalgae and cyanobacteria for biofuel production.

    Science.gov (United States)

    Baroukh, Caroline; Muñoz-Tamayo, Rafael; Steyer, Jean-Philippe; Bernard, Olivier

    2015-07-01

    The most promising and yet challenging application of microalgae and cyanobacteria is the production of renewable energy: biodiesel from microalgae triacylglycerols and bioethanol from cyanobacteria carbohydrates. A thorough understanding of microalgal and cyanobacterial metabolism is necessary to master and optimize biofuel production yields. To this end, systems biology and metabolic modeling have proven to be very efficient tools if supported by an accurate knowledge of the metabolic network. However, unlike heterotrophic microorganisms that utilize the same substrate for energy and as carbon source, microalgae and cyanobacteria require light for energy and inorganic carbon (CO2 or bicarbonate) as carbon source. This double specificity, together with the complex mechanisms of light capture, makes the representation of metabolic network nonstandard. Here, we review the existing metabolic networks of photoautotrophic microalgae and cyanobacteria. We highlight how these networks have been useful for gaining insight on photoautotrophic metabolism. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  3. Integrated Network Analysis and Effective Tools in Plant Systems Biology

    Directory of Open Access Journals (Sweden)

    Atsushi eFukushima

    2014-11-01

    Full Text Available One of the ultimate goals in plant systems biology is to elucidate the genotype-phenotype relationship in plant cellular systems. Integrated network analysis that combines omics data with mathematical models has received particular attention. Here we focus on the latest cutting-edge computational advances that facilitate their combination. We highlight (1 network visualization tools, (2 pathway analyses, (3 genome-scale metabolic reconstruction, and (4 the integration of high-throughput experimental data and mathematical models. Multi-omics data that contain the genome, transcriptome, proteome, and metabolome and mathematical models are expected to integrate and expand our knowledge of complex plant metabolisms.

  4. Gender differences of brain glucose metabolic networks revealed by FDG-PET: evidence from a large cohort of 400 young adults.

    Science.gov (United States)

    Hu, Yuxiao; Xu, Qiang; Li, Kai; Zhu, Hong; Qi, Rongfeng; Zhang, Zhiqiang; Lu, Guangming

    2013-01-01

    Gender differences of the human brain are an important issue in neuroscience research. In recent years, an increasing amount of evidence has been gathered from noninvasive neuroimaging studies supporting a sexual dimorphism of the human brain. However, there is a lack of imaging studies on gender differences of brain metabolic networks based on a large population sample. FDG PET data of 400 right-handed, healthy subjects, including 200 females (age: 25:45 years, mean age ± SD: 40.9 ± 3.9 years) and 200 age-matched males were obtained and analyzed in the present study. We first investigated the regional differences of brain glucose metabolism between genders using a voxel-based two-sample t-test analysis. Subsequently, we investigated the gender differences of the metabolic networks. Sixteen metabolic covariance networks using seed-based correlation were analyzed. Seven regions showing significant regional metabolic differences between genders, and nine regions conventionally used in the resting-state network studies were selected as regions-of-interest. Permutation tests were used for comparing within- and between-network connectivity between genders. Compared with the males, females showed higher metabolism in the posterior part and lower metabolism in the anterior part of the brain. Moreover, there were widely distributed patterns of the metabolic networks in the human brain. In addition, significant gender differences within and between brain glucose metabolic networks were revealed in the present study. This study provides solid data that reveal gender differences in regional brain glucose metabolism and brain glucose metabolic networks. These observations might contribute to the better understanding of the gender differences in human brain functions, and suggest that gender should be included as a covariate when designing experiments and explaining results of brain glucose metabolic networks in the control and experimental individuals or patients.

  5. Social Networks Analysis: Classification, Evaluation, and Methodologies

    Science.gov (United States)

    2011-02-28

    and time performance. We also focus on large-scale network size and dynamic changes in networks and research new capabilities in performing social networks analysis utilizing parallel and distributed processing.

  6. Statistical network analysis for analyzing policy networks

    DEFF Research Database (Denmark)

    Robins, Garry; Lewis, Jenny; Wang, Peng

    2012-01-01

    and policy network methodology is the development of statistical modeling approaches that can accommodate such dependent data. In this article, we review three network statistical methods commonly used in the current literature: quadratic assignment procedures, exponential random graph models (ERGMs...... has much to offer in analyzing the policy process....

  7. Metabolic network model guided engineering ethylmalonyl-CoA pathway to improve ascomycin production in Streptomyces hygroscopicus var. ascomyceticus.

    Science.gov (United States)

    Wang, Junhua; Wang, Cheng; Song, Kejing; Wen, Jianping

    2017-10-03

    Ascomycin is a 23-membered polyketide macrolide with high immunosuppressant and antifungal activity. As the lower production in bio-fermentation, global metabolic analysis is required to further explore its biosynthetic network and determine the key limiting steps for rationally engineering. To achieve this goal, an engineering approach guided by a metabolic network model was implemented to better understand ascomycin biosynthesis and improve its production. The metabolic conservation of Streptomyces species was first investigated by comparing the metabolic enzymes of Streptomyces coelicolor A3(2) with those of 31 Streptomyces strains, the results showed that more than 72% of the examined proteins had high sequence similarity with counterparts in every surveyed strain. And it was found that metabolic reactions are more highly conserved than the enzymes themselves because of its lower diversity of metabolic functions than that of genes. The main source of the observed metabolic differences was from the diversity of secondary metabolism. According to the high conservation of primary metabolic reactions in Streptomyces species, the metabolic network model of Streptomyces hygroscopicus var. ascomyceticus was constructed based on the latest reported metabolic model of S. coelicolor A3(2) and validated experimentally. By coupling with flux balance analysis and using minimization of metabolic adjustment algorithm, potential targets for ascomycin overproduction were predicted. Since several of the preferred targets were highly associated with ethylmalonyl-CoA biosynthesis, two target genes hcd (encoding 3-hydroxybutyryl-CoA dehydrogenase) and ccr (encoding crotonyl-CoA carboxylase/reductase) were selected for overexpression in S. hygroscopicus var. ascomyceticus FS35. Both the mutants HA-Hcd and HA-Ccr showed higher ascomycin titer, which was consistent with the model predictions. Furthermore, the combined effects of the two genes were evaluated and the strain HA

  8. Metabolic network rewiring of propionate flux compensates vitamin B12 deficiency in C. elegans

    Science.gov (United States)

    Watson, Emma; Olin-Sandoval, Viridiana; Hoy, Michael J; Li, Chi-Hua; Louisse, Timo; Yao, Victoria; Mori, Akihiro; Holdorf, Amy D; Troyanskaya, Olga G; Ralser, Markus; Walhout, Albertha JM

    2016-01-01

    Metabolic network rewiring is the rerouting of metabolism through the use of alternate enzymes to adjust pathway flux and accomplish specific anabolic or catabolic objectives. Here, we report the first characterization of two parallel pathways for the breakdown of the short chain fatty acid propionate in Caenorhabditis elegans. Using genetic interaction mapping, gene co-expression analysis, pathway intermediate quantification and carbon tracing, we uncover a vitamin B12-independent propionate breakdown shunt that is transcriptionally activated on vitamin B12 deficient diets, or under genetic conditions mimicking the human diseases propionic- and methylmalonic acidemia, in which the canonical B12-dependent propionate breakdown pathway is blocked. Our study presents the first example of transcriptional vitamin-directed metabolic network rewiring to promote survival under vitamin deficiency. The ability to reroute propionate breakdown according to B12 availability may provide C. elegans with metabolic plasticity and thus a selective advantage on different diets in the wild. DOI: http://dx.doi.org/10.7554/eLife.17670.001 PMID:27383050

  9. METANNOGEN: compiling features of biochemical reactions needed for the reconstruction of metabolic networks

    Directory of Open Access Journals (Sweden)

    Holzhütter Hermann-Georg

    2007-01-01

    Full Text Available Abstract Background One central goal of computational systems biology is the mathematical modelling of complex metabolic reaction networks. The first and most time-consuming step in the development of such models consists in the stoichiometric reconstruction of the network, i. e. compilation of all metabolites, reactions and transport processes relevant to the considered network and their assignment to the various cellular compartments. Therefore an information system is required to collect and manage data from different databases and scientific literature in order to generate a metabolic network of biochemical reactions that can be subjected to further computational analyses. Results The computer program METANNOGEN facilitates the reconstruction of metabolic networks. It uses the well-known database of biochemical reactions KEGG of biochemical reactions as primary information source from which biochemical reactions relevant to the considered network can be selected, edited and stored in a separate, user-defined database. Reactions not contained in KEGG can be entered manually into the system. To aid the decision whether or not a reaction selected from KEGG belongs to the considered network METANNOGEN contains information of SWISSPROT and ENSEMBL and provides Web links to a number of important information sources like METACYC, BRENDA, NIST, and REACTOME. If a reaction is reported to occur in more than one cellular compartment, a corresponding number of reactions is generated each referring to one specific compartment. Transport processes of metabolites are entered like chemical reactions where reactants and products have different compartment attributes. The list of compartmentalized biochemical reactions and membrane transport processes compiled by means of METANNOGEN can be exported as an SBML file for further computational analysis. METANNOGEN is highly customizable with respect to the content of the SBML output file, additional data

  10. Pathway analysis and optimization in metabolic engineering

    National Research Council Canada - National Science Library

    Torres, Néstor V; Voit, Eberhard O

    2002-01-01

    ... Engineering introduces researchers and advanced students in biology and engineering to methods of optimizing biochemical systems of biotechnological relevance. It examines the development of strategies for manipulating metabolic pathways, demonstrates the need for effective systems models, and discusses their design and analysis, while placing special emp...

  11. Identification of regulatory network hubs that control lipid metabolism in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Gargouri, Mahmoud; Park, Jeong-Jin; Holguin, F Omar; Kim, Min-Jeong; Wang, Hongxia; Deshpande, Rahul R; Shachar-Hill, Yair; Hicks, Leslie M; Gang, David R

    2015-08-01

    Microalgae-based biofuels are promising sources of alternative energy, but improvements throughout the production process are required to establish them as economically feasible. One of the most influential improvements would be a significant increase in lipid yields, which could be achieved by altering the regulation of lipid biosynthesis and accumulation. Chlamydomonas reinhardtii accumulates oil (triacylglycerols, TAG) in response to nitrogen (N) deprivation. Although a few important regulatory genes have been identified that are involved in controlling this process, a global understanding of the larger regulatory network has not been developed. In order to uncover this network in this species, a combined omics (transcriptomic, proteomic and metabolomic) analysis was applied to cells grown in a time course experiment after a shift from N-replete to N-depleted conditions. Changes in transcript and protein levels of 414 predicted transcription factors (TFs) and transcriptional regulators (TRs) were monitored relative to other genes. The TF and TR genes were thus classified by two separate measures: up-regulated versus down-regulated and early response versus late response relative to two phases of polar lipid synthesis (before and after TAG biosynthesis initiation). Lipidomic and primary metabolite profiling generated compound accumulation levels that were integrated with the transcript dataset and TF profiling to produce a transcriptional regulatory network. Evaluation of this proposed regulatory network led to the identification of several regulatory hubs that control many aspects of cellular metabolism, from N assimilation and metabolism, to central metabolism, photosynthesis and lipid metabolism. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  12. Statistical analysis of network data with R

    CERN Document Server

    Kolaczyk, Eric D

    2014-01-01

    Networks have permeated everyday life through everyday realities like the Internet, social networks, and viral marketing. As such, network analysis is an important growth area in the quantitative sciences, with roots in social network analysis going back to the 1930s and graph theory going back centuries. Measurement and analysis are integral components of network research. As a result, statistical methods play a critical role in network analysis. This book is the first of its kind in network research. It can be used as a stand-alone resource in which multiple R packages are used to illustrate how to conduct a wide range of network analyses, from basic manipulation and visualization, to summary and characterization, to modeling of network data. The central package is igraph, which provides extensive capabilities for studying network graphs in R. This text builds on Eric D. Kolaczyk’s book Statistical Analysis of Network Data (Springer, 2009).

  13. Microbial diversity and metabolic networks in acid mine drainage habitats.

    Science.gov (United States)

    Méndez-García, Celia; Peláez, Ana I; Mesa, Victoria; Sánchez, Jesús; Golyshina, Olga V; Ferrer, Manuel

    2015-01-01

    Acid mine drainage (AMD) emplacements are low-complexity natural systems. Low-pH conditions appear to be the main factor underlying the limited diversity of the microbial populations thriving in these environments, although temperature, ionic composition, total organic carbon, and dissolved oxygen are also considered to significantly influence their microbial life. This natural reduction in diversity driven by extreme conditions was reflected in several studies on the microbial populations inhabiting the various micro-environments present in such ecosystems. Early studies based on the physiology of the autochthonous microbiota and the growing success of omics-based methodologies have enabled a better understanding of microbial ecology and function in low-pH mine outflows; however, complementary omics-derived data should be included to completely describe their microbial ecology. Furthermore, recent updates on the distribution of eukaryotes and archaea recovered through sterile filtering (herein referred to as filterable fraction) in these environments demand their inclusion in the microbial characterization of AMD systems. In this review, we present a complete overview of the bacterial, archaeal (including filterable fraction), and eukaryotic diversity in these ecosystems, and include a thorough depiction of the metabolism and element cycling in AMD habitats. We also review different metabolic network structures at the organismal level, which is necessary to disentangle the role of each member of the AMD communities described thus far.

  14. A Bayesian approach to the evolution of metabolic networks on a phylogeny.

    Directory of Open Access Journals (Sweden)

    Aziz Mithani

    2010-08-01

    Full Text Available The availability of genomes of many closely related bacteria with diverse metabolic capabilities offers the possibility of tracing metabolic evolution on a phylogeny relating the genomes to understand the evolutionary processes and constraints that affect the evolution of metabolic networks. Using simple (independent loss/gain of reactions or complex (incorporating dependencies among reactions stochastic models of metabolic evolution, it is possible to study how metabolic networks evolve over time. Here, we describe a model that takes the reaction neighborhood into account when modeling metabolic evolution. The model also allows estimation of the strength of the neighborhood effect during the course of evolution. We present Gibbs samplers for sampling networks at the internal node of a phylogeny and for estimating the parameters of evolution over a phylogeny without exploring the whole search space by iteratively sampling from the conditional distributions of the internal networks and parameters. The samplers are used to estimate the parameters of evolution of metabolic networks of bacteria in the genus Pseudomonas and to infer the metabolic networks of the ancestral pseudomonads. The results suggest that pathway maps that are conserved across the Pseudomonas phylogeny have a stronger neighborhood structure than those which have a variable distribution of reactions across the phylogeny, and that some Pseudomonas lineages are going through genome reduction resulting in the loss of a number of reactions from their metabolic networks.

  15. Kriging-Based Parameter Estimation Algorithm for Metabolic Networks Combined with Single-Dimensional Optimization and Dynamic Coordinate Perturbation.

    Science.gov (United States)

    Wang, Hong; Wang, Xicheng; Li, Zheng; Li, Keqiu

    2016-01-01

    The metabolic network model allows for an in-depth insight into the molecular mechanism of a particular organism. Because most parameters of the metabolic network cannot be directly measured, they must be estimated by using optimization algorithms. However, three characteristics of the metabolic network model, i.e., high nonlinearity, large amount parameters, and huge variation scopes of parameters, restrict the application of many traditional optimization algorithms. As a result, there is a growing demand to develop efficient optimization approaches to address this complex problem. In this paper, a Kriging-based algorithm aiming at parameter estimation is presented for constructing the metabolic networks. In the algorithm, a new infill sampling criterion, named expected improvement and mutual information (EI&MI), is adopted to improve the modeling accuracy by selecting multiple new sample points at each cycle, and the domain decomposition strategy based on the principal component analysis is introduced to save computing time. Meanwhile, the convergence speed is accelerated by combining a single-dimensional optimization method with the dynamic coordinate perturbation strategy when determining the new sample points. Finally, the algorithm is applied to the arachidonic acid metabolic network to estimate its parameters. The obtained results demonstrate the effectiveness of the proposed algorithm in getting precise parameter values under a limited number of iterations.

  16. Metabolic flux balance analysis and the in silico analysis of Escherichia coli K-12 gene deletions

    Directory of Open Access Journals (Sweden)

    Edwards Jeremy S

    2000-07-01

    Full Text Available Abstract Background Genome sequencing and bioinformatics are producing detailed lists of the molecular components contained in many prokaryotic organisms. From this 'parts catalogue' of a microbial cell, in silico representations of integrated metabolic functions can be constructed and analyzed using flux balance analysis (FBA. FBA is particularly well-suited to study metabolic networks based on genomic, biochemical, and strain specific information. Results Herein, we have utilized FBA to interpret and analyze the metabolic capabilities of Escherichia coli. We have computationally mapped the metabolic capabilities of E. coli using FBA and examined the optimal utilization of the E. coli metabolic pathways as a function of environmental variables. We have used an in silico analysis to identify seven gene products of central metabolism (glycolysis, pentose phosphate pathway, TCA cycle, electron transport system essential for aerobic growth of E. coli on glucose minimal media, and 15 gene products essential for anaerobic growth on glucose minimal media. The in silico tpi-, zwf, and pta- mutant strains were examined in more detail by mapping the capabilities of these in silico isogenic strains. Conclusions We found that computational models of E. coli metabolism based on physicochemical constraints can be used to interpret mutant behavior. These in silica results lead to a further understanding of the complex genotype-phenotype relation. Supplementary information: http://gcrg.ucsd.edu/supplementary_data/DeletionAnalysis/main.htm

  17. Managing uncertainty in metabolic network structure and improving predictions using EnsembleFBA.

    Science.gov (United States)

    Biggs, Matthew B; Papin, Jason A

    2017-03-01

    Genome-scale metabolic network reconstructions (GENREs) are repositories of knowledge about the metabolic processes that occur in an organism. GENREs have been used to discover and interpret metabolic functions, and to engineer novel network structures. A major barrier preventing more widespread use of GENREs, particularly to study non-model organisms, is the extensive time required to produce a high-quality GENRE. Many automated approaches have been developed which reduce this time requirement, but automatically-reconstructed draft GENREs still require curation before useful predictions can be made. We present a novel approach to the analysis of GENREs which improves the predictive capabilities of draft GENREs by representing many alternative network structures, all equally consistent with available data, and generating predictions from this ensemble. This ensemble approach is compatible with many reconstruction methods. We refer to this new approach as Ensemble Flux Balance Analysis (EnsembleFBA). We validate EnsembleFBA by predicting growth and gene essentiality in the model organism Pseudomonas aeruginosa UCBPP-PA14. We demonstrate how EnsembleFBA can be included in a systems biology workflow by predicting essential genes in six Streptococcus species and mapping the essential genes to small molecule ligands from DrugBank. We found that some metabolic subsystems contributed disproportionately to the set of predicted essential reactions in a way that was unique to each Streptococcus species, leading to species-specific outcomes from small molecule interactions. Through our analyses of P. aeruginosa and six Streptococci, we show that ensembles increase the quality of predictions without drastically increasing reconstruction time, thus making GENRE approaches more practical for applications which require predictions for many non-model organisms. All of our functions and accompanying example code are available in an open online repository.

  18. Managing uncertainty in metabolic network structure and improving predictions using EnsembleFBA.

    Directory of Open Access Journals (Sweden)

    Matthew B Biggs

    2017-03-01

    Full Text Available Genome-scale metabolic network reconstructions (GENREs are repositories of knowledge about the metabolic processes that occur in an organism. GENREs have been used to discover and interpret metabolic functions, and to engineer novel network structures. A major barrier preventing more widespread use of GENREs, particularly to study non-model organisms, is the extensive time required to produce a high-quality GENRE. Many automated approaches have been developed which reduce this time requirement, but automatically-reconstructed draft GENREs still require curation before useful predictions can be made. We present a novel approach to the analysis of GENREs which improves the predictive capabilities of draft GENREs by representing many alternative network structures, all equally consistent with available data, and generating predictions from this ensemble. This ensemble approach is compatible with many reconstruction methods. We refer to this new approach as Ensemble Flux Balance Analysis (EnsembleFBA. We validate EnsembleFBA by predicting growth and gene essentiality in the model organism Pseudomonas aeruginosa UCBPP-PA14. We demonstrate how EnsembleFBA can be included in a systems biology workflow by predicting essential genes in six Streptococcus species and mapping the essential genes to small molecule ligands from DrugBank. We found that some metabolic subsystems contributed disproportionately to the set of predicted essential reactions in a way that was unique to each Streptococcus species, leading to species-specific outcomes from small molecule interactions. Through our analyses of P. aeruginosa and six Streptococci, we show that ensembles increase the quality of predictions without drastically increasing reconstruction time, thus making GENRE approaches more practical for applications which require predictions for many non-model organisms. All of our functions and accompanying example code are available in an open online repository.

  19. A consensus yeast metabolic network obtained from a community approach to systems biology.

    NARCIS (Netherlands)

    Herrgard, M.J.; Swainston, N.; Dobson, P.; Dunn, W.B.; Arga, K.Y.; Arvas, M.; Bluthgen, N.; Borger, S.; Costenoble, E.R.; Heinemann, M.; Hucka, M.; Li, P.; Liebermeister, W.; Mo, M.L.; Oliveira, A.P.; Petranovic, D.; Pettifer, S.; Simeonides, E.; Smallbone, K.; Spasi, I.; Weichart, D.; Brent, R.; Broomhead, D.S.; Westerhoff, H.V.; Kirdar, B.; Penttila, M.; Klipp, E.; Paton, N.; Palsson, B.O.; Sauer, U.; Oliver, S.G.; Mendes, P.; Nielsen, J.; Kell, D.B.

    2008-01-01

    Genomic data allow the large-scale manual or semi-automated assembly of metabolic network reconstructions, which provide highly curated organism-specific knowledge bases. Although several genome-scale network reconstructions describe Saccharomyces cerevisiae metabolism, they differ in scope and

  20. A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology

    NARCIS (Netherlands)

    Herrgård, Markus J.; Swainston, Neil; Dobson, Paul; Dunn, Warwick B.; Arga, K. Yalçin; Arvas, Mikko; Blüthgen, Nils; Borger, Simon; Costenoble, Roeland; Heinemann, Matthias; Hucka, Michael; Novère, Nicolas Le; Li, Peter; Liebermeister, Wolfram; Mo, Monica L.; Oliveira, Ana Paula; Petranovic, Dina; Pettifer, Stephen; Simeonidis, Evangelos; Smallbone, Kieran; Spasić, Irena; Weichart, Dieter; Brent, Roger; Broomhead, David S.; Westerhoff, Hans V.; Kırdar, Betül; Penttilä, Merja; Klipp, Edda; Palsson, Bernhard Ø.; Sauer, Uwe; Oliver, Stephen G.; Mendes, Pedro; Nielsen, Jens; Kell, Douglas B.

    2008-01-01

    Genomic data allow the large-scale manual or semi-automated assembly of metabolic network reconstructions, which provide highly curated organism-specific knowledge bases. Although several genome-scale network reconstructions describe Saccharomyces cerevisiae metabolism, they differ in scope and

  1. A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology

    DEFF Research Database (Denmark)

    Herrgard, Markus; Swainston, Neil; Dobson, Paul

    2008-01-01

    a consensus metabolic network reconstruction for S. cerevisiae. In drafting it, we placed special emphasis on referencing molecules to persistent databases or using database-independent forms, such as SMILES or InChI strings, as this permits their chemical structure to be represented unambiguously...... of yeast. Similar strategies should benefit communities studying genome-scale metabolic networks of other organisms....

  2. Quantitative time-course metabolomics in human red blood cells reveal the temperature dependence of human metabolic networks.

    Science.gov (United States)

    Yurkovich, James T; Zielinski, Daniel C; Yang, Laurence; Paglia, Giuseppe; Rolfsson, Ottar; Sigurjónsson, Ólafur E; Broddrick, Jared T; Bordbar, Aarash; Wichuk, Kristine; Brynjólfsson, Sigurður; Palsson, Sirus; Gudmundsson, Sveinn; Palsson, Bernhard O

    2017-12-01

    The temperature dependence of biological processes has been studied at the levels of individual biochemical reactions and organism physiology ( e.g. basal metabolic rates) but has not been examined at the metabolic network level. Here, we used a systems biology approach to characterize the temperature dependence of the human red blood cell (RBC) metabolic network between 4 and 37 °C through absolutely quantified exo- and endometabolomics data. We used an Arrhenius-type model ( Q 10 ) to describe how the rate of a biochemical process changes with every 10 °C change in temperature. Multivariate statistical analysis of the metabolomics data revealed that the same metabolic network-level trends previously reported for RBCs at 4 °C were conserved but accelerated with increasing temperature. We calculated a median Q 10 coefficient of 2.89 ± 1.03, within the expected range of 2-3 for biological processes, for 48 individual metabolite concentrations. We then integrated these metabolomics measurements into a cell-scale metabolic model to study pathway usage, calculating a median Q 10 coefficient of 2.73 ± 0.75 for 35 reaction fluxes. The relative fluxes through glycolysis and nucleotide metabolism pathways were consistent across the studied temperature range despite the non-uniform distributions of Q 10 coefficients of individual metabolites and reaction fluxes. Together, these results indicate that the rate of change of network-level responses to temperature differences in RBC metabolism is consistent between 4 and 37 °C. More broadly, we provide a baseline characterization of a biochemical network given no transcriptional or translational regulation that can be used to explore the temperature dependence of metabolism. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Polysaccharides utilization in human gut bacterium Bacteroides thetaiotaomicron: comparative genomics reconstruction of metabolic and regulatory networks.

    Science.gov (United States)

    Ravcheev, Dmitry A; Godzik, Adam; Osterman, Andrei L; Rodionov, Dmitry A

    2013-12-12

    Bacteroides thetaiotaomicron, a predominant member of the human gut microbiota, is characterized by its ability to utilize a wide variety of polysaccharides using the extensive saccharolytic machinery that is controlled by an expanded repertoire of transcription factors (TFs). The availability of genomic sequences for multiple Bacteroides species opens an opportunity for their comparative analysis to enable characterization of their metabolic and regulatory networks. A comparative genomics approach was applied for the reconstruction and functional annotation of the carbohydrate utilization regulatory networks in 11 Bacteroides genomes. Bioinformatics analysis of promoter regions revealed putative DNA-binding motifs and regulons for 31 orthologous TFs in the Bacteroides. Among the analyzed TFs there are 4 SusR-like regulators, 16 AraC-like hybrid two-component systems (HTCSs), and 11 regulators from other families. Novel DNA motifs of HTCSs and SusR-like regulators in the Bacteroides have the common structure of direct repeats with a long spacer between two conserved sites. The inferred regulatory network in B. thetaiotaomicron contains 308 genes encoding polysaccharide and sugar catabolic enzymes, carbohydrate-binding and transport systems, and TFs. The analyzed TFs control pathways for utilization of host and dietary glycans to monosaccharides and their further interconversions to intermediates of the central metabolism. The reconstructed regulatory network allowed us to suggest and refine specific functional assignments for sugar catabolic enzymes and transporters, providing a substantial improvement to the existing metabolic models for B. thetaiotaomicron. The obtained collection of reconstructed TF regulons is available in the RegPrecise database (http://regprecise.lbl.gov).

  4. Using the reconstructed genome-scale human metabolic network to study physiology and pathology

    OpenAIRE

    Bordbar, Aarash; Palsson, Bernhard O.

    2012-01-01

    Metabolism plays a key role in many major human diseases. Generation of high-throughput omics data has ushered in a new era of systems biology. Genome-scale metabolic network reconstructions provide a platform to interpret omics data in a biochemically meaningful manner. The release of the global human metabolic network, Recon 1, in 2007 has enabled new systems biology approaches to study human physiology, pathology, and pharmacology. There are currently over 20 publications that utilize Reco...

  5. Spectral Analysis of Rich Network Topology in Social Networks

    Science.gov (United States)

    Wu, Leting

    2013-01-01

    Social networks have received much attention these days. Researchers have developed different methods to study the structure and characteristics of the network topology. Our focus is on spectral analysis of the adjacency matrix of the underlying network. Recent work showed good properties in the adjacency spectral space but there are few…

  6. Analysis of Semantic Networks using Complex Networks Concepts

    DEFF Research Database (Denmark)

    Ortiz-Arroyo, Daniel

    2013-01-01

    In this paper we perform a preliminary analysis of semantic networks to determine the most important terms that could be used to optimize a summarization task. In our experiments, we measure how the properties of a semantic network change, when the terms in the network are removed. Our preliminary...

  7. Coordinations between gene modules control the operation of plant amino acid metabolic networks

    Directory of Open Access Journals (Sweden)

    Galili Gad

    2009-01-01

    Full Text Available Abstract Background Being sessile organisms, plants should adjust their metabolism to dynamic changes in their environment. Such adjustments need particular coordination in branched metabolic networks in which a given metabolite can be converted into multiple other metabolites via different enzymatic chains. In the present report, we developed a novel "Gene Coordination" bioinformatics approach and use it to elucidate adjustable transcriptional interactions of two branched amino acid metabolic networks in plants in response to environmental stresses, using publicly available microarray results. Results Using our "Gene Coordination" approach, we have identified in Arabidopsis plants two oppositely regulated groups of "highly coordinated" genes within the branched Asp-family network of Arabidopsis plants, which metabolizes the amino acids Lys, Met, Thr, Ile and Gly, as well as a single group of "highly coordinated" genes within the branched aromatic amino acid metabolic network, which metabolizes the amino acids Trp, Phe and Tyr. These genes possess highly coordinated adjustable negative and positive expression responses to various stress cues, which apparently regulate adjustable metabolic shifts between competing branches of these networks. We also provide evidence implying that these highly coordinated genes are central to impose intra- and inter-network interactions between the Asp-family and aromatic amino acid metabolic networks as well as differential system interactions with other growth promoting and stress-associated genome-wide genes. Conclusion Our novel Gene Coordination elucidates that branched amino acid metabolic networks in plants are regulated by specific groups of highly coordinated genes that possess adjustable intra-network, inter-network and genome-wide transcriptional interactions. We also hypothesize that such transcriptional interactions enable regulatory metabolic adjustments needed for adaptation to the stresses.

  8. Complex Network Analysis of Guangzhou Metro

    OpenAIRE

    Yasir Tariq Mohmand; Fahad Mehmood; Fahd Amjad; Nedim Makarevic

    2015-01-01

    The structure and properties of public transportation networks can provide suggestions for urban planning and public policies. This study contributes a complex network analysis of the Guangzhou metro. The metro network has 236 kilometers of track and is the 6th busiest metro system of the world. In this paper topological properties of the network are explored. We observed that the network displays small world properties and is assortative in nature. The network possesses a high average degree...

  9. COalitions in COOperation Networks (COCOON): Social Network Analysis and Game Theory to Enhance Cooperation Networks

    NARCIS (Netherlands)

    Sie, Rory

    2012-01-01

    Sie, R. L. L. (2012). COalitions in COOperation Networks (COCOON): Social Network Analysis and Game Theory to Enhance Cooperation Networks (Unpublished doctoral dissertation). September, 28, 2012, Open Universiteit in the Netherlands (CELSTEC), Heerlen, The Netherlands.

  10. Transcriptional regulation and steady-state modeling of metabolic networks

    DEFF Research Database (Denmark)

    Zelezniak, Aleksej

    with the changes in gene expression of both reactions that produce and reactions that consume a given metabolite. Analysis of a large compendium of gene expression data further suggested that, contrary to previous thinking, transcriptional regulation at metabolic branch points is highly plastic and, in several...... to exhibit a biodegradation performance superior to pure cultures, making them attractive research targets. It is believed that nutrition plays a crucial role in shaping microbial communities. Interspecies metabolite cross-feeding can confer several advantages to the community as a whole. For example, more...

  11. Dynamic Metabolic Footprinting Reveals the Key Components of Metabolic Network in Yeast Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Chumnanpuen, Pramote; Hansen, Michael Adsetts Edberg; Smedsgaard, Jørn

    2014-01-01

    relies on analysis at a single time point. Using direct infusion-mass spectrometry (DI-MS), we could observe the dynamic metabolic footprinting in yeast S. cerevisiae BY4709 (wild type) cultured on 3 different C-sources (glucose, glycerol, and ethanol) and sampled along 10 time points with 5 biological...... ionization (ESI) modes were performed to obtain the complete information about the metabolite content. Using sparse principal component analysis (Sparse PCA), we further identified those pairs of metabolites that significantly contribute to the separation. From the list of significant metabolite pairs, we...

  12. Basic and applied uses of genome-scale metabolic network reconstructions of Escherichia coli

    DEFF Research Database (Denmark)

    McCloskey, Douglas; Palsson, Bernhard; Feist, Adam

    2013-01-01

    of cellular phenotypes, (4) analysis of biological network properties, (5) studies of evolutionary processes, and (6) models of interspecies interactions. In this review, we provide an overview of these applications along with a critical assessment of their successes and limitations, and a perspective...... on likely future developments in the field. Taken together, the studies performed over the past decade have established a genome-scale mechanistic understanding of genotype-phenotype relationships in E. coli metabolism that forms the basis for similar efforts for other microbial species. Future challenges...

  13. EnzDP: improved enzyme annotation for metabolic network reconstruction based on domain composition profiles.

    Science.gov (United States)

    Nguyen, Nam-Ninh; Srihari, Sriganesh; Leong, Hon Wai; Chong, Ket-Fah

    2015-10-01

    Determining the entire complement of enzymes and their enzymatic functions is a fundamental step for reconstructing the metabolic network of cells. High quality enzyme annotation helps in enhancing metabolic networks reconstructed from the genome, especially by reducing gaps and increasing the enzyme coverage. Currently, structure-based and network-based approaches can only cover a limited number of enzyme families, and the accuracy of homology-based approaches can be further improved. Bottom-up homology-based approach improves the coverage by rebuilding Hidden Markov Model (HMM) profiles for all known enzymes. However, its clustering procedure relies firmly on BLAST similarity score, ignoring protein domains/patterns, and is sensitive to changes in cut-off thresholds. Here, we use functional domain architecture to score the association between domain families and enzyme families (Domain-Enzyme Association Scoring, DEAS). The DEAS score is used to calculate the similarity between proteins, which is then used in clustering procedure, instead of using sequence similarity score. We improve the enzyme annotation protocol using a stringent classification procedure, and by choosing optimal threshold settings and checking for active sites. Our analysis shows that our stringent protocol EnzDP can cover up to 90% of enzyme families available in Swiss-Prot. It achieves a high accuracy of 94.5% based on five-fold cross-validation. EnzDP outperforms existing methods across several testing scenarios. Thus, EnzDP serves as a reliable automated tool for enzyme annotation and metabolic network reconstruction. Available at: www.comp.nus.edu.sg/~nguyennn/EnzDP .

  14. A systems biology approach to reconcile metabolic network models with application to Synechocystis sp. PCC 6803 for biofuel production.

    Science.gov (United States)

    Mohammadi, Reza; Fallah-Mehrabadi, Jalil; Bidkhori, Gholamreza; Zahiri, Javad; Javad Niroomand, Mohammad; Masoudi-Nejad, Ali

    2016-07-19

    Production of biofuels has been one of the promising efforts in biotechnology in the past few decades. The perspective of these efforts can be reduction of increasing demands for fossil fuels and consequently reducing environmental pollution. Nonetheless, most previous approaches did not succeed in obviating many big challenges in this way. In recent years systems biology with the help of microorganisms has been trying to overcome these challenges. Unicellular cyanobacteria are widespread phototrophic microorganisms that have capabilities such as consuming solar energy and atmospheric carbon dioxide for growth and thus can be a suitable chassis for the production of valuable organic materials such as biofuels. For the ultimate use of metabolic potential of cyanobacteria, it is necessary to understand the reactions that are taking place inside the metabolic network of these microorganisms. In this study, we developed a Java tool to reconstruct an integrated metabolic network of a cyanobacterium (Synechocystis sp. PCC 6803). We merged three existing reconstructed metabolic networks of this microorganism. Then, after modeling for biofuel production, the results from flux balance analysis (FBA) disclosed an increased yield in biofuel production for ethanol, isobutanol, 3-methyl-1-butanol, 2-methyl-1-butanol, and propanol. The numbers of blocked reactions were also decreased for 2-methyl-1-butanol production. In addition, coverage of the metabolic network in terms of the number of metabolites and reactions was increased in the new obtained model.

  15. Comprehensive Mapping of Pluripotent Stem Cell Metabolism Using Dynamic Genome-Scale Network Modeling

    Directory of Open Access Journals (Sweden)

    Sriram Chandrasekaran

    2017-12-01

    Full Text Available Summary: Metabolism is an emerging stem cell hallmark tied to cell fate, pluripotency, and self-renewal, yet systems-level understanding of stem cell metabolism has been limited by the lack of genome-scale network models. Here, we develop a systems approach to integrate time-course metabolomics data with a computational model of metabolism to analyze the metabolic state of naive and primed murine pluripotent stem cells. Using this approach, we find that one-carbon metabolism involving phosphoglycerate dehydrogenase, folate synthesis, and nucleotide synthesis is a key pathway that differs between the two states, resulting in differential sensitivity to anti-folates. The model also predicts that the pluripotency factor Lin28 regulates this one-carbon metabolic pathway, which we validate using metabolomics data from Lin28-deficient cells. Moreover, we identify and validate metabolic reactions related to S-adenosyl-methionine production that can differentially impact histone methylation in naive and primed cells. Our network-based approach provides a framework for characterizing metabolic changes influencing pluripotency and cell fate. : Chandrasekaran et al. use computational modeling, metabolomics, and metabolic inhibitors to discover metabolic differences between various pluripotent stem cell states and infer their impact on stem cell fate decisions. Keywords: systems biology, stem cell biology, metabolism, genome-scale modeling, pluripotency, histone methylation, naive (ground state, primed state, cell fate, metabolic network

  16. Networks and network analysis for defence and security

    CERN Document Server

    Masys, Anthony J

    2014-01-01

    Networks and Network Analysis for Defence and Security discusses relevant theoretical frameworks and applications of network analysis in support of the defence and security domains. This book details real world applications of network analysis to support defence and security. Shocks to regional, national and global systems stemming from natural hazards, acts of armed violence, terrorism and serious and organized crime have significant defence and security implications. Today, nations face an uncertain and complex security landscape in which threats impact/target the physical, social, economic

  17. Integer programming-based method for designing synthetic metabolic networks by Minimum Reaction Insertion in a Boolean model.

    Science.gov (United States)

    Lu, Wei; Tamura, Takeyuki; Song, Jiangning; Akutsu, Tatsuya

    2014-01-01

    In this paper, we consider the Minimum Reaction Insertion (MRI) problem for finding the minimum number of additional reactions from a reference metabolic network to a host metabolic network so that a target compound becomes producible in the revised host metabolic network in a Boolean model. Although a similar problem for larger networks is solvable in a flux balance analysis (FBA)-based model, the solution of the FBA-based model tends to include more reactions than that of the Boolean model. However, solving MRI using the Boolean model is computationally more expensive than using the FBA-based model since the Boolean model needs more integer variables. Therefore, in this study, to solve MRI for larger networks in the Boolean model, we have developed an efficient Integer Programming formalization method in which the number of integer variables is reduced by the notion of feedback vertex set and minimal valid assignment. As a result of computer experiments conducted using the data of metabolic networks of E. coli and reference networks downloaded from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, we have found that the developed method can appropriately solve MRI in the Boolean model and is applicable to large scale-networks for which an exhaustive search does not work. We have also compared the developed method with the existing connectivity-based methods and FBA-based methods, and show the difference between the solutions of our method and the existing methods. A theoretical analysis of MRI is also conducted, and the NP-completeness of MRI is proved in the Boolean model. Our developed software is available at "http://sunflower.kuicr.kyoto-u.ac.jp/~rogi/minRect/minRect.html."

  18. Transmission analysis in WDM networks

    DEFF Research Database (Denmark)

    Rasmussen, Christian Jørgen

    1999-01-01

    This thesis describes the development of a computer-based simulator for transmission analysis in optical wavelength division multiplexing networks. A great part of the work concerns fundamental optical network simulator issues. Among these issues are identification of the versatility and user...... of the onlinear Schrödinger equation. Adaptive step size split-step methods and a modified split-step method adapted for optical signals represented by several equivalent lowpass signals are developed. The work on the receiver model includes a fast method for computation of the time varying variance of the signal......-friendliness demands which such a simulator must meet, development of the "spectral window representation" for representation of the optical signals and finding an effective way of handling the optical signals in the computer memory. One important issue more is the rules for the determination of the order in which...

  19. PPARγ population shift produces disease-related changes in molecular networks associated with metabolic syndrome.

    Science.gov (United States)

    Jurkowski, W; Roomp, K; Crespo, I; Schneider, J G; Del Sol, A

    2011-08-11

    Peroxisome proliferator-activated receptor gamma (PPARγ) is a key regulator of adipocyte differentiation and has an important role in metabolic syndrome. Phosphorylation of the receptor's ligand-binding domain at serine 273 has been shown to change the expression of a large number of genes implicated in obesity. The difference in gene expression seen when comparing wild-type phosphorylated with mutant non-phosphorylated PPARγ may have important consequences for the cellular molecular network, the state of which can be shifted from the healthy to a stable diseased state. We found that a group of differentially expressed genes are involved in bi-stable switches and form a core network, the state of which changes with disease progression. These findings support the idea that bi-stable switches may be a mechanism for locking the core gene network into a diseased state and for efficiently propagating perturbations to more distant regions of the network. A structural analysis of the PPARγ-RXRα dimer complex supports the hypothesis of a major structural change between the two states, and this may represent an important mechanism leading to the differential expression observed in the core network.

  20. Uniform sampling of steady states in metabolic networks: heterogeneous scales and rounding.

    Directory of Open Access Journals (Sweden)

    Daniele De Martino

    Full Text Available The uniform sampling of convex polytopes is an interesting computational problem with many applications in inference from linear constraints, but the performances of sampling algorithms can be affected by ill-conditioning. This is the case of inferring the feasible steady states in models of metabolic networks, since they can show heterogeneous time scales. In this work we focus on rounding procedures based on building an ellipsoid that closely matches the sampling space, that can be used to define an efficient hit-and-run (HR Markov Chain Monte Carlo. In this way the uniformity of the sampling of the convex space of interest is rigorously guaranteed, at odds with non markovian methods. We analyze and compare three rounding methods in order to sample the feasible steady states of metabolic networks of three models of growing size up to genomic scale. The first is based on principal component analysis (PCA, the second on linear programming (LP and finally we employ the Lovazs ellipsoid method (LEM. Our results show that a rounding procedure dramatically improves the performances of the HR in these inference problems and suggest that a combination of LEM or LP with a subsequent PCA perform the best. We finally compare the distributions of the HR with that of two heuristics based on the Artificially Centered hit-and-run (ACHR, gpSampler and optGpSampler. They show a good agreement with the results of the HR for the small network, while on genome scale models present inconsistencies.

  1. Co-regulation of metabolic genes is better explained by flux coupling than by network distance.

    Directory of Open Access Journals (Sweden)

    Richard A Notebaart

    2008-01-01

    Full Text Available To what extent can modes of gene regulation be explained by systems-level properties of metabolic networks? Prior studies on co-regulation of metabolic genes have mainly focused on graph-theoretical features of metabolic networks and demonstrated a decreasing level of co-expression with increasing network distance, a naïve, but widely used, topological index. Others have suggested that static graph representations can poorly capture dynamic functional associations, e.g., in the form of dependence of metabolic fluxes across genes in the network. Here, we systematically tested the relative importance of metabolic flux coupling and network position on gene co-regulation, using a genome-scale metabolic model of Escherichia coli. After validating the computational method with empirical data on flux correlations, we confirm that genes coupled by their enzymatic fluxes not only show similar expression patterns, but also share transcriptional regulators and frequently reside in the same operon. In contrast, we demonstrate that network distance per se has relatively minor influence on gene co-regulation. Moreover, the type of flux coupling can explain refined properties of the regulatory network that are ignored by simple graph-theoretical indices. Our results underline the importance of studying functional states of cellular networks to define physiologically relevant associations between genes and should stimulate future developments of novel functional genomic tools.

  2. Amino Acid Flux from Metabolic Network Benefits Protein Translation: the Role of Resource Availability.

    Science.gov (United States)

    Hu, Xiao-Pan; Yang, Yi; Ma, Bin-Guang

    2015-06-09

    Protein translation is a central step in gene expression and affected by many factors such as codon usage bias, mRNA folding energy and tRNA abundance. Despite intensive previous studies, how metabolic amino acid supply correlates with protein translation efficiency remains unknown. In this work, we estimated the amino acid flux from metabolic network for each protein in Escherichia coli and Saccharomyces cerevisiae by using Flux Balance Analysis. Integrated with the mRNA expression level, protein abundance and ribosome profiling data, we provided a detailed description of the role of amino acid supply in protein translation. Our results showed that amino acid supply positively correlates with translation efficiency and ribosome density. Moreover, with the rank-based regression model, we found that metabolic amino acid supply facilitates ribosome utilization. Based on the fact that the ribosome density change of well-amino-acid-supplied genes is smaller than poorly-amino-acid-supply genes under amino acid starvation, we reached the conclusion that amino acid supply may buffer ribosome density change against amino acid starvation and benefit maintaining a relatively stable translation environment. Our work provided new insights into the connection between metabolic amino acid supply and protein translation process by revealing a new regulation strategy that is dependent on resource availability.

  3. Genome-scale reconstruction of metabolic network for a halophilic extremophile, Chromohalobacter salexigens DSM 3043.

    Science.gov (United States)

    Ates, Ozlem; Oner, Ebru Toksoy; Arga, Kazim Y

    2011-01-21

    Chromohalobacter salexigens (formerly Halomonas elongata DSM 3043) is a halophilic extremophile with a very broad salinity range and is used as a model organism to elucidate prokaryotic osmoadaptation due to its strong euryhaline phenotype. C. salexigens DSM 3043's metabolism was reconstructed based on genomic, biochemical and physiological information via a non-automated but iterative process. This manually-curated reconstruction accounts for 584 genes, 1386 reactions, and 1411 metabolites. By using flux balance analysis, the model was extensively validated against literature data on the C. salexigens phenotypic features, the transport and use of different substrates for growth as well as against experimental observations on the uptake and accumulation of industrially important organic osmolytes, ectoine, betaine, and its precursor choline, which play important roles in the adaptive response to osmotic stress. This work presents the first comprehensive genome-scale metabolic model of a halophilic bacterium. Being a useful guide for identification and filling of knowledge gaps, the reconstructed metabolic network iOA584 will accelerate the research on halophilic bacteria towards application of systems biology approaches and design of metabolic engineering strategies.

  4. Genome-scale reconstruction of metabolic network for a halophilic extremophile, Chromohalobacter salexigens DSM 3043

    Directory of Open Access Journals (Sweden)

    Oner Ebru

    2011-01-01

    Full Text Available Abstract Background Chromohalobacter salexigens (formerly Halomonas elongata DSM 3043 is a halophilic extremophile with a very broad salinity range and is used as a model organism to elucidate prokaryotic osmoadaptation due to its strong euryhaline phenotype. Results C. salexigens DSM 3043's metabolism was reconstructed based on genomic, biochemical and physiological information via a non-automated but iterative process. This manually-curated reconstruction accounts for 584 genes, 1386 reactions, and 1411 metabolites. By using flux balance analysis, the model was extensively validated against literature data on the C. salexigens phenotypic features, the transport and use of different substrates for growth as well as against experimental observations on the uptake and accumulation of industrially important organic osmolytes, ectoine, betaine, and its precursor choline, which play important roles in the adaptive response to osmotic stress. Conclusions This work presents the first comprehensive genome-scale metabolic model of a halophilic bacterium. Being a useful guide for identification and filling of knowledge gaps, the reconstructed metabolic network iOA584 will accelerate the research on halophilic bacteria towards application of systems biology approaches and design of metabolic engineering strategies.

  5. Network environ perspective for urban metabolism and carbon emissions: a case study of Vienna, Austria.

    Science.gov (United States)

    Chen, Shaoqing; Chen, Bin

    2012-04-17

    Cities are considered major contributors to global warming, where carbon emissions are highly embedded in the overall urban metabolism. To examine urban metabolic processes and emission trajectories we developed a carbon flux model based on Network Environ Analysis (NEA). The mutual interactions and control situation within the urban ecosystem of Vienna were examined, and the system-level properties of the city's carbon metabolism were assessed. Regulatory strategies to minimize carbon emissions were identified through the tracking of the possible pathways that affect these emission trajectories. Our findings suggest that indirect flows have a strong bearing on the mutual and control relationships between urban sectors. The metabolism of a city is considered self-mutualistic and sustainable only when the local and distal environments are embraced. Energy production and construction were found to be two factors with a major impact on carbon emissions, and whose regulation is only effective via ad-hoc pathways. In comparison with the original life-cycle tracking, the application of NEA was better at revealing details from a mechanistic aspect, which is crucial for informed sustainable urban management.

  6. Rhinal hypometabolism on FDG PET in healthy APO-E4 carriers: impact on memory function and metabolic networks

    Energy Technology Data Exchange (ETDEWEB)

    Didic, Mira; Felician, Olivier; Gour, Natalina; Ceccaldi, Mathieu [Pole de Neurosciences Cliniques, Centre Hospitalo-Universitaire de la Timone, AP-HM, Service de Neurologie and Neuropsychologie, Marseille (France); Aix Marseille Universite, Inserm, INS UMRS 1106, Marseille (France); Bernard, Rafaelle; Pecheux, Christophe [Centre Hospitalo-Universitaire de la Timone, AP-HM, et INSERM UMRS 910: ' ' Genetique Medicale et Genomique fonctionnelle' ' , Departement de Genetique Medicale, Marseille (France); Mundler, Olivier; Guedj, Eric [Centre Hospitalo-Universitaire de la Timone, AP-HM, Service Central de Biophysique et Medecine Nucleaire, Marseille (France); Aix Marseille Universite, CERIMED, CNRS UMR7289, INT, Marseille (France); Aix Marseille Universite, CNRS UMR7289, INT, Marseille (France)

    2015-09-15

    The ε4 allele of the apolipoprotein E (APO-E4) gene, a genetic risk factor for Alzheimer's disease (AD), also modulates brain metabolism and function in healthy subjects. The aim of the present study was to explore cerebral metabolism using FDG PET in healthy APO-E4 carriers by comparing cognitively normal APO-E4 carriers to noncarriers and to assess if patterns of metabolism are correlated with performance on cognitive tasks. Moreover, metabolic connectivity patterns were established in order to assess if the organization of neural networks is influenced by genetic factors. Whole-brain PET statistical analysis was performed at voxel-level using SPM8 with a threshold of p < 0.005, corrected for volume, with age, gender and level of education as nuisance variables. Significant hypometabolism between APO-E4 carriers (n = 11) and noncarriers (n = 30) was first determined. Mean metabolic values with clinical/neuropsychological data were extracted at the individual level, and correlations were searched using Spearman's rank test in the whole group. To evaluate metabolic connectivity from metabolic cluster(s) previously identified in the intergroup comparison, voxel-wise interregional correlation analysis (IRCA) was performed between groups of subjects. APO-E4 carriers had reduced metabolism within the left anterior medial temporal lobe (MTL), where neuropathological changes first appear in AD, including the entorhinal and perirhinal cortices. A correlation between metabolism in this area and performance on the DMS48 (delayed matching to sample-48 items) was found, in line with converging evidence involving the perirhinal cortex in object-based memory. Finally, a voxel-wise IRCA revealed stronger metabolic connectivity of the MTL cluster with neocortical frontoparietal regions in carriers than in noncarriers, suggesting compensatory metabolic networks. Exploring cerebral metabolism using FDG PET can contribute to a better understanding of the influence of

  7. Impact of stoichiometry representation on simulation of genotype-phenotype relationships in metabolic networks

    DEFF Research Database (Denmark)

    Brochado, Ana Rita; Andrejev, Sergej; Maranas, Costas D.

    2012-01-01

    Genome-scale metabolic networks provide a comprehensive structural framework for modeling genotype-phenotype relationships through flux simulations. The solution space for the metabolic flux state of the cell is typically very large and optimization-based approaches are often necessary for predic......Genome-scale metabolic networks provide a comprehensive structural framework for modeling genotype-phenotype relationships through flux simulations. The solution space for the metabolic flux state of the cell is typically very large and optimization-based approaches are often necessary...

  8. Trade-offs between efficiency and robustness in bacterial metabolic networks are associated with niche breadth.

    Science.gov (United States)

    Morine, Melissa J; Gu, Hong; Myers, Ransom A; Bielawski, Joseph P

    2009-05-01

    The relation between structure and function in biologic networks is a central point of systems biology research. Key functional features--notably, efficiency and robustness--are linked to the topologic structure of a network, and there appears to be a degree of trade-off between these features, i.e., simulation studies indicate that more efficient networks tend to be less robust. Here, we investigate this issue in metabolic networks from 105 lineages of bacteria having a wide range of ecologies. We take quantitative measurements on each network and integrate this network data with ecologic data using a phylogenetic comparative model. In this setting, we find that biologic conclusions obtained with classical phylogenetic comparative methods are sensitive to correlations between model covariates and phylogenetic branch length. To avoid this problem, we propose a revised statistical framework--hierarchical mixed-effect regression--to accommodate phylogenetic nonindependence. Using this approach, we show that the cartography of metabolic networks does indeed reflect a trade-off between efficiency and robustness. Furthermore, ecologic characteristics related to niche breadth are strong predictors of network shape. Given the broad variation in niche breadth seen among species, we predict that there is no universally optimal balance between efficiency and robustness in bacterial metabolic networks and, thus, no universally optimal network structure. These results highlight the biologic relevance of variation in network structure and the potential role of niche breadth in shaping metabolic strategies of efficiency and robustness.

  9. Structural Analysis of Complex Networks

    CERN Document Server

    Dehmer, Matthias

    2011-01-01

    Filling a gap in literature, this self-contained book presents theoretical and application-oriented results that allow for a structural exploration of complex networks. The work focuses not only on classical graph-theoretic methods, but also demonstrates the usefulness of structural graph theory as a tool for solving interdisciplinary problems. Applications to biology, chemistry, linguistics, and data analysis are emphasized. The book is suitable for a broad, interdisciplinary readership of researchers, practitioners, and graduate students in discrete mathematics, statistics, computer science,

  10. Comparison between elementary flux modes analysis and 13C-metabolic fluxes measured in bacterial and plant cells.

    Science.gov (United States)

    Beurton-Aimar, Marie; Beauvoit, Bertrand; Monier, Antoine; Vallée, François; Dieuaide-Noubhani, Martine; Colombié, Sophie

    2011-06-20

    (13)C metabolic flux analysis is one of the pertinent ways to compare two or more physiological states. From a more theoretical standpoint, the structural properties of metabolic networks can be analysed to explore feasible metabolic behaviours and to define the boundaries of steady state flux distributions. Elementary flux mode analysis is one of the most efficient methods for performing this analysis. In this context, recent approaches have tended to compare experimental flux measurements with topological network analysis. Metabolic networks describing the main pathways of central carbon metabolism were set up for a bacteria species (Corynebacterium glutamicum) and a plant species (Brassica napus) for which experimental flux maps were available. The structural properties of each network were then studied using the concept of elementary flux modes. To do this, coefficients of flux efficiency were calculated for each reaction within the networks by using selected sets of elementary flux modes. Then the relative differences - reflecting the change of substrate i.e. a sugar source for C. glutamicum and a nitrogen source for B. napus - of both flux efficiency and flux measured experimentally were compared. For both organisms, there is a clear relationship between these parameters, thus indicating that the network structure described by the elementary flux modes had captured a significant part of the metabolic activity in both biological systems. In B. napus, the extension of the elementary flux mode analysis to an enlarged metabolic network still resulted in a clear relationship between the change in the coefficients and that of the measured fluxes. Nevertheless, the limitations of the method to fit some particular fluxes are discussed. This consistency between EFM analysis and experimental flux measurements, validated on two metabolic systems allows us to conclude that elementary flux mode analysis could be a useful tool to complement (13)C metabolic flux analysis

  11. iRsp1095: A genome-scale reconstruction of the Rhodobacter sphaeroides metabolic network

    Directory of Open Access Journals (Sweden)

    Gorzalski Alexander S

    2011-07-01

    Full Text Available Abstract Background Rhodobacter sphaeroides is one of the best studied purple non-sulfur photosynthetic bacteria and serves as an excellent model for the study of photosynthesis and the metabolic capabilities of this and related facultative organisms. The ability of R. sphaeroides to produce hydrogen (H2, polyhydroxybutyrate (PHB or other hydrocarbons, as well as its ability to utilize atmospheric carbon dioxide (CO2 as a carbon source under defined conditions, make it an excellent candidate for use in a wide variety of biotechnological applications. A genome-level understanding of its metabolic capabilities should help realize this biotechnological potential. Results Here we present a genome-scale metabolic network model for R. sphaeroides strain 2.4.1, designated iRsp1095, consisting of 1,095 genes, 796 metabolites and 1158 reactions, including R. sphaeroides-specific biomass reactions developed in this study. Constraint-based analysis showed that iRsp1095 agreed well with experimental observations when modeling growth under respiratory and phototrophic conditions. Genes essential for phototrophic growth were predicted by single gene deletion analysis. During pathway-level analyses of R. sphaeroides metabolism, an alternative route for CO2 assimilation was identified. Evaluation of photoheterotrophic H2 production using iRsp1095 indicated that maximal yield would be obtained from growing cells, with this predicted maximum ~50% higher than that observed experimentally from wild type cells. Competing pathways that might prevent the achievement of this theoretical maximum were identified to guide future genetic studies. Conclusions iRsp1095 provides a robust framework for future metabolic engineering efforts to optimize the solar- and nutrient-powered production of biofuels and other valuable products by R. sphaeroides and closely related organisms.

  12. Social Network Analysis and informal trade

    DEFF Research Database (Denmark)

    Walther, Olivier

    networks can be applied to better understand informal trade in developing countries, with a particular focus on Africa. The paper starts by discussing some of the fundamental concepts developed by social network analysis. Through a number of case studies, we show how social network analysis can...... illuminate the relevant causes of social patterns, the impact of social ties on economic performance, the diffusion of resources and information, and the exercise of power. The paper then examines some of the methodological challenges of social network analysis and how it can be combined with other...... approaches. The paper finally highlights some of the applications of social network analysis and their implications for trade policies....

  13. Reconstruction of biological pathways and metabolic networks from in silico labeled metabolites.

    Science.gov (United States)

    Hadadi, Noushin; Hafner, Jasmin; Soh, Keng Cher; Hatzimanikatis, Vassily

    2017-01-01

    Reaction atom mappings track the positional changes of all of the atoms between the substrates and the products as they undergo the biochemical transformation. However, information on atom transitions in the context of metabolic pathways is not widely available in the literature. The understanding of metabolic pathways at the atomic level is of great importance as it can deconvolute the overlapping catabolic/anabolic pathways resulting in the observed metabolic phenotype. The automated identification of atom transitions within a metabolic network is a very challenging task since the degree of complexity of metabolic networks dramatically increases when we transit from metabolite-level studies to atom-level studies. Despite being studied extensively in various approaches, the field of atom mapping of metabolic networks is lacking an automated approach, which (i) accounts for the information of reaction mechanism for atom mapping and (ii) is extendable from individual atom-mapped reactions to atom-mapped reaction networks. Hereby, we introduce a computational framework, iAM.NICE (in silico Atom Mapped Network Integrated Computational Explorer), for the systematic atom-level reconstruction of metabolic networks from in silico labelled substrates. iAM.NICE is to our knowledge the first automated atom-mapping algorithm that is based on the underlying enzymatic biotransformation mechanisms, and its application goes beyond individual reactions and it can be used for the reconstruction of atom-mapped metabolic networks. We illustrate the applicability of our method through the reconstruction of atom-mapped reactions of the KEGG database and we provide an example of an atom-level representation of the core metabolic network of E. coli. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Topological Analysis of Urban Drainage Networks

    Science.gov (United States)

    Yang, Soohyun; Paik, Kyungrock; McGrath, Gavan; Rao, Suresh

    2016-04-01

    Urban drainage networks are an essential component of infrastructure, and comprise the aggregation of underground pipe networks carrying storm water and domestic waste water for eventual discharge to natural stream networks. Growing urbanization has contributed to rapid expansion of sewer networks, vastly increasing their complexity and scale. Importance of sewer networks has been well studied from an engineering perspective, including resilient management, optimal design, and malfunctioning impact. Yet, analysis of the urban drainage networks using complex networks approach are lacking. Urban drainage networks consist of manholes and conduits, which correspond to nodes and edges, analogous to junctions and streams in river networks. Converging water flows in these two networks are driven by elevation gradient. In this sense, engineered urban drainage networks share several attributes of flows in river networks. These similarities between the two directed, converging flow networks serve the basis for us to hypothesize that the functional topology of sewer networks, like river networks, is scale-invariant. We analyzed the exceedance probability distribution of upstream area for practical sewer networks in South Korea. We found that the exceedance probability distributions of upstream area follow power-law, implying that the sewer networks exhibit topological self-similarity. The power-law exponents for the sewer networks were similar, and within the range reported from analysis of natural river networks. Thus, in line with our hypothesis, these results suggest that engineered urban drainage networks share functional topological attributes regardless of their structural dissimilarity or different underlying network evolution processes (natural vs. engineered). Implications of these findings for optimal design of sewer networks and for modeling sewer flows will be discussed.

  15. Review Essay: Does Qualitative Network Analysis Exist?

    Directory of Open Access Journals (Sweden)

    Rainer Diaz-Bone

    2007-01-01

    Full Text Available Social network analysis was formed and established in the 1970s as a way of analyzing systems of social relations. In this review the theoretical-methodological standpoint of social network analysis ("structural analysis" is introduced and the different forms of social network analysis are presented. Structural analysis argues that social actors and social relations are embedded in social networks, meaning that action and perception of actors as well as the performance of social relations are influenced by the network structure. Since the 1990s structural analysis has integrated concepts such as agency, discourse and symbolic orientation and in this way structural analysis has opened itself. Since then there has been increasing use of qualitative methods in network analysis. They are used to include the perspective of the analyzed actors, to explore networks, and to understand network dynamics. In the reviewed book, edited by Betina HOLLSTEIN and Florian STRAUS, the twenty predominantly empirically orientated contributions demonstrate the possibilities of combining quantitative and qualitative methods in network analyses in different research fields. In this review we examine how the contributions succeed in applying and developing the structural analysis perspective, and the self-positioning of "qualitative network analysis" is evaluated. URN: urn:nbn:de:0114-fqs0701287

  16. Google matrix analysis of directed networks

    Science.gov (United States)

    Ermann, Leonardo; Frahm, Klaus M.; Shepelyansky, Dima L.

    2015-10-01

    In the past decade modern societies have developed enormous communication and social networks. Their classification and information retrieval processing has become a formidable task for the society. Because of the rapid growth of the World Wide Web, and social and communication networks, new mathematical methods have been invented to characterize the properties of these networks in a more detailed and precise way. Various search engines extensively use such methods. It is highly important to develop new tools to classify and rank a massive amount of network information in a way that is adapted to internal network structures and characteristics. This review describes the Google matrix analysis of directed complex networks demonstrating its efficiency using various examples including the World Wide Web, Wikipedia, software architectures, world trade, social and citation networks, brain neural networks, DNA sequences, and Ulam networks. The analytical and numerical matrix methods used in this analysis originate from the fields of Markov chains, quantum chaos, and random matrix theory.

  17. Context-specific metabolic network reconstruction of a naphthalene-degrading bacterial community guided by metaproteomic data.

    Science.gov (United States)

    Tobalina, Luis; Bargiela, Rafael; Pey, Jon; Herbst, Florian-Alexander; Lores, Iván; Rojo, David; Barbas, Coral; Peláez, Ana I; Sánchez, Jesús; von Bergen, Martin; Seifert, Jana; Ferrer, Manuel; Planes, Francisco J

    2015-06-01

    With the advent of meta-'omics' data, the use of metabolic networks for the functional analysis of microbial communities became possible. However, while network-based methods are widely developed for single organisms, their application to bacterial communities is currently limited. Herein, we provide a novel, context-specific reconstruction procedure based on metaproteomic and taxonomic data. Without previous knowledge of a high-quality, genome-scale metabolic networks for each different member in a bacterial community, we propose a meta-network approach, where the expression levels and taxonomic assignments of proteins are used as the most relevant clues for inferring an active set of reactions. Our approach was applied to draft the context-specific metabolic networks of two different naphthalene-enriched communities derived from an anthropogenically influenced, polyaromatic hydrocarbon contaminated soil, with (CN2) or without (CN1) bio-stimulation. We were able to capture the overall functional differences between the two conditions at the metabolic level and predict an important activity for the fluorobenzoate degradation pathway in CN1 and for geraniol metabolism in CN2. Experimental validation was conducted, and good agreement with our computational predictions was observed. We also hypothesize different pathway organizations at the organismal level, which is relevant to disentangle the role of each member in the communities. The approach presented here can be easily transferred to the analysis of genomic, transcriptomic and metabolomic data. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Social network analysis community detection and evolution

    CERN Document Server

    Missaoui, Rokia

    2015-01-01

    This book is devoted to recent progress in social network analysis with a high focus on community detection and evolution. The eleven chapters cover the identification of cohesive groups, core components and key players either in static or dynamic networks of different kinds and levels of heterogeneity. Other important topics in social network analysis such as influential detection and maximization, information propagation, user behavior analysis, as well as network modeling and visualization are also presented. Many studies are validated through real social networks such as Twitter. This edit

  19. Network analysis literacy a practical approach to the analysis of networks

    CERN Document Server

    Zweig, Katharina A

    2014-01-01

    Network Analysis Literacy focuses on design principles for network analytics projects. The text enables readers to: pose a defined network analytic question; build a network to answer the question; choose or design the right network analytic methods for a particular purpose, and more.

  20. Social network analysis and dual rover communications

    Science.gov (United States)

    Litaker, Harry L.; Howard, Robert L.

    2013-10-01

    Social network analysis (SNA) refers to the collection of techniques, tools, and methods used in sociometry aiming at the analysis of social networks to investigate decision making, group communication, and the distribution of information. Human factors engineers at the National Aeronautics and Space Administration (NASA) conducted a social network analysis on communication data collected during a 14-day field study operating a dual rover exploration mission to better understand the relationships between certain network groups such as ground control, flight teams, and planetary science. The analysis identified two communication network structures for the continuous communication and Twice-a-Day Communication scenarios as a split network and negotiated network respectfully. The major nodes or groups for the networks' architecture, transmittal status, and information were identified using graphical network mapping, quantitative analysis of subjective impressions, and quantified statistical analysis using Sociometric Statue and Centrality. Post-questionnaire analysis along with interviews revealed advantages and disadvantages of each network structure with team members identifying the need for a more stable continuous communication network, improved robustness of voice loops, and better systems training/capabilities for scientific imagery data and operational data during Twice-a-Day Communications.

  1. Pathway analysis of Pichia pastoris to elucidate methanol metabolism and its regulation for production of recombinant proteins.

    Science.gov (United States)

    Unrean, Pornkamol

    2014-01-01

    This research rationally analyzes metabolic pathways of Pichia pastoris to study the metabolic flux responses of this yeast under methanol metabolism. A metabolic model of P. pastoris was constructed and analyzed by elementary mode analysis (EMA). EMA was used to comprehensively identify the cell's metabolic flux profiles and its underlying regulation mechanisms for the production of recombinant proteins from methanol. Change in phenotypes and flux profiles during methanol adaptation with varying feed mixture of glycerol and methanol was examined. EMA identified increasing and decreasing fluxes during the glycerol-methanol metabolic shift, which well agreed with experimental observations supporting the validity of the metabolic network model. Analysis of all the identified pathways also led to the determination of the metabolic capacities as well as the optimum metabolic pathways for recombinant protein synthesis during methanol induction. The network sensitivity analysis revealed that the production of proteins can be improved by manipulating the flux ratios at the pyruvate branch point. In addition, EMA suggested that protein synthesis is optimum under hypoxic culture conditions. The metabolic modeling and analysis presented in this study could potentially form a valuable knowledge base for future research on rational design and optimization of P. pastoris by determining target genes, pathways, and culture conditions for enhanced recombinant protein synthesis. The metabolic pathway analysis is also of considerable value for production of therapeutic proteins by P. pastoris in biopharmaceutical applications. © 2013 American Institute of Chemical Engineers.

  2. Improving the description of metabolic networks: the TCA cycle as example

    NARCIS (Netherlands)

    Stobbe, Miranda D.; Houten, Sander M.; van Kampen, Antoine H. C.; Wanders, Ronald J. A.; Moerland, Perry D.

    2012-01-01

    To collect the ever-increasing yet scattered knowledge on metabolism, multiple pathway databases like the Kyoto Encyclopedia of Genes and Genomes have been created. A complete and accurate description of the metabolic network for human and other organisms is essential to foster new biological

  3. Understanding complex interactions using social network analysis.

    Science.gov (United States)

    Pow, Janette; Gayen, Kaberi; Elliott, Lawrie; Raeside, Robert

    2012-10-01

    The aim of this paper is to raise the awareness of social network analysis as a method to facilitate research in nursing research. The application of social network analysis in assessing network properties has allowed greater insight to be gained in many areas including sociology, politics, business organisation and health care. However, the use of social networks in nursing has not received sufficient attention. Review of literature and illustration of the application of the method of social network analysis using research examples. First, the value of social networks will be discussed. Then by using illustrative examples, the value of social network analysis to nursing will be demonstrated. The method of social network analysis is found to give greater insights into social situations involving interactions between individuals and has particular application to the study of interactions between nurses and between nurses and patients and other actors. Social networks are systems in which people interact. Two quantitative techniques help our understanding of these networks. The first is visualisation of the network. The second is centrality. Individuals with high centrality are key communicators in a network. Applying social network analysis to nursing provides a simple method that helps gain an understanding of human interaction and how this might influence various health outcomes. It allows influential individuals (actors) to be identified. Their influence on the formation of social norms and communication can determine the extent to which new interventions or ways of thinking are accepted by a group. Thus, working with key individuals in a network could be critical to the success and sustainability of an intervention. Social network analysis can also help to assess the effectiveness of such interventions for the recipient and the service provider. © 2012 Blackwell Publishing Ltd.

  4. Metabolic network modeling approaches for investigating the "hungry cancer".

    Science.gov (United States)

    Sharma, Ashwini Kumar; König, Rainer

    2013-08-01

    Metabolism is the functional phenotype of a cell, at a given condition, resulting from an intricate interplay of various regulatory processes. The study of these dynamic metabolic processes and their capabilities help to identify the fundamental properties of living systems. Metabolic deregulation is an emerging hallmark of cancer cells. This deregulation results in rewiring of the metabolic circuitry conferring an exploitative metabolic advantage for the tumor cells which leads to a distinct benefit in survival and lays the basis for unbound progression. Metabolism can be considered as a thermodynamic open-system in which source substrates of high value are being processed through a well established interconnected biochemical conversion system, strictly obeying physiochemical principles, generating useful intermediates and finally resulting in the release of byproducts. Based on this basic principle of an input-output balance, various models have been developed to interrogate metabolism elucidating its underlying functional properties. However, only a few modeling approaches have proved computationally feasible in elucidating the metabolic nature of cancer at a systems level. Besides this, statistical approaches have been set up to identify biochemical pathways being more relevant for specific types of tumor cells. In this review, we are briefly introducing the basic statistical approaches followed by the major modeling concepts. We have put an emphasis on the methods and their applications that have been used to a greater extent in understanding the metabolic remodeling of cancer. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Network Analysis on Attitudes : A Brief Tutorial

    NARCIS (Netherlands)

    Dalege, J.; Borsboom, D.; van Harreveld, F.; van der Maas, H.L.J.

    2017-01-01

    In this article, we provide a brief tutorial on the estimation, analysis, and simulation on attitude networks using the programming language R. We first discuss what a network is and subsequently show how one can estimate a regularized network on typical attitude data. For this, we use open-access

  6. Networks and Bargaining in Policy Analysis

    DEFF Research Database (Denmark)

    Bogason, Peter

    2006-01-01

    A duscussion of the fight between proponents of rationalistic policy analysis and more political interaction models for policy analysis. The latter group is the foundation for the many network models of policy analysis of today.......A duscussion of the fight between proponents of rationalistic policy analysis and more political interaction models for policy analysis. The latter group is the foundation for the many network models of policy analysis of today....

  7. Formulation, construction and analysis of kinetic models of metabolism: A review of modelling frameworks

    DEFF Research Database (Denmark)

    Saa, Pedro A.; Nielsen, Lars K.

    2017-01-01

    Kinetic models are critical to predict the dynamic behaviour of metabolic networks. Mechanistic kinetic models for large networks remain uncommon due to the difficulty of fitting their parameters. Recent modelling frameworks promise new ways to overcome this obstacle while retaining predictive...... capabilities. In this review, we present an overview of the relevant mathematical frameworks for kinetic formulation, construction and analysis. Starting with kinetic formalisms, we next review statistical methods for parameter inference, as well as recent computational frameworks applied to the construction...

  8. Strategic Mobility 21: Rail Network Capacity Analysis

    National Research Council Canada - National Science Library

    Mallon, Lawrence G; Leachman, Robert C; Fetty, George R

    2006-01-01

    This analysis examined the rail network capacity and average transit times for commercial and surge military deployments through the proposed Victorville - Joint Power Projection Support Platform (JPPSP...

  9. Computer networks analysis with Cacti

    OpenAIRE

    Gazvoda, Silvo

    2014-01-01

    In this thesis, we have identified techniques and approaches that are most commonly encountered in network management systems. We have described availability and performance monitoring techniques. Selection of monitoring technique depends on the complexity of monitored parameters and preliminary established architecture. Network monitoring suggests architecture in which centralized manager collects and analyses data from managed devices. Managed devices expose their network statistics through...

  10. Introduction to Network Analysis in Systems Biology

    OpenAIRE

    Ma’ayan, Avi

    2011-01-01

    This Teaching Resource provides lecture notes, slides, and a problem set for a set of three lectures from a course entitled “Systems Biology: Biomedical Modeling.” The materials are from three separate lectures introducing applications of graph theory and network analysis in systems biology. The first lecture describes different types of intracellular networks, methods for constructing biological networks, and different types of graphs used to represent regulatory intracellular networks. The ...

  11. Unraveling protein networks with power graph analysis.

    Directory of Open Access Journals (Sweden)

    Loïc Royer

    Full Text Available Networks play a crucial role in computational biology, yet their analysis and representation is still an open problem. Power Graph Analysis is a lossless transformation of biological networks into a compact, less redundant representation, exploiting the abundance of cliques and bicliques as elementary topological motifs. We demonstrate with five examples the advantages of Power Graph Analysis. Investigating protein-protein interaction networks, we show how the catalytic subunits of the casein kinase II complex are distinguishable from the regulatory subunits, how interaction profiles and sequence phylogeny of SH3 domains correlate, and how false positive interactions among high-throughput interactions are spotted. Additionally, we demonstrate the generality of Power Graph Analysis by applying it to two other types of networks. We show how power graphs induce a clustering of both transcription factors and target genes in bipartite transcription networks, and how the erosion of a phosphatase domain in type 22 non-receptor tyrosine phosphatases is detected. We apply Power Graph Analysis to high-throughput protein interaction networks and show that up to 85% (56% on average of the information is redundant. Experimental networks are more compressible than rewired ones of same degree distribution, indicating that experimental networks are rich in cliques and bicliques. Power Graphs are a novel representation of networks, which reduces network complexity by explicitly representing re-occurring network motifs. Power Graphs compress up to 85% of the edges in protein interaction networks and are applicable to all types of networks such as protein interactions, regulatory networks, or homology networks.

  12. Egocentric social network analysis of pathological gambling.

    Science.gov (United States)

    Meisel, Matthew K; Clifton, Allan D; Mackillop, James; Miller, Joshua D; Campbell, W Keith; Goodie, Adam S

    2013-03-01

    To apply social network analysis (SNA) to investigate whether frequency and severity of gambling problems were associated with different network characteristics among friends, family and co-workers is an innovative way to look at relationships among individuals; the current study was the first, to our knowledge, to apply SNA to gambling behaviors. Egocentric social network analysis was used to characterize formally the relationships between social network characteristics and gambling pathology. Laboratory-based questionnaire and interview administration. Forty frequent gamblers (22 non-pathological gamblers, 18 pathological gamblers) were recruited from the community. The SNA revealed significant social network compositional differences between the two groups: pathological gamblers (PGs) had more gamblers, smokers and drinkers in their social networks than did non-pathological gamblers (NPGs). PGs had more individuals in their network with whom they personally gambled, smoked and drank than those with who were NPG. Network ties were closer to individuals in their networks who gambled, smoked and drank more frequently. Associations between gambling severity and structural network characteristics were not significant. Pathological gambling is associated with compositional but not structural differences in social networks. Pathological gamblers differ from non-pathological gamblers in the number of gamblers, smokers and drinkers in their social networks. Homophily within the networks also indicates that gamblers tend to be closer with other gamblers. This homophily may serve to reinforce addictive behaviors, and may suggest avenues for future study or intervention. © 2012 The Authors, Addiction © 2012 Society for the Study of Addiction.

  13. A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology.

    Science.gov (United States)

    Herrgård, Markus J; Swainston, Neil; Dobson, Paul; Dunn, Warwick B; Arga, K Yalçin; Arvas, Mikko; Blüthgen, Nils; Borger, Simon; Costenoble, Roeland; Heinemann, Matthias; Hucka, Michael; Le Novère, Nicolas; Li, Peter; Liebermeister, Wolfram; Mo, Monica L; Oliveira, Ana Paula; Petranovic, Dina; Pettifer, Stephen; Simeonidis, Evangelos; Smallbone, Kieran; Spasić, Irena; Weichart, Dieter; Brent, Roger; Broomhead, David S; Westerhoff, Hans V; Kirdar, Betül; Penttilä, Merja; Klipp, Edda; Palsson, Bernhard Ø; Sauer, Uwe; Oliver, Stephen G; Mendes, Pedro; Nielsen, Jens; Kell, Douglas B

    2008-10-01

    Genomic data allow the large-scale manual or semi-automated assembly of metabolic network reconstructions, which provide highly curated organism-specific knowledge bases. Although several genome-scale network reconstructions describe Saccharomyces cerevisiae metabolism, they differ in scope and content, and use different terminologies to describe the same chemical entities. This makes comparisons between them difficult and underscores the desirability of a consolidated metabolic network that collects and formalizes the 'community knowledge' of yeast metabolism. We describe how we have produced a consensus metabolic network reconstruction for S. cerevisiae. In drafting it, we placed special emphasis on referencing molecules to persistent databases or using database-independent forms, such as SMILES or InChI strings, as this permits their chemical structure to be represented unambiguously and in a manner that permits automated reasoning. The reconstruction is readily available via a publicly accessible database and in the Systems Biology Markup Language (http://www.comp-sys-bio.org/yeastnet). It can be maintained as a resource that serves as a common denominator for studying the systems biology of yeast. Similar strategies should benefit communities studying genome-scale metabolic networks of other organisms.

  14. Combining inferred regulatory and reconstructed metabolic networks enhances phenotype prediction in yeast.

    Science.gov (United States)

    Wang, Zhuo; Danziger, Samuel A; Heavner, Benjamin D; Ma, Shuyi; Smith, Jennifer J; Li, Song; Herricks, Thurston; Simeonidis, Evangelos; Baliga, Nitin S; Aitchison, John D; Price, Nathan D

    2017-05-01

    Gene regulatory and metabolic network models have been used successfully in many organisms, but inherent differences between them make networks difficult to integrate. Probabilistic Regulation Of Metabolism (PROM) provides a partial solution, but it does not incorporate network inference and underperforms in eukaryotes. We present an Integrated Deduced And Metabolism (IDREAM) method that combines statistically inferred Environment and Gene Regulatory Influence Network (EGRIN) models with the PROM framework to create enhanced metabolic-regulatory network models. We used IDREAM to predict phenotypes and genetic interactions between transcription factors and genes encoding metabolic activities in the eukaryote, Saccharomyces cerevisiae. IDREAM models contain many fewer interactions than PROM and yet produce significantly more accurate growth predictions. IDREAM consistently outperformed PROM using any of three popular yeast metabolic models and across three experimental growth conditions. Importantly, IDREAM's enhanced accuracy makes it possible to identify subtle synthetic growth defects. With experimental validation, these novel genetic interactions involving the pyruvate dehydrogenase complex suggested a new role for fatty acid-responsive factor Oaf1 in regulating acetyl-CoA production in glucose grown cells.

  15. Model-driven multi-omic data analysis elucidates metabolic immunomodulators of macrophage activation

    Energy Technology Data Exchange (ETDEWEB)

    Bordbar, Aarash; Mo, Monica L.; Nakayasu, Ernesto S.; Rutledge, Alexandra C.; Kim, Young-Mo; Metz, Thomas O.; Jones, Marcus B.; Frank, Bryan C.; Smith, Richard D.; Peterson, Scott N.; Hyduke, Daniel R.; Adkins, Joshua N.; Palsson, Bernhard O.

    2012-06-26

    Macrophages are central players in the immune response, manifesting divergent phenotypes to control inflammation and innate immunity through the release of cytokines and other regulatory factor-dependent signaling pathways. In recent years, the focus on metabolism has been reemphasized as critical signaling and regulatory pathways of human pathophysiology, ranging from cancer to aging, often converge on metabolic responses. Here, we used genome-scale modeling and multi-omics (transcriptomics, proteomics, and metabolomics) analysis to assess metabolic features critical for macrophage functions. We constructed a genome-scale metabolic network for the RAW 264.7 cell line to determine metabolic modulators of macrophage activation. Metabolites well-known to be associated with immunoactivation (e.g., glucose and arginine) and immunosuppression (e.g., tryptophan and vitamin D3) were amongst the most critical effectors. Intracellular metabolic mechanisms linked to critical suppressive effectors were then assessed, identifying a suppressive role for de novo nucleotide synthesis. Finally, the underlying metabolic mechanisms of macrophage activation are identified by analyzing multi-omic data obtained from LPS-stimulated RAW cells in the context of our flux-based predictions. Our study demonstrates metabolism's role in regulating activation may be greater than previously anticipated and elucidates underlying metabolic connections between activation and metabolic effectors.

  16. Evaluation of 13C isotopic tracers for metabolic flux analysis in mammalian cells.

    Science.gov (United States)

    Metallo, Christian M; Walther, Jason L; Stephanopoulos, Gregory

    2009-11-01

    (13)C metabolic flux analysis (MFA) is the most comprehensive means of characterizing cellular metabolic states. Uniquely labeled isotopic tracers enable more focused analyses to probe specific reactions within the network. As a result, the choice of tracer largely determines the precision with which one can estimate metabolic fluxes, especially in complex mammalian systems that require multiple substrates. Here we have experimentally determined metabolic fluxes in a tumor cell line, successfully recapitulating the hallmarks of cancer cell metabolism. Using these data, we computationally evaluated specifically labeled (13)C glucose and glutamine tracers for their ability to precisely and accurately estimate fluxes in central carbon metabolism. These methods enabled us to identify the optimal tracer for analyzing individual fluxes, specific pathways, and central carbon metabolism as a whole. [1,2-(13)C(2)]glucose provided the most precise estimates for glycolysis, the pentose phosphate pathway, and the overall network. Tracers such as [2-(13)C]glucose and [3-(13)C]glucose also outperformed the more commonly used [1-(13)C]glucose. [U-(13)C(5)]glutamine emerged as the preferred isotopic tracer for the analysis of the tricarboxylic acid (TCA) cycle. These results provide valuable, quantitative information on the performance of (13)C-labeled substrates and can aid in the design of more informative MFA experiments in mammalian cell culture.

  17. Social network analysis and supply chain management

    Directory of Open Access Journals (Sweden)

    Raúl Rodríguez Rodríguez

    2016-01-01

    Full Text Available This paper deals with social network analysis and how it could be integrated within supply chain management from a decision-making point of view. Even though the benefits of using social analysis have are widely accepted at both academic and industry/services context, there is still a lack of solid frameworks that allow decision-makers to connect the usage and obtained results of social network analysis – mainly both information and knowledge flows and derived results- with supply chain management objectives and goals. This paper gives an overview of social network analysis, the main social network analysis metrics, supply chain performance and, finally, it identifies how future frameworks could close the gap and link the results of social network analysis with the supply chain management decision-making processes.

  18. Robustness analysis of a constraint-based metabolic model links cell growth and proteomics of Thermoanaerobacter tengcongensis under temperature perturbation.

    Science.gov (United States)

    Tong, Wei; Chen, Zhen; Cao, Zhe; Wang, Quanhui; Zhang, Jiyuan; Bai, Xue; Wang, Rong; Liu, Siqi

    2013-04-05

    The integration of omic data with metabolic networks has been demonstrated to be an effective approach to elucidate the underlying metabolic mechanisms in life. Because the metabolic pathways of Thermoanaerobacter tengcongensis (T. tengcongensis) are incomplete, we used a 1-(13)C-glucose culture to monitor intracellular isotope-labeled metabolites by GC/MS and identified the gap gene in glucose catabolism, Re-citrate synthase. Based on genome annotation and biochemical information, we reconstructed the metabolic network of glucose metabolism and amino acid synthesis in T. tengcongensis, including 253 reactions, 227 metabolites, and 236 genes. Furthermore, we performed constraint based modeling (CBM)-derived robustness analysis on the model to study the dynamic changes of the metabolic network. By perturbing the culture temperature from 75 to 55 °C, we collected the bacterial growth rates and differential proteomes. Assuming that protein abundance changes represent metabolic flux variations, we proposed that the robustness analysis of the CBM model could decipher the effect of proteome change on the bacterial growth under perturbation. For approximately 73% of the reactions, the predicted cell growth changes due to such reaction flux variations matched the observed cell growth data. Our study, therefore, indicates that differential proteome data can be integrated with metabolic network modeling and that robustness analysis is a strong method for representing the dynamic change in cell phenotypes under perturbation.

  19. Convergent evolution of modularity in metabolic networks through different community structures

    Directory of Open Access Journals (Sweden)

    Zhou Wanding

    2012-09-01

    Full Text Available Abstract Background It has been reported that the modularity of metabolic networks of bacteria is closely related to the variability of their living habitats. However, given the dependency of the modularity score on the community structure, it remains unknown whether organisms achieve certain modularity via similar or different community structures. Results In this work, we studied the relationship between similarities in modularity scores and similarities in community structures of the metabolic networks of 1021 species. Both similarities are then compared against the genetic distances. We revisited the association between modularity and variability of the microbial living environments and extended the analysis to other aspects of their life style such as temperature and oxygen requirements. We also tested both topological and biological intuition of the community structures identified and investigated the extent of their conservation with respect to the taxomony. Conclusions We find that similar modularities are realized by different community structures. We find that such convergent evolution of modularity is closely associated with the number of (distinct enzymes in the organism’s metabolome, a consequence of different life styles of the species. We find that the order of modularity is the same as the order of the number of the enzymes under the classification based on the temperature preference but not on the oxygen requirement. Besides, inspection of modularity-based communities reveals that these communities are graph-theoretically meaningful yet not reflective of specific biological functions. From an evolutionary perspective, we find that the community structures are conserved only at the level of kingdoms. Our results call for more investigation into the interplay between evolution and modularity: how evolution shapes modularity, and how modularity affects evolution (mainly in terms of fitness and evolvability. Further, our results

  20. Network Analysis on Attitudes: A Brief Tutorial.

    Science.gov (United States)

    Dalege, Jonas; Borsboom, Denny; van Harreveld, Frenk; van der Maas, Han L J

    2017-07-01

    In this article, we provide a brief tutorial on the estimation, analysis, and simulation on attitude networks using the programming language R. We first discuss what a network is and subsequently show how one can estimate a regularized network on typical attitude data. For this, we use open-access data on the attitudes toward Barack Obama during the 2012 American presidential election. Second, we show how one can calculate standard network measures such as community structure, centrality, and connectivity on this estimated attitude network. Third, we show how one can simulate from an estimated attitude network to derive predictions from attitude networks. By this, we highlight that network theory provides a framework for both testing and developing formalized hypotheses on attitudes and related core social psychological constructs.

  1. 4th International Conference in Network Analysis

    CERN Document Server

    Koldanov, Petr; Pardalos, Panos

    2016-01-01

    The contributions in this volume cover a broad range of topics including maximum cliques, graph coloring, data mining, brain networks, Steiner forest, logistic and supply chain networks. Network algorithms and their applications to market graphs, manufacturing problems, internet networks and social networks are highlighted. The "Fourth International Conference in Network Analysis," held at the Higher School of Economics, Nizhny Novgorod in May 2014, initiated joint research between scientists, engineers and researchers from academia, industry and government; the major results of conference participants have been reviewed and collected in this Work. Researchers and students in mathematics, economics, statistics, computer science and engineering will find this collection a valuable resource filled with the latest research in network analysis.

  2. AMBIENT: Active Modules for Bipartite Networks--using high-throughput transcriptomic data to dissect metabolic response.

    Science.gov (United States)

    Bryant, William A; Sternberg, Michael J E; Pinney, John W

    2013-03-25

    With the continued proliferation of high-throughput biological experiments, there is a pressing need for tools to integrate the data produced in ways that produce biologically meaningful conclusions. Many microarray studies have analysed transcriptomic data from a pathway perspective, for instance by testing for KEGG pathway enrichment in sets of upregulated genes. However, the increasing availability of species-specific metabolic models provides the opportunity to analyse these data in a more objective, system-wide manner. Here we introduce ambient (Active Modules for Bipartite Networks), a simulated annealing approach to the discovery of metabolic subnetworks (modules) that are significantly affected by a given genetic or environmental change. The metabolic modules returned by ambient are connected parts of the bipartite network that change coherently between conditions, providing a more detailed view of metabolic changes than standard approaches based on pathway enrichment. ambient is an effective and flexible tool for the analysis of high-throughput data in a metabolic context. The same approach can be applied to any system in which reactions (or metabolites) can be assigned a score based on some biological observation, without the limitation of predefined pathways. A Python implementation of ambient is available at http://www.theosysbio.bio.ic.ac.uk/ambient.

  3. Genome-scale reconstruction of the Streptococcus pyogenes M49 metabolic network reveals growth requirements and indicates potential drug targets.

    Science.gov (United States)

    Levering, Jennifer; Fiedler, Tomas; Sieg, Antje; van Grinsven, Koen W A; Hering, Silvio; Veith, Nadine; Olivier, Brett G; Klett, Lara; Hugenholtz, Jeroen; Teusink, Bas; Kreikemeyer, Bernd; Kummer, Ursula

    2016-08-20

    Genome-scale metabolic models comprise stoichiometric relations between metabolites, as well as associations between genes and metabolic reactions and facilitate the analysis of metabolism. We computationally reconstructed the metabolic network of the lactic acid bacterium Streptococcus pyogenes M49. Initially, we based the reconstruction on genome annotations and already existing and curated metabolic networks of Bacillus subtilis, Escherichia coli, Lactobacillus plantarum and Lactococcus lactis. This initial draft was manually curated with the final reconstruction accounting for 480 genes associated with 576 reactions and 558 metabolites. In order to constrain the model further, we performed growth experiments of wild type and arcA deletion strains of S. pyogenes M49 in a chemically defined medium and calculated nutrient uptake and production fluxes. We additionally performed amino acid auxotrophy experiments to test the consistency of the model. The established genome-scale model can be used to understand the growth requirements of the human pathogen S. pyogenes and define optimal and suboptimal conditions, but also to describe differences and similarities between S. pyogenes and related lactic acid bacteria such as L. lactis in order to find strategies to reduce the growth of the pathogen and propose drug targets. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. OpenFLUX: efficient modelling software for 13C-based metabolic flux analysis

    Directory of Open Access Journals (Sweden)

    Nielsen Lars K

    2009-05-01

    Full Text Available Abstract Background The quantitative analysis of metabolic fluxes, i.e., in vivo activities of intracellular enzymes and pathways, provides key information on biological systems in systems biology and metabolic engineering. It is based on a comprehensive approach combining (i tracer cultivation on 13C substrates, (ii 13C labelling analysis by mass spectrometry and (iii mathematical modelling for experimental design, data processing, flux calculation and statistics. Whereas the cultivation and the analytical part is fairly advanced, a lack of appropriate modelling software solutions for all modelling aspects in flux studies is limiting the application of metabolic flux analysis. Results We have developed OpenFLUX as a user friendly, yet flexible software application for small and large scale 13C metabolic flux analysis. The application is based on the new Elementary Metabolite Unit (EMU framework, significantly enhancing computation speed for flux calculation. From simple notation of metabolic reaction networks defined in a spreadsheet, the OpenFLUX parser automatically generates MATLAB-readable metabolite and isotopomer balances, thus strongly facilitating model creation. The model can be used to perform experimental design, parameter estimation and sensitivity analysis either using the built-in gradient-based search or Monte Carlo algorithms or in user-defined algorithms. Exemplified for a microbial flux study with 71 reactions, 8 free flux parameters and mass isotopomer distribution of 10 metabolites, OpenFLUX allowed to automatically compile the EMU-based model from an Excel file containing metabolic reactions and carbon transfer mechanisms, showing it's user-friendliness. It reliably reproduced the published data and optimum flux distributions for the network under study were found quickly ( Conclusion We have developed a fast, accurate application to perform steady-state 13C metabolic flux analysis. OpenFLUX will strongly facilitate and

  5. METHODOLOGY OF MATHEMATICAL ANALYSIS IN POWER NETWORK

    OpenAIRE

    Jerzy Szkutnik; Mariusz Kawecki

    2008-01-01

    Power distribution network analysis is taken into account. Based on correlation coefficient authors establish methodology of mathematical analysis useful in finding substations bear responsibility for power stoppage. Also methodology of risk assessment will be carried out.

  6. A general model for metabolic scaling in self-similar asymmetric networks.

    Directory of Open Access Journals (Sweden)

    Alexander Byers Brummer

    2017-03-01

    Full Text Available How a particular attribute of an organism changes or scales with its body size is known as an allometry. Biological allometries, such as metabolic scaling, have been hypothesized to result from selection to maximize how vascular networks fill space yet minimize internal transport distances and resistances. The West, Brown, Enquist (WBE model argues that these two principles (space-filling and energy minimization are (i general principles underlying the evolution of the diversity of biological networks across plants and animals and (ii can be used to predict how the resulting geometry of biological networks then governs their allometric scaling. Perhaps the most central biological allometry is how metabolic rate scales with body size. A core assumption of the WBE model is that networks are symmetric with respect to their geometric properties. That is, any two given branches within the same generation in the network are assumed to have identical lengths and radii. However, biological networks are rarely if ever symmetric. An open question is: Does incorporating asymmetric branching change or influence the predictions of the WBE model? We derive a general network model that relaxes the symmetric assumption and define two classes of asymmetrically bifurcating networks. We show that asymmetric branching can be incorporated into the WBE model. This asymmetric version of the WBE model results in several theoretical predictions for the structure, physiology, and metabolism of organisms, specifically in the case for the cardiovascular system. We show how network asymmetry can now be incorporated in the many allometric scaling relationships via total network volume. Most importantly, we show that the 3/4 metabolic scaling exponent from Kleiber's Law can still be attained within many asymmetric networks.

  7. A kinetic model describes metabolic response to perturbations and distribution of flux control in the benzenoid network of Petunia hybrida.

    Science.gov (United States)

    Colón, Amy Marshall; Sengupta, Neelanjan; Rhodes, David; Dudareva, Natalia; Morgan, John

    2010-04-01

    In recent years there has been much interest in the genetic enhancement of plant metabolism; however, attempts at genetic modification are often unsuccessful due to an incomplete understanding of network dynamics and their regulatory properties. Kinetic modeling of plant metabolic networks can provide predictive information on network control and response to genetic perturbations, which allow estimation of flux at any concentration of intermediate or enzyme in the system. In this research, a kinetic model of the benzenoid network was developed to simulate whole network responses to different concentrations of supplied phenylalanine (Phe) in petunia flowers and capture flux redistributions caused by genetic manipulations. Kinetic parameters were obtained by network decomposition and non-linear least squares optimization of data from petunia flowers supplied with either 75 or 150 mm(2)H(5)-Phe. A single set of kinetic parameters simultaneously accommodated labeling and pool size data obtained for all endogenous and emitted volatiles at the two concentrations of supplied (2)H(5)-Phe. The generated kinetic model was validated using flowers from transgenic petunia plants in which benzyl CoA:benzyl alcohol/phenylethanol benzoyltransferase (BPBT) was down-regulated via RNAi. The determined in vivo kinetic parameters were used for metabolic control analysis, in which flux control coefficients were calculated for fluxes around the key branch point at Phe and revealed that phenylacetaldehyde synthase activity is the primary controlling factor for the phenylacetaldehyde branch of the benzenoid network. In contrast, control of flux through the beta-oxidative and non-beta-oxidative pathways is highly distributed.

  8. Automated metabolic gas analysis systems: a review.

    Science.gov (United States)

    Macfarlane, D J

    2001-01-01

    The use of automated metabolic gas analysis systems or metabolic measurement carts (MMC) in exercise studies is common throughout the industrialised world. They have become essential tools for diagnosing many hospital patients, especially those with cardiorespiratory disease. Moreover, the measurement of maximal oxygen uptake (VO2max) is routine for many athletes in fitness laboratories and has become a defacto standard in spite of its limitations. The development of metabolic carts has also facilitated the noninvasive determination of the lactate threshold and cardiac output, respiratory gas exchange kinetics, as well as studies of outdoor activities via small portable systems that often use telemetry. Although the fundamental principles behind the measurement of oxygen uptake (VO2) and carbon dioxide production (VCO2) have not changed, the techniques used have, and indeed, some have almost turned through a full circle. Early scientists often employed a manual Douglas bag method together with separate chemical analyses, but the need for faster and more efficient techniques fuelled the development of semi- and full-automated systems by private and commercial institutions. Yet, recently some scientists are returning back to the traditional Douglas bag or Tissot-spirometer methods, or are using less complex automated systems to not only save capital costs, but also to have greater control over the measurement process. Over the last 40 years, a considerable number of automated systems have been developed, with over a dozen commercial manufacturers producing in excess of 20 different automated systems. The validity and reliability of all these different systems is not well known, with relatively few independent studies having been published in this area. For comparative studies to be possible and to facilitate greater consistency of measurements in test-retest or longitudinal studies of individuals, further knowledge about the performance characteristics of these

  9. Investigating biofuels through network analysis

    International Nuclear Information System (INIS)

    Curci, Ylenia; Mongeau Ospina, Christian A.

    2016-01-01

    Biofuel policies are motivated by a plethora of political concerns related to energy security, environmental damages, and support of the agricultural sector. In response to this, much scientific work has chiefly focussed on analysing the biofuel domain and on giving policy advice and recommendations. Although innovation has been acknowledged as one of the key factors in sustainable and cost-effective biofuel development, there is an urgent need to investigate technological trajectories in the biofuel sector by starting from consistent data and appropriate methodological tools. To do so, this work proposes a procedure to select patent data unequivocally related to the investigated sector, it uses co-occurrence of technological terms to compute patent similarity and highlights content and interdependencies of biofuels technological trajectories by revealing hidden topics from unstructured patent text fields. The analysis suggests that there is a breaking trend towards modern generation biofuels and that innovators seem to focus increasingly on the ability of alternative energy sources to adapt to the transport/industrial sector. - Highlights: • Innovative effort is devoted to biofuels additives and modern biofuels technologies. • A breaking trend can be observed from the second half of the last decade. • A patent network is identified via text mining techniques that extract latent topics.

  10. Metabolomics Approach Reveals Integrated Metabolic Network Associated with Serotonin Deficiency

    Science.gov (United States)

    Weng, Rui; Shen, Sensen; Tian, Yonglu; Burton, Casey; Xu, Xinyuan; Liu, Yi; Chang, Cuilan; Bai, Yu; Liu, Huwei

    2015-07-01

    Serotonin is an important neurotransmitter that broadly participates in various biological processes. While serotonin deficiency has been associated with multiple pathological conditions such as depression, schizophrenia, Alzheimer’s disease and Parkinson’s disease, the serotonin-dependent mechanisms remain poorly understood. This study therefore aimed to identify novel biomarkers and metabolic pathways perturbed by serotonin deficiency using metabolomics approach in order to gain new metabolic insights into the serotonin deficiency-related molecular mechanisms. Serotonin deficiency was achieved through pharmacological inhibition of tryptophan hydroxylase (Tph) using p-chlorophenylalanine (pCPA) or genetic knockout of the neuronal specific Tph2 isoform. This dual approach improved specificity for the serotonin deficiency-associated biomarkers while minimizing nonspecific effects of pCPA treatment or Tph2 knockout (Tph2-/-). Non-targeted metabolic profiling and a targeted pCPA dose-response study identified 21 biomarkers in the pCPA-treated mice while 17 metabolites in the Tph2-/- mice were found to be significantly altered compared with the control mice. These newly identified biomarkers were associated with amino acid, energy, purine, lipid and gut microflora metabolisms. Oxidative stress was also found to be significantly increased in the serotonin deficient mice. These new biomarkers and the overall metabolic pathways may provide new understanding for the serotonin deficiency-associated mechanisms under multiple pathological states.

  11. Integrated in silico Analyses of Regulatory and Metabolic Networks of Synechococcus sp. PCC 7002 Reveal Relationships between Gene Centrality and Essentiality

    Science.gov (United States)

    Song, Hyun-Seob; McClure, Ryan S.; Bernstein, Hans C.; Overall, Christopher C.; Hill, Eric A.; Beliaev, Alexander S.

    2015-01-01

    Cyanobacteria dynamically relay environmental inputs to intracellular adaptations through a coordinated adjustment of photosynthetic efficiency and carbon processing rates. The output of such adaptations is reflected through changes in transcriptional patterns and metabolic flux distributions that ultimately define growth strategy. To address interrelationships between metabolism and regulation, we performed integrative analyses of metabolic and gene co-expression networks in a model cyanobacterium, Synechococcus sp. PCC 7002. Centrality analyses using the gene co-expression network identified a set of key genes, which were defined here as “topologically important.” Parallel in silico gene knock-out simulations, using the genome-scale metabolic network, classified what we termed as “functionally important” genes, deletion of which affected growth or metabolism. A strong positive correlation was observed between topologically and functionally important genes. Functionally important genes exhibited variable levels of topological centrality; however, the majority of topologically central genes were found to be functionally essential for growth. Subsequent functional enrichment analysis revealed that both functionally and topologically important genes in Synechococcus sp. PCC 7002 are predominantly associated with translation and energy metabolism, two cellular processes critical for growth. This research demonstrates how synergistic network-level analyses can be used for reconciliation of metabolic and gene expression data to uncover fundamental biological principles. PMID:25826650

  12. Integrated in silico Analyses of Regulatory and Metabolic Networks of Synechococcus sp. PCC 7002 Reveal Relationships between Gene Centrality and Essentiality

    Directory of Open Access Journals (Sweden)

    Hyun-Seob Song

    2015-03-01

    Full Text Available Cyanobacteria dynamically relay environmental inputs to intracellular adaptations through a coordinated adjustment of photosynthetic efficiency and carbon processing rates. The output of such adaptations is reflected through changes in transcriptional patterns and metabolic flux distributions that ultimately define growth strategy. To address interrelationships between metabolism and regulation, we performed integrative analyses of metabolic and gene co-expression networks in a model cyanobacterium, Synechococcus sp. PCC 7002. Centrality analyses using the gene co-expression network identified a set of key genes, which were defined here as “topologically important.” Parallel in silico gene knock-out simulations, using the genome-scale metabolic network, classified what we termed as “functionally important” genes, deletion of which affected growth or metabolism. A strong positive correlation was observed between topologically and functionally important genes. Functionally important genes exhibited variable levels of topological centrality; however, the majority of topologically central genes were found to be functionally essential for growth. Subsequent functional enrichment analysis revealed that both functionally and topologically important genes in Synechococcus sp. PCC 7002 are predominantly associated with translation and energy metabolism, two cellular processes critical for growth. This research demonstrates how synergistic network-level analyses can be used for reconciliation of metabolic and gene expression data to uncover fundamental biological principles.

  13. Linear analysis of degree correlations in complex networks

    Indian Academy of Sciences (India)

    Many real-world networks such as the protein–protein interaction networks and metabolic networks often display nontrivial correlations between degrees of vertices connected by edges. Here, we analyse the statistical methods used usually to describe the degree correlation in the networks, and analytically give linear ...

  14. Weighted Complex Network Analysis of Pakistan Highways

    Directory of Open Access Journals (Sweden)

    Yasir Tariq Mohmand

    2013-01-01

    Full Text Available The structure and properties of public transportation networks have great implications in urban planning, public policies, and infectious disease control. This study contributes a weighted complex network analysis of travel routes on the national highway network of Pakistan. The network is responsible for handling 75 percent of the road traffic yet is largely inadequate, poor, and unreliable. The highway network displays small world properties and is assortative in nature. Based on the betweenness centrality of the nodes, the most important cities are identified as this could help in identifying the potential congestion points in the network. Keeping in view the strategic location of Pakistan, such a study is of practical importance and could provide opportunities for policy makers to improve the performance of the highway network.

  15. Metabolic networks: a signal-oriented approach to cellular models.

    Science.gov (United States)

    Lengeler, J W

    2000-01-01

    Complete genomes, far advanced proteomes, and even 'metabolomes' are available for at least a few organisms, e.g., Escherichia coli. Systematic functional analyses of such complete data sets will produce a wealth of information and promise an understanding of the dynamics of complex biological networks and perhaps even of entire living organisms. Such complete and holistic descriptions of biological systems, however, will increasingly require a quantitative analysis and the help of mathematical models for simulating whole systems. In particular, new procedures are required that allow a meaningful reduction of the information derived from complex systems that will consequently be used in the modeling process. In this review the biological elements of such a modeling procedure will be described. In a first step, complex living systems must be structured into well-defined and clearly delimited functional units, the elements of which have a common physiological goal, belong to a single genetic unit, and respond to the signals of a signal transduction system that senses changes in physiological states of the organism. These functional units occur at each level of complexity and more complex units originate by grouping several lower level elements into a single, more complex unit. To each complexity level corresponds a global regulator that is epistatic over lower level regulators. After its structuring into modules (functional units), a biological system is converted in a second step into mathematical submodels that by progressive combination can also be assembled into more aggregated model structures. Such a simplification of a cell (an organism) reduces its complexity to a level amenable to present modeling capacities. The universal biochemistry, however, promises a set of rules valid for modeling biological systems, from unicellular microorganisms and cells, to multicellular organisms and to populations.

  16. Construction of a genome-scale metabolic network of the plant pathogen Pectobacterium carotovorum provides new strategies for bactericide discovery.

    Science.gov (United States)

    Wang, Cheng; Deng, Zhi-Luo; Xie, Zhi-Ming; Chu, Xin-Yi; Chang, Ji-Wei; Kong, De-Xin; Li, Bao-Ju; Zhang, Hong-Yu; Chen, Ling-Ling

    2015-01-30

    We reconstructed the first genome-scale metabolic network of the plant pathogen Pectobacterium carotovorum subsp. carotovorum PC1 based on its genomic sequence, annotation, and physiological data. Metabolic characteristics were analyzed using flux balance analysis (FBA), and the results were afterwards validated by phenotype microarray (PM) experiments. The reconstructed genome-scale metabolic model, iPC1209, contains 2235 reactions, 1113 metabolites and 1209 genes. We identified 19 potential bactericide targets through a comprehensive in silico gene-deletion study. Next, we performed virtual screening to identify candidate inhibitors for an important potential drug target, alkaline phosphatase, and experimentally verified that three lead compounds were able to inhibit both bacterial cell viability and the activity of alkaline phosphatase in vitro. This study illustrates a new strategy for the discovery of agricultural bactericides. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  17. NEAT: an efficient network enrichment analysis test.

    Science.gov (United States)

    Signorelli, Mirko; Vinciotti, Veronica; Wit, Ernst C

    2016-09-05

    Network enrichment analysis is a powerful method, which allows to integrate gene enrichment analysis with the information on relationships between genes that is provided by gene networks. Existing tests for network enrichment analysis deal only with undirected networks, they can be computationally slow and are based on normality assumptions. We propose NEAT, a test for network enrichment analysis. The test is based on the hypergeometric distribution, which naturally arises as the null distribution in this context. NEAT can be applied not only to undirected, but to directed and partially directed networks as well. Our simulations indicate that NEAT is considerably faster than alternative resampling-based methods, and that its capacity to detect enrichments is at least as good as the one of alternative tests. We discuss applications of NEAT to network analyses in yeast by testing for enrichment of the Environmental Stress Response target gene set with GO Slim and KEGG functional gene sets, and also by inspecting associations between functional sets themselves. NEAT is a flexible and efficient test for network enrichment analysis that aims to overcome some limitations of existing resampling-based tests. The method is implemented in the R package neat, which can be freely downloaded from CRAN ( https://cran.r-project.org/package=neat ).

  18. Understanding the control of acyl flux through the lipid metabolic network of plant oil biosynthesis.

    Science.gov (United States)

    Bates, Philip D

    2016-09-01

    Plant oil biosynthesis involves a complex metabolic network with multiple subcellular compartments, parallel pathways, cycles, and pathways that have a dual function to produce essential membrane lipids and triacylglycerol. Modern molecular biology techniques provide tools to alter plant oil compositions through bioengineering, however with few exceptions the final composition of triacylglycerol cannot be predicted. One reason for limited success in oilseed bioengineering is the inadequate understanding of how to control the flux of fatty acids through various fatty acid modification, and triacylglycerol assembly pathways of the lipid metabolic network. This review focuses on the mechanisms of acyl flux through the lipid metabolic network, and highlights where uncertainty resides in our understanding of seed oil biosynthesis. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. The hypothalamic neural-glial network and the metabolic syndrome

    NARCIS (Netherlands)

    Jastroch, Martin; Morin, Silke; Tschöp, Matthias H.; Yi, Chun-Xia

    2014-01-01

    Despite numerous educational interventions and biomedical research efforts, modern society continues to suffer from obesity and its associated metabolic diseases, such as type 2 diabetes mellitus, and these diseases show little sign of abating. One reason for this is an incomplete understanding of

  20. Genome scale metabolic network reconstruction of Spirochaeta cellobiosiphila

    Directory of Open Access Journals (Sweden)

    Bharat Manna

    2017-10-01

    Full Text Available Substantial rise in the global energy demand is one of the biggest challenges in this century. Environmental pollution due to rapid depletion of the fossil fuel resources and its alarming impact on the climate change and Global Warming have motivated researchers to look for non-petroleum-based sustainable, eco-friendly, renewable, low-cost energy alternatives, such as biofuel. Lignocellulosic biomass is one of the most promising bio-resources with huge potential to contribute to this worldwide energy demand. However, the complex organization of the Cellulose, Hemicellulose and Lignin in the Lignocellulosic biomass requires extensive pre-treatment and enzymatic hydrolysis followed by fermentation, raising overall production cost of biofuel. This encourages researchers to design cost-effective approaches for the production of second generation biofuels. The products from enzymatic hydrolysis of cellulose are mostly glucose monomer or cellobiose unit that are subjected to fermentation. Spirochaeta genus is a well-known group of obligate or facultative anaerobes, living primarily on carbohydrate metabolism. Spirochaeta cellobiosiphila sp. is a facultative anaerobe under this genus, which uses a variety of monosaccharides and disaccharides as energy sources. However, most rapid growth occurs on cellobiose and fermentation yields significant amount of ethanol, acetate, CO2, H2 and small amounts of formate. It is predicted to be promising microbial machinery for industrial fermentation processes for biofuel production. The metabolic pathways that govern cellobiose metabolism in Spirochaeta cellobiosiphila are yet to be explored. The function annotation of the genome sequence of Spirochaeta cellobiosiphila is in progress. In this work we aim to map all the metabolic activities for reconstruction of genome-scale metabolic model of Spirochaeta cellobiosiphila.

  1. Industrial entrepreneurial network: Structural and functional analysis

    Science.gov (United States)

    Medvedeva, M. A.; Davletbaev, R. H.; Berg, D. B.; Nazarova, J. J.; Parusheva, S. S.

    2016-12-01

    Structure and functioning of two model industrial entrepreneurial networks are investigated in the present paper. One of these networks is forming when implementing an integrated project and consists of eight agents, which interact with each other and external environment. The other one is obtained from the municipal economy and is based on the set of the 12 real business entities. Analysis of the networks is carried out on the basis of the matrix of mutual payments aggregated over the certain time period. The matrix is created by the methods of experimental economics. Social Network Analysis (SNA) methods and instruments were used in the present research. The set of basic structural characteristics was investigated: set of quantitative parameters such as density, diameter, clustering coefficient, different kinds of centrality, and etc. They were compared with the random Bernoulli graphs of the corresponding size and density. Discovered variations of random and entrepreneurial networks structure are explained by the peculiarities of agents functioning in production network. Separately, were identified the closed exchange circuits (cyclically closed contours of graph) forming an autopoietic (self-replicating) network pattern. The purpose of the functional analysis was to identify the contribution of the autopoietic network pattern in its gross product. It was found that the magnitude of this contribution is more than 20%. Such value allows using of the complementary currency in order to stimulate economic activity of network agents.

  2. Stochastic flux analysis of chemical reaction networks.

    Science.gov (United States)

    Kahramanoğulları, Ozan; Lynch, James F

    2013-12-07

    Chemical reaction networks provide an abstraction scheme for a broad range of models in biology and ecology. The two common means for simulating these networks are the deterministic and the stochastic approaches. The traditional deterministic approach, based on differential equations, enjoys a rich set of analysis techniques, including a treatment of reaction fluxes. However, the discrete stochastic simulations, which provide advantages in some cases, lack a quantitative treatment of network fluxes. We describe a method for flux analysis of chemical reaction networks, where flux is given by the flow of species between reactions in stochastic simulations of the network. Extending discrete event simulation algorithms, our method constructs several data structures, and thereby reveals a variety of statistics about resource creation and consumption during the simulation. We use these structures to quantify the causal interdependence and relative importance of the reactions at arbitrary time intervals with respect to the network fluxes. This allows us to construct reduced networks that have the same flux-behavior, and compare these networks, also with respect to their time series. We demonstrate our approach on an extended example based on a published ODE model of the same network, that is, Rho GTP-binding proteins, and on other models from biology and ecology. We provide a fully stochastic treatment of flux analysis. As in deterministic analysis, our method delivers the network behavior in terms of species transformations. Moreover, our stochastic analysis can be applied, not only at steady state, but at arbitrary time intervals, and used to identify the flow of specific species between specific reactions. Our cases study of Rho GTP-binding proteins reveals the role played by the cyclic reverse fluxes in tuning the behavior of this network.

  3. Constraining genome-scale models to represent the bow tie structure of metabolism for 13C metabolic flux analysis

    DEFF Research Database (Denmark)

    Backman, Tyler W.H.; Ando, David; Singh, Jahnavi

    2018-01-01

    Determination of internal metabolic fluxes is crucial for fundamental and applied biology because they map how carbon and electrons flow through metabolism to enable cell function. 13C Metabolic Flux Analysis (13C MFA) and Two-Scale 13C Metabolic Flux Analysis (2S-13C MFA) are two techniques used...

  4. Computational systems analysis of dopamine metabolism.

    Directory of Open Access Journals (Sweden)

    Zhen Qi

    2008-06-01

    Full Text Available A prominent feature of Parkinson's disease (PD is the loss of dopamine in the striatum, and many therapeutic interventions for the disease are aimed at restoring dopamine signaling. Dopamine signaling includes the synthesis, storage, release, and recycling of dopamine in the presynaptic terminal and activation of pre- and post-synaptic receptors and various downstream signaling cascades. As an aid that might facilitate our understanding of dopamine dynamics in the pathogenesis and treatment in PD, we have begun to merge currently available information and expert knowledge regarding presynaptic dopamine homeostasis into a computational model, following the guidelines of biochemical systems theory. After subjecting our model to mathematical diagnosis and analysis, we made direct comparisons between model predictions and experimental observations and found that the model exhibited a high degree of predictive capacity with respect to genetic and pharmacological changes in gene expression or function. Our results suggest potential approaches to restoring the dopamine imbalance and the associated generation of oxidative stress. While the proposed model of dopamine metabolism is preliminary, future extensions and refinements may eventually serve as an in silico platform for prescreening potential therapeutics, identifying immediate side effects, screening for biomarkers, and assessing the impact of risk factors of the disease.

  5. 3rd International Conference on Network Analysis

    CERN Document Server

    Kalyagin, Valery; Pardalos, Panos

    2014-01-01

    This volume compiles the major results of conference participants from the "Third International Conference in Network Analysis" held at the Higher School of Economics, Nizhny Novgorod in May 2013, with the aim to initiate further joint research among different groups. The contributions in this book cover a broad range of topics relevant to the theory and practice of network analysis, including the reliability of complex networks, software, theory, methodology, and applications.  Network analysis has become a major research topic over the last several years. The broad range of applications that can be described and analyzed by means of a network has brought together researchers, practitioners from numerous fields such as operations research, computer science, transportation, energy, biomedicine, computational neuroscience and social sciences. In addition, new approaches and computer environments such as parallel computing, grid computing, cloud computing, and quantum computing have helped to solve large scale...

  6. Regulatory network of secondary metabolism in Brassica rapa: insight into the glucosinolate pathway.

    Science.gov (United States)

    Pino Del Carpio, Dunia; Basnet, Ram Kumar; Arends, Danny; Lin, Ke; De Vos, Ric C H; Muth, Dorota; Kodde, Jan; Boutilier, Kim; Bucher, Johan; Wang, Xiaowu; Jansen, Ritsert; Bonnema, Guusje

    2014-01-01

    Brassica rapa studies towards metabolic variation have largely been focused on the profiling of the diversity of metabolic compounds in specific crop types or regional varieties, but none aimed to identify genes with regulatory function in metabolite composition. Here we followed a genetical genomics approach to identify regulatory genes for six biosynthetic pathways of health-related phytochemicals, i.e carotenoids, tocopherols, folates, glucosinolates, flavonoids and phenylpropanoids. Leaves from six weeks-old plants of a Brassica rapa doubled haploid population, consisting of 92 genotypes, were profiled for their secondary metabolite composition, using both targeted and LC-MS-based untargeted metabolomics approaches. Furthermore, the same population was profiled for transcript variation using a microarray containing EST sequences mainly derived from three Brassica species: B. napus, B. rapa and B. oleracea. The biochemical pathway analysis was based on the network analyses of both metabolite QTLs (mQTLs) and transcript QTLs (eQTLs). Co-localization of mQTLs and eQTLs lead to the identification of candidate regulatory genes involved in the biosynthesis of carotenoids, tocopherols and glucosinolates. We subsequently focused on the well-characterized glucosinolate pathway and revealed two hotspots of co-localization of eQTLs with mQTLs in linkage groups A03 and A09. Our results indicate that such a large-scale genetical genomics approach combining transcriptomics and metabolomics data can provide new insights into the genetic regulation of metabolite composition of Brassica vegetables.

  7. Regulatory network of secondary metabolism in Brassica rapa: insight into the glucosinolate pathway.

    Directory of Open Access Journals (Sweden)

    Dunia Pino Del Carpio

    Full Text Available Brassica rapa studies towards metabolic variation have largely been focused on the profiling of the diversity of metabolic compounds in specific crop types or regional varieties, but none aimed to identify genes with regulatory function in metabolite composition. Here we followed a genetical genomics approach to identify regulatory genes for six biosynthetic pathways of health-related phytochemicals, i.e carotenoids, tocopherols, folates, glucosinolates, flavonoids and phenylpropanoids. Leaves from six weeks-old plants of a Brassica rapa doubled haploid population, consisting of 92 genotypes, were profiled for their secondary metabolite composition, using both targeted and LC-MS-based untargeted metabolomics approaches. Furthermore, the same population was profiled for transcript variation using a microarray containing EST sequences mainly derived from three Brassica species: B. napus, B. rapa and B. oleracea. The biochemical pathway analysis was based on the network analyses of both metabolite QTLs (mQTLs and transcript QTLs (eQTLs. Co-localization of mQTLs and eQTLs lead to the identification of candidate regulatory genes involved in the biosynthesis of carotenoids, tocopherols and glucosinolates. We subsequently focused on the well-characterized glucosinolate pathway and revealed two hotspots of co-localization of eQTLs with mQTLs in linkage groups A03 and A09. Our results indicate that such a large-scale genetical genomics approach combining transcriptomics and metabolomics data can provide new insights into the genetic regulation of metabolite composition of Brassica vegetables.

  8. Energy metabolism and ATP balance in animal cell cultivation using a stoichiometrically based reaction network.

    Science.gov (United States)

    Xie, L; Wang, D I

    1996-12-05

    A metabolic reaction network is developed for the estimation of the stoichiometric production of adenosine triphosphate (ATP) in animal cell culture. By using the material balance data from fed-batch and batch cultures of hybridoma cells, the stoichiometric ATP productions are determined with estimated effective P/O ratios of 2 for NADH and 1.2 for FADH(2). A significant percentage of the ATP requirement (16-41%) in hybridoma cells is generated directly from free energy release without the participation of oxygen. The oxidative phosphorylation of NADH accounts for about 60% of the total ATP production in the fed-batch cultures and about 47% in the batch culture. The oxidative phosphorylation of FADH(2) accounts for less then 20% of the total ATP production in all cases.A fractional model is devised to analyze the contribution of each nutrient to the ATP production. Results show that a majority of the ATP is produced from glucose metabolism (60-76%). Less than 30% of the ATP is derived from glutamine, and less than 11% is derived from other essential amino acids. The analysis also shows that the glycolytic pathway generates more ATP in the batch (41%) than in the fed-batch (demand estimated from the dry cell weight and cell composition is significantly lower than that calculated from the maximum ATP yield, indicating that the non-growth-associated ATP demand may contain other factors than what is considered in the estimation of the biosynthetic ATP demand.

  9. Social network analysis in medical education.

    Science.gov (United States)

    Isba, Rachel; Woolf, Katherine; Hanneman, Robert

    2017-01-01

    Humans are fundamentally social beings. The social systems within which we live our lives (families, schools, workplaces, professions, friendship groups) have a significant influence on our health, success and well-being. These groups can be characterised as networks and analysed using social network analysis. Social network analysis is a mainly quantitative method for analysing how relationships between individuals form and affect those individuals, but also how individual relationships build up into wider social structures that influence outcomes at a group level. Recent increases in computational power have increased the accessibility of social network analysis methods for application to medical education research. Social network analysis has been used to explore team-working, social influences on attitudes and behaviours, the influence of social position on individual success, and the relationship between social cohesion and power. This makes social network analysis theories and methods relevant to understanding the social processes underlying academic performance, workplace learning and policy-making and implementation in medical education contexts. Social network analysis is underused in medical education, yet it is a method that could yield significant insights that would improve experiences and outcomes for medical trainees and educators, and ultimately for patients. © 2016 John Wiley & Sons Ltd and The Association for the Study of Medical Education.

  10. Analysis of complex networks using aggressive abstraction.

    Energy Technology Data Exchange (ETDEWEB)

    Colbaugh, Richard; Glass, Kristin.; Willard, Gerald

    2008-10-01

    This paper presents a new methodology for analyzing complex networks in which the network of interest is first abstracted to a much simpler (but equivalent) representation, the required analysis is performed using the abstraction, and analytic conclusions are then mapped back to the original network and interpreted there. We begin by identifying a broad and important class of complex networks which admit abstractions that are simultaneously dramatically simplifying and property preserving we call these aggressive abstractions -- and which can therefore be analyzed using the proposed approach. We then introduce and develop two forms of aggressive abstraction: 1.) finite state abstraction, in which dynamical networks with uncountable state spaces are modeled using finite state systems, and 2.) onedimensional abstraction, whereby high dimensional network dynamics are captured in a meaningful way using a single scalar variable. In each case, the property preserving nature of the abstraction process is rigorously established and efficient algorithms are presented for computing the abstraction. The considerable potential of the proposed approach to complex networks analysis is illustrated through case studies involving vulnerability analysis of technological networks and predictive analysis for social processes.

  11. Benchmark analysis of railway networks and undertakings

    NARCIS (Netherlands)

    Hansen, I.A.; Wiggenraad, P.B.L.; Wolff, J.W.

    2013-01-01

    Benchmark analysis of railway networks and companies has been stimulated by the European policy of deregulation of transport markets, the opening of national railway networks and markets to new entrants and separation of infrastructure and train operation. Recent international railway benchmarking

  12. Consistency analysis of network traffic repositories

    NARCIS (Netherlands)

    Lastdrager, Elmer; Lastdrager, E.E.H.; Pras, Aiko

    Traffic repositories with TCP/IP header information are very important for network analysis. Researchers often assume that such repositories reliably represent all traffic that has been flowing over the network; little thoughts are made regarding the consistency of these repositories. Still, for

  13. Social Network Analysis and Critical Realism

    DEFF Research Database (Denmark)

    Buch-Hansen, Hubert

    2014-01-01

    Social network analysis ( SNA) is an increasingly popular approach that provides researchers with highly developed tools to map and analyze complexes of social relations. Although a number of network scholars have explicated the assumptions that underpin SNA, the approach has yet to be discussed ...

  14. Optimization of a blueprint for in vitro glycolysis by metabolic real-time analysis

    NARCIS (Netherlands)

    Bujara, Matthias; Schümperli, Michael; Pellaux, René; Heinemann, Matthias; Panke, Sven

    Recruiting complex metabolic reaction networks for chemical synthesis has attracted considerable attention but frequently requires optimization of network composition and dynamics to reach sufficient productivity. As a design framework to predict optimal levels for all enzymes in the network is

  15. Boolean Factor Analysis by Attractor Neural Network

    Czech Academy of Sciences Publication Activity Database

    Frolov, A. A.; Húsek, Dušan; Muraviev, I. P.; Polyakov, P.Y.

    2007-01-01

    Roč. 18, č. 3 (2007), s. 698-707 ISSN 1045-9227 R&D Projects: GA AV ČR 1ET100300419; GA ČR GA201/05/0079 Institutional research plan: CEZ:AV0Z10300504 Keywords : recurrent neural network * Hopfield-like neural network * associative memory * unsupervised learning * neural network architecture * neural network application * statistics * Boolean factor analysis * dimensionality reduction * features clustering * concepts search * information retrieval Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 2.769, year: 2007

  16. [Gene networks that regulate secondary metabolism in actinomycetes: pleiotropic regulators].

    Science.gov (United States)

    Rabyk, M V; Ostash, B O; Fedorenko, V O

    2014-01-01

    Current advances in the research and practical applications of pleiotropic regulatory genes for antibiotic production in actinomycetes are reviewed. The basic regulatory mechanisms found in these bacteria are outlined. Examples described in the review show the importance of the manipulation of regulatory systems that affect the synthesis of antibiotics for the metabolic engineering of the actinomycetes. Also, the study of these genes is the basis for the development of genetic engineering approaches towards the induction of "cryptic" part of the actinomycetes secondary metabolome, which capacity for production of biologically active compounds is much bigger than the diversity of antibiotics underpinned by traditional microbiological screening. Besides the practical problems, the study of regulatory genes for antibiotic biosynthesis will provide insights into the process of evolution of complex regulatory systems that coordinate the expression of gene operons, clusters and regulons, involved in the control of secondary metabolism and morphogenesis of actinomycetes.

  17. [Controlling arachidonic acid metabolic network: from single- to multi-target inhibitors of key enzymes].

    Science.gov (United States)

    Liu, Ying; Chen, Zheng; Shang, Er-chang; Yang, Kun; Wei, Deng-guo; Zhou, Lu; Jiang, Xiao-lu; He, Chong; Lai, Lu-hua

    2009-03-01

    Inflammatory diseases are common medical conditions seen in disorders of human immune system. There is a great demand for anti-inflammatory drugs. There are major inflammatory mediators in arachidonic acid metabolic network. Several enzymes in this network have been used as key targets for the development of anti-inflammatory drugs. However, specific single-target inhibitors can not sufficiently control the network balance and may cause side effects at the same time. Most inflammation induced diseases come from the complicated coupling of inflammatory cascades involving multiple targets. In order to treat these complicated diseases, drugs that can intervene multi-targets at the same time attracted much attention. The goal of this review is mainly focused on the key enzymes in arachidonic acid metabolic network, such as phospholipase A2, cyclooxygenase, 5-lipoxygenase and eukotriene A4 hydrolase. Advance in single target and multi-targe inhibitors is summarized.

  18. Human-Centered Development of an Online Social Network for Metabolic Syndrome Management.

    Science.gov (United States)

    Núñez-Nava, Jefersson; Orozco-Sánchez, Paola A; López, Diego M; Ceron, Jesus D; Alvarez-Rosero, Rosa E

    2016-01-01

    According to the International Diabetes Federation (IDF), a quarter of the world's population has Metabolic Syndrome (MS). To develop (and assess the users' degree of satisfaction of) an online social network for patients who suffer from Metabolic Syndrome, based on the recommendations and requirements of the Human-Centered Design. Following the recommendations of the ISO 9241-210 for Human-Centered Design (HCD), an online social network was designed to promote physical activity and healthy nutrition. In order to guarantee the active participation of the users during the development of the social network, a survey, an in-depth interview, a focal group, and usability tests were carried out with people suffering from MS. The study demonstrated how the different activities, recommendations, and requirements of the ISO 9241-210 are integrated into a traditional software development process. Early usability tests demonstrated that the user's acceptance and the effectiveness and efficiency of the social network are satisfactory.

  19. IDENTIFICATION AND ANALYSIS OF BACTERIAL GENOMIC METABOLIC SIGNATURES.

    Science.gov (United States)

    Bowerman, Nathaniel; Tintle, Nathan; Dejongh, Matthew; Best, Aaron A

    2017-01-01

    With continued rapid growth in the number and quality of fully sequenced and accurately annotated bacterial genomes, we have unprecedented opportunities to understand metabolic diversity. We selected 101 diverse and representative completely sequenced bacteria and implemented a manual curation effort to identify 846 unique metabolic variants present in these bacteria. The presence or absence of these variants act as a metabolic signature for each of the bacteria, which can then be used to understand similarities and differences between and across bacterial groups. We propose a novel and robust method of summarizing metabolic diversity using metabolic signatures and use this method to generate a metabolic tree, clustering metabolically similar organisms. Resulting analysis of the metabolic tree confirms strong associations with well-established biological results along with direct insight into particular metabolic variants which are most predictive of metabolic diversity. The positive results of this manual curation effort and novel method development suggest that future work is needed to further expand the set of bacteria to which this approach is applied and use the resulting tree to test broad questions about metabolic diversity and complexity across the bacterial tree of life.

  20. Reduced Metabolism in Brain 'Control Networks' Following Cocaine-Cues Exposure in Female Cocaine Abusers

    International Nuclear Information System (INIS)

    Volkow, N.D.; Tomasi, D.; Wang, G.-J.; Fowler, J.S.; Telang, F.; Goldstein, R.Z.; Alia-Klein, N.; Wong, C.T.

    2011-01-01

    Gender differences in vulnerability for cocaine addiction have been reported. Though the mechanisms are not understood, here we hypothesize that gender differences in reactivity to conditioned-cues, which contributes to relapse, are involved. To test this we compared brain metabolism (using PET and 18 FDG) between female (n = 10) and male (n = 16) active cocaine abusers when they watched a neutral video (nature scenes) versus a cocaine-cues video. Self-reports of craving increased with the cocaine-cue video but responses did not differ between genders. In contrast, changes in whole brain metabolism with cocaine-cues differed by gender (p<0.05); females significantly decreased metabolism (-8.6% ± 10) whereas males tended to increase it (+5.5% ± 18). SPM analysis (Cocaine-cues vs Neutral) in females revealed decreases in frontal, cingulate and parietal cortices, thalamus and midbrain (p<0.001) whereas males showed increases in right inferior frontal gyrus (BA 44/45) (only at p<0.005). The gender-cue interaction showed greater decrements with Cocaine-cues in females than males (p<0.001) in frontal (BA 8, 9, 10), anterior cingulate (BA 24, 32), posterior cingulate (BA 23, 31), inferior parietal (BA 40) and thalamus (dorsomedial nucleus). Females showed greater brain reactivity to cocaine-cues than males but no differences in craving, suggesting that there may be gender differences in response to cues that are not linked with craving but could affect subsequent drug use. Specifically deactivation of brain regions from 'control networks' (prefrontal, cingulate, inferior parietal, thalamus) in females could increase their vulnerability to relapse since it would interfere with executive function (cognitive inhibition). This highlights the importance of gender tailored interventions for cocaine addiction.

  1. Reduced metabolism in brain "control networks" following cocaine-cues exposure in female cocaine abusers.

    Directory of Open Access Journals (Sweden)

    Nora D Volkow

    2011-02-01

    Full Text Available Gender differences in vulnerability for cocaine addiction have been reported. Though the mechanisms are not understood, here we hypothesize that gender differences in reactivity to conditioned-cues, which contributes to relapse, are involved.To test this we compared brain metabolism (using PET and ¹⁸FDG between female (n = 10 and male (n = 16 active cocaine abusers when they watched a neutral video (nature scenes versus a cocaine-cues video.Self-reports of craving increased with the cocaine-cue video but responses did not differ between genders. In contrast, changes in whole brain metabolism with cocaine-cues differed by gender (p<0.05; females significantly decreased metabolism (-8.6%±10 whereas males tended to increase it (+5.5%±18. SPM analysis (Cocaine-cues vs Neutral in females revealed decreases in frontal, cingulate and parietal cortices, thalamus and midbrain (p<0.001 whereas males showed increases in right inferior frontal gyrus (BA 44/45 (only at p<0.005. The gender-cue interaction showed greater decrements with Cocaine-cues in females than males (p<0.001 in frontal (BA 8, 9, 10, anterior cingulate (BA 24, 32, posterior cingulate (BA 23, 31, inferior parietal (BA 40 and thalamus (dorsomedial nucleus.Females showed greater brain reactivity to cocaine-cues than males but no differences in craving, suggesting that there may be gender differences in response to cues that are not linked with craving but could affect subsequent drug use. Specifically deactivation of brain regions from "control networks" (prefrontal, cingulate, inferior parietal, thalamus in females could increase their vulnerability to relapse since it would interfere with executive function (cognitive inhibition. This highlights the importance of gender tailored interventions for cocaine addiction.

  2. Spectrum-Based and Collaborative Network Topology Analysis and Visualization

    Science.gov (United States)

    Hu, Xianlin

    2013-01-01

    Networks are of significant importance in many application domains, such as World Wide Web and social networks, which often embed rich topological information. Since network topology captures the organization of network nodes and links, studying network topology is very important to network analysis. In this dissertation, we study networks by…

  3. Analysis and Testing of Mobile Wireless Networks

    Science.gov (United States)

    Alena, Richard; Evenson, Darin; Rundquist, Victor; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Wireless networks are being used to connect mobile computing elements in more applications as the technology matures. There are now many products (such as 802.11 and 802.11b) which ran in the ISM frequency band and comply with wireless network standards. They are being used increasingly to link mobile Intranet into Wired networks. Standard methods of analyzing and testing their performance and compatibility are needed to determine the limits of the technology. This paper presents analytical and experimental methods of determining network throughput, range and coverage, and interference sources. Both radio frequency (BE) domain and network domain analysis have been applied to determine wireless network throughput and range in the outdoor environment- Comparison of field test data taken under optimal conditions, with performance predicted from RF analysis, yielded quantitative results applicable to future designs. Layering multiple wireless network- sooners can increase performance. Wireless network components can be set to different radio frequency-hopping sequences or spreading functions, allowing more than one sooner to coexist. Therefore, we ran multiple 802.11-compliant systems concurrently in the same geographical area to determine interference effects and scalability, The results can be used to design of more robust networks which have multiple layers of wireless data communication paths and provide increased throughput overall.

  4. From elementary flux modes to elementary flux vectors: Metabolic pathway analysis with arbitrary linear flux constraints

    Science.gov (United States)

    Klamt, Steffen; Gerstl, Matthias P.; Jungreuthmayer, Christian; Mahadevan, Radhakrishnan; Müller, Stefan

    2017-01-01

    Elementary flux modes (EFMs) emerged as a formal concept to describe metabolic pathways and have become an established tool for constraint-based modeling and metabolic network analysis. EFMs are characteristic (support-minimal) vectors of the flux cone that contains all feasible steady-state flux vectors of a given metabolic network. EFMs account for (homogeneous) linear constraints arising from reaction irreversibilities and the assumption of steady state; however, other (inhomogeneous) linear constraints, such as minimal and maximal reaction rates frequently used by other constraint-based techniques (such as flux balance analysis [FBA]), cannot be directly integrated. These additional constraints further restrict the space of feasible flux vectors and turn the flux cone into a general flux polyhedron in which the concept of EFMs is not directly applicable anymore. For this reason, there has been a conceptual gap between EFM-based (pathway) analysis methods and linear optimization (FBA) techniques, as they operate on different geometric objects. One approach to overcome these limitations was proposed ten years ago and is based on the concept of elementary flux vectors (EFVs). Only recently has the community started to recognize the potential of EFVs for metabolic network analysis. In fact, EFVs exactly represent the conceptual development required to generalize the idea of EFMs from flux cones to flux polyhedra. This work aims to present a concise theoretical and practical introduction to EFVs that is accessible to a broad audience. We highlight the close relationship between EFMs and EFVs and demonstrate that almost all applications of EFMs (in flux cones) are possible for EFVs (in flux polyhedra) as well. In fact, certain properties can only be studied with EFVs. Thus, we conclude that EFVs provide a powerful and unifying framework for constraint-based modeling of metabolic networks. PMID:28406903

  5. Complex Network Analysis of Guangzhou Metro

    Directory of Open Access Journals (Sweden)

    Yasir Tariq Mohmand

    2015-11-01

    Full Text Available The structure and properties of public transportation networks can provide suggestions for urban planning and public policies. This study contributes a complex network analysis of the Guangzhou metro. The metro network has 236 kilometers of track and is the 6th busiest metro system of the world. In this paper topological properties of the network are explored. We observed that the network displays small world properties and is assortative in nature. The network possesses a high average degree of 17.5 with a small diameter of 5. Furthermore, we also identified the most important metro stations based on betweenness and closeness centralities. These could help in identifying the probable congestion points in the metro system and provide policy makers with an opportunity to improve the performance of the metro system.

  6. Extending Stochastic Network Calculus to Loss Analysis

    Directory of Open Access Journals (Sweden)

    Chao Luo

    2013-01-01

    Full Text Available Loss is an important parameter of Quality of Service (QoS. Though stochastic network calculus is a very useful tool for performance evaluation of computer networks, existing studies on stochastic service guarantees mainly focused on the delay and backlog. Some efforts have been made to analyse loss by deterministic network calculus, but there are few results to extend stochastic network calculus for loss analysis. In this paper, we introduce a new parameter named loss factor into stochastic network calculus and then derive the loss bound through the existing arrival curve and service curve via this parameter. We then prove that our result is suitable for the networks with multiple input flows. Simulations show the impact of buffer size, arrival traffic, and service on the loss factor.

  7. Computer network environment planning and analysis

    Science.gov (United States)

    Dalphin, John F.

    1989-01-01

    The GSFC Computer Network Environment provides a broadband RF cable between campus buildings and ethernet spines in buildings for the interlinking of Local Area Networks (LANs). This system provides terminal and computer linkage among host and user systems thereby providing E-mail services, file exchange capability, and certain distributed computing opportunities. The Environment is designed to be transparent and supports multiple protocols. Networking at Goddard has a short history and has been under coordinated control of a Network Steering Committee for slightly more than two years; network growth has been rapid with more than 1500 nodes currently addressed and greater expansion expected. A new RF cable system with a different topology is being installed during summer 1989; consideration of a fiber optics system for the future will begin soon. Summmer study was directed toward Network Steering Committee operation and planning plus consideration of Center Network Environment analysis and modeling. Biweekly Steering Committee meetings were attended to learn the background of the network and the concerns of those managing it. Suggestions for historical data gathering have been made to support future planning and modeling. Data Systems Dynamic Simulator, a simulation package developed at NASA and maintained at GSFC was studied as a possible modeling tool for the network environment. A modeling concept based on a hierarchical model was hypothesized for further development. Such a model would allow input of newly updated parameters and would provide an estimation of the behavior of the network.

  8. Statistical Analysis of Bus Networks in India.

    Science.gov (United States)

    Chatterjee, Atanu; Manohar, Manju; Ramadurai, Gitakrishnan

    2016-01-01

    In this paper, we model the bus networks of six major Indian cities as graphs in L-space, and evaluate their various statistical properties. While airline and railway networks have been extensively studied, a comprehensive study on the structure and growth of bus networks is lacking. In India, where bus transport plays an important role in day-to-day commutation, it is of significant interest to analyze its topological structure and answer basic questions on its evolution, growth, robustness and resiliency. Although the common feature of small-world property is observed, our analysis reveals a wide spectrum of network topologies arising due to significant variation in the degree-distribution patterns in the networks. We also observe that these networks although, robust and resilient to random attacks are particularly degree-sensitive. Unlike real-world networks, such as Internet, WWW and airline, that are virtual, bus networks are physically constrained. Our findings therefore, throw light on the evolution of such geographically and constrained networks that will help us in designing more efficient bus networks in the future.

  9. Constructing an Intelligent Patent Network Analysis Method

    Directory of Open Access Journals (Sweden)

    Chao-Chan Wu

    2012-11-01

    Full Text Available Patent network analysis, an advanced method of patent analysis, is a useful tool for technology management. This method visually displays all the relationships among the patents and enables the analysts to intuitively comprehend the overview of a set of patents in the field of the technology being studied. Although patent network analysis possesses relative advantages different from traditional methods of patent analysis, it is subject to several crucial limitations. To overcome the drawbacks of the current method, this study proposes a novel patent analysis method, called the intelligent patent network analysis method, to make a visual network with great precision. Based on artificial intelligence techniques, the proposed method provides an automated procedure for searching patent documents, extracting patent keywords, and determining the weight of each patent keyword in order to generate a sophisticated visualization of the patent network. This study proposes a detailed procedure for generating an intelligent patent network that is helpful for improving the efficiency and quality of patent analysis. Furthermore, patents in the field of Carbon Nanotube Backlight Unit (CNT-BLU were analyzed to verify the utility of the proposed method.

  10. Techniques for Intelligence Analysis of Networks

    National Research Council Canada - National Science Library

    Cares, Jeffrey R

    2005-01-01

    ...) there are significant intelligence analysis manifestations of these properties; and (4) a more satisfying theory of Networked Competition than currently exists for NCW/NCO is emerging from this research...

  11. Optimization of a blueprint for in vitro glycolysis by metabolic real-time analysis.

    Science.gov (United States)

    Bujara, Matthias; Schümperli, Michael; Pellaux, René; Heinemann, Matthias; Panke, Sven

    2011-05-01

    Recruiting complex metabolic reaction networks for chemical synthesis has attracted considerable attention but frequently requires optimization of network composition and dynamics to reach sufficient productivity. As a design framework to predict optimal levels for all enzymes in the network is currently not available, state-of-the-art pathway optimization relies on high-throughput phenotype screening. We present here the development and application of a new in vitro real-time analysis method for the comprehensive investigation and rational programming of enzyme networks for synthetic tasks. We used this first to rationally and rapidly derive an optimal blueprint for the production of the fine chemical building block dihydroxyacetone phosphate (DHAP) via Escherichia coli's highly evolved glycolysis. Second, the method guided the three-step genetic implementation of the blueprint, yielding a synthetic operon with the predicted 2.5-fold-increased glycolytic flux toward DHAP. The new analytical setup drastically accelerates rational optimization of synthetic multienzyme networks.

  12. Metabolic network as a progression biomarker of premanifest Huntington's disease

    NARCIS (Netherlands)

    Tang, Chris C.; Feigin, Andrew; Ma, Yilong; Habeck, Christian; Paulsen, Jane S.; Leenders, Klaus L.; Teune, Laura K.; van Oostrom, Joost C. H.; Guttman, Mark; Dhawan, Vijay; Eidelberg, David

    Background. The evaluation of effective disease-modifying therapies for neurodegenerative disorders relies on objective and accurate measures of progression in at-risk individuals. Here we used a computational approach to identify a functional brain network associated with the progression of

  13. Computing autocatalytic sets to unravel inconsistencies in metabolic network reconstructions

    DEFF Research Database (Denmark)

    Schmidt, R.; Waschina, S.; Boettger-Schmidt, D.

    2015-01-01

    are neglected by other gap-finding methods. We tested our method on the Model SEED, which is the largest repository for automatically generated genome-scale network reconstructions. In this way, we were able to identify a significant number of missing pathways in several of these reconstructions. Hence...

  14. Multilayer motif analysis of brain networks

    Science.gov (United States)

    Battiston, Federico; Nicosia, Vincenzo; Chavez, Mario; Latora, Vito

    2017-04-01

    In the last decade, network science has shed new light both on the structural (anatomical) and on the functional (correlations in the activity) connectivity among the different areas of the human brain. The analysis of brain networks has made possible to detect the central areas of a neural system and to identify its building blocks by looking at overabundant small subgraphs, known as motifs. However, network analysis of the brain has so far mainly focused on anatomical and functional networks as separate entities. The recently developed mathematical framework of multi-layer networks allows us to perform an analysis of the human brain where the structural and functional layers are considered together. In this work, we describe how to classify the subgraphs of a multiplex network, and we extend the motif analysis to networks with an arbitrary number of layers. We then extract multi-layer motifs in brain networks of healthy subjects by considering networks with two layers, anatomical and functional, respectively, obtained from diffusion and functional magnetic resonance imaging. Results indicate that subgraphs in which the presence of a physical connection between brain areas (links at the structural layer) coexists with a non-trivial positive correlation in their activities are statistically overabundant. Finally, we investigate the existence of a reinforcement mechanism between the two layers by looking at how the probability to find a link in one layer depends on the intensity of the connection in the other one. Showing that functional connectivity is non-trivially constrained by the underlying anatomical network, our work contributes to a better understanding of the interplay between the structure and function in the human brain.

  15. Consistency Analysis of Genome-Scale Models of Bacterial Metabolism: A Metamodel Approach.

    Science.gov (United States)

    Ponce-de-Leon, Miguel; Calle-Espinosa, Jorge; Peretó, Juli; Montero, Francisco

    2015-01-01

    Genome-scale metabolic models usually contain inconsistencies that manifest as blocked reactions and gap metabolites. With the purpose to detect recurrent inconsistencies in metabolic models, a large-scale analysis was performed using a previously published dataset of 130 genome-scale models. The results showed that a large number of reactions (~22%) are blocked in all the models where they are present. To unravel the nature of such inconsistencies a metamodel was construed by joining the 130 models in a single network. This metamodel was manually curated using the unconnected modules approach, and then, it was used as a reference network to perform a gap-filling on each individual genome-scale model. Finally, a set of 36 models that had not been considered during the construction of the metamodel was used, as a proof of concept, to extend the metamodel with new biochemical information, and to assess its impact on gap-filling results. The analysis performed on the metamodel allowed to conclude: 1) the recurrent inconsistencies found in the models were already present in the metabolic database used during the reconstructions process; 2) the presence of inconsistencies in a metabolic database can be propagated to the reconstructed models; 3) there are reactions not manifested as blocked which are active as a consequence of some classes of artifacts, and; 4) the results of an automatic gap-filling are highly dependent on the consistency and completeness of the metamodel or metabolic database used as the reference network. In conclusion the consistency analysis should be applied to metabolic databases in order to detect and fill gaps as well as to detect and remove artifacts and redundant information.

  16. Historical Network Analysis of the Web

    DEFF Research Database (Denmark)

    Brügger, Niels

    2013-01-01

    This article discusses some of the fundamental methodological challenges related to doing historical network analyses of the web based on material in web archives. Since the late 1990s many countries have established extensive national web archives, and software supported network analysis...... of the online web has for a number of years gained currency within Internet studies. However, the combination of these two phenomena—historical network analysis of material in web archives—can at best be characterized as an emerging new area of study. Most of the methodological challenges within this new area...... revolve around the specific nature of archived web material. On the basis of an introduction to the processes involved in web archiving as well as of the characteristics of archived web material, the article outlines and scrutinizes some of the major challenges which may arise when doing network analysis...

  17. Visualization and Analysis of Complex Covert Networks

    DEFF Research Database (Denmark)

    Memon, Bisharat

    This report discusses and summarize the results of my work so far in relation to my Ph.D. project entitled "Visualization and Analysis of Complex Covert Networks". The focus of my research is primarily on development of methods and supporting tools for visualization and analysis of networked......-users (intelligence analysts) in harvesting, filtering, storing, managing, structuring, mining, analyzing, interpreting, and visualizing data about offensive networks. The methods and tools proposed and discussed in this work can also be applied to analysis of more generic complex networks....... systems that are covert and hence inherently complex. My Ph.D. is positioned within the wider framework of CrimeFighter project. The framework envisions a number of key knowledge management processes that are involved in the workflow, and the toolbox provides supporting tools to assist human end...

  18. Genome-scale reconstruction of the metabolic network in Pseudomonas stutzeri A1501.

    Science.gov (United States)

    Babaei, Parizad; Marashi, Sayed-Amir; Asad, Sedigheh

    2015-11-01

    Pseudomonas stutzeri A1501 is an endophytic bacterium capable of nitrogen fixation. This strain has been isolated from the rice rhizosphere and provides the plant with fixed nitrogen and phytohormones. These interesting features encouraged us to study the metabolism of this microorganism at the systems-level. In this work, we present the first genome-scale metabolic model (iPB890) for P. stutzeri, involving 890 genes, 1135 reactions, and 813 metabolites. A combination of automatic and manual approaches was used in the reconstruction process. Briefly, using the metabolic networks of Pseudomonas aeruginosa and Pseudomonas putida as templates, a draft metabolic network of P. stutzeri was reconstructed. Then, the draft network was driven through an iterative and curative process of gap filling. In the next step, the model was evaluated using different experimental data such as specific growth rate, Biolog substrate utilization data and other experimental observations. In most of the evaluation cases, the model was successful in correctly predicting the cellular phenotypes. Thus, we posit that the iPB890 model serves as a suitable platform to explore the metabolism of P. stutzeri.

  19. Systems Nutrigenomics Reveals Brain Gene Networks Linking Metabolic and Brain Disorders

    Directory of Open Access Journals (Sweden)

    Qingying Meng

    2016-05-01

    Full Text Available Nutrition plays a significant role in the increasing prevalence of metabolic and brain disorders. Here we employ systems nutrigenomics to scrutinize the genomic bases of nutrient–host interaction underlying disease predisposition or therapeutic potential. We conducted transcriptome and epigenome sequencing of hypothalamus (metabolic control and hippocampus (cognitive processing from a rodent model of fructose consumption, and identified significant reprogramming of DNA methylation, transcript abundance, alternative splicing, and gene networks governing cell metabolism, cell communication, inflammation, and neuronal signaling. These signals converged with genetic causal risks of metabolic, neurological, and psychiatric disorders revealed in humans. Gene network modeling uncovered the extracellular matrix genes Bgn and Fmod as main orchestrators of the effects of fructose, as validated using two knockout mouse models. We further demonstrate that an omega-3 fatty acid, DHA, reverses the genomic and network perturbations elicited by fructose, providing molecular support for nutritional interventions to counteract diet-induced metabolic and brain disorders. Our integrative approach complementing rodent and human studies supports the applicability of nutrigenomics principles to predict disease susceptibility and to guide personalized medicine.

  20. Systems Nutrigenomics Reveals Brain Gene Networks Linking Metabolic and Brain Disorders.

    Science.gov (United States)

    Meng, Qingying; Ying, Zhe; Noble, Emily; Zhao, Yuqi; Agrawal, Rahul; Mikhail, Andrew; Zhuang, Yumei; Tyagi, Ethika; Zhang, Qing; Lee, Jae-Hyung; Morselli, Marco; Orozco, Luz; Guo, Weilong; Kilts, Tina M; Zhu, Jun; Zhang, Bin; Pellegrini, Matteo; Xiao, Xinshu; Young, Marian F; Gomez-Pinilla, Fernando; Yang, Xia

    2016-05-01

    Nutrition plays a significant role in the increasing prevalence of metabolic and brain disorders. Here we employ systems nutrigenomics to scrutinize the genomic bases of nutrient-host interaction underlying disease predisposition or therapeutic potential. We conducted transcriptome and epigenome sequencing of hypothalamus (metabolic control) and hippocampus (cognitive processing) from a rodent model of fructose consumption, and identified significant reprogramming of DNA methylation, transcript abundance, alternative splicing, and gene networks governing cell metabolism, cell communication, inflammation, and neuronal signaling. These signals converged with genetic causal risks of metabolic, neurological, and psychiatric disorders revealed in humans. Gene network modeling uncovered the extracellular matrix genes Bgn and Fmod as main orchestrators of the effects of fructose, as validated using two knockout mouse models. We further demonstrate that an omega-3 fatty acid, DHA, reverses the genomic and network perturbations elicited by fructose, providing molecular support for nutritional interventions to counteract diet-induced metabolic and brain disorders. Our integrative approach complementing rodent and human studies supports the applicability of nutrigenomics principles to predict disease susceptibility and to guide personalized medicine. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Reliability analysis with Bayesian networks

    OpenAIRE

    Zwirglmaier, Kilian Martin

    2017-01-01

    Bayesian networks (BNs) represent a probabilistic modeling tool with large potential for reliability engineering. While BNs have been successfully applied to reliability engineering, there are remaining issues, some of which are addressed in this work. Firstly a classification of BN elicitation approaches is proposed. Secondly two approximate inference approaches, one of which is based on discretization and the other one on sampling, are proposed. These approaches are applicable to hybrid/con...

  2. Limitations of a metabolic network-based reverse ecology method for inferring host-pathogen interactions.

    Science.gov (United States)

    Takemoto, Kazuhiro; Aie, Kazuki

    2017-05-25

    Host-pathogen interactions are important in a wide range of research fields. Given the importance of metabolic crosstalk between hosts and pathogens, a metabolic network-based reverse ecology method was proposed to infer these interactions. However, the validity of this method remains unclear because of the various explanations presented and the influence of potentially confounding factors that have thus far been neglected. We re-evaluated the importance of the reverse ecology method for evaluating host-pathogen interactions while statistically controlling for confounding effects using oxygen requirement, genome, metabolic network, and phylogeny data. Our data analyses showed that host-pathogen interactions were more strongly influenced by genome size, primary network parameters (e.g., number of edges), oxygen requirement, and phylogeny than the reserve ecology-based measures. These results indicate the limitations of the reverse ecology method; however, they do not discount the importance of adopting reverse ecology approaches altogether. Rather, we highlight the need for developing more suitable methods for inferring host-pathogen interactions and conducting more careful examinations of the relationships between metabolic networks and host-pathogen interactions.

  3. Deciphering Fur transcriptional regulatory network highlights its complex role beyond iron metabolism in Escherichia coli

    DEFF Research Database (Denmark)

    Seo, Sang Woo; Kim, Donghyuk; Latif, Haythem

    2014-01-01

    The ferric uptake regulator (Fur) plays a critical role in the transcriptional regulation of iron metabolism. However, the full regulatory potential of Fur remains undefined. Here we comprehensively reconstruct the Fur transcriptional regulatory network in Escherichia coli K-12 MG1655 in response...

  4. Quantitative Tools for Dissection of Hydrogen-Producing Metabolic Networks-Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Rabinowitz, Joshua D.; Dismukes, G.Charles.; Rabitz, Herschel A.; Amador-Noguez, Daniel

    2012-10-19

    During this project we have pioneered the development of integrated experimental-computational technologies for the quantitative dissection of metabolism in hydrogen and biofuel producing microorganisms (i.e. C. acetobutylicum and various cyanobacteria species). The application of these new methodologies resulted in many significant advances in the understanding of the metabolic networks and metabolism of these organisms, and has provided new strategies to enhance their hydrogen or biofuel producing capabilities. As an example, using mass spectrometry, isotope tracers, and quantitative flux-modeling we mapped the metabolic network structure in C. acetobutylicum. This resulted in a comprehensive and quantitative understanding of central carbon metabolism that could not have been obtained using genomic data alone. We discovered that biofuel production in this bacterium, which only occurs during stationary phase, requires a global remodeling of central metabolism (involving large changes in metabolite concentrations and fluxes) that has the effect of redirecting resources (carbon and reducing power) from biomass production into solvent production. This new holistic, quantitative understanding of metabolism is now being used as the basis for metabolic engineering strategies to improve solvent production in this bacterium. In another example, making use of newly developed technologies for monitoring hydrogen and NAD(P)H levels in vivo, we dissected the metabolic pathways for photobiological hydrogen production by cyanobacteria Cyanothece sp. This investigation led to the identification of multiple targets for improving hydrogen production. Importantly, the quantitative tools and approaches that we have developed are broadly applicable and we are now using them to investigate other important biofuel producers, such as cellulolytic bacteria.

  5. The International Trade Network: weighted network analysis and modelling

    International Nuclear Information System (INIS)

    Bhattacharya, K; Mukherjee, G; Manna, S S; Saramäki, J; Kaski, K

    2008-01-01

    Tools of the theory of critical phenomena, namely the scaling analysis and universality, are argued to be applicable to large complex web-like network structures. Using a detailed analysis of the real data of the International Trade Network we argue that the scaled link weight distribution has an approximate log-normal distribution which remains robust over a period of 53 years. Another universal feature is observed in the power-law growth of the trade strength with gross domestic product, the exponent being similar for all countries. Using the 'rich-club' coefficient measure of the weighted networks it has been shown that the size of the rich-club controlling half of the world's trade is actually shrinking. While the gravity law is known to describe well the social interactions in the static networks of population migration, international trade, etc, here for the first time we studied a non-conservative dynamical model based on the gravity law which excellently reproduced many empirical features of the ITN

  6. Network analysis of human glaucomatous optic nerve head astrocytes

    Directory of Open Access Journals (Sweden)

    Bhattacharya Sanjoy K

    2009-05-01

    Full Text Available Abstract Background Astrocyte activation is a characteristic response to injury in the central nervous system, and can be either neurotoxic or neuroprotective, while the regulation of both roles remains elusive. Methods To decipher the regulatory elements controlling astrocyte-mediated neurotoxicity in glaucoma, we conducted a systems-level functional analysis of gene expression, proteomic and genetic data associated with reactive optic nerve head astrocytes (ONHAs. Results Our reconstruction of the molecular interactions affected by glaucoma revealed multi-domain biological networks controlling activation of ONHAs at the level of intercellular stimuli, intracellular signaling and core effectors. The analysis revealed that synergistic action of the transcription factors AP-1, vitamin D receptor and Nuclear Factor-kappaB in cross-activation of multiple pathways, including inflammatory cytokines, complement, clusterin, ephrins, and multiple metabolic pathways. We found that the products of over two thirds of genes linked to glaucoma by genetic analysis can be functionally interconnected into one epistatic network via experimentally-validated interactions. Finally, we built and analyzed an integrative disease pathology network from a combined set of genes revealed in genetic studies, genes differentially expressed in glaucoma and closely connected genes/proteins in the interactome. Conclusion Our results suggest several key biological network modules that are involved in regulating neurotoxicity of reactive astrocytes in glaucoma, and comprise potential targets for cell-based therapy.

  7. Analysis of Piscirickettsia salmonis Metabolism Using Genome-Scale Reconstruction, Modeling, and Testing

    Directory of Open Access Journals (Sweden)

    María P. Cortés

    2017-12-01

    Full Text Available Piscirickettsia salmonis is an intracellular bacterial fish pathogen that causes piscirickettsiosis, a disease with highly adverse impact in the Chilean salmon farming industry. The development of effective treatment and control methods for piscireckttsiosis is still a challenge. To meet it the number of studies on P. salmonis has grown in the last couple of years but many aspects of the pathogen’s biology are still poorly understood. Studies on its metabolism are scarce and only recently a metabolic model for reference strain LF-89 was developed. We present a new genome-scale model for P. salmonis LF-89 with more than twice as many genes as in the previous model and incorporating specific elements of the fish pathogen metabolism. Comparative analysis with models of different bacterial pathogens revealed a lower flexibility in P. salmonis metabolic network. Through constraint-based analysis, we determined essential metabolites required for its growth and showed that it can benefit from different carbon sources tested experimentally in new defined media. We also built an additional model for strain A1-15972, and together with an analysis of P. salmonis pangenome, we identified metabolic features that differentiate two main species clades. Both models constitute a knowledge-base for P. salmonis metabolism and can be used to guide the efficient culture of the pathogen and the identification of specific drug targets.

  8. Articular chondrocyte network mediated by gap junctions: role in metabolic cartilage homeostasis

    Science.gov (United States)

    Mayan, Maria D; Gago-Fuentes, Raquel; Carpintero-Fernandez, Paula; Fernandez-Puente, Patricia; Filgueira-Fernandez, Purificacion; Goyanes, Noa; Valiunas, Virginijus; Brink, Peter R; Goldberg, Gary S; Blanco, Francisco J

    2017-01-01

    Objective This study investigated whether chondrocytes within the cartilage matrix have the capacity to communicate through intercellular connections mediated by voltage-gated gap junction (GJ) channels. Methods Frozen cartilage samples were used for immunofluorescence and immunohistochemistry assays. Samples were embedded in cacodylate buffer before dehydration for scanning electron microscopy. Co-immunoprecipitation experiments and mass spectrometry (MS) were performed to identify proteins that interact with the C-terminal end of Cx43. GJ communication was studied through in situ electroporation, electrophysiology and dye injection experiments. A transwell layered culture system and MS were used to identify and quantify transferred amino acids. Results Microscopic images revealed the presence of multiple cellular projections connecting chondrocytes within the matrix. These projections were between 5 and 150 μm in length. MS data analysis indicated that the C-terminus of Cx43 interacts with several cytoskeletal proteins implicated in Cx trafficking and GJ assembly, including α-tubulin and β-tubulin, actin, and vinculin. Electrophysiology experiments demonstrated that 12-mer oligonucleotides could be transferred between chondrocytes within 12 min after injection. Glucose was homogeneously distributed within 22 and 35 min. No transfer was detected when glucose was electroporated into A549 cells, which have no GJs. Transwell layered culture systems coupled with MS analysis revealed connexins can mediate the transfer of L-lysine and L-arginine between chondrocytes. Conclusions This study reveals that intercellular connections between chondrocytes contain GJs that play a key role in cell-cell communication and a metabolic function by exchange of nutrients including glucose and essential amino acids. A three-dimensional cellular network mediated through GJs might mediate metabolic and physiological homeostasis to maintain cartilage tissue. PMID:24225059

  9. Proteome- and transcriptome-driven reconstruction of the human myocyte metabolic network and its use for identification of markers for diabetes

    DEFF Research Database (Denmark)

    Väremo, Leif; Scheele, Camilla; Broholm, Christa

    2015-01-01

    -analysis of six studies comparing muscle transcription in T2D versus healthy subjects. Transcriptional changes were mapped on the myocyte GEM, revealing extensive transcriptional regulation in T2D, particularly around pyruvate oxidation, branched-chain amino acid catabolism, and tetrahydrofolate metabolism......Skeletal myocytes are metabolically active and susceptible to insulin resistance and are thus implicated in type 2 diabetes (T2D). This complex disease involves systemic metabolic changes, and their elucidation at the systems level requires genome-wide data and biological networks. Genome...

  10. Network Anomaly Detection Based on Wavelet Analysis

    Directory of Open Access Journals (Sweden)

    Ali A. Ghorbani

    2008-11-01

    Full Text Available Signal processing techniques have been applied recently for analyzing and detecting network anomalies due to their potential to find novel or unknown intrusions. In this paper, we propose a new network signal modelling technique for detecting network anomalies, combining the wavelet approximation and system identification theory. In order to characterize network traffic behaviors, we present fifteen features and use them as the input signals in our system. We then evaluate our approach with the 1999 DARPA intrusion detection dataset and conduct a comprehensive analysis of the intrusions in the dataset. Evaluation results show that the approach achieves high-detection rates in terms of both attack instances and attack types. Furthermore, we conduct a full day's evaluation in a real large-scale WiFi ISP network where five attack types are successfully detected from over 30 millions flows.

  11. Data-driven integration of genome-scale regulatory and metabolic network models

    Science.gov (United States)

    Imam, Saheed; Schäuble, Sascha; Brooks, Aaron N.; Baliga, Nitin S.; Price, Nathan D.

    2015-01-01

    Microbes are diverse and extremely versatile organisms that play vital roles in all ecological niches. Understanding and harnessing microbial systems will be key to the sustainability of our planet. One approach to improving our knowledge of microbial processes is through data-driven and mechanism-informed computational modeling. Individual models of biological networks (such as metabolism, transcription, and signaling) have played pivotal roles in driving microbial research through the years. These networks, however, are highly interconnected and function in concert—a fact that has led to the development of a variety of approaches aimed at simulating the integrated functions of two or more network types. Though the task of integrating these different models is fraught with new challenges, the large amounts of high-throughput data sets being generated, and algorithms being developed, means that the time is at hand for concerted efforts to build integrated regulatory-metabolic networks in a data-driven fashion. In this perspective, we review current approaches for constructing integrated regulatory-metabolic models and outline new strategies for future development of these network models for any microbial system. PMID:25999934

  12. Data-driven integration of genome-scale regulatory and metabolic network models

    Directory of Open Access Journals (Sweden)

    Saheed eImam

    2015-05-01

    Full Text Available Microbes are diverse and extremely versatile organisms that play vital roles in all ecological niches. Understanding and harnessing microbial systems will be key to the sustainability of our planet. One approach to improving our knowledge of microbial processes is through data-driven and mechanism-informed computational modeling. Individual models of biological networks (such as metabolism, transcription and signaling have played pivotal roles in driving microbial research through the years. These networks, however, are highly interconnected and function in concert – a fact that has led to the development of a variety of approaches aimed at simulating the integrated functions of two or more network types. Though the task of integrating these different models is fraught with new challenges, the large amounts of high-throughput data sets being generated, and algorithms being developed, means that the time is at hand for concerted efforts to build integrated regulatory-metabolic networks in a data-driven fashion. In this perspective, we review current approaches for constructing integrated regulatory-metabolic models and outline new strategies for future development of these network models for any microbial system.

  13. Information theory in systems biology. Part I: Gene regulatory and metabolic networks.

    Science.gov (United States)

    Mousavian, Zaynab; Kavousi, Kaveh; Masoudi-Nejad, Ali

    2016-03-01

    "A Mathematical Theory of Communication", was published in 1948 by Claude Shannon to establish a framework that is now known as information theory. In recent decades, information theory has gained much attention in the area of systems biology. The aim of this paper is to provide a systematic review of those contributions that have applied information theory in inferring or understanding of biological systems. Based on the type of system components and the interactions between them, we classify the biological systems into 4 main classes: gene regulatory, metabolic, protein-protein interaction and signaling networks. In the first part of this review, we attempt to introduce most of the existing studies on two types of biological networks, including gene regulatory and metabolic networks, which are founded on the concepts of information theory. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Two-Scale 13C Metabolic Flux Analysis for Metabolic Engineering.

    Science.gov (United States)

    Ando, David; Garcia Martin, Hector

    2018-01-01

    Accelerating the Design-Build-Test-Learn (DBTL) cycle in synthetic biology is critical to achieving rapid and facile bioengineering of organisms for the production of, e.g., biofuels and other chemicals. The Learn phase involves using data obtained from the Test phase to inform the next Design phase. As part of the Learn phase, mathematical models of metabolic fluxes give a mechanistic level of comprehension to cellular metabolism, isolating the principle drivers of metabolic behavior from the peripheral ones, and directing future experimental designs and engineering methodologies. Furthermore, the measurement of intracellular metabolic fluxes is specifically noteworthy as providing a rapid and easy-to-understand picture of how carbon and energy flow throughout the cell. Here, we present a detailed guide to performing metabolic flux analysis in the Learn phase of the DBTL cycle, where we show how one can take the isotope labeling data from a 13 C labeling experiment and immediately turn it into a determination of cellular fluxes that points in the direction of genetic engineering strategies that will advance the metabolic engineering process.For our modeling purposes we use the Joint BioEnergy Institute (JBEI) Quantitative Metabolic Modeling (jQMM) library, which provides an open-source, python-based framework for modeling internal metabolic fluxes and making actionable predictions on how to modify cellular metabolism for specific bioengineering goals. It presents a complete toolbox for performing different types of flux analysis such as Flux Balance Analysis, 13 C Metabolic Flux Analysis, and it introduces the capability to use 13 C labeling experimental data to constrain comprehensive genome-scale models through a technique called two-scale 13 C Metabolic Flux Analysis (2S- 13 C MFA) [1]. In addition to several other capabilities, the jQMM is also able to predict the effects of knockouts using the MoMA and ROOM methodologies. The use of the jQMM library is

  15. Social network analysis applied to team sports analysis

    CERN Document Server

    Clemente, Filipe Manuel; Mendes, Rui Sousa

    2016-01-01

    Explaining how graph theory and social network analysis can be applied to team sports analysis, This book presents useful approaches, models and methods that can be used to characterise the overall properties of team networks and identify the prominence of each team player. Exploring the different possible network metrics that can be utilised in sports analysis, their possible applications and variances from situation to situation, the respective chapters present an array of illustrative case studies. Identifying the general concepts of social network analysis and network centrality metrics, readers are shown how to generate a methodological protocol for data collection. As such, the book provides a valuable resource for students of the sport sciences, sports engineering, applied computation and the social sciences.

  16. Variability analysis of complex networks measures based on stochastic distances

    Science.gov (United States)

    Cabral, Raquel S.; Frery, Alejandro C.; Ramírez, Jaime A.

    2014-12-01

    Complex networks can model the structure and dynamics of different types of systems. It has been shown that they are characterized by a set of measures. In this work, we evaluate the variability of complex network measures face to perturbations and, for this purpose, we impose controlled perturbations and quantify their effect. We analyze theoretical models (random, small-world and scale-free) and real networks (a collaboration network and a metabolic networks) along with the shortest path length, vertex degree, local cluster coefficient and betweenness centrality measures. In such an analysis, we propose the use of three stochastic quantifiers: the Kullback-Leibler divergence and the Jensen-Shannon and Hellinger distances. The sensitivity of these measures was analyzed with respect to the following perturbations: edge addition, edge removal, edge rewiring and node removal, all of them applied at different intensities. The results reveal that the evaluated measures are influenced by these perturbations. Additionally, hypotheses tests were performed to verify the behavior of the degree distribution to identify the intensity of the perturbations that leads to break this property.

  17. Reconciliation of genome-scale metabolic reconstructions for comparative systems analysis.

    Directory of Open Access Journals (Sweden)

    Matthew A Oberhardt

    2011-03-01

    Full Text Available In the past decade, over 50 genome-scale metabolic reconstructions have been built for a variety of single- and multi- cellular organisms. These reconstructions have enabled a host of computational methods to be leveraged for systems-analysis of metabolism, leading to greater understanding of observed phenotypes. These methods have been sparsely applied to comparisons between multiple organisms, however, due mainly to the existence of differences between reconstructions that are inherited from the respective reconstruction processes of the organisms to be compared. To circumvent this obstacle, we developed a novel process, termed metabolic network reconciliation, whereby non-biological differences are removed from genome-scale reconstructions while keeping the reconstructions as true as possible to the underlying biological data on which they are based. This process was applied to two organisms of great importance to disease and biotechnological applications, Pseudomonas aeruginosa and Pseudomonas putida, respectively. The result is a pair of revised genome-scale reconstructions for these organisms that can be analyzed at a systems level with confidence that differences are indicative of true biological differences (to the degree that is currently known, rather than artifacts of the reconstruction process. The reconstructions were re-validated with various experimental data after reconciliation. With the reconciled and validated reconstructions, we performed a genome-wide comparison of metabolic flexibility between P. aeruginosa and P. putida that generated significant new insight into the underlying biology of these important organisms. Through this work, we provide a novel methodology for reconciling models, present new genome-scale reconstructions of P. aeruginosa and P. putida that can be directly compared at a network level, and perform a network-wide comparison of the two species. These reconstructions provide fresh insights into the

  18. Reconciliation of Genome-Scale Metabolic Reconstructions for Comparative Systems Analysis

    Science.gov (United States)

    Martins dos Santos, Vítor A. P.; Papin, Jason A.

    2011-01-01

    In the past decade, over 50 genome-scale metabolic reconstructions have been built for a variety of single- and multi- cellular organisms. These reconstructions have enabled a host of computational methods to be leveraged for systems-analysis of metabolism, leading to greater understanding of observed phenotypes. These methods have been sparsely applied to comparisons between multiple organisms, however, due mainly to the existence of differences between reconstructions that are inherited from the respective reconstruction processes of the organisms to be compared. To circumvent this obstacle, we developed a novel process, termed metabolic network reconciliation, whereby non-biological differences are removed from genome-scale reconstructions while keeping the reconstructions as true as possible to the underlying biological data on which they are based. This process was applied to two organisms of great importance to disease and biotechnological applications, Pseudomonas aeruginosa and Pseudomonas putida, respectively. The result is a pair of revised genome-scale reconstructions for these organisms that can be analyzed at a systems level with confidence that differences are indicative of true biological differences (to the degree that is currently known), rather than artifacts of the reconstruction process. The reconstructions were re-validated with various experimental data after reconciliation. With the reconciled and validated reconstructions, we performed a genome-wide comparison of metabolic flexibility between P. aeruginosa and P. putida that generated significant new insight into the underlying biology of these important organisms. Through this work, we provide a novel methodology for reconciling models, present new genome-scale reconstructions of P. aeruginosa and P. putida that can be directly compared at a network level, and perform a network-wide comparison of the two species. These reconstructions provide fresh insights into the metabolic similarities

  19. Fast network centrality analysis using GPUs

    Directory of Open Access Journals (Sweden)

    Shi Zhiao

    2011-05-01

    Full Text Available Abstract Background With the exploding volume of data generated by continuously evolving high-throughput technologies, biological network analysis problems are growing larger in scale and craving for more computational power. General Purpose computation on Graphics Processing Units (GPGPU provides a cost-effective technology for the study of large-scale biological networks. Designing algorithms that maximize data parallelism is the key in leveraging the power of GPUs. Results We proposed an efficient data parallel formulation of the All-Pairs Shortest Path problem, which is the key component for shortest path-based centrality computation. A betweenness centrality algorithm built upon this formulation was developed and benchmarked against the most recent GPU-based algorithm. Speedup between 11 to 19% was observed in various simulated scale-free networks. We further designed three algorithms based on this core component to compute closeness centrality, eccentricity centrality and stress centrality. To make all these algorithms available to the research community, we developed a software package gpu-fan (GPU-based Fast Analysis of Networks for CUDA enabled GPUs. Speedup of 10-50× compared with CPU implementations was observed for simulated scale-free networks and real world biological networks. Conclusions gpu-fan provides a significant performance improvement for centrality computation in large-scale networks. Source code is available under the GNU Public License (GPL at http://bioinfo.vanderbilt.edu/gpu-fan/.

  20. Collaborative Approach to Network Behavior Analysis

    Science.gov (United States)

    Rehak, Martin; Pechoucek, Michal; Grill, Martin; Bartos, Karel; Celeda, Pavel; Krmicek, Vojtech

    Network Behavior Analysis techniques are designed to detect intrusions and other undesirable behavior in computer networks by analyzing the traffic statistics. We present an efficient framework for integration of anomaly detection algorithms working on the identical input data. This framework is based on high-speed network traffic acquisition subsystem and on trust modeling, a well-established set of techniques from the multi-agent system field. Trust-based integration of algorithms results in classification with lower error rate, especially in terms of false positives. The presented framework is suitable for both online and offline processing, and introduces a relatively low computational overhead compared to deployment of isolated anomaly detection algorithms.

  1. Comparative Analysis of Computer Network Security Scanners

    Directory of Open Access Journals (Sweden)

    Victor Sergeevich Gorbatov

    2013-02-01

    Full Text Available The paper is devoted to the analysis of the problem of comparison of security scanners computer network. A common comprehensive assessment of security control is developed on the base of comparative analysis of data security controls. We have tested security scanners available on the market.

  2. Using a genome-scale metabolic network model to elucidate the mechanism of chloroquine action in Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Shivendra G. Tewari

    2017-08-01

    Full Text Available Chloroquine, long the default first-line treatment against malaria, is now abandoned in large parts of the world because of widespread drug-resistance in Plasmodium falciparum. In spite of its importance as a cost-effective and efficient drug, a coherent understanding of the cellular mechanisms affected by chloroquine and how they influence the fitness and survival of the parasite remains elusive. Here, we used a systems biology approach to integrate genome-scale transcriptomics to map out the effects of chloroquine, identify targeted metabolic pathways, and translate these findings into mechanistic insights. Specifically, we first developed a method that integrates transcriptomic and metabolomic data, which we independently validated against a recently published set of such data for Krebs-cycle mutants of P. falciparum. We then used the method to calculate the effect of chloroquine treatment on the metabolic flux profiles of P. falciparum during the intraerythrocytic developmental cycle. The model predicted dose-dependent inhibition of DNA replication, in agreement with earlier experimental results for both drug-sensitive and drug-resistant P. falciparum strains. Our simulations also corroborated experimental findings that suggest differences in chloroquine sensitivity between ring- and schizont-stage P. falciparum. Our analysis also suggests that metabolic fluxes that govern reduced thioredoxin and phosphoenolpyruvate synthesis are significantly decreased and are pivotal to chloroquine-based inhibition of P. falciparum DNA replication. The consequences of impaired phosphoenolpyruvate synthesis and redox metabolism are reduced carbon fixation and increased oxidative stress, respectively, both of which eventually facilitate killing of the parasite. Our analysis suggests that a combination of chloroquine (or an analogue and another drug, which inhibits carbon fixation and/or increases oxidative stress, should increase the clearance of P

  3. Novel Strategy for Non-Targeted Isotope-Assisted Metabolomics by Means of Metabolic Turnover and Multivariate Analysis

    Directory of Open Access Journals (Sweden)

    Yasumune Nakayama

    2014-08-01

    Full Text Available Isotope-labeling is a useful technique for understanding cellular metabolism. Recent advances in metabolomics have extended the capability of isotope-assisted studies to reveal global metabolism. For instance, isotope-assisted metabolomics technology has enabled the mapping of a global metabolic network, estimation of flux at branch points of metabolic pathways, and assignment of elemental formulas to unknown metabolites. Furthermore, some data processing tools have been developed to apply these techniques to a non-targeted approach, which plays an important role in revealing unknown or unexpected metabolism. However, data collection and integration strategies for non-targeted isotope-assisted metabolomics have not been established. Therefore, a systematic approach is proposed to elucidate metabolic dynamics without targeting pathways by means of time-resolved isotope tracking, i.e., “metabolic turnover analysis”, as well as multivariate analysis. We applied this approach to study the metabolic dynamics in amino acid perturbation of Saccharomyces cerevisiae. In metabolic turnover analysis, 69 peaks including 35 unidentified peaks were investigated. Multivariate analysis of metabolic turnover successfully detected a pathway known to be inhibited by amino acid perturbation. In addition, our strategy enabled identification of unknown peaks putatively related to the perturbation.

  4. Network Analysis in Community Psychology: Looking Back, Looking Forward

    OpenAIRE

    Neal, Zachary P.; Neal, Jennifer Watling

    2017-01-01

    Highlights Network analysis is ideally suited for community psychology research because it focuses on context. Use of network analysis in community psychology is growing. Network analysis in community psychology has employed some potentially problematic practices. Recommended practices are identified to improve network analysis in community psychology.

  5. Optimization of 13C isotopic tracers for metabolic flux analysis in mammalian cells.

    Science.gov (United States)

    Walther, Jason L; Metallo, Christian M; Zhang, Jie; Stephanopoulos, Gregory

    2012-03-01

    Mammalian cells consume and metabolize various substrates from their surroundings for energy generation and biomass synthesis. Glucose and glutamine, in particular, are the primary carbon sources for proliferating cancer cells. While this combination of substrates generates static labeling patterns for use in (13)C metabolic flux analysis (MFA), the inability of single tracers to effectively label all pathways poses an obstacle for comprehensive flux determination within a given experiment. To address this issue we applied a genetic algorithm to optimize mixtures of (13)C-labeled glucose and glutamine for use in MFA. We identified tracer combinations that minimized confidence intervals in an experimentally determined flux network describing central carbon metabolism in tumor cells. Additional simulations were used to determine the robustness of the [1,2-(13)C(2)]glucose/[U-(13)C(5)]glutamine tracer combination with respect to perturbations in the network. Finally, we experimentally validated the improved performance of this tracer set relative to glucose tracers alone in a cancer cell line. This versatile method allows researchers to determine the optimal tracer combination to use for a specific metabolic network, and our findings applied to cancer cells significantly enhance the ability of MFA experiments to precisely quantify fluxes in higher organisms. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Perturbations in amino acids and metabolic pathways in osteoarthritis patients determined by targeted metabolomics analysis.

    Science.gov (United States)

    Chen, Rui; Han, Su; Liu, Xuefeng; Wang, Kunpeng; Zhou, Yong; Yang, Chundong; Zhang, Xi

    2018-05-15

    Osteoarthritis (OA) is a degenerative synovial joint disease affecting people worldwide. However, the exact pathogenesis of OA remains unclear. Metabolomics analysis was performed to obtain insight into possible pathogenic mechanisms and diagnostic biomarkers of OA. Ultra-high performance liquid chromatography-triple quadrupole mass spectrometry (UPLC-TQ-MS), followed by multivariate statistical analysis, was used to determine the serum amino acid profiles of 32 OA patients and 35 healthy controls. Variable importance for project values and Student's t-test were used to determine the metabolic abnormalities in OA. Another 30 OA patients were used as independent samples to validate the alterations in amino acids. MetaboAnalyst was used to identify the key amino acid pathways and construct metabolic networks describing their relationships. A total of 25 amino acids and four biogenic amines were detected by UPLC-TQ-MS. Differences in amino acid profiles were found between the healthy controls and OA patients. Alanine, γ-aminobutyric acid and 4-hydroxy-l-proline were important biomarkers distinguishing OA patients from healthy controls. The metabolic pathways with the most significant effects were involved in metabolism of alanine, aspartate, glutamate, arginine and proline. The results of this study improve understanding of the amino acid metabolic abnormalities and pathogenic mechanisms of OA at the molecular level. The metabolic perturbations may be important for the diagnosis and prevention of OA. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Adenylate Kinase and AMP Signaling Networks: Metabolic Monitoring, Signal Communication and Body Energy Sensing

    Directory of Open Access Journals (Sweden)

    Andre Terzic

    2009-04-01

    Full Text Available Adenylate kinase and downstream AMP signaling is an integrated metabolic monitoring system which reads the cellular energy state in order to tune and report signals to metabolic sensors. A network of adenylate kinase isoforms (AK1-AK7 are distributed throughout intracellular compartments, interstitial space and body fluids to regulate energetic and metabolic signaling circuits, securing efficient cell energy economy, signal communication and stress response. The dynamics of adenylate kinase-catalyzed phosphotransfer regulates multiple intracellular and extracellular energy-dependent and nucleotide signaling processes, including excitation-contraction coupling, hormone secretion, cell and ciliary motility, nuclear transport, energetics of cell cycle, DNA synthesis and repair, and developmental programming. Metabolomic analyses indicate that cellular, interstitial and blood AMP levels are potential metabolic signals associated with vital functions including body energy sensing, sleep, hibernation and food intake. Either low or excess AMP signaling has been linked to human disease such as diabetes, obesity and hypertrophic cardiomyopathy. Recent studies indicate that derangements in adenylate kinase-mediated energetic signaling due to mutations in AK1, AK2 or AK7 isoforms are associated with hemolytic anemia, reticular dysgenesis and ciliary dyskinesia. Moreover, hormonal, food and antidiabetic drug actions are frequently coupled to alterations of cellular AMP levels and associated signaling. Thus, by monitoring energy state and generating and distributing AMP metabolic signals adenylate kinase represents a unique hub within the cellular homeostatic network.

  8. BAP1 inhibits the ER stress gene regulatory network and modulates metabolic stress response.

    Science.gov (United States)

    Dai, Fangyan; Lee, Hyemin; Zhang, Yilei; Zhuang, Li; Yao, Hui; Xi, Yuanxin; Xiao, Zhen-Dong; You, M James; Li, Wei; Su, Xiaoping; Gan, Boyi

    2017-03-21

    The endoplasmic reticulum (ER) is classically linked to metabolic homeostasis via the activation of unfolded protein response (UPR), which is instructed by multiple transcriptional regulatory cascades. BRCA1 associated protein 1 (BAP1) is a tumor suppressor with de-ubiquitinating enzyme activity and has been implicated in chromatin regulation of gene expression. Here we show that BAP1 inhibits cell death induced by unresolved metabolic stress. This prosurvival role of BAP1 depends on its de-ubiquitinating activity and correlates with its ability to dampen the metabolic stress-induced UPR transcriptional network. BAP1 inhibits glucose deprivation-induced reactive oxygen species and ATP depletion, two cellular events contributing to the ER stress-induced cell death. In line with this, Bap1 KO mice are more sensitive to tunicamycin-induced renal damage. Mechanically, we show that BAP1 represses metabolic stress-induced UPR and cell death through activating transcription factor 3 (ATF3) and C/EBP homologous protein (CHOP), and reveal that BAP1 binds to ATF3 and CHOP promoters and inhibits their transcription. Taken together, our results establish a previously unappreciated role of BAP1 in modulating the cellular adaptability to metabolic stress and uncover a pivotal function of BAP1 in the regulation of the ER stress gene-regulatory network. Our study may also provide new conceptual framework for further understanding BAP1 function in cancer.

  9. Ecological Network Analysis for a Low-Carbon and High-Tech Industrial Park

    Directory of Open Access Journals (Sweden)

    Yi Lu

    2012-01-01

    Full Text Available Industrial sector is one of the indispensable contributors in global warming. Even if the occurrence of ecoindustrial parks (EIPs seems to be a good improvement in saving ecological crises, there is still a lack of definitional clarity and in-depth researches on low-carbon industrial parks. In order to reveal the processes of carbon metabolism in a low-carbon high-tech industrial park, we selected Beijing Development Area (BDA International Business Park in Beijing, China as case study, establishing a seven-compartment- model low-carbon metabolic network based on the methodology of Ecological Network Analysis (ENA. Integrating the Network Utility Analysis (NUA, Network Control Analysis (NCA, and system-wide indicators, we compartmentalized system sectors into ecological structure and analyzed dependence and control degree based on carbon metabolism. The results suggest that indirect flows reveal more mutuality and exploitation relation between system compartments and they are prone to positive sides for the stability of the whole system. The ecological structure develops well as an approximate pyramidal structure, and the carbon metabolism of BDA proves self-mutualistic and sustainable. Construction and waste management were found to be two active sectors impacting carbon metabolism, which was mainly regulated by internal and external environment.

  10. Ecological network analysis for a low-carbon and high-tech industrial park.

    Science.gov (United States)

    Lu, Yi; Su, Meirong; Liu, Gengyuan; Chen, Bin; Zhou, Shiyi; Jiang, Meiming

    2012-01-01

    Industrial sector is one of the indispensable contributors in global warming. Even if the occurrence of ecoindustrial parks (EIPs) seems to be a good improvement in saving ecological crises, there is still a lack of definitional clarity and in-depth researches on low-carbon industrial parks. In order to reveal the processes of carbon metabolism in a low-carbon high-tech industrial park, we selected Beijing Development Area (BDA) International Business Park in Beijing, China as case study, establishing a seven-compartment- model low-carbon metabolic network based on the methodology of Ecological Network Analysis (ENA). Integrating the Network Utility Analysis (NUA), Network Control Analysis (NCA), and system-wide indicators, we compartmentalized system sectors into ecological structure and analyzed dependence and control degree based on carbon metabolism. The results suggest that indirect flows reveal more mutuality and exploitation relation between system compartments and they are prone to positive sides for the stability of the whole system. The ecological structure develops well as an approximate pyramidal structure, and the carbon metabolism of BDA proves self-mutualistic and sustainable. Construction and waste management were found to be two active sectors impacting carbon metabolism, which was mainly regulated by internal and external environment.

  11. Network analysis and cross species comparison of protein-protein interaction networks of human, mouse and rat cytochrome P450 proteins that degrade xenobiotics.

    Science.gov (United States)

    Karthikeyan, Bagavathy Shanmugam; Akbarsha, Mohammad Abdulkader; Parthasarathy, Subbiah

    2016-06-21

    Cytochrome P450 (CYP) enzymes that degrade xenobiotics play a critical role in the metabolism and biotransformation of drugs and xenobiotics in humans as well as experimental animal models such as mouse and rat. These proteins function as a network collectively as well as independently. Though there are several reports on the organization, regulation and functionality of various CYP enzymes at the molecular level, the understanding of organization and functionality of these proteins at the holistic level remain unclear. The objective of this study is to understand the organization and functionality of xenobiotic degrading CYP enzymes of human, mouse and rat using network theory approaches and to study species differences that exist among them at the holistic level. For our analysis, a protein-protein interaction (PPI) network for CYP enzymes of human, mouse and rat was constructed using the STRING database. Topology, centrality, modularity and robustness analyses were performed for our predicted CYP PPI networks that were then validated by comparison with randomly generated network models. Network centrality analyses of CYP PPI networks reveal the central/hub proteins in the network. Modular analysis of the CYP PPI networks of human, mouse and rat resulted in functional clusters. These clusters were subjected to ontology and pathway enrichment analysis. The analyses show that the cluster of the human CYP PPI network is enriched with pathways principally related to xenobiotic/drug metabolism. Endo-xenobiotic crosstalk dominated in mouse and rat CYP PPI networks, and they were highly enriched with endogenous metabolic and signaling pathways. Thus, cross-species comparisons and analyses of human, mouse and rat CYP PPI networks gave insights about species differences that existed at the holistic level. More investigations from both reductionist and holistic perspectives can help understand CYP metabolism and species extrapolation in a much better way.

  12. Tensor Fusion Network for Multimodal Sentiment Analysis

    OpenAIRE

    Zadeh, Amir; Chen, Minghai; Poria, Soujanya; Cambria, Erik; Morency, Louis-Philippe

    2017-01-01

    Multimodal sentiment analysis is an increasingly popular research area, which extends the conventional language-based definition of sentiment analysis to a multimodal setup where other relevant modalities accompany language. In this paper, we pose the problem of multimodal sentiment analysis as modeling intra-modality and inter-modality dynamics. We introduce a novel model, termed Tensor Fusion Network, which learns both such dynamics end-to-end. The proposed approach is tailored for the vola...

  13. NAPS: Network Analysis of Protein Structures

    Science.gov (United States)

    Chakrabarty, Broto; Parekh, Nita

    2016-01-01

    Traditionally, protein structures have been analysed by the secondary structure architecture and fold arrangement. An alternative approach that has shown promise is modelling proteins as a network of non-covalent interactions between amino acid residues. The network representation of proteins provide a systems approach to topological analysis of complex three-dimensional structures irrespective of secondary structure and fold type and provide insights into structure-function relationship. We have developed a web server for network based analysis of protein structures, NAPS, that facilitates quantitative and qualitative (visual) analysis of residue–residue interactions in: single chains, protein complex, modelled protein structures and trajectories (e.g. from molecular dynamics simulations). The user can specify atom type for network construction, distance range (in Å) and minimal amino acid separation along the sequence. NAPS provides users selection of node(s) and its neighbourhood based on centrality measures, physicochemical properties of amino acids or cluster of well-connected residues (k-cliques) for further analysis. Visual analysis of interacting domains and protein chains, and shortest path lengths between pair of residues are additional features that aid in functional analysis. NAPS support various analyses and visualization views for identifying functional residues, provide insight into mechanisms of protein folding, domain-domain and protein–protein interactions for understanding communication within and between proteins. URL:http://bioinf.iiit.ac.in/NAPS/. PMID:27151201

  14. Information flow analysis of interactome networks.

    Directory of Open Access Journals (Sweden)

    Patrycja Vasilyev Missiuro

    2009-04-01

    Full Text Available Recent studies of cellular networks have revealed modular organizations of genes and proteins. For example, in interactome networks, a module refers to a group of interacting proteins that form molecular complexes and/or biochemical pathways and together mediate a biological process. However, it is still poorly understood how biological information is transmitted between different modules. We have developed information flow analysis, a new computational approach that identifies proteins central to the transmission of biological information throughout the network. In the information flow analysis, we represent an interactome network as an electrical circuit, where interactions are modeled as resistors and proteins as interconnecting junctions. Construing the propagation of biological signals as flow of electrical current, our method calculates an information flow score for every protein. Unlike previous metrics of network centrality such as degree or betweenness that only consider topological features, our approach incorporates confidence scores of protein-protein interactions and automatically considers all possible paths in a network when evaluating the importance of each protein. We apply our method to the interactome networks of Saccharomyces cerevisiae and Caenorhabditis elegans. We find that the likelihood of observing lethality and pleiotropy when a protein is eliminated is positively correlated with the protein's information flow score. Even among proteins of low degree or low betweenness, high information scores serve as a strong predictor of loss-of-function lethality or pleiotropy. The correlation between information flow scores and phenotypes supports our hypothesis that the proteins of high information flow reside in central positions in interactome networks. We also show that the ranks of information flow scores are more consistent than that of betweenness when a large amount of noisy data is added to an interactome. Finally, we

  15. In silico analysis of human metabolism: Reconstruction, contextualization and application of genome-scale models

    DEFF Research Database (Denmark)

    Geng, Jun; Nielsen, Jens

    2017-01-01

    The arising prevalence of metabolic diseases calls for a holistic approach for analysis of the underlying nature of abnormalities in cellular functions. Through mathematic representation and topological analysis of cellular metabolism, GEnome scale metabolic Models (GEMs) provide a promising fram...

  16. Habitat variability does not generally promote metabolic network modularity in flies and mammals.

    Science.gov (United States)

    Takemoto, Kazuhiro

    2016-01-01

    The evolution of species habitat range is an important topic over a wide range of research fields. In higher organisms, habitat range evolution is generally associated with genetic events such as gene duplication. However, the specific factors that determine habitat variability remain unclear at higher levels of biological organization (e.g., biochemical networks). One widely accepted hypothesis developed from both theoretical and empirical analyses is that habitat variability promotes network modularity; however, this relationship has not yet been directly tested in higher organisms. Therefore, I investigated the relationship between habitat variability and metabolic network modularity using compound and enzymatic networks in flies and mammals. Contrary to expectation, there was no clear positive correlation between habitat variability and network modularity. As an exception, the network modularity increased with habitat variability in the enzymatic networks of flies. However, the observed association was likely an artifact, and the frequency of gene duplication appears to be the main factor contributing to network modularity. These findings raise the question of whether or not there is a general mechanism for habitat range expansion at a higher level (i.e., above the gene scale). This study suggests that the currently widely accepted hypothesis for habitat variability should be reconsidered. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Automated Analysis of Security in Networking Systems

    DEFF Research Database (Denmark)

    Buchholtz, Mikael

    2004-01-01

    It has for a long time been a challenge to built secure networking systems. One way to counter this problem is to provide developers of software applications for networking systems with easy-to-use tools that can check security properties before the applications ever reach the marked. These tools...... will both help raise the general level of awareness of the problems and prevent the most basic flaws from occurring. This thesis contributes to the development of such tools. Networking systems typically try to attain secure communication by applying standard cryptographic techniques. In this thesis...... attacks, and attacks launched by insiders. Finally, the perspectives for the application of the analysis techniques are discussed, thereby, coming a small step closer to providing developers with easy- to-use tools for validating the security of networking applications....

  18. A statistical analysis of UK financial networks

    Science.gov (United States)

    Chu, J.; Nadarajah, S.

    2017-04-01

    In recent years, with a growing interest in big or large datasets, there has been a rise in the application of large graphs and networks to financial big data. Much of this research has focused on the construction and analysis of the network structure of stock markets, based on the relationships between stock prices. Motivated by Boginski et al. (2005), who studied the characteristics of a network structure of the US stock market, we construct network graphs of the UK stock market using same method. We fit four distributions to the degree density of the vertices from these graphs, the Pareto I, Fréchet, lognormal, and generalised Pareto distributions, and assess the goodness of fit. Our results show that the degree density of the complements of the market graphs, constructed using a negative threshold value close to zero, can be fitted well with the Fréchet and lognormal distributions.

  19. Classification and Analysis of Computer Network Traffic

    DEFF Research Database (Denmark)

    Bujlow, Tomasz

    2014-01-01

    for traffic classification, which can be used for nearly real-time processing of big amounts of data using affordable CPU and memory resources. Other questions are related to methods for real-time estimation of the application Quality of Service (QoS) level based on the results obtained by the traffic...... to create realistic traffic profiles of the selected applications, which can server as the training data for MLAs. We assessed the usefulness of C5.0 Machine Learning Algorithm (MLA) in the classification of computer network traffic. We showed that the application-layer payload is not needed to train the C5......Traffic monitoring and analysis can be done for multiple different reasons: to investigate the usage of network resources, assess the performance of network applications, adjust Quality of Service (QoS) policies in the network, log the traffic to comply with the law, or create realistic models...

  20. Meneco, a Topology-Based Gap-Filling Tool Applicable to Degraded Genome-Wide Metabolic Networks.

    Directory of Open Access Journals (Sweden)

    Sylvain Prigent

    2017-01-01

    Full Text Available Increasing amounts of sequence data are becoming available for a wide range of non-model organisms. Investigating and modelling the metabolic behaviour of those organisms is highly relevant to understand their biology and ecology. As sequences are often incomplete and poorly annotated, draft networks of their metabolism largely suffer from incompleteness. Appropriate gap-filling methods to identify and add missing reactions are therefore required to address this issue. However, current tools rely on phenotypic or taxonomic information, or are very sensitive to the stoichiometric balance of metabolic reactions, especially concerning the co-factors. This type of information is often not available or at least prone to errors for newly-explored organisms. Here we introduce Meneco, a tool dedicated to the topological gap-filling of genome-scale draft metabolic networks. Meneco reformulates gap-filling as a qualitative combinatorial optimization problem, omitting constraints raised by the stoichiometry of a metabolic network considered in other methods, and solves this problem using Answer Set Programming. Run on several artificial test sets gathering 10,800 degraded Escherichia coli networks Meneco was able to efficiently identify essential reactions missing in networks at high degradation rates, outperforming the stoichiometry-based tools in scalability. To demonstrate the utility of Meneco we applied it to two case studies. Its application to recent metabolic networks reconstructed for the brown algal model Ectocarpus siliculosus and an associated bacterium Candidatus Phaeomarinobacter ectocarpi revealed several candidate metabolic pathways for algal-bacterial interactions. Then Meneco was used to reconstruct, from transcriptomic and metabolomic data, the first metabolic network for the microalga Euglena mutabilis. These two case studies show that Meneco is a versatile tool to complete draft genome-scale metabolic networks produced from

  1. Metabolic network segmentation: A probabilistic graphical modeling approach to identify the sites and sequential order of metabolic regulation from non-targeted metabolomics data.

    Directory of Open Access Journals (Sweden)

    Andreas Kuehne

    2017-06-01

    Full Text Available In recent years, the number of large-scale metabolomics studies on various cellular processes in different organisms has increased drastically. However, it remains a major challenge to perform a systematic identification of mechanistic regulatory events that mediate the observed changes in metabolite levels, due to complex interdependencies within metabolic networks. We present the metabolic network segmentation (MNS algorithm, a probabilistic graphical modeling approach that enables genome-scale, automated prediction of regulated metabolic reactions from differential or serial metabolomics data. The algorithm sections the metabolic network into modules of metabolites with consistent changes. Metabolic reactions that connect different modules are the most likely sites of metabolic regulation. In contrast to most state-of-the-art methods, the MNS algorithm is independent of arbitrary pathway definitions, and its probabilistic nature facilitates assessments of noisy and incomplete measurements. With serial (i.e., time-resolved data, the MNS algorithm also indicates the sequential order of metabolic regulation. We demonstrated the power and flexibility of the MNS algorithm with three, realistic case studies with bacterial and human cells. Thus, this approach enables the identification of mechanistic regulatory events from large-scale metabolomics data, and contributes to the understanding of metabolic processes and their interplay with cellular signaling and regulation processes.

  2. Network Analysis of Rodent Transcriptomes in Spaceflight

    Science.gov (United States)

    Ramachandran, Maya; Fogle, Homer; Costes, Sylvain

    2017-01-01

    Network analysis methods leverage prior knowledge of cellular systems and the statistical and conceptual relationships between analyte measurements to determine gene connectivity. Correlation and conditional metrics are used to infer a network topology and provide a systems-level context for cellular responses. Integration across multiple experimental conditions and omics domains can reveal the regulatory mechanisms that underlie gene expression. GeneLab has assembled rich multi-omic (transcriptomics, proteomics, epigenomics, and epitranscriptomics) datasets for multiple murine tissues from the Rodent Research 1 (RR-1) experiment. RR-1 assesses the impact of 37 days of spaceflight on gene expression across a variety of tissue types, such as adrenal glands, quadriceps, gastrocnemius, tibalius anterior, extensor digitorum longus, soleus, eye, and kidney. Network analysis is particularly useful for RR-1 -omics datasets because it reinforces subtle relationships that may be overlooked in isolated analyses and subdues confounding factors. Our objective is to use network analysis to determine potential target nodes for therapeutic intervention and identify similarities with existing disease models. Multiple network algorithms are used for a higher confidence consensus.

  3. Differential network analysis in human cancer research.

    Science.gov (United States)

    Gill, Ryan; Datta, Somnath; Datta, Susmita

    2014-01-01

    A complex disease like cancer is hardly caused by one gene or one protein singly. It is usually caused by the perturbation of the network formed by several genes or proteins. In the last decade several research teams have attempted to construct interaction maps of genes and proteins either experimentally or reverse engineer interaction maps using computational techniques. These networks were usually created under a certain condition such as an environmental condition, a particular disease, or a specific tissue type. Lately, however, there has been greater emphasis on finding the differential structure of the existing network topology under a novel condition or disease status to elucidate the perturbation in a biological system. In this review/tutorial article we briefly mention some of the research done in this area; we mainly illustrate the computational/statistical methods developed by our team in recent years for differential network analysis using publicly available gene expression data collected from a well known cancer study. This data includes a group of patients with acute lymphoblastic leukemia and a group with acute myeloid leukemia. In particular, we describe the statistical tests to detect the change in the network topology based on connectivity scores which measure the association or interaction between pairs of genes. The tests under various scores are applied to this data set to perform a differential network analysis on gene expression for human leukemia. We believe that, in the future, differential network analysis will be a standard way to view the changes in gene expression and protein expression data globally and these types of tests could be useful in analyzing the complex differential signatures.

  4. Phylodynamic analysis of a viral infection network

    Directory of Open Access Journals (Sweden)

    Teiichiro eShiino

    2012-07-01

    Full Text Available Viral infections by sexual and droplet transmission routes typically spread through a complex host-to-host contact network. Clarifying the transmission network and epidemiological parameters affecting the variations and dynamics of a specific pathogen is a major issue in the control of infectious diseases. However, conventional methods such as interview and/or classical phylogenetic analysis of viral gene sequences have inherent limitations and often fail to detect infectious clusters and transmission connections. Recent improvements in computational environments now permit the analysis of large datasets. In addition, novel analytical methods have been developed that serve to infer the evolutionary dynamics of virus genetic diversity using sample date information and sequence data. This type of framework, termed phylodynamics, helps connect some of the missing links on viral transmission networks, which are often hard to detect by conventional methods of epidemiology. With sufficient number of sequences available, one can use this new inference method to estimate theoretical epidemiological parameters such as temporal distributions of the primary infection, fluctuation of the pathogen population size, basic reproductive number, and the mean time span of disease infectiousness. Transmission networks estimated by this framework often have the properties of a scale-free network, which are characteristic of infectious and social communication processes. Network analysis based on phylodynamics has alluded to various suggestions concerning the infection dynamics associated with a given community and/or risk behavior. In this review, I will summarize the current methods available for identifying the transmission network using phylogeny, and present an argument on the possibilities of applying the scale-free properties to these existing frameworks.

  5. Ordinary differential equations and Boolean networks in application to modelling of 6-mercaptopurine metabolism.

    Science.gov (United States)

    Lavrova, Anastasia I; Postnikov, Eugene B; Zyubin, Andrey Yu; Babak, Svetlana V

    2017-04-01

    We consider two approaches to modelling the cell metabolism of 6-mercaptopurine, one of the important chemotherapy drugs used for treating acute lymphocytic leukaemia: kinetic ordinary differential equations, and Boolean networks supplied with one controlling node, which takes continual values. We analyse their interplay with respect to taking into account ATP concentration as a key parameter of switching between different pathways. It is shown that the Boolean networks, which allow avoiding the complexity of general kinetic modelling, preserve the possibility of reproducing the principal switching mechanism.

  6. Bandwidth Analysis of Smart Meter Network Infrastructure

    DEFF Research Database (Denmark)

    Balachandran, Kardi; Olsen, Rasmus Løvenstein; Pedersen, Jens Myrup

    2014-01-01

    Advanced Metering Infrastructure (AMI) is a net-work infrastructure in Smart Grid, which links the electricity customers to the utility company. This network enables smart services by making it possible for the utility company to get an overview of their customers power consumption and also control...... to utilize smart meters and which existing broadband network technologies can facilitate this smart meter service. Initially, scenarios for smart meter infrastructure are identified. The paper defines abstraction models which cover the AMI scenarios. When the scenario has been identified a general overview...... of the bandwidth requirements are analysed. For this analysis the assumptions and limitations are defined. The results obtained by the analysis show, that the amount of data collected and transferred by a smart meter is very low compared to the available bandwidth of most internet connections. The results show...

  7. Multifractal analysis of mobile social networks

    Science.gov (United States)

    Zheng, Wei; Zhang, Zifeng; Deng, Yufan

    2017-09-01

    As Wireless Fidelity (Wi-Fi)-enabled handheld devices have been widely used, the mobile social networks (MSNs) has been attracting extensive attention. Fractal approaches have also been widely applied to characterierize natural networks as useful tools to depict their spatial distribution and scaling properties. Moreover, when the complexity of the spatial distribution of MSNs cannot be properly charaterized by single fractal dimension, multifractal analysis is required. For further research, we introduced a multifractal analysis method based on box-covering algorithm to describe the structure of MSNs. Using this method, we find that the networks are multifractal at different time interval. The simulation results demonstrate that the proposed method is efficient for analyzing the multifractal characteristic of MSNs, which provides a distribution of singularities adequately describing both the heterogeneity of fractal patterns and the statistics of measurements across spatial scales in MSNs.

  8. Gene network and pathway analysis of bovine mammary tissue challenged with Streptococcus uberis reveals induction of cell profileration and inhibition of PPARγ signaling as potential mechanism for the negative relationships between immune response and lipid metabolism

    DEFF Research Database (Denmark)

    Moyes, Kasey M; Drackley, James K; Morin, Dawn E

    2009-01-01

    with immune system function (e.g., CD14, IL8, IL1B, and TLR2) and negative relationships with genes involved with lipid metabolism (e.g., GPAM, SCD, FABP4, CD36, and LPL) and antioxidant activity (SOD1). Conclusion Results provided novel information into the early signaling and metabolic pathways in mammary......Background Information generated via microarrays might uncover interactions between the mammary gland and Streptococcus uberis (S. uberis) that could help identify control measures for the prevention and spread of S. uberis mastitis, as well as improve overall animal health and welfare....../or metabolic responses to mastitis challenge with S. uberis O140J. Results Streptococcus uberis IMI resulted in 2,102 (1,939 annotated) differentially expressed genes (DEG). Within this set of DEG, we uncovered 20 significantly enriched canonical pathways (with 20 to 61 genes each), the majority of which were...

  9. A metabolic network approach for the identification and prioritization of antimicrobial drug targets.

    Science.gov (United States)

    Chavali, Arvind K; D'Auria, Kevin M; Hewlett, Erik L; Pearson, Richard D; Papin, Jason A

    2012-03-01

    For many infectious diseases, novel treatment options are needed in order to address problems with cost, toxicity and resistance to current drugs. Systems biology tools can be used to gain valuable insight into pathogenic processes and aid in expediting drug discovery. In the past decade, constraint-based modeling of genome-scale metabolic networks has become widely used. Focusing on pathogen metabolic networks, we review in silico strategies used to identify effective drug targets and highlight recent successes as well as limitations associated with such computational analyses. We further discuss how accounting for the host environment and even targeting the host may offer new therapeutic options. These systems-level approaches are beginning to provide novel avenues for drug targeting against infectious agents. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Gene regulatory networking reveals the molecular cue to lysophosphatidic acid-induced metabolic adaptations in ovarian cancer cells.

    Science.gov (United States)

    Ray, Upasana; Roy Chowdhury, Shreya; Vasudevan, Madavan; Bankar, Kiran; Roychoudhury, Susanta; Roy, Sib Sankar

    2017-05-01

    Extravasation and metastatic progression are two main reasons for the high mortality rate associated with cancer. The metastatic potential of cancer cells depends on a plethora of metabolic challenges prevailing within the tumor microenvironment. To achieve higher rates of proliferation, cancer cells reprogram their metabolism, increasing glycolysis and biosynthetic activities. Just why this metabolic reprogramming predisposes cells towards increased oncogenesis remains elusive. The accumulation of myriad oncolipids in the tumor microenvironment has been shown to promote the invasiveness of cancer cells, with lysophosphatidic acid (LPA) being one such critical factor enriched in ovarian cancer patients. Cellular bioenergetic studies confirm that oxidative phosphorylation is suppressed and glycolysis is increased with long exposure to LPA in ovarian cancer cells compared with non-transformed epithelial cells. We sought to uncover the regulatory complexity underlying this oncolipid-induced metabolic perturbation. Gene regulatory networking using RNA-Seq analysis identified the oncogene ETS-1 as a critical mediator of LPA-induced metabolic alterations for the maintenance of invasive phenotype. Moreover, LPA receptor-2 specific PtdIns3K-AKT signaling induces ETS-1 and its target matrix metalloproteases. Abrogation of ETS-1 restores cellular bioenergetics towards increased oxidative phosphorylation and reduced glycolysis, and this effect was reversed by the presence of LPA. Furthermore, the bioenergetic status of LPA-treated ovarian cancer cells mimics hypoxia through induction of hypoxia-inducible factor-1α, which was found to transactivate ets-1. Studies in primary tumors generated in syngeneic mice corroborated the in vitro findings. Thus, our study highlights the phenotypic changes induced by the pro-metastatic factor ETS-1 in ovarian cancer cells. The relationship between enhanced invasiveness and metabolic plasticity further illustrates the critical role of

  11. Vulnerability analysis methods for road networks

    Science.gov (United States)

    Bíl, Michal; Vodák, Rostislav; Kubeček, Jan; Rebok, Tomáš; Svoboda, Tomáš

    2014-05-01

    Road networks rank among the most important lifelines of modern society. They can be damaged by either random or intentional events. Roads are also often affected by natural hazards, the impacts of which are both direct and indirect. Whereas direct impacts (e.g. roads damaged by a landslide or due to flooding) are localized in close proximity to the natural hazard occurrence, the indirect impacts can entail widespread service disabilities and considerable travel delays. The change in flows in the network may affect the population living far from the places originally impacted by the natural disaster. These effects are primarily possible due to the intrinsic nature of this system. The consequences and extent of the indirect costs also depend on the set of road links which were damaged, because the road links differ in terms of their importance. The more robust (interconnected) the road network is, the less time is usually needed to secure the serviceability of an area hit by a disaster. These kinds of networks also demonstrate a higher degree of resilience. Evaluating road network structures is therefore essential in any type of vulnerability and resilience analysis. There are a range of approaches used for evaluation of the vulnerability of a network and for identification of the weakest road links. Only few of them are, however, capable of simulating the impacts of the simultaneous closure of numerous links, which often occurs during a disaster. The primary problem is that in the case of a disaster, which usually has a large regional extent, the road network may remain disconnected. The majority of the commonly used indices use direct computation of the shortest paths or time between OD (origin - destination) pairs and therefore cannot be applied when the network breaks up into two or more components. Since extensive break-ups often occur in cases of major disasters, it is important to study the network vulnerability in these cases as well, so that appropriate

  12. Diversity Performance Analysis on Multiple HAP Networks

    Directory of Open Access Journals (Sweden)

    Feihong Dong

    2015-06-01

    Full Text Available One of the main design challenges in wireless sensor networks (WSNs is achieving a high-data-rate transmission for individual sensor devices. The high altitude platform (HAP is an important communication relay platform for WSNs and next-generation wireless networks. Multiple-input multiple-output (MIMO techniques provide the diversity and multiplexing gain, which can improve the network performance effectively. In this paper, a virtual MIMO (V-MIMO model is proposed by networking multiple HAPs with the concept of multiple assets in view (MAV. In a shadowed Rician fading channel, the diversity performance is investigated. The probability density function (PDF and cumulative distribution function (CDF of the received signal-to-noise ratio (SNR are derived. In addition, the average symbol error rate (ASER with BPSK and QPSK is given for the V-MIMO model. The system capacity is studied for both perfect channel state information (CSI and unknown CSI individually. The ergodic capacity with various SNR and Rician factors for different network configurations is also analyzed. The simulation results validate the effectiveness of the performance analysis. It is shown that the performance of the HAPs network in WSNs can be significantly improved by utilizing the MAV to achieve overlapping coverage, with the help of the V-MIMO techniques.

  13. In Silico Genome-Scale Reconstruction and Validation of the Corynebacterium glutamicum Metabolic Network

    DEFF Research Database (Denmark)

    Kjeldsen, Kjeld Raunkjær; Nielsen, J.

    2009-01-01

    A genome-scale metabolic model of the Gram-positive bacteria Corynebacterium glutamicum ATCC 13032 was constructed comprising 446 reactions and 411 metabolite, based on the annotated genome and available biochemical information. The network was analyzed using constraint based methods. The model w...... and lactate. Comparable flux values between in silico model and experimental values were seen, although some differences in the phenotypic behavior between the model and the experimental data were observed,...

  14. PPAR? population shift produces disease-related changes in molecular networks associated with metabolic syndrome

    OpenAIRE

    Jurkowski, W; Roomp, K; Crespo, I; Schneider, J G; del Sol, A

    2011-01-01

    Peroxisome proliferator-activated receptor gamma (PPARγ) is a key regulator of adipocyte differentiation and has an important role in metabolic syndrome. Phosphorylation of the receptor's ligand-binding domain at serine 273 has been shown to change the expression of a large number of genes implicated in obesity. The difference in gene expression seen when comparing wild-type phosphorylated with mutant non-phosphorylated PPARγ may have important consequences for the cellular molecular network,...

  15. Metabolic Networks and Metabolites Underlie Associations Between Maternal Glucose During Pregnancy and Newborn Size at Birth

    OpenAIRE

    Scholtens, Denise M.; Bain, James R.; Reisetter, Anna C.; Muehlbauer, Michael J.; Nodzenski, Michael; Stevens, Robert D.; Ilkayeva, Olga; Lowe, Lynn P.; Metzger, Boyd E.; Newgard, Christopher B.; Lowe, William L.

    2016-01-01

    Maternal metabolites and metabolic networks underlying associations between maternal glucose during pregnancy and newborn birth weight and adiposity demand fuller characterization. We performed targeted and nontargeted gas chromatography/mass spectrometry metabolomics on maternal serum collected at fasting and 1 h following glucose beverage consumption during an oral glucose tolerance test (OGTT) for 400 northern European mothers at ?28 weeks' gestation in the Hyperglycemia and Adverse Pregna...

  16. Combining morphological analysis and Bayesian networks for ...

    African Journals Online (AJOL)

    ... how these two computer aided methods may be combined to better facilitate modelling procedures. A simple example is presented, concerning a recent application in the field of environmental decision support. Keywords: Morphological analysis, Bayesian networks, strategic decision support. ORiON Vol. 23 (2) 2007: pp.

  17. Nonlinear Time Series Analysis via Neural Networks

    Science.gov (United States)

    Volná, Eva; Janošek, Michal; Kocian, Václav; Kotyrba, Martin

    This article deals with a time series analysis based on neural networks in order to make an effective forex market [Moore and Roche, J. Int. Econ. 58, 387-411 (2002)] pattern recognition. Our goal is to find and recognize important patterns which repeatedly appear in the market history to adapt our trading system behaviour based on them.

  18. Metabolic control analysis of xylose catabolism in Aspergillus

    NARCIS (Netherlands)

    Prathumpai, W.; Gabelgaard, J.B.; Wanchanthuek, P.; Vondervoort, van de P.J.I.; Groot, de M.J.L.; McIntyre, M.; Nielsen, J.

    2003-01-01

    A kinetic model for xylose catabolism in Aspergillus is proposed. From a thermodynamic analysis it was found that the intermediate xylitol will accumulate during xylose catabolism. Use of the kinetic model allowed metabolic control analysis (MCA) of the xylose catabolic pathway to be carried out,

  19. Coevolution Trumps Pleiotropy: Carbon Assimilation Traits Are Independent of Metabolic Network Structure in Budding Yeast

    Science.gov (United States)

    Opulente, Dana A.; Morales, Christopher M.; Carey, Lucas B.; Rest, Joshua S.

    2013-01-01

    Phenotypic traits may be gained and lost together because of pleiotropy, the involvement of common genes and networks, or because of simultaneous selection for multiple traits across environments (multiple-trait coevolution). However, the extent to which network pleiotropy versus environmental coevolution shapes shared responses has not been addressed. To test these alternatives, we took advantage of the fact that the genus Saccharomyces has variation in habitat usage and diversity in the carbon sources that a given strain can metabolize. We examined patterns of gain and loss in carbon utilization traits across 488 strains of Saccharomyces to investigate whether the structure of metabolic pathways or selection pressure from common environments may have caused carbon utilization traits to be gained and lost together. While most carbon sources were gained and lost independently of each other, we found four clusters that exhibit non-random patterns of gain and loss across strains. Contrary to the network pleiotropy hypothesis, we did not find that these patterns are explained by the structure of metabolic pathways or shared enzymes. Consistent with the hypothesis that common environments shape suites of phenotypes, we found that the environment a strain was isolated from partially predicts the carbon sources it can assimilate. PMID:23326606

  20. Integration of Posttranscriptional Gene Networks into Metabolic Adaptation and Biofilm Maturation in Candida albicans

    Science.gov (United States)

    Harrison, Paul F.; Lo, Tricia L.; Quenault, Tara; Dagley, Michael J.; Bellousoff, Matthew; Powell, David R.; Beilharz, Traude H.; Traven, Ana

    2015-01-01

    The yeast Candida albicans is a human commensal and opportunistic pathogen. Although both commensalism and pathogenesis depend on metabolic adaptation, the regulatory pathways that mediate metabolic processes in C. albicans are incompletely defined. For example, metabolic change is a major feature that distinguishes community growth of C. albicans in biofilms compared to suspension cultures, but how metabolic adaptation is functionally interfaced with the structural and gene regulatory changes that drive biofilm maturation remains to be fully understood. We show here that the RNA binding protein Puf3 regulates a posttranscriptional mRNA network in C. albicans that impacts on mitochondrial biogenesis, and provide the first functional data suggesting evolutionary rewiring of posttranscriptional gene regulation between the model yeast Saccharomyces cerevisiae and C. albicans. A proportion of the Puf3 mRNA network is differentially expressed in biofilms, and by using a mutant in the mRNA deadenylase CCR4 (the enzyme recruited to mRNAs by Puf3 to control transcript stability) we show that posttranscriptional regulation is important for mitochondrial regulation in biofilms. Inactivation of CCR4 or dis-regulation of mitochondrial activity led to altered biofilm structure and over-production of extracellular matrix material. The extracellular matrix is critical for antifungal resistance and immune evasion, and yet of all biofilm maturation pathways extracellular matrix biogenesis is the least understood. We propose a model in which the hypoxic biofilm environment is sensed by regulators such as Ccr4 to orchestrate metabolic adaptation, as well as the regulation of extracellular matrix production by impacting on the expression of matrix-related cell wall genes. Therefore metabolic changes in biofilms might be intimately linked to a key biofilm maturation mechanism that ultimately results in untreatable fungal disease. PMID:26474309

  1. Integration of Posttranscriptional Gene Networks into Metabolic Adaptation and Biofilm Maturation in Candida albicans.

    Directory of Open Access Journals (Sweden)

    Jiyoti Verma-Gaur

    2015-10-01

    Full Text Available The yeast Candida albicans is a human commensal and opportunistic pathogen. Although both commensalism and pathogenesis depend on metabolic adaptation, the regulatory pathways that mediate metabolic processes in C. albicans are incompletely defined. For example, metabolic change is a major feature that distinguishes community growth of C. albicans in biofilms compared to suspension cultures, but how metabolic adaptation is functionally interfaced with the structural and gene regulatory changes that drive biofilm maturation remains to be fully understood. We show here that the RNA binding protein Puf3 regulates a posttranscriptional mRNA network in C. albicans that impacts on mitochondrial biogenesis, and provide the first functional data suggesting evolutionary rewiring of posttranscriptional gene regulation between the model yeast Saccharomyces cerevisiae and C. albicans. A proportion of the Puf3 mRNA network is differentially expressed in biofilms, and by using a mutant in the mRNA deadenylase CCR4 (the enzyme recruited to mRNAs by Puf3 to control transcript stability we show that posttranscriptional regulation is important for mitochondrial regulation in biofilms. Inactivation of CCR4 or dis-regulation of mitochondrial activity led to altered biofilm structure and over-production of extracellular matrix material. The extracellular matrix is critical for antifungal resistance and immune evasion, and yet of all biofilm maturation pathways extracellular matrix biogenesis is the least understood. We propose a model in which the hypoxic biofilm environment is sensed by regulators such as Ccr4 to orchestrate metabolic adaptation, as well as the regulation of extracellular matrix production by impacting on the expression of matrix-related cell wall genes. Therefore metabolic changes in biofilms might be intimately linked to a key biofilm maturation mechanism that ultimately results in untreatable fungal disease.

  2. Characterizing steady states of genome-scale metabolic networks in continuous cell cultures.

    Science.gov (United States)

    Fernandez-de-Cossio-Diaz, Jorge; Leon, Kalet; Mulet, Roberto

    2017-11-01

    In the continuous mode of cell culture, a constant flow carrying fresh media replaces culture fluid, cells, nutrients and secreted metabolites. Here we present a model for continuous cell culture coupling intra-cellular metabolism to extracellular variables describing the state of the bioreactor, taking into account the growth capacity of the cell and the impact of toxic byproduct accumulation. We provide a method to determine the steady states of this system that is tractable for metabolic networks of arbitrary complexity. We demonstrate our approach in a toy model first, and then in a genome-scale metabolic network of the Chinese hamster ovary cell line, obtaining results that are in qualitative agreement with experimental observations. We derive a number of consequences from the model that are independent of parameter values. The ratio between cell density and dilution rate is an ideal control parameter to fix a steady state with desired metabolic properties. This conclusion is robust even in the presence of multi-stability, which is explained in our model by a negative feedback loop due to toxic byproduct accumulation. A complex landscape of steady states emerges from our simulations, including multiple metabolic switches, which also explain why cell-line and media benchmarks carried out in batch culture cannot be extrapolated to perfusion. On the other hand, we predict invariance laws between continuous cell cultures with different parameters. A practical consequence is that the chemostat is an ideal experimental model for large-scale high-density perfusion cultures, where the complex landscape of metabolic transitions is faithfully reproduced.

  3. QSSPN: dynamic simulation of molecular interaction networks describing gene regulation, signalling and whole-cell metabolism in human cells.

    Science.gov (United States)

    Fisher, Ciarán P; Plant, Nicholas J; Moore, J Bernadette; Kierzek, Andrzej M

    2013-12-15

    Dynamic simulation of genome-scale molecular interaction networks will enable the mechanistic prediction of genotype-phenotype relationships. Despite advances in quantitative biology, full parameterization of whole-cell models is not yet possible. Simulation methods capable of using available qualitative data are required to develop dynamic whole-cell models through an iterative process of modelling and experimental validation. We formulate quasi-steady state Petri nets (QSSPN), a novel method integrating Petri nets and constraint-based analysis to predict the feasibility of qualitative dynamic behaviours in qualitative models of gene regulation, signalling and whole-cell metabolism. We present the first dynamic simulations including regulatory mechanisms and a genome-scale metabolic network in human cell, using bile acid homeostasis in human hepatocytes as a case study. QSSPN simulations reproduce experimentally determined qualitative dynamic behaviours and permit mechanistic analysis of genotype-phenotype relationships. The model and simulation software implemented in C++ are available in supplementary material and at http://sysbio3.fhms.surrey.ac.uk/qsspn/.

  4. Time series analysis of temporal networks

    Science.gov (United States)

    Sikdar, Sandipan; Ganguly, Niloy; Mukherjee, Animesh

    2016-01-01

    A common but an important feature of all real-world networks is that they are temporal in nature, i.e., the network structure changes over time. Due to this dynamic nature, it becomes difficult to propose suitable growth models that can explain the various important characteristic properties of these networks. In fact, in many application oriented studies only knowing these properties is sufficient. For instance, if one wishes to launch a targeted attack on a network, this can be done even without the knowledge of the full network structure; rather an estimate of some of the properties is sufficient enough to launch the attack. We, in this paper show that even if the network structure at a future time point is not available one can still manage to estimate its properties. We propose a novel method to map a temporal network to a set of time series instances, analyze them and using a standard forecast model of time series, try to predict the properties of a temporal network at a later time instance. To our aim, we consider eight properties such as number of active nodes, average degree, clustering coefficient etc. and apply our prediction framework on them. We mainly focus on the temporal network of human face-to-face contacts and observe that it represents a stochastic process with memory that can be modeled as Auto-Regressive-Integrated-Moving-Average (ARIMA). We use cross validation techniques to find the percentage accuracy of our predictions. An important observation is that the frequency domain properties of the time series obtained from spectrogram analysis could be used to refine the prediction framework by identifying beforehand the cases where the error in prediction is likely to be high. This leads to an improvement of 7.96% (for error level ≤20%) in prediction accuracy on an average across all datasets. As an application we show how such prediction scheme can be used to launch targeted attacks on temporal networks. Contribution to the Topical Issue

  5. Capacity analysis of wireless mesh networks | Gumel | Nigerian ...

    African Journals Online (AJOL)

    ... number of nodes (n) in a linear topology. The degradation is found to be higher in a fully mesh network as a result of increase in interference and MAC layer contention in the network. Key words: Wireless mesh network (WMN), Adhoc network, Network capacity analysis, Bottleneck collision domain, Medium access control ...

  6. Quantifying the metabolic capabilities of engineered Zymomonas mobilis using linear programming analysis

    Directory of Open Access Journals (Sweden)

    Tsantili Ivi C

    2007-03-01

    Full Text Available Abstract Background The need for discovery of alternative, renewable, environmentally friendly energy sources and the development of cost-efficient, "clean" methods for their conversion into higher fuels becomes imperative. Ethanol, whose significance as fuel has dramatically increased in the last decade, can be produced from hexoses and pentoses through microbial fermentation. Importantly, plant biomass, if appropriately and effectively decomposed, is a potential inexpensive and highly renewable source of the hexose and pentose mixture. Recently, the engineered (to also catabolize pentoses anaerobic bacterium Zymomonas mobilis has been widely discussed among the most promising microorganisms for the microbial production of ethanol fuel. However, Z. mobilis genome having been fully sequenced in 2005, there is still a small number of published studies of its in vivo physiology and limited use of the metabolic engineering experimental and computational toolboxes to understand its metabolic pathway interconnectivity and regulation towards the optimization of its hexose and pentose fermentation into ethanol. Results In this paper, we reconstructed the metabolic network of the engineered Z. mobilis to a level that it could be modelled using the metabolic engineering methodologies. We then used linear programming (LP analysis and identified the Z. mobilis metabolic boundaries with respect to various biological objectives, these boundaries being determined only by Z. mobilis network's stoichiometric connectivity. This study revealed the essential for bacterial growth reactions and elucidated the association between the metabolic pathways, especially regarding main product and byproduct formation. More specifically, the study indicated that ethanol and biomass production depend directly on anaerobic respiration stoichiometry and activity. Thus, enhanced understanding and improved means for analyzing anaerobic respiration and redox potential in vivo are

  7. Capacity analysis of vehicular communication networks

    CERN Document Server

    Lu, Ning

    2013-01-01

    This SpringerBrief focuses on the network capacity analysis of VANETs, a key topic as fundamental guidance on design and deployment of VANETs is very limited. Moreover, unique characteristics of VANETs impose distinguished challenges on such an investigation. This SpringerBrief first introduces capacity scaling laws for wireless networks and briefly reviews the prior arts in deriving the capacity of VANETs. It then studies the unicast capacity considering the socialized mobility model of VANETs. With vehicles communicating based on a two-hop relaying scheme, the unicast capacity bound is deriv

  8. Integrated proteomic and metabolic analysis of breast cancer progression.

    Directory of Open Access Journals (Sweden)

    Patrick G Shaw

    Full Text Available One of the most persistent hallmarks of cancer biology is the preference of tumor cells to derive energy through glycolysis as opposed to the more efficient process of oxidative phosphorylation (OXPHOS. However, little is known about the molecular cascades by which oncogenic pathways bring about this metabolic switch. We carried out a quantitative proteomic and metabolic analysis of the MCF10A derived cell line model of breast cancer progression that includes parental cells and derivatives representing three different tumor grades of Ras-driven cancer with a common genetic background. A SILAC (Stable Isotope Labeling by Amino acids in Cell culture labeling strategy was used to quantify protein expression in conjunction with subcellular fractionation to measure dynamic subcellular localization in the nucleus, cytosol and mitochondria. Protein expression and localization across cell lines were compared to cellular metabolic rates as a measure of oxidative phosphorylation (OXPHOS, glycolysis and cellular ATP. Investigation of the metabolic capacity of the four cell lines revealed that cellular OXPHOS decreased with breast cancer progression independently of mitochondrial copy number or electron transport chain protein expression. Furthermore, glycolytic lactate secretion did not increase in accordance with cancer progression and decreasing OXPHOS capacity. However, the relative expression and subcellular enrichment of enzymes critical to lactate and pyruvate metabolism supported the observed extracellular acidification profiles. This analysis of metabolic dysfunction in cancer progression integrated with global protein expression and subcellular localization is a novel and useful technique for determining organelle-specific roles of proteins in disease.

  9. Cerebral energy metabolism and the brain's functional network architecture: an integrative review

    Science.gov (United States)

    Lord, Louis-David; Expert, Paul; Huckins, Jeremy F; Turkheimer, Federico E

    2013-01-01

    Recent functional magnetic resonance imaging (fMRI) studies have emphasized the contributions of synchronized activity in distributed brain networks to cognitive processes in both health and disease. The brain's ‘functional connectivity' is typically estimated from correlations in the activity time series of anatomically remote areas, and postulated to reflect information flow between neuronal populations. Although the topological properties of functional brain networks have been studied extensively, considerably less is known regarding the neurophysiological and biochemical factors underlying the temporal coordination of large neuronal ensembles. In this review, we highlight the critical contributions of high-frequency electrical oscillations in the γ-band (30 to 100 Hz) to the emergence of functional brain networks. After describing the neurobiological substrates of γ-band dynamics, we specifically discuss the elevated energy requirements of high-frequency neural oscillations, which represent a mechanistic link between the functional connectivity of brain regions and their respective metabolic demands. Experimental evidence is presented for the high oxygen and glucose consumption, and strong mitochondrial performance required to support rhythmic cortical activity in the γ-band. Finally, the implications of mitochondrial impairments and deficits in glucose metabolism for cognition and behavior are discussed in the context of neuropsychiatric and neurodegenerative syndromes characterized by large-scale changes in the organization of functional brain networks. PMID:23756687

  10. GEOMORPHOLOGIC ANALYSIS OF DRAINAGE NETWORKS ON MARS

    Directory of Open Access Journals (Sweden)

    KERESZTURI ÁKOS

    2012-06-01

    Full Text Available Altogether 327 valleys and their 314 cross-sectional profiles were analyzed on Mars, including width, depth, length, eroded volume, drainage and spatial density, as well as the network structure.According to this systematic analysis, five possible drainage network types were identified such as (a small valleys, (b integrated small valleys, (c individual, medium-sized valleys, (d unconfined,anastomosing outflow valleys, and (e confined outflow valleys. Measuring their various morphometric parameters, these five networks differ from each other in terms of parameters of the eroded volume, drainage density and depth values. This classification is more detailed than those described in the literature previously and correlated to several numerical parameters for the first time.These different types were probably formed during different periods of the evolution of Mars, and sprung from differently localized water sources, and they could be correlated to similar fluvialnetwork types from the Earth.

  11. Intentional risk management through complex networks analysis

    CERN Document Server

    Chapela, Victor; Moral, Santiago; Romance, Miguel

    2015-01-01

    This book combines game theory and complex networks to examine intentional technological risk through modeling. As information security risks are in constant evolution,  the methodologies and tools to manage them must evolve to an ever-changing environment. A formal global methodology is explained  in this book, which is able to analyze risks in cyber security based on complex network models and ideas extracted from the Nash equilibrium. A risk management methodology for IT critical infrastructures is introduced which provides guidance and analysis on decision making models and real situations. This model manages the risk of succumbing to a digital attack and assesses an attack from the following three variables: income obtained, expense needed to carry out an attack, and the potential consequences for an attack. Graduate students and researchers interested in cyber security, complex network applications and intentional risk will find this book useful as it is filled with a number of models, methodologies a...

  12. Mathematical Analysis of Urban Spatial Networks

    CERN Document Server

    Blanchard, Philippe

    2009-01-01

    Cities can be considered to be among the largest and most complex artificial networks created by human beings. Due to the numerous and diverse human-driven activities, urban network topology and dynamics can differ quite substantially from that of natural networks and so call for an alternative method of analysis. The intent of the present monograph is to lay down the theoretical foundations for studying the topology of compact urban patterns, using methods from spectral graph theory and statistical physics. These methods are demonstrated as tools to investigate the structure of a number of real cities with widely differing properties: medieval German cities, the webs of city canals in Amsterdam and Venice, and a modern urban structure such as found in Manhattan. Last but not least, the book concludes by providing a brief overview of possible applications that will eventually lead to a useful body of knowledge for architects, urban planners and civil engineers.

  13. Systematic Analysis Reveals that Cancer Mutations Converge on Deregulated Metabolism of Arachidonate and Xenobiotics.

    Science.gov (United States)

    Gatto, Francesco; Schulze, Almut; Nielsen, Jens

    2016-07-19

    Mutations are the basis of the clonal evolution of most cancers. Nevertheless, a systematic analysis of whether mutations are selected in cancer because they lead to the deregulation of specific biological processes independent of the type of cancer is still lacking. In this study, we correlated the genome and transcriptome of 1,082 tumors. We found that nine commonly mutated genes correlated with substantial changes in gene expression, which primarily converged on metabolism. Further network analyses circumscribed the convergence to a network of reactions, termed AraX, that involves the glutathione- and oxygen-mediated metabolism of arachidonic acid and xenobiotics. In an independent cohort of 4,462 samples, all nine mutated genes were consistently correlated with the deregulation of AraX. Among all of the metabolic pathways, AraX deregulation represented the strongest predictor of patient survival. These findings suggest that oncogenic mutations drive a selection process that converges on the deregulation of the AraX network. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  14. Sequential computation of elementary modes and minimal cut sets in genome-scale metabolic networks using alternate integer linear programming

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hyun-Seob; Goldberg, Noam; Mahajan, Ashutosh; Ramkrishna, Doraiswami

    2017-03-27

    Elementary (flux) modes (EMs) have served as a valuable tool for investigating structural and functional properties of metabolic networks. Identification of the full set of EMs in genome-scale networks remains challenging due to combinatorial explosion of EMs in complex networks. It is often, however, that only a small subset of relevant EMs needs to be known, for which optimization-based sequential computation is a useful alternative. Most of the currently available methods along this line are based on the iterative use of mixed integer linear programming (MILP), the effectiveness of which significantly deteriorates as the number of iterations builds up. To alleviate the computational burden associated with the MILP implementation, we here present a novel optimization algorithm termed alternate integer linear programming (AILP). Results: Our algorithm was designed to iteratively solve a pair of integer programming (IP) and linear programming (LP) to compute EMs in a sequential manner. In each step, the IP identifies a minimal subset of reactions, the deletion of which disables all previously identified EMs. Thus, a subsequent LP solution subject to this reaction deletion constraint becomes a distinct EM. In cases where no feasible LP solution is available, IP-derived reaction deletion sets represent minimal cut sets (MCSs). Despite the additional computation of MCSs, AILP achieved significant time reduction in computing EMs by orders of magnitude. The proposed AILP algorithm not only offers a computational advantage in the EM analysis of genome-scale networks, but also improves the understanding of the linkage between EMs and MCSs.

  15. Micro-macro analysis of complex networks.

    Science.gov (United States)

    Marchiori, Massimo; Possamai, Lino

    2015-01-01

    Complex systems have attracted considerable interest because of their wide range of applications, and are often studied via a "classic" approach: study a specific system, find a complex network behind it, and analyze the corresponding properties. This simple methodology has produced a great deal of interesting results, but relies on an often implicit underlying assumption: the level of detail on which the system is observed. However, in many situations, physical or abstract, the level of detail can be one out of many, and might also depend on intrinsic limitations in viewing the data with a different level of abstraction or precision. So, a fundamental question arises: do properties of a network depend on its level of observability, or are they invariant? If there is a dependence, then an apparently correct network modeling could in fact just be a bad approximation of the true behavior of a complex system. In order to answer this question, we propose a novel micro-macro analysis of complex systems that quantitatively describes how the structure of complex networks varies as a function of the detail level. To this extent, we have developed a new telescopic algorithm that abstracts from the local properties of a system and reconstructs the original structure according to a fuzziness level. This way we can study what happens when passing from a fine level of detail ("micro") to a different scale level ("macro"), and analyze the corresponding behavior in this transition, obtaining a deeper spectrum analysis. The obtained results show that many important properties are not universally invariant with respect to the level of detail, but instead strongly depend on the specific level on which a network is observed. Therefore, caution should be taken in every situation where a complex network is considered, if its context allows for different levels of observability.

  16. Reconstruction and analysis of a genome-scale metabolic model for Scheffersomyces stipitis

    Directory of Open Access Journals (Sweden)

    Balagurunathan Balaji

    2012-02-01

    Full Text Available Abstract Background Fermentation of xylose, the major component in hemicellulose, is essential for economic conversion of lignocellulosic biomass to fuels and chemicals. The yeast Scheffersomyces stipitis (formerly known as Pichia stipitis has the highest known native capacity for xylose fermentation and possesses several genes for lignocellulose bioconversion in its genome. Understanding the metabolism of this yeast at a global scale, by reconstructing the genome scale metabolic model, is essential for manipulating its metabolic capabilities and for successful transfer of its capabilities to other industrial microbes. Results We present a genome-scale metabolic model for Scheffersomyces stipitis, a native xylose utilizing yeast. The model was reconstructed based on genome sequence annotation, detailed experimental investigation and known yeast physiology. Macromolecular composition of Scheffersomyces stipitis biomass was estimated experimentally and its ability to grow on different carbon, nitrogen, sulphur and phosphorus sources was determined by phenotype microarrays. The compartmentalized model, developed based on an iterative procedure, accounted for 814 genes, 1371 reactions, and 971 metabolites. In silico computed growth rates were compared with high-throughput phenotyping data and the model could predict the qualitative outcomes in 74% of substrates investigated. Model simulations were used to identify the biosynthetic requirements for anaerobic growth of Scheffersomyces stipitis on glucose and the results were validated with published literature. The bottlenecks in Scheffersomyces stipitis metabolic network for xylose uptake and nucleotide cofactor recycling were identified by in silico flux variability analysis. The scope of the model in enhancing the mechanistic understanding of microbial metabolism is demonstrated by identifying a mechanism for mitochondrial respiration and oxidative phosphorylation. Conclusion The genome

  17. Systematic analysis of stability patterns in plant primary metabolism.

    Directory of Open Access Journals (Sweden)

    Dorothee Girbig

    Full Text Available Metabolic networks are characterized by complex interactions and regulatory mechanisms between many individual components. These interactions determine whether a steady state is stable to perturbations. Structural kinetic modeling (SKM is a framework to analyze the stability of metabolic steady states that allows the study of the system Jacobian without requiring detailed knowledge about individual rate equations. Stability criteria can be derived by generating a large number of structural kinetic models (SK-models with randomly sampled parameter sets and evaluating the resulting Jacobian matrices. Until now, SKM experiments applied univariate tests to detect the network components with the largest influence on stability. In this work, we present an extended SKM approach relying on supervised machine learning to detect patterns of enzyme-metabolite interactions that act together in an orchestrated manner to ensure stability. We demonstrate its application on a detailed SK-model of the Calvin-Benson cycle and connected pathways. The identified stability patterns are highly complex reflecting that changes in dynamic properties depend on concerted interactions between several network components. In total, we find more patterns that reliably ensure stability than patterns ensuring instability. This shows that the design of this system is strongly targeted towards maintaining stability. We also investigate the effect of allosteric regulators revealing that the tendency to stability is significantly increased by including experimentally determined regulatory mechanisms that have not yet been integrated into existing kinetic models.

  18. A method for estimation of elasticities in metabolic networks using steady state and dynamic metabolomics data and linlog kinetics

    NARCIS (Netherlands)

    Nikerel, I.E.; Van Winden, W.; Van Gulik, W.M.; Heijnen, J.J.

    2006-01-01

    Background: Dynamic modeling of metabolic reaction networks under in vivo conditions is a crucial step in order to obtain a better understanding of the (dis)functioning of living cells. So far dynamic metabolic models generally have been based on mechanistic rate equations which often contain so

  19. BoostGAPFILL: improving the fidelity of metabolic network reconstructions through integrated constraint and pattern-based methods.

    Science.gov (United States)

    Oyetunde, Tolutola; Zhang, Muhan; Chen, Yixin; Tang, Yinjie; Lo, Cynthia

    2017-02-15

    Metabolic network reconstructions are often incomplete. Constraint-based and pattern-based methodologies have been used for automated gap filling of these networks, each with its own strengths and weaknesses. Moreover, since validation of hypotheses made by gap filling tools require experimentation, it is challenging to benchmark performance and make improvements other than that related to speed and scalability. We present BoostGAPFILL, an open source tool that leverages both constraint-based and machine learning methodologies for hypotheses generation in gap filling and metabolic model refinement. BoostGAPFILL uses metabolite patterns in the incomplete network captured using a matrix factorization formulation to constrain the set of reactions used to fill gaps in a metabolic network. We formulate a testing framework based on the available metabolic reconstructions and demonstrate the superiority of BoostGAPFILL to state-of-the-art gap filling tools. We randomly delete a number of reactions from a metabolic network and rate the different algorithms on their ability to both predict the deleted reactions from a universal set and to fill gaps. For most metabolic network reconstructions tested, BoostGAPFILL shows above 60% precision and recall, which is more than twice that of other existing tools. MATLAB open source implementation ( https://github.com/Tolutola/BoostGAPFILL ). toyetunde@wustl.edu or muhan@wustl.edu . Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  20. Safeguards Network Analysis Procedure (SNAP): overview

    International Nuclear Information System (INIS)

    Chapman, L.D; Engi, D.

    1979-08-01

    Nuclear safeguards systems provide physical protection and control of nuclear materials. The Safeguards Network Analysis Procedure (SNAP) provides a convenient and standard analysis methodology for the evaluation of physical protection system effectiveness. This is achieved through a standard set of symbols which characterize the various elements of safeguards systems and an analysis program to execute simulation models built using the SNAP symbology. The outputs provided by the SNAP simulation program supplements the safeguards analyst's evaluative capabilities and supports the evaluation of existing sites as well as alternative design possibilities. This paper describes the SNAP modeling technique and provides an example illustrating its use

  1. AntDAS: Automatic Data Analysis Strategy for UPLC-QTOF-Based Nontargeted Metabolic Profiling Analysis.

    Science.gov (United States)

    Fu, Hai-Yan; Guo, Xiao-Ming; Zhang, Yue-Ming; Song, Jing-Jing; Zheng, Qing-Xia; Liu, Ping-Ping; Lu, Peng; Chen, Qian-Si; Yu, Yong-Jie; She, Yuanbin

    2017-10-17

    High-quality data analysis methodology remains a bottleneck for metabolic profiling analysis based on ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry. The present work aims to address this problem by proposing a novel data analysis strategy wherein (1) chromatographic peaks in the UPLC-QTOF data set are automatically extracted by using an advanced multiscale Gaussian smoothing-based peak extraction strategy; (2) a peak annotation stage is used to cluster fragment ions that belong to the same compound. With the aid of high-resolution mass spectrometer, (3) a time-shift correction across the samples is efficiently performed by a new peak alignment method; (4) components are registered by using a newly developed adaptive network searching algorithm; (5) statistical methods, such as analysis of variance and hierarchical cluster analysis, are then used to identify the underlying marker compounds; finally, (6) compound identification is performed by matching the extracted peak information, involving high-precision m/z and retention time, against our compound library containing more than 500 plant metabolites. A manually designed mixture of 18 compounds is used to evaluate the performance of the method, and all compounds are detected under various concentration levels. The developed method is comprehensively evaluated by an extremely complex plant data set containing more than 2000 components. Results indicate that the performance of the developed method is comparable with the XCMS. The MATLAB GUI code is available from http://software.tobaccodb.org/software/antdas .

  2. Genome-scale metabolic analysis of Clostridium thermocellum for bioethanol production

    Directory of Open Access Journals (Sweden)

    Brooks J Paul

    2010-03-01

    Full Text Available Abstract Background Microorganisms possess diverse metabolic capabilities that can potentially be leveraged for efficient production of biofuels. Clostridium thermocellum (ATCC 27405 is a thermophilic anaerobe that is both cellulolytic and ethanologenic, meaning that it can directly use the plant sugar, cellulose, and biochemically convert it to ethanol. A major challenge in using microorganisms for chemical production is the need to modify the organism to increase production efficiency. The process of properly engineering an organism is typically arduous. Results Here we present a genome-scale model of C. thermocellum metabolism, iSR432, for the purpose of establishing a computational tool to study the metabolic network of C. thermocellum and facilitate efforts to engineer C. thermocellum for biofuel production. The model consists of 577 reactions involving 525 intracellular metabolites, 432 genes, and a proteomic-based representation of a cellulosome. The process of constructing this metabolic model led to suggested annotation refinements for 27 genes and identification of areas of metabolism requiring further study. The accuracy of the iSR432 model was tested using experimental growth and by-product secretion data for growth on cellobiose and fructose. Analysis using this model captures the relationship between the reduction-oxidation state of the cell and ethanol secretion and allowed for prediction of gene deletions and environmental conditions that would increase ethanol production. Conclusions By incorporating genomic sequence data, network topology, and experimental measurements of enzyme activities and metabolite fluxes, we have generated a model that is reasonably accurate at predicting the cellular phenotype of C. thermocellum and establish a strong foundation for rational strain design. In addition, we are able to draw some important conclusions regarding the underlying metabolic mechanisms for observed behaviors of C. thermocellum

  3. Heading in the right direction: thermodynamics-based network analysis and pathway engineering.

    Science.gov (United States)

    Ataman, Meric; Hatzimanikatis, Vassily

    2015-12-01

    Thermodynamics-based network analysis through the introduction of thermodynamic constraints in metabolic models allows a deeper analysis of metabolism and guides pathway engineering. The number and the areas of applications of thermodynamics-based network analysis methods have been increasing in the last ten years. We review recent applications of these methods and we identify the areas that such analysis can contribute significantly, and the needs for future developments. We find that organisms with multiple compartments and extremophiles present challenges for modeling and thermodynamics-based flux analysis. The evolution of current and new methods must also address the issues of the multiple alternatives in flux directionalities and the uncertainties and partial information from analytical methods. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Metabolic network modeling of redox balancing and biohydrogen production in purple nonsulfur bacteria

    Directory of Open Access Journals (Sweden)

    Grammel Hartmut

    2011-09-01

    Full Text Available Abstract Background Purple nonsulfur bacteria (PNSB are facultative photosynthetic bacteria and exhibit an extremely versatile metabolism. A central focus of research on PNSB dealt with the elucidation of mechanisms by which they manage to balance cellular redox under diverse conditions, in particular under photoheterotrophic growth. Results Given the complexity of the central metabolism of PNSB, metabolic modeling becomes crucial for an integrated analysis of the accumulated biological knowledge. We reconstructed a stoichiometric model capturing the central metabolism of three important representatives of PNSB (Rhodospirillum rubrum, Rhodobacter sphaeroides and Rhodopseudomonas palustris. Using flux variability analysis, the model reveals key metabolic constraints related to redox homeostasis in these bacteria. With the help of the model we can (i give quantitative explanations for non-intuitive, partially species-specific phenomena of photoheterotrophic growth of PNSB, (ii reproduce various quantitative experimental data, and (iii formulate several new hypotheses. For example, model analysis of photoheterotrophic growth reveals that - despite a large number of utilizable catabolic pathways - substrate-specific biomass and CO2 yields are fixed constraints, irrespective of the assumption of optimal growth. Furthermore, our model explains quantitatively why a CO2 fixing pathway such as the Calvin cycle is required by PNSB for many substrates (even if CO2 is released. We also analyze the role of other pathways potentially involved in redox metabolism and how they affect quantitatively the required capacity of the Calvin cycle. Our model also enables us to discriminate between different acetate assimilation pathways that were proposed recently for R. sphaeroides and R. rubrum, both lacking the isocitrate lyase. Finally, we demonstrate the value of the metabolic model also for potential biotechnological applications: we examine the theoretical

  5. Metabolic network modeling of redox balancing and biohydrogen production in purple nonsulfur bacteria.

    Science.gov (United States)

    Hädicke, Oliver; Grammel, Hartmut; Klamt, Steffen

    2011-09-25

    Purple nonsulfur bacteria (PNSB) are facultative photosynthetic bacteria and exhibit an extremely versatile metabolism. A central focus of research on PNSB dealt with the elucidation of mechanisms by which they manage to balance cellular redox under diverse conditions, in particular under photoheterotrophic growth. Given the complexity of the central metabolism of PNSB, metabolic modeling becomes crucial for an integrated analysis of the accumulated biological knowledge. We reconstructed a stoichiometric model capturing the central metabolism of three important representatives of PNSB (Rhodospirillum rubrum, Rhodobacter sphaeroides and Rhodopseudomonas palustris). Using flux variability analysis, the model reveals key metabolic constraints related to redox homeostasis in these bacteria. With the help of the model we can (i) give quantitative explanations for non-intuitive, partially species-specific phenomena of photoheterotrophic growth of PNSB, (ii) reproduce various quantitative experimental data, and (iii) formulate several new hypotheses. For example, model analysis of photoheterotrophic growth reveals that--despite a large number of utilizable catabolic pathways--substrate-specific biomass and CO₂ yields are fixed constraints, irrespective of the assumption of optimal growth. Furthermore, our model explains quantitatively why a CO₂ fixing pathway such as the Calvin cycle is required by PNSB for many substrates (even if CO₂ is released). We also analyze the role of other pathways potentially involved in redox metabolism and how they affect quantitatively the required capacity of the Calvin cycle. Our model also enables us to discriminate between different acetate assimilation pathways that were proposed recently for R. sphaeroides and R. rubrum, both lacking the isocitrate lyase. Finally, we demonstrate the value of the metabolic model also for potential biotechnological applications: we examine the theoretical capabilities of PNSB for photoheterotrophic

  6. A systems approach to predict oncometabolites via context-specific genome-scale metabolic networks.

    Directory of Open Access Journals (Sweden)

    Hojung Nam

    2014-09-01

    Full Text Available Altered metabolism in cancer cells has been viewed as a passive response required for a malignant transformation. However, this view has changed through the recently described metabolic oncogenic factors: mutated isocitrate dehydrogenases (IDH, succinate dehydrogenase (SDH, and fumarate hydratase (FH that produce oncometabolites that competitively inhibit epigenetic regulation. In this study, we demonstrate in silico predictions of oncometabolites that have the potential to dysregulate epigenetic controls in nine types of cancer by incorporating massive scale genetic mutation information (collected from more than 1,700 cancer genomes, expression profiling data, and deploying Recon 2 to reconstruct context-specific genome-scale metabolic models. Our analysis predicted 15 compounds and 24 substructures of potential oncometabolites that could result from the loss-of-function and gain-of-function mutations of metabolic enzymes, respectively. These results suggest a substantial potential for discovering unidentified oncometabolites in various forms of cancers.

  7. Dissimilatory Metabolism of Nitrogen Oxides in Bacteria:Comparative Reconstruction of Transcriptional Networks

    Energy Technology Data Exchange (ETDEWEB)

    Rodionov, Dmitry A.; Dubchak, Inna L.; Arkin, Adam P.; Alm, EricJ.; Gelfand, Mikhail S.

    2005-09-01

    Bacterial response to nitric oxide (NO) is of major importance since NO is an obligatory intermediate of the nitrogen cycle. Transcriptional regulation of the dissimilatory nitric oxides metabolism in bacteria is diverse and involves FNR-like transcription factors HcpR, DNR and NnrR, two-component systems NarXL and NarQP, NO-responsive activator NorR, and nitrite sensitive repressor NsrR. Using comparative genomics approaches we predict DNA-binding signals for these transcriptional factors and describe corresponding regulons in available bacterial genomes. Within the FNR family of regulators, we observed a correlation of two specificity-determining amino acids and contacting bases in corresponding DNA signal. Highly conserved regulon HcpR for the hybrid cluster protein and some other redox enzymes is present in diverse anaerobic bacteria including Clostridia, Thermotogales and delta-proteobacteria. NnrR and DNR control denitrification in alpha- and beta-proteobacteria, respectively. Sigma-54-dependent NorR regulon found in some gamma- and beta-proteobacteria contains various enzymes involved in the NO detoxification. Repressor NsrR, which was previously known to control only nitrite reductase operon in Nitrosomonas spp., appears to be the master regulator of the nitric oxides metabolism not only in most gamma- and beta-proteobacteria (including well-studied species like Escherichia coli), but also in Gram-positive Bacillus and Streptomyces species. Positional analysis and comparison of regulatory regions of NO detoxification genes allows us to propose the candidate NsrR-binding signal. The most conserved member of the predicted NsrR regulon is the NO-detoxifying flavohemoglobin Hmp. In enterobacteria, the regulon includes also two nitrite-responsive loci, nipAB (hcp-hcr) and nipC(dnrN), thus confirming the identity of the effector, i.e., nitrite. The proposed NsrR regulons in Neisseria and some other species are extended to include denitrification genes. As the

  8. Dissimilatory metabolism of nitrogen oxides in bacteria: comparative reconstruction of transcriptional networks.

    Directory of Open Access Journals (Sweden)

    2005-10-01

    Full Text Available Bacterial response to nitric oxide (NO is of major importance since NO is an obligatory intermediate of the nitrogen cycle. Transcriptional regulation of the dissimilatory nitric oxides metabolism in bacteria is diverse and involves FNR-like transcription factors HcpR, DNR, and NnrR; two-component systems NarXL and NarQP; NO-responsive activator NorR; and nitrite-sensitive repressor NsrR. Using comparative genomics approaches, we predict DNA-binding motifs for these transcriptional factors and describe corresponding regulons in available bacterial genomes. Within the FNR family of regulators, we observed a correlation of two specificity-determining amino acids and contacting bases in corresponding DNA recognition motif. Highly conserved regulon HcpR for the hybrid cluster protein and some other redox enzymes is present in diverse anaerobic bacteria, including Clostridia, Thermotogales, and delta-proteobacteria. NnrR and DNR control denitrification in alpha- and beta-proteobacteria, respectively. Sigma-54-dependent NorR regulon found in some gamma- and beta-proteobacteria contains various enzymes involved in the NO detoxification. Repressor NsrR, which was previously known to control only nitrite reductase operon in Nitrosomonas spp., appears to be the master regulator of the nitric oxides' metabolism, not only in most gamma- and beta-proteobacteria (including well-studied species such as Escherichia coli, but also in Gram-positive Bacillus and Streptomyces species. Positional analysis and comparison of regulatory regions of NO detoxification genes allows us to propose the candidate NsrR-binding motif. The most conserved member of the predicted NsrR regulon is the NO-detoxifying flavohemoglobin Hmp. In enterobacteria, the regulon also includes two nitrite-responsive loci, nipAB (hcp-hcr and nipC (dnrN, thus confirming the identity of the effector, i.e. nitrite. The proposed NsrR regulons in Neisseria and some other species are extended to include

  9. Principal component analysis networks and algorithms

    CERN Document Server

    Kong, Xiangyu; Duan, Zhansheng

    2017-01-01

    This book not only provides a comprehensive introduction to neural-based PCA methods in control science, but also presents many novel PCA algorithms and their extensions and generalizations, e.g., dual purpose, coupled PCA, GED, neural based SVD algorithms, etc. It also discusses in detail various analysis methods for the convergence, stabilizing, self-stabilizing property of algorithms, and introduces the deterministic discrete-time systems method to analyze the convergence of PCA/MCA algorithms. Readers should be familiar with numerical analysis and the fundamentals of statistics, such as the basics of least squares and stochastic algorithms. Although it focuses on neural networks, the book only presents their learning law, which is simply an iterative algorithm. Therefore, no a priori knowledge of neural networks is required. This book will be of interest and serve as a reference source to researchers and students in applied mathematics, statistics, engineering, and other related fields.

  10. Service network analysis for agricultural mental health

    Directory of Open Access Journals (Sweden)

    Fuller Jeffrey D

    2009-05-01

    Full Text Available Abstract Background Farmers represent a subgroup of rural and remote communities at higher risk of suicide attributed to insecure economic futures, self-reliant cultures and poor access to health services. Early intervention models are required that tap into existing farming networks. This study describes service networks in rural shires that relate to the mental health needs of farming families. This serves as a baseline to inform service network improvements. Methods A network survey of mental health related links between agricultural support, health and other human services in four drought declared shires in comparable districts in rural New South Wales, Australia. Mental health links covered information exchange, referral recommendations and program development. Results 87 agencies from 111 (78% completed a survey. 79% indicated that two thirds of their clients needed assistance for mental health related problems. The highest mean number of interagency links concerned information exchange and the frequency of these links between sectors was monthly to three monthly. The effectiveness of agricultural support and health sector links were rated as less effective by the agricultural support sector than by the health sector (p Conclusion Aligning with agricultural agencies is important to build effective mental health service pathways to address the needs of farming populations. Work is required to ensure that these agricultural support agencies have operational and effective links to primary mental health care services. Network analysis provides a baseline to inform this work. With interventions such as local mental health training and joint service planning to promote network development we would expect to see over time an increase in the mean number of links, the frequency in which these links are used and the rated effectiveness of these links.

  11. Metabolic flux analysis of heterotrophic growth in Chlamydomonas reinhardtii.

    Directory of Open Access Journals (Sweden)

    Nanette R Boyle

    Full Text Available Despite the wealth of knowledge available for C. reinhardtii, the central metabolic fluxes of growth on acetate have not yet been determined. In this study, 13C-metabolic flux analysis (13C-MFA was used to determine and quantify the metabolic pathways of primary metabolism in C. reinhardtii cells grown under heterotrophic conditions with acetate as the sole carbon source. Isotopic labeling patterns of compartment specific biomass derived metabolites were used to calculate the fluxes. It was found that acetate is ligated with coenzyme A in the three subcellular compartments (cytosol, mitochondria and plastid included in the model. Two citrate synthases were found to potentially be involved in acetyl-coA metabolism; one localized in the mitochondria and the other acting outside the mitochondria. Labeling patterns demonstrate that Acetyl-coA synthesized in the plastid is directly incorporated in synthesis of fatty acids. Despite having a complete TCA cycle in the mitochondria, it was also found that a majority of the malate flux is shuttled to the cytosol and plastid where it is converted to oxaloacetate providing reducing equivalents to these compartments. When compared to predictions by flux balance analysis, fluxes measured with 13C-MFA were found to be suboptimal with respect to biomass yield; C. reinhardtii sacrifices biomass yield to produce ATP and reducing equivalents.

  12. Metabolic Networks and Metabolites Underlie Associations Between Maternal Glucose During Pregnancy and Newborn Size at Birth.

    Science.gov (United States)

    Scholtens, Denise M; Bain, James R; Reisetter, Anna C; Muehlbauer, Michael J; Nodzenski, Michael; Stevens, Robert D; Ilkayeva, Olga; Lowe, Lynn P; Metzger, Boyd E; Newgard, Christopher B; Lowe, William L

    2016-07-01

    Maternal metabolites and metabolic networks underlying associations between maternal glucose during pregnancy and newborn birth weight and adiposity demand fuller characterization. We performed targeted and nontargeted gas chromatography/mass spectrometry metabolomics on maternal serum collected at fasting and 1 h following glucose beverage consumption during an oral glucose tolerance test (OGTT) for 400 northern European mothers at ∼28 weeks' gestation in the Hyperglycemia and Adverse Pregnancy Outcome Study. Amino acids, fatty acids, acylcarnitines, and products of lipid metabolism decreased and triglycerides increased during the OGTT. Analyses of individual metabolites indicated limited maternal glucose associations at fasting, but broader associations, including amino acids, fatty acids, carbohydrates, and lipids, were found at 1 h. Network analyses modeling metabolite correlations provided context for individual metabolite associations and elucidated collective associations of multiple classes of metabolic fuels with newborn size and adiposity, including acylcarnitines, fatty acids, carbohydrates, and organic acids. Random forest analyses indicated an improved ability to predict newborn size outcomes by using maternal metabolomics data beyond traditional risk factors, including maternal glucose. Broad-scale association of fuel metabolites with maternal glucose is evident during pregnancy, with unique maternal metabolites potentially contributing specifically to newborn birth weight and adiposity. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  13. DREAMS of metabolism.

    Science.gov (United States)

    Soh, Keng Cher; Hatzimanikatis, Vassily

    2010-10-01

    Metabolic networks have been studied for several decades, and sophisticated computational frameworks are needed to augment experimental approaches to harness these complex networks. BNICE (Biochemical Network Integrated Computational Explorer), a computational approach for the discovery of novel biochemical pathways that is based on biochemical transformations, overcomes many of the current limitations. BNICE and similar frameworks can be used in several different areas: (i) 'Design' of novel pathways for metabolic engineering; (ii) 'Retrosynthesis' of metabolic compounds; (iii) 'Evolution' analysis between metabolic pathways of different organisms; (iv) 'Analysis' of metabolic pathways; (v) 'Mining' of omics data; and (vi) 'Selection' of targets for enzyme engineering. Here, we discuss the issues and challenges in building such frameworks as well as the gamut of applications in biotechnology, metabolic engineering and synthetic biology. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. A user’s guide to network analysis in R

    CERN Document Server

    Luke, Douglas

    2015-01-01

    Presenting a comprehensive resource for the mastery of network analysis in R, the goal of Network Analysis with R is to introduce modern network analysis techniques in R to social, physical, and health scientists. The mathematical foundations of network analysis are emphasized in an accessible way and readers are guided through the basic steps of network studies: network conceptualization, data collection and management, network description, visualization, and building and testing statistical models of networks. As with all of the books in the Use R! series, each chapter contains extensive R code and detailed visualizations of datasets. Appendices will describe the R network packages and the datasets used in the book. An R package developed specifically for the book, available to readers on GitHub, contains relevant code and real-world network datasets as well.

  15. Modeling complex metabolic reactions, ecological systems, and financial and legal networks with MIANN models based on Markov-Wiener node descriptors.

    Science.gov (United States)

    Duardo-Sánchez, Aliuska; Munteanu, Cristian R; Riera-Fernández, Pablo; López-Díaz, Antonio; Pazos, Alejandro; González-Díaz, Humberto

    2014-01-27

    The use of numerical parameters in Complex Network analysis is expanding to new fields of application. At a molecular level, we can use them to describe the molecular structure of chemical entities, protein interactions, or metabolic networks. However, the applications are not restricted to the world of molecules and can be extended to the study of macroscopic nonliving systems, organisms, or even legal or social networks. On the other hand, the development of the field of Artificial Intelligence has led to the formulation of computational algorithms whose design is based on the structure and functioning of networks of biological neurons. These algorithms, called Artificial Neural Networks (ANNs), can be useful for the study of complex networks, since the numerical parameters that encode information of the network (for example centralities/node descriptors) can be used as inputs for the ANNs. The Wiener index (W) is a graph invariant widely used in chemoinformatics to quantify the molecular structure of drugs and to study complex networks. In this work, we explore for the first time the possibility of using Markov chains to calculate analogues of node distance numbers/W to describe complex networks from the point of view of their nodes. These parameters are called Markov-Wiener node descriptors of order k(th) (W(k)). Please, note that these descriptors are not related to Markov-Wiener stochastic processes. Here, we calculated the W(k)(i) values for a very high number of nodes (>100,000) in more than 100 different complex networks using the software MI-NODES. These networks were grouped according to the field of application. Molecular networks include the Metabolic Reaction Networks (MRNs) of 40 different organisms. In addition, we analyzed other biological and legal and social networks. These include the Interaction Web Database Biological Networks (IWDBNs), with 75 food webs or ecological systems and the Spanish Financial Law Network (SFLN). The calculated W

  16. Northern emporia and maritime networks. Modelling past communication using archaeological network analysis

    DEFF Research Database (Denmark)

    Sindbæk, Søren Michael

    2015-01-01

    this is not a problem of network analysis, but network synthesis: theclassic problem of cracking codes or reconstructing black-box circuits. It is proposedthat archaeological approaches to network synthesis must involve a contextualreading of network data: observations arising from individual contexts, morphologies...

  17. Semi-automated curation of metabolic models via flux balance analysis: a case study with Mycoplasma gallisepticum.

    Directory of Open Access Journals (Sweden)

    Eddy J Bautista

    Full Text Available Primarily used for metabolic engineering and synthetic biology, genome-scale metabolic modeling shows tremendous potential as a tool for fundamental research and curation of metabolism. Through a novel integration of flux balance analysis and genetic algorithms, a strategy to curate metabolic networks and facilitate identification of metabolic pathways that may not be directly inferable solely from genome annotation was developed. Specifically, metabolites involved in unknown reactions can be determined, and potentially erroneous pathways can be identified. The procedure developed allows for new fundamental insight into metabolism, as well as acting as a semi-automated curation methodology for genome-scale metabolic modeling. To validate the methodology, a genome-scale metabolic model for the bacterium Mycoplasma gallisepticum was created. Several reactions not predicted by the genome annotation were postulated and validated via the literature. The model predicted an average growth rate of 0.358±0.12[Formula: see text], closely matching the experimentally determined growth rate of M. gallisepticum of 0.244±0.03[Formula: see text]. This work presents a powerful algorithm for facilitating the identification and curation of previously known and new metabolic pathways, as well as presenting the first genome-scale reconstruction of M. gallisepticum.

  18. NIF ICCS network design and loading analysis

    International Nuclear Information System (INIS)

    Tietbohl, G; Bryant, R

    1998-01-01

    The National Ignition Facility (NIF) is housed within a large facility about the size of two football fields. The Integrated Computer Control System (ICCS) is distributed throughout this facility and requires the integration of about 40,000 control points and over 500 video sources. This integration is provided by approximately 700 control computers distributed throughout the NIF facility and a network that provides the communication infrastructure. A main control room houses a set of seven computer consoles providing operator access and control of the various distributed front-end processors (FEPs). There are also remote workstations distributed within the facility that allow provide operator console functions while personnel are testing and troubleshooting throughout the facility. The operator workstations communicate with the FEPs which implement the localized control and monitoring functions. There are different types of FEPs for the various subsystems being controlled. This report describes the design of the NIF ICCS network and how it meets the traffic loads that will are expected and the requirements of the Sub-System Design Requirements (SSDR's). This document supersedes the earlier reports entitled Analysis of the National Ignition Facility Network, dated November 6, 1996 and The National Ignition Facility Digital Video and Control Network, dated July 9, 1996. For an overview of the ICCS, refer to the document NIF Integrated Computer Controls System Description (NIF-3738)

  19. The Application of Social Network Analysis to Team Sports

    Science.gov (United States)

    Lusher, Dean; Robins, Garry; Kremer, Peter

    2010-01-01

    This article reviews how current social network analysis might be used to investigate individual and group behavior in sporting teams. Social network analysis methods permit researchers to explore social relations between team members and their individual-level qualities simultaneously. As such, social network analysis can be seen as augmenting…

  20. Web-based metabolic network visualization with a zooming user interface

    Directory of Open Access Journals (Sweden)

    Karp Peter D

    2011-05-01

    Full Text Available Abstract Background Displaying complex metabolic-map diagrams, for Web browsers, and allowing users to interact with them for querying and overlaying expression data over them is challenging. Description We present a Web-based metabolic-map diagram, which can be interactively explored by the user, called the Cellular Overview. The main characteristic of this application is the zooming user interface enabling the user to focus on appropriate granularities of the network at will. Various searching commands are available to visually highlight sets of reactions, pathways, enzymes, metabolites, and so on. Expression data from single or multiple experiments can be overlaid on the diagram, which we call the Omics Viewer capability. The application provides Web services to highlight the diagram and to invoke the Omics Viewer. This application is entirely written in JavaScript for the client browsers and connect to a Pathway Tools Web server to retrieve data and diagrams. It uses the OpenLayers library to display tiled diagrams. Conclusions This new online tool is capable of displaying large and complex metabolic-map diagrams in a very interactive manner. This application is available as part of the Pathway Tools software that powers multiple metabolic databases including Biocyc.org: The Cellular Overview is accessible under the Tools menu.

  1. Analysis and visualization of citation networks

    CERN Document Server

    Zhao, Dangzhi

    2015-01-01

    Citation analysis-the exploration of reference patterns in the scholarly and scientific literature-has long been applied in a number of social sciences to study research impact, knowledge flows, and knowledge networks. It has important information science applications as well, particularly in knowledge representation and in information retrieval.Recent years have seen a burgeoning interest in citation analysis to help address research, management, or information service issues such as university rankings, research evaluation, or knowledge domain visualization. This renewed and growing interest

  2. An Intelligent technical analysis using neural network

    Directory of Open Access Journals (Sweden)

    Reza Raei

    2011-07-01

    Full Text Available Technical analysis has been one of the most popular methods for stock market predictions for the past few decades. There have been enormous technical analysis methods to study the behavior of stock market for different kinds of trading markets such as currency, commodity or stock. In this paper, we propose two different methods based on volume adjusted moving average and ease of movement for stock trading. These methods are used with and without generalized regression neural network methods and the results are compared with each other. The preliminary results on historical stock price of 20 firms indicate that there is no meaningful difference between various proposed models of this paper.

  3. Topological Organization of Metabolic Brain Networks in Pre-Chemotherapy Cancer with Depression: A Resting-State PET Study.

    Science.gov (United States)

    Fang, Lei; Yao, Zhijun; An, Jianping; Chen, Xuejiao; Xie, Yuanwei; Zhao, Hui; Mao, Junfeng; Liang, Wangsheng; Ma, Xiangxing

    2016-01-01

    This study aimed to investigate the metabolic brain network and its relationship with depression symptoms using 18F-fluorodeoxyglucose positron emission tomography data in 78 pre-chemotherapy cancer patients with depression and 80 matched healthy subjects. Functional and structural imbalance or disruption of brain networks frequently occur following chemotherapy in cancer patients. However, few studies have focused on the topological organization of the metabolic brain network in cancer with depression, especially those without chemotherapy. The nodal and global parameters of the metabolic brain network were computed for cancer patients and healthy subjects. Significant decreases in metabolism were found in the frontal and temporal gyri in cancer patients compared with healthy subjects. Negative correlations between depression and metabolism were found predominantly in the inferior frontal and cuneus regions, whereas positive correlations were observed in several regions, primarily including the insula, hippocampus, amygdala, and middle temporal gyri. Furthermore, a higher clustering efficiency, longer path length, and fewer hubs were found in cancer patients compared with healthy subjects. The topological organization of the whole-brain metabolic networks may be disrupted in cancer. Finally, the present findings may provide a new avenue for exploring the neurobiological mechanism, which plays a key role in lessening the depression effects in pre-chemotherapy cancer patients.

  4. Noninvasive analysis of metabolic changes following nutrient input into diverse fish species, as investigated by metabolic and microbial profiling approaches

    Directory of Open Access Journals (Sweden)

    Taiga Asakura

    2014-10-01

    Full Text Available An NMR-based metabolomic approach in aquatic ecosystems is valuable for studying the environmental effects of pharmaceuticals and other chemicals on fish. This technique has also contributed to new information in numerous research areas, such as basic physiology and development, disease, and water pollution. We evaluated the microbial diversity in various fish species collected from Japan’s coastal waters using next-generation sequencing, followed by evaluation of the effects of feed type on co-metabolic modulations in fish-microbial symbiotic ecosystems in laboratory-scale experiments. Intestinal bacteria of fish in their natural environment were characterized (using 16S rRNA genes for trophic level using pyrosequencing and noninvasive sampling procedures developed to study the metabolism of intestinal symbiotic ecosystems in fish reared in their environment. Metabolites in feces were compared, and intestinal contents and feed were annotated based on HSQC and TOCSY using SpinAssign and network analysis. Feces were characterized by species and varied greatly depending on the feeding types. In addition, feces samples demonstrated a response to changes in the time series of feeding. The potential of this approach as a non-invasive inspection technique in aquaculture is suggested.

  5. Equal opportunity for low-degree network nodes: a PageRank-based method for protein target identification in metabolic graphs.

    Directory of Open Access Journals (Sweden)

    Dániel Bánky

    Full Text Available Biological network data, such as metabolic-, signaling- or physical interaction graphs of proteins are increasingly available in public repositories for important species. Tools for the quantitative analysis of these networks are being developed today. Protein network-based drug target identification methods usually return protein hubs with large degrees in the networks as potentially important targets. Some known, important protein targets, however, are not hubs at all, and perturbing protein hubs in these networks may have several unwanted physiological effects, due to their interaction with numerous partners. Here, we show a novel method applicable in networks with directed edges (such as metabolic networks that compensates for the low degree (non-hub vertices in the network, and identifies important nodes, regardless of their hub properties. Our method computes the PageRank for the nodes of the network, and divides the PageRank by the in-degree (i.e., the number of incoming edges of the node. This quotient is the same in all nodes in an undirected graph (even for large- and low-degree nodes, that is, for hubs and non-hubs as well, but may differ significantly from node to node in directed graphs. We suggest to assign importance to non-hub nodes with large PageRank/in-degree quotient. Consequently, our method gives high scores to nodes with large PageRank, relative to their degrees: therefore non-hub important nodes can easily be identified in large networks. We demonstrate that these relatively high PageRank scores have biological relevance: the method correctly finds numerous already validated drug targets in distinct organisms (Mycobacterium tuberculosis, Plasmodium falciparum and MRSA Staphylococcus aureus, and consequently, it may suggest new possible protein targets as well. Additionally, our scoring method was not chosen arbitrarily: its value for all nodes of all undirected graphs is constant; therefore its high value captures

  6. Equal opportunity for low-degree network nodes: a PageRank-based method for protein target identification in metabolic graphs.

    Science.gov (United States)

    Bánky, Dániel; Iván, Gábor; Grolmusz, Vince

    2013-01-01

    Biological network data, such as metabolic-, signaling- or physical interaction graphs of proteins are increasingly available in public repositories for important species. Tools for the quantitative analysis of these networks are being developed today. Protein network-based drug target identification methods usually return protein hubs with large degrees in the networks as potentially important targets. Some known, important protein targets, however, are not hubs at all, and perturbing protein hubs in these networks may have several unwanted physiological effects, due to their interaction with numerous partners. Here, we show a novel method applicable in networks with directed edges (such as metabolic networks) that compensates for the low degree (non-hub) vertices in the network, and identifies important nodes, regardless of their hub properties. Our method computes the PageRank for the nodes of the network, and divides the PageRank by the in-degree (i.e., the number of incoming edges) of the node. This quotient is the same in all nodes in an undirected graph (even for large- and low-degree nodes, that is, for hubs and non-hubs as well), but may differ significantly from node to node in directed graphs. We suggest to assign importance to non-hub nodes with large PageRank/in-degree quotient. Consequently, our method gives high scores to nodes with large PageRank, relative to their degrees: therefore non-hub important nodes can easily be identified in large networks. We demonstrate that these relatively high PageRank scores have biological relevance: the method correctly finds numerous already validated drug targets in distinct organisms (Mycobacterium tuberculosis, Plasmodium falciparum and MRSA Staphylococcus aureus), and consequently, it may suggest new possible protein targets as well. Additionally, our scoring method was not chosen arbitrarily: its value for all nodes of all undirected graphs is constant; therefore its high value captures importance in the

  7. The network researchers' network: A social network analysis of the IMP Group 1985-2006

    DEFF Research Database (Denmark)

    Henneberg, Stephan C. M.; Ziang, Zhizhong; Naudé, Peter

    ). In this paper, based upon the papers presented at the 22 conferences held to date, we undertake a Social Network Analysis in order to examine the degree of co-publishing that has taken place between this group of researchers. We identify the different components in this database, and examine the large main......The Industrial Marketing and Purchasing (IMP) Group is a network of academic researchers working in the area of business-to-business marketing. The group meets every year to discuss and exchange ideas, with a conference having been held every year since 1984 (there was no meeting in 1987...

  8. Reconstruction of Arabidopsis metabolic network models accounting for subcellular compartmentalization and tissue-specificity.

    Science.gov (United States)

    Mintz-Oron, Shira; Meir, Sagit; Malitsky, Sergey; Ruppin, Eytan; Aharoni, Asaph; Shlomi, Tomer

    2012-01-03

    Plant metabolic engineering is commonly used in the production of functional foods and quality trait improvement. However, to date, computational model-based approaches have only been scarcely used in this important endeavor, in marked contrast to their prominent success in microbial metabolic engineering. In this study we present a computational pipeline for the reconstruction of fully compartmentalized tissue-specific models of Arabidopsis thaliana on a genome scale. This reconstruction involves automatic extraction of known biochemical reactions in Arabidopsis for both primary and secondary metabolism, automatic gap-filling, and the implementation of methods for determining subcellular localization and tissue assignment of enzymes. The reconstructed tissue models are amenable for constraint-based modeling analysis, and significantly extend upon previous model reconstructions. A set of computational validations (i.e., cross-validation tests, simulations of known metabolic functionalities) and experimental validations (comparison with experimental metabolomics datasets under various compartments and tissues) strongly testify to the predictive ability of the models. The utility of the derived models was demonstrated in the prediction of measured fluxes in metabolically engineered seed strains and the design of genetic manipulations that are expected to increase vitamin E content, a significant nutrient for human health. Overall, the reconstructed tissue models are expected to lay down the foundations for computational-based rational design of plant metabolic engineering. The reconstructed compartmentalized Arabidopsis tissue models are MIRIAM-compliant and are available upon request.

  9. Increasing galactose consumption by Saccharomyces cerevisiae through metabolic engineering of the GAL gene regulatory network

    DEFF Research Database (Denmark)

    Østergaard, Simon; Olsson, Lisbeth; Johnston, M.

    2000-01-01

    in the pathway, and ultimately, increasing metabolic flux through the pathway of interest, By manipulating the GAL gene regulatory network of Saccharomyces cerevisiae, which is a tightly regulated system, we produced prototroph mutant strains, which increased the flux through the galactose utilization pathway...... by eliminating three known negative regulators of the GAL system: Gale, Gal80, and Mig1. This led to a 41% increase in flux through the galactose utilization pathway compared with the wild-type strain. This is of significant interest within the field of biotechnology since galactose is present in many industrial...... media. The improved galactose consumption of the gal mutants did not favor biomass formation, but rather caused excessive respiro-fermentative metabolism, with the ethanol production rate increasing linearly with glycolytic flux....

  10. Hearing health network: a spatial analysis

    Directory of Open Access Journals (Sweden)

    Camila Ferreira de Rezende

    2015-06-01

    Full Text Available INTRODUCTION: In order to meet the demands of the patient population with hearing impairment, the Hearing Health Care Network was created, consisting of primary care actions of medium and high complexity. Spatial analysis through geoprocessing is a way to understand the organization of such services. OBJECTIVE: To analyze the organization of the Hearing Health Care Network of the State of Minas Gerais. METHODS: Cross-sectional analytical study using geoprocessing techniques. The absolute frequency and the frequency per 1000 inhabitants of the following variables were analyzed: assessment and diagnosis, selection and adaptation of hearing aids, follow-up, and speech therapy. The spatial analysis unit was the health micro-region. RESULTS: The assessment and diagnosis, selection, and adaptation of hearing aids and follow-up had a higher absolute number in the micro-regions with hearing health services. The follow-up procedure showed the lowest occurrence. Speech therapy showed higher occurrence in the state, both in absolute numbers, as well as per population. CONCLUSION: The use of geoprocessing techniques allowed the identification of the care flow as a function of the procedure performance frequency, population concentration, and territory distribution. All procedures offered by the Hearing Health Care Network are performed for users of all micro-regions of the state.

  11. Design Criteria For Networked Image Analysis System

    Science.gov (United States)

    Reader, Cliff; Nitteberg, Alan

    1982-01-01

    Image systems design is currently undergoing a metamorphosis from the conventional computing systems of the past into a new generation of special purpose designs. This change is motivated by several factors, notably among which is the increased opportunity for high performance with low cost offered by advances in semiconductor technology. Another key issue is a maturing in understanding of problems and the applicability of digital processing techniques. These factors allow the design of cost-effective systems that are functionally dedicated to specific applications and used in a utilitarian fashion. Following an overview of the above stated issues, the paper presents a top-down approach to the design of networked image analysis systems. The requirements for such a system are presented, with orientation toward the hospital environment. The three main areas are image data base management, viewing of image data and image data processing. This is followed by a survey of the current state of the art, covering image display systems, data base techniques, communications networks and software systems control. The paper concludes with a description of the functional subystems and architectural framework for networked image analysis in a production environment.

  12. Metabolic network capacity of Escherichia coli for Krebs cycle-dependent proline hydroxylation.

    Science.gov (United States)

    Theodosiou, Eleni; Frick, Oliver; Bühler, Bruno; Schmid, Andreas

    2015-07-29

    Understanding the metabolism of the microbial host is essential for the development and optimization of whole-cell based biocatalytic processes, as it dictates production efficiency. This is especially true for redox biocatalysis where metabolically active cells are employed because of the cofactor/cosubstrate regenerative capacity endogenous in the host. Recombinant Escherichia coli was used for overproducing proline-4-hydroxylase (P4H), a dioxygenase catalyzing the hydroxylation of free L-proline into trans-4-hydroxy-L-proline with a-ketoglutarate (a-KG) as cosubstrate. In this whole-cell biocatalyst, central carbon metabolism provides the required cosubstrate a-KG, coupling P4H biocatalytic performance directly to carbon metabolism and metabolic activity. By applying both experimental and computational biology tools, such as metabolic engineering and (13)C-metabolic flux analysis ((13)C-MFA), we investigated and quantitatively described the physiological, metabolic, and bioenergetic response of the whole-cell biocatalyst to the targeted bioconversion and identified possible metabolic bottlenecks for further rational pathway engineering. A proline degradation-deficient E. coli strain was constructed by deleting the putA gene encoding proline dehydrogenase. Whole-cell biotransformations with this mutant strain led not only to quantitative proline hydroxylation but also to a doubling of the specific trans-4-L-hydroxyproline (hyp) formation rate, compared to the wild type. Analysis of carbon flux through central metabolism of the mutant strain revealed that the increased a-KG demand for P4H activity did not enhance the a-KG generating flux, indicating a tightly regulated TCA cycle operation under the conditions studied. In the wild type strain, P4H synthesis and catalysis caused a reduction in biomass yield. Interestingly, the ΔputA strain additionally compensated the associated ATP and NADH loss by reducing maintenance energy demands at comparably low glucose

  13. MetExploreViz: web component for interactive metabolic network visualization.

    Science.gov (United States)

    Chazalviel, Maxime; Frainay, Clément; Poupin, Nathalie; Vinson, Florence; Merlet, Benjamin; Gloaguen, Yoann; Cottret, Ludovic; Jourdan, Fabien

    2017-09-15

    MetExploreViz is an open source web component that can be easily embedded in any web site. It provides features dedicated to the visualization of metabolic networks and pathways and thus offers a flexible solution to analyze omics data in a biochemical context. Documentation and link to GIT code repository (GPL 3.0 license)are available at this URL: http://metexplore.toulouse.inra.fr/metexploreViz/doc /. Tutorial is available at this URL. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  14. Integrated Adaptive Analysis and Visualization of Satellite Network Data Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a system that enables integrated and adaptive analysis and visualization of satellite network management data. Integrated analysis and...

  15. Understanding resilience in industrial symbiosis networks: insights from network analysis.

    Science.gov (United States)

    Chopra, Shauhrat S; Khanna, Vikas

    2014-08-01

    Industrial symbiotic networks are based on the principles of ecological systems where waste equals food, to develop synergistic networks. For example, industrial symbiosis (IS) at Kalundborg, Denmark, creates an exchange network of waste, water, and energy among companies based on contractual dependency. Since most of the industrial symbiotic networks are based on ad-hoc opportunities rather than strategic planning, gaining insight into disruptive scenarios is pivotal for understanding the balance of resilience and sustainability and developing heuristics for designing resilient IS networks. The present work focuses on understanding resilience as an emergent property of an IS network via a network-based approach with application to the Kalundborg Industrial Symbiosis (KIS). Results from network metrics and simulated disruptive scenarios reveal Asnaes power plant as the most critical node in the system. We also observe a decrease in the vulnerability of nodes and reduction in single points of failure in the system, suggesting an increase in the overall resilience of the KIS system from 1960 to 2010. Based on our findings, we recommend design strategies, such as increasing diversity, redundancy, and multi-functionality to ensure flexibility and plasticity, to develop resilient and sustainable industrial symbiotic networks. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Evolution of amino acid metabolism inferred through cladistic analysis.

    Science.gov (United States)

    Cunchillos, Chomin; Lecointre, Guillaume

    2003-11-28

    Because free amino acids were most probably available in primitive abiotic environments, their metabolism is likely to have provided some of the very first metabolic pathways of life. What were the first enzymatic reactions to emerge? A cladistic analysis of metabolic pathways of the 16 aliphatic amino acids and 2 portions of the Krebs cycle was performed using four criteria of homology. The analysis is not based on sequence comparisons but, rather, on coding similarities in enzyme properties. The properties used are shared specific enzymatic activity, shared enzymatic function without substrate specificity, shared coenzymes, and shared functional family. The tree shows that the earliest pathways to emerge are not portions of the Krebs cycle but metabolisms of aspartate, asparagine, glutamate, and glutamine. The v